
Федеральное государственное бюджетное образовательное учреждение 

высшего образования  

«Смоленский государственный университет» 

На правах рукописи 

Мунерман Виктор Иосифович 

АЛГЕБРАИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ ДЛЯ РАЗРАБОТКИ 

ПРОГРАММНО-АППАРАТНЫХ КОМПЛЕКСОВ  

МАССОВОЙ ОБРАБОТКИ ДАННЫХ 

2.3.5. Математическое и программное обеспечение вычислительных 

систем, комплексов и компьютерных сетей 

Диссертация на соискание учёной степени 

 доктора технических наук 

Смоленск – 2024 



2 

 

Оглавление 

СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ ............................................................................ 5 

ВВЕДЕНИЕ ............................................................................................................................................. 6 

Глава 1. МАССОВАЯ ОБРАБОТКА ДАННЫХ: ОПРЕДЕЛЕНИЕ, МЕТОДЫ ОПИСАНИЯ, 

АНАЛИЗ ПРОБЛЕМ ............................................................................................................................ 17 

1.1. Понятие массовой обработки данных ......................................................................................... 17 

1.2. Связь моделей МОД с архитектурами программно-аппаратных комплексов ........................ 29 

1.2.1. Логически последовательный метод доступа ......................................................................... 29 

1.2.2. Архитектуры вычислительных комплексов для реализации логически 

последовательного метода доступа .................................................................................................... 32 

1.3. Проблемы оптимизации процессов массовой обработки данных ............................................ 40 

1.4. Требования к моделям массовой обработки данных ................................................................. 46 

1.5. Заключительные замечания к главе 1 ......................................................................................... 51 

Глава 2. АЛГЕБРАИЧЕСКИЕ МОДЕЛИ ДАННЫХ ДЛЯ ПОСТРОЕНИЯ ПРОГРАММНО-

АППАРАТНЫХ КОМПЛЕКСОВ ...................................................................................................... 53 

2.1. Основные алгебраические понятия ............................................................................................. 53 

2.1.1. Универсальные алгебры и алгебраические системы .............................................................. 53 

2.1.2. Интуитивный подход к объектно-ориентированному моделированию, проектированию 

и программированию ........................................................................................................................... 56 

2.1.3. Алгебраический (формальный) подход к объектно-ориентированному моделированию, 

проектированию и программированию ............................................................................................. 59 

2.1.4. Объектно-ориентированный подход к разработке моделей данных .................................... 62 

2.2. Файловая (теоретико-множественная) модель данных ............................................................. 68 

2.2.1. Анализ определений файла ....................................................................................................... 68 

2.2.2. Определение файла .................................................................................................................... 70 

2.2.3. Описание операций над файлами ............................................................................................. 73 

2.3. Многомерно-матричная модель данных ..................................................................................... 78 

2.3.1. Задачи многомерно-матричного представления данных ....................................................... 78 

2.3.2. Алгебра многомерных матриц .................................................................................................. 80 

2.4. Соответствие моделей данных ..................................................................................................... 87 

2.4.1. Соответствие теоретико-множественной и многомерно-матричной моделей .................... 88 

2.4.2. Соответствие промежуточных моделей данных высокоуровневым моделям ..................... 94 

2.5. Аксиоматический подход к формализации моделей данных для МОД .................................. 97 

2.5.1. Соответствие аксиоматического и алгебраического подходов к формализации МОД ...... 98 

2.5.2. Определение аксиоматической теории МОД ........................................................................ 100 

2.5.3. Интерпретация формул аксиоматической теории МОД ...................................................... 101 

2.5.4. Аксиомы теории массовой обработки данных ...................................................................... 102 

2.5.5. Теоремы аксиоматической теории МОД ............................................................................... 105 

2.5.6. Эквивалентность моделей МОД ............................................................................................. 107 



3 

 

2.5.7. Доказательство эквивалентности моделей МОД по операциям слияния ........................... 108 

2.6. Заключительные замечания к главе 2 ....................................................................................... 115 

Глава 3. МЕТОДЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ МАССОВОЙ ОБРАБОТКИ 

ДАННЫХ ............................................................................................................................................ 117 

3.1. Проблемы повышения эффективности обработки данных ..................................................... 117 

3.2. Синтез и оптимизация процесса МОД ...................................................................................... 122 

3.2.1. Модель и метод построения процесса МОД ......................................................................... 122 

3.2.2. Формальное описание метода синтеза и оптимизации процесса МОД .............................. 125 

3.2.3. Реализация метода синтеза и оптимизации процесса МОД................................................. 130 

3.3. Выбор параллельных алгоритмов для реализации операций МОД ....................................... 134 

3.4. Алгоритм параллельного умножения многомерных матриц .................................................. 136 

3.4.1. Выбор алгоритма умножения многомерных матриц ............................................................ 136 

3.4.2. Описание алгоритма умножения многомерных матриц ...................................................... 141 

3.5. Алгоритм параллельной реализации операции слияния нестрого упорядоченных файлов 149 

3.5.1. Анализ алгоритмов параллельной реализации операции слияния нестрого 

упорядоченных файлов ...................................................................................................................... 149 

3.5.2. Организация данных для параллельной реализации операции слияния нестрого 

упорядоченных файлов ...................................................................................................................... 151 

3.5.3. Параллельный алгоритм реализации операции слияния нестрого упорядоченных 

файлов ................................................................................................................................................. 154 

3.5.3.1. Эвристический алгоритм распределения ............................................................................ 155 

3.6. Алгоритм параллельной реализации операции соединения в реляционной модели SQL ... 165 

3.7. Стратегия повышения эффективности процессов МОД ......................................................... 170 

3.8. Заключительные замечания к главе 3 ....................................................................................... 171 

Глава 4. АРХИТЕКТУРЫ ПРОГРАММНО-АППАРАТНЫХ КОМПЛЕКСОВ ДЛЯ 

МАССОВОЙ ОБРАБОТКИ ДАННЫХ............................................................................................ 173 

4.1. Этапы построения программно-аппаратных комплексов ....................................................... 173 

4.2. Архитектура программно-аппаратного комплекса для реализации многомерно-

матричной модели данных ................................................................................................................ 176 

4.3. Архитектуры программно-аппаратных комплексов для реализации простых операций 

теоретико-множественной модели данных ..................................................................................... 179 

4.3.1. Параллельная реализация внешней сортировки ................................................................... 179 

4.3.2. Параллельная реализация операций выборки, слияния строго упорядоченных файлов и 

сечения ................................................................................................................................................ 183 

4.4. Параллельная реализация операции слияния нестрого упорядоченных файлов в 

теоретико-множественной и реляционной моделях данных ......................................................... 185 

4.4.1. Параллельная реализация операции слияния нестрого упорядоченных файлов 

алгоритмом черпака ........................................................................................................................... 188 

4.4.2. Параллельная реализация последовательности операций слияния нестрого 

упорядоченных файлов ...................................................................................................................... 192 



4 

 

4.4.3. Параллельная реализация операции слияния нестрого упорядоченных файлов с 

использованием ассоциативных вычислительных систем ............................................................. 195 

4.5. Заключительные замечания к главе 4 ....................................................................................... 198 

Глава 5. ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ПРОГРАММНО-АППАРАТНЫХ 

РЕАЛИЗАЦИЙ МАССОВОЙ ОБРАБОТКИ ДАННЫХ ................................................................ 200 

5.1. Анализ параллельной реализации операции умножения многомерных матриц .................. 200 

5.2. Анализ параллельной реализации операции слияния нестрого упорядоченных файлов .... 202 

5.3. Анализ параллельной реализации операции слияния нестрого упорядоченных файлов 

средствами СУБД и SMP-архитектуры ............................................................................................ 202 

5.4. Анализ параллельной реализации операции слияния нестрого упорядоченных файлов с 

использованием MPP-архитектуры в облачной среде .................................................................... 206 

5.5. Анализ параллельной реализации операции слияния нестрого упорядоченных файлов с 

использованием SMP-архитектуры в облачной среде .................................................................... 211 

5.6. Анализ параллельной реализации операции слияния нестрого упорядоченных файлов с 

использованием SMP-архитектуры и многоядерных графических процессоров ........................ 213 

5.7. Заключительные замечания к главе 5 ....................................................................................... 214 

Глава 6. ПРИМЕНЕНИЕ АЛГЕБРАИЧЕСКОГО ПОДХОДА ДЛЯ РЕШЕНИЯ 

ПРИКЛАДНЫХ ЗАДАЧ.................................................................................................................... 216 

6.1. Использование предложенного метода для решения задач о кратчайшем пути .................. 216 

6.1.1 Решение традиционной задачи ................................................................................................ 216 

6.1.2. Решение задачи с одновременным построением пути ......................................................... 221 

6.2. Использование предложенного метода для решения задачи вывода ассоциативных 

правил .................................................................................................................................................. 229 

6.3. Использование предложенного метода для решения задачи поиска изображений в базах 

данных ................................................................................................................................................. 234 

6.3.1. Архитектура программно-аппаратного комплекса для поиска изображений в базах 

данных ................................................................................................................................................. 235 

6.3.2. Параллельное сравнение ключей изображений .................................................................... 237 

6.3.4. Реализация и анализ метода поиска изображений в базе данных ....................................... 240 

6.4. Реализация алгоритма шифрования Хилла на основе алгебры многомерных матриц ........ 243 

6.4.1. Краткое описание алгоритма шифрования Хилла ................................................................ 244 

6.4.2. Дополнительные элементы алгебры многомерных матриц ................................................. 245 

6.5. Заключительные замечания к главе 6 ....................................................................................... 251 

Заключение ......................................................................................................................................... 253 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ......................................................................... 255 

Приложение 1. Патент на полезную модель RUS 82355 ................................................................ 280 

Приложение 2. Патент № 2755568 ................................................................................................... 281 

Приложение 3. Свидетельства о регистрации программы для ЭВМ ............................................ 284 

Приложение 4. Акт внедрения результатов диссертационной работы ......................................... 285 

 

 



5 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ 

ASM автоматическая система управления (Oracle Automatic Storage 

Management) для Oracle Exadata 

AVX – расширение системы команд x86 для микропроцессоров Intel и AMD 

(Advanced Vector Extensions) 

CALS (Continuous Acquisition and Life cycle Support – непрерывная информаци-

онная поддержка поставок и жизненного цикла издели 

CUDA – программно-аппаратная архитектура параллельных вычислений 

DBRM – подсистемf управления ресурсами Oracle 

DDL – язык управления данными 

DML – язык манипулирования данными 

FPGA – программируемая пользователем вентильная матрица 

GPU – графический процессор 

ISAM – индексно-последовательный метод доступа 

MDX (Multidimensional Expressions) – SQL-подобный язык запросов, ориенти-

рованный на доступ к многомерным структурам данных. 

MIMD – архитектура "множественный поток команд, множественный поток 

данных" 

MISD – архитектура "множественный поток команд, одиночный поток данных" 

MOLAP – многомерная интерактивная аналитическая обработка 

MPP – массивно-параллельная архитектура 

MSSQL – Microsoft Sql Server 

NUMA – архитектура с неравномерной памятью 

ODBC – программный интерфейс доступа к базам данных 

OLAP online analytical processing, интерактивная аналитическая обработка) 

SIMD – архитектура "одиночный поток команд, множественный поток данных" 

SMP – архитектура симметричная многопроцессорность 

SPMD – архитектура одна программа много данных 

АСУ – автоматизированная система управления 

АТД – абстрактный тип данных 

БД – база данных 

БНФ – форма Бэкуса-Наура 

ВСАРР – вычислительная система с ассоциативным распределением ресурсов 

ЛММ – логическая многомерная матрица 

МОД – массовая обработка данных 

ПЛИС – программируемая логическая интегральная схема 

СУБД – система управления базами данных 
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ВВЕДЕНИЕ 

Общая характеристика работы 

В работе предлагаются и рассматриваются математическая и алгоритми-

ческая поддержка массовой обработки данных на основе алгебраических моде-

лей. Традиционно массовую обработку данных связывают с параллельными 

вычислениями и чаще всего определяют следующим образом: массовая парал-

лельная обработка – способ параллельной обработки больших объемов данных 

большим числом процессоров.  

Актуальность темы. В настоящее время массовую обработку данных 

связывают с направлением, получившим название Big data. Big data (большие 

данные) – общий термин, который обозначает вновь создающиеся структури-

рованные, неструктурированные и полуструктурированные данные сверхболь-

ших и постоянно возрастающих объемов. Загрузка неструктурированных и по-

луструктурированных данных в обычную (например, реляционную) базу дан-

ных и последующая обработка требуют слишком больших затрат ресурсов вы-

числительных комплексов. Поэтому работа посвящена рассмотрению распро-

страненного класса массовой обработки – обработке высокоактивных структу-

рированных данных. Высокая активность данных означает, что при выполне-

нии операций над данными, в обработку включается их большая часть, близкая 

к ста процентам.  

Большие данные (big data) не только неотъемлемая часть современного 

мира обработки данных, но и основная его часть. Комплекс сложных научно-

технических проблем, связанных с решением задач на основе обработки боль-

ших данных, при переходе к информационному обществу не только сохраняет, 

но и усиливает свою актуальность. Об этом свидетельствуют интенсивные 

научные исследования в области баз данных, проводимые в России и за рубе-

жом. 

Требования к обработке больших данных, существенно влияют на техно-

логию разработки программных и аппаратных вычислительных средств ее реа-

лизующих.  Обработка больших данных необходима при решении сложных 
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вычислительных задач [1, 2, 3], информационно-логических задач, к которым 

относятся обработка транзакционных запросов и запросов, требующих боль-

ших рабочих нагрузок [4, 5], задачи в области искусственного интеллекта [6-9], 

такие как переобучение сверточных нейронных сетей [10-12]. Эти задачи обу-

словили необходимость использования параллельной обработки и обработки в 

основной (оперативной) памяти.  

Важное значение в обработке больших данных имеют параллельные и 

распределенные базы данных, для которых создаются специализированные 

программно-аппаратные комплексы – машины баз данных [13, 14]. Большин-

ство современных машин баз данных ориентированы на реализацию реляцион-

ных СУБД, которые недавно стали широко применяться для подготовки исход-

ных данных в системах глубокого обучения [15-118].  При разработке парал-

лельных вычислительных систем особую роль играет повышение эффективно-

сти реализации отдельных операций, имеющих большую вычислительную 

сложность, о чем свидетельствуют многие публикации, например, [19-23]. К 

этим операциям относятся такие как многомерное дискретное преобразование 

Фурье, свертки в процессе обучения нейронных сетей, операция Join в реляци-

онных системах баз данных. 

Современные аппаратные средства, такие как многопоточные процессоры 

архитектур подобных x86 и ARMv8, а также графические и тензорные процес-

соры (GPU, TPU), позволяют проектировать параллельные вычислительные си-

стемы, которые обеспечивают решение многих из перечисленных задач [24-33]. 

Важное направление основано на использовании современных программируе-

мых логических интегральных схем (ПЛИС/FPGA). Относительная простота 

программирования [34, 35] позволяет использовать их для решения как вычис-

лительных, так и информационно-логических задач, и создания центров обра-

ботки данных (Data Center) [36-40]. Особую роль современные ПЛИС играют в 

решении проблемы построения быстро реконфигурируемых вычислительных 

систем [41]. Так в машине баз данных IBM Netezza [42, 43], ПЛИС позволяет 

быстро перестраивать процессор обмена и подготовки данных S-Blade, превра-
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щая его в специализированный процессор для выполнения конкретного запро-

са, полученного от случайного пользователя. Также для массовой обработки 

данных могут эффективно использоваться специализированные процессоры 

[44-48]. 

Рассмотренные важные задачи, требуют для своего решения построения 

программно-аппаратных комплексов, основное свойство которых заключается 

в достижении эффективного баланса программного и аппаратного обеспечения 

[49-51]. Эта эффективность достигается тогда, когда как сказано в [52 – Воево-

дин В.В. Вычислительная математика и структура алгоритмов. – М.: Изд-во 

МГУ, 2006. – 112 с. – ISBN 5-211-05310-9]: "Для всех конкретных параллель-

ных вычислительных систем степень согласованности структуры алгоритмов с 

архитектурой систем играет самую важную роль в достижении наивысших ско-

ростей". Формальная постановка этой проблемы предложена в [53 – Глушков 

В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра. Языки. Программирование. – Киев: 

Наукова думка, 1989. – 376 с. – ISBN 5-12-000499-7]: "Одним из основных ис-

точников задач прикладной теории алгоритмов является проблема оптимально-

го перевода с одного языка на другой, которая может быть сформулирована 

следующим образом: существуют два алгоритмических языка и некоторый ал-

горитм, написанный на одном из них; требуется найти оптимальную по задан-

ным критериям реализацию этого алгоритма на другом языке. В программиро-

вании обычно первым является некоторый язык программирования, ориентиро-

ванный на тот или иной круг задач, а вторым – внутренний язык машины, на 

которой решаются данные задачи." 

Поиск причин возникновения трудностей при решении задач на вычисли-

тельной технике параллельной архитектуры неизбежно приводит к выводу, что 

как истоки этих причин, так и пути их преодоления надо искать в мате-

матических знаниях об алгоритмах". 

Эти две посылки позволяют сделать заключение, состоящее в следую-

щем. Алгебраическая система, в которой формализована решаемая задача, и 

модель вычислений (алгебраическая система, реализованная в системе команд 
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вычислительной системы или комплекса) должны в наибольшей степени соот-

ветствовать друг другу. Эти алгебраические системы должны быть, по крайней 

мере, гомоморфными, а в идеальном случае, когда достигается полное соответ-

ствие – изоморфными. 

Для обработки больших данных традиционно используется массовая об-

работка данных (massively data processing, massively data computing) – способ 

параллельной обработки больших объемов данных большим числом процессо-

ров. Для ее реализации проектируются и используются специализированное 

программно-аппаратные комплексы [54-57].  

Область, в которой применение массовой обработки данных имеет важ-

ное значение – это обработка высокоактивных данных. Активность данных 

определяется отношением числа обращений к элементу данных (записи файла, 

элементу матрицы, строки таблицы) к общему числу обращений к информации 

(файлу, матрице, базе данных) в единицу времени. 

Важным примером применения предложенных в диссертационной работе 

методов построения программно-аппаратных комплексов для массовой обра-

ботки высокоактивных данных служит упомянутое ранее реляционное глубо-

кое обучение. В реляционной базе данных выполняются запросы на формиро-

вание обучающей и тестирующей выборок. Поскольку системы глубокого обу-

чения базируются на алгебре тензоров – частном случае алгебры многомерных 

матриц [58, 59], то целесообразно для подготовки данных для систем глубокого 

обучения использовать многомерно-матричные машины баз данных [60]. 

В соответствии со сказанным в работа содержит подробное описание и 

развитие формализованного математического, а именно, алгебраического 

аппарата, который обеспечит наилучшее соответствие характера данных и 

свойств вычислительных средств, для реализации массовой обработки дан-

ных, что подтверждает ее актуальность.  

Цель исследования. Целью диссертации является создание алгебраиче-

ских моделей и методов синтеза программно-аппаратных комплексов массовой 

обработки высокоактивных данных путем выбора на их основе подходящих ар-
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хитектур и способов построения вычислительных процедур. 

Задачи исследования. Для достижения поставленной цели необходимо 

было решить следующие задачи.  

1. Разработка алгебраического подхода к организации моделей данных и мо-

делей вычислений, выработка системы требований к этому классу алгебраиче-

ских моделей и проведение анализа универсальных алгебраических систем в 

большей мере отвечающих предъявляемым требованиям, разработка формаль-

ной алгебраической модели массовой обработки данных – теоретико-

множественной файловой модели, и обоснование эффективности применения в 

качестве моделей данных и моделей вычислений алгебры многомерных матриц 

и реляционной алгебры. 

2. Разработка системы методов доказательства соответствия предложенных 

алгебраических моделей с использованием алгебраических доказательств го-

моморфизма или изоморфизма, и аксиоматических – доказательства эквива-

лентности теорий. 

3. Разработка методов синтеза алгебраических моделей процессов массовой 

обработки данных на основе принципов динамического программирования. 

4. Разработка методов и алгоритмов параллельной реализации операций мас-

совой обработки данных, архитектур программно-аппаратных комплексов, реа-

лизующих эти операции и анализ приемлемости параллельной реализации про-

цессов массовой обработки данных на предложенных архитектурах программ-

но-аппаратных комплексов. 

5. Разработка объектно- и предметно-ориентированных технологий, и 

средств методического и программно-технического обеспечения для массовой 

обработки высокоактивных структурированных данных  

6. Реализация решения прикладных задач из различных предметных областей 

на основе предложенных методов массовой обработки данных. 

Методы исследования. Проведенные в работе исследования базируются 

на математических моделях данных и вычислений, таких как   алгебра много-

мерных матриц, реляционная алгебра, теория множеств, и используют методы 
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математического моделирования. Для решения поставленных задач применя-

лись аппарат математического анализа, теории алгебраических систем и мета-

математики, методы системного, модульного, функционального и объектно-

ориентированного программирования, а также технология параллельной обра-

ботки данных на многопроцессорных программно-аппаратных комплексах. 

Основные положения, выносимые на защиту 

На защиту выносятся следующие новые научные результаты. 

1. Предложена новая теоретико-множественная (файловая) модель массовой 

обработки данных. Дано определение файла, как фактор-множества множества 

однотипных записей по отношению эквивалентности, порожденному множе-

ством ключей. На основе этого определения сделаны формальные определения 

основных операций массовой обработки данных с использованием алгебраиче-

ского и объектно-ориентированного подхода, которые позволили формализо-

вать как операции над структурами данных высокого уровня – файлами, так и 

над составляющими их элементами – записями (кортежами). 

2. Разработана алгебраическая модель данных и вычислений на основе ал-

гебры многомерных матриц. Доказано соответствие этой модели теоретико-

множественной и реляционной моделям. 

3. Разработана аксиоматическая теория массовой обработки данных. Пока-

зано, что запросы на обработку данных – есть теоремы аксиоматической тео-

рии. На основе теоремы об эквивалентности аксиоматических теорий доказано, 

что многомерно-матричная и реляционная модели данных соответствуют друг 

другу. 

4. Разработано обобщение алгоритма оптимизации последовательного 

умножения матриц на умножение многомерных матриц. Разработан метод на 

основе динамического программирования для синтеза оптимизированного про-

цесса массовой обработки данных. Предложена стратегия оптимизации таких 

процессов. 
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5. Предложен и исследован метод симметричного горизонтального распре-

деления таблиц-операндов операции JOIN, для последующего параллельного 

выполнения этой операции над фрагментами таблиц-операндов. 

6. Предложены архитектуры программно-аппаратных комплексов для па-

раллельного выполнения процессов массовой обработки данных, формализо-

ванных в различных моделях данных: многомерно-матричной, теоретико-

множественной (файловой), реляционной. 

Научная новизна 

Научная новизна работы заключается в следующем: 

1. Предложен новый метод формализации моделей данных и моделей вычис-

лений, основанный на универсальных многоосновных алгебраических системах 

и объектно-ориентированном подходе к проектированию и разработке про-

граммно-аппаратных комплексов для решения задач массовой обработки дан-

ных. 

2. Предложена и разработана теоретико-множественная (файловая) алгебраи-

ческая система, которая используется для верификации соответствия известных 

и используемых на практике моделей данных и моделей вычислений. 

3. Описана алгебра многомерных матриц и предложен метод – абстрактная 

алгебраическая машина, который позволяет использовать в качестве элементов 

многомерных матриц различные, как простые, так и структурные (кортежи), 

типы данных. 

4. Разработаны алгебраический и аксиоматический методы подтверждения 

соответствия (изоморфизма или гомоморфизма) моделей данных и моделей вы-

числений и осуществлено подтверждение гомоморфизма, а для конкретных за-

дач – изоморфизма, теоретико-множественной, многомерно-матричной и реля-

ционной моделей на основе использования обоих методов. 

5. Разработано обобщение алгоритма выбора последовательности операций 

умножения матриц методом динамического программирования для ( , )-

свернутого произведения многомерных матриц, показано, что синтез оптими-

зированного процесса МОД может быть реализован методом динамического 
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программирования. Приведен пример синтеза такого процесса. 

6. На основе параллельной реализации операций:  выбран и обобщен для па-

раллельной реализации (, )-свернутого произведения многомерных матриц 

алгоритм Кэннона; для файловой модели разработан алгоритм операции слия-

ния нестрого упорядоченных файлов на основе симметричного горизонтально-

го распределения файлов-операндов; для реализации симметричного горизон-

тального распределения разработан оригинальный эвристический алгоритм; 

показано, что на основе симметричного горизонтального распределения может 

быть эффективно распараллелена реляционная операция Join. 

7. Разработаны этапы построения программно-аппаратного комплекса для 

реализации МОД, архитектура для реализации многомерно-матричной модели 

данных, архитектуры для реализации простых (однопроходных) операций тео-

ретико-множественной модели данных, архитектура для параллельной реализа-

ции операции слияния нестрого упорядоченных файлов в теоретико-

множественной и реляционной моделях данных для различных алгоритмов, в 

том числе с использованием ассоциативных вычислительных систем. 

Соответствие паспорту научной специальности 2.3.5. «Математическое и 

программное обеспечение вычислительных систем, комплексов и компью-

терных сетей» 

Полученные в диссертационной работе результаты соответствуют пунк-

там: 

3 – Модели, методы, архитектуры, алгоритмы, языки и программные инстру-

менты организации взаимодействия программ и программных систем. 

8 – Модели и методы создания программ и программных систем для парал-

лельной и распределенной обработки данных, языки и инструментальные сред-

ства параллельного программирования.  

9 – Модели, методы, алгоритмы, облачные технологии и программная инфра-

структура организации глобально распределенной обработки данных. 

Теоретическая и практическая значимость 

Теоретическая значимость диссертации состоит в том, что на основе раз-
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работанных новых (файловой и многомерно-матричной) моделей данных, ме-

тодов доказательства соответствия модели данных и модели вычислений, мето-

дов синтеза и оптимизации процессов массовой обработки данных, становится 

возможным построение программно-аппаратных комплексов для решения важ-

ных задач параллельной реализации массовой обработки данных. 

Практическая значимость результатов, полученных в данной работе со-

стоит в следующем: 

1. Предложенные подходы, методы и алгоритмы могут быть использованы для 

проектирования и разработки программно-аппаратных комплексов МОД на ба-

зе широкого спектра многоядерных и многопроцессорных систем с архитекту-

рами SMP, MPP, NUMA, таких как стоечные серверы и локальные грид-

системы. 

2. Предложенные алгебраические модели и методы могут быть использованы 

для разработки технологии коллективного проектирования больших многопро-

цессорных программно-аппаратных комплексов и для создания сложных про-

граммных систем различного назначения. 

3. На разработанные модели и методы получены патенты: 

3.1. Патент на полезную модель RUS 82355 12.08.2008/ Система представ-

ления данных в базе данных Сергеев В.П., Гайдаенко Т.И., Левин Н.А., Мунер-

ман В.И., Оздемир С.М., Провоторова А.О., Ширай А.Е. (приложение 1). 

3.2. Патент № 2755568 Российская Федерация, МПК G06F 16/2455. Способ 

параллельного выполнения операции JOIN при обработке больших структури-

рованных высокоактивных данных: №2020124733: заявл. 26.07.2020: опубл. 

17.09.2021 / Мунерман В. И.,Синявский Ю. В., Чукляев И. Л., Чукляев Е. И. – 

10 с. На этот патент подана «Международная заявка PCT/RU2021/000480 от 

02.11.2021 г.» (приложение 2). 

4. На разработанное на основе алгебраических моделей и методов программ-

ное обеспечение получены авторские свидетельства (приложение 3): 

4.1. Свидетельство о регистрации программы для ЭВМ 2020613833 "Про-

грамма для обработки распределенных больших объемов данных для стоечных 

http://elibrary.ru/item.asp?id=18685899
http://elibrary.ru/item.asp?id=18685899
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серверов и дата-центров".  

4.2. Свидетельство о регистрации программы для ЭВМ 2020614270 "Про-

грамма для обработки распределенных больших объемов данных в вычисли-

тельных сетях рабочих станций". 

Достоверность результатов 

Достоверность полученных в диссертационной работе результатов под-

тверждается проведенными натурными испытаниями программного обеспече-

ния, реализующего разработанные методы и алгоритмы.  

Апробация работы 

 Основные положения диссертационной работы, разработанные модели, 

методы, алгоритмы и результаты вычислительных экспериментов многократно 

докладывались на международных и всероссийских научных конференциях, в 

том числе: 

 Международная научная конференция Системы компьютерной математики 

и их приложения, г. Смоленск, Смоленский государственный университет, 

2008-2024 гг. 

 Международная научно-практическая конференция «Современные инфор-

мационные технологии и ИТ-образование», г. Москва, Московский государ-

ственный университет, 2014-2017 гг. 

 Международная научная конференция «Конвергентные когнитивно-

информационные технологии» в рамках международного конгресса «СОВРЕ-

МЕННЫЕ ПРОБЛЕМЫ КОМПЬЮТЕРНЫХ И НФОРМАЦИОННЫХ НАУК», 

г. Москва, Московский государственный университет, 2018-2023 гг. 

 IEEE Conference of Russian Young Researchers in Electrical and Electronic En-

gineering (EIConRus), г. Зеленоград, Национальный исследовательский уни-

верситет «МИЭТ», 2019-2021 гг.  

 III научно-практическая конференция с международным участием «Акту-

альные проблемы информатизации в цифровой экономике и научных исследо-

ваниях – 2022» г. Зеленоград, Национальный исследовательский университет 

«МИЭТ». 
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 XVII International conference «Data Analytics and Management in Data Inten-

sive Domains», DAMDID/RCDL'2015, г. Обнинск. 

Личный вклад соискателя 

 В диссертационной работе приведены научные положения и практиче-

ские результаты, полученные лично автором. В том числе:  

 соискателем впервые предложена возможность использования алгебры мно-

гомерных матриц для моделирования процессов массовой обработки данных;  

 введены понятия коэффициента активности данных и высокой активности 

данных;  

 приведено доказательство возможности параллельной реализации умноже-

ния многомерных матриц как распределенной совокупности их сечений по 

скоттовым индексам; 

 проведено исследование предложенного соискателем алгоритма симмет-

ричного горизонтального распределения данных для параллельной реализации 

операций типа Inner Join. 

Из совместных публикаций в диссертацию включен лишь тот материал, 

который непосредственно принадлежит соискателю, заимствованный материал 

обозначен в работе ссылками. 

Публикации автора по теме диссертации 

 По результатам диссертационной работы автором опубликовано 73 рабо-

ты, в том числе 33 работы в журналах, входящих в список научных журналов 

ВАК Минобрнауки России. И них в течении последних пяти лет 2 в изданиях, 

входящих в список К1, 31 в изданиях, входящих в список К2; 9 работ в издани-

ях, индексируемых в международных наукометрических базах Scopus и Web of 

Science, 1 монография и 2 патента Российской Федерации.  

Структура и объем диссертации 

 Диссертация состоит из введения, шести глав, заключения и библиогра-

фии. Объем диссертации составляет 286 страниц, объем библиографии – 244 

наименования. 
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Глава 1. МАССОВАЯ ОБРАБОТКА ДАННЫХ: ОПРЕДЕЛЕНИЕ, МЕТО-

ДЫ ОПИСАНИЯ, АНАЛИЗ ПРОБЛЕМ 

1.1. Понятие массовой обработки данных  

Традиционно массовую обработку данных связывают с параллельными 

вычислениями и чаще всего определяют следующим образом: массовая парал-

лельная обработка – способ параллельной обработки больших объемов данных 

большим числом процессоров. В настоящее время массовую обработку данных 

связывают с направлением, получившим название Big data. Big data (большие 

данные) – общий термин, который обозначает вновь создающиеся структури-

рованные, неструктурированные и полуструктурированные данные сверхболь-

ших и постоянно возрастающих объемов; загрузка их в обычную (например, 

реляционную) базу данных и последующая обработка требуют слишком боль-

ших затрат ресурсов вычислительных комплексов. В работе рассматривается 

один из классов массовой обработки – обработка структурированных данных.  

Исторически, обработка структурированных данных – один из самых 

ранних классов обработки. Первые математические (алгебраические) модели 

для него появились еще в начале 60-х годов ХХ века [61, 62] и, в конечном сче-

те, привели к современным реляционным и объектным моделям данных [63]. 

Технологические решения также развивались, в основном, применительно к 

обработке структурированных данных. К числу таких решений можно отнести 

формализацию методов доступа к данным. Разделение их на последовательный, 

индексный и индексно-последовательный позволило существенно повысить 

производительность вычислительных комплексов, так как метод доступа опре-

делялся характером решаемой задачи. Это позволяло выбирать наиболее эф-

фективный алгоритм обработки данных для каждой операции из последова-

тельности операций, приводящих к решению прикладной задачи. Далее в рабо-

те речь будет идти только о массовой обработке структурированных данных, 

поэтому под термином "массовая обработка данных" (МОД) будет пониматься 

только обработка структурированных данных. 
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Традиционно МОД широко используется для решения многих задач в 

различных предметных областях в тех случаях, когда в вычисления включается 

значительная часть данных. К числу таких задач относятся, например: 

 оперативная статистическая обработка экспериментальных данных, таких, 

как виброзащитные характеристики, оперативно получаемые в ходе летных ис-

пытаний [64]; 

 в банковской сфере [65. 66], в частности, задача "Операционный день бан-

ка" требует ежедневной обработки от 40% до 90% всей базы данных банка; 

 ежедневные задачи учета и планирования производства в современных си-

стемах управления (стандарты ERP [67, 68]), при решении которых процент об-

рабатываемых данных всегда близок к 100; 

 задачи статистического анализа и синтеза подсистем послепродажного об-

служивания в системах интегрированной логистической поддержки наукоем-

кой продукции [69]. 

Таким образом, особенность этих классов задач заключается в том, что: 

1. при их решении в обработку включаются практически все данные, харак-

теризующие объекты этих задач; 

2. объемы обрабатываемых данных очень велики, то есть можно утверждать, 

что они (эти классы) относятся к области исследований, связанной с обработ-

кой данных больших объемов (big data). 

В работе рассматривается такая разновидность МОД, которая позволяет 

учесть эти особенности и, основываясь на свойствах и структурах данных, при-

сущих рассмотренным классам задач, обеспечивает эффективную реализацию 

вычислительных процессов решения этих задач.  

Далее предполагается, что используемые и обрабатываемые в задачах 

МОД данные хранятся в базах данных (БД) и обрабатываются системами 

управления базами данных (СУБД). Под СУБД понимается, в соответствии с 

международными стандартами [70, 71], программная система, предназначенная 

для создания и хранения базы данных на основе некоторой модели данных, 

обеспечения логической и физической целостности содержащихся в ней дан-
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ных, надежного и эффективного использования ресурсов (данных, простран-

ства памяти и вычислительных ресурсов). В работе рассматриваются именно 

методы эффективной реализации МОД с использованием современных аппа-

ратных и программных средств. Повышение эффективности достигается за счет 

предложения и использования специальных моделей данных. 

Обычно СУБД опирается на файловую систему, присущую конкретному 

вычислительному комплексу или операционной системе [72]. Файловая систе-

ма обеспечивает функции управления данными, хранимыми в файлах во внеш-

ней памяти. Эти данные организуются с использованием различных методов 

доступа, которые трактуются как совокупность соглашений о способах разме-

щения данных некоторого типа в пространстве памяти, поиска требуемых эк-

земпляров и выполнения над ними операций навигации, выборки обновления и 

удаления [73]. Однако при работе с СУБД методы управления файлами, опре-

деляющие способы их организации и доступа к отдельным записям, уходят на 

второй план и становятся невидимыми для программистов, разрабатывающих 

запросы к базе данных. Это приводит к тому, что способы повышения эффек-

тивности обработки данных (оптимизация запросов) перестают быть инстру-

ментами прикладного программиста и становятся прерогативой программистов, 

разрабатывавших СУБД. Это подтверждается такими стандартными определе-

ниями запроса как:  

 "вопроса, затрагивающего те или иные аспекты информации, хранящейся в 

базе данных, и модификации средствами языка запроса или языка манипулиро-

вания данными" [70];  

 "сообщения конечного пользователя или приложения, направляемого 

СУБД и активизирующего в системе баз данных действия, обеспечивающие 

выборку, вставку, удаление или обновление указанных в нем данных" [71]. 

Частичные решения, дающие прикладному программисту некоторую сво-

боду действий, появились благодаря объектным моделям данных. В большин-

стве случаев эти решения ограничиваются представляемой ему возможностью 

создания собственных абстрактных типов данных (классов, объектов). Такой 
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подход позволяет разрабатывать эффективные процедуры, реализующие опера-

ции над сложными нестандартными типами данных. Но главная проблема МОД 

– построение эффективного процесса обработки данных при помощи некоторо-

го набора типовых операций [73, 74], – в современном понимании объектно-

ориентированного подхода к базам данных не учитывается. Это не позволяет 

прикладным программистам активно влиять на стратегию и тактику оптимиза-

ции обработки данных. 

Поэтому цели работы, направленные на повышение эффективности МОД, 

определяются следующим образом: 

1. разработка моделей данных, обеспечивающих наибольшее соответствие 

существующим моделям данных и архитектурам вычислительных комплексов; 

2. разработка на основе этих моделей способов организации данных во 

внешней памяти и алгоритмов реализации операций, в наибольшей степени со-

ответствующих структурам данных. 

На основе сказанного можно сформулировать основные предположения и 

определить (пока нестрого) понятия, в наибольшей степени соответствующие 

целям работы: 

1. данные хранятся в базе данных (БД) и управляются системой управления 

базами данных (СУБД); 

2. модель данных и способ их организации, присущие конкретной СУБД, не 

влияют на характер выборки в процессе выполнения операций; 

3. данные извлекаются из базы в виде поименованных упорядоченных после-

довательностей однотипных агрегатов, содержащих сведения об однородных 

объектах; 

4. в дальнейшем для этих последовательностей будет использоваться (в соот-

ветствии с традицией) название файлы, а для агрегатов – записи; 

5. предполагается, что время выборки данных из базы в файл минимально (на 

практике оно определяется свойствами СУБД). 

Вовлеченность большинства записей в обработку можно выразить коли-

чественно при помощи величины, называемой коэффициентом активности 
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файла [73. 75]. Пусть L – общее число записей в файле, Le – число записей того 

же файла, подвергающихся обработке в процессе выполнения операции над 

этим файлом. 

Отношение 
L

L
K e

a   называется коэффициентом активности файла. 

Коэффициент активности определяет метод доступа к файлу. Если он высокий 

– близок к единице, то более эффективным будет последовательный доступ к 

файлу, в противном случае, когда он близок к нулю, целесообразно использо-

вать произвольный доступ. 

Таким образом, основное свойство МОД состоит в том, что коэффициен-

ты активности всех обрабатываемых файлов близки к единице. 

Реализация МОД осуществляется посредством обработки файлов специ-

альным набором операций. Причем этот набор операций не меняется на протя-

жении длительного периода времени от конца пятидесятых годов ХХ века до 

настоящего времени. Одним из наиболее эффективных подходов к формализа-

ции был подход, основанный на создании алгебры файлов [74]. При таком под-

ходе файл рассматривается как самостоятельный объект, обладающий набором 

присущих ему специфических свойств, существенно используемых при форма-

лизации операций и разработке алгоритмов, реализующих эти операции. В [73, 

74] формализуется понятие ключа, как неотъемлемого свойства файла, а файлы 

и операции классифицируются в соответствии со свойствами заданных на них 

ключей. Такой подход имеет ряд преимуществ перед появившемся несколько 

позже, но завоевавшем исключительную популярность реляционным подходом. 

Одно из этих преимуществ состоит в том, что файл определяется и рассматри-

вается в контексте операций не как множество, подобно тому, как это делается 

в реляционном подходе при определении отношения, а как производный от 

множества объект, что позволяет избежать использования громоздкого аппара-

та нормализации. Второе преимущество заключается в том, что формализация 

файлов и операций над ними позволяет создавать процедурные модели данных, 

в которых определения операций одновременно задают способы представления 
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данных и алгоритмы их обработки. Вместе с тем оба подхода не только не про-

тиворечат друг другу, но и взаимно дополняют друг друга, что особенно важно 

в настоящее время, когда объектно-ориентированный подход к обработке дан-

ных, наиболее естественный с математической точки зрения, стал преобладаю-

щим. Поэтому, а также в силу популярности реляционного подхода и произ-

водных от него, в дальнейшем при описании представления данных и операций, 

над ними будут приводиться их аналоги в реляционной (SQL) модели. 

Далее приводится неформальное описание операций над файлами в МОД, 

строгое определение которых будет дано в последующих главах. Эти описания 

впервые были приведены в книге [62]. 

1. Сортировка. Упорядочивает файл в соответствии с некоторым отношением 

порядка (как правило, лексикографического), заданного на множестве записей 

файла. Поля записей файла, по значениям которых упорядочивается файл, 

называются ключами сортировки, ключевыми полями или просто ключами. В 

реляционной модели данных нет явной операции сортировки, но в языке SQL 

есть возможность упорядочить результат запроса. 

2. Выборка. Выбирает из файла записи, соответствующие заданному крите-

рию. В реляционной модели ей соответствует операция Select. 

3. Сжатие. Операция квантификации. Заменяет несколько записей, удовле-

творяющих заданному критерию, одной записью. При этом часть элементов 

(полей) записей могут подвергаться групповым операциям, смысл и алгоритмы 

которых определяются контекстом операции сжатия в предметной области, в 

которой решается задача. В реляционной модели этой операции соответствует 

операция Project, которая реализуется в языке SQL возможностью выборки не 

всех полей отношения и применения операции GROUP BY. 

4. Слияние строго упорядоченных файлов. На самом деле это не одна опера-

ция, а класс операций, соответствующий классу теоретико-множественных 

операций в реляционной модели. Отличие состоит в том, что оба файла рас-

сматриваются как упорядоченные множества. Таким образом, слияние строго 

упорядоченных файлов позволяет реализовать операции подобные объедине-



23 

 

нию, пересечению, разности и симметрической разности множеств. Однако 

строгое определении этой операции дает возможность прикладному програм-

мисту конструировать и другие варианты получения результирующего файла, 

что в большей степени соответствует концепциям объектно-ориентированного 

подхода. 

5. Слияние нестрого упорядоченных файлов. Для этой операции по крайней 

мере один из участвующих в ней файлов рассматривается как мультимноже-

ство (множество, допускающее включение одного и того же элемента по не-

скольку раз). Ее алгоритм состоит из следующих шагов: 

Шаг 1. В обоих исходных файлах выбираются группы записей, одинако-

вых по заданному критерию. 

Шаг 2. Выполняется декартово произведение выбранных групп. Каждая 

полученная пара записей заменяется единственной записью файла результата. 

Шаг 3. Результаты декартовых произведений объединяются в один файл.  

В реляционной модели этой операции соответствует операция JOIN, та ее раз-

новидность, которая называется естественным соединением. 

Операцию слияния строго упорядоченных файлов и операцию слияния не-

строго упорядоченных файлов, также как и соответствующие им реляционные 

операции, можно рассматривать как аддитивную и мультипликативную соот-

ветственно. 

Далее приводятся примеры задач, для решения которых целесообразно 

применение МОД. 

Пример 1.1. Типичный пример задачи, решение которой требует примене-

ния МОД, относится к системам интегрированной логистической поддержки 

наукоемкой продукции (CALS). Это задача снабжения и комплектации сервис-

ных центров для проведения технического обслуживания (ТО) и ремонта [77].  

Исходные данные хранятся в файлах: 

 План(Изделие, Вид_ТО, Дата_нач, Дата_кон); 

 Сроки(Заказчик, Изделие, Вид_ТО, Дата, Количество); 

 Комплект(Изделие, Вид_ТО, Ремкомплект).  
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Файлы План и Сроки лексикографически нестрого упорядочены по зна-

чениям пары полей Изделие и Вид_ТО их записей. Это означает, что каждый 

файл содержит не менее одной записи, в каждой из которых поля Изделие и 

Вид_ТО содержат одинаковые значения. Операция слияния этих нестрого упо-

рядоченных файлов, порождает файл Факт(Заказчик, Изделие, Вид_ТО, Дата, 

Количество). Записи файла Факт формируются в процессе вычисления декар-

товых произведений в том случае, когда поле Дата в записи файла Сроки нахо-

дится в интервале, заданном полями записи Дата_нач и Дата_кон файла План.  

Файлы Факт и Комплект также нестрого упорядочены по значениям по-

лей Изделие и Вид_ТО. Поэтому файл-результат Комплект_ТО(Заказчик, Из-

делие, Вид_ТО, Ремкомплект, Дата, Количество) также может быть получен 

как результат операции слияния этих нестрого упорядоченных файлов. 

Записи файла Комплект_ТО всегда порождаются из записей файлов 

Факт и Комплект во время вычисления декартовых произведений. При таком 

подходе файл Комплект_ТО остается нестрого упорядоченным и поэтому 

должен быть подвергнут операции свертки. На практике, свертка выполняется в 

ходе операции слияния нестрого упорядоченных файлов в ходе формирования 

построения декартовых произведений.  

Для решения задачи можно также использовать реляционную модель 

данных. В этом случае исходные документы представляются в виде трех отно-

шений: План, Сроки и Комплект, аналогичных соответствующим файлам. За-

дача решается с помощью двух SQL-запросов.   

В результате первого запроса: 

SELECT  

Сроки.Заказчик, Сроки.Изделие, Сроки.Вид_ТО, Сроки.Дата,  

Сроки.Количество  

FROM Сроки INNER JOIN План ON  

(Сроки.Вид_ТО = План.Вид_ТО) And  

(Сроки.Изделие = План.Изделие) 

WHERE  
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((([Сроки]![Дата]) Between [План]![Дата_нач] And План]![Дата_кон])); 

формируется отношение Факт (Заказчик, Изделие, Вид_ТО, Дата, Количество). 

Второй запрос: 

SELECT  

Факт.Заказчик, Факт.Изделие, Факт.Вид_ТО, Комплект.Ремкомплект, 

 Min(Факт.Дата) AS [Дата], Sum(Факт.Количество) AS [Количество] 

FROM Факт INNER JOIN Комплект ON  

(Факт.Вид_ТО = Комплект.Вид_ТО) And   

(Факт.Изделие = Комплект.Изделие) 

GROUP BY  

Факт.Заказчик, Факт.Изделие, Факт.Вид_ТО, Комплект.Ремкомплект;  

приводит к отношению-результату Комплект_ТО(Заказчик, Изделие, Вид_ТО, 

Ремкомплект, Дата, Количество).  

В примере 1.1 приведены словесное описание и алгебраическая (на языке 

SQL) форма процесса (алгоритма) вычисления файла (отношения) Ком-

плект_ТО. Очевидно, что при больших объемах данных, содержащихся в ис-

ходных файлах (отношениях), время последовательной реализации этого про-

цесса будет настолько большим, что по завершении вычислений полученные 

данные могут оказаться неактуальными. Поэтому естественный выход из ситу-

ации заключается в применении методов, основанных на использовании парал-

лельных и распределенных систем баз данных. 

Параллельная система баз данных поддерживает очень большие базы 

данных и использует свойства параллелизма архитектуры мультипроцессорных 

вычислительных комплексов, в средах которых она функционирует [55, 77, 78].  

Распределенная система баз данных функционирует в сетевой среде, и 

данные в ней физически распределены между несколькими узлами. На каждом 

узле данные управляются собственной СУБД, которая работает независимо от 

СУБД, используемых на других узлах [79-81].  

Одна из важнейших проблем этих видов систем баз данных – оптимиза-

ция запроса. Решение этой проблемы возможно на интуитивном уровне, опи-
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рающемся на опыт и искусство прикладного программиста. Далее рассмотрены 

два примера, иллюстрирующие возможность реализации, рассмотренной в 

примере 1.1 задачи МОД на различных архитектурах параллельных вычисли-

тельных комплексов. 

Пример 1.2. Для решения задачи можно использовать конвейерную архи-

тектуру вычислительного комплекса, относящуюся к классу MISD (множе-

ственный поток команд, одиночный поток данных) [82, 83], где несколько 

функциональных модулей (два или более) выполняют различные операции над 

одними данными. Архитектура такого комплекса приведена на рисунке 1.1. 

Вычислитель 1 выполняет операцию слияния нестрого упорядоченных файлов 

План и Сроки. После того, как сформирован очередной фрагмент файла Факт 

(результат вычисления декартова произведения), он передается Вычислителю 2. 

Вычислитель 2 вычисляет декартово произведение этого фрагмента и соответ-

ствующей ему группы записей файла Комплект, а затем сохраняет его в файле-

результате Комплект_ТО.  

 

Рис. 1.1. Конвейерный вычислительный комплекс для решения задачи снабже-

ния и комплектации сервисных центров 

Эта архитектура может быть расширена (масштабирована) для решения 

задачи слияния произвольного числа N нестрого упорядоченных исходных 

файлов. В этом случае потребуется N–1 вычислитель. При этом существенное 

значение будет иметь последовательность выполнения операций. В последую-

щих главах будет доказано, что получение оптимальной последовательности 

возможно методом динамического программирования, подобно тому, как это 

сделано в [84]. Кроме того, поскольку существуют различные способы парал-

лельной реализации операции декартова произведения множеств, то вычисли-
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тели, составляющие конвейер, также могут быть параллельными вычислитель-

ными комплексами. 

Пример 1.3. Решение рассмотренной задачи может быть получено на вы-

числительном комплексе с архитектурой SIMD (одиночный поток команд, 

множественный поток данных) [82, 83], представленной на рисунке 1.2. В этой 

архитектуре несколько (более двух) вычислителей, имеющих свою собствен-

ную (в некоторых случаях общую) оперативную и внешнюю память, связаны с 

вычислительной машиной, осуществляющей общее управление (хост-

машиной). В современных комплексах возможны связи и между вычислителя-

ми.  Тройки групп файлов План, Сроки и Комплект, которые содержат одина-

ковые значения полей Изделие и Вид_ТО, собираются на одном внешнем запо-

минающем устройстве, связанном с одним из N вычислителей. 

 

Рис. 1.2. SIMD-вычислительный комплекс для решения задачи снабжения и 

комплектации сервисных центров 

Если число троек равно N, то на каждом запоминающем устройстве будет 

единственная тройка. В общем случае, число MN таких троек на каждом запо-

минающем устройстве может быть больше единицы (k + l + …+ m=M ).  

Каждый вычислитель выполняет одинаковую для всех вычислителей опе-

рацию построения декартовых произведений групп записей троек, расположен-

ных в связанной с ним внешней памяти. Полученные в результате записи файла 

Комплект_ТО передаются на хост-машину, где собираются в результирующий 

файл. 
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Поскольку возможна ситуация MN, то одна из важных задач состоит в 

том, чтобы вычислители были загружены равномерно. Для этого требуется рас-

пределить тройки по внешним запоминающим устройствам таким образом, при 

котором объемы занимаемой ими памяти на всех устройствах были бы пример-

но одинаковыми. Алгоритмы распределения данных рассмотрены в последую-

щих главах. 

Рассмотренные примеры показывают возможность параллельной реали-

зации задач МОД для структурированных и высоко активных данных. Методы 

параллельной реализации задачи МОД, рассмотренные в примерах, могут быть 

реализованы не только в рамках файловых систем, но и средствами любых 

СУБД. При этом модель данных, на которой основана СУБД (реляционная, 

объектная, SQL, NoSQL), не имеет принципиального значения. Однако эти мо-

дели не учитывают основные факторы, определяющие эффективность МОД: 

структурированность и активность данных. Они разрабатывались как универ-

сальные модели, пригодные для решения любых классов задач обработки дан-

ных. Но проблемы распараллеливания данных и оптимизации запросов неотде-

лимы от знания структуры данных и оценки вычислительной сложности алго-

ритмов, которая определяется величиной входного потока [85]. Поэтому невоз-

можно разработать общие методы распараллеливания и оптимизации обработ-

ки, которые бы позволяли одинаково хорошо оптимизировать обработку дан-

ных для всех возможных классов задач.  

Для того, чтобы иметь возможность построения технологий распаралле-

ливания обработки данных и решать проблемы оптимизации запросов для рас-

сматриваемого класса МОД, необходимо построение моделей, учитывающих 

эти факторы: структурированность и активность данных. Поэтому дальнейшие 

главы посвящены построению таких моделей. В главе 2 построена и рассмотре-

на теоретико-множественная модель данных, а в главе 3 многомерно-матричная 

модель.  



29 

 

1.2. Связь моделей МОД с архитектурами программно-
аппаратных комплексов  

Для того чтобы понять, какая архитектура вычислительного комплекса 

наиболее подходит для реализации задач МОД, необходимо определить методы 

хранения и доступа к данным. В этом параграфе дается описание этих методов 

и определяется критерий вычислительной сложности операций, предложенных 

в 1.1. Также рассматриваются архитектуры вычислительных комплексов, на 

которых эти задачи могут быть эффективно решены и конкретные технические 

решения, реализующие эти архитектуры.  

1.2.1. Логически последовательный метод доступа  

Характерная особенность рассматриваемой в работе разновидности МОД 

заключается в том, что данные, будучи высоко активными в контексте опера-

ций их обработки, в незначительной мере подвержены изменениям. Как прави-

ло, изменения накапливаются в специальном файле – корректуре, и перед ре-

шением основных задач производится необходимая корректировка файлов. 

Операция корректировки файла реализуется при помощи слияния строго упо-

рядоченных файлов. Эта особенность позволяет рассматривать все файлы, 

участвующие в процессе обработки данных, как последовательные и упорядо-

ченные. Упорядоченность обеспечивает ускорение выполнения всех опреде-

ленных в параграфе 1.1 операций. В самом медленном случае, когда при реали-

зации не используется параллелизм, упорядоченность файлов позволяет выпол-

нять все операции за один проход (просмотр) исходных и выходного файлов. 

При использовании параллельных вычислительных комплексов упорядочен-

ность обеспечивает лучшее распределение файлов и их фрагментов по ресурсам 

комплекса и эффективное использование этих ресурсов. Повышение эффектив-

ности обработки данных при такой организации данных происходит по следу-

ющим причинам: 

 файл занимает меньше места на внешнем запоминающем устройстве, по-

скольку нет необходимости использовать списковую структуру и хранить уда-

ленные записи (мусор). 
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 уменьшается время чтения/записи, поскольку файл в идеальном случае за-

нимает непрерывное пространство, но даже при необходимости фрагментации, 

если обслуживание внешней памяти организовано правильно, число фрагмен-

тов невелико. Поскольку внешняя память относится к типу блочных устройств 

ввода-вывода, за одно обращение к ней читается/записывается блок, содержа-

щий большое число записей. 

 упрощается обслуживание данных, так как становятся ненужными опера-

ции сборки мусора и переформирования файлов. 

При таком подходе прикладная программа читает/пишет файл последова-

тельно по одной записи, то есть для МОД характерны последовательная орга-

низация файла и последовательный доступ к нему. Однако при работе с СУБД 

невозможно точно знать, какие способы организации данных и методы доступа 

в них используются. Поэтому в дальнейшем речь будет идти о логически после-

довательной организации файла и логически последовательном методе доступа 

[85, 86]. Это позволяет учитывать тот факт, что способы организации данных и 

доступа к ним в различных СУБД могут существенно различаться. Логически 

последовательный метод доступа обеспечивает реализацию всех операций над 

файлами, но в случае операции слияния нестрого упорядоченных файлов он 

может приводить к нерациональному использованию ресурсов вычислительно-

го комплекса. При последовательной реализации этой операции требуется либо 

многократное повторное считывание одного из файлов, либо большой объем 

дополнительной оперативной памяти. При параллельной организации возника-

ют проблемы, связанные с разделением частей файлов между вычислителями. 

Выход из положения возможен благодаря применению индексно-

последовательного метода доступа в соответствии со следующими правилами 

организации основного и индексного файлов: 

1. основной файл данных упорядочен по значениям ключа K1, …, KM ; 

2. индексный файл упорядочен аналогично; 

3. запись индексного файла содержит три поля: поле Ключ, которое может 

быть составным полем, поле Индекс, содержащее номер первой записи с дан-
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ным значением ключа, и поле Счетчик, содержащее количество записей с дан-

ным значением ключа. 

Взаимодействие индексного и основного файлов при индексно-

последовательном методе доступа показано на рисунке 1.3. 

 

Рис. 1.3. Индексно-последовательная организация файла 

Для оценки эффективности процесса предлагается мера, связанная с про-

смотром исходных файлов и выводом выходного файла. Для некоторых 

устройств, из которых конструируется внешняя память, время чтения и время 

записи данных одинаковы, для некоторых, таких как SSD, различны. Но, в лю-

бом случае, это время зависит от числа записей в файле. Предлагаемая мера 

также не зависит от способов реализации операций обработки файлов, но непо-

средственно определяет порядок затрат машинного времени и называется дли-

ной просмотра. Временем, которое тратится процессором на обработку прочи-

танных данных, можно пренебречь, так как в большинстве современных вы-

числительных комплексов операции обмена выполняются параллельно с вы-

числениями.  

Длина просмотра позволяет оценить сложность операций логически по-

следовательной обработки данных: 

 операция сортировки (балансной) имеет порядок, определяемый  величи-

ной 
b

LL 2log
 [84], где L – длина файла, b – размер считываемой в оперативную 

память порции записей сортируемого файла; L и b измеряются в одних и тех же 

единицах, например, в байтах или записях; 

 унарные операции (выборки и сжатия) – величиной Ls+Lr, равной сумме 

длин просмотров исходного файла и файла результата;  
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 бинарные операции (слияний строго и нестрого упорядоченных файлов) – 

величиной rss LLL 
21

, равной сумме длин просмотров обоих исходных фай-

лов и файла результата.   

Сложность операции может быть увеличена на сложность сортировки од-

ного или обоих исходных файлов, если сортировка необходима для эффектив-

ного выполнения операции. При параллельной реализации операций МОД вы-

числительная сложность операций уменьшается. Так при выполнении операции 

слияния нестрого упорядоченных файлов время ее реализации будет опреде-

ляться длиной просмотра наибольшего фрагмента исходных и выходного фай-

лов, то есть временем работы одного из вычислителей комплекса. Подробно 

определение вычислительной сложности операций будет рассмотрено в после-

дующих главах. 

1.2.2. Архитектуры вычислительных комплексов для реа-
лизации логически последовательного метода доступа  

В соответствии с классификацией Флинна [82, 83], отражающей взаимо-

действие программ и данных, параллельные вычислительные комплексы имеют 

следующие архитектуры. 

SIMD компьютер имеет N идентичных процессоров, N потоков данных и 

один поток команд. Каждый процессор обладает собственной локальной памя-

тью. Процессоры интерпретируют адреса данных либо как локальные адреса 

собственной памяти, либо как глобальные адреса, возможно, модифицирован-

ные добавлением локального базового адреса. Процессоры получают команды 

от одного центрального контроллера команд и работают синхронно, то есть на 

каждом шаге все процессоры выполняют одну и ту же команду над данными из 

собственной локальной памяти. Такая архитектура с распределенной памятью 

часто упоминается как архитектура с параллелизмом данных (data-parallel), так 

как параллельность достигается при наличии одиночного потока команд, дей-

ствующего одновременно на несколько частей данных. 
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MISD компьютер характеризуется множественным потоком команд и 

одинарным потоком данных. Эта архитектура называется также конвейером 

обработки данных. MISD компьютер представляет собой цепочку из N после-

довательно соединенных процессоров (не обязательно идентичных), которые 

управляются параллельным потоком команд. На вход конвейера из памяти по-

дается одинарный поток данных, которые проходят последовательно через все 

процессоры. Каждый процессор производит обработку данных под управлени-

ем своего потока команд и передает результаты следующему по цепочке про-

цессору, который использует их как входные данные. 

Большинство современных вычислительных комплексов можно отнести к 

классу MIMD, объединяющему свойства двух предыдущих классов.  

MIMD компьютер имеет N процессоров, независимо исполняющих N по-

токов команд и обрабатывающих N потоков данных. Каждый процессор функ-

ционирует под управлением собственного потока команд, то есть MIMD ком-

пьютер может параллельно выполнять совершенно разные программы. 

Из примеров, рассмотренных в 1.1, следует, что все эти классы архитек-

тур могут быть использованы для реализации МОД. Выбор конкретной архи-

тектуры как способа взаимодействия программы и данных определяется при-

кладным программистом в процессе проектирования и основывается на знании 

структуры данных в конкретной задаче. 

В классификации, определяющей взаимодействие ресурсов вычислитель-

ного комплекса [87, 88] для реализации МОД наибольший интерес представля-

ют следующие архитектуры.  

Симметричное мультипроцессирование (SMP) – это архитектура много-

процессорных компьютеров, в которой два или более одинаковых процессоров 

подключаются к общей оперативной и внешней памяти.  

В настоящее время в результате применения многоядерных (multicore) и 

гиперпоточных (hyper threading) процессоров, практически все вычислительные 

комплексы, начиная с простейших мобильных устройств и заканчивая супер-

компьютерами, либо сами по себе симметричные мультипроцессорные вычис-

http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80
http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80
http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80
http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80
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лительные комплексы, либо содержат элементы, реализованные в этой архитек-

туре. Типичный пример такого подхода – рассмотренная далее машина баз дан-

ных IBM Netezza и Oracle Exadata, в которых совмещены SMP и MPP архитек-

туры [89-92]. 

Массивно-параллельные комплексы (MPP) – эта архитектура объединяет 

как неоднородные, так и однородные вычислительные комплексы. В простей-

шем случае – это комплекс с одним или несколькими многоядерными процес-

сорами, единственное требование к которой состоит в том, чтобы каждый про-

цессор (ядро) был ассоциирован с собственным устройством массовой памяти 

(в простейшем случае – дисковым накопителем). Наиболее популярные пред-

ставители этой архитектуры – вычислительные комплексы, построенные по 

кластерной технологии [93] и грид-технологии [94, 95]. 

Кластер – это группа компьютеров, объединённых высокоскоростными 

каналами связи и представляющая с точки зрения пользователя единый аппа-

ратный ресурс. 

Грид – это согласованная, открытая и стандартизованная среда, которая 

обеспечивает гибкое, безопасное, скоординированное разделение (общий до-

ступ) ресурсов в рамках виртуальной организации. 

Основное отличие грид-систем от кластеров состоит в отсутствии требо-

вания компактного размещения узлов комплекса, то есть они могут быть 

настолько удалены друг от друга, что для их взаимодействия используются 

глобальные сети, например, Интернет. Это может отрицательно повлиять на 

время решения задач.  

Далее рассматриваются два вычислительных комплекса, которые можно 

отнести к классу машин баз данных, и которые могут быть эффективно исполь-

зованы для реализации МОД. Это IBM Netezza и Oracle Exadata. 

По мнению разработчиков, архитектура IBM Netezza сочетает в себе 

лучшие свойства симметричного мультипроцессирования (SMP) и массовой 

параллельной обработки (MPP). Высокопроизводительный сервер баз данных 

Netezza Performance Server (NPS) имеет двухуровневую архитектуру (рисунок 

http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80
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1.4), называемую архитектурой асимметричной массовой обработки данных 

(Asymmetric Massively ParallelProcessing™ (AMPP™) architecture).  

 

Рис. 1.4. Архитектура машины баз данных IBM Netezza 

Первый уровень – это симметричная многопроцессорная хост-машина, 

связанная по сети с клиентами, на которых выполняются различные приклад-

ные программы, генерирующие запросы к базам данных. Программное обеспе-

чение этого уровня выполняет компиляцию SQL-запросов, а затем планирова-

ние, оптимизацию и администрирование их выполнения. Запрос делится на по-

следовательность подзадач, или фрагменты, которые могут выполняться парал-

лельно. Эти фрагменты передаются на второй уровень для исполнения. По 

окончании выполнения всех фрагментов хост-машина формирует окончатель-

ный результат, который передается по сети клиентской прикладной программе, 

выдавшей запрос, таким же образом как это делают традиционные серверы баз 

данных. 

 

Рис. 1.5. Архитектура сниппет-процессора 

Второй уровень связан с первым высокоскоростной сетью и состоит из 

большого числа (от десятков до тысяч) специализированных процессоров, ко-
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торые называются Snippet Processing Unit (SPU), или сниппет-процессоров, ар-

хитектура которых показана на рисунке 1.5.  

Каждый SPU представляет собой интеллектуальный узел, реализующий 

хранение данных и обработку запросов. Он состоит из центрального процессо-

ра, оперативной памяти, сетевого контроллера, обеспечивающего связь с хост-

машиной по высокоскоростной сети, интеллектуального контроллера диска, 

реализованного на основе программируемой логической интегральной схемы 

(ПЛИС/FPGA) и дисковой памяти. Интеллектуальный контроллер диска позво-

ляет реализовать технологию ускорения потоков данных (Accelerated Streaming 

Technology (FAST)). Ускорение достигается за счет использования специально-

го набора инструкций, ориентированного на частичное выполнение операций 

языка SQL на аппаратном уровне. Имеется возможность гибко добавлять новые 

инструкции.   

Данные распределяются по SPU, с помощью хэш-функции. Первичная 

обработка запросов осуществляется на уровне SPU, причем каждый из них вы-

полняет обработку своей части базы данных. В основном выполняются опера-

ции, которые легко поддаются параллельной обработке, например, операции 

над записями, такие как синтаксический анализ, фильтрация, проектирование, 

блокировка и им подобные. Это позволяет значительно уменьшить количество 

данных, перемещаемых внутри комплекса. Операции над промежуточными ре-

зультатами, такие как сортировка, объединение и агрегирование, также выпол-

няются в первую очередь на SPU, и только потом доводятся до окончательного 

завершения на хост-машине. Термин сниппет-процессор имеет двоякий смысл. 

Во-первых, эти процессоры выполняют на аппаратном уровне процедуры, реа-

лизующие части SQL-запросов, во-вторых, каждый из них работает со своим 

фрагментом базы данных.  

С точки зрения прикладного программиста, Oracle Exadata представляет 

собой единое устройство, функционирующее как машина баз данных. Архитек-

турно – это (рисунок 1.6) программно-аппаратный вычислительный комплекс, в 

котором объединены серверы хранения данных (Exadata Storage Servers), на ко-
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торых могут располагаться как локальные, так и распределенные базы данных, 

и программное обеспечение, реализующее за счет кластеризации повышение 

доступности к данным в СУБД Oracle (Oracle Real Application Clusters (RAC)). 

Для связи между узлами этого комплекса использована Infiniband – высокоско-

ростная коммутируемая последовательная шина, применяющейся в данном 

случае для внутренних соединений. По мнению разработчиков, прикладной 

программист может рассматривать Oracle Exadata как специфическое запоми-

нающее устройство для хранения данных. 

 
Рис. 1.6. Архитектура машины баз данных Oracle Exadata 

http://ru.wikipedia.org/wiki/%D0%94%D0%BE%D1%81%D1%82%D1%83%D0%BF%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B8
http://ru.wikipedia.org/wiki/Oracle_Database
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Расположенная на сервере хранения данных СУБД Oracle имеет в своем 

составе подсистему управления ресурсами (Database Resource Manager 

(DBRM)), которая позволяет управлять распределением пропускной способно-

сти канала как между несколькими БД, так и в рамках одной БД, управлять вы-

делением ресурсов процессора и параллельным выполнением операций.  

Для управления системой хранения данных в ячейке Exadata использует-

ся автоматическая система управления (Oracle Automatic Storage Management 

(ASM)). Она используется как файловая система и управляет томами данных в 

ячейке Exadata. ASM обеспечивает виртуализацию ресурсов хранения данных, 

равномерно распределяя файлы базы данных по всем доступным ячейкам 

Exadata.  

Основной компонент программного обеспечения ячейки Exadata – подси-

стема CELLSRV (Cell Services), которая реализует большинство сервисов хра-

нения и обработки данных. Это многопоточный программный комплекс, кото-

рый взаимодействует с БД на сервере и передает блоки данных по протоколу 

"интеллектуальная база данных" (Intelligent Database (iDB)). В функции 

CELLSRV входит просмотр блоков данных с целью определения столбцов и 

строк, которые удовлетворяют SQL-запросам. 

Операции ввода/вывода реализуются прикладным программным обеспе-

чением ячейки Exadata и регулируются менеджером ресурсов ввода/вывода (I/O 

Resource Manager (IORM)). 

Сервер управления (Management Server (MS)) реализует функции адми-

нистрирования, управления и контроля состояния ячейки Exadata. 

Сервер перезагрузки (Restart server (RS)) поддерживает непрерывное 

функционирование программного обеспечения Exadata и используется для его 

обновления. 

Интеграция функций СУБД с аппаратным обеспечением системы хране-

ния позволяет эффективно выполнять операции над данными. Внедрение этих 

функций практически на аппаратный уровень позволяет существенно ускорить 

выполнение операций над данными и повысить эффективность обработки дан-
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ных в целом. В результате запросы, которые сканируют таблицы, выполняются 

в ячейках Exadata, где происходит фильтрация строк, столбцов, соединение 

таблиц и другие действия. Серверу возвращаются только результаты запроса.  

Нельзя обойти вниманием методы и алгоритмы, предложенные при со-

здании прототипа параллельной СУБД Омега на базе многопроцессорного вы-

числительного комплекса МВС-100/1000. Разработанные методы организации 

параллельного выполнения запросов и балансировки загрузки применительно к 

гибридной архитектуре, используемой для построения высокоэффективных, 

масштабируемых, отказоустойчивых параллельных систем баз данных, показа-

ли высокую эффективность [96-98]. 

Рассмотренные программно-аппаратные вычислительные комплексы в 

ходе многочисленных экспериментальных проверок показали, что при их ис-

пользовании многократно возрастает эффективность обработки данных. Вместе 

с тем, поскольку это комплексы общего назначения, предназначенные для ре-

шения различных классов задач, при их проектировании в полной мере не учи-

тывались особенности каждого класса. Поэтому для решения задач из конкрет-

ных предметных областей, создавались и создаются частные технологии. Ти-

пичные примеры таких технологий – MapReduce и Hadoop, эффективно исполь-

зуемые для решения поисковых задач для неструктурированных данных. 

Использование особенностей МОД, рассмотренных в 1.1, позволит по-

строить специфические модели данных, на основе которых будет построена 

технология, обеспечивающая дополнительные возможности для повышения 

эффективности решения задач на программно-аппаратных вычислительных 

комплексах, подобных рассмотренным в этом параграфе. Построению моделей 

посвящены главы 2 и 3. 

В качестве архитектурных решений целесообразно рассмотреть два под-

хода к параллельной реализации задач МОД: 

1. в потоковой модели вычислений на основе теоретико-множественной мо-

дели из главы 2 и, в том числе, архитектуры вычислительных сиcтем с ассоциа-

тивным распределением ресурсов [99, 100]; 
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2. в матричной модели вычислений с обобщением параллельных алгоритмов, 

реализующих операции над плоскими матрицами, на многомерные матрицы 

[101, 102]. 

Из рассмотренных в 1.1 примеров и анализа в 1.2 архитектур вычисли-

тельных комплексов и их промышленных образцов видно, что реализация МОД 

возможна на различных вычислительных комплексах, от простейших вычисли-

тельных машин и сетей до сложных многопроцессорных комплексов, реализу-

ющих SMP и MPP архитектуру. В главах 4, 5, 6 показано, что использование 

предложенных в работе моделей и методов, а также способов организации дан-

ных и доступа к ним (например, индексно-последовательного) может повысить 

эффективность рассмотренных в этом параграфе вычислительных комплексов 

при решении задач МОД. 

1.3. Проблемы оптимизации процессов массовой обработ-
ки данных  

Проблема оптимизации обработки данных возникла одновременно с вы-

числительными машинами. Вначале программисты боролись за уменьшение 

объема используемой памяти и времени выполнения программы. Развитие вы-

числительной техники сделало память менее критичным ресурсом, но время 

выполнения программного комплекса, решающего прикладную задачу, по-

прежнему критично. Если на ранних этапах использования вычислительной 

техники временные характеристики программного обеспечения целиком зави-

сели от искусства программиста, то появление алгебраических моделей данных, 

таких как реляционная, создало предпосылки для решения задач повышения 

эффективности обработки данных двумя способами:  

 преобразованием имеющегося алгебраического выражения запроса с це-

лью повышения эффективности его обработки; 

 синтезом на основе спецификации (постановки) задачи эффективного ал-

гебраического выражения запроса. 
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В обоих случаях достижение основного результата связано с максимальным 

использованием свойств программного обеспечения СУБД и архитектуры вы-

числительного комплекса.  

Первые решения проблемы оптимизации запросов к базам данных осно-

вывались на следующих посылках. 

В современных системах баз данных прикладному программисту доступ-

но логическое представление данных, например, табличное или многомерно-

матричное, не зависящее от того, как на самом деле реализованы хранение дан-

ных и доступ к ним на конкретном вычислительном комплексе (машине). При-

кладной программист или неквалифицированный пользователь при создании 

запроса ничего не знают (и не должны знать) о том, как он будет реализован 

СУБД. Поэтому он не может нести ответственность за степень эффективности 

реализации запроса. 

Выполнение сложных запросов на больших объемах данных требует мно-

го машинного времени. Но это время не должно зависеть от формулировки за-

проса. Намерения пользователя должны быть сохранены, но детали запроса мо-

гут быть преобразованы СУБД для обеспечения быстрой реакции. Это позволит 

защитить пользователей от катастрофически дорогих запросов. В то же время 

опытный программист может выразить свои запросы так, что они не потребуют 

оптимизации. В этом случае СУБД не должна обременять его дополнительны-

ми затратами времени на оптимизацию. То есть выгода от оптимизации воз-

можна только в том случае, когда сложные запросы сформулированы неудачно 

и на их выполнение потребуется слишком много машинного времени [103].  

Решение задач оптимизации запросов привело, в конечном счете, к разра-

ботке стандартного процесса, посредством которого различные СУБД испол-

няют запросы [104, 105]: 

1. Запрос, написанный на языке манипулирования данными, подвергается 

синтаксическому анализу и преобразуется в дерево разбора, представляющее 

структуру запроса в виде, удобном для дальнейшего использования. 
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2. Дерево разбора преобразуется в дерево выражений некоторой алгебры 

(модели данных), которое называют логическим планом запроса. 

3. Логический план запроса преобразуется в физический план запроса, кото-

рый фиксирует отдельные операции, регламентирует порядок их выполнения, 

задает алгоритмы, реализующие операции, определяет способы получения дан-

ных и информационного обмена. 

В ходе реализации этого процесса на этапе преобразования логического 

плана в физический план производится оптимизация запроса. Оптимизация 

возможна, поскольку в различных моделях данных алгебраические операции 

имеют способствующие этому свойства. А именно:  

 Бинарные операции в большинстве случаев ассоциативны, то есть 

(Aω(BωC))= ((AωB)ωC), где A, B, C – агрегаты данных, а ω – бинарная опера-

ция. Среди возможных исключений, например, теоретико-множественная опе-

рация разности (в МОД – слияние строго упорядоченных файлов). 

 Бинарные операции, как правило, коммутативны, то есть (AωB = BωA), где 

A, B – агрегаты данных (файлы, отношения), а ω – бинарная операция. Среди 

возможных исключений, например, теоретико-множественная операция, вы-

полняющая действие подобное тому, которое выполняет операция слияния 

строго упорядоченных файлов в МОД, при реализации корректировки данных. 

 Все унарные операции дистрибутивны относительно бинарных операций 

(ω1(Aω2B))= ((ω1A)ω2(ω1B)),  A, B – агрегаты данных, ω1 – унарная операция, ω2 

– бинарная операция. 

 Мультипликативная бинарная операция дистрибутивна относительно ад-

дитивной бинарной операции (Aω1(B ω2C))= ((A ω1B)ω2(Aω1C)),  A, B, C – агре-

гаты данных, ω1 – мультипликативная бинарная операция, ω2 – аддитивная би-

нарная операция. 

На основе этих законов строятся стратегии оптимизации планов запросов, 

реализующие следующие действия: 

 продвижение унарных операций выборки и проекции (select и project) как 

можно ниже по дереву; 



43 

 

 сочетание унарных операций с бинарными, то есть замена двух операций 

одной; 

 построение цепочек бинарных операций, время выполнения которых ми-

нимально. 

Для реализации этих стратегий используются различные методы оптимизации, 

например, динамическое программирование или методы, основанные на эври-

стических алгоритмах (метод ветвей-границ, жадные алгоритмы) [72, 105].  

Рассмотренные методы повышения эффективности обработки данных 

широко используются в современных СУБД, таких как Microsoft SQL Server, 

Oracle, IBM DB2 и других [106-110]. 

Некоторые запросы имеют регулярный характер, то есть выполняются не 

один раз, а многократно. При каждом выполнении такого запроса последова-

тельность действий, приводящих к получению результата, не меняется, изме-

няются только входные параметры, не влияющие на характер и последователь-

ность операций процесса обработки данных. Типичный пример такого запроса 

– запрос баланса пластиковой банковской карты, который передается банкома-

том серверу баз данных. Для ускорения выполнения таких запросов использу-

ются хранимые процедуры – объекты базы данных, представляющие собой 

наборы SQL-инструкций, которые компилируются и оптимизируются один раз, 

после чего постоянно хранятся на сервере. В хранимых процедурах могут вы-

полняться стандартные операции с базами данных, определенные в языках 

управления и манипулирования данными (DDL и  DML). Кроме того, в них мо-

гут использоваться инструкции управления процессом исполнения, обеспечи-

вающие возможность организации циклов и ветвлений. Хранимые процедуры 

обычно создаются с помощью языка SQL и конкретной его реализации в вы-

бранной СУБД [111]. Например, для этих целей в СУБД Microsoft SQL Server 

используется язык Transact-SQL, в Oracle – PL/SQL, в IBM DB2 – SQL/PL в 

PostgreSQL – pgSQL. 

Рассматриваемому в работе варианту МОД присущи именно регулярные 

запросы. Такие запросы разрабатываются прикладным программистом в про-

http://ru.wikipedia.org/wiki/%D0%91%D0%B0%D0%B7%D0%B0_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
http://ru.wikipedia.org/wiki/SQL
http://ru.wikipedia.org/wiki/DDL
http://ru.wikipedia.org/wiki/DML
http://ru.wikipedia.org/wiki/%D0%A1%D0%A3%D0%91%D0%94
http://ru.wikipedia.org/wiki/Microsoft_SQL_Server
http://ru.wikipedia.org/wiki/Transact-SQL
http://ru.wikipedia.org/wiki/Oracle_(%D0%A1%D0%A3%D0%91%D0%94)
http://ru.wikipedia.org/wiki/PL/SQL
http://ru.wikipedia.org/wiki/IBM_DB2
http://ru.wikipedia.org/w/index.php?title=SQL/PL&action=edit&redlink=1
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цессе проектирования автоматизированной информационной системы, после 

чего существуют практически без изменений на протяжении всего жизненного 

цикла системы. Следовательно, затраты на трансляцию запроса, его оптимиза-

цию, создание библиотечной программы, аналогичной хранимой процедуре, 

имеют разовый характер и не наносят ущерба как разработчику –  профессио-

нальному прикладному программисту – так и самой информационной системе 

во время ее эксплуатации. Методы синтеза оптимизации запросов – процессов 

массовой обработки данных – рассмотрены в главе 5. 

Особенность современного состояния вычислительной техники состоит в 

том, что, во-первых, используются гибкие архитектуры современных аппарат-

ных средств, основанные на многоядерности и многопроцессорности, а во-

вторых, вычислительные сети обеспечивают такую простоту коммуникаций, 

которая позволяет легко проектировать различные топологии сетей. Эти два 

фактора, – регулярность запросов и гибкость вычислительных средств, – позво-

ляют решать задачи оптимизации архитектуры программно-аппаратного вы-

числительного комплекса на этапе разработки автоматизированной информа-

ционной системы. Причем для каждой системы, входящей в ее состав задачи 

или даже отдельного запроса, может быть разработан индивидуальный про-

граммно-аппаратный вычислительный комплекс. 

 Такой подход полностью соответствует идеям, предложенным в [43]. Он 

заключается в том, что "систему математического обеспечения ЭВМ следует 

разрабатывать одновременно с ее проектированием. В связи с этим актуальной 

проблемой современной вычислительной техники является автоматизация раз-

работки систем математического обеспечения и проектирования ЭВМ как еди-

ного процесса. Ее решение требует развития новых теоретических направлений 

в кибернетике, в частности прикладной теории алгоритмов. Одним из основных 

источников задач прикладной теории алгоритмов является проблема оптималь-

ного перевода с одного языка на другой, которая может быть сформулирована 

следующим образом: существуют два алгоритмических языка и некоторый ал-

горитм, написанный на одном из них; требуется найти оптимальную по задан-
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ным критериям реализацию этого алгоритма на другом языке. В программиро-

вании обычно первым является некоторый язык программирования, ориентиро-

ванный на тот или иной круг задач, а вторым – внутренний язык машины, на 

которой решаются данные задачи. Таким образом, речь идет о трансляции с 

языка программирования на машинный язык с одновременной оптимизацией 

выходной программы. В то же время исходным может быть алгоритм работы 

некоторого устройства ЭВМ, записанный на предназначенном для этой цели 

алгоритмическом языке, а язык, на который транслируется данный алгоритм, – 

это язык схем. Тогда задача состоит в получении оптимальной схемы, реализу-

ющей алгоритм работы данного устройства или некоторой его части. Процесс 

решения таких задач на практике делится на промежуточные этапы, на каждом 

из которых выполняется некоторая частичная оптимизация исходного алгорит-

ма. Каждому из этих этапов соответствует свой промежуточный язык, причем 

перевод с одного промежуточного языка на другой должен осуществляться до-

статочно просто. Тогда оптимизацию можно проводить с помощью эквива-

лентных преобразований алгоритма, полученного на данном этапе с учетом его 

последующей трансляции на язык очередного этапа. Для выполнения тонких и 

глубоких эквивалентных преобразований алгоритмов необходимо построить 

алгебру, которая позволила бы производить эквивалентные преобразования 

столь же простым и естественным способом, каким они выполняются в обыч-

ной алгебре или анализе". 

Все сказанное в приведенной цитате полностью относится к реализации 

МОД. Как было показано в разделе 1.2.2, современные вычислительные ком-

плексы, ориентированные на массовую обработку данных, позволяют довести 

программное обеспечение до уровня аппаратуры, используя "микропрограм-

мы", которые размещаются в ПЛИС (FPGA). То есть, становится возможной 

трансляция с языка, на котором написаны алгоритмы реализации операций, на 

язык схем. 

Таким образом, в задачах МОД можно выделить две основные цели оп-

тимизации:  
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 ускорение отдельных операций обработки одного или нескольких файлов, 

 построение оптимальных последовательностей операций (процессов или 

запросов) для решения конкретных задач.  

Для достижения этих целей необходима разработка математических мо-

делей, с помощью которых станет возможной формализация всех составляю-

щих логически последовательной обработки данных: записей, файлов, опера-

ций и процессов обработки файлов. На основе этих моделей становятся воз-

можными: 

 оптимизация отдельных операций за счет применения различных парал-

лельных архитектур вычислительных комплексов, реализующих выполнение 

операций; 

 синтез и оптимизация процессов (запросов), составленных из этих опера-

ций обработки данных, с одновременным выбором наилучших архитектур вы-

числительных комплексов, реализующих эти процессы. 

То есть, предложенные модели позволят производить двухуровневую оп-

тимизацию, как на уровне операций, так и на уровне процессов. 

 Как было сказано, такие модели рассматриваются в главе 2, а в главах 4 и 

5 рассматриваются методы оптимизации процессов и выбора архитектур вы-

числительных комплексов, эффективно реализующих эти процессы.  

1.4. Требования к моделям массовой обработки данных  

Теоретическую основу работы составляют две алгебраические модели 

МОД. Это теоретико-множественная или файловая и многомерно-матричная 

модели данных.  

Известно, что проектирование БД многоступенчатый процесс, состоящий 

из последовательного построения моделей данных различных уровней. 

Первый уровень – концептуальное (инфологическое) проектирование, –

заключается в построении семантической или концептуальной модели пред-

метной области, то есть информационной модели наиболее высокого уровня 
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абстракции. Такая модель есть образ предметной области и прообраз проекти-

руемой для нее базы данных. 

Второй уровень – логическое (даталогическое) проектирование, – состоит 

в создании схемы базы данных на основе конкретной модели данных, напри-

мер, реляционной модели данных. В реляционной модели данных даталогиче-

ская модель реализована набором схем отношений, с указанием первичных 

ключей, идентифицирующих кортежи каждого отношения и внешних ключей, 

задающих связи между отношениями. Выбор модели данных, во многом, опре-

деляется концептуальной моделью.  

Третий уровень – физическое проектирование, – реализует создание схе-

мы базы данных средствами конкретной СУБД, реализующей выбранную мо-

дель данных. Специфика конкретной СУБД при физическом проектировании 

определяет набор решений, связанных с моделью вычислений и физической 

средой хранения данных, а именно: выбор методов доступа к данным, управле-

ния внешней памятью, распределения всей БД или отдельных таблиц по фай-

лам и устройствам. 

Вместе с тем, ни одна модель данных не может быть ориентирована на 

все возможные архитектуры вычислительных комплексов, которые в современ-

ных условиях доступны для использования разработчикам БД. Кроме того, 

промышленные СУБД ориентированы на конкретные вычислительные машины 

и системы (платформы). При этом не учитывается тот факт, что гибкость со-

временных платформ позволяет моделировать на их основе различные архитек-

туры вычислительных комплексов. Попытка учесть такую возможность, несо-

мненно, привела бы к неоправданному усложнению программного обеспечения 

СУБД. Поэтому целесообразно предоставить прикладному программисту фор-

мальный аппарат в виде дополнительных моделей данных. Они должны обес-

печить связь между моделью данных, выбранной для формализации решаемой 

задачи, СУБД, выбранной для реализации алгоритмов, решающих задачу, и ар-

хитектурой вычислительного комплекса, который наилучшим образом обеспе-

чивает решение задачи. В результате происходит объединение вычислительных 

http://ru.wikipedia.org/wiki/%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%B1%D0%B0%D0%B7%D1%8B_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_(%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C)
http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B2%D0%B8%D1%87%D0%BD%D1%8B%D0%B9_%D0%BA%D0%BB%D1%8E%D1%87
http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B2%D0%B8%D1%87%D0%BD%D1%8B%D0%B9_%D0%BA%D0%BB%D1%8E%D1%87
http://ru.wikipedia.org/wiki/%D0%92%D0%BD%D0%B5%D1%88%D0%BD%D0%B8%D0%B9_%D0%BA%D0%BB%D1%8E%D1%87
http://ru.wikipedia.org/wiki/%D0%A1%D0%A3%D0%91%D0%94


48 

 

средств, прикладных программ и программного обеспечения СУБД, которые 

должны обеспечить решение конкретной задачи, в единый программно-

аппаратный комплекс. 

Как было сказано, в работе, в качестве таких связующих моделей пред-

ложены теоретико-множественная, или файловая, и многомерно-матричная мо-

дели данных (главы 2, 3). Далее перечисляются требования, которым эти моде-

ли должны удовлетворять. 

1. Соответствие моделям данных и вычислений. Неформально, требование 

соответствия двух моделей означает наличие у них свойств, позволяющих ис-

пользовать одну модель МОД вместо другой. В работе рассматриваются два 

типа соответствия моделей. Первый тип состоит в том, что: 

  каждому набору данных (прообразу), представленному в одной модели 

(например, отношению в реляционной, файлу в теоретико-множественной), 

ставится в соответствие один и только один набор данных (образ), представ-

ленный в другой модели (например, многомерная матрица);  

 каждой операции в одной модели ставится в соответствие одна и только 

одна операция или композиция операций в другой модели, и результату опера-

ции над прообразами соответствует результат операции над образами. 

В математике, в частности, в теории абстрактных алгебраических систем, такое 

соответствие называется изоморфизмом. Второй тип соответствия состоит в 

том, что: 

  каждому набору данных (прообразу), представленному в одной модели, 

ставится в соответствие единственный набор данных (образ), представленный в 

другой модели (например, логическая многомерная матрица), то есть, несколь-

ким прообразам может соответствовать один и тот же образ;  

 каждой операции в одной модели ставится в соответствие одна и только 

одна операция или композиция операций в другой модели, и результату опера-

ции над прообразами соответствует результат операции над образами. 

Такое соответствие называется гомоморфизмом. 
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2. Процедурность. Модель должна обеспечивать алгебраическую процедур-

ную формулировку запроса, которая задает правила его реализации. То есть за-

прос, представленный на языке модели, может быть вычислен на основе выполне-

ния элементарных алгебраических операций, определенных в модели, с учетом 

приоритетности, возможного наличия скобок и некоторых дополнительных пра-

вил, определяющих порядок их выполнения. К требованию процедурности рас-

сматриваемых в работе моделей добавляются два дополнительных требования.  

Первое требование состоит в том, что и сами элементарные алгебраиче-

ские операции, которые реализуют выполнение запроса, должны иметь форма-

лизованные описания, позволяющие проектировать процедуры, реализующие 

их алгоритмы, таким образом, чтобы они наилучшим образом выполнялись в 

используемой модели вычислений. В распространенных в настоящее время мо-

делях данных эти операции не имеют формализованных описаний. Поэтому 

качество их реализации определяется мастерством программистов, которые 

разрабатывают СУБД.  

Второе требование заключается в предоставлении прикладному програм-

мисту возможности применения способов организации и распределения дан-

ных, не реализованных в конкретной СУБД, и разработки на основе имеющего-

ся языка манипулирования данными процедур запросов, эффективно исполь-

зующих выбранные организацию данных и модель вычислений. 

Применение моделей данных, соответствующих этим требованиям позво-

лит: 

 программистам, разрабатывающим СУБД, – расширить круг архитектур 

вычислительных комплексов, на которых станет возможным применение этих 

СУБД; 

 прикладным программистам – возможность привязывать различные СУБД 

к выбранной для решения прикладной задачи архитектуре вычислительного 

комплекса.   

3. Параллелизм алгебраических операций. Формализация операций должна 

обеспечивать возможность распараллеливания операций совместной обработки 
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двух или более файлов. В главе 5 показано, что формальное определение опе-

раций в теоретико-множественной модели позволяет использовать методы рас-

параллеливания, присущие системам, управляемым данными (data flaw), а в 

многомерно-матричной модели – системам на основе векторных (матричных) 

процессоров. Кроме того, модель должна обеспечивать возможность распарал-

леливания обмена между оперативной памятью и внешней запоминающей сре-

дой (традиционными внешними носителями информации или хранилищами 

данных). 

4. Оптимизация запросов. Модель должна обеспечивать возможность опти-

мизации процессов совместной обработки нескольких файлов, реализующих 

запросы. Это означает, что в терминах модели процесс, реализующий запрос, 

должен иметь формальное представление в виде алгебраического выражения, 

которое можно либо автоматически синтезировать с заданными характеристи-

ками, либо преобразовывать для улучшения его характеристик. Спецификацией 

для построения выражения может служить неформальное описание запроса, 

например, это может быть набор, содержащий описания входных, данных, пра-

вил преобразований атрибутов (формул для вычисления значений) и результа-

та. Формальное описание запроса на языке любой модели данных, например, 

SQL-модели, также может служить спецификацией для синтеза выражения, или 

его оптимизации в процессе трансляции на язык связующей модели. Следова-

тельно, связующая модель должна содержать средства, с помощью которых 

возможно реализовать синтез нового оптимального процесса и оптимизацию 

имеющегося процесса посредством эквивалентных преобразований, оптимизи-

ровать имеющийся процесс. Поскольку методы оптимизации процесса, как 

правило, имеют высокую вычислительную сложность, в большинстве случаев 

оперативная оптимизация может быть затруднительной. Поэтому целесообраз-

но оптимизировать многократно выполняющиеся процессы. Вместе с тем, па-

раллельная реализация некоторых методов оптимизации позволяет надеяться 

на возможность оперативной оптимизации процессов. Проблема оптимизации 
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запросов имеет давнюю историю, но в работе рассматриваются методы, учиты-

вающие особенности не только модели данных, но и модели вычислений. 

5. Объектно-ориентированная парадигма. Это требование означает, что рас-

сматриваемые в работе формальные модели должны обеспечивать возможность 

применения современных объектно-ориентированных методов проектирования 

и программирования. Вместе с тем, принятый сегодня подход к описанию объ-

ектных моделей данных имеет сугубо технологический характер [71, 72, 112], 

ведущий свою родословную от первых работ в этой области [113]. Технологи-

ческий характер выражается в том, что отсутствует строгое определение объек-

та, которое заменяется неформальным описанием его свойств и свойств систем 

баз данных, построенных на основе объектно-ориентированного подхода. Это 

приводит к тому, что даже активные сторонники и основоположники объектно-

го подхода к построению систем баз данных указывают на его недостаток, со-

стоящий в отсутствии строго определения объекта, то есть "объект – это все, 

что угодно" [114]. Рассматриваемые в работе модели будут построены именно 

как объектные, на основе предложенного в [53] строгого определения абстракт-

ного типа данных (объекта, класса) как универсальной многоосновной алгебра-

ической системы.   

Перечисленные в этом параграфе требования будут учтены при построе-

нии объектно-ориентированных теоретико-множественной и многомерно-

матричной моделей в главе 2. 

1.5. Заключительные замечания к главе 1 

В этой главе дано определение МОД как способа параллельной обработ-

ки больших объемов данных большим числом процессоров. Указано, что в ра-

боте рассматривается и исследуется один из видов МОД – обработка структу-

рированных данных.  

Приведены примеры задач этого класса и сделан вывод о том, что при их 

решении в обработку включаются практически все данные, характеризующие 

объекты этих задач, и объемы обрабатываемых данных очень велики.  
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Проведен анализ архитектур известных промышленных программно-

аппаратных комплексов IBM Netezza и Oracle Exadata с позиции использования 

их для реализации МОД.  

Определены цели работы, состоящие в разработке моделей данных, обес-

печивающих наибольшее соответствие существующим моделям данных и ар-

хитектурам вычислительных комплексов, и разработке на основе этих моделей 

способов организации данных во внешней памяти и алгоритмов реализации 

операций, в наибольшей степени соответствующих структурам данных.  

Введено понятие коэффициента активности данных и на его основе опре-

делены условия, при которых целесообразно использование методов МОД.  

Приведено неформальное описание операций над файлами в МОД. Опре-

делено понятие логически последовательного метода доступа к данными и вы-

браны, на основе известных классификаций, архитектуры программно-

аппаратных комплексов, наилучшим образом реализующие этот метод доступа. 

Для решения задачи формализации процессов МОД предложены теоре-

тико-множественная, или файловая, и многомерно-матричная модели данных и 

сформулированы требования, которым эти модели должны удовлетворять.  

В число требований вошли: соответствие моделям данных и вычислений; 

процедурность; параллелизм алгебраических операций; оптимизация запросов; 

объектно-ориентированная парадигма. Основные результаты, полученные в 

данной главе, были опубликованы в работах [59, 63, 69, 73, 74, 85, 86]. 
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Глава 2. АЛГЕБРАИЧЕСКИЕ МОДЕЛИ ДАННЫХ ДЛЯ ПО-
СТРОЕНИЯ ПРОГРАММНО-АППАРАТНЫХ КОМПЛЕКСОВ 

2.1. Основные алгебраические понятия 

2.1.1. Универсальные алгебры и алгебраические системы 

В качестве основы объектно-ориентированных (алгебраических) моделей, 

которые позволят формализовать представления данных и операции их преоб-

разования, используемые при обработке файлов, в дальнейшем используются 

такие понятия как универсальная алгебра и универсальная алгебраическая си-

стема, известные определения которых [115, 116] приведены ниже. 

Определение 2.1. Пусть A – некоторое непустое множество. Частично 

определенная функция , называется n-арной 

частичной операцией на A. Если функция всюду определена, говорят просто об 

n-арной операции. 

Определение 2.2. Система  ,AU A , состоящая из оснóвного множе-

ства A и определенной на нем совокупности частичных операций 

, называется частичной универсальной алгеброй с сигнату-

рой . 

Определение 2.3. Универсальные алгебры UA и UB , в которых заданы со-

ответственно сигнатуры  и ', называются однотипными, если можно устано-

вить такое взаимно-однозначное соответствие между сигнатурами  и ', при 

котором любая операция F   и соответствующая ей операция F'  ' будут 

n-арными с одним и тем же n. 

Пусть даны две однотипные универсальные алгебры  ,AU A  и 

 ,BUB  с основными множествами A и B. 

Определение 2.4. Отображение  :AB называется гомоморфным отоб-

ражением алгебры в алгебру , если для любых элементов  и 

произвольной n-арной операции F выполняется соотношение 

A, x, y, x, , x, xFy nn  )()( 11

)2, 1,(}{  sF s
s

n

AU
BU A, a, a n 1
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, где  и . Алгебры 

и  называются гомоморфными. 

Если между основными множествами A и B устанавливается взаимно-

однозначное соответствие, то отображение  называется изоморфным отобра-

жением, а алгебры и  называются изоморфными. 

Определение 2.5. Пусть  – n-местный предикат, 

 – сигнатура предикатов. Система UA=<A; ; > называется 

универсальной алгебраической системой. 

Между универсальными алгебраическими системами также можно уста-

навливать гомоморфные и изоморфные отображения. Для этого необходимо 

установить соответствие и между сигнатурами предикатов, подобное тому, ко-

торое устанавливается между сигнатурами операций. 

Случаи, когда при построении формальной модели решаемой задачи 

можно обойтись единственным основным множеством, встречаются нечасто, 

поскольку объекты предметной области имеют сложную структуру, для описа-

ния которой используется много разнотипных параметров. Для моделирования 

таких предметных областей используются многоосновные алгебры. 

Определение 2.6. Система UM =< M; >, состоящая из семейства основ-

ных множеств M={A} ( = 1, 2, …) и сигнатуры  операций, определенных на 

семействе M так, что каждая n-арная операция из  является отображением де-

картова произведения n множеств из семейства M в множество  из того же се-

мейства , называется многоосновной алгеброй. 

Определение 2.7. Система UM=<M; ; >, где  – сигнатура n-местных 

предикатов , называется многоосновной алгеб-

раической системой.  

Между многоосновными алгебрами и алгебраическими системами, также, 

как и между одноосновными, можно устанавливать гомоморфные и изоморф-

ные отображения. 

)()(()(( 11 nn a, , aF, a, aF    ii ba )( )...,,1( niBbi 

AU BU

AU BU

Axxxx nn ...,,),...,,( 11

)2, 1,(}{  ss
s

n

rn
AAA  

1

}1,0{:
1


n

AA  
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Многоосновные алгебры и алгебраические системы играют важную роль 

в программировании. Они представляют собой теоретическую базу для созда-

ния технологий построения пользовательских типов данных в современных 

языках программирования. А некоторые встроенные в языки типы данных сами 

есть не что иное, как многоосновные алгебраические системы. Далее приводят-

ся примеры некоторых часто встречающихся типов данных, которые могут 

быть представлены в виде многоосновных алгебраических систем [117]. 

Пример 2.1. Пусть US=<S, Z0; ; >– система, состоящая из множества 

строк S и множества неотрицательных целых чисел Z0. Сигнатура  состоит из 

операций: 

 
 длина строки; 

  позиция подстроки s1 в строке s2; 

  конкатенация (сцепление) строк s1 и s2; 

  выделение из строки s1, начиная с позиции i, под-

строки s2 длины l. 

Сигнатура предикатов  может включать предикаты: 

 π1: "Cтрока s – пустая" (не содержит ни одного символа), 

 π2: "Cтрока s1 предшествует строке s2".  

Таким образом, строковый тип в языках программирования – это двухос-

новная универсальная алгебраическая система. 

Пример 2.2. Обычная алгебра матриц представляет собой очень важный с 

точки зрения массовой обработки данных пример универсальной двухосновной 

алгебраической системы UM=<M, R;; >, где М – множество матриц, а R– 

множество действительных чисел(элементов матриц). Сигнатура  универ-

сальной двухосновной алгебраической системы UM имеет следующий вид: 

  аддитивная операция над элементами матриц; 

  мультипликативная операция над элементами матриц; 

 
 транспонирование матрицы; 

RRR  :

RRR  :

L 

' 
 

P  

+ 

 
C 
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  умножение матрицы на число; 

  сумма матриц; 

  произведение матриц; 

  определитель матрицы. 

Сигнатура предикатов П может содержать такие предикаты как "матрица 

M вырожденная" или "матрица M1 может быть умножена на матрицу M2".  

Далее многоосновные алгебраические системы будут использованы в ка-

честве аппарата для построения моделей данных, свойства которых удовлетво-

ряют поставленным в работе задачам. 

2.1.2. Интуитивный подход к объектно-ориентированному 
моделированию, проектированию и программированию 

Основу объектно-ориентированного подхода составляет понятие аб-

страктного типа данных (АТД) [113]. В основном, в современной литературе 

рассматривается интуитивный подход к описанию АТД, и на его основе строят-

ся технологии объектно-ориентированного моделирования, проектирования и 

программирования. 

Определение 2.8. Интуитивно АТД – это конструкция языка программи-

рования, в которой группируются в одно понятие следующие элементы: 

 набор операций (действий), 

 множество (одно или более) объектов, к которым эти операции применя-

ются,  

 защита, или возможность средствами языка и соответствующей ему си-

стемы программирования защитить внутреннее представление АТД от дей-

ствий, не указанных явно в его определении (то есть скрыть его от пользователя 

АТД) [118]. 

Определение 2.9. В языках программирования АТД – это конструкция, 

состоящая из двух частей:  

 интерфейса, содержащего имя определяемого АТД, имена операций с 

указанием типов их аргументов и значений;  
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 описания операций и объектов, с которыми эти операции работают, сред-

ствами обычного языка программирования.  

Это описание называется конкретным, в отличие от абстрактного описа-

ния, которое делается средствами более высокого уровня. Конкретное описание 

также называется реализацией или представлением АТД. Благодаря защите 

только имена, перечисленные в интерфейсе, доступны, то есть могут использо-

ваться другими компонентами программы, внешними по отношению к АТД. 

В дальнейшем при конструировании моделей данных будут использова-

ны алгебраическое определение АТД и конкретные описания для каждого АТД. 

Интерфейс АТД представляет собой перечисление переменных, принимающих 

значения на основных множествах АТД, и операций, определенных на этих 

множествах и принимающих значения в одном из них. В реализации АТД пе-

ременным присваиваются имена и определяются их типы. Операциям ставятся 

в соответствие программные реализации (процедуры и функции), состоящие из 

двух частей: 

 декларативной, в которой каждой функции, реализующей операцию, при-

сваивается имя и приводится описание ее интерфейса (задается список фор-

мальных параметров); 

 императивной, являющейся телом подпрограммы, реализующей эту 

функцию. 

В одних языках программирования (ObjectPascal, C++), декларативная и 

императивная части реализации операции отделены друг от друга и находятся в 

разных разделах программного кода или даже в разных файлах, в других (C#) – 

совмещены. В современных объектных технологиях принято называть пере-

менные свойствами объекта, а функции, реализующие операции – методами 

объекта. 

Для того чтобы разработка: модель, проект, программа, соответствовала 

требованиям объектно-ориентированной технологии, необходимо, чтобы каж-

дый АТД обладал следующими свойствами: 
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Абстракция – отображение в АТД только значимых характеристик и 

свойств моделируемого объекта. 

Инкапсуляция – объединение данных и операций их обработки и сокры-

тие деталей реализации от пользователя; то есть, иными словами, инкапсуляция 

– это защита данных и операций (свойств и методов) АТД от несанкциониро-

ванных действий пользователя. 

Наследование – возможность использования одним АТД свойств и мето-

дов другого. АТД, от которого производится наследование, называется базовым 

(родительским), а наследующий АТД – наследником (производным). В языках 

программирования существует два метода организации наследования: прямое 

указание того, что новый АТД есть наследник имеющегося базового, и косвен-

ное (контейнерный метод), реализуемое включением базового АТД в производ-

ный в качестве одного из свойств. 

Полиморфизм – возможность использовать одинаковые знаки для опера-

ций (в языках программирования – имена функций, реализующих операции), 

которые имеют одинаковый или схожий смысл, но выполняются над разнотип-

ными данными, и, следовательно, реализованы разными алгоритмами. Напри-

мер, знак плюс используется для обозначения операции сложения как действи-

тельных, так и комплексных чисел, или, как в примере 2.2, знак + использовал-

ся как для обозначения сложения матриц, так и для сложения их элементов, а 

знак  – для умножения двух матриц, матрицы на число и элементов матриц. 

Интуитивное определение АТД оказалось весьма продуктивным, по-

скольку позволило создать на его основе как технологии объектно-

ориентированного программирования, так и технологии моделирования данных 

и проектирования баз данных [119-123]. Однако для решения поставленных в 

работе задач связывания моделей данных и моделей вычислений методом уста-

новления соответствия между этими моделями интуитивного определения АТД 

недостаточно. Поэтому необходимо ввести и использовать строгое определение 

АТД; рассмотрению его и следующих из него методов построения моделей 

данных посвящены следующие разделы этой главы. 
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2.1.3. Алгебраический (формальный) подход к объектно-
ориентированному моделированию, проектированию и 
программированию 

Из интуитивного определения следует, что АТД объединяет под одним 

именем наборы данных и операций над ними, при помощи которых можно за-

дать описание свойств и процедур преобразования реального объекта из неко-

торой предметной области, то есть построить его формальную модель. Поэтому 

в ряде работ, например, [124], АТД определяется как математическая модель с 

совокупностью операторов, определенных в рамках этой модели. 

Для строгого определения АТД используется понятие многоосновной ал-

гебраической системы.  

Определение 2.10. Абстрактный тип данных (он же объект или класс)– 

это универсальная одноосновная или многоосновная алгебраическая система 

[53]. 

Это определение позволяет рассматривать в качестве АТД любые, в том 

числе и одноосновные, универсальные алгебры и алгебраические системы. Оно, 

несмотря на краткость, полностью соответствует интуитивному определению 

[125]. Следующий пример это наглядно иллюстрирует. 

Пример 2.3. При решении различных вычислительных и логических за-

дач, таких как: поиск кратчайших путей, определение доступности вершин 

графа [126], разузлование [127], для определения данных часто используется 

универсальная одноосновная алгебраическая система – моноид.  

Моноидом называется множество M, на котором задана бинарная опера-

ция (), и выполняются два условия: 

1. для любых трех элементов xM, yM, zM (x(yz))=((xy)z) –

ассоциативность операции; 

2. существует такой элемент eM, называемый  нейтральным элементом, 

что для любого x  M, x  e = x = e  x.  
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Моноид обозначается как тройка вида UM = <M; ; e>. Определенный та-

ким образом моноид можно рассматривать как базовый АТД, то есть наивыс-

ший уровень абстракции, которому соответствуют различные реализации, каж-

дая из которых соответствует конкретной задаче или конкретному классу задач: 

1. UR=<R;+; 0> – множество действительных чисел с операцией сложения; 

2. UR=<R; ; 1> – множество действительных чисел с операцией умножения; 

3.  – множество положительных действительных чисел с 

операцией нахождения минимального из двух чисел и нейтральным элемен-

том ( ), которому в программных реализациях, как правило, соответствует 

наибольшее значение в типе. 

4. UB=<B; ; 0> –множество B={0, 1} с операцией дизъюнкции. 

5. US=<S;+; > – множество символьных строк произвольной длины с опе-

рацией конкатенации (сцепления) строк и нейтральным элементом "пустая 

строка" (строка, не содержащая ни одного символа); 

Следовательно, АТД "Моноид" удовлетворяет требованию абстракции. 

Свойство инкапсуляции удовлетворяется в силу того, что в каждой реали-

зации базового АТД точно указано основное множество, а операция определена 

как алгебраическая, то есть замкнутая на основном множестве. 

Все приведенные реализации моноида наследуют свойства, присущие ба-

зовому АТД, то есть свойство наследования также удовлетворяется. 

Наконец, для операций двух реализаций моноида, показанных в пунктах 1 

и 5 знак (+) используется для обозначения двух различных по смыслу операций 

(сложение действительных чисел и конкатенация строк). То есть удовлетворя-

ется свойство полиморфизма операций. 

Из следующего примера видно, что хорошо известный и широко приме-

няемый в программировании класс (АТД) DataTable (таблица данных), принад-

лежащий платформе .NET Framework, может быть представлен как универ-

сальная алгебраическая система.  

 min;;RUR


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Пример 2.4. Из множества всех операций (методов класса DataTable) 

[123] для построения примера универсальной многоосновной алгебраической 

системы выбрана только одна – метод Compute. Это обеспечивает простоту 

примера, но не ограничивает общность. Операция реализована функцией, кото-

рая определена на следующих множествах: 

 множество всех таблиц T; 

 множество строк специального вида SE, содержащее выражения на основе 

агрегатных функций (сумма, среднее значение, максимум и им подобные); 

 множество строк специального вида SF, содержащее логические выраже-

ния – фильтры строк таблицы. 

Поскольку тип результата операции определяется типом результата вы-

числения выражения из SE, то для обеспечения общности он задается типом ob-

ject. То есть результату можно присваивать значения любого типа, определен-

ного в языке или определенного пользователем. Можно считать, что тип object 

соответствует понятию универсального множества U, то есть множества, фик-

сированного в рамках решаемой задачи и содержащего в качестве элементов 

все объекты, рассматриваемые в этой теории. Тогда операцию можно опреде-

лить как функцию U FE SSTCompute: . Класс DataTable определя-

ется как многоосновная универсальная алгебраическая система 

, , , ; ; .DT E FU T S S Compute  U  Определение предикатов зависит от решае-

мой задачи. Например, "выражение фильтра принимает значение истина более 

чем на половине строк таблицы". 

Примеры 2.3 и 2.4 явно демонстрируют соответствие двух определений 

АТД: интуитивного и строгого (алгебраического). Далее на основе строгого 

определения будет разработан базовый АТД, с помощью которого можно будет 

построить модели данных, позволяющие решать поставленные в работе задачи.  
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2.1.4. Объектно-ориентированный подход к разработке мо-
делей данных  

Для разработки моделей данных, удовлетворяющих требованиям, пере-

численным в параграфе 1.3 (соответствие высокоуровневым моделям данных и 

моделям вычислений, процедурность, параллелизм алгебраических операций, 

возможность оптимизации запросов, объектная ориентированность), необходи-

мо выбрать базовые АТД, свойства которых будут достаточными для того, что-

бы, используя механизм наследования, можно было бы строить необходимые 

универсальные алгебры или алгебраические системы для использования их в 

качестве моделей данных.  

Среди множества произвольных АТД предлагается рассмотреть специфи-

ческий АТД, называемый в дальнейшем абстрактной алгебраической маши-

ной [128-130].  

Определение 2.11. Абстрактная алгебраическая машина – это двухоснов-

ная алгебраическая система вида E=<S, T; ; >. Основа S называется струк-

турой, а основа T –  типом.  

Структура представляет собой некоторую конструкцию, составленную из 

экземпляров данного типа. Примеры такого рода структур – векторы, матрицы, 

графы. Выбор структуры и типа определяется особенностями решаемой задачи. 

Причем для некоторых классов задач одной структуре могут соответствовать 

несколько типов. Следующий пример иллюстрирует эту ситуацию. 

Пример 2.5. Для решения названных в примере 2.3 задач, – поиск крат-

чайших путей, определение доступности вершин графа, разузлование, – может 

быть применен метод, основанный на алгоритме вычисления транзитивного за-

мыкания квадратной матрицы M. Эта матрица задает отношение объектов не-

которой предметной области: населенных пунктов и дорог, которые их соеди-

няют, изделий и узлов и деталей, из которых они состоят, и тому подобных. 

Транзитивное замыкание матрицы M вычисляется по следующей формуле 

.матрица-нуль где,и  ,всех  для,, 1

1

*  



 ZZMKiZMMM Ki
K

i

i
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В этом случае абстрактная алгебраическая машина имеет следующий вид 

EM=<M, X; ; >, где X–тип, а M – множество квадратных матриц, составлен-

ных из элементов типа. Минимальное требование к типу X состоит в том, чтобы 

на X были определены две алгебраические операции, одна из которых трактует-

ся как аддитивная, а вторая – как мультипликативная. То есть тип X должен 

быть по каждой из этих операций, по крайней мере, алгебраической структу-

рой, называемой группоидом. В реальных задачах типами могут быть доста-

точно сложные алгебраические структуры, такие как кольца и поля. В таблице 

2.1 приведены формальные определения и описания операций сигнатуры  аб-

страктной алгебраической машины EM. 

Таблица 2.1. Сигнатура операций EM 

Операция Описание операции 

 аддитивная операция над элементами матриц; 

 мультипликативнаяоперация над элементами матриц; 

 
транспонирование матрицы; 

 сумма матриц; 

 произведение матриц; 

 определитель матрицы. 

В реальных задачах в роли типа X могут быть, такие множества как: 

 в "задаче  разузлования" – множество неотрицательных действительных 

чисел R0, с аддитивной операцией сложения и мультипликативной операцией 

умножения чисел, ={+, }; 

 в задаче вычисления кратчайших путей в графе – множество положитель-

ных действительных чисел R+, с аддитивной операцией вычисления минимума 

из двух чисел, и мультипликативной операцией сложения, ={min, +}; 

 в задаче определения доступности вершин в графе множество {0, 1} с ад-

дитивной операцией дизъюнкции и мультипликативной операцией конъюнк-

ции, ={, }. 

XXX  :
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Операции над матрицами, входящие в сигнатуру операций , реализуют-

ся хорошо известными последовательными и параллельными стандартными 

алгоритмами, о которых речь пойдет далее. 

Важность рассмотренного примера состоит, прежде всего, в том, что он 

наглядно показывает наличие универсальных двухосновных алгебраических 

систем, обладающих качеством, которое можно сформулировать как возмож-

ность замены одного основного множества, а именно, типа и операций над его 

элементами, при сохранении другого множества и алгоритмов, реализующих 

операции над его элементами. Этот факт можно сформулировать в виде оче-

видного утверждения. 

Утверждение 2.1. Пусть S – структура, а T1, …, Tn – допустимые для этой 

структуры типы. Тогда T1, …, Tn – однотипные универсальные алгебраические 

системы (определение 2.3). 

Практическая ценность универсальных алгебраических машин состоит в 

том, что суть операций над элементами структуры S не изменяется при измене-

нии сути операций над элементами типа T. Это свойство универсальных алгеб-

раических машин может быть полезным в практическом программировании. 

Если типы T1, …, Tn – гомоморфные или изоморфные универсальные алгебраи-

ческие системы, то становится возможной отладка операций над структурой на 

наиболее простом типе данных. Отлаженная таким образом структура стано-

вится базовым АТД, от которого можно порождать конкретные АТД (реализа-

ции), предназначенные для решения задач на сложных типах данных.  

При таком подходе реальные алгебраические машины, работающие с кон-

кретными типами данных, разрабатываются как АТД – наследники абстракт-

ных алгебраических машин, у которых они наследуют операции над структу-

рами и включают в себя операции над реальными элементами этих структур.  

Одно из основных понятий некоторых, например, широко используемой 

реляционной модели, моделей данных – понятие кортежа. Поэтому проблема 

построения АТД, соответствующих реальным алгебраическим машинам, на ос-

нове которых строятся такие распространенные модели данных как реляцион-
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ная, многомерная, NoSQL, неотделима от проблемы создания алгебры корте-

жей произвольной структуры. Далее рассматривается способ построения би-

нарных операций над кортежами, без которых невозможно построение бинар-

ных операций над агрегатами данных, которые используются в качестве эле-

ментов структуры (отношениями, файлами, многомерными матрицами). В раз-

личных моделях данных эти операции над кортежами, заданные явно или неяв-

но, интерпретируются либо как аддитивные, либо как мультипликативные. 

Предложенный метод [117] позволяет делать явные формальные описания би-

нарных операций над кортежами. Далее используется общепринятое в матема-

тике определение кортежа. 

Определение 2.12. Кортеж – это конечный набор (t1, …, tn) длины n, (где n 

– неотрицательное целое число), каждый элемент которого ti принадлежит 

некоторому типу Ti (1  i  n).  

Важную роль в моделях данных играют нуль-кортежи. В дальнейшем 

нуль-кортеж рассматривается как кортеж, состоящий только из нейтральных 

элементов типов T1, …, Tn,. 

Предполагается, без ограничения общности, что кортежи не могут содер-

жать сложные элементы, например, другие кортежи.  

Пусть T1,…, Tn – совокупность основных множеств универсальных алгебр 

или алгебраических систем, которые принято в языках программирования 

называть простыми типами. Это, например, числа с фиксированной или плава-

ющей точкой, строки, а также типы, полученные из простых типов добавлени-

ем новых операций. Пусть x1, …,  xp, y1,…, yq, (0  p, q  n,p+q=n)–набор пере-

менных, каждая из которых принимает значения в одном и только одном из 

множеств T1,…, Tm. На этих множествах определяется система функций:

.)......(:),...,,,...,(
111111 ...,... i

j TTTTTyyxxf
lklklk
  Здесь выполняются нера-

венства 1  k  p, 1  l  q, j > 0 и 1  i  n. Далее будет использоваться сокра-

щенная запись этих функций – ....,... 11

j

lk
f   
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Определение 2.13. Пусть кортеж c1 длины p и кортеж c2 длины q составле-

ны из переменных x1, …,  xp и  y1,…, yq соответственно. Тогда кортеж c3 длины 

r, построенный по правилу ),...,( ...,...

1

...,... 1111

r

lklk
ff  ,  можно рассматривать 

как результат бинарной операции над кортежами c1 и c2 (c3= c1c2). Если функ-

ция определена на всех элементах кортежей c1 и c2, то используется обозначе-

ние 
j

ccf 21 , . 

Семантика операции над кортежами (аддитивность или мультипликатив-

ность) определяется семантикой операции, определенной над структурой, ти-

пами элементов которой могут быть кортежи c1, c2 и c3. 

В следующем примере показано построение бинарных операций над кор-

тежами. 

Пример 2.6. Пусть S – множество строк, а R+ –множество положительных 

действительных чисел. Переменные (атрибуты) A, B, C, D принимают значения 

в множестве S, а переменные X, Y – в множестве R+. Кортежи c1 и c2 имеют схе-

мы c1(A, B, C, X) и c2(B, C, D, Y). Функции )(,)(2

, 21
Ddddf cc  ,   позволяют по-

строить кортеж c3=c1c2 со схемой c3(A, D, Z), где Z=XY, и принимает значения 

в множестве R+. Таким образом определяется мультипликативная операция над 

кортежами. Если c31, c32, c33 – кортежи со схемой c3(A, D, Z), то функции 

),(,.).( 3131

1

, 3231
Aaacacf cc   

)(,.).( 3131

2

, 3231
Dddcdcf cc  ,  

)(,..).,.( 32313231

3

, 3231
Zzzczczczcf cc   

определяют аддитивную операцию над кортежами c33=c31 + c32. 

Если предположить, что в реляционной модели кортежи c1 и c2 есть эле-

менты (строки) отношений R1 и R2, то рассмотренные функции позволяют 

сформировать список полей в выражении, реализующем запрос: 

SELECT R1.A, R2.D, Sum(R1.X*R2.Y) AS Z 

FROM R1 INNER JOIN R2 ON (R1.C = R2.C) AND (R1.B = R2.B) 

GROUP BY R1.A, R2.D; 
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Подобным образом рассмотренные функции могут быть использованы для 

построения алгебр элементов структур (файлов и многомерных матриц) в тео-

ретико-множественной и многомерно-матричной моделях. 

В некоторых моделях при построении бинарных операций над элементами 

структуры может возникнуть ситуация, когда кортеж-результат формируется 

только из одного кортежа-операнда. В многомерно-матричной модели такое 

невозможно, так как в матрице присутствуют все возможные элементы, в том 

числе и нуль-кортежи. Но в реляционной и теоретико-множественной моделях 

отношения и файлы, как правило, не содержат строки и записи, состоящие 

только из нейтральных элементов. Поэтому целесообразно рассмотреть еще два 

вида функций j

j TTTxxf
kkk
 )...(:),...,(

111 0,...  , и  

j

j TTTyyf
lll
 )...(:),...,(

111...,0  , которые позволят конструировать опера-

ции, формирующие кортеж-результат только из одного кортежа-операнда. Ис-

пользование этих операций обеспечивает единство формальной записи алго-

ритмов бинарных операций над структурами. Сокращенная запись этих функ-

ций имеет вид: ., 0,......,0 11

jj

kl
ff   

Предложенный способ позволяет определять различные аддитивные и 

мультипликативные операции над кортежами и получать при этом различные 

универсальные алгебры или алгебраические системы. Свойства построенных 

операций составляют список аксиом этих алгебраических систем. Благодаря 

этому возникает возможность формального построения произвольных универ-

сальных алгебраических систем кортежей в соответствии с требованиями ре-

альных задач. 

От построенной таким образом универсальной алгебраической системы 

легко перейти к представлению АТД Кортеж. Такой АТД является базовым 

объектом, который может стать родоначальником множества объектов, соот-

ветствующих реальным задачам. Эти объекты будут, с одной стороны, насле-

довать свойства составляющих кортежи простых типов, с другой, базовые опе-

рации объекта, представляющего АТД Кортеж. Таким образом, в объектах-
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наследниках могут использоваться либо основные операции над кортежами из 

базового объекта, либо заменяющие их полиморфные операции, которые будут 

выполнять те действия над элементами простых типов данных, которые требу-

ются в условиях конкретной решаемой задачи. 

Способ построения универсальной алгебраической системы для кортежей 

будет использован в дальнейшем для построения второго основного множества 

(типа) в абстрактных файловой и матричной алгебраических машинах. Он так-

же будет использован для доказательства изоморфизма рассматриваемых в ра-

боте моделей данных. 

2.2. Файловая (теоретико-множественная) модель данных 

Как было отмечено в разделе 1.1 СУБД опирается на файловую систему, 

присущую конкретному вычислительному комплексу или операционной систе-

ме. Поэтому, по крайней мере, одна из промежуточных моделей данных должна 

обеспечивать формализм, необходимый для решения задач распараллеливания 

обработки.  

2.2.1. Анализ определений файла  

Для построения файловой модели данных необходимо понять, что пред-

ставляет собой этот агрегат данных. Для этого проводится анализ известных 

определений файла. 

В операционных системах понятие файла связано исключительно с хране-

нием данных во внешней памяти. Поэтому самое общее определение файла та-

ково: "с точки зрения прикладной программы файл – это именованная область 

внешней памяти, в которую можно записывать и из которой можно считывать 

данные" [72]. 

Однако с позиции систем обработки данных, файл – это поименованная 

совокупность данных, содержащих достаточно полное описание некоторой ма-

териальной совокупности, состоящей из однородных или однотипных объек-

тов. Файл обычно принято подразделять на записи, каждая из которых описы-



69 

 

вает, как правило, один из таких объектов [131]. Эта точка зрения разделяется и 

в следующих определениях: 

1. Файл – поименованная совокупность всех экземпляров логических записей 

заданного типа [132]. 

2. Файл – именованная структура данных, представляющая собой множество 

записей какого-либо типа, хранимых во внешней памяти. В некоторых систе-

мах так называют структуру хранимых данных [70]. 

В этих определениях существенное значение имеет понятие логической 

записи и ее экземпляра. В дальнейшем, поскольку файл будет определяться как 

множество, под логической записью будет пониматься описание элементов это-

го множества, а под экземплярами – конкретные элементы. 

Для конструирования логических записей используется понятие поля, или 

хранимого поля. В таком контексте файл определяется следующим образом 

[133]. 

Хранимое поле – это наименьшая единица хранимых данных. Как правило, 

хранимые поля – это переменные, значения которых берутся из простых типов 

данных: чисел, строк и тому подобных. Типичная база данных содержит мно-

жество экземпляров каждого из нескольких описанных в ней типов хранимых 

полей.  

Хранимая запись – это набор взаимосвязанных хранимых полей, а экзем-

пляр хранимой записи состоит из группы связанных экземпляров хранимых по-

лей.  

Хранимый файл – это набор всех существующих в настоящий момент эк-

земпляров хранимых записей одного и того же типа. Для упрощения предпола-

гается, что любой заданный хранимый файл может содержать хранимые записи 

только одного типа. 

В общем виде, с использованием формы Бэкуса-Наура (БНФ) так как это 

делается в [134], файл можно определить следующим образом. 

файл  запись-метка КФ | запись-метка строка записейКФ 

строка  записей запись | строка  записейзапись 
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запись{элемент} 

запись-метка  идентификатор файла 

КФ  признак конца файла 

элемент> переменная простого или структурного типа. 

Из этого определения следует, что файл может быть либо пустым, не со-

держащим ни одной записи, либо содержать последовательность (строку) запи-

сей. Записи состоят из элементов, каждый из которых есть переменная либо 

простого типа, либо структурного типа при условии, что на этом структурном 

типе определены необходимые для решения конкретной задачи бинарные опе-

рации. То есть, элемент записи не может иметь тип массив, но может иметь тип 

вектор или тип матрица. 

Все рассмотренные определения дают достаточно точное описание файла 

и составляющих его записей. Однако для описания операций над файлами, ко-

торые используются в системах обработки данных, этих определений недоста-

точно. Поэтому далее приводится строгая алгебраическая модель файловой об-

работки данных. При создании этой модели [73, 74] были использованы мето-

ды, предложенные в [61, 62]. 

2.2.2. Определение файла 

Формализация понятия файла начинается с формализации понятия запись. 

Определение понятия запись в предыдущем разделе позволяет в дальнейшем 

рассматривать записи как структурные типы данных, объединяющие под одним 

именем разнотипные переменные. 

Пусть A={A1, …, Ap} – некоторая конечная система конечных множеств, а 

N={N1, …, Np} – конечное множество элементов, называемых именами мно-

жеств A1, …, Ap. Множества A1, …, Ap могут состоять из элементов любой при-

роды: чисел с фиксированной или плавающей точкой, строк, а также таких 

структур как векторы, матрицы, кортежи, с заданными на них  операциями и 

тому подобных. Так как на множествах A1, …, Ap заданы операции и отноше-
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ния, то A1, …, Ap в дальнейшем будут рассматриваться как простые или аб-

страктные типы данных. 

Определение 2.14. Полем записи называется пара F=<Ni, Ai> (i=1, …, p), 

где Ni – имя, а Ai – множество значений поля. 

Определение 2.15. Кортеж R={F1, …, Fp} называется записью типа R. 

Определение 2.16. Кортеж вида },...,,,{ **

11

*  pp ANANR , где 

)...,,1,( * piAA ii   называется экземпляром записи типа R.  

В дальнейшем изложении термин запись будет отождествляться с терми-

ном экземпляр записи типа R в тех случаях, когда это не будет вызывать неод-

нозначного толкования. При необходимости и из соображений удобства записи 

будут отождествляться с синтаксическими конструкциями struct и record, ис-

пользуемыми в языках программирования для задания записей, а экземпляры 

записей – со строками таблиц.  

Определение 2.17. Множество X экземпляров записей типа R называется 

множеством записей типа R или множеством однотипных записей. 

Для определения операций над файлами необходимо выделить некоторые 

структурные элементы записей, которые позволят идентифицировать записи и, 

при необходимости, сравнивать их. Во всех моделях данных такие элементы 

называются ключами. 

Определение 2.18. Пусть )(},...,,{ 1 pmKKK m   – множество полей записи 

R, такое,  что 
m

FKFK m   ...,,
11 , причем все )...,,1( miA

i
 – типы, на ко-

торых заданы отношения эквивалентности и порядка. Множество K называется 

множеством ключей, а его элементы ключами. 

Определение 2.19. Кортеж }...,,{ **

1

*

mKKK  , для элементов которого вы-

полняется правило )...,,1(* miAK
ii   , называется экземпляром множества 

ключей (
*

iK называется экземпляром ключа). 
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Очевидно, что любая совокупность экземпляров множества ключей может 

быть лексикографически упорядочена. Одновременно упорядочивается и мно-

жество однотипных записей X, тип которых включает множество ключей K.  

Определение 2.20. Две однотипные записи называются эквивалентными, 

если они содержат одинаковые экземпляры множества ключей. 

В современных языках программирования существует возможность созда-

вать под одним и тем же именем записи с различной структурой. Это не нару-

шает однотипность записей в рассмотренном смысле при условии, что каждый 

вариант структуры записи содержит все ключи из множества K. 

Таким образом, задание на множестве однотипных записей X множества 

ключей K разбивает X (индуцирует разбиение X) на группы (классы), содержа-

щие записи с одинаковыми значениями ключей – эквивалентные записи. Эти 

классы называются классами эквивалентности. Они могут содержать разное 

количество записей.  

Совокупность всех классов эквивалентности по отношению, заданному 

множеством ключей, образует фактор-множество множества однотипных за-

писей X. 

В дальнейшем такое фактор-множество будет обозначаться XK, составля-

ющие его классы эквивалентности – *K
X , или ...,, *

)2(
*

)1( KK
XX .   Также будет по-

лезно рассматривать экземпляры множества ключей, которым во множестве X 

не соответствует ни одной записи. В этом случае, при определении операций 

над файлами, целесообразно считать, что таким экземплярам множества клю-

чей соответствует универсальная неопределенная запись .  Класс эквивалент-

ности, соответствующий экземпляру множества ключей K*и состоящий из 

единственной записи , будет обозначаться  

Определение 2.21. Пусть даны множество однотипных записей X и множе-

ство ключей K. Файлом XK называется фактор-множество множества однотип-

ных записей X по отношению эквивалентности, порожденному множеством K. 



 *K

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Как и фактор-множество, файл обозначается XK, а класс эквивалентности, соот-

ветствующий экземпляру множества ключей K*, обозначается . 

При таком подходе файл не может быть неупорядоченным. Это, в некото-

рой степени, не соответствует общепринятому представлению о файлах, как 

носителях произвольной информации. Но в дальнейшем рассматриваются 

только такие файлы, которые несут в себе структурированную информацию об 

объектах предметных областей и как носители этой информации используются 

на входе, выходе и в процессе решения задач, поставленных и формализован-

ных на этих предметных областях. Процессы решения таких задач построены 

на основе набора операций обработки файлов, которые реализуются алгорит-

мами, весьма чувствительными к упорядоченности входных файлов. Это осо-

бенно заметно при обработке больших объемов данных.  

Определение 2.22. Если каждый класс эквивалентности файла XK содержит 

единственную запись, то файл XK называется строго упорядоченным, если же в 

каждом классе эквивалентности может быть более одной записи – нестрого 

упорядоченным. 

Это определение завершает построение теоретико-множественной модели 

файла – носителя информации об объектах предметных областей. В терминах 

этой модели легко задать теоретико-множественные описания операций над 

файлами. 

2.2.3. Описание операций над файлами 

Поскольку операции над файлами определяются с учетом выполнения 

операций над записями, необходимо выбрать модель операции над кортежами, 

которым, согласно определению, соответствуют записи файлов. Очевидно, что 

запись можно рассматривать как пару кортежей R={K, D}, где кортеж

)(},...,,{ 1 pmKKK m  –  множество ключей, а кортеж 1{ , ..., }m pD F F  – мно-

жество неключевых полей, участвующих в вычислениях, но не участвующих в 

идентификации и сравнении записей. Записи, в которых кортеж D – нуль-

кортеж, физически в файле не присутствуют. Логически таким экземплярам 

*K
X



74 

 

множества ключей K соответствуют универсальные неопределенные записи и 

классы эквивалентности .
 
Поэтому для построения бинарных операций над 

записями выбрана следующая модель бинарной операции над кортежами: 
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Исходя из этого, будет построена следующая система операций над фай-

лами. 

Сортировка (sort). Выполнение операции сортировки приводит к построе-

нию из исходного множества однотипных записей X файла XK (фактор-

множества X по заданному множеству ключей K). Практические соображения 

требуют, чтобы для любого множества X можно было подобрать такое множе-

ство ключей K, по которому файл XK будет строго упорядоченным.  

Выборка (sel). Пусть даны файл XK и π(K) предикат, определенный на 

множестве ключей K. Операция выборки приводит к созданию файла , удо-

влетворяющего следующим условиям: 

, то есть файл  
KX  есть подмножество файла XK; 

))(( **
* KXXK KK

  , то есть класс эквивалентности *K
X присутствует в 

файле 

KX  тогда и только тогда, когда все значения ключей в экземпляре мно-

жества ключей K* превращают предикат π(K) в истинное высказывание. 

Таким образом, в результате выполнения операции выборки образуется 

подмножество исходного файла. Принадлежащие этому подмножеству записи 

содержат фиксированные экземпляры одного или нескольких ключей. Если 

фиксируются значения не всех ключей, то остальные ключи принимают все до-

пустимые значения. 

Сжатие (quant). Пусть даны файлы XK, нестрого упорядоченный по множе-

ству ключей K, и YK, строго упорядоченный по множеству ключей K. Классы 

эквивалентности этих файлов связаны соотношением )( ** KK
XfY  , где f – функ-



*K




KX

KK XX 
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ция, реализующая групповую операцию (операцию квантификации). Тогда счи-

тается, что файл YK получен из файла XK в результате применения операции 

сжатия.  

В операциях сжатия каждому непустому классу эквивалентности  *K
X ис-

ходного файла, нестрого упорядоченного по множеству ключей K, ставится в 

соответствие класс *K
Y выходного файла YK, строго упорядоченного по тому же 

множеству ключей. При этом единственная запись, принадлежащая *K
Y , вы-

числяется как значение функции f, определенной на всех записях класса экви-

валентности *K
X . В качестве такой функции могут быть использованы, напри-

мер, такие агрегатные функции как вычисление суммы или среднего значения, 

поиск наименьшего или наибольшего значения и тому подобные.  

Слияние строго упорядоченных файлов (ms). Пусть даны два файла XK  и 

YK строго упорядоченные по одному и тому же множеству ключей K. В резуль-

тате слияния этих строго упорядоченных файлов образуется файл ZK, классы 

эквивалентности задаются соотношением ),( *** KKK
YXfZ  . Функция 

),( ** KK
YXf , определенная на классах эквивалентности исходных файлов, зада-

ет характер операции. Следующие примеры демонстрируют построение этой 

функции в зависимости от решаемой задачи. 

Пример 2.7.Если слияние строго упорядоченных файлов используется для 

реализации теоретико-множественной операции объединения файлов, то функ-

ция f задается как:


 


случаепротивномвX

XеслиY
YXf

K

KKK

KK ,

,,
),(

*

***

** , для операции пересече-

ния: 









случаепротивномв

YиXеслиY
YXf

K

KKKKK

KK ,

,,
),(

*

*****

** . 

Для реализации теоретико-множественной операции симметрической разности 

файлов задание функции f будет таким: 
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

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Пример 2.8. Распространенная операция корректировки одного файла при 

помощи другого задается следующим образом: 
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Предикат )( *K
Y  служит признаком замены или удаления записи корректируе-

мого файла.  

Пример 2.9. В сложных вычислительных задачах построение функции f 

может быть следующим: 










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Эта формула обеспечивает формирование записей выходного файла ZK по 

следующим правилам: 

 одноместные функции g1 и g2 определены на записях файлов XK и YK, соот-

ветственно, и реализуются при помощи функций 
jj

kl
ff 0,......,0 11

,  ; 

 двухместная функция g3 определена на парах записей, принадлежащих де-

картову произведению XK×YK, и реализуется при помощи функций 
j

lk
f  ...,... 11

; 

 функции g1, g2 и g3 обеспечивают формирование записи выходного файла с 

вычислением новых значений неключевых полей, из значений неключевых 

полей записей и ; 

 значения ключей все три функции переносят в выходную запись  без 

изменений. 

*K
X *K

Y

*K
Z
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Слияние нестрого упорядоченных файлов (mns). Пусть XL  и YM  – файлы, 

упорядоченные (возможно строго) по множествам ключей L и M, причем вы-

полняется условие  LM, и пусть K – множество ключей, связанное с мно-

жествами L и M соотношениями:  

1. K  L M,  

2. LK и MK. 

Это означает, что множество ключей K состоит из ключей, входящих в 

множества L и M, причем в K содержится, по крайней мере, по одному ключу 

из каждого множества. Тогда, по крайней мере, один файл XKL  или YKM  не-

строго упорядочен по множеству ключей. Если M  L и L  M, то файлы XKL  

и YKM  нестрого упорядочены. Слияние файлов производится по множеству 

ключей K. Пусть K* – фиксированный экземпляр множества  ключей K, а  

(KL)* и (KM)* – такие фиксированные экземпляры множеств ключей (KL) 

и (KM), что значения одноименных ключей в них совпадают. Тогда можно 

задать вычисление класса эквивалентности файла ZK по следующему правилу: 

* * * * *

*

* *

( ) ( ) ( ) ( )

( ) ( )

, если , или ,

( , ), в противном случае.

K K L K L K M K M

K

K L K M

X Y
Z

f X Y

   

 

   
 


 

Функция ),( ** )()( MKLK
YXf


 определена на классах эквивалентности 

*)( LK
X


 и  *)( MK

Y


, а ее значение – класс эквивалентности *K
Z , состоящий из 

элементов, каждый из которых вычисляется из пары элементов, принадлежа-

щей декартову произведению .** )()( MKLK
YX


  

Если функция ),( ** )()( MKLK
YXf


 реализует групповую операцию, то опе-

рация слияния нестрого упорядоченных файлов включает в себя и операцию 

сжатия файла ZK, в результате которой получается файл ZK' (множество ключей 

K' есть подмножество множества ключей K, то есть K'K).  
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Определенные таким образом операции над файлами позволяют постро-

ить двухосновную алгебраическую систему или АТД, называемый абстрактной 

алгебраической файл-машиной. 

Пусть F  – множество всех возможных файлов. Тогда предложенные 

унарные и бинарные операции можно рассматривать как отображения F → F  и 

F  F →F . Кроме того, для работы с файлами необходим предикат eof : F → 

{0, 1}.   

Если R  – множество всех записей (всех возможных типов), то операции 

get :F → R  и put : F  R →F  – имеющиеся во всех языках программирования, 

операции чтения и записи файла. Кроме того, в задачах обработки файлов 

определяются аддитивная и мультипликативная операции +,  :R  R →R  и 

предикаты pred, eq, succ:R  R → {0, 1}, которые задают на множестве записей 

бинарные отношения предшествования, эквивалентности и следования за.   

Таким образом, построена абстрактная алгебраическая файл-машина  

Fam=<F  , R ; sort, sel, quant, ms, mns, get, put, +, ; eof, pred, eq, succ>. 

Реализация такого абстрактного типа данных достаточно проста во всех 

современных языках программирования. 

2.3. Многомерно-матричная модель данных 

2.3.1. Задачи многомерно-матричного представления дан-
ных 

Рассматриваемая далее многомерно-матричная модель данных была пред-

ложена в [73, 74] с целью решения задач повышения эффективности обработки 

файлов.  

В этом состоит ее существенное отличие от модели, предложенной в [135-

136], которая была ориентирована на пользователя-аналитика, в предположе-

нии, что "он видит мир предприятия многомерным по своей природе". По-

скольку, предполагалось, что пользователь должен выполнять аналитическую 

обработку в реальном времени, эта модель получила название   OLAP (online 

analytical processing). По мнению автора, Э. Ф. Кодда, из многомерных пред-
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ставлений пользователя следует, что "OLAP-модель должна быть многомерной 

в своей основе. Многомерная концептуальная схема или пользовательское 

представление облегчают моделирование и анализ так же, впрочем, как и вы-

числения". На основе OLAP-модели была разработана OLAP-технология обра-

ботки данных, заключающаяся в подготовке суммарной (агрегированной) ин-

формации на основе больших массивов данных, структурированных по много-

мерному принципу. OLAP-технология реализована во многих современных 

прикладных системах, от самых простых – процессоров электронных таблиц, 

подобных MS Excel, до больших и высокопроизводительных СУБД, таких как 

MSSQL-server и Oracle. Для реализации вычислений разработаны специальные 

языки, такие как MDX [137]. Упрощенно, решение задачи в OLAP-технологии 

состоит из двух шагов: создания многомерной структуры, которая называется 

гиперкубом, OLAP-кубом или просто кубом, и выполнения унарных операций, 

реализующих запросы к этой структуре. Поскольку объемы обрабатываемых 

данных настолько велики, что этот класс задач можно отнести к направлению 

Big Data, возникает потребность в оптимизации хранения и обработки данных. 

Часто на практике оптимизация одного шага приводит к ухудшению характе-

ристик другого. Это происходит потому, что: 

1. затруднительно эффективно построить многомерную структуру даже из 

данных, размещенных в аналогичных структурах, если не использовать специ-

альных алгебраических операций над этими структурами; 

2.  большинство современных методов оптимизации процессов обработки 

данных в различных моделях данных основаны на эвристическом подходе, что 

не позволяет эффективно использовать специфические свойства многомерных 

структур данных и операций над ними [65, 138].  

Решение этих проблем возможно на основе использования алгебры много-

мерных матриц [58], свойства которой позволяют решать перечисленные про-

блемы. Операции алгебры многомерных матриц достаточно просто реализуют-

ся на параллельных вычислительных комплексах с различными архитектурами. 

Одно из важнейших свойств алгебры многомерных матриц – возможность по-
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строения оптимальных процессов обработки данных на основе использования 

формальных методов оптимизации, например, динамического программирова-

ния. Поэтому в работе алгебра многомерных матриц используется для решения 

задач повышения эффективности процессов обработки данных на современных 

вычислительных комплексах. 

2.3.2. Алгебра многомерных матриц 

Обычно, под матрицами понимают структурированные совокупности эле-

ментов простых типов. Далее рассматриваются многомерные матрицы, элемен-

ты которых могут принадлежать произвольным типам данных. Главное и един-

ственное требование состоит в том, что на этих типах должны быть определе-

ны две алгебраические операции: аддитивная и мультипликативная. Это озна-

чает, что типы элементов матриц должны быть, по крайней мере, группоидами 

по каждой из определенных на них операции.  

Такой подход позволяет использовать для конструирования матриц, в том 

числе и такие стандартные структурные типы как векторы и матрицы, хотя ис-

пользование многомерных матриц лишает подобные конструкции практиче-

ского смысла. В принципе, в качестве типов элементов матриц могут быть ис-

пользованы различные АТД. Для достижения поставленных в работе целей 

особенно важно, что для построения многомерно-матричной модели данных 

могут быть использованы сконструированные в соответствии с указанным тре-

бованием АТД для различных типов кортежей. 

Определение 2.23. Пусть 1,..., pi i  – совокупность индексов, принимающих 

значения  от 1 до )...,,1( pn  соответственно. Тогда p-мерная матрица – это 

совокупность }{ ...1 piiaT  элементов некоторого типа, над которым определены 

аддитивная и мультипликативная операции. 

Таким  образом,  p-мерная  матрица содержит n np1 ...  элементов. Для 

многомерных матриц используется обозначение A ai ip
1...

. Сигнатура алгебры 

многомерных матриц содержит унарные операции транспонирования, сечения, 
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свертки и бинарные операции сложения и умножения. Далее приводятся опре-

деления этих операций. 

Транспонирование. Матрица 
p

iiaA
 

1

' , элементы которой связаны с 

элементами матрицы 
piiaA 1

  соотношением 
pp

iiii aa ...... 1
1




, где )...,,(
1 p

ii  – 

какая-нибудь перестановка индексов )...,,( 1 pii , называется транспонированной 

относительно матрицы A соответственно этой перестановке. 

Визуально p-мерная матрица может быть представлена в виде p-мерного 

параллелепипеда или гиперкуба. Следовательно, операцию транспонирования 

можно интерпретировать как вращение этого параллелепипеда или гиперкуба. 

Сечение. Возможны два варианта этой операции. В первом размерность 

матрицы уменьшается, а во втором остается прежней.  

Простое m-кратное сечение. Пусть в m индексах (1  m  p) совокупности 

индексов )...,,( 1 pii  матрицы зафиксировано по одному значению. Для просто-

ты и без ограничения общности можно считать, что это индексы )...,,( 1 mii . 

)( mp  -мерная матрица )...,,,...,,( 1
00

1 pmm iiii
A


, состоящая только из тех элементов 

матрицы  
piiaA 1

 , в которых индексы )...,,( 1 mii имеют единственное фик-

сированное значение )...,,( 00

1 mii , называется простым m-кратным сечением 

матрицы А ориентации )...,,( 1 mii .  

Пример 2.9. Пусть 
4321 iiiiaA   – четырехмерная матрица, все индексы ко-

торой принимают значения 1, 2. Если зафиксировать значения двух индексов 

i1=2 и i2=1, то получается двукратное простое сечение матрицы A ориентации 

(i1, i2), которое представляет собой двумерную матрицу вида:













1
2

2

1

21222121

21122111
),( 21 i

i
aa

aa
A ii . 
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Если зафиксировать значение одного индекса i2=2, то получается одно-

кратное  простое сечение матрицы A ориентации (i2), которое представляет со-

бой трехмерную матрицу вида: )2(

,

2

22222221

22122211

12221221

1212121131

4

)( 2




 i

aa

aa

aa

aaii

i

A i . 

Сечение с фиксированными значениями индексов. Пусть в множествах 

значений индексов )...,,( 1 mii  (1mp) совокупности индексов )...,,( 1 pii  матри-

цы 
piiaA 1

 зафиксировано более чем по одному значению. Это означает, что 

любой индекс ik (1k m) принимает tk (1tknk ) значений из множества (1, …, 

nk). p-мерная матрица )...,,( 1 miiA , состоящая только из тех элементов матрицы  

piiaA 1
 , в которых индексы )...,,( 1 mii принимают соответственно t1, …, tk 

значений, называется m-кратным сечением ориентации )...,,( 1 mii с фиксиро-

ванными значениями индексов матрицы А. 

Очевидно, что m-кратное сечение матрицы А можно рассматривать как 

матрицу, построенную из простых m-кратных сечений. 

Пример 2.10. Пусть 
4321 iiiiaA   – четырехмерная матрица, у которой все 

индексы принимают значения (1, 2, 3). С помощью двукратных сечений эту 

матрицу можно представить в виде:  

333333323331

332333223321

331333123311

233323322331

232323222321

231323122311

133313321331

132313221321

131313121311

323332323231

322332223221

321332123211

223322322231

222322222221

221322122211

123312321231

122312221221

121312121211

313331323131

312331223121

311331123111

113321322131

212321222121

211321122111

113311321131

112311221121

111311121111

2

1

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

i

i

A




. 
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Матрица A представляет собой четырехмерный гиперкуб. Если зафикси-

ровать значения индексов i1=(1, 2) и i2=(1, 3) то в результате выполнения опе-

рации сечения матрица A преобразуется в четырехмерный параллелепипед ви-

да: 1 2

2

1111 1113 1311 1313

1

1113 1123 1321 1323

1

( , ) 1131 1133 1331 1333
1

2111 2113 2311 2313

2121 2123 2321 2323

2131 1133 2331 2333

(1, 2)

(2, 3)
i i

i

a a a a
i

a a a a
i

A a a a a
i

a a a a

a a a a

a a a a



  
  

  . 

Возможен и комбинированный вариант этой операции, когда по части ин-

дексов выполняется простое сечение, а по части – сечение с фиксированным 

набором значений индексов. В этом случае размерность матрицы-результата 

меньше размерности матрицы-операнда на число индексов, по которым произ-

водится простое сечение. 

Свертка. Пусть дано разбиение совокупности индексов матрицы 
piiaA ...1



на совокупности l=(l1,…,l) и с=(с1,…, с), += p. Матрица laA 
, элементы 

которой связаны с элементами матрицы 
lcaA  соотношением 

)(c

lcl aa , назы-

вается -свернутой матрицей и обозначается 
)(c

lcaA
. Индексы разбиения 

l=(l1,…,l) называются свободными индексами, а индексы разбиения с=(с1,…, 

с)– кэлиевыми индексами. 

Пример 2.11. Пусть 
4321 iiiiaA   – четырехмерная матрица, все индексы ко-

торой принимают значения 1, 2. Если     2, l1  i1, l2  i2 – свободные ин-
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дексы и c1  i3, c2  i4 – кэлиевы индексы, то матрица 
)(

2

c

lcaA  имеет следу-

ющий вид: .2

1

2

1

22

2

1

2

1

21

2

1

2

1

12

2

1

2

1

11

2

3 4

43

3 4

43

3 4

43

3 4

43





  

  


i i

ii

i i

ii

i i

ii

i i

ii

aa

aa

A  

Сложение. Суммой двух p-мерных матриц A ai ip
1...

 и 
pii

bB
...1

  с одина-

ковыми наборами индексов i ip1, ...,  называется p-мерная матрица C ci ip
1...

 с 

тем же набором индексов, элементы которой вычисляются по формуле 

c a bi i i i i ip p p1 1 1... ... ...  . 

Умножение. Пусть матрицы A ai ip
1...

 и B bi iq
1...

, p и q-мерные соот-

ветственно. Совокупности индексов этих матриц pii ,...,1  и qii ,...,1 разбиваются 

на четыре группы, содержащие соответственно , ,  и  индексов (, , ,  

0). Причем ++=p, а ++=q. Для полученных групп индексов использу-

ются обозначения: l l l ( ,..., )1  , s s s ( ,..., )1  , c c c ( , ..., )1   и 

m m m ( ,..., )1  . Тогда матрицы A и B можно представить в виде в виде 

A alsc  и B bscm . Индексы групп s и c в матрицах A и B полностью сов-

падают. Так же как в операции свертки, индексы разбиения c называются кэли-

евыми. Индексы разбиения s называются скоттовыми, а индексы разбиения m, 

так же как и индексы разбиения l, – свободными. 

Матрица lsmcC  , элементы которой вычисляются по формуле 

scmlsc

c

lsm bac 
)(

, называется произведением матриц A и B.  

Алгоритм реализации этой операции состоит в следующем:  

 перемножаются все пары элементов, у которых полностью совпадают значе-

ния индексов групп s и c,  
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 суммируются все произведения с одинаковыми значениями индексов группы 

c. 

Произведение многомерных матриц называется ( -свернутым произве-

дением и обозначается )(, BA
. Из определения ( -свернутого произве-

дения следует, что для любой пары многомерных матриц можно построить 

много различных произведений, подбирая различные значения  и . 

Число всех возможных ( -свернутых произведений p-мерной матрицы 

A на q-мерную матрицу B вычисляется по формуле 


 





),min(

0

,
)!(!!

!

)!(!!

!qp

qp
q

q

p

p
N

 
. 

Пример 2.12. Пример демонстрирует различные варианты ( сверну-

того произведения двух трехмерных матриц. Пусть дан набор индексов i1, i2,i3, 

i4, размерности которых n1, n2,n3, n42. Тогда трехмерные матрицы 

321 iiiaA   и 
432 iiibB  имеют вид: 





)2,1(1

222221

212211

112121

112111

i

aa

aa

aa

aa
A  и 





)2,1(2

222221

212211

112121

112111

i

bb

bb

bb

bb
B . 

Среди возможных ( свернутых произведений матриц A и B будут 

следующие:  

 Четырехмерная матрица 
4321

32 ,0,2 )( iiii

ii
cBAC  , элементы  которой вычис-

ляются по формуле 
4323214321 iiiiiiiiii bac   для всех совпадающих значений индек-

сов i2, i3. Эта матрица имеет вид: .

222222221222

22122212211221

222221221122

212121211121

122212121212

112211111211

122112121112

112111111111

baba

baba

baba

baba

baba

baba

baba

baba

C

















  В 

этом случае умножение матриц производится без свертки, так как отсутствуют 

кэлиевы индексы.  
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 Трехмерная матрица 
431

3

2
)(1,1

iii

i

i cBAC  , элементы которой вычисляются 

по формуле 



2

12

432321431

i

iiiiiiiii bac . Эта матрица имеет вид: 

.
222222122212221222121212

212221112211211221111211

221122122112221122121112

212121112111211121111111

babababa

babababa

babababa

babababa
C








  

Трехмерная матрица получается потому, что кэлиев индекс i2 при свертке уда-

ляется из общей для обеих матриц совокупности индексов. 

 

 Двумерная матрица 
4132 ,

2,0 )( iiii cBAC  , элементы которой вычисляются 

по формуле: .
2

1

2

12 3

43232141 
 


i i

iiiiiiii bac  Эта матрица имеет вид: 

.
222222221222122212121212

212221211221112211111211

221122221122112111121112

212121211121112111111111

babababa

babababa

babababa

babababa
C








  

Определенные таким образом операции над многомерными матрицами 

позволяют построить, как и в случае файлов, двухосновную алгебраическую 

систему или АТД, называемый абстрактной алгебраической многомерно-

матричной машиной. Особенность построения операций над элементами мат-

риц состоит в том, что в матрицах явно присутствуют нейтральные элементы 

типа. Поэтому эти операции строятся на основе определенной в 2.1.4 системы 

функций ),...,,,...,(
1111 ...,... lklk

yyxxf j

 . 

Пусть M  – множество многомерных матриц, аE  – множество их элемен-

тов, определяемое для каждой конкретной предметной области. Далее приво-

дится перечень операций, входящих в сигнатуру операций этой алгебраической 

системы. Унарные операции задают отображение M → M  , а бинарные – отоб-

ражение M  M →M .  

Операции структуры 

T  транспонирование 

S  сечение 
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C  свертка 

+  сложение 

  ( -свернутое произведение 

Операции типа (над элементами структуры) 

  аддитивная 

  мультипликативная 

 

В сигнатурах предикатов  включает следующие предикаты: 

 z: M  → {0, 1}; "матрица X содержит только нейтральные элементы типа; 

 ac: M   M → {0, 1}; матрицы X и Y совместимы по сложению; 

 mc: M   M → {0, 1}; матрицы X и Y совместимы по умножению. 

Кроме того, в тех случаях, когда элементы матриц – кортежи, на множе-

стве  элементов матриц (типе) задаются предикаты pred, eq, succ:E  E → {0, 

1}, которые задают бинарные отношения предшествования, эквивалентности 

и следования за.   

Тогда абстрактная многомерно-матричная машина задается следующим 

образом: 

 Mam=<M , E; T, S, C, +, , , ; z, ac, mc, pred, eq, succ>. 

Далее в работе рассмотрены методы построения абстрактной многомерно-

матричной машины, основанные на обобщении параллельных алгоритмов, реа-

лизующих операции над матрицами на многомерные матрицы.  

 

2.4. Соответствие моделей данных  

В этом параграфе устанавливается гомоморфное соответствие между 

предложенными промежуточными моделями данных и одной из тех моделей 

данных, которые используются в практике разработки промышленных СУБД и 

конкретных пользовательских БД.   
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2.4.1. Соответствие теоретико-множественной и многомер-
но-матричной моделей  

Соответствие операций теоретико-множественной и многомерно-

матричной моделей может быть установлено так, как это показано в таблице 

2.2. 

Таблица 2.2. Соответствие алгебраических операций в теоретико-

множественной и многомерно-матричной моделях данных 

Теоретико-

множественная 

модель (алгебра 

файлов) 

Многомерно-

матричная модель (ал-

гебра многомерных 

матриц) 

Тип  

операции 

сортировка транспонирование унарная 

выборка m-кратное сечение унарная 

сжатие свертка унарная 

слияние строго 

упорядоченных 

файлов 

сложение бинарная 

слияние нестрого 

упорядоченных 

файлов 

(, )-свернутое произ-

ведение 

бинарная 

Таким образом, верно следующее утверждение. 

Утверждение 2.2. Сигнатуры операций файловой и многомерно-

матричной моделей данных находятся во взаимно однозначном соответствии. 

Поскольку рассматривается гомоморфное соответствие алгебр структур 

данных: таблиц, файлов, многомерных матриц, а не типов их элементов, в 

дальнейшем для упрощения доказательств, но без ограничения общности, ис-

пользуется алгебра логических многомерных матриц.  

Определение 2.2. Многомерная матрица 
piiaA 1

  называется логической 

многомерной матрицей (ЛММ), если ее элементы принадлежат множеству {0, 

1} и над ними определены аддитивная операция дизъюнкции и мультиплика-

тивная операция конъюнкции. 

Операции транспонирования и сечения не зависят от типа элементов мат-

риц, и поэтому их определения остаются без изменений для ЛММ. В определе-
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ниях остальных операций изменяются формулы, по которым вычисляются зна-

чения элементов ЛММ результата операции. 

1. Свертка: если AB  , то lc
c

l ab
)(
 , где l – совокупность свободных, а c – кэ-

лиевых индексов. 

2. Сложение: если C=A+B, то 
ppp iiiiii bac ......... 111

 , где – бинарная логическая опе-

рация, которая трактуется как аддитивная операция.  

3. (, )-свернутое произведение: если )(, BAC  
, то .

)(
scmlsc

c
lsm bac   

Утверждение 2.3. Каждому файлу соответствует единственная ЛММ. 

Пусть XK – файл, строго упорядоченный по множеству ключей 

}....,,{ 1 pKKK  Поскольку множества значений ключей конечные,  то можно 

пронумеровать все значения каждого ключа, и те самым поставить в соответ-

ствие каждому ключу K индекс i = (1, …, n). Тогда каждому экземпляру 

множества ключей }...,,{ **

1

*

pKKK   соответствует один и только один набор 

значений индексов )....,,( 00

1 pii  Это означает, что между совокупностью всех эк-

земпляров множества ключей K файла XK и совокупностью всех наборов значе-

ний индексов (i1, …, ip) установлено взаимно однозначное соответствие. Пусть 

экземпляру множества ключей }...,,{ **

1

*

pKKK   соответствует набор значений 

индексов )....,,( 00

1 pii  Тогда классу эквивалентности *K
X можно поставить в соот-

ветствие элемент ЛММ 
piixX ...1

 , значение которого определяется по форму-

ле: 










.если,1

,если,0

*

*

0...0
1 K

K

p
ii X

X
x  

Так как файл XK строго упорядочен, каждый его класс эквивалентности 

содержит либо единственную определенную запись, либо универсальную не-

определенную запись. Следовательно, при таком методе построения ЛММ 

каждому строго упорядоченному файлу соответствует единственная ЛММ. Од-



90 

 

нако, возможна ситуация, при которой нескольким различным файлам, содер-

жащим данные из различных предметных областей, будет соответствовать одна 

и та же ЛММ. То есть построенное отображение множества строго упорядо-

ченных файлов на множество ЛММ – однозначное. 

В следующих трех утверждениях предполагается, что X – множество 

строго упорядоченных файлов, M – множество ЛММ,  : X  M – однозначное 

отображение множества строго упорядоченных файлов на множество ЛММ.  

Утверждение 2.4. Если XK – файл, строго упорядоченный по множеству 

ключей },...,,{ 1 pKKK  а 
piiaA 1

  – соответствующая ему ЛММ 

),)(( AX K   и 
















pp
ii

ii

KK

KK pp

 ...,,

...,,
,

...,,

...,,

11

11  одинаковые перестановки ключей файла и 

индексов ЛММ, то '))(( AXsort K  , при условии, что сортировка и транспони-

рование производятся в соответствии с заданными перестановками ключей и 

индексов. 

Это утверждение непосредственно следует из утверждения 2.3 и опреде-

лений операций сортировки файла и транспонирования многомерной матрицы. 

Утверждение 2.5. Пусть XK – файл, строго упорядоченный по множеству 

ключей },...,,{ 1 pKKK 
piiaA 1

  – соответствующая ему ЛММ ))(( AX K  , 

и предикат (K) фиксирует значения ключей K1, …, Km  K (m<p), которым со-

ответствуют индексы )...,,( 1 mii  ЛММ A. Тогда файлу, полученному из файла 

XK в результате применения к нему операции выборки в соответствии с преди-

катом (K), соответствует единственная ЛММ )...,,( 1 miiA , полученная из матрицы 

A m-кратным сечением ориентации )...,,( 1 mii , то есть 

)...,,( 1
))(,((

miiK AKXsel  . 

Достаточно рассмотреть справедливость этого утверждения для случая, 

когда предикат (K) фиксирует единственный экземпляр каждого из ключей K1, 

…, Km . Тогда каждому фиксированному экземпляру 
*

jK  ключа Kj соответствует 
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единственное значение 
*

ji  индекса  ij (j=1, …, m), и существует простое m-

кратное сечение 


















*

*

11

...,,
1

)...,,
1

( ...

mm

p
ii

m
ii

ii

ii
aA  ЛММ 

p
iiaA 

1
 . Если *K

X  – класс 

эквивалентности файла XK, такой, что в экземпляре множества ключей K* эк-

земпляры ключей 
**

1 ...,, mKK  зафиксированы предикатом (K), а экземпляры 

остальных ключей – произвольным образом, то этому классу эквивалентности 

соответствует элемент ЛММ A 
* *

* * 0 0... ...
1 1

0, если ,

1, в противном случае.

K K

i i i i
m m p

X
a




 


 

Но этот элемент будет также принадлежать простому m-кратному сече-

нию )...,,
1

(
m

iiA . Следовательно, всем выбранным классам эквивалентности файла 

XK будут соответствовать единственные элементы этого сечения ЛММ A. Вме-

сте с тем,  m-кратное сечение можно сконструировать из соответствующих про-

стых m-кратных сечений. Если предикат (K) фиксирует не менее одного эк-

земпляра каждого из ключей K1, …, Km , то можно получить все необходимые 

простые сечения, а затем построить из них необходимую ЛММ, используя опе-

рацию сложения ЛММ.  Из сказанного следует справедливость утверждения 

2.5. 

Утверждение 2.6. Пусть XK – файл, строго упорядоченный по множеству 

ключей },...,,{ 1 pKKK 
piiaA 1

  – соответствующая ему ЛММ ))(( AX K  , 

)(},...,,{ 1 pmKKM m  – подмножество множества ключей M, по которому 

файл MX  нестрого упорядочен. Тогда файлу )( MM XquantY   соответствует 

единственная свертка ЛММ A, то есть AXquant M

 ))(( . 

В соответствии с определением операции сжатия классы эквивалентности 

строго упорядоченного файла )( MXquant получаются по формуле )( ** MM
XfY  , 

где )( *M
Xf  – функция, реализующая групповую операцию на каждом классе 

эквивалентности, соответствующем экземпляру множества ключей M*. То есть, 
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совокупность записей файла XK, в которых ключи mKK ...,,1   имеют одни и те же 

значения, преобразуется в единственную запись файла YM. Каждой записи из 

этой совокупности соответствует элемент ЛММ A 10...0
1

*...*
1


 p

i
m

i
m

ii
a . Тогда 

* * * *... ... ...
1 1 1

( , ..., )
1

1
i i i i i i

m m m p
i i
m p

a a




  . Следовательно, AXquant M

 ))(( . 

Утверждение 2.7. Пусть XK и YK – файлы, строго упорядоченные по мно-

жеству ключей },...,,{ 1 pKKK 
piiaA 1

  и 
piibB 1

  – соответствующие 

им ЛММ ))(и )(( BYAX KK   . Тогда результату операции слияния строго 

упорядоченных файлов XK и YK соответствует единственная ЛММ 
piicC 1

  

такая, что C=A+B. 

В зависимости от решаемой задачи, для формирования классов эквива-

лентности (записей) файла – результата слияния строго упорядоченных файлов 

XK и YK строятся функции, порождающие класс эквивалентности, содержащий 

либо реальную, либо универсальную неопределенную запись. Аналогично, в 

качестве аддитивной операции над элементами ЛММ A и B выбирается одна из 

шестнадцати логических операций, которая формирует элемент ЛММ резуль-

тата на основе класса эквивалентности файла-результата и по правилам форми-

рования ЛММ – образа файла при отображении .  

Таким образом, файлу – результату операции слияния строго упорядо-

ченных файлов XK и YK соответствует единственная ЛММ, равная сумме ЛММ 

A и B с аддитивной операцией   над элементами матриц. То есть, 

BAYXms KK )()),((  . Знак операции )(  читается как операция сложения 

ЛММ с аддитивной операцией   над их элементами. 

Пример 2.13. Операциям слияния строго упорядоченных файлов, которые 

реализуют теоретико-множественные операции объединения и пересечения 

(пример 2.7), соответствуют операции сложения многомерных матриц с адди-

тивными операциями над элементами: дизъюнкция () и конъюнкция (). Для 
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операции, реализующей симметрическую разность в качестве аддитивной опе-

рации над элементами матриц используется операция "исключающее или" )( . 

Для двух квадратных ЛММ (33) это выглядит так: 

A B BA )(  BA )(  BA )(  

101
010
011

 
100
110
010

 
101
110
011

 
000
010
010

 
101
100
001

 

Утверждение 2.8. Пусть XL  и YM  – файлы, строго упорядоченные по мно-

жествам ключей },...,,{ 1 pLLL  и }...,,{ 1 qMMM   причем выполняется усло-

вие  L  M , и пусть )(},...,,{ 1 qprKKK r  – множество ключей, связан-

ное с множествами L и M соотношениями: K  LM, KL,  

KM  (файлы XKL и YKM  нестрого упорядочены по своим множествам 

ключей). 
riiaA 1

  и 
riibB 1

  – соответствующие файлам XKL и YKM ЛММ 

))(и )(( BYAX MKLK    . Тогда файлу ZK – результату операции слияния 

нестрого упорядоченных по множеству ключей K файлов XK  и YK, соответству-

ет единственная многомерная матрица )(,

1
BAcC

rii  
 .  

В соответствии с определением операции слияния нестрого упорядочен-

ных файлов, множество ключей K состоит из трех подмножеств: 

1. L' – ключи, принадлежащие только множеству ключей L; 

2. M ' – ключи, принадлежащие только множеству ключей M; 

3. T – ключи, принадлежащие обоим множествам ключей L и M. 

При построении операции )(0, BA
 можно считать, что ключам под-

множеств L' и M ' соответствуют свободные индексы ЛММ A и B (индексы раз-

биений l и m), а ключам подмножества T – скоттовы индексы ЛММ A и B (ин-

дексы разбиения s). Класс эквивалентности ** KK
Z  только в том случае, ко-

гда соответствующие ему классы эквивалентности ** )'()'( TLTL
X


  и 

** )'()'( TMTM
Y


 . Тогда элементы ЛММ A и B, соответствующие этим классам 
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эквивалентности, имеют значение 1. А значит, результат конъюнкции этих эле-

ментов также будет иметь значение 1. То есть соответствующий этому элемен-

ту класс эквивалентности ** KK
Z  . Если функция ),( ** )()( MKLK

YXf


 реализу-

ет групповую операцию, то, как показано в параграфе 2.2.3, операция слияния 

нестрого упорядоченных файлов включает в себя и операцию сжатия файла ZK, 

в результате которой получается файл ZK' (множество ключей K' есть подмно-

жество множества ключей K, то есть K'K). В этом случае, части ключей под-

множества T соответствуют кэлиевы индексы ЛММ A и B (индексы разбиения 

c), и операции слияния нестрого упорядоченных файлов XL  и YM  соответствует 

операция (, )-свернутого произведения соответствующих им матриц. То есть, 

)()),(( , BAYXmns MKLK 

 . 

Утверждения 2.2 – 2.8 позволяют сделать вывод о том, что теоретико-

множественная и многомерно-матричная модели данных гомоморфны. 

2.4.2. Соответствие промежуточных моделей данных высо-
коуровневым моделям  

Выбор сделан в пользу реляционной модели SQL, поскольку присущий ей 

язык манипулирования данными – непроцедурный язык SQL ориентирован на 

операции с данными, представленными в виде логически взаимосвязанных со-

вокупностей таблиц. То есть предложения этого языка ориентированы в боль-

шей степени на конечный результат обработки данных, чем на процедуру этой 

обработки [70-72]. Таким образом, их суть в наибольшей степени соответству-

ют сути алгебраических выражений в алгебрах файлов и многомерных матриц. 

Кроме того, набор операций реляционной модели SQL достаточно полон для 

решения задач во многих предметных областях. Остальные современные моде-

ли данных, либо имеют не такие полные наборы операций, что приводит к 

необходимости разработки процедур, реализующих недостающие операции, 

либо, как в объектно-ориентированных моделях [137-138], наборы операций, 

дополненные средствами разработки пользовательских АТД. 
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Выбор реляционной модели SQL обусловлен также тем, что промежуточ-

ные файловая и многомерно-матричная модели имеют технологическую 

направленность. Без этой направленности трудно решить проблемы, связанные 

с распараллеливанием запросов в целом и составляющих эти запросы опера-

ций. Одно из требований к данным в этих двух моделях состоит в возможности 

их упорядочивания по ключам (индексам многомерных матриц). В отличие от 

классической реляционной модели реляционная модель SQL допускает воз-

можность упорядочивания данных благодаря наличию в операторе SELECT 

команды ORDER BY. Хотя при записи выражения запроса упорядоченность 

входных данных не требуется и не учитывается, в силу непроцедурности языка 

SQL, в технологических целях, можно считать, что операция сортировки в ре-

ляционной модели SQL определена. Несмотря на то, что это предположение 

ослабляет модель, главное ее свойство – ориентированность на конечный ре-

зультат сохраняется. А в промежуточных моделях, которые являются аб-

страктными алгебраическими машинами и в которых операции над структурой 

отделены от операций над ее элементами, это свойство усиливается. Сделанное 

допущение позволит упростить доказательство соответствия моделей данных. 

Как было сказано в параграфе 2.1, для установления соответствия между 

двумя алгебрами требуется, возможность установления такого взаимно-

однозначного соответствия между сигнатурами  и ', при котором любая 

операция F   и соответствующая ей операция F'  ' будут n-арными с од-

ним и тем же n. 

Таблица 2.3. Соответствие алгебраических операций в реляционной SQL и тео-

ретико-множественной моделях данных 

Реляционная модель SQL Теоретико-множественная 

модель (алгебра файлов) 

Тип  

операции 

SELECT … ORDER BY … сортировка унарная 

SELECT …WHERE …  выборка унарная 

SELECT … GROUP BY сжатие унарная 

Теоретико-множественные 

операции 

слияние строго  

упорядоченных файлов 

бинарная 
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SELECT … FROM 

JOIN(…) 

слияние нестрого  

упорядоченных файлов 

бинарная 

Под операциями в реляционной модели SQL будут пониматься запросы, 

схемы которых представлены в первом столбце таблицы 2.3. Соответствие 

операций реляционной модели SQL и теоретико-множественной модели может 

быть установлено так, как это показано в таблице 2.3.  

Примеры различных видов операции слияния строго упорядоченных фай-

лов рассмотрены в разделе 2.2.3. Далее приводятся примеры реализации теоре-

тико-множественных операций в реляционной модели SQL.  

Объединение:  

SELECT R.A1, …, R.An FROM R UNION SELECT S.A1, …, S.An FROM S; 

Пересечение: 

SELECT R.A1, …, R.An FROM R, S WHERE R.A1=S.A1 AND … AND R.An=S.An; 

Разность: 

SELECT R.A1, …, R.An FROM R   WHERE NOT EXIST  

(SELECT S.A1, …, S.An FROM S WHERE R.A1=S.A1 AND … AND R.An=S.An); 

Таким образом, верно следующее утверждение. 

Утверждение 2.9. Сигнатуры операций реляционной SQL, файловой и 

многомерно-матричной моделей данных находятся во взаимно-однозначном 

соответствии. 

Следовательно, эти модели данных можно рассматривать как однотипные 

универсальные алгебраические системы. 

Кроме того, в дальнейшем реляционная модель SQL рассматривается, в 

предположении, что все таблицы (отношения), находятся в третьей нормальной 

форме. Считается, что третья нормальная форма схем отношений достаточна в 

большинстве случаев, и приведением к третьей нормальной форме процесс 

проектирования реляционной базы данных обычно заканчивается [72]. Таблица 

в третьей нормальной форме, как и строго упорядоченный файл, для каждого 

определенного значения ключа содержит единственную однозначно опреде-

ленную строку, неключевые атрибуты которой никаким образом не могут быть 
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определены посредством других атрибутов этой таблицы. Следовательно, мож-

но утверждать, что каждой таблице, находящейся в третьей нормальной форме, 

соответствует (с точностью до порядка следования записей) единственный 

строго упорядоченный файл.  

Определения операций над таблицами в реляционной модели SQL [73, 

75] аналогичны определениям операций в теоретико-множественной модели. 

Поэтому можно, не прибегая к сложным формальным доказательствам, счи-

тать, что если для соответствующих друг другу реляционной SQL операции и 

операции алгебры файлов выбраны соответствующие друг другу таблицы и 

файлы операнды, то и результаты этих операций также будут соответствовать 

друг другу. При таком построении моделей, с учетом соответствия операций, 

можно считать, что между реляционной моделью SQL и теоретико-

множественной моделью можно установить даже изоморфное соответствие. Из 

этого следует и гомоморфизм алгебры многомерных матриц и реляционной мо-

дели SQL. 

2.5. Аксиоматический подход к формализации моделей 
данных для МОД 

В этом разделе рассматривается аксиоматический метод формализации 

массовой обработки данных (МОД). Аксиоматическому методу для формализа-

ции уделено достаточно много внимания исследователей, например, в работах 

[139-142]. 

Аксиоматический метод позволяет составлять тексты, формализация ко-

торых легко достижима [143, 144]. С инженерной точки зрения, а программи-

рование – это вид инженерной деятельности, использование формализованных 

текстов открывает большие возможности. 

1. Первоначально решение однотипных задач осуществляется в разных 

организациях с помощью искусственных приемов, которые в процессе обуче-

ния передаются от одного программиста другому по принципу «делай как я». 

Формализация выводит эту деятельность на технический уровень, когда для 

решения проблемы достаточно определить ее тип, чтобы использовать фор-
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мально описанные стандартные алгоритмы (или реализованные в программных 

библиотеках). 

2. Свойства, присущие одной модели общей аксиоматической теории, мо-

гут быть использованы для изучения решения аналогичных задач в другой мо-

дели. Например, в файлово-ориентированной (теоретико-множественной) мо-

дели данных было дано строгое определение файла и строгие определения опе-

раций над файлами. Это позволило установить соответствие между этой моде-

лью и многомерной матричной моделью данных, что, в свою очередь, позволи-

ло сформулировать принцип симметричного горизонтального распределения 

для параллельной реализации операции объединения нестрого упорядоченных 

файлов. Соответствие файловой и реляционной моделей данных обеспечило 

применение этого принципа для параллельной реализации операции реляцион-

ного объединения [145-147]. Это стало возможным благодаря тому, что все три 

модели данных являются моделями одной аксиоматической теории, которая 

рассматривается в статье. 

 2.5.1. Соответствие аксиоматического и алгебраического 
подходов к формализации МОД 

С инженерной точки зрения аксиоматический метод – не что иное, как 

способ обобщения и формального описания практических (искусственных) ме-

тодов для решения проблем МОД. Основы для применения этого подхода были 

заложены в [62, 63]. В этих работах впервые реализована формализация обра-

ботки данных на основе алгебраического метода. Как аксиоматический, так и 

алгебраический методы используются для описания объектов предметной обла-

сти и операций преобразования одного объекта в другой. В случае МОД объек-

тами являются агрегаты данных: отношения (таблицы), файлы, многомерные 

матрицы и операции над ними: выбор (раздел), различные операции слияния 

(сложение и умножение матриц). Основное отличие аксиоматического метода 

от алгебраического метода заключается в следующем: 

Аксиоматический метод используется для формализации операции 

преобразования объектов путем описания объекта-результата преобразования 
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исходных объектов. То есть он предоставляет описание объектов и операций их 

преобразования в соответствии с принципом: "что должно быть результатом 

операций над объектами-операндами, независимо от того, какова реальность 

этих объектов и как эта операция выполняется". 

Алгебраический метод позволяет конструктивно описывать структуры 

объектов и алгоритмы операций. Структура объектов определяется либо строго, 

с использованием математической терминологии, либо по аналогии с извест-

ными структурами, например, в файловой модели файл определяется на языке 

теории множеств, а в реляционном отношении подобный объект имеет вид 

установить в соответствии с таблицей. Алгоритмы также определяются либо 

посредством описания на естественном языке, либо с использованием инстру-

ментов формализации, присущих теоретическому и практическому программи-

рованию. То есть принцип присущ алгебраическому методу: "после примене-

ния операции в соответствии с известным алгоритмом к объекту (объектам) с 

известной структурой получается объект-результат с заданной структурой". 

Например, реляционное исчисление есть ни что иное, как аксиоматиче-

ское описание объектов (отношений) и операций преобразования одного отно-

шения в другое. Это позволяет определить какое отношение должно быть по-

лучено в результате применения заданной операции над отношениями- операн-

дами. В реляционной алгебре объект структурируется как отношение в виде 

таблиц, а операции над отношениями, как правило, даются в виде словесных 

(интуитивных) описаний [70-72, 133]. В многомерной-матричной алгебре, ко-

торая гомоморфна реляционной алгебре [128, 146-147], каждому отношению 

соответствует многомерная матрица, которую можно считать высокострукту-

рированным объектом. Для всех операций приведены строгие формальные ал-

горитмы. Описания этих операций имеют простые представления в виде: фор-

мул, блок-схем, псевдокодов, языков программирования. 
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2.5.2. Определение аксиоматической теории МОД 

Далее рассмотрена формализация МОД для теоретико-множественной 

(файловой) реляционной, и многомерно-матричной моделей данных. В даль-

нейшем все они будут считаться единой формальной (аксиоматической) теори-

ей T. Она будет считаться определенной [148, 149], если выполнены следую-

щие условия:  

 задан определенный конечный (счетный) набор символов, которые называ-

ются символами теории. T ;   

 определены конечные последовательности символов теории, образующие 

множество T *, которые называются выражениями теории T. 

Множество символов аксиоматической теории T   для МОД [151, 152] со-

держит два типа символов: 

1. цифры: 0, …, 9;  

заглавные и строчные буквы: a, b, …, A, B, …;  

буквы с индексами: a1, a2, …, A1, A2, … 

2. Специальные символы двух классов: 

a) термы (объекты) теории T, которые определяются как буквы или по-

следовательности букв; 

b) формулы (соотношения) теории T. 

Интуитивно, термы – это обозначения объектов, а формулы – обозначе-

ния утверждений о том, что мы можем сделать с этими объектами. Обычно су-

ществует эффективная процедура, которая позволяет для каждого выражения 

определить, является ли оно формулой. В рассматриваемой теории эта проце-

дура задается рекурсивным соотношением: 

1. Любой терм есть формула; 

2. A1, …, An), (a1, …, an) – формулы; 

3. B  A, a  A – формулы; 

4.  (a1, …, an),  (a1, …, an),  f (A1, …, An), )...,,( 1...,,1 nkaa AAf
k 

 – формулы; 
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5. R(A1, …, An), (A1, …, An), K   (A1, …, Ak) – формулы; 

6. Если F1, F2, F3 – формулы в смысле п. 5, то ),( 13FFso ),( 13FFnso  ),( 21FFsel

))(( 13FFnsogr
, 3 1 3 2( ) ( )),so soF F F F  3 1 3 2( ) ( ))nso nsoF F F F  – формулы; 

7. Если G, G1, G2 – формулы в смысле п. 6, and F1, F2, F3 – формулы в смысле 

п.п. 1-5, то ),( 3GFso ),( 3GFnso
 ),( 2GFsel

))(( 3GFnsogr , )),()( 2313 GFGF soso   

))()( 2313 GFGF nsonso   – формулы;  

8. { F1} and { F1 F2} – формулы. 

9. Других формул нет. 

2.5.3. Интерпретация формул аксиоматической теории МОД 

Определенные таким образом формулы могут интерпретироваться по-

разному в разных моделях теории T . Это теоретико-множественная, (файловая), 

многомерно-матричная и реляционная модели данных. 

В этих моделях данных существуют не только терминологические разли-

чия, но также существуют различные способы представления объектов и раз-

личные алгоритмы операций их преобразования. Список 1 содержит интерпре-

тации в различных моделях данных некоторых формул, которые будут исполь-

зоваться при построении аксиом. 

Таблица 2.4. Примеры интерпретации формул 
Формулы  и их значения в моделях данных 

Теоретико-множественной Многомерно-матричной реляционной 

Ai, ai 

поле записи, значение поля множество (тип элементов), 

значение элемента 

атрибут, значение ат-

рибута 

(a1, …, an) 

экземпляр записи файла; элемент многомерной матри-

цы 

кортеж 

K   (A1, …, Ak)R(A1, …, Ak, Ak+1, …, An) 

XK (F1, …, Fn) – файл с за-

писью типа (F1, …, Fn) и 

множеством ключей 

K=(F1, …, Fk); 

M – многомерная матрица с 

индексами i1, …, ik; 

отношение R(A1, …, An) 

со схемой (A1, …, An) и 

составным ключом A1, 

…, Ak. 

f (A1, …, An) 

n-арная операция над поля-

ми записи файла; 

аддитивная операция над эле-

ментами многомерной мат-

рицы; 

n-арная операция, опре-

деленная на доменах 

атрибутов A1, …, An 
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)...,,( 1...,,1 nkaa AAf
k   

n-арная операция над по-

лями группы записей файла 

с одним и тем же экзем-

пляром множества ключей 

мультипликативная операция 

над многомерными матрица-

ми с кэлиевыми индексами  

i1, …, ik 

n-арная групповая опе-

рация, определенная на 

доменах атрибутов Ak+1, 

…, An. 

)),...,,,...,(),...,(( 111 nkkk

so AAAARAA K  

Формулы  и их значения в моделях данных 

Многомерно-матричной Многомерно-матричной Многомерно-матричной 

файл XK строго упорядочен 

по множеству ключей 

K=(F1, …, Fk) 

единственный элемент мно-

гомерной матрицы соответ-

ствующий индексам i1, …, ik 

отношение R во второй 

или третьей нормаль-

ной форме с составным 

ключом A1, …, Ak 

)),...,,,...,(),...,(( 111 nkkk

nso AAAARAA K  

файл XK нестрого упорядо-

чен по множеству ключей 
K=(F1, …, Fk)   

сечение многомерной матри-

цы по совокупности индексов 

i1, …, ik 

отношение R в первой 

нормальной форме с 

составным ключом A1, 

…, Ak 

 

2.5.4. Аксиомы теории массовой обработки данных 

Выделен определенный набор формул, называемых аксиомами (или схе-

мами аксиом) теории T . Формулы, которые являются аксиомами для массовой 

обработки данных, рассматриваются далее. 

 (A1) Аксиома строгой упорядоченности 

1 1 1

1 1 1 1 1 1

( ( ,..., ) ( ,..., , ,..., ))

{( ,..., , ,..., ) ( ,..., , ,..., ) ( ( ,..., , ' ,..., ' ))

so

k k k n

k k n k k n k k n

A A R A A A A

a a a a a a a a a a a a



  



  

K

 

 Эта аксиома означает, что все объекты типа 1 1( ,..., , ,..., )k k na a a a  нахо-

дятся в объекте R не более одного раза. Он дает описание агрегата данных как 

множества.  

(A2) Аксиома нестрогой упорядоченности 

)',...,',,...,(),...,,,...,(),...,,,...,{(
)),...,,,...,(),...,((

111111

111

nkknkknkk

nkkk

nso

aaaaaaaaaaaa
AAAARAA






K

 

Эта аксиома означает, что объекты типа 1 1( ,..., , ,..., )k k na a a a могут встре-

чаться в объекте R более одного раза, то есть совокупность данных определяет-

ся как фактормножество (мультимножество). Интерпретации аксиом А1 и А2 в 

моделях данных приведены в таблице 2.4. 



103 

 

 (A3) Аксиома выборки 

}),...,(),...,,,...,(),...,,,...,{(
),...,(),...,,,...,(

11111

111

knkknkk

knkk

sel

aaAAAAaaaa
aaAAAAR







 

Эта аксиома дает описание подмножества агрегата данных, элементы ко-

торого удовлетворяют условию, определенному предикатом 1( ,..., )ka a . Это 

подмножество формируется в результате применения операции выборки (sel) к 

агрегату данных ),...,,,...,( 11 nkk AAAAR  . В файловой модели данных ей соответ-

ствует операция выборки, в многомерно-матричной модели данных – операция 

сечения многомерной матрицы, в реляционной модели данных – оператор SE-

LECT. 

(A4) Аксиома сжатия 

1 1 1( ( ( ,..., ) ( ,..., , ,..., )))gr nso

k k k mA A R A A B B K

11 ,..., 1 1 1{( ,..., , ( ' ,..., ' )) ' , ..., ' ' }
kk a a k m k k m ma a f B B B B B B     

Эта аксиома дает описание агрегата данных, который должен быть полу-

чен из агрегата данных 1 1( ,..., , ,..., )k k nR A A B B  после применения операции 

1 ,..., 1( ' ,..., ' )
ka a k mf B B . Эта функция применяется ко всем группам его элемен-

тов, в которых значения переменных kAA ,...,1  совпадают. Новый агрегат дан-

ных формируется в результате применения операции (gr) к агрегату данных 

1 1( ,..., , ,..., )k k nR A A B B . В теоретико-множественной модели данных этой аксио-

ме соответствует операции сжатия нестрого упорядоченного файла, в много-

мерно-матричной –  свертка, в реляционной – select ... group by ...  к отношению 

в первой нормальной форме. 

(A5) Аксиома слияния при строгой упорядоченности агрегатов данных 

1 1 1 1 1 2 1 1

1 1 1

( ( ,..., ) ( ,..., , ,..., )) ( ( ,..., ) ( ,..., , ,..., ))

{( ,..., , ( ,..., , ,..., ))}

so so

k k k m k k k n

k k m k n

A A R A A B B A A R A A C C

a a f b b c c

 

 

 K K
 

Эта аксиома дает описание агрегата данных, который должен быть полу-

чен из агрегатов данных 1 1 1( ,..., , ,..., )k k nR A A B B и 2 1 1( ,..., , ,..., )k k nR A A C C  после 
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применения операции ),...,,,...,( 11 nkmk ccbbf   к их элементам с одинаковыми 

значениями kaa ,...,1 . Новый агрегат данных формируется в результате приме-

нения операции () к этим агрегатам данных. В файловой модели данных она 

соответствует операции слияния строго упорядоченных файлов, в многомерно-

матричной – матричное сложение, в реляционной – любая из теоретико-

множественных операций над отношениями, между которыми установлено со-

ответствие один-к-одному. 

(A6) Аксиома слияния при нестрогой упорядоченности агрегатов данных 

1

1 1 1 1 1 2 1 1

1 ,..., 1 1

1 1 1 1

( ( ,..., ) ( ,..., , ,..., )) ( ( ,..., ) ( ,..., , ,..., ))

{( ,..., , ( ' ,..., ' , ' ,..., ' ))

' , ..., ' ' , ' ,..., ' }

k

nso nso

k k k m k k k n

k a a k m k n

k k m m k k n n

A A R A A B B A A R A A C C

a a f B B C C

B B B B C C C C

 

 

   

 

   

K K

 

Эта аксиома дает описание агрегата данных, который должен быть полу-

чен из агрегатов данных 1 1 1( ,..., , ,..., )k k nR A A B B  и 2 1 1( ,..., , ,..., )k k nR A A C C  по-

сле применения операции )',...,',',...,'( 11,...,1 nkmkaa CCBBf
k   к группам их эле-

ментов с одинаковыми значениями kaa ,...,1 . Новый агрегат данных формирует-

ся в результате применения операции () к этим агрегатам данных. В файловой 

модели данных она соответствует операции слияния нестрого упорядоченных 

файлов, в многомерно-матричной (, )-свернутому произведению, в реляци-

онной – операции соединения (SELECT… FROM R1 JOIN R2 ON…)) отноше-

ний, между которыми установлены отношения один-ко-многим или многие-ко-

многим. 

Таким образом, используя эти аксиомы, построенные с использованием 

определений (формулы, приведенные в пунктах 1-5 параграфа 2.5.2 и интерпре-

тированные в таблице 2.4), строятся описания свойств агрегатов данных и опе-

раций с ними. 

Замечание. Аксиомы А1 и А2 вводят понятия строгой и нестрогой упоря-

доченности агрегата данных. Они используются далее в аксиомах операций (2-

6). В некоторых моделях, например, реляционных, упорядочение агрегатов 
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данных считается избыточным и не используется. С другой стороны, введение 

концепции ключа в этой модели требует указания того, будет ли отношение с 

определенным на нем ключом множеством или мультимножеством. Эта про-

блема решается с помощью теории нормализации. В файловых и многомерно-

матричных моделях, которые используются в качестве промежуточных между 

моделями проектирования и моделями вычислений, упорядочение агрегатов 

данных имеет важное значение, поскольку оно определяет природу алгоритмов 

работы. 

2.5.5. Теоремы аксиоматической теории МОД 

Пусть существует конечное множество 1, ..., n отношений между фор-

мулами, называемых правилами вывода. Предположим, что для каждого i су-

ществует натуральное число j и множество, состоящее из j формул:  

{ A 1, …, A j }. Причем для каждой формулы A  вопрос о том, что все формулы 

A j находятся в отношении i с формулой A , имеет эффективное решение. То-

гда A  называется прямым следствием заданных j формул по правилу вывода i, 

то есть имеется вывод формулы A. 

В общем случае, формула A  теории T  есть теорема теории T , если су-

ществует вывод в T, в котором последняя формула – A .  

В случае аксиоматической теории T   МОД теорема определяется следу-

ющим образом. Пусть R(A1, …, An) – формула в смысле пункта 5, F – формула в 

смысле пункта 5 (раздел 2.5.2). Тогда теоремой теории T  называется конструк-

ция вида R(A1, …, An)= F.  

Простые теоремы – это подстановки термов непосредственно в аксиомы. 

Например, подстановка термов реляционной модели: SELECT, FROM … 

WHERE … в аксиому (A1)   приводит к теореме вида SELECT A1, …, An FROM 

R WHERE 1( ,..., )kA A . 

Ниже приведен пример комплексной теоремы, которая получается путем 

подстановки различных термов в формулы нескольких аксиом. 
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1 1( ,..., , ,..., ))p p qR A A A B 
1 1 1 1( ( ( ,..., ) ( ,..., , ,..., ))sel nso

k k k rA A R A A B B K

1 1 2 1 1( ( ,..., )( ( ( ,..., ) ( ,..., , ,..., ))nso so

k l l l sA A A A R A A C C K K

1 3 1 1 1( ( ,..., ) ( ,..., , ,..., )))) ( ,..., ).so

l l l t pA A R A A D D A A K  

Эта формула имеет следующие интерпретации в рассматриваемых моде-

лях данных.  

В файловой модели данных ей соответствует последовательности опера-

ций, полученная путем подстановки констант и термов этой модели в формулу. 

Эта последовательность операций (технологический процесс) состоит из: 

1. слияние строго упорядоченных по множеству ключей },...,{ 1 lAA  файлов R2 

и R3; 

2. слияние нестрого упорядоченных по множеству ключей },...,{ 1 lAA  файлов 

R1 и файла-результата предыдущей операции; 

3. выборка записей из файла-результата предыдущей операции, удовлетворя-

ющих условию ),...,( 1 pAA  . 

Эта последовательность операций есть теорема. 

В многомерно-матричной модели данных агрегаты данных – это p-, k- и l-

мерные матрицы 
1 1 1 1... 1 1, ... 2 2, ... 3 3, ..., , ,

p k l li i i i i i i iR R R R R R R R    . Тогда форму-

ле соответствует  алгебраическое выражение 

1

,0

1 2 3

( )

( ( )) ...

( )

k

p

i

R R R R

i





  
 . 

 Это алгебраическое выражение также есть теорема.  

В реляционной модели данных формуле соответствует запрос вида.  

SELECT A1, …, Aq FROM  
(R1 INNER JOIN (SELECT * FROM R2 UNION ALL R3)  ON Eq(A1, …, Ak))  

WHERE ),...,( 1 pAA . 

Eq(A1, …, Ak) – это условие для сравнения значений атрибутов A1, ..., Ak 

отношения R1 и объединения отношений R2 и R3.  

Этот запрос также есть теорема. 
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2.5.6. Эквивалентность моделей МОД 

Аксиоматический подход позволяет просто доказать эквивалентность 

всех трех рассматриваемых моделей МОД. Эта эквивалентность следует из тео-

ремы эквивалентности теорий [148].  

Теорема об эквивалентности теорий (Н. Бурбаки, Теория множеств). 

Пусть T   – теория, A 1, …, A n – ее явные аксиомы, a1, …, ah – ее констан-

ты, T1, …, Th – ее термы. Если (T1|a1) ... (Th|ah) A i , (i =1, ..., n) являются теоре-

мами теории T   ', и знаки теории T  являются знаками теории T   ', и схемы 

теории T  являются схемами теории T   ', то если A  теорема теории T , то (T1| 

a1) ... (Th|ah) A   есть теорема теории T   '. 

Здесь (T1|a1) ... (Th|ah) – подстановки термов T1, …, Th вместо констант a1, …, ah 

в формулах A i , (i =1, ..., n) и A  . 

Интуитивно это означает, что если: 

 аксиомы теории T   выражают свойства объектов a1, …, ah, 

 формула A выражает свойство, вытекающее из этих аксиом, 

 объекты T1, …, Th, в теории T  ' обладают свойствами, выраженными аксио-

мами теории T , 

тогда они имеют свойство, выражаемое формулой A.  То есть результаты тео-

рии T  ' применяются в теории T  '. 

Из этой теоремы и сказанного ранее следует, что все три рассматривае-

мые модели МОД: файловая, многомерная матрица и реляционная – эквива-

лентны. 

Из сказанного можно сделать вывод о том, что аксиоматический метод 

позволяет решать чисто технические проблемы, возникающие при обработке 

больших данных в системах МОД. 

Как будет показано далее, применение результатов одной теории к другой 

позволяет использовать методы синтеза и оптимизации запросов, разработан-

ные для многомерных матричных моделей данных [152-154], в других моделях 

данных: файловых и реляционных. Параллелизм данных, присущий многомер-
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ной матричной модели, становится свойством двух других моделей. Более того, 

методы распараллеливания операций будут практически одинаковыми во всех 

моделях. 

Не менее важна проблема доказательства правильности запросов. Хоро-

шо известны эффективные методы верификации программ, написанных на язы-

ках процедурного программирования [125, 155-157]. Отладка сложных запро-

сов к базе данных, которые включают большое количество многократно вло-

женных подзапросов, несмотря на кажущуюся простоту, на самом деле, являет-

ся довольно сложным процессом. Это связано с тем, что запрос, отлаженный 

для небольшого объема данных, на больших объемах данных может быть вы-

полнен с ошибкой или не выполнен вообще. Современные системы управления 

базами данных используют языки манипуляции данными, такие как PL/SQL и 

Transact-SQL, которые включают как процедурные инструменты для управле-

ния процессом вычислений, так и запросы SQL. Предложенный аксиоматиче-

ский метод удобно использовать для верификации программ на этих языках. 

Таким образом, можно утверждать, что формальный аксиоматический 

метод может эффективно использоваться для решения инженерных задач при 

программировании процедур МОД. 

2.5.7. Доказательство эквивалентности моделей МОД по 
операциям слияния 

В этом разделе рассматривается применение аксиоматического метода 

для доказательства соответствия двух моделей МОД по операциям слияния 

[158]. Аксиомы слияния можно записать с учетом свойств индексов многомер-

ных матриц и ключей отношений (таблиц). Тогда они примут следующий вид. 

Аксиома слияния при строгой упорядоченности агрегатов данных (А5) 

1 1 1 1 1 2 1 1

1 1 1

( ( ,..., ) ( ,..., , ,..., )) ( ( ,..., ) ( ,..., , ,..., ))

{( ,..., , ( ,..., , ,..., ))}

so so

k k k m k k k n

k k m k n

A A R A A B B A A R A A C C

a a f b b c c

 

 

 K K
 

Эта аксиома дает описание агрегата данных, который должен быть получен из 

агрегатов данных 1 1 1( ,..., , ,..., )k k nR A A B B и 2 1 1( ,..., , ,..., )k k nR A A C C  после применения 
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операции 1 1( ,..., , ,..., )k m k nf b b c c   к их элементам с одинаковыми значениями 

1,..., ka a . Новый агрегат данных формируется в результате применения опера-

ции () к этим агрегатам данных. В файловой модели данных она соответству-

ет операции слияния строго упорядоченных файлов, в многомерно-матричной – 

матричное сложение, в реляционной – любая из теоретико-множественных 

операций над отношениями, между которыми установлено соответствие один-

к-одному, при необходимости с дополнительной группировкой. 

Аксиома слияния при нестрогой упорядоченности агрегатов данных (А6)

1

1 1 1 1 1 1 2 1 1 1

1 1 ,..., 1 1 1 1

( ( ,..., ) ( ,..., , ,..., , ,..., )) ( ( ,..., ) ( ,..., , ,..., , ,..., ))

{( ,..., , ,..., ), ( ' ,..., ' , ' ,..., ' )) ' , ..., ' ,
k

nso nso

k k k m m p k k k n n q

k m k n a a m p n q m m p p

A A R A A B B C C A A R A A D D E E

a a d d f C C E E C C C C E

   

     

 

 

K K

1 1' ,..., ' }n n q qE E E  
 

Эта аксиома дает описание агрегата данных, который должен быть получен из 

агрегатов данных 1 1 1 1( ,..., , ,..., , ,..., )k k m m pR A A B B C C   и 2 1 1 1( ,..., , ,..., , ,..., )k k n n qR A A D D E E   после 

применения операции 
1 ,..., 1 1( ' ,..., ' , ' ,..., ' )

ka a m p n qf C C E E   к группам их элементов с 

одинаковыми значениями 1,..., ka a . Новый агрегат данных формируется в ре-

зультате применения операции () к этим агрегатам данных. В файловой моде-

ли данных она соответствует операции слияния нестрого упорядоченных фай-

лов, в многомерно-матричной (, )-свернутому произведению, в реляционной 

– операции соединения (SELECT… FROM R1 JOIN R2 ON…)) отношений, 

между которыми установлены отношения один-ко-многим или многие-ко-

многим. 

Операции в многомерно-матричной и реляционной моделях 

Здесь рассматриваются операции, соответствующие операциям файловой 

модели: сложение и умножение многомерных матриц, и реляционные операции 

им соответствующие. 

В реляционной алгебре нет операции, которая соответствует операции 

слияния строго упорядоченных файлов. Операция UNION не может точно реа-

лизовать подобную операцию, поскольку если в двух отношениях-операндах 

встретятся два полностью совпадающих кортежа, то в отношение-результат бу-

дет помещен только один из этих кортежей, а не результат их совместной обра-
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ботки. Поэтому в большинстве современных систем управления базами данных 

имеется операция UNION ALL. Эта операция нарушает теоретико-

множественный принцип – "отношение есть множество", так как ее результат – 

"мультимножество", которое может содержать несколько полностью совпада-

ющих элементов. Используя эту операцию можно сконструировать аналог опе-

рации слияния строго упорядоченных файлов, которая будет названа слияние 

"строго упорядоченных" таблиц.  Термин "строго упорядоченных" взят в ка-

вычки, поскольку в реляционной теории баз данных сортировка не рассматри-

вается как самостоятельная операция. Заметим, что в технологии систем управ-

ления базами данных операция сортировки явно используется в алгоритмах, 

реализующих основные операции.  

Слияние "строго упорядоченных" таблиц. Пусть A(K1, …, Kp, W) и 

B(K1, …, Kp, W) – таблицы, схемы которых совпадают. K1, …, Kp – составной 

ключ, по которому эти таблицы находятся в третьей нормальной форме. W – 

неключевые атрибуты, которые могут быть однотипными кортежами, над кото-

рыми определена бинарная операция . Также определена групповая (агрегат-

ная) операция  над группами значений WAWB –  (WAWB). Тогда запрос  

SELECT UnionAll.K1, …, UnionAll.Kp, SUM(UnionAll.W)  

FROM (SELECT * FROM A UNION ALL SELECT * FROM B) AS UnionAll  

GROUP BY UnionAll.K1, …, UnionAll.Kp  

реализует операцию слияние "строго упорядоченных" таблиц. 

Inner Join. Здесь рассматривается наиболее распространенный и самый 

сложный вариант этой операции. Пусть даны таблицы A(K1, …, Kp, W) и B(K1, 

…, Kq, W), схемы которых не совпадают. K1, …, Kp и K1, …, Kq  – составные 

ключи, по которым эти таблицы находятся в третьей нормальной форме. W – 

неключевые атрибуты, которые могут быть не обязательно однотипными кор-

тежами, над которыми определена бинарная операция . Также определена 

групповая (агрегатная) операция  над группами значений WAWB –  

(WAWB). Кроме того, часть ключей обеих таблиц совпадает. Без ограничения 
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общности можно считать, что это ключи K1, …, Ks  (s< p, s< q). Тогда одному и 

тому же набору значений ключей K1, …, Ks может соответствовать несколько 

строк таблицы, то есть они соответствуют нестрого упорядоченным файлам. Не 

нарушая общности можно предположить, что ключи, используемые в предика-

те ON, имеют в обеих таблицах индексы 1, …, s.  Если часть остальных ключей 

таблицы A совпадают с ключами таблицы B, то в список полей оператора SE-

LECT они включаются только один раз. 

Следующий запрос демонстрирует общий вид этой операции.  

SELECT A.Ks+1, …, A.Kp, B.K s+1, …, B.Kq ,  (A.WB.W) 

FROM A INNER JOIN B ON A.K1, …, A.Ks = B.K1, …, B.Ks 

GROUP BY A.Ks+1, …, A.Kp, B.K s+1, …, B.Kq 

Для доказательства соответствия операций необходимо представить фор-

мализованное в модели алгебраическое выражение в виде, который формализо-

ван в виде схемы аксиомы теории массовой обработки данных. Если получен-

ные формулы совпадают с точностью до обозначений термов и констант, то эти 

операции соответствуют. 

Сложение многомерных матриц и слияние "строго упорядоченных" 

таблиц. Операцию сложения многомерных матриц можно представить в виде 

формулы 

1 1 1... ... ...p p pi i i i i ia b c  .   (2.1) 

Поскольку в каждой из матриц каждому набору значений индексов соот-

ветствует единственный элемент, и число элементов во всех матрицах одинако-

во, то при подстановке знаков формулы (1) в аксиому A5 получается формула 

* * * *
1 1

* *

1 1 1 1 1 ,..., ,...,
( ( ,..., ) ( ,..., , )) ( ( ,..., ) ( ,..., , )) {( ,..., , )}

p p

so so

p p p p p i i i i
i i A i i a i i B i i b i i a b  K K . (2.2) 

Здесь a и b – элементы матриц A и B, * *

1 ,..., pi i  – фиксированный набор значений 

индексов. 

При слиянии "строго упорядоченных" таблиц считается, что они логиче-

ски содержат строки со всеми возможными значениями ключей, то есть, часть 
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строк может быть универсальной неопределенной строкой (записью)  . Тогда 

приведенному SQL-запросу соответствует формула 

* *

1 1 1 1 1( ( ,..., ) ( ,..., , )) ( ( ,..., ) ( ,..., , )) {( ,..., , )}so so

p p a p p b p a bK K A K K w K K B K K w K K w w  K K . (2.3) 

Формулы (2.2) и (2.3) совпадают с точностью до обозначений. Следова-

тельно, операция сложения многомерных матриц и слияния "строго упорядо-

ченных" таблиц соответствуют друг другу. 

Умножение многомерных матриц и операция Join. В операции ( -

свернутого произведения индексы матрицы A представляют собой последова-

тельность вида 1 1 1, ... , , ,..., , ,...,l l s s c c    , матрицы B – 

1 1 1,..., , ,..., , ,...,s s c c m m   , а матрицы-результата C – 

1 1 1, ... , , ,..., , ,...,l l s s m m   . Тогда эту операцию можно представить формулой 

 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1

,

, ... , ,..., ,..., ,..., ,..., ,...,

, ... , ,..., ,..., , ... , ,..., ,..., ,..., ,..., ,...,

( ,..., )

l l s s c c s s c c m m

l l s s m m l l s s c c s s c c m m

c c

a b

c a b

     

        



   

 
 (2.4) 

После подстановки из формулы 2.4 в аксиому A6, аналогичной той, что была 

проделана в предыдущем разделе, она примет вид: 

* * * * * * *
1 1 1 1 1 1

1 1 1 1 1 1 1 1

* * * * * *

1 1 1 , ... , , ,..., ,..., ,..., ,..., ,..

( ( ,..., ) ( , ... , ,..., ,..., , )) ( ( ,..., ) ( ,..., ,..., ,..., , ))

{( , ... , , ,..., , ,..., ),

nso nso

l l s s c c s s c c m

c c A l l s s c c a c c B s s c c m m b

l l s s m m a b
    

       

  

 



K K

*

1

.,
( ,..., )

}
m

c c





   (2.5) 

Здесь полиморфные символы операций  и  означают групповую аддитивную 

и мультипликативную операции. 

Пусть схемы таблиц A(A1, …, Au) и B(B1, …, Bv) могут быть представлены 

в виде A(L1, …, Lk, S1, …, Sl, C1, …, Cm, W) и B(S1, …, Sl, C1, …, Cm, M1, …, Mn, 

W). Здесь атрибуты (столбцы таблицы) S1, …, Sl и C1, …, Cm – общие для таблиц 

A и B, и атрибуты L1, …, Lk, S1, …, Sl, M1, …, Mn – ключи-кандидаты таблицы-

результата запроса, представленного формулой 

SELECT A. L1, …, A.Lk, A.S1, …, A.Sl, B.M1, …, B.Mn,  (A.WB.W) 

FROM A INNER JOIN B ON A.C1, …, A.Cm = B.C1, …, B.Cm                (2.6)    

GROUP BY A. L1, …, A.Lk, A.S1, …, A.Sl, B.M1, …, B.Mn 
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После подстановки в аксиому А6 знаков запроса из формулы 2.6, получа-

ется формула  

1

1 1 1 1 1 1 1 1

* * * * * *

1 1 1
( ,..., )

( ( ,..., ) ( ,..., , ,..., , ,..., , )) ( ( ,..., ) ( ,..., , ,..., , ,..., , ))

{( ,..., , ,..., , ,..., ), ( . . )}
m

nso nso

m k l m m l m n

k l n
C C

C C A L L S S C C W C C B S S C C M M W

L L S S M M AW BW

 



K K
 (2.7) 

Как и в предыдущем случае формулы 2.5 и 2.7 совпадают с точностью до 

обозначений. 

Тогда из теоремы Н. Бурбаки (раздел 2.5.6) об эквивалентности теорий 

следует, что алгебраическому выражению в многомерно-матричной модели 

МОД взаимно однозначно соответствует выражение в реляционной модели. 

Далее приводится пример, иллюстрирующий установление таких соответствий. 

Пример 2.14. Пусть дана реляционная база данных, схемы и содержание 

таблиц которой приведены в таблице 2.1. 

Таблица 2.5. База данных примера 

A B C D E Res 

K1 W K1 K2 W K2 K3 W K2 K3 K4 W K4 W K1 S 

p1         100 p1         e1         6 e1         s1         10 e1         s1         m1         10 m1         3 p1         93300 

p2         200 p1         e2         3 e1         s1         5 e1         s1         m2         5 m2         5 p2         133000 

 p2         e1         2 e1         s2         7 e1         s2         m4         7 m3         2  

p2         e2         7 e2         s1         5 e2         s1         m2         5 m4         7 

 e2         s2         1 e2         s2         m3         1  

e2         s3         2 e2         s3         m1         2 

Значение поля S для каждого значения поля K1 вычисляется по формуле

( 2) ( 4)

. . ( . . . ).
K K

S AW BW С W DW E W       В листинге 1 приведен запрос, реализу-

ющий вычисление таблицы Res из таблиц A, B, C D, E. 

Листинг 1. Вычисление таблицы Res 

1. SELECT A.K1, SUM(A.W*Q4.W) FROM A Inner Join 

2.   (SELECT B.K1, B.K2, SUM(B.W*Q3.W) AS W FROM B Inner Join 

3.     (SELECT UA.K2, UA.K3, SUM(UA.W) AS W FROM  

4.       (SELECT C.K2, C.K3, C.W FROM C Union All SELECT Q2.* FROM  

5.         (SELECT Q1.K2, Q1.K3, Q1.W FROM  

6.           (SELECT D.K2 AS K2, D.K3 AS K3, SUM(D.W*E.W) AS W 

7.              FROM D Inner Join E ON D.K4=E.K4  

8.              GROUP BY D.K2, D.K3)  
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9.            AS Q1)  

10.          AS Q2)  

11.        AS UA  

12.       GROUP BY UA.K2, UA.K3)  

13.      AS Q3  

14.     ON B.K2=Q3.K2 

15.     GROUP BY B.K1, B.K2)  

16.    AS Q4 

17.    ON A.K1=Q4.K1 

18.   GROUP BY A.K1 

Это запрос реализуется следующим образом: 

1. Сначала выполняется вложенный запрос Q1, который включается в под-

запрос Q2.  

2. Подзапрос Q2 – второй операнд в операции Union All, которая выполня-

ется в подзапросе UA. 

3. Затем выполняется подзапрос Q3, который включается в подзапрос Q4 в 

качестве второго операнда операции Inner Join. 

4. Последним выполняется основной запрос, в котором подзапрос Q4 ис-

пользуется в качестве второго операнда операции Inner Join. 

Подзапросы Q2 и UA реализуют операцию слияния "строго упорядоченных" 

таблиц. 

Как видно из листинга этот запрос, решающий достаточно простую зада-

чу, достаточно сложен как в написании, так и в преобразовании его с целью оп-

тимизации, как в плане распараллеливания на уровне выражения, так и в плане 

определения наилучшего порядка выполнения операций. Упрощение может 

быть достигнуто при записи этого запроса в виде выражения в алгебре много-

мерных матриц.  

Домены ключей K1, K2, K3, K4 – конечные множества. Поэтому можно 

задать нумерацию их элементов. Тогда этим ключам соответствуют индексы i1, 

i2, i3, i4. Таблицам соответствуют матрицы 
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1 1 2 2 3 2 3 4

4

10 5 0 0 0 5 0 0
6 3 10 5 7

100, 200 , , , 0 0 0 4 0 0 1 0 ,
2 7 5 1 2

0 0 0 0 2 0 0 0

5, 2, 7 .

i i i i i i i i

i

A a B b C b D d

E e

       

 

 

Таблице Res соответствует матрица R, аналогичная матрице A. Выражение, вы-

числяющее значение матрицы R вид 
0,1 0,1 0,1( ( ( ( )))).R A B C D E      Очевидно, 

что это выражение гораздо проще выражения запроса, приведенного в листинге 

1. Оно может быть легко преобразовано как вручную, так и, в более сложном 

случае, посредством специализированного программного обеспечения, которое 

несложно разработать. Кроме того, методы распараллеливания сложения и 

умножения многомерных матриц [146, 147] позволяют построить аналогичные 

методы для соответствующих реляционных операций. 

2.6. Заключительные замечания к главе 2 

В главе рассмотрены методы формализации алгебраических моделей 

данных и вычислений. Даны основные определения универсальных многоос-

новных алгебраических систем и приведены примеры таких систем.  

Проведен анализ современных интуитивных подходов к объектно-

ориентированному моделированию, проектированию и программированию и 

осуществлен переход к формальному – алгебраическому подходу к объектно-

ориентированным технологиям. На основе этого подхода разработана техноло-

гия построения алгебраических моделей сложных структур данных – кортежей.  

Приведено описание объектно-ориентированной технологии программи-

рования для создания программно-аппаратных комплексов на основе универ-

сальной (абстрактной) алгебраической машины – универсальной двухосновной 

алгебраической системы. 

Сделан анализ известных определений типизированного файла и дается 

формальное алгебраическое определение файла как фактормножества множе-

ства однотипных записей по отношению эквивалентности, порожденному 

множеством ключей. Вводится определение универсальной неопределенной 

записи, назначение которой состоит в том, чтобы в логическом файле были 
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представлены все возможные значения экземпляров множества ключей. На 

этой основе строятся формальные описания всех операций обработки файлов.  

На основе теории многомерных матриц Н.П. Соколова разработана ал-

гебраическая модель данных (вычислений). Проведено доказательство гомо-

морфизма теоретико-множественной и многомерно-матричной моделей, но 

основе которого доказано соответствие многомерно-матричной и реляцион-

ной моделей.  

Приведено описание аксиоматической теории МОД и на основе теоремы 

об эквивалентности аксиоматических теорий доказывается соответствие моде-

лей МОД в том числе для конкретного примера. Основные результаты, полу-

ченные в данной главе, были опубликованы в работах [117, 128-130, 145, 146, 

150-154, 158]. 
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Глава 3. МЕТОДЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ МАС-
СОВОЙ ОБРАБОТКИ ДАННЫХ 

3.1. Проблемы повышения эффективности обработки дан-
ных 

Повышение эффективности обработки данных относится к числу наибо-

лее актуальных проблем в теории и практике баз данных. Обычно в деклара-

тивных языках запроса, подобных языку SQL, в формулировках запросов ука-

зывается, какими свойствами должны обладать данные, которые хочет полу-

чить пользователь, но ничего не говорится о том, как система должна реально 

выполнить запрос. Проблема в том, чтобы по декларативной формулировке за-

проса найти или построить программу (такую программу принято называть 

планом выполнения запроса), которая выполнялась бы максимально эффектив-

но и выдавала бы результаты, соответствующие указанным в запросе свой-

ствам. Более точно, основная трудность состоит в том, что нужно уметь:  

1. построить все возможные программы, результаты которых соответствуют 

указанным свойствам; 

2. выбрать из множества этих программ (иначе говоря, найти в пространстве 

планов выполнения запроса) такую программу, выполнение которой было бы 

наиболее эффективным [106-110].  

Далее в главе рассматриваются два способа повышения эффективности 

процессов МОД, основанные на предложенных в главе 2 моделях. Будет пока-

зано, что эти модели позволяют: 

1. использовать известные методы оптимизации для синтеза новых и преобра-

зования уже имеющихся процессов; 

2. разработать методы организации данных, обеспечивающие эффективное 

распараллеливание отдельных операций, составляющих эти процессы. 

Далее приводятся два примера, иллюстрирующие известные методы по-

вышения эффективности МОД. 

Пример 3.1. Оптимизация на уровне процессов обработки данных. Здесь 

рассматривается подход, основанный на таком хорошо исследованном методе 
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оптимизации как динамическое программирование. Этот метод применяется, 

например, при решении задачи выбора оптимальной последовательности опе-

раций для вычисления результата алгебраического выражения, состоящего из 

операций умножения двумерных (плоских) матриц, с помощью алгоритма, при-

веденного в [85]. Этот алгоритм может быть обобщен на случай многомерных 

матриц [117].  

Пусть M=M1…Mn. M, M1, …, Mn – многомерные матрицы. Для любой 

пары матриц Mi и Mi+1 сложность вычисления их произведения, независимо от 

того последовательно или параллельно реализована операция умножения, зави-

сит от величины plpspcpm, где: 

 





1

)(
i

i

l ldp   произведение размерностей свободных индексов матрицы Mi; 

 





1

)(
i

i

s sdp    произведение размерностей скоттовых индексов матриц Mi и 

Mi+1; 

 





1

)(
i

i

c cdp   произведение размерностей кэлиевых индексов матриц Mi и 

Mi+1; 

 





1

)(
i

i

m mdp   произведение размерностей свободных индексов матрицы 

Mi+1. 

На каждом шаге основного цикла алгоритма вычисляется величина wij – 

минимальная сложность вычисления частичного произведения Mi…Mj 

(1ijn). При i<j ).( 1,1MIN
m

j

c

k

s

k

l

ijkik
jki

ij ppppwww  


 Здесь wik – 

минимальная сложность вычисления матрицы M'= Mi…Mk, wk+1, j – 

минимальная сложность вычисления матрицы M''= Mk+1…Mj, а 

m

j

c

k

s

k

l

i pppp 1  – сложность вычисления произведения многомерных мат-

риц M' и M'', где: 
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 


 


1

1 )(
i

i

l

i ldp   произведение числа значений свободных индексов матрицы 

M'; 

 





1

)(
i

i

s

k sdp    произведение числа значений скоттовых индексов матриц M' 

и M''; 

 





1

)(
i

i

c

k cdp   произведение числа значений кэлиевых индексов матриц M' и 

M''; 

 





1

)(
i

i

m

j mdp   произведение размерностей свободных индексов матрицы 

M''. 

Такой подход возможен для повышения эффективности процессов МОД, 

если каким-либо образом получено алгебраическое выражение – модель про-

цесса обработки файлов, состоящее или из одних операций умножения много-

мерных матриц или из суммы нескольких таких выражений. При этом не имеет 

значения на языке какой из алгебр-моделей это выражение было записано. 

Естественно, что, если выражение записано на языке алгебры многомерных 

матриц, размерности индексов фиксированы и в обработку включаются все 

элементы матриц, в том числе и нейтральные. В файлах и отношениях записи 

(строки), содержащие универсальные неопределенные значения физически от-

сутствуют. Поэтому оптимизацию выражения целесообразно производить пе-

ред каждым выполнением запроса, заданного этим выражением. Это возможно 

потому, что рассмотренный алгоритм и ему подобные алгоритмы имеют поли-

номиальную сложность. Информация о количестве записей (строк), соответ-

ствующих экземплярам множеств ключей, которая необходима для реализации 

таких алгоритмов оптимизации может содержаться в метаданных, определяю-

щих свойства входящих в алгебраическое выражение файлов (отношений). 

Пример 3.2. Оптимизация на уровне операций обработки данных. На со-

временной вычислительной технике повышение эффективности операций об-
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работки данных осуществляется, как правило, за счет распараллеливания алго-

ритмов, реализующих эти операции. Типичным примером такого решения про-

блемы служит алгоритм Кэннона [102, 159], основанный на формуле Фробени-

уса для умножения матриц [101]. Обобщение этого алгоритма на случай мно-

гомерных матриц сделать не так просто, как для предыдущего алгоритма, по-

этому здесь он будет рассмотрен для двумерных (плоских) матриц, а в даль-

нейшем будет построено его обобщение. Этот алгоритм относится к классу 

блочных алгоритмов, то есть матрицы операнды разбиваются на qq блоков. 

Для простоты и без ограничения общности предполагается, что матрицы квад-

ратные nn и n кратно q. Размер каждого блока равен k k , ).(
q

n
k  В этом слу-

чае операция матричного умножения матриц А и B в блочном виде может быть 

представлена так: 

qqq

q

qqq

q

qqq

q

CC

CC

BB

BB

AA

AA

...

...

...

...

...

...

...

...

...

01

1000

01

1000

01

1000













 , 

sj

q

s

isij BAC 




1

0

, (i, j=0, …, q – 1). 

В качестве архитектуры вычислительного комплекса используется дву-

мерная процессорная решетка, в которой процессоры связаны так, как это пока-

зано на рисунке 3.1. 

 

Рис. 3.1. Двумерная решетка qq процессоров 

На каждом процессоре размещается базовая подзадача, которая выполня-

ет вычисление отдельного блока матрицы C.  Алгоритм реализует вычисление 

произведения матриц в ходе q итераций.  На каждой итерации каждая подзада-

ча обрабатывает только по одному блоку исходных матриц A и B. Подзадачи и 

соответствующие им процессоры нумеруются индексами размещаемых в них 
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блоков матрицы C, то есть подзадача (i, j) отвечает за вычисление блока 
ijC . 

Таким образом, построен программно-аппаратный комплекс, представляющий 

собой квадратную решетку процессоров, каждый из которых оснащен про-

граммным обеспечением, реализующим вычисление соответствующего блока 

матрицы C. Вся решетка соответствует блочному представлению матрицы C. 

Действия по начальной пересылке состоят из следующих шагов:  

1. в каждый процесс (i, j) пересылаются блоки Aij и Bij, блок Cij обнуляется;  

2. для каждой строки i (i = 0, 1, ..., q1) декартовой решетки процессов выпол-

няется циклический сдвиг блоков матрицы A на i позиций влево (т. е. в направ-

лении убывания номеров столбцов);  

3. для каждого столбца j (j = 0, 1, ..., q1) декартовой решетки процессов вы-

полняется циклический сдвиг блоков матрицы B на j позиций вверх (т. е. в 

направлении убывания номеров строк).  

Затем запускается цикл из 𝑞 итераций, в ходе которого выполняются три 

действия:  

1. содержащиеся в процессе (i, j) блоки матриц A и B перемножаются, и ре-

зультат прибавляется к блоку матрицы C;  

2. для каждой строки i (i = 0, 1, ..., q1) выполняется циклическая пересылка 

блоков матрицы A, содержащихся в каждом процессе (i, j) этой строки, в 

направлении убывания номеров столбцов;  

3. для каждого столбца j (j = 0, 1, ..., q1) выполняется циклическая пересылка 

блоков матрицы B, содержащихся в каждом процессе (i, j) этого столбца, в 

направлении убывания номеров строк. 

4. На последней итерации действия (2) и (3) можно не выполнять. 

Этот пример показывает, что параллельная реализация операций обра-

ботки данных, которая обеспечивает повышение их эффективности за счет 

уменьшения времени выполнения, тесно связана с архитектурой программно-

аппаратного вычислительного комплекса, который реализует эти операции.  
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Далее будет показано, что теоретико-множественная и многомерно-

матричная модели позволяют не только унифицировать набор операций обра-

ботки данных, но и применить для решения задачи повышения эффективности 

процессов их обработки (запросов) различные способы дискретной оптимиза-

ции, а для отдельных операций проектировать специализированные программ-

но-аппаратные комплексы. 

 

3.2. Синтез и оптимизация процесса МОД 

3.2.1. Модель и метод построения процесса МОД 

Модель процесса МОД – это алгебраическое   выражение в любой из рас-

смотренных ранее алгебр: алгебре файлов или алгебре многомерных матриц. В 

реляционной модели SQL – это выражение запроса, записанное на SQL. Оче-

видно, что для того, чтобы это выражение имело смысл, необходимо и доста-

точно, чтобы каждая пара совместно обрабатываемых бинарной операцией 

файлов (отношений, многомерных матриц) имела общие ключи (для многомер-

ных матриц – это кэлиевы и скоттовы индексы). В дальнейшем будет считаться, 

что алгебраической моделью процесса служит алгебраическое выражение вида 

A0 = E(A1, …, An), правая часть которого состоит из многомерных матриц – мо-

делей исходных файлов, соединенных знаками операций алгебры многомерных 

матриц, а левая – многомерная матрица – модель выходного файла. При этом 

предполагается, что существует, по крайней мере, одна перестановка матриц A1, 

…, An, при которой любые две соседние матрицы имеют хотя бы один общий 

индекс (кэлиев или скоттов), то есть, над ними может быть произведена опера-

ция сложения или умножения. Подобная система исходных матриц называется 

связной. Пример связной системы исходных матриц приведен на рисунке 3.2. В 

этом графе вершины соответствуют исходным многомерным матрицам, а ребра 

означают наличие у этих матриц общих кэлиевых и/или скоттовых индексов. 

При таком подходе умножение многомерных матриц коммутативно с точно-

стью до транспонирования. 
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Рис. 3.2. Связная система из пяти многомерных матриц 

В общем случае задача заключается в синтезе на основе системы исход-

ных многомерных матриц A1, …, An алгебраического выражения E, в результате 

вычисления которого получается многомерная матрица A0. Синтез этого выра-

жения будет возможен только при выполнении двух условий: 

1. система исходных многомерных матриц A1, …, An связна; 

2. совокупность индексов матрицы A0 есть подмножество объединения сово-

купностей индексов матриц A1, …, An. 

В процессе синтеза алгебраического выражения исходные матрицы вы-

бираются попарно. Чтобы две матрицы могли быть выбраны в качестве операн-

дов одной операции, они должны иметь хотя бы один общий индекс. Если по-

рядок индексов этих матриц не позволяет сразу выполнять предлагаемую в хо-

де синтеза операцию, то одна или обе матрицы могут быть подвергнуты транс-

понированию, стоимость которой включается в стоимость синтезированной 

операции. Выбор операции над матрицами производится по следующим прави-

лам: 

1. если все индексы обеих матриц операндов совпадают, выполняется опера-

ция сложения матриц; 

2. если совпадает только часть индексов, то выполняется операция (, )-

свернутого произведения, те совпадающие индексы, которых нет в матрице-

результате и оставшихся матрицах-операндах, включаются в разбиение c (кэли-

евы индексы), остальные совпадающие индексы – в разбиение s (скоттовы ин-

дексы), а несовпадающие индексы – в разбиения l и m (свободные индексы).  
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Пример 3.3. Этот пример демонстрирует применение правила 2 для связ-

ной системы из пяти исходных матриц, показанной на рисунке 3.2. Пусть: 

 A1 – четырехмерная матрица с набором индексов (i2, i3, i4, i5); 

 A5 – трехмерная матрица с набором индексов (i1, i4, i5); 

 A324 – четырехмерная матрица с набором индексов (i1, i3, i4, i6), полученная в 

результате применения двух бинарных операций к матрицам A3, A2, A4; 

 в результате вычисления выражения ),,,,( 543210 AAAAAEA   должна быть 

получена трехмерная матрица A с набором индексов (i1, i2, i6).   

В этом случае возможно продолжение вычислений тремя различными 

процессами: 

1. 
43

)))((( 53241

1,01,0

ii AAA  . 

2. 
34

)))((( 13245

1,01,0

ii AAA  . 

3. 
43

4

5 ,32451

1,12,0 )))((( ii

i

i AAA  . 

Первые два процесса, практически, одинаковые. В них сначала выполня-

ется операция (0, 1)-свернутого произведения матрицы исходной системы A1 

или A5 и матрицы A324 – результата предыдущих операций. При этом в первом 

процессе свертка производится по кэлиеву индексу i3, а во втором – i4. В ре-

зультате, в первом процессе получается матрица A3241 с набором индексов (i1, i2, 

i4, i6), а во втором – матрица A3245 с набором индексов (i1, i2, i3, i6). Следующая 

операция (0, 1)-свернутого произведения матрицы A3241 на матрицу A5 в первом 

процессе и матрицы A3245 на матрицу A1 во втором со сверткой по кэлиеву ин-

дексу i4 (i3) приводит к получению матрицы A – результата вычисления выра-

жения ),,,,( 54321 AAAAAEA  . Несмотря на то, что оба процесса очень похо-

жи, время их выполнения может быть различным, так как оно зависит от мно-

жеств значений индексов i3 и i4.  

В третьем процессе сначала выполняется операция (1, 1)-свернутого про-

изведения матриц исходной системы A1 и A5. Индекс i4 в этом произведении ис-

пользуется как скоттов, так как он понадобится при последующем умножении 
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на матрицу A324, а индекс i5, который в дальнейшем не понадобится – как кэли-

ев, и по нему будет выполнена свертка. В результате получается матрица A15 с 

набором индексов (i1, i2, i3, i4). Операция (0, 2)-свернутого произведения матриц 

A15 и A324, кэлиевы индексы которой i3 и i4, приводит к получению матрицы A – 

результата вычисления выражения ),,,,( 543210 AAAAAEA  . 

Таким образом, зная наборы индексов всех исходных матриц и набор ин-

дексов матрицы-результата можно, применяя предложенный в этом параграфе 

метод синтезировать алгебраическое выражение – модель процесса МОД. 

3.2.2. Формальное описание метода синтеза и оптимизации 
процесса МОД 

Чтобы применить для достижения поставленной в предыдущем разделе 

цели метод динамического программирования, необходимо доказать, что задача 

синтеза процесса обработки данных относится к классу динамических оптими-

зационных задач. Для доказательства используется метод инвариантного по-

гружения [160, 161]. 

Для решения поставленной задачи в общем виде следует отвлечься от ре-

альных файлов и их моделей, и вместо них рассматривать некоторое множество 

абстрактных объектов. Предполагается, что эти объекты обладают свойствами, 

позволяющими собирать их в пары и каждой паре ставить в соответствие неко-

торое число. Для пояснения дальнейших построений можно считать, что эти 

объекты – вершины графа, соединенные ребрами, которые означают, что две 

вершины образуют пару. Для больше ясности все дальнейшие действия будут 

иллюстрироваться на примере графа, приведенного на рисунке 3.2. Решение 

обобщенной задачи состоит из следующих действий.  

1. Пусть имеется n конечных множеств G. Элементы множества Gs (s=1, … , n) 

обозначаются ),,1( ssi nia
s

 . Множество G1 состоит из n элементов, то есть 

n1=n. Любым двум элементам 11
Gai   и  11

Ga j   ставится в  соответствие ве-

щественное число 
11 jic . Вводятся следующие обозначения: C1 – множество чи-
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сел }{
11 jic ),,1,( 11 nji   и 

1111 jiji cS  . В примере: множество 

},,,,{
11111 543211 aaaaaG  ; множество },,,,,{

111111111111 5443423231211 ccccccC  ; 

преобразованный таким образом граф (рисунок 3.2) показан на рисунке 3.4. Из 

множества C1 исключены (нейтральные) элементы, которые могли бы соответ-

ствовать несуществующим ребрам графа. То есть, элементы множества G1 со-

ответствуют вершинам графа, а элементы множества C1 – весам его ребер. 

 

Рис. 3.4. Граф, соответствующий множествам G1 и C1 

2. Строится множество ][ 112 jiG , состоящее   из   элемента 
11 jia , который заме-

няет пару элементов 11
Gai   и  11

Ga j   и всех элементов 11
Gak  , таких, что 

1111   и jkik  . Из множества C1 исключаются все числа 
11kic  и ,

11ljc

),,1,( 11 nlk   и в него добавляются числа ][ 11 jicp )21(  np , которые 

ставятся в соответствие элементу ][ 11211
jiGa ji   и остальным элементам множе-

ства ][ 112 jiG . Полученное таким образом множество обозначается ][ 112 jiC ,  а 

числа из   этого множества – ][ 1122
jic ji . Элементы множества ][ 112 jiG  перенуме-

ровываются и обозначаются ][ 112
jiai . При таком построении множеств ][ 112 jiG  

и ][ 112 jiC  каждой паре элементов ][][ 112112
jiGjiai   и ][][ 112112

jiGjia j   соот-

ветствует  число ][][ 1121122
jiCjic ji  . Индексы в квадратных скобках означают, 

что по некоторому критерию произведен выбор пары объектов  
1i

a  и  
1j

a . На 

основе этого выбора произведено преобразование (пересчет по некоторому ал-
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горитму) элементов множества C1 в элементы множества ][ 112 jiC . В примере: 

если из множества G1 выбраны элементы 
11 42 и aa , и сохранены все связи этих 

элементов с остальными элементами множества G1, то будут получены образу-

ющие граф (рисунок 3.5) множества 

]}42[],42[],42[],42[{]42[ 114113112111112 2222
aaaaG   и 

]}42[],42[],42[],42[],42[{]42[ 11431142113211311121112 2222222222
cccccC  . В множестве  

]42[ 112G : ]42[,]42[,]42[,]42[ 1125114311131111 212212
aaaaaaa   заменяет пару 

объектов  
11 42 и aa . В множестве ]42[ 112C : 

1122 311131 ]42[ cc  , а остальные эле-

менты вычисляются заново на основе условий взаимодействия нового объекта 

]42[ 1122
a  с остальными объектами, которые перешли из множества G1 в множе-

ство ]42[ 112G  без изменений. А также 
1111 4242 cS  . 

 

Рис. 3.5. Граф, соответствующий выбору объектов 
11 42 и aa  

3. Аналогично строится множество ][ 22113 jijiG  элементов  ][ 22113
jijiai  и мно-

жество ][ 22113 jijiC  элементов )2,,1,(],[ 33221133
 njijijic ji   и вводятся обозна-

чения: ][ 1122112211
jiccS jijijiji   и ][][ 221111 332211332211

jijicjiccS jijijijijiji  .  

4. Этот процесс продолжается до тех пор, пока не будут получены:  
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 множество ][ 1111  nnn jijiG  , состоящее из единственного элемента 

)1(,][ 1111  nnnnji jijijia
nn

  ; 

 сумма ][][ 1122111122112211  nnjijijijijiji jijijicjiccS
nnnn

 .  

Здесь каждый из индексов is и js может принимать значения от 1 до n–s+1, s=1, 

…, n.  

Для решения поставленной задачи требуется найти последовательности  

индексов }{и}{ 00

ss ji  такие, что 
ssss

jijijiji
SS  11

000
1

0
1

  для всех },{и}{ ss ji  

)1,,1,(  snji ss   отличных от  }{и}{ 00

ss ji .  

Это решение возможно методом динамического   программирования.   

Для чего вводится обозначение ss
ss

jiji

ns
snji

s SB 


 11

,,1
1,,1,

min




  и применяется принцип 

инвариантного погружения, заключающийся в том, что вместо исходной задачи 

рассматривается  семейство  задач nssiGxxf iiii

s

i
,,1;,,1;);(min

1
 


. 

Исходная задача получается при s=n. Применение этого принципа состоит в 

следующем.   

Рассматривается семейство  задач минимизации сумм вида 

nkssnjijijicjijiS ssss

n

ks

jikkjiji ssnnkk
,,,1,,1,],[][ 11111111   



  . 

При k=1 получается исходная задача. Далее 

].[][

][][][

11111111

1111

1

11111111

11 









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        (3.1) 

Вводится обозначение  

.min][
1111

,,
1,,1,

1111 




 
ss

ss

jiji

nks
snji

kkk SjijiB 




            (3.2) 

Из равенств (1) и (2) следует, что 
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Тогда в силу обозначения (3.2) 

])[][(min][ 111111111

,,1
1,,1,

1111 kkkkkssji

nk
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kkk jijijiBjijicjijiB
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kk
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
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   (3.3) 

Уравнение (3.3) является уравнением Беллмана для рассматриваемой ис-

ходной задачи. Так как in=jn=1, граничное условие для уравнения (3) записыва-

ется следующим образом 

][][ 1111111111   nnnnn jijicjijiB  .        (3.4) 

Пусть )(и  )( 1111

*

1111

*

 kkkkkk jijijjijii   те значения индексов ik и jk при 

которых достигается минимум в (3.3). При решении уравнения (3.3) с гранич-

ными условиями (3.4) справа налево получается выражение 
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где )( и )( 2211

*

1

0

12211
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1

0

1   nnnnnnnn jijijjjijiii  . При подстановке равен-

ства (3.5) в уравнение (3.3) при k=n – 2, получается выражение 
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где )( и )( 3311
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2   nnnnnnnn jijijjjijiii  . 

При продолжении процесса подстановок, через конечное число шагов бу-

дет получено выражение 
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и 

nsjijijjjijiii ssssssss ,,1),(и  )( 1111

*0

1111

*0    .      (3.7) 

Последовательности nsji ss ,,1где },{ и }{ 00  , определяемые из выраже-

ний (3.6) и (3.7) представляют собой искомое решение задачи в общем случае. 

Таким образом, доказано, что решение задачи синтеза и оптимизации 

процесса МОД может быть реализовано с применением метода динамического 

программирования [74, 117, 162-164].  

 

3.2.3. Реализация метода синтеза и оптимизации процесса 
МОД 

Решение задачи формализации в предыдущем разделе было проведено 

вне зависимости от конкретного смысла элементов исходного множества и ха-

рактера взаимоотношений между ними.  Теперь необходимо   определить   

условия, соответствующие поставленной в начале параграфа задаче синтеза и 

оптимизации процесса МОД. Для этого требуется придать конкретный смысл 

элементам множеств Gs (s=1, … , n). Очевидно, в роли этих элементов должны 

выступать агрегаты данных любой из рассмотренных ранее моделей данных: 

файлы, многомерные матрицы, отношения (таблицы). Поскольку эти модели 

данных есть, по крайней мере, гомоморфные универсальные алгебраические 

системы, в качестве элементов множеств Gs можно выбрать любой из перечис-

ленных. Разница заключается только в способе оценки стоимости операций. 

Для многомерных матриц, как было показано в примере 3.1, оценка стоимости 

операций производится на основе сведений о числе значений индексов много-

мерных матриц – операндов рассматриваемой операции. В случае вычисления 

сложности операций над файлами или отношениями, стоимость операции вы-

числяется на основе метаданных, содержащих информацию о количестве запи-

сей (кортежей) в классах эквивалентности для всех экземпляров множества 

ключей. Эта информация может быть легко получена при индексно-

последовательной организации данных. 
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Пусть элементам множества G1 соответствуют файлы системы исходных 

файлов },,{ 1 nAA  . Тогда числа 
11 jic , из множества С1 соответствуют  стоимо-

стям операций  над   файлами 
11

 и ji AA . Очевидно,  что  множества 

][ 1111  sss jijiG    соответствуют промежуточным системам исходных файлов,  а 

множества ][ 1111  sss jijiC  содержат  стоимости операций обработки   пар   

файлов   из   этих промежуточных  систем.  Тогда   первоначальной   задаче   

синтеза алгебраического выражения – модели процесса последовательной об-

работкой файлов соответствует частный случай решенной выше общей задачи, 

получаемый при   следующих ограничениях: 

1. 0][ 1111  ssii jijic
ss

 , то есть любой из исходных файлов может быть толь-

ко одним операндом в любой из операций (не обрабатывается совместно сам с 

собой); 

2. Выбор пары элементов ][и ][ 11111111  ssjssi jijiajijia
ss

 принадлежащих 

множеству  ][ 1111  sss jijiG   и замена ее  на элемент  множества 

][ 111 sss jijiG   производится  только  в  том случае, когда 

0][ 1111  ssji jijic
ss

 . Выбор такой пары означает, что над файлами, которые 

соответствуют элементам пары, выполняется одна из операций совместной об-

работки (сложение или умножение). 

3. ][][ 11111111   ssijssji jijicjijic
ssss

 , если  над  файлами,  соответствую-

щими  элементам пары,  выбранной из  множества ][ 1111  sss jijiG  , произво-

дится  операция  сложения. 

Синтез алгебраического выражения – модели оптимального процесса об-

работки файлов методом динамического программирования реализуется в  два   

этапа.     

На   первом   этапе    строится граф-сеть, отражающий все пошаговые    

переходы   от    начальной системы   исходных   файлов   к   системе,    содер-
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жащей     только файл-результат.  В этом графе вершины соответствуют систе-

мам исходных файлов,  ребра – операциям,  переводящим систему из q исход-

ных  файлов в систему из q – 1 исходного  файла.   

На   рисунке 3.3   приведен  пример  подобного  графа сети для  непол-

носвязной системы исходных  файлов, показанной на рисунке 3.2. Исходные  

файлы обозначены 51 ,, AA  ;  промежуточные  файлы,  полученные  в результа-

те  обработки s исходных файлов –  )5,5(
1

 sii isG
s .  

На первом шаге в ходе  построения   графа-сети   из   системы   исходных 

файлов },,{ 1 nAAS    выбираются  все  допустимые  пары ),,( ji AA  

),,1,( nji   и строятся промежуточные системы вида },,,{ 11111  nk AAS   где 

один из файлов 1111 ,, nAA   есть  результат  операции над файлами , .i jA A S     

На   этом   же шаге строятся и оцениваются связи, соответствующие    

операциям, переводящим исходную систему в одну из построенных.    

Следующий шаг заключается в построении   всех   возможных   систем 

S2k, состоящих из n – 2 файлов, и   установлении    связей   между системами, 

построенными на предыдущем шаге, и этими системами.   Теперь в каждую си-

стему S2k возможен переход из нескольких систем S1k. Следовательно, в верши-

ну, соответствующую произвольной системе S2k, ведут несколько ребер, исхо-

дящих из вершин, соответствующих системам S1k. Оцениваются связи, соответ-

ствующие операциям, переводящим системы S1k в системы S2k. Все последую-

щие    шаги представляют собой аналогичные построения и продолжаются до 

тех пор, пока не будут построены все системы, состоящие из двух матриц. На 

последнем шаге, при переходе из построенных вершин в конечную, строятся 

все ребра, соответствующие операциям, переводящим системы из двух исход-

ных файлов в файл-результат. Оцениваются соответствующие этим ребрам 

операции и первый этап завершается. 

Второй этап и есть, собственно, динамическое программирование. Здесь 

на каждом шаге, в каждой вершине выбирается условно-оптимальный процесс, 
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соответствующий последовательной операции с минимальной суммарной сто-

имостью. На последнем шаге, который соответствует переходу от системы ис-

ходных файлов к системам из n – 1 файла, среди условно-оптимальных процес-

сов выбирается оптимальный. На рисунке 3.3 выделены промежуточные систе-

мы исходных файлов, которые выбираются на каждом шаге, а оптимальная тра-

ектория обозначена пунктирной линией. 

Рис. 3.3. Синтез оптимального процесса МОД методом  

динамического программирования 

Так реализуется алгоритм синтеза процесса обработки файлов методом 

динамического программирования. Этот метод хорош тем, что его результатом 

является оптимальный процесс.  

Кроме того, полученный процесс может быть улучшен использованием 

алгоритма ветвей-границ. Считая полученное значение сложности процесса 

"рекордом" можно привести перебор возможных процессов с целью поиска 

процесса меньшей сложности. Для доказательства этой возможности был про-

веден вычислительный эксперимент, в ходе которого строились процессы об-

работки системы из десяти исходных файлов. Случайным образом генерирова-

лись группы по 10000 процессов, и вычислялась стоимость каждого процесса. 

Были сгенерированы 1000 групп, в которых распределения процессов по слож-
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ности отличались незначительно. Результат, полученный для одной из таких 

групп, приведен на рисунке 3.4.  

 

Рис. 3.4. Гистограмма распределения процессов МОД по сложности (суммар-

ные длины просмотров) 

3.3. Выбор параллельных алгоритмов для реализации 
операций МОД 

Как было сказано в главе 1, реализация массовой обработки данных 

должна удовлетворять требованиям максимального параллелизма. Это означа-

ет, что программно-аппаратные комплексы, ориентированные на решение задач 

МОД должны конструироваться таким образом, чтобы можно было реализовать 

параллелизмы, как на уровне процессов, так и на уровне операций. Как было 

показано в примерах 1.2 и 1.3, для параллельного решения задачи МОД могут 

быть построены вычислительные комплексы с различными архитектурами. 

Причем цель, которую необходимо достигнуть, состоит в том, чтобы разработ-

чик имел возможность построения индивидуального программно-аппаратного 

комплекса для каждой задачи. В 3.2 было показано, что если задана система ис-

ходных агрегатов данных (файлов, отношений, многомерных матриц) A1, …, An, 

то алгебраическое выражение – модель процесса обработки данных (запроса), 

приводящее к получению результирующего агрегата A, можно представить в 
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1

1
1
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


n

i

in

n

i
nnAA

i
 то есть в виде "суммы произведений".  – адди-

тивная (слияние строго упорядоченных файлов, сложение многомерных мат-

риц, любая из теоретико-множественных) операция,  – мультипликативная 

(слияние нестрого упорядоченных файлов, умножение многомерных матриц,  

Join) операция. В этом случае возникает возможность комбинировать различ-

ные способы распараллеливания вычисления этого выражения, используя рас-

параллеливание, как операций, так и процесса вычислений. При этом возможны 

различные сочетания методов и алгоритмов последовательной и параллельной 

обработки данных в ходе вычисления алгебраического выражения. Подобный 

подход применялся при решении задач линейной алгебры [165-167] как прин-

цип попеременно последовательно-параллельных вычислений, а также при ре-

шении проблемы оптимизации запросов к базам данных [168] как метод после-

довательно-параллельного программирования.  

Из сказанного следует, что вычислительный комплекс, ориентированный 

на решение задач МОД, должен состоять из совокупности соединенных между 

собой подсистем, каждая из которых параллельно реализует одну из операций, 

а вместе они реализуют весь процесс вычислений. Причем, в зависимости от 

характера алгебраического выражения, реализация процесса вычислений может 

быть как последовательной, так и параллельной. При построении гибких вы-

числительных комплексов для реализации МОД следует учесть тот факт, что в 

каждом конкретном случае, архитектура комплекса зависит от выбранного ал-

горитма, который реализует операцию или процесс обработки данных. Далее 

будут рассмотрены конкретные алгоритмы для реализации операции слияния 

нестрого упорядоченных файлов, умножения многомерных матриц или есте-

ственного соединения отношений (JOIN), так как этот класс операций имеет 

наивысшую вычислительную сложность. 

Выбор одной из рассмотренных моделей данных для параллельной реали-

зации операций и процессов МОД определяется характером данных в конкрет-

ной решаемой задаче. Важную роль в этом выборе играют ключи. Пусть в ис-
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ходных файлах каждый ключ принимает все, или почти все, значения из воз-

можных. В этом случае матрицы – модели исходных файлов будут плотными, 

то есть не будут содержать (или будут содержать незначительное количество) 

нейтральных элементов, которые соответствуют универсальным неопределен-

ным записям. Естественно, что в таком случае наилучшей будет многомерно-

матричная модель. В противном случае, если многомерная матрица получается 

разреженной [169, 170], использование файловой модели или реляционной мо-

дели SQL будет более эффективным. 

 

3.4. Алгоритм параллельного умножения многомерных 
матриц 

3.4.1. Выбор алгоритма умножения многомерных матриц 

Для параллельного умножения обычных матриц, как правило, использу-

ются два вида алгоритмов [159]: ленточные, реализующие поэлементное умно-

жение матриц и блочные. Многие авторы, проводившие анализ эффективности 

параллельного умножения матриц [170-173], отдают предпочтение блочным 

алгоритмам, утверждая, что последние обладают высокой степенью масштаби-

руемости. Учитывая тот факт, что масштабируемость – это наиболее важное 

свойство параллельных алгоритмов и вычислительных комплексов их реализу-

ющих, в дальнейшем будет рассматриваться параллельный алгоритм блочного 

умножения многомерных матриц. Метод Фробениуса естественно обобщается 

на многомерные матрицы. Известны различные реализации параллельного 

умножения матриц: алгоритмы Фокса и Кэннона [171], универсальный алго-

ритм для параллельных вычислительных комплексов с распределенной памя-

тью PUMMA [171, 172], масштабируемый универсальный алгоритм SUMMA 

[173]. Для обобщения на многомерные матрицы далее рассматривается алго-

ритм Кэннона, однако, предложенный метод обобщения может быть распро-

странен и на другие алгоритмы блочного умножения матриц. 
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Особенность умножения многомерных матриц, отличающая его от умно-

жения обычных (плоских) матриц и тензоров, заключается в наличии скотто-

вых индексов, которые присутствуют в обеих матрицах-операндах и в матрице-

результате [174-177]. Эта особенность существенно сказывается на алгоритме 

умножения многомерных матриц. При отсутствии скоттовых индексов этот ал-

горитм мало отличается от алгоритма умножения плоских матриц. Далее рас-

сматривается алгоритм параллельного умножения многомерных матриц при 

наличии скоттовых и кэлиевых индексов (>0, >0) . Для простоты, но без 

ограничения общности, удобно считать, что количества значений всех индексов 

во всех разбиениях l, s, c, m матриц-сомножителей A и B одинаковы, то есть 

равны числу n, которое делится на целое число E. 

Пусть даны: p-мерная матрица A (Alsc), q-мерная матрица B (Bscm) и r-

мерная матрица C (Clsm) (r=p+q2) такая, что )(, BAC  
. Если зафиксиро-

вать по одному значению каждого из скоттовых индексов, одинаковому во всех 

трех матрицах (
00

1 ...,, ss ),  то будут получены: (p)-кратное сечение матрицы 

A, (q)-кратное сечение матрицы B и (r)-кратное сечение матрицы C. Все 

эти сечения будут иметь ориентацию )...,,( 1 ss . Пусть 
11

1 ...,, ss  и 
22

1 ...,, ss  

фиксированные наборы значений скоттовых индексов многомерных матриц A, 

B и C, отличающиеся друг от друга, по крайней мере, одним значением. Этим 

наборам значений скоттовых индексов соответствуют два различных сечения 

каждой из матриц. Элементы соответствующих сечений матрицы C вычисля-

ются по следующим формулам: 





n

cc
mmccssccssllmmssll

bac
0...,,

1

...
1

...
1

1...1
1

...
1

1...1
1

...
1

...
1

1...1
1

...
1




,





n

cc
mmccssccssllmmssll

bac
0...,,

1

...
1

...
1

2...2
1

...
1

2...2
1

...
1

...
1

2...2
1

...
1




. 

Из приведенных формул вытекает следующее утверждение. 
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Утверждение 3.1. Результат (, )-свернутого произведения двух много-

мерных матриц A и B размерностей p и q, при наличии скоттовых индексов 

(>0), есть r-мерная матрица C (r=p+q2), составленная из (r)-кратных 

сечений, каждое из которых есть произведение (p)-кратного сечения матри-

цы A и (q)-кратного сечения матрицы B.  При этом наборы значений индек-

сов ss ...,,1  сечений-сомножителей и сечения-результата совпадают. 

Следующий пример иллюстрирует приведенное в утверждении 3.1. свой-

ство умножения многомерных матриц. 

Пример 3.4. Пусть scmlsc bBaA  ,  и lsmсC  трехмерные матрицы, ин-

дексы которых принимают значения от 0 до 2. Однократные сечения ориента-

ции s этих матриц представляют собой двумерные матрицы:   

,

222221220

122121120

022021020

212211210

112111110

012011010

202201200

102101100

002001000

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

Alsc 

,

222221220

212211210

202201200

022121120

012111110

002101100

022021020

012011010

002001000

bbb

bbb

bbb

bbb

bbb

bbb

bbb

bbb

bbb

Bscm 

222221220

122121120

022021020

212211210

112111110

012011010

202201200

102101100

002001000

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

ccc

Clsm  . 

Тогда элементы (1, 1)-свернутого произведения C =
 (1, 1)AB с одним скот-

товым индексом s и одним кэлиевым индексом c вычисляются по формулам, 

приведенным в таблице 3.1. Ни один элемент одного столбца таблицы не 

встречается в других столбцах, что соответствует утверждению 3.1. 

Таблица 3.1. Вычисление 2-мерных сечений ориентации s матрицы  

0)( sC s  1)( sC s  2)( sC s  

c000=a000b000+a001b010+a002b020 

c001=a000b001+a001b011+a002b021 

c002=a000b002+a001b012+a002b022 

c010=a010b100+a011b110+a012b120 

c011=a010b101+a011b111+a012b121 

c012=a010b102+a011b112+a012b122 

c020=a020b200+a021b210+a022b220 

c021=a020b201+a021b212+a022b221 

c022=a020b202+a021b212+a022b222 

c100=a100b000+a101b010+a102b020 

c101=a100b001+a101b011+a102b021 

c110=a110b100+a111b110+a112b120 

c111=a110b101+a111b111+a112b121 

c120=a120b200+a121b210+a122b220 

c121=a120b201+a121b212+a122b221 
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c102=a100b002+a001b012+a102b022 c112=a110b102+a111b112+a112b122 c122=a120b202+a121b212+a122b222 

c200=a200b000+a201b010+a202b020 

c201=a200b001+a201b011+a202b021 

c202=a200b002+a201b012+a202b022 

c210=a210b100+a211b110+a212b120 

c211=a210b101+a211b111+a212b121 

c212=a210b102+a211b112+a212b122 

c220=a220b200+a221b210+a222b220 

c221=a020b201+a021b212+a022b221 

c222=a220b202+a221b212+a222b222 

Таким образом (1, 1)-свернутое произведение трехмерных матриц сводится к ns 

(в примере к трем) (0, 1)-свернутым произведениям ориентации s. 

Очевидно, что в общем случае наибольшее число (0, )-свернутых произ-

ведений сечений ориентации )...,,( 1 ss  матриц-сомножителей равно 

ss nn ...
1

. 

Как и в случае умножения плоских матриц, алгоритм умножения много-

мерных матриц – простых сечений матриц A и B ориентации )...,,( 1 ss реали-

зуется параллельно выполняемыми процессами. Поскольку умножения этих 

сечений не зависят друг от друга, далее рассматривается умножение в рамках 

только одного сечения. Каждый процесс выполняет умножение блоков этих 

матриц A и B, в результате которого получается блок матрицы C.  

Сложность обобщения заключается в том, в алгоритме Кэннона, реали-

зующем умножение плоских матриц, операции циклического сложения выпол-

няются над тремя индексами, а в случае многомерных матриц необходимо вы-

полнять эту операцию над ++ индексами. Это существенно усложняет как 

формализацию задачи пересылки блоков матриц операндов между процессами, 

так и реализацию алгоритма пересчета значений индексов. Поскольку предпо-

лагается, что все индексы всех сечений принимают одно и то же количество 

значений от 0 до n-1, то далее рассматривается метод, основанный на представ-

лении каждого набора значений индексов в виде числа в системе счисления с 

основанием E (E<n), смысл которого будет определен в дальнейшем. 

Пусть T такое число, что n, n и n кратны T и 
n

E
T

 . Тогда матрицы A и B 

могут быть разбиты  на  E2(+) и E2(+) блоков соответственно. Следуя требова-
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ниям алгоритма Кэннона, предполагается, что , то есть обе матрицы содер-

жат одинаковое количество свободных индексов. Следовательно, в этом случае 

для параллельной реализации (0, )-свернутого произведения требуется E2(+) = 

E2(+)  процессов. Каждый процесс последовательно выполняет умножение со-

ответствующих друг другу блоков условно двумерных матриц A и B и склады-

вает произведение с блоком условно двумерной матрицы C. После выполнения 

последней итерации блок матрицы C принимает окончательное значение. При 

этом должны выполняться следующие требования: 

1. Блок матрицы A – это ее сечение, в котором индексы разбиения l и c прини-

мают E последовательных значений, индексы разбиения s – единственное зна-

чение.   

2. Блок матрицы B – это ее сечение, в котором индексы разбиения m и c при-

нимают E последовательных значений, индексы разбиения s – единственное 

значение. 

3. Блок матрицы C – это ее сечение, в котором индексы разбиения l и m при-

нимают n последовательных значений, индексы разбиения s – единственное 

значение. 

Общее число процессов, необходимых для вычисления одного сечения 

ориентации )...,,( 1 ss  матрицы-результата C, определяется, общим числом 

индексов разбиений l и m, равным  +  и, в рассматриваемом случае, числом 

E,  которому кратно n – количество значений каждого индекса. Тогда индекс 

процесса можно представить в виде триады: 
m

E

l

E NssN  00

1 ...,,  , где 
l

EN  и 
m

EN  

– числа в E-ричной системе счисления, принимающие значения от 0 до E1 и 

E1. Следовательно, количество процессов, необходимых для вычисления од-

ного сечения матрицы C равно E+. Тем самым, многомерные матрицы-

операнды каждого (0, )-свернутого произведения можно рассматривать, как 

условно трехмерные. Далее приводится описание алгоритма блочного умноже-

ния многомерных матриц, аналогичного алгоритму Кэннона. 
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3.4.2. Описание алгоритма умножения многомерных матриц 

Как и большинство алгоритмов умножения матриц, алгоритм умножения 

многомерных матриц [110, 170] состоит из двух этапов.  

На первом этапе производится "обнуление" (заполнение значениями 

нейтрального элемента) блоков сечения матрицы C в соответствующих процес-

сах и распределение по процессам блоков сечений матриц A и B. Распределение 

может быть физическим, если каждый процесс связан с автономным запоми-

нающим устройством, или логическим, если все процессы обрабатывают дан-

ные, расположенные на одном запоминающем устройстве. 

Поскольку, как показано в разделе 3.4.1, общий индекс процесса можно 

представить в виде триады: 
* *

1 , ...,l m

E EN s s N  , где 
l

EN  и 
m

EN  – числа в E-ричной 

системе счисления, принимающие значения от 0 до E1 = E1 и соответству-

ющие свободным индексам обеих матриц. Пересчет индексов процессов произ-

водится посредством сложения чисел  
l

EN  и 
m

EN  с целым числом, которое за-

дается на каждом шаге алгоритма.   Фиксированные значения  
* *

1 , ...,s s  скотто-

вых индексов в пересчете не участвуют и используются только для идентифи-

кации сечения. Таким образом многомерные сечения условно трехмерных мат-

риц сводятся к условно двумерным матрицам и (0, )-свернутое произведение 

сводится к условно (0, 1)-свернутому произведению, что позволяет упростить 

обобщение алгоритма Кэннона. 

В начальном состоянии предполагается, что каждый процесс связан с 

блоками матриц A и B, индексы которых соответствуют индексам процесса. Это 

означает, что для сечения ориентации 
**

1 ...,, ss  при фиксированных i и j 

0, ..., 1... 1, 1... 1i E E j E E
 

      , где 1... 1 1,E E E



    1... 1 1E E E



     процес-

су * *
1 1 1... , ..., ...i i i il l s s m m

P
  

 будут соответствовать блоки * *
1 1 1... , ..., ...i i i il l s s c c

A
  

  и * *
1 1 1, ..., ... ...i i i is s c c m m

B
  

 

матриц A и B. Начальная привязка блоков матриц A и B к процессам приведена 

в таблице 3.2. 
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Таблица 3.2. Начальная привязка блоков матриц-операндов к процессам 
* *
1

* *
1

* *
1

0...0 ... 0...0

0...0 ... 0...0

... 0...00...0

s s

s s

s s

P

A

B



 



 



 
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1
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1
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1
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1
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* *
1

* *
1

* *
1

0...2 ... 1... 1

0...2 ... 1... 1

... 0...2 1... 1

s s E E

s s E E

s s E E

P

A

B



 



 



 

 

 

 

 

… 

* *
1

* *
1

* *
1

1... 1 2 ... 0...0

1... 1 2 ... 0...0

... 1... 1 20...0

E E E s s

E E E s s

s s E E E

P

A

B













  

  

  

 

* *
1

* *
1

* *
1

1... 1 2 ... 0...1

1... 1 2 ... 0...1

... 1... 1 20...1

E E E s s

E E E s s

s s E E E

P

A

B













  

  

  

 

* *
1

* *
1

* *
1

1... 1 2 ... 0...2

1... 1 2 ... 0...2

... 1... 1 20...2

E E E s s

E E E s s

s s E E E

P

A

B













  

  

  

 
… * *

1

* *
1

* *
1

1... 1 2 ... 1... 1 2

1... 1 2 ... 1... 1 2

... 1... 1 2 1... 1 2

E E E s s E E E

E E E s s E E E

s s E E E E E E

P

A

B



 



 



 

     

     

     

 

* *
1

* *
1

* *
1

1... 1 2 ... 1... 1

1... 1 2 ... 1... 1

... 1... 1 2 1... 1

E E E s s E E

E E E s s E E

s s E E E E E

P

A

B



 



 



 

    

    

    

 

* *
1

* *
1

* *
1

1... 1 ... 0...0

1... 1 ... 0...0

... 1... 10...0

E E s s

E E s s

s s E E

P

A

B













 

 

 

 

* *
1

* *
1

* *
1

1... 1 ... 0...1

1... 1 ... 0...1

... 1... 10...1

E E s s

E E s s

s s E E

P

A

B













 

 

 

 

* *
1

* *
1

* *
1

1... 1 ... 0...2

1... 1 ... 0...2

... 1... 10...2

E E s s

E E s s

s s E E

P

A

B













 

 

 

 
… * *

1

* *
1

* *
1

1... 1 ... 1... 1 2

1... 1 ... 1... 1 2

... 1... 1 1... 1 2

E E s s E E E

E E s s E E E

s s E E E E E

P

A

B



 



 



 

    

    

    

 

 

* *
1

* *
1

* *
1

1... 1 ... 1... 1

1... 1 2 ... 1... 1

... 1... 1 2 1... 1

E E s s E E

E E E s s E E

s s E E E E E

P

A

B



 



 



 

   

    

    

 

Таблица 3.3. Привязка блоков матриц-операндов к процессам после выполне-

ния первого этапа алгоритма  
* *
1

* *
1

* *
1

0...0 ... 0...0

0...0 ... 0...0

... 0...00...0

s s

s s

s s

P

A

B



 



 



 

 

* *
1

* *
1

* *
1

0...0 ... 0...1

0...0 ... 0...1

... 0...10...1

s s

s s

s s

P

A

B



 



 



 

 

* *
1

* *
1

* *
1

0...0 ... 0...2

0...0 ... 0...2

... 0...20...2

s s

s s

s s

P

A

B



 



 



 

 

… * *
1

* *
1

* *
1

0...0 ... 1... 1 2

0...0 ... 1... 1 2

... 1... 1 2 1... 1 2

s s E E E

s s E E E

s s E E E E E E

P

A

B



 



 



 

  

  

     

 

* *
1

* *
1

* *
1

0...0 ... 1... 1

0...0 ... 1... 1

... 1... 1 1... 1

s s E E

s s E E

s s E E E E

P

A

B



 



 



 

 

 

   

 

* *
1

* *
1

* *
1

0...1 ... 0...0

0...1 ... 0...1

... 0...10...0

s s

s s

s s

P

A

B



 



 



 

 

* *
1

* *
1

* *
1

0...1 ... 0...1

0...1 ... 0...2

... 0...20...1

s s

s s

s s

P

A

B



 



 



 

 

* *
1

* *
1

* *
1

0...1 ... 0...2

0...1 ... 0...3

... 0...30...2

s s

s s

s s

P

A

B



 



 



 

 

… * *
1

* *
1

* *
1

0...1 ... 1... 1 2

001 ... 1... 1

... 1... 1 1... 1 2

s s E E E

s s E E

s s E E E E E

P

A

B



 



 



 

  

 

    

 

* *
1

* *
1

* *
1

0...1 ... 1... 1

0...1 ... 0...0

... 0...0 1... 1

s s E E

s s

s s E E

P

A

B



 



 



 

 

 

 

* *
1

* *
1

* *
1

0...2 ... 0...0

0...2 ... 0...2

... 0...20...0

s s

s s

s s

P

A

B



 



 



 

 

* *
1

* *
1

* *
1

0...2 ... 0...1

0...2 ... 0...3

... 0...30...1

s s

s s

s s

P

A

B



 



 



 

 

* *
1

* *
1

* *
1

0...2 ... 0...2

0...2 ... 0...4

... 0...40...2

s s

s s

s s

P

A

B



 



 



 

 

… * *
1

* *
1

* *
1

0...2 ... 1... 1 2

0...2 ... 0...0

... 0...0 1... 1 2

s s E E E

s s

s s E E E

P

A

B



 



 



 

  

  

 

* *
1

* *
1

* *
1

0...2 ... 1... 1

0...2 ... 0...1

... 0...1 1... 1

s s E E

s s

s s E E

P

A

B



 



 



 

 

 

 

… 
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* *
1

* *
1

* *
1

1... 1 2 ... 0...0

1... 1 2 ... 1... 1 2

... 1... 1 20...0

E E E s s

E E E s s E E E

s s E E E

P

A

B







 





  

     

  

 

* *
1

* *
1

* *
1

1... 1 2 ... 0...1

1... 1 2 ... 1... 1

... 1... 10...1

E E E s s

E E E s s E E

s s E E

P

A

B







 





  

    

 

 

* *
1

* *
1

* *
1

1... 1 2 ... 0...2

1... 1 2 ... 0...0

... 0...00...2

E E E s s

E E E s s

s s

P

A

B











 

  

  

 

… * *
1

* *
1

* *
1

1... 1 2 ... 1... 1 2

1... 1 2 ... 1... 1 4

... 1... 1 4 1... 1 2

E E E s s E E E

E E E s s E E E

s s E E E E E E

P

A

B



 



 



 

     

     

     

 

* *
1

* *
1

* *
1

1... 1 2 ... 1... 1

1... 1 2 ... 1... 1 3

... 1... 1 2 1... 1

E E E s s E E

E E E s s E E E

s s E E E E E

P

A

B



 



 



 

    

     

    

 

* *
1

* *
1

* *
1

1... 1 ... 0...0

1... 1 ... 1... 1

... 1... 10...0

E E s s

E E s s E E

s s E E

P

A

B







 





 

   

 

 

* *
1

* *
1

* *
1

1... 1 ... 0...1

1... 1 ... 0...0

... 0...00...1

E E s s

E E s s

s s

P

A

B











 

 

 

 

* *
1

* *
1

* *
1

1... 1 ... 0...2

1... 1 ... 0...1

... 0...10...2

E E s s

E E s s

s s

P

A

B











 

 

 

 

… * *
1

* *
1

* *
1

1... 1 ... 1... 1 2

1... 1 ... 1... 1 3

... 1... 1 3 1... 1 2

E E s s E E E

E E s s E E E

s s E E E E E E

P

A

B



 



 



 

    

    

     

 

* *
1

* *
1

* *
1

1... 1 ... 1... 1

1... 1 ... 1... 1 2

... 1... 1 2 1... 1

E E s s E E

E E s s E E E

s s E E E E E

P

A

B



 



 



 

   

    

    

 

 

Распределение блоков основано на том, что наборы фиксированных зна-

чений индексов разбиений l и m можно рассматривать как числа в E-ричной си-

стеме счисления 1( ... )i i

El l  и 1( ... )j j

Em m . Тогда первый этап алгоритма состоит 

из следующих шагов:  

На первом этапе алгоритма выполняются следующие действия:  

1. Блок матрицы A с набором значений индексов  1( ... )i i

El l  разбиения l свя-

зывается с процессом, набор значений индексов разбиения m которого вычис-

ляется по формуле.  1( ( ... ) ) mod ( 0, ..., 1... 1).i i

EE l l i E i E E 





       

2. Блок матрицы B с набором значений индексов 1( ... )j j

Em m   разбиения m 

связывается с процессом, набор значений индексов разбиения m которого вы-

числяется по формуле. 1( ( ... ) ) mod ( 0, ..., 1... 1).j j

EE m m j E j E E 





      

Привязка блоков матриц A и B к процессам после завершения первого эта-

па алгоритма приведена в таблице 3.3. 

Второй этап алгоритма состоит из E итераций, на каждой из которых вы-

полняются три действия: 

1. Каждый процесс * *
1 1 1... , ..., ...i i i il l s s m m

P
  

  выполняет умножение связанных с ним 

блоков матриц A и B и складывает результат умножения с соответствующим 

ему блоком матрицы C. 
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2. Блок матрицы A с набором значений индексов  1( ... )i i

El l  разбиения l связы-

вается с процессом, набор значений индексов разбиения m которого вычисляет-

ся по формуле 1( ( ... ) 1) mod ( 0, ..., 1... 1).i i

EE l l E i E E 





     .   

3. Блок матрицы B с набором значений индексов 1( ... )j j

Em m   разбиения m свя-

зывается с процессом, набор значений индексов разбиения m которого вычис-

ляется по формуле. 1( ( ... ) 1) mod ( 0, ..., 1... 1).j j

EE m m E j E E 





      

Последовательности произведений блоков матриц A и B, участвующих 

вычислениях блоков матрицы C на всех E итерациях приведены в таблице 3.4. 

Таблица 3.4. Выполнение действий на итерациях второго этапа алгоритма 

Индекс процесса Итерация Слагаемое 

(произведение блоков матриц A и B) 

0...00...0
 

  
0 

* * * *
1 10..0 ... 0...0 ... 0...00...0s s s s

A B
 

   



 

1 
* * * *
1 10...0 ... 0...1 ... 0...10...0s s s s

A B
 

   

  

… 

E2 * * * *
1 10...0 ... 1... 1 2 ... 1... 1 20...0s s E E E s s E E E

A B
 

  

     
  

E1 * * * *
1 10...0 ... 1... 1 1 ... 1... 1 10...0s s E E E s s E E E

A B
 

  

     
  

0...00...1
 

 
0 

* * * *
1 10...0 ... 0...1 ... 0...10...1s s s s

A B
 

   

  

1 
* * * *
1 10...0 ... 0...2 ... 0...20...1s s s s

A B
 

   

  

… 

E2 * * * *
1 10...0 ... 1... 1 ... 1... 10...1s s E E s s E E

A B
 

  

   
  

E1 * * * *
1 10...0 ... 0...0 ... 0...00...1s s s s

A B
 

   

  

… 
0...0 1... 1 2E E E

 

  
 

0 
* * * *
1 10...0 ... 1... 1 2 ... 1... 1 2 1... 1 2s s E E E s s E E E E E E

A B
 

   

        
  

1 
* * * *
1 10...0 ... 1... 1 ... 1... 1 1... 1 2s s E E s s E E E E E

A B
 

   

      
  

… 

E2 * * * *
1 10...0 ... 1... 1 4 ... 1... 1 4 1... 1 2s s E E E s s E E E E E E

A B
 

   

        
  

E1 * * * *
1 10...0 ... 1... 1 3 ... 1... 1 3 1... 1 2s s E E E s s E E E E E E

A B
 

   

        
  

0...0 1... 1E E
 

 
 

0 
* * * *0...0 ... 1... 1 ... 1... 1 1... 1
1 1

s s E E s s E E E E
A B

 
   


     

 

1 
   









1...10...0*...*
1

0...0*...*
1

0...0 


EEssss
BA  

… 
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E2 

       









21...131...1*...*
1

31...1*...*
1

0...0 


 EEEEEEssEEEss
BA  

E1 
       









21...121...1*...*
1

21...1*...*
1

0...0 


 EEEEEEssEEEss
BA  

0...10...0
 

  
0 

  







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Пример 3.5. В этом примере рассматривается реализация алгоритма 

умножения многомерных матриц при условиях подобных рассмотренным в 

примере 3.4. Пусть E=3, тогда ,lsc scmA A B B   и lsmC C  – трехмерные мат-

рицы, индексы которых принимают значения от 0 до 2, а элементы – блоки 

матриц A, B и C. Распределение блоков произвольного сечения ориентации s 

матриц A, B и C по процессам после выполнения первого этапа алгоритма пока-

зано в таблице 3.5. 

Таблица 3.5. Распределение блоков сечения матриц A, B и C по процессам 

P0s0 C0s0, A0s0, Bs00 P1s0 C1s0, A1s0, Bs00 P2s0 C2s0, A 2s2, Bs20 

P0s1 C0s1, A0s1, Bs11 P1s1 C1s1, A1s1, Bs11 P2s1 C2s1, A 2s0, Bs20 

P0s2 C0s1, A0s2, Bs22 P1s2 C1s2, A1s0, Bs02 P2s2 C2s2, A2s1, Bs12 

Схема перемещения блоков сечений матриц A и B между процессами на 

втором этапе алгоритма при s=0 показана на рисунке 3.4. 
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Рис. 3.4. Схема пересылки блоков сечения на втором этапе алгоритма 

Последовательности произведений блоков сечений матриц A и B в каж-

дом процессе на втором этапе алгоритма при s=0 приведены в таблице 3.6. 

Таблица 3.6. Порядок вычисления блоков сечения матрицы C 

Процесс Слагаемые 

итерация 1 итерация 2 итерация 3 

P000 A000B000 A001B010 A002B020 

P001 A001B011 A002B021 A000B001 

P002 A002B022 A000B002 A001B012 

P100 A101B010 A102B020 A100B000 

P101 A102B021 A100B001 A101B011 

P102 A100B002 A001B012 A102B022 

P200 A202B020 A200B000 A201B010 

P201 A200B001 A201B011 A202B021 

P202 A201B012 A202B022 A200B002 

Рассмотренный алгоритм умножения многомерных матриц обладает од-

ним важным качеством, которое следует из утверждения 3.1. Независимость 

умножений сечений матриц-сомножителей по скоттовым индексам (ориента-
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ции )...,,( 1 ss ) порождает дополнительный уровень параллелизма, на котором 

гиперпроцессы P1, …, Ps (наибольшее значение 
ss nns  ...

1
, если все сечения 

простые) параллельно реализуют параллельные алгоритмы умножения сечений 

матриц A и B. Эти сечения имеют меньшую размерность или меньшее количе-

ство элементов чем матрицы A и B. 

  

3.5. Алгоритм параллельной реализации операции слияния 
нестрого упорядоченных файлов 

3.5.1. Анализ алгоритмов параллельной реализации опера-
ции слияния нестрого упорядоченных файлов 

Как было показано в главе 2, операция слияния нестрого упорядоченных 

файлов соответствует операции ( -свернутого произведения многомерных 

матриц, операции Join в реляционной модели SQL и аналогичным ей операциям 

в других моделях данных. Это, во всех смыслах, наиболее сложная операция 

обработки данных. С одной стороны, алгоритмы ее реализации, независимо от 

того реализуется она последовательно или параллельно, сложны в разработке, с 

другой –  они имеют большую вычислительную сложность и требуют много 

оперативной памяти и машинного времени. Поэтому уже длительное время ве-

дутся исследования в области анализа и разработки эффективных параллель-

ных алгоритмов реализации операции Join [178, 179].  В настоящее время ве-

дутся разработки с использованием современных средств вычислительной тех-

ники [180, 181], в том числе и в ставшем популярным направлении обработки 

данных в оперативной памяти (In-Memory Database) [182, 183]. Далее рассмат-

ривается параллельный алгоритм реализации операции слияния нестрого упо-

рядоченных файлов, основанный на предложенном способе распределения 

данных. 

Согласно определению, данному в главе 2, в операции слияния нестрого 

упорядоченных файлов участвуют два файла XL и YM. При реализации операции 

множество ключей файла-результата ZK формируется на основе множеств клю-
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чей файлов-операндов XL и YM. Добавление новых ключей в файл-результат не 

влияет на алгоритм, реализующий слияние нестрого упорядоченных файлов. 

Поэтому, без ограничения общности, при разработке алгоритма можно считать, 

что все три файла: XK, YK и ZK имеют одно и то же множество ключей K. Если 

{K*}X  – совокупность всех экземпляров множества ключей K в записях файла 

XK, а {K*}Y  – совокупность всех экземпляров множества ключей K в записях 

файла YK, то, в общем случае, совокупность всех экземпляров множества клю-

чей K в записях файла ZK определяется как  {K*}Z {K*}X  {K*}Y. Тогда можно 

определить файл-результат ZK как 
n

i
KKK

ii

YXfZ
1

)( *
)(

*
)(



 , n – количество элемен-

тов в множестве {K*}Z.  Это определяет свойства алгоритмов реализации опера-

ции слияния нестрого упорядоченных файлов. 

Для того чтобы было понятно каким должен быть параллельный алго-

ритм, реализующий операцию слияния нестрого упорядоченных файлов, далее 

рассматриваются последовательные алгоритмы ее реализующие. В логически-

последовательной обработке данных используются два основных алгоритма.  

Алгоритм 1. Предполагается, что оба файла-операнда упорядочены по 

множеству ключей K. Один из файлов, пусть XL, определяется как ведущий, 

другой, YM, – как ведомый.  

Считывание ведущего файла в оперативную память осуществляется по-

следовательно классами эквивалентности *K
X . Для каждого прочитанного 

класса эквивалентности *K
X продолжается последовательное считывание ве-

домого файла YM, и если ведомый файл содержит класс эквивалентности *K
Y , 

то каждая запись этого класса эквивалентности обрабатывается со всеми распо-

ложенными в оперативной памяти записями класса эквивалентности *K
X . В 

результате этой обработки формируются записи класса эквивалентности *K
Z  

файла-результата. Процесс считывания и обработки продолжается до тех пор, 

пока один из файлов не будет прочитан полностью. 
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Алгоритм 2. Предполагается, что оба файла-операнда по-разному упоря-

дочены по множеству ключей K. Ведущий файл XL упорядочивается по множе-

ству ключей L при условии, что ключи множества ключей K младшие  (при 

сравнении следуют за остальными ключам из L). Ведомый файл YM  упорядочи-

вается по множеству ключей K, то есть превращается в файл YK.  

Класс эквивалентности файла XL считывается последовательно по одной 

записи. Прочитанная запись сравнивается по множеству ключей K с очередной 

записью файла YK, и, при выполнении условия слияния, обе записи обрабаты-

ваются и включаются в формирование записи файла-результата. После завер-

шения считывания очередного класса эквивалентности ведущего файла XL, ве-

домый файл YK начинает считываться с начала (открывается заново). Процесс 

считывания и обработки продолжается до тех пор, пока ведущий файл не будет 

прочитан полностью. 

Очевидно, что первый алгоритм требует больших объемов оперативной 

памяти для размещения в ней целого класса эквивалентности ведущего файла, а 

второй – значительного машинного времени для многократно считывания с 

начала ведомого файла. В современных СУБД используются различные сред-

ства оптимизации рассматриваемой операции (Join), например, хеширование. 

Кроме того, в современных системах разработчик запроса имеет возможность 

указать исполнителю (компилятору) запроса какой алгоритм слияния предпо-

чтителен. 

3.5.2. Организация данных для параллельной реализации 
операции слияния нестрого упорядоченных файлов 

Для параллельной реализации рассматриваемой операции необходимо, 

чтобы файлы-операнды были распределены между процессами так, как это по-

казано на рисунке 3.5. Как и в случае алгоритма умножения многомерных мат-

риц распределение может быть физическим или логическим. И в том и в другом 

случае способ распределения зависит от архитектуры вычислительного ком-

плекса. 
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Рис. 3.5. Распределение файлов-операндов между процессами 

Это означает, что если операция реализуется посредством N параллель-

ных процессов, то файлы XK и YK должны быть разделены на N фрагментов, ко-

торые удовлетворяют следующим требованиям: 

1. Фрагменты файлов XK и YK с номером i (i1, …, N) связаны с процессом Pi. 

Они содержат классы эквивалентности с одинаковыми значениями экземпляров 

множества ключей K. То есть, если класс эквивалентности, соответствующий 

экземпляру множества ключей K*, содержится в i-том фрагменте файла XK, то 

аналогичный класс эквивалентности содержится и в i-том фрагменте файла YK. 

Или, для любого i из *
)( iK

X  следует *
)( iK

Y . 

2. Каждый класс эквивалентности полностью расположен в одном фрагменте 

соответствующего файла.  То есть все записи, принадлежащие одному классу 

эквивалентности, располагаются только в одном фрагменте соответствующего 

файла операнда. 

3.  Каждый процесс формирует свой фрагмент файла-результата ZK. Эти фраг-

менты не пересекаются, а сам файл-результат формируется как их объединение.  

Реализация распределения классов эквивалентности файлов XK и YK по 

фрагментам осуществляется на основе системных метаданных, которые обес-

печивают индексно-последовательное представление данных из этих файлов. 

Это позволяет использовать эффективный в рассматриваемом случае индексно-

последовательный метод доступа (ISAM) [184, 185]. При использовании ISAM 

данные хранятся в последовательных (или логически последовательных) в фай-

лах XK и YK и упорядочены по множеству ключей K. Каждому файлу данных 
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ставится в соответствие файл (хеш-таблица), содержащий метаданные (индек-

сы), служащие для доступа к записям каждого класса эквивалентности [117].  

Для реализации распределения классов эквивалентности файлов XK и YK, 

им ставятся в соответствие индексные файлы: 

),,,...,,,( *

)(11

*

)1(  nXnXnXXK mIKmIKindX  и ),,,...,,,( *

)(11

*

)1(  nYnYnYYK mIKmIKindY   

(n – общее количество экземпляров множества ключей K). 

Здесь 
*

)( jK  – экземпляр множества ключей K, IjX  (IjY) – индекс первой за-

писи класса эквивалентности *
)( jK

X )( *
)( jK

Y , mjX  (mjY) – количество записей в клас-

се эквивалентности, соответствующем этому экземпляру множества ключей. В 

обоих индексных файлах, если класс эквивалентности *
)( jK

X  состоит из един-

ственной универсальной неопределенной записи , то значение IjX  (IjY) не 

определено, а mjX (mjY)0. Естественно, реализации файлов KK indYindX и не со-

держат записи с неопределенными значениями. Построение индексных файлов 

KK indYindX и  осуществляется однопроходными алгоритмами, не требующими 

дополнительной оперативной памяти. Для реализации операции важно и то, что 

оба индексных файла строго упорядочены. Кроме того, на практике, в боль-

шинстве случаев, размер записи файла данных значительно больше размера за-

писи соответствующего ему индексного файла. 

Очевидно, что файл-результат будет содержать только те классы эквива-

лентности, экземпляры множества ключей которых принадлежат пересечению 

индексных файлов операндов ( KK indYindX  ). Из этого следует, что перед вы-

полнением операции слияния нестрого упорядоченных файлов целесообразно 

выполнить операцию слияния соответствующих им строго упорядоченных ин-

дексных файлов, реализующую операцию пересечения. Тогда объемы обраба-

тываемых данных уменьшатся, а время выполнения операции слияния нестрого 

упорядоченных файлов сократится.  

В самом простом случае распределения файлов по процессам каждый 

фрагмент файла-операнда содержит единственный класс эквивалентности. То-
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гда время выполнения операции слияния нестрого упорядоченных файлов XK и 

YK будет равно времени выполнения самого сложного декартова произведения 

классов эквивалентности. Если предположить, что оба класса эквивалентности 

*
)( jK

X  и *
)( jK

Y расположены в оперативной памяти, то это время будет пропорцио-

нально величине mjX mjY. В реальных условиях фрагменты могут содержать 

несколько классов эквивалентности. Тогда процесс, реализующий обработку 

пары, фрагменты которой содержат по  p классов эквивалентности файлов XK  и 

YK, формирует  



p

j

jYjX mmR
1

 записей файла-результата ZK.  Значения R для 

разных процессов будут различными. Распараллеливание будет тем эффектив-

нее, чем будет меньше значение разности Rmax и Rmin.  

Предложенный принцип распределения данных можно определить, как 

принцип симметричного горизонтального распределения данных. Действитель-

но: 

 файлы-операнды разбиваются на фрагменты так, как это принято при го-

ризонтальном распределении данных; 

 фрагменты файлов-операндов, связанные с одним процессом, содержат 

классы эквивалентности, соответствующие одним и тем же экземплярам мно-

жества ключей, то есть симметричны. 

3.5.3. Параллельный алгоритм реализации операции слия-
ния нестрого упорядоченных файлов 

Так же, как и алгоритм умножения многомерных матриц, алгоритм опе-

рации слияния нестрого упорядоченных файлов состоит из двух этапов.  

На первом этапе производится распределение фрагментов файлов-

операндов между процессами. Отличие от распределения блоков матриц за-

ключается в том, что классы эквивалентности содержат разное количество за-

писей, в то время как все блоки матриц одинаковые. Поэтому для распределе-

ния фрагментов файлов необходимо использовать специальные оптимизацион-

ные методы, подобные методу загрузки рюкзака, например, метод, известный 
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как   0-1 мультипликативный рюкзак. Недостаток этих методов состоит в том, 

что реализующие их алгоритмы имеют экспоненциальную вычислительную 

сложность. Некоторые авторы [186, 187] относят эти алгоритмы к классу NP. 

Для упрощения работы и сокращения времени распределения файлов-

операндов предлагается эвристический алгоритм, описание которого приводит-

ся далее. 

3.5.3.1. Эвристический алгоритм распределения 

В этом разделе дано формальное описание задачи оптимального распре-

деления, даны необходимые обозначения, представлен алгоритм ее решения и 

его анализ [188-194]. 

Пусть нам дан набор из n элементов, каждый из которых имеет вес wj (j = 

1, ..., n), и набор из m хранилищ, каждое из которых способно вместить необхо-

димый объем данных. Значение переменной xij{0, 1} xij=1 означает, что эле-

мент j размещен в хранилище i (i=1, …, m; j=1, …, n), в противном случае xij=0. 

Кроме того должно выполняться условие: если xij = xkj то i=k, которое означает, 

что один объект может располагаться только в одном хранилище. Тогда целе-

вая в общем виде функция имеет вид: 

Minimize 1 1

1 1 1 1

( , ..., ) ( , ..., )
n n n n

j j j mj j j j mj

j j j j

z Max w x w x Min w x w x
   

     .   

Эта целевая функция позволяет решить задачу симметричного горизон-

тального распределения файлов. 

Для решения задачи оптимального распределения используется алгоритм, 

показанный на листинге 3.1 (язык программирования C#). На вход алгоритма 

подаются два массива: 

 Упорядоченный по возрастанию или убыванию массив записей, которые 

содержат сведения об n объектах. Эти записи содержат по крайней мере два по-

ля, среди которых есть два обязательных: идентификатор и вес объекта. Массив 

упорядочивается по весу объекта. В случае задачи симметричного горизонталь-

ного распределения файлов эти поля содержат ключ класса эквивалентности и 
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вычислительную сложность декартова произведения соответствующих этому 

ключу классов эквивалентности файлов-операндов. 

 Массив коллекций объектов для каждого хранилища. Записи каждой кол-

лекции также содержат идентификатор и вес item. Размерность этого массива 

m, а каждой коллекции не более 
n

m

 
 
 

.  

Кроме того, алгоритм получает количество объектов – n и хранилищ – m. 

Листинг 3.1. UDD algorithm 

public void UDD((<datatype>[] ItemRecords, ArrayList[] WarehouseRecords, int n, 

int m) 

{ 

1. int i, j; 

2. j = 0; 

3. for (i = 0; i < n / 2; i++) 

4. { 

5. WarehouseRecords[j].Add(ItemRecords[i]); 

6. WarehouseRecords[j].Add(ItemRecords[n – 1 – i]);  

7. j = (j + 1) % m; 

8. } 

} //End  of UDD 

 

Приведенный алгоритм относится к классу жадных алгоритмов и распре-

деляет объекты по хранилищам так, как это показано на рисунке 3.6. На каждом 

шаге выполнения алгоритма в очередное хран6илище помешаются два объекта, 

симметричные относительно середины массива (их индексы задаются в строках 

4, 5). Индекс хранилища определяется как остаток от деления текущего индекса 

массива ItemRecords на количество хранилищ. Таким образом, в хранилище 

помещаются наибольший и наименьший из нераспределенных объектов. Это 

отличает предложенный алгоритм от большинства подобных алгоритмов. 

Замечание. Если n нечетное число, то последняя пара объектов помеща-

ется в очередное хранилище после окончания цикла. 
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Рис. 3.6. Распределение объектов по хранилищам 

Вычислительная сложность алгоритма складывается из вычислительной 

сложности операций сортировки массива объектов и однократного просмотра 

этого массива, следовательно, имеет порядок O(n2+n). 

Поскольку предложенный алгоритм относится к классу эвристических 

жадных алгоритмов, то оценить его качественные характеристики можно толь-

ко экспериментальным путем. Поэтому для анализа алгоритма оптимального 

распределения был проведен ряд экспериментов. Цель этих экспериментов со-

стояла в том, чтобы определить зависимости: 

 времени выполнения алгоритма от количества объектов; 

 качества распределения (разности между максимумом и минимумом запол-

нения хранилищ) от количества хранилищ и интервала значений весов объек-

тов. 

Эксперименты проводились на рабочей станции с характеристиками: 

процессор Intel® Core™ i7-8700K и 32 ГБ оперативной памяти. 

В этой серии экспериментов количество хранилищ изменялось по степе-

ням 2, от 23 до 216. Количество объектов изменялось от 12106 до 24107  с шагом 

12106. Веса объектов изменялись в интервалах от w+1 до w+20000 (w=0, 20000, 

40000, …, 100000) и в интервалах от w+1 до w+2106  (w=0, 2106, 4106, …, 

10106).  Для количества объектов приведены результаты только для граничных 

значений, а для весов еще и для одного промежуточного значения.   
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В каждом эксперименте производилось распределение объектов, веса ко-

торых находились в заданном интервале между заданным числом хранилищ. 

Затем определялись величины Wmax и Wmin для наиболее и наименее заполнен-

ных хранилищ. Затем по формуле 
max min

max min

100

2

W W

W W




   вычислялась величина (в 

процентах), характеризующая качество распределения. 

Оптимизация осуществлялось на основе целевой функции (1) без ограни-

чений 

Далее приводятся результаты экспериментов. 

Эксперимент1. В этом эксперименте проводился анализ поведения алго-

ритма при следующих условиях: количество объектов равно 12106, наибольшее 

значение веса объекта отличается от наименьшего не более, чем на 20000 (ми-

нимум) и 2106  (максимум) единиц. Результат эксперимента приведен в табли-

це 3.7. 

Таблица 3.7. Качество распределения для 12106 объектов 

n 12000000 

m Интервалы значений объемов классов эквивалентности 

1-20000 60001-

80000 

100001-

120000 

106-2106 6106-8106 10106-

12106 

8 0,00000071 0,00000010 0,00000006 0,00000007 0,00000001 0,00000001 

16 0,00000181 0,00000017 0,00000018 0,00000010 0,00000002 0,00000002 

32 0,00000605 0,00000069 0,00000041 0,00000026 0,00000004 0,00000003 

64 0,00001056 0,00000146 0,00000073 0,00000035 0,00000008 0,00000005 

128 0,00001632 0,00000274 0,00000111 0,00000116 0,00000016 0,00000006 

256 0,00429285 0,00427032 0,00426881 0,00426939 0,00426693 0,00426678 

512 0,00858716 0,00853996 0,00853647 0,00853728 0,00853391 0,00853374 

1024 0,01715141 0,01707737 0,01707183 0,01707426 0,01706710 0,01706700 

2048 0,03426990 0,03415179 0,03414767 0,03414707 0,03413712 0,03413654 

4096 0,06847980 0,06830988 0,06829985 0,06830409 0,06828775 0,06828404 

8192 0,13685820 0,13656729 0,13654501 0,13656129 0,13652577 0,13652495 
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16384 0,27337972 0,27292487 0,27291490 0,27292661 0,27286646 0,27285650 

32768 0,54579613 0,54509837 0,54504163 0,54515903 0,54498541 0,54497094 

65536 1,09419349 1,09310503 1,09302175 1,09326761 1,09295563 1,09292142 

Приведенные в таблице результаты эксперимента показывают, что алго-

ритм распределения дает достаточно хорошие результаты. При таком распреде-

лении время выполнения операции Join будет примерно одинаковым на всех 

процессорах. Время работы алгоритма составило в среднем 1,47 секунды. 

Эксперимент 2. В этом эксперименте проводился анализ поведения алго-

ритма при следующих условиях: количество объектов равно 24107, наибольшее 

значение веса объекта, как и в эксперименте 1, отличается от наименьшего не 

более, чем на 20000 (минимум) и 2106  (максимум) единиц. Результат экспери-

мента приведен в таблице 3.8. 

Таблица 3.8. Качество распределения для 24107 объектов 

n 240000000 

m Интервалы значений объемов классов эквивалентности 

1-20000 60001-

80000 

100001-

120000 

106-2106 6106-

8106 

10106-

12106 

8 0,00000005 0,00000001 0,00000001 0,00000001 0,00000001 0,00000000 

16 0,00000011 0,00000002 0,00000001 0,00000001 0,00000001 0,00000000 

32 0,00000024 0,00000003 0,00000002 0,00000001 0,00000001 0,00000000 

64 0,00000039 0,00000005 0,00000003 0,00000005 0,00000001 0,00000000 

128 0,00000072 0,00000010 0,00000010 0,00000008 0,00000001 0,00000001 

256 0,00000172 0,00000016 0,00000024 0,00000014 0,00000002 0,00000001 

512 0,00000378 0,00000034 0,00000037 0,00000019 0,00000003 0,00000001 

1024 0,00085758 0,00085390 0,00085385 0,00085362 0,00085338 0,00085336 

2048 0,00171473 0,00170758 0,00170751 0,00170721 0,00170674 0,00170672 

4096 0,00342762 0,00341466 0,00341445 0,00341414 0,00341347 0,00341346 

8192 0,00685273 0,00682862 0,00682956 0,00682784 0,00682679 0,00682677 

16384 0,01369133 0,01365629 0,01365698 0,01365509 0,01365303 0,01365300 

32768 0,02736578 0,02730840 0,02730973 0,02730736 0,02730416 0,02730405 
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65536 0,05468587 0,05460827 0,05460853 0,05460651 0,05460057 0,05460054 

Результаты этого эксперимента подтверждают выводы, сделанные на ос-

нове результатов предыдущего эксперимента. Более того, прослеживается тен-

денция улучшения качества распределения с увеличением количества объектов. 

Время работы алгоритма в этом эксперименте составило в среднем 33,1 секун-

ды. 

Эксперимент 3. В этом эксперименте была исследована возможность па-

раллельной реализации алгоритма распределения. Был использован параллель-

ный алгоритм быстрой сортировки. Распараллеливание было проведено на две-

надцати потоках (двенадцать виртуальных ядер процессора). Результаты распа-

раллеливания приведены в таблице 3.9 и на рисунке 2. 

Таблица 3.9. Параллельное и последовательное выполнение алгоритма распре-

деления 

n  Т последовательно Т параллельно 

12106 1,47 0,82 

60106 8,70 3,63 

108106 15,94 8,69 

156106 23,17 11,37 

204106 30,40 14,22 

252106 37,63 19,52 

300106 44,87 22,18 

348106 50,19 26,40 

Эксперимент показал, что распараллеливание несущественно, всего лишь 

в два раза, улучшает временные характеристики алгоритма. Учитывая малое 

время последовательного выполнения алгоритма, можно сделать вывод о том, 

что в этом случае распараллеливание нецелесообразно.  
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Рис. 3.7. Две реализации алгоритма распределения 

Результаты обоих экспериментов показали, что предложенный алгоритм 

имеет хорошую скорость вычислений и дает достаточно качественное распре-

деление объектов по хранилищам. Рассмотренные объемы данных, распределе-

ние которых осуществлялось, несомненно относятся к классу big data. Поэтому 

возможность выполнить распределение данных за малое время и с достаточно 

хорошей балансировкой объёмов данных (различие составляет не более 2%) 

способно обеспечить эффективное использование параллельных вычислитель-

ных систем (машин баз данных). 

 Алгоритм, реализующий симметричное горизонтальное распределение 

файлов операндов XK  и YK по N процессам P1, …, PN, состоит из следующих 

шагов: 

1. Из файлов indXK и indYK формируется файл параметров распределения

),,,,,,...,,,,,,( *

)(11111

*

)1(  ppYpYpXpXpYYXXKK RmImIKRImmIKindYindXindD , 

где  Rj mjX mjY, j(1, …, p). 

2. Файл indD упорядочивается по возрастанию (или убыванию) произведений 

Rj. 

3. Формируются два курсора для упорядоченного файла indD: Ca  1 и Cd  p. 

4. Выполняется 
N

p
 итераций, каждая из которых состоит из следующих ша-

гов: 



162 

 

4.1. N пар классов эквивалентности файлов-операндов, определяемых  за-

писями файла indD с номерами Ca, …, Ca  N  1, последовательно распределя-

ются между N процессами, начиная с первого процесса. 

4.2. N пар классов эквивалентности файлов-операндов, определяемых  за-

писями файла indD с номерами Cd, …, Cd  N  1, последовательно распределя-

ются между N процессами, начиная с первого процесса. 

4.3. Вычисляются новые значения курсоров по формулам: Ca Ca  N и Cd 

Cd  N. 

5. Пункты 4.1-4.4 повторяются до тех пор, пока весь файл indD не будет про-

смотрен, то есть не будет достигнуто равенство Ca Cd.  

6. Если число N нечетно, то классы эквивалентности файлов XK  и YK, соответ-

ствующие записи файла indD с номером 1
2

N 
 

 
, добавляются к фрагменту, ко-

торому соответствует наименьшее количество формируемых записей файла-

результата ZK. 

В таблице 3.10 приведен пример формирования файла indD из индексных 

файлов KindX  и KindY . Эти файлы содержат четыре записи с одинаковыми зна-

чениями множества ключей K. В двух последних столбцах таблицы приведены 

фрагменты записей файла indD. Эти фрагменты содержат значение экземпляра 

множества ключей и количество формируемых записей файла-результата. 

Таблица 3.10. Формирование индексного файла для симметричного горизон-

тального распределения файлов-операндов 

KindX  KindY  KK indYindX   

*
)( j

K  IjX mjX  
*

)( j
K  IjY mjY 

*
)( j

K  Rj 

*
)0(

K  0 90 *
)0(

K  0 65 *
)0(

K  5850 

*
)1(

K  90 85 *
)2(

K  65 110 *
)4(

K  27000 

*
)4(

K  175 120 *
)4(

K  175 225 *
)7(

K  9834 
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KindX  KindY  KK indYindX   

*
)5(

K  295 63 *
)6(

K  400 80 *
)8(

K  20375 

*
)7(

K  358 149 *
)7(

K  480 66  

*
)8(

K  507 163 *
)8(

K  446 125 

*
)9(

K  670 59 *
)11(

K  571 129 

В таблице 3.11 приведены три примера, показывающие работу алгоритма 

распределения для восемнадцати фрагментов файлов операндов, распределяе-

мых между тремя процессами для различных интервалов изменения величины 

Rj. В этих примерах показано, что величина Rmax  Rmin составляет незначитель-

ный процент от среднего числа формируемых процессами записей выходного 

файла. Следовательно, время выполнения каждого процесса не будет значи-

тельно отличаться от времен выполнения остальных процессов. 

Таблица 3.11. Результаты распределения классов эквивалентности файлов- опе-

рандов по трем процессам 

Пример 1 

1Rj100 

Пример 2 

1Rj1000 

Пример 3  

1Rj10000 

Rj P1 P2 P3 Rj P1 P2 P3 Rj P1 P2 P3 

98 290 276 285 7145 2569 2444 2594 7145 20670 19167 20366 

94 Среднее: 

284 

813 Среднее: 

2536 

6121 Среднее: 

20068 93 736 5577 

74 Rmax  Rmin: 

14 

650 Rmax  Rmin: 

150 

5526 Rmax  Rmin: 

150 67 627 4576 

63 5% 609 6% 4483 8% 

61 

 

512 

 

4348 

 

49 482 4201 

43 444 4081 
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43 422 3871 

37 291 2593 

35 278 2581 

31 243 1473 

18 193 1135 

16 178 1013 

12 140 881 

11 38 541 

6 13 57 

В таблице 3.12 приведены два примера, показывающие работу алгоритма 

для ста фрагментов файлов операндов, распределяемых между пятью процес-

сами для различных интервалов изменения величины Rj. 

Как и в предыдущих примерах, различие между размерами формируемых раз-

ными процессами фрагментов файла-результата незначительно. 

Таблица 3.12. Результаты распределения классов эквивалентности файлов- опе-

рандов по пяти процессам 

Pj Rj Max R Min R 

Среднее 

значение 

Rj 

Rmax  Rmin % 

1Rj100 

 1437309 1596437 1437309 1512916 159128 11 

 1459158 

 

 1510585 

 1561092 

 1596437 

1Rj1000 

P1 21155066 23536514 21155066 22448839 2381448 11 

P2 22072361 
 

P3 22760445 
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P4 22719811 

P5 23536514 

Таким образом, можно утверждать, что эвристический алгоритм обеспе-

чивает достаточно равномерную загрузку процессов. 

На втором этапе каждый процесс выполняет операцию слияния нестрого 

упорядоченных файлов над связанными с ним фрагментами файлов-операндов. 

Завершается второй этап слиянием всех полученных фрагментов файла-

результата в один файл. 

3.6. Алгоритм параллельной реализации операции соеди-
нения в реляционной модели SQL 

Как было показано в главе 2 существует, по крайней мере, гомоморфное 

соответствие между файловой моделью данных и реляционной моделью SQL. 

Тогда строго упорядоченным файлам XL и YM  соответствуют таблицы P и Q во 

второй или третьей нормальной форме по составным ключам, соответствую-

щим множествам ключей L и M. Операции слияния нестрого упорядоченных 

файлов XL и YM  по множеству ключей K соответствует операция  

P INNER JOIN Q ON (P.K, Q.K). На практике операция JOIN реализуется при 

следующих условиях, которые соответствуют требованиям к операции слияния 

нестрого упорядоченных файлов: 

 Таблицы P и Q имеют разные схемы, в каждую из которых входит про-

стой или составной ключ K.  

 Предикат  определен на множествах экземпляров ключа K в таблицах P 

и Q и имеет вид P.K = Q.K. 

В общем случае, файлы XL и YM    нестрого упорядочены, а соответствую-

щие им таблицы P.K и Q.K будут в первой нормальной форме. В этом случае, 

таблицы, как и файлы, состоят из классов эквивалентности, в которых все стро-

ки содержат один и тот же экземпляр ключа K. Тогда для параллельной реали-

зации операции JOIN можно использовать метаданные, определяющие распре-

деление строк таблицы по классам эквивалентности, основанное, как и ы случае 
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файловой модели данных, на индексно-последовательном методе доступа (IS-

AM). 

Пусть K1, …, Kn – множество значений ключа K. Таблицы P(K, …) и Q(K, 

…) имеют схемы, которые содержат ключ K и произвольные наборы полей (как 

правило, различные). Таблице P можно поставить в  соответствие индексную 

таблицу со схемой indP(K, I, M). Эта таблица – есть множество строк 

 ттт miKmiKindP ,,...,,,,{ *

11

*

1
.  ij  – индекс первой записи класса эквива-

лентности, строки которого содержат экземпляр 
*

jK  ключа K,  mj  – количество 

записей в этом классе эквивалентности.  Поле I имеет тип Счетчик строк, а поле 

М – целочисленное. Таблица indP может быть получена в результате двух за-

просов: 

1. Q1=INSERT INTO indPt ( K, M ) SELECT P.K, 1 AS M FROM P ORDER BY 

P.K; 

2. Q2=SELECT indPt.K, First(indPt.M) AS I, Sum(IndPt.M) AS M INTO indP 

FROM indPt GROUP BY indPt.K ORDER BY indPt.K; 

Запрос Q1 формирует промежуточную таблицу, которая содержит столь-

ко же строк, что и таблица P. Каждая строка этой таблицы содержит свой но-

мер, значение ключа K из соответствующей строки таблицы P и поле M, содер-

жащее значение 1. Запрос Q2 завершает построение таблицы indP посредством 

операции группировки. Этому двухпроходному алгоритму соответствует про-

стой однопроходный алгоритм, который легко разработать на любом языке 

программирования, связанным с СУБД, или на языках манипулирования дан-

ными, такими как Tranzact-SQL или PL-SQL. Листинг 1 демонстрирует реализа-

цию однопроходного алгоритма построения индексного файла для индексно-

последовательного доступа к таблице P. 

Листинг 3.2. Построение индексного файла средствами языка Tranzact-SQL 

1. DECLARE @K <тип>, @currentK <тип>, @I int, @M int, @RowCount int  

2. DECLARE @j int 

3. DELETE FROM indP 

4. DECLARE cursorP CURSOR FOR SELECT K FROM P ORDER BY K 

5. OPEN cursorP 

6. SET @RowCount =@@Cursor_Rows 
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7. SET @j=0 

8. FETCH NEXT FROM cursorP INTO @K 

9. SET @currentK =@K 

10. SET @I=1 

11. SET @M=1 

12. WHILE @j<@ RowCount 1 

13. BEGIN 

14.       FETCH NEXT FROM cursorP INTO @K 

15.       IF @currentK =@K 

16.            SET @M=@M+1 

17.       ELSE 

18.       BEGIN 

19.             INSERT INTO indP (K, I, M) VALUES (@currentK, @I, @M) 

20.             SET @currentK =@K 

21.             SET @I=@I+@M 

22.             SET @M=1 

23.       END 

24.       SET @j=@j+1  

25. END 

26. INSERT INTO indP (K, I, M) VALUES (@currentK, @I, @M) 

Подготовительная часть алгоритма (строки 8-11) формирует заготовку 

первой строки таблицы indP. Эта строка содержит первое по порядку значение 

ключа K.  Основная часть алгоритма заключена в теле цикла (строки 13-25). 

Здесь, при совпадении значения ключа K в очередной строке таблицы P и в за-

готовке текущей строки таблицы indP, накапливается значение поля M, в про-

тивном случае производится вывод текущей строки в таблицу indP и формиру-

ется заготовка новой строки этой таблицы. По завершении цикла, последняя 

сформированная строка выводится в таблицу indP (строка 26). 

Таблица indQ для таблицы Q может быть получена аналогично. 

Очевидно, что таблица-результат операции JOIN будет содержать только 

те классы эквивалентности, которые принадлежат пересечению индексных таб-

лиц indP indQ. Запрос, в результате которого получается это пересечение, 

имеет вид: 

SELECT indP.M*indQ.M AS MM, indP.K, indP. I, indQ.I,  indP.M, indQ.M  

      INTO ComInd FROM indP, indQ  

      WHERE indP.K = indB.K  

      ORDER BY indP.M*indQ.M 
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Результат запроса – таблица ComInd. Она содержит составной ключ К, по-

ля I и M обеих индексных таблиц, а также поле MM, по которому она упорядо-

чена. Поле MM вычисляется как произведение количества строк в обоих клас-

сах эквивалентности, строки которых содержат одно и то же значение состав-

ного ключа K. Его значение определяет число выходных строк, которое полу-

чится в результате обработки этих классов эквивалентности операцией JOIN. 

Использование таблицы ComInd позволяет распределить таблицы P и Q 

между несколькими независимыми базами данных. Если имеется N таких баз 

данных, то эти таблицы разделяются на строки в таблицу indP фрагментов. 

Каждая база данных DBSnpi (i1, …, N) содержит пару фрагментов Pi, Qi  

таблиц P и Q. При этом классы эквивалентности, записи которых содержат 

одинаковые значения составного ключа K, полностью расположены  в одном и 

только одном фрагменте. Такой способ распределения таблиц соответствует 

принципу симметричного горизонтального распределения данных. Таблица 

ComInd соответствует файлу indD. Алгоритм, реализующий симметричное го-

ризонтальное распределение таблиц P и Q также может быть реализован сред-

ствами языка Tranzact-SQL так, как это показано в листинге 3.2. 

Листинг 3.3. Реализация симметричного горизонтального распределения сред-

ствами языка Tranzact-SQL 

1. DECLARE @KA <тип>, @KD <тип>, @RowCount int, @i int 

2. DECLARE cursorASC CURSOR FOR SELECT K, MM FROM ComInd 

                                                                                  ORDER BY MM ASC 

3. DECLARE cursorDSC CURSOR FOR SELECT K, MM FROM ComInd  

                                                                                  ORDER BY MM DESC 

4. OPEN cursorASC 

5. OPEN cursorDSC 

6. SET @ RowCount =@@Cursor_Rows 

7. IF @ RowCount %2=0 

8. SET @RowCount =@RowCount /2 

9. ELSE 

10. SET @RowCount =@RowCount /2+1 

11. SET @i=0 

12. WHILE @i<@RowCount 

13. BEGIN 

14.       FETCH NEXT FROM cursorASC INTO @ KA 

15.       FETCH NEXT FROM cursorDSC INTO @ KD 

16.       IF @i % N=0 
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17.       BEGIN 

18.            INSERT INTO PSnp1 SELECT * FROM P WHERE K=@KA 

19.            INSERT INTO PSnp1 SELECT * FROM P WHERE K=@KD 

20.            INSERT INTO RSnp1 SELECT * FROM R WHERE K=@KA 

21.            INSERT INTO RSnp1 SELECT * FROM R WHERE K=@KD 

22.       END 

23.         … 

24.       IF @i % N=N1 

25.       BEGIN 

26.             INSERT INTO PSnpN SELECT * FROM P WHERE K=@KA 

27.             INSERT INTO PSnpN SELECT * FROM P WHERE K=@KD 

28.             INSERT INTO RSnpN SELECT * FROM R WHERE K=@KA 

29.             INSERT INTO RSnpN SELECT * FROM R WHERE K=@KD 

30.       END  

31.       SET @i=@i+1 

32. END 

Средства языка Tranzact-SQL позволяют существенно использовать в 

процедуре, реализующей алгоритм, упорядоченность таблиц, что отличает его 

от языка SQL, отражающего свойства классической реляционной модели. По-

этому строки таблицы ComInd могут быть прочитаны двумя запросами по воз-

растанию и по убыванию значений поля MM (строки 2, 3). Это позволяет со-

единить наибольшее и наименьшее значения этого поля. В зависимости от того 

четно или нечетно число строк в таблице ComInd, определяется количество об-

рабатываемых строк (строки 7-10), поскольку считывание таблицы двумя за-

просами с противоположным упорядочиванием позволяет читать только поло-

вину таблицы (плюс одна строка, если число строк нечетно). В теле основного 

цикла (строки 14-31) формируются фрагменты таблиц P и Q. Как и в случае 

файловой модели, после выполнения этого варианта алгоритма, количества 

строк таблицы-результата, получаемые в результате операции JOIN над фраг-

ментами Pi и Ri таблиц P и R, будут минимально отличаться друг от друга.  

Разработка процедур, реализующих симметричное горизонтальное рас-

пределение таблиц, может быть легко автоматизирована. Прикладной програм-

мист, используя метаданные, может указать на связи между ключами таблиц-

операндов операции JOIN и на основе этих связей система автоматизации про-

граммирования построит все необходимые хранимые процедуры на языке ма-

нипулирования данными (Transact SQL, PG/SQL, PL/SQL), разместит их в соот-

ветствующем разделе БД и выполнит компиляцию [187]. 
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После завершения симметричного горизонтального распределения таблиц 

P и Q по базам данных DBSnpi над содержащимися в этих базах данных парами 

фрагментов таблиц Pi и Qi выполняются операции JOIN, по завершении кото-

рых полученные фрагменты таблицы результата сливаются в одну таблицу.  

3.7. Стратегия повышения эффективности процессов МОД 

На основании рассмотренных методов возможно построение общей стра-

тегии повышения эффективности процессов МОД. Цель этой стратегии – раз-

работка эффективных запросов к базе данных при следующих условиях: 

 структура данных определена заранее и нечасто подвергается изменениям; 

 объемы данных в базе очень велики (относительно используемой вычисли-

тельной техники); 

 запросы после разработки используются достаточно длительное время; 

 запросы имеют большую вычислительную сложность, а время их выполне-

ния критично. 

В этом случае, затраты на построение запроса к базе данных, представленной в 

одной из рассматриваемых моделей, будут окупаться за счет длительного пери-

ода эксплуатации этого запроса. 

Предлагаемая стратегия основана на том, что метаданные, которые опи-

сывают свойства хранящихся в базе данных, также незначительно подвергают-

ся изменениям и могут быть использованы как основа для повышения эффек-

тивности запросов.  

Стратегия состоит из следующих этапов. 

1. Выбирается модель данных уровня проектирования. Такой моделью может 

быть реляционная модель, модель "сущностьсвязь" или любая другая модель, 

пригодная для проектирования баз данных.   

2. В выбранной модели разрабатывается архитектура базы данных: агрегаты 

данных, связи между ними, запросы.  

3. Проводится анализ данных и выбирается одна из промежуточных моделей 

по следующему правилу: если реальные исходные данные таковы, что агрегаты 
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данных содержат практически все значения ключей, то выбирается многомер-

но-матричная модель, в противном случае, выбирается файловая модель дан-

ных. В первом случае агрегатам данных соответствуют многомерные матрицы, 

содержащие незначительное количество нейтральных элементов (не разрежен-

ные), во втором – разреженные.  

4. Выражения запросов транслируются из представления на языке модели 

данных, использованной для проектирования, в язык выбранной промежуточ-

ной модели данных. 

5. Производится оптимизация оттранслированных выражений запросов либо 

методом синтеза эффективных выражений запросов (построение алгебраиче-

ских выражений, содержащих те же операнды и приводящих к тому же резуль-

тату), либо преобразования имеющихся выражений запросов в выражения, по-

рождающие более эффективные процессы обработки данных. 

6. Выбирается модель вычислений и алгоритмы составляющих запросы опе-

раций, которые соответствуют выбранной модели вычислений и эффективно в 

ней реализованы. 

Реализация предложенной стратегии повышения эффективности процес-

сов МОД может осуществляться как "вручную", так, и автоматизировано, с ис-

пользованием средств трансляции выражений запросов и программ, реализую-

щих оптимизацию этих выражений по заданным критериям.  

3.8. Заключительные замечания к главе 3 

 В главе рассмотрены известные методы оптимизации запросов на обра-

ботку данных.  

Проведено доказательство на основе применения принципа инвариантно-

го погружения того, что для синтеза оптимизированного алгебраического вы-

ражения запроса на МОД может быть использован метод динамического про-

граммирования. На основе экспериментального анализа показано, что особен-

ности процессов МОД позволяют эффективно использовать этот метод оптими-

зации. 
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Проведено обобщение алгоритма Кэннона параллельного умножения 

матриц на случай (, )-свернутого произведения многомерных матриц. 

Сделан анализ алгоритмов, реализующих операцию слияния нестрого 

упорядоченных файлов.  

Предложен способ параллельной реализации этой операции на основе 

принципа симметричного горизонтального распределения файлов-операндов.  

Приведено описание алгоритма, реализующего этот тип распределения 

данных. Показано как этот алгоритм может быть реализован в реляционных 

СУБД.  

Предложена стратегия повышения эффективности процессов МОД. 

Основные результаты, полученные в данной главе, были опубликованы в 

работах [74, 117, 158, 162-164, 174-177]. 
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Глава 4. АРХИТЕКТУРЫ ПРОГРАММНО-АППАРАТНЫХ КОМ-
ПЛЕКСОВ ДЛЯ МАССОВОЙ ОБРАБОТКИ ДАННЫХ 

4.1. Этапы построения программно-аппаратных комплек-
сов 

В постановлении Правительства Российской Федерации от 28 декабря 

2022 г. № 2461 [195] дано следующие определение программно-аппаратного 

комплекса: 

«Программно-аппаратный комплекс» – комплекс технических и про-

граммных средств (программного обеспечения), работающих совместно для 

выполнения одной или нескольких специальных задач, являющийся электрон-

ной вычислительной машиной или специализированным электронным устрой-

ством (устройствами), функционально-технические характеристики которого 

(которых) определяются исключительно совокупностью программного обеспе-

чения и технических средств и не могут быть реализованы при их разделении. 

Программно-аппаратный комплекс является самостоятельно используе-

мым, законченным техническим изделием, имеющим серийный номер.»  

Программно-аппаратный комплекс – это уточнение более общего понятия 

"вычислительный комплекс", который определяется как взаимосвязанная сово-

купность средств вычислительной техники, в которую входит не менее двух 

процессоров, объединенных системой управления, имеющих общую память, 

единое программное обеспечение и общие периферийные устройства. Уточне-

ние состоит в том, что программно-аппаратный комплекс определяется как 

техническое решение концепции алгоритма работы сложной системы, управле-

ние которой осуществляется, как правило, исполнением кода из определённого 

базового набора команд (системы команд). То есть, это набор технических и 

программных средств, работающих совместно для выполнения одной или не-

скольких сходных задач.  

Некоторые разработчики [196] считают, что наиболее перспективный 

подход при разработке компактных высокопроизводительных вычислительных 

комплексов основывается на концепции построения реконфигурируемых мно-

https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D1%85%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
https://ru.wikipedia.org/wiki/%D0%A3%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5
https://ru.wikipedia.org/wiki/%D0%A3%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5
https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%BA%D0%BE%D0%BC%D0%B0%D0%BD%D0%B4
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гопроцессорных вычислительных систем. Суть этой концепции заключается в 

том, что архитектура вычислительной системы должна иметь возможность 

адаптироваться под структуру решаемой задачи. Фактически это означает, что 

пользователю должна быть предоставлена возможность программировать про-

блемно-ориентированные многопроцессорные вычислительные системы, 

структура которых адекватна решаемой ими задаче. При этом достигается вы-

сокая реальная производительность вычислительной системы на широком 

классе задач, а также почти линейный рост производительности при увеличе-

нии числа процессоров. В отличие от многопроцессорных вычислительных си-

стем с «жесткой» архитектурой, в частности, кластерных суперЭВМ, архитек-

тура реконфигурируемых систем может изменяться в процессе ее функциони-

рования. 

С понятием программно-аппаратного комплекса тесно связано понятие 

модели вычислений, которая определяется как сочетание множества допусти-

мых операций, используемых для вычисления и относительных издержек, свя-

занных с их применением. Далее будут использованы модели вычислений для 

параллельного программирования, основанные на: 

 многопоточности (multithreading), когда процесс, порождённый в операци-

онной системе, может состоять из нескольких потоков, выполняющихся парал-

лельно; 

 обмене сообщениями (message passing), когда порожденные и выполняю-

щиеся процессы взаимодействуют, посылая и получая сообщения;  

 параллелизме данных (data parallelism), который заключается в применении 

одной и той же операции к множеству элементов структур данных, то есть реа-

лизует архитектуру SPMD (одна программа много данных) [197];  

 общей памяти (shared memory), когда все процессы совместно используют 

общее адресное пространство, к которому они асинхронно обращаются с запро-

сами на чтение и запись; 

 потоках данных (dataflaw), когда используется ассоциативное распределе-

ние ресурсов вычислительного комплекса. 
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Таким образом, построение программно-аппаратного комплекса, ориен-

тированного на решение задач МОД, состоит из следующих этапов: 

1. Выбор одной из трех (файловой, реляционной или многомерно-матричной) 

модели данных на основе свойств данных, которые присущи решаемой задаче. 

Основное свойство данных, определяющее выбор модели, – это свойство 

"плотности" ключей. Если во всех реальных случаях, когда решается задача, 

данные идентифицируются практически всеми значениями ключей, целесооб-

разно использовать многомерно-матричную модель данных. Если же использу-

ется незначительная часть значений большинства ключей, что приводит к вы-

сокой степени разреженности многомерных матриц, более эффективным будет 

использование файловой модели данных. 

2. Выбор на основе выбранной модели данных аппаратной архитектуры вы-

числительного комплекса. Далее будет показано, что для многомерно-

матричной модели в большей степени подходят комплексы, основанные на 

SMP-архитектуре, а для файловой модели – комплексы, сочетающие свойства 

SMP- и MPP-архитектур. 

3. На основе выбранной модели данных определяется модель вычислений, то 

есть определяется набор операций МОД, выбираются (или при необходимости 

разрабатываются) алгоритмы реализации операций, оценивается вычислитель-

ная сложность этих алгоритмов. 

4. На основе выбранных модели данных и архитектуры программно-

аппаратного комплекса "собирается" из имеющихся вычислительных средств 

действующая модель программно-аппаратного комплекса. Определяются опе-

рационные системы, системы программирования и системы управления базами 

данных. 

5. Разрабатывается программное обеспечение, реализующее алгоритмы рас-

пределения данных и взаимодействия процессоров и потоков команд и данных. 

Разрабатывается прикладное программное обеспечение, реализующее операции 

и процессы МОД для конкретного класса задач. 
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Эти этапы реализуются на основе предложенных далее архитектур и тех-

нологий построения программно-аппаратных комплексов для МОД [117]. 

 

4.2. Архитектура программно-аппаратного комплекса для 
реализации многомерно-матричной модели данных 

При построении архитектуры программно-аппаратного комплекса для ре-

ализации многомерно-матричной модели данных следует учитывать тот факт, 

что основная сложность состоит в реализации операции умножения многомер-

ных матриц. Поэтому далее рассматривается архитектура программно-

аппаратного комплекса, ориентированного на реализацию именно этой опера-

ции.  

Из утверждения 3.1 (п. 3.4.1) следует, что при наличии скоттовых индек-

сов ss ...,,1 программно-аппаратный комплекс должен состоять из 


1

)(
i

isd  не-

зависимых блоков, где )( isd  – произведение размерностей скоттовых индексов 

матриц-операндов. Каждый такой блок имеет индекс 
**

1 ... ss , который состоит из 

фиксированных значений скоттовых индексов, и вычисляет значение сечения 

матрицы результата как произведение сечений матриц-операндов. Все эти се-

чения простые и имеют ориентацию )...,,( 1 ss . Поэтому архитектура блока – 

это (p+q22)-решетка, в памяти которой расположены соответствующие 

(p)-кратное сечение матрицы A, (q)-кратное сечение матрицы B и (r)-

кратное сечение матрицы C. Для вычисления произведения сечений матриц A и 

B используется программное обеспечение, основанное на одном из алгоритмов 

параллельного умножения многомерных матриц, например, алгоритм, предло-

женный в п. 3.4.2.  

Пример 4.1. В этом примере [175] рассматривается программно-

аппаратный комплекс для реализации операции умножения трехмерных матриц 

для условий, рассмотренных в примерах 3.4 и 3.5, то есть, E=3, 

scmlsc BBAA  ,  и lsmCC   – трехмерные матрицы, индексы которых при-
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нимают значения от 0 до 2, а элементы – блоки исходных трехмерных матриц и 

матрицы-результата [175]. 

 

Рис. 4.1. Распределение блоков матрицы Clsm по слоям процессорной решетки 

Таким образом, для умножения трехмерных матриц необходима аппа-

ратная архитектура – трехмерная решетка, которая логически разделена на 

двумерные решетки, в каждой из которых выполняется параллельное умноже-

ние плоских матриц – двумерных сечений трехмерных матриц-операндов. Ко-

личество двумерных сечений не превосходит величину ns – количество значе-

ний скоттова индекса s. Программное обеспечение, каждого процессора в ре-

шетке включает программную реализацию алгоритма умножения блоков сече-

ний трехмерных матриц, подобного тому, который приведен в пунктах 3.4.1, 

3.4.2. Очевидно, что для эффективной реализации передачи блоков сечений 

матриц-операндов целесообразно использовать не двумерную решетку, а тор. 

Таким образом, программно-аппаратный комплекс для реализации (1, 1)-

свернутого произведения трехмерных матриц представляет собой вектор торо-

идальных слоев трехмерной решетки (рисунок 4.2).   

В случае, когда в матрицах-операндах два или более скоттовых индексов 

архитектура программно-аппаратного комплекса представляет решетку, раз-

мерность которой определяется количеством скоттовых индексов. В узлах этой 

решетки располагаются процессоры, реализующие параллельное умножение 

сечений матриц-операндов. 
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Рис. 4.2. Программно-аппаратный комплекс для умножения трехмерных матриц 

На рисунке 4.3 показана архитектура программно-аппаратного комплек-

са для реализации (2,1)-свернутого произведения четырехмерных матриц, у ко-

торых по одному свободному индексу, один кэлиев индекс и две скоттовых ин-

декса s1 и s2.  

 

 
Рис. 4.3. Программно-аппаратный комплекс для умножения четырехмерных 

матриц с двумя скоттовыми индексами 

В рассмотренном примере матрицы-операнды имели только один сво-

бодный индекс, сечения которых по скоттовым индексам – плоские матрицы. 

Поэтому для их параллельного умножения использовалась двумерная решетка 

или тор. Если матрицы-операнды имеют больше одного свободного индекса 

)1(),,...,( 1  lll  и )1(),,...,( 1  mmm , то в этом случае в результате 

умножения сечений этих матриц по скоттовым индексам получаются ()-

мерные сечения матрицы результата. Поэтому архитектура процессора, реали-

зующего параллельное умножение сечения таких матриц-операндов представ-

ляет собой ()-мерную решетку или соответствующий ей тор. Программное 
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обеспечение такого процессора реализует умножение блоков сечений матриц-

операндов и сложение этих произведений на основе алгоритма из пункта 3.4.2.  

4.3. Архитектуры программно-аппаратных комплексов для 
реализации простых операций теоретико-множественной 
модели данных 

В этом разделе рассматриваются архитектуры программно-аппаратных 

комплексов, ориентированных на параллельную реализацию простых операций 

(сортировка, выборка, свертка и слияние строго упорядоченных файлов), опре-

деленных в теоретико-множественной (файловой) модели. Все эти операции 

допускают распараллеливание, но архитектуры программно-аппаратных ком-

плексов, реализующих эти операции, как правило, различны. 

4.3.1. Параллельная реализация внешней сортировки  

На вход этой операции подается неупорядоченный по множеству клю-

чей K файл, то есть относительно этого множества ключей его можно рассмат-

ривать как множество однотипных записей. Относительно другого множества 

ключей это может быть упорядоченный файл. Как правило, объем исходного 

файла настолько велик, что невозможно ограничиться одним из алгоритмов 

внутренней сортировки и приходится использовать внешнюю сортировку. 

Наиболее популярный алгоритм внешней сортировки, основанный на методе 

слияния (балансного объединения) легко распараллеливается. На первом этапе 

этого алгоритма исходный файл делится на равные (за исключением последней) 

порции, которые сортируются в оперативной памяти параллельно работающих 

процессоров SP1, …, SPM. Для удобства можно считать M=2k. Наименьшее зна-

чение M определяется отношением объема файла к объему оперативной памяти 

процессора, которую можно выделить для внутренней сортировки порции. С 

другой стороны, время сортировки в основном зависит от величины 

2
L

M

 
 
   (L – 

количество записей в файле), что  влечет за собой желание увеличить M  

настолько, насколько позволяет аппаратура. Но после первого этапа выполня-
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ется k этапов слияния упорядоченных порций, на каждом из которых число 

порций уменьшается вдвое, а объем объединенных порций удваивается. Тогда 

вычислительная сложность рассматриваемого алгоритма будем иметь порядок, 

который определяется функцией  

2
1

( , ) 2 1
2 2k k

L
T L k L

   
     
    . Их этого следует, 

что даже при значительном увеличении числа записей в файле величина k уве-

личивается незначительно. Например, при L=105 k=17, а при L=108 k=27. Одна-

ко даже при таких небольших значениях k число процессоров, используемых на 

первом этапе равное 2k чрезвычайно велико, и значительно превосходит число 

процессоров (ядер) в современных суперкомпьютерах, и, тем более, в машинах 

баз данных, и в обычных корпоративных сетях. В некоторой степени выходом 

может служить использование графических процессоров, количество которых 

может быть большим и которые весьма эффективны при реализации алгорит-

мов, подобных внутренней сортировке. Был проведен анализ, суть которого со-

стояла в оценке порядка вычислительной сложности операции сортировки при 

различных значениях k. Результаты анализа для различных значений k приведе-

ны в таблицах 4.1 и 4.2, а на рисунках 4.4 и 4.5 – их графическое представление. 

Таблица 4.1. Оценки сложности параллельного алгоритма внешней сортировки 

при k =8 и k=10 

L min(T(L, k)) 

min ( , )

( , 8)

T L k

T L

 
)10,(

),(min

LT

kLT

 

100000 17 2,52 1,09 

500000 19 8,63 1,48 

1000000 20 16,25 1,95 

1500000 21 23,88 2,43 

3000000 22 46,77 3,86 
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Рис. 4.4. Оценки сложности параллельного алгоритма внешней сортировки при 

k =8 и k=10 

Таблица 4.2. Оценки сложности параллельного алгоритма внешней сортировки 

для k =12, k =14 и k=16 

L min T(L, k) 
)12,(

),(min

LT

kLT

 )14,(

),(min

LT

kLT

 )16,(

),(min

LT

kLT

 
100000 17 1,01 1,00 1,00 

500000 19 1,03 1,00 1,00 

1000000 20 1,06 1,00 1,00 

1500000 21 1,09 1,01 1,00 

3000000 22 1,18 1,01 1,00 

 

4.5. Оценки сложности параллельного алгоритма внешней сортировки для  

k =12, k =14 и k=16 

Анализ показал, что при достаточно большом количестве процессоров (k 

=10, 12, 14, 16) отношение 

min ( , )

( , )

T L k

T L k  стремится к 1. Причем, при значительном 
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увеличении L это отношение мало изменяется. Например, при L=108  min(T(L, 

k))=27, и для k =16 

min ( , )
1,02

( ,16)

T L k

T L


. 

 

Рис.4.6. Архитектура программно-аппаратного комплекса для сортировки фай-

ла   

Программно-аппаратный комплекс для реализации операции внешней 

сортировки имеет архитектуру, показанную на рисунке 4.6. На первом этапе 

M=2k процессоров (SP1, …, SPM) выполняют программу внутренней сортировки 

файла X, разделенного на порции одинакового размера (за исключением, может 

быть, последней, если L не кратно M). В результате получается M упорядочен-

ных файлов-порций X11, X12, …, X1M1, X1M . Затем выполняется k этапов, на пер-

вом из которых 
2

M
N   процессоров (MP1, …, MPN)  производят слияние пар, 

полученных на этапе разделения, в упорядоченные файлы-порции X11, X12  

X21, …, X1M1, X1M  X2N  удвоенного объема (в записях). На каждом последую-

щем этапе используется вдвое меньше процессоров, а объемы получаемых в 

результате слияния упорядоченных файлов-порций удваиваются. Перед k-тым 
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этапом остаются два упорядоченных файла-порции X
k1 1

  и X
k1 2

, объем одного 

из них равен 
2

L
, а объем второго может быть меньше, а в сумме их объемы  

равны L. На этом этапе используется единственный процессор MPk1, который 

производит слияния двух последних упорядоченных файлов-порций в упорядо-

ченный файл XK. 

4.3.2. Параллельная реализация операций выборки, слия-
ния строго упорядоченных файлов и сечения 

Операция выборки – это самая простая операция обработки файлов, она 

же и распараллеливается проще остальных операций. Как было показано в раз-

деле 2.4.2 этой операции соответствует реляционная операция SELECT … 

WHERE …. Современные языки манипулирования данными в реляционных 

СУБД содержат средства, обеспечивающие автоматическое распараллеливание 

этой операции [198, 199]. Если использовать логически-последовательный ме-

тод доступа, то каждому из N процессоров можно поставить в соответствие 

фрагмент исходного файла. Объемы этих фрагментов, за исключением, может 

быть, последнего, равны 

L

N . Как и в случае первого этапа операции сортиров-

ки, объем последнего фрагмента может быть меньше этого значения. В боль-

шинстве СУБД разделение на фрагменты осуществляется на уровне индексных 

файлов. При последовательном доступе, если файл не разбит на фрагменты фи-

зически, каждому процессору ставится в соответствие номер первой записи 

фрагмента и объем фрагмента в записях. Каждый процессор выполняет выбор-

ку из своего фрагмента файла. 

Операция слияния строго упорядоченных файлов требует использования 

метаданных (индексных файлов). В этом случае один из исходных строго упо-

рядоченных файлов, как правило, имеющий больший объем, определяется как 

ведущий. Создается индексный файл, определяющий разбиение ведущего фай-

ла на равные (за исключением, может быть, последнего) фрагменты. Количе-

ство фрагментов равно количеству процессоров. Запись индексного файла для 

каждого фрагмента содержит адрес первой записи, значения ключей первой и 
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последней записей и объем этого фрагмента. На основе индексного файла ве-

дущего файла создается индексный файл для ведомого файла. Естественно, 

фрагменты ведомого файла будут иметь различные объемы, но каждый из них 

будет содержать записи, значения ключей которых находятся в том же диапа-

зоне, что и значения ключей соответствующего фрагмента ведущего файла. 

Следует отметить, что некоторые записи ведомого индексного файла будут со-

держать нулевое значение количества записей. В соответствии с определением 

файла из раздела 2.2.2 это означает, что все записи такого фрагмента ведомого 

файла есть универсальные неопределенные записи , то есть фактически от-

сутствуют в ведомом файле. Однако в практике массовой обработки данных 

такие случаи встречаются очень редко. Для удобства эти индексные файлы мо-

гут быть объединены в один индексный файл, структура, которого приведена 

на рисунке 4.7. 

 

Рис. 4.7. Программно-аппаратный комплекс для слияния строго упорядоченных 

файлов  


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Программно-аппаратный комплекс для слияния строго упорядоченных 

файлов имеет архитектуру, показанную на рисунке 4.7. Процессор-коммутатор 

раздает N процессорам, соответствующие записи объединенного индексного 

файла. Процессоры выполняют программу слияния соответствующих им фраг-

ментов исходных файлов в соответствии с алгоритмом, рассмотренным в раз-

деле 2.2.3, формируя записи выходного файла. 

Для реализации операции свертки необходимо использовать предложен-

ный в разделе 3.5.2 принцип симметричного горизонтального распределения. В 

этом случае исходный файл разбивается на фрагменты программой, реализую-

щей алгоритм распределения для одного файла. Тогда каждый класс эквива-

лентности целиком располагается в одном фрагменте, разница объемов фраг-

ментов минимальна, и фрагменты сохраняют упорядоченность исходного фай-

ла. Количество фрагментов равно числу процессоров. Каждый процессор вы-

полняет свертку классов эквивалентности своего фрагмента исходного файла в 

соответствии с алгоритмом, рассмотренным в соответствии с алгоритмом, рас-

смотренным в разделе 2.2.3, и формирует столько записей выходного файла, 

сколько классов эквивалентности в этом фрагменте. 

 

4.4. Параллельная реализация операции слияния нестрого 
упорядоченных файлов в теоретико-множественной и ре-
ляционной моделях данных 

Как было отмечено в разделе 3.3, операция слияния нестрого упорядо-

ченных файлов относится к числу наиболее сложных операций МОД. Там же 

было отмечено, что разработчики СУБД используют различные методы для ре-

ализации реляционного аналога этой операции – операции Join. Для построения 

программно-аппаратных комплексов, которые реализуют операцию слияния 

нестрого упорядоченных файлов, в этом разделе будет использоваться метод, 

основанный на индексно-последовательном методе доступа и принципе сим-
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метричного горизонтального распределения данных, описание которого приве-

дено в разделе 3.5.2. 

Для этого может быть использована любая параллельная вычислительная 

система класса SIMD, подобная машинам баз данных [89-92]. Особенность ар-

хитектуры таких систем заключается в том, что они состоят из хост-машины, 

реализующей общее управление вычислениями, и некоторого количества, как 

правило, однотипных процессоров (вычислителей), выполняющих одинаковые 

процедуры обработки данных. В некоторых реальных системах эти процессоры 

называются "лезвиями" (blades).  Каждый из исходных файлов может храниться 

на одном внешнем накопителе, или его классы эквивалентности могут быть 

"разбросаны" по различным накопителям. Адрес каждого класса эквивалентно-

сти хранится в индексной части записи индексного файла. Хост-машина читает 

индексные файлы и сравнивает экземпляры множества ключей M *. Индексы 

классов эквивалентности, экземпляры множества ключей которых совпали, пе-

редаются одному из вычислителей, параллельно реализующих декартово про-

изведение. Процесс вычисления состоит из нескольких потоков (рисунок 4.8). 

1. Потоки чтения файлов в память F11 и F12 независимо друг от друга счи-

тывают классы эквивалентности файлов в буферные зоны памяти. Адреса клас-

сов эквивалентности и количество записей в них получены от хост-машины. 

2. Поток F2 вычисляет декартово произведение классов эквивалентности 

*M
X  и  *M

Y . Этот поток может состоять из нескольких одинаковых парал-

лельных нитей, каждая из которых соединяет одну запись класса эквивалентно-

сти *M
X

 
со всеми записями класса эквивалентности *M

Y , помещая полученные 

записи в выходной буфер файла ZM. 

3. Поток вывода F3 по мере поступления записей в выходной буфер пере-

мещает их на внешний накопитель, на котором должен располагаться класс эк-

вивалентности *M
Z   
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Рис. 4.8. Взаимодействие процессов в операции соединения 

Очевидно, что предложенный подход позволяет использовать несколько 

уровней параллелизма.  

Действительно, процесс чтения индексных файлов и подбора соответству-

ющих классов эквивалентности осуществляется хост-машиной и не зависит от 

вычисления декартовых произведений на вычислителях. Поэтому чтение и 

сравнение индексных файлов осуществляется одновременно с вычислениями 

декартовых произведений. В реальных условиях количество классов эквива-

лентности может значительно превышать количество вычислителей. Информа-

ция о числе записей в классах эквивалентности, которая содержится в индекс-

ных файлах, позволяет распределить вычисления так, чтобы была обеспечена 

равномерная загрузка всей системы. 

Процессы считывания обоих классов эквивалентности в буферные области 

оперативной памяти вычислителя могут происходить одновременно. 

Вычисление декартова произведения также может быть распараллелено. 

И, наконец, процесс вывода полученных записей в файл-результат осу-

ществляется в асинхронном режиме, по мере их поступления в выходной бу-

фер, и независимо от остальных процессов.  
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4.4.1. Параллельная реализация операции слияния нестро-
го упорядоченных файлов алгоритмом черпака 

В основу этой реализации положен алгоритм 1, описание которого приве-

дено в разделе 3.5.1. В этом случае класс эквивалентности ведущего файла це-

ликом считывается (зачерпывается) в область оперативной памяти, которая 

называется черпак. Таким образом, черпак содержит все записи этого класса 

эквивалентности. В целях экономии оперативной памяти целесообразно экзем-

пляр множества ключей 
*

iK зачерпываемого класса эквивалентности сохранять 

в черпаке только один раз. Агрегаты неключевых полей записей этого класса 

эквивалентности образуют массив или список, длина которого определяется в 

процессе зачерпывания. Тогда у черпака будет следующая структура: 

Экземпляр множества ключей 
*

iK  

Количество записей в классе эквивалентности *
iK

X  

Неключевые поля первой записи класса эквивалентности *
iK

X  

… 

Неключевые поля последней записи класса эквивалентности *
iK

X  

Соответствующий экземпляру множества ключей 
*

iK  класс эквивалент-

ности ведомого файла считывается по одной записи. Каждая прочитанная за-

пись выходного файла обрабатывается совместно со всеми записями черпака, и 

таким образом формируется декартово произведение этих классов эквивалент-

ности. Этот алгоритм можно легко распараллелить, поскольку и файлы, и чер-

пак, реализованный как массив или список, обладают параллелизмом данных. 

Причем, распараллеливание можно провести на двух уровнях. 

Первый уровень распараллеливания основан на принципе симметричного 

горизонтального распределения. Исходные файлы разбиваются на фрагменты, 

которые содержат классы эквивалентности, соответствующие одним и тем же 

экземплярам множества ключей. То есть существует взаимно-однозначное со-

ответствие между этими фрагментами (фактор-множествами), при котором 

каждому классу эквивалентности фрагмента файла XK взаимно-однозначно со-
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ответствует класс эквивалентности фрагмента файла YK. Если 
i

KX  и 
i

KY  – со-

ответствующие друг другу фрагменты исходных файлов XK и YK, то их классы 

эквивалентности соответствуют друг другу так, как это показано на рисунке 

4.9.  

 

Рис. 4.9. Соответствие классов эквивалентности фрагментов файлов 

Для каждой пары фрагментов исходных файлов выделяется свой фраг-

мент-процессор, который выполняет декартовы произведения классов эквива-

лентности и формирует записи выходного файла. 

Второй уровень распараллеливания обусловлен тем, что с каждой запи-

сью ведомого файла обрабатываются все, хранящиеся в черпаке, записи веду-

щего файла. Тогда, если имеется некоторое количество процессоров, черпак 

делится на такое же количество частей. Каждый из процессоров выполняет де-

картово произведение своей части черпака и класса эквивалентности ведомого 

файла. В дальнейшем эти процессоры называются ДП-процессорами.  

 

Рис. 4.10. Архитектура программно-аппаратного комплекса для слияния 

нестрого упорядоченных файлов 
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Из сказанного следует, что программно-аппаратный комплекс для реали-

зации операции слияния нестрого упорядоченных файлов имеет архитектуру, 

приведенную на рисунке 4.10.  

Хост-процессор, связанный с приложениями пользователей, осуществля-

ет общее управление всем комплексом при решении прикладных задач. Для 

каждой базы данных, файлы которой симметрично горизонтально распределе-

ны, имеется карта распределения этих файлов по массовым запоминающим 

устройствам. Хост-процессор запускает обработку фрагментов файлов на 

фрагмент-процессорах, передавая каждому из них данные о расположении 

фрагментов файлов. Фрагмент-процессор последовательно зачерпывает классы 

эквивалентности ведущего файла. Черпак делится на равные, исключая, быть 

может, последнюю, части, начальные адреса и объемы (число записей) которых 

передаются соответствующим ДП-процессорам. Для каждого расположенного в 

черпаке класса эквивалентности фрагмент-процессор последовательно читает 

по одной записи соответствующего класса эквивалентности ведомого файла. 

Этот процесс взаимодействия фрагмент процессора с ДП-процессорами пока-

зан на рисунке 4.11.  

 

Рис. 4.11. Взаимодействие фрагмент-процессора с ДП-процессорами 
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ДП-процессор поочередно обрабатывает все записи класса эквивалентно-

сти ведомого файла со всеми записями черпака, формируя при этом последова-

тельность записей выходного файла (r1, …, rn), где 
( ) ( )i i

K Kn L X L Y 
 –  произ-

ведение объемов i-тых  классов эквивалентности исходных файлов. Эти записи 

передаются фрагмент-процессору, который формирует из них класс эквива-

лентности выходного файла. Формирование класса эквивалентности выходного 

файла, как правило, осуществляется при помощи некоторой групповой опера-

ции (операции квантификации), например, операции суммирования, вычисле-

ния среднего значения, поиск минимального или максимального значения и 

тому подобных операций. То есть, в процессе формирования класса эквива-

лентности выходного файла обычно выполняется и операция свертки. Таким 

образом, после обработки черпака со всеми записями класса эквивалентности 

ведомого файла, формируется класс эквивалентности файла-результата.  

Рассматриваемому варианту МОД присущи регулярные запросы. Такие 

запросы разрабатываются прикладным программистом в процессе проектиро-

вания автоматизированной информационной системы, после чего существуют 

практически без изменений на протяжении всего жизненного цикла системы. 

Следовательно, затраты на трансляцию запроса, его оптимизацию, создание 

библиотечной программы, аналогичной хранимой процедуре, имеют разовый 

характер и не наносят ущерба как разработчику –  профессиональному при-

кладному программисту, – так и самой информационной системе во время ее 

эксплуатации.  

Особенность современного состояния вычислительной техники состоит в 

том, что, во-первых, используются гибкие архитектуры современных аппарат-

ных средств, основанные на многоядерности и многопроцессорности, и, во-

вторых, вычислительные сети обеспечивают такую простоту коммуникаций, 

которая позволяет легко проектировать различные топологии сетей. Эти два 

фактора – регулярность запросов и гибкость вычислительных средств – позво-

ляют решать задачи оптимизации архитектуры программно-аппаратного вы-
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числительного комплекса на этапе разработки автоматизированной информа-

ционной системы. Причем для каждой системы, входящей в ее состав задачи 

или даже отдельного запроса может быть разработан индивидуальный про-

граммно-аппаратный вычислительный комплекс. 

Таким образом, в задачах МОД можно выделить две основные цели оп-

тимизации: ускорение отдельных операций обработки одного или нескольких 

файлов, и построение оптимальных последовательностей операций (процессов 

или запросов) для решения конкретных задач.  

На основе файловой модели становится возможной оптимизация отдель-

ных операций за счет применения различных параллельных архитектур вычис-

лительных комплексов, реализующих выполнение операций. То есть, она поз-

воляет производить двухуровневую оптимизацию, как на уровне операций, так 

и на уровне процессов. Наибольшую сложность при решении проблемы парал-

лельной обработки больших объемов данных имеют операция слияния нестрого 

упорядоченных файлов и процессы, состоящие из последовательностей таких 

операций. 

4.4.2. Параллельная реализация последовательности опе-
раций слияния нестрого упорядоченных файлов  

Далее рассматривается построение программно-аппаратного комплекса, 

который может эффективно решать различные задачи МОД. В терминах фай-

ловой модели данных алгебраической моделью процесса МОД служит алге-

браическое выражение вида A = E(A1, …, Ap), правая часть которого состоит из 

файлов A1, …, Ap, соединенных знаками операций над файлами, а левая – из 

выходного файла. Далее рассматриваются только аддитивная операция слияния 

строго упорядоченных файлов и мультипликативная операция слияния нестро-

го упорядоченных файлов. Тогда правая часть алгебраического выражения 

E(A1, …, Ap) может быть сведена к "сумме произведений" исходных файлов. 

Как было сказано, в реляционной модели данных операции слияния нестрого 

упорядоченных файлов соответствует операция JOIN. Далее рассмотрена архи-

тектура вычислительного комплекса для  параллельного вычисления цепочки 
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"произведений" файлов, то есть, в терминах SQL-реляционной модели данных, 

вычисления выражения запроса вида:  

SELECT <список полей> FROM  

  (Ap INNER JOIN SELECT <список полей> FROM 

   (Ap1 INNER JOIN …  

     SELECT <список полей> FROM 

       (A2 INNER JOIN A1 ON 1) … ) ON p1) 

Для вычисления этого запроса может быть эффективно использована 

конвейерная (MISD) архитектура вычислительного комплекса (рисунок 4.11).  

 

Рис.4.11. Конвейерный вычислительный комплекс для вычисления цепочки 

операций Join 

Этот комплекс состоит из p1 Join-процессора, первый из которых начина-

ет обработку первых двух "сомножителей". Как только готов очередной фраг-

мент (один или несколько классов эквивалентности) результата, он передается 
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следующему Join-процессору, который обрабатывает этот фрагмент с соответ-

ствующим классом эквивалентности файла A3, и так далее по конвейеру. По-

следний Join-процессор конвейера принимает классы эквивалентности, полу-

ченные в результате предыдущих произведений и обрабатывает их с соответ-

ствующими классами эквивалентности последней таблицы в цепочке. 

Среди операций МОД операция JOIN имеет наибольшую вычислитель-

ную сложность. На основе файловой модели Join-процессор можно организо-

вать как вычислительный комплекс на основе SIMD-архитектуры (рисунок 

4.12).  

Рис. 4.12. SIMD-архитектура Join-процессора 

 Фрагменты таблиц-операндов, обрабатываемых i-тым фрагмент-

процессором, можно рассматривать как совокупность пар G
i1

, …, G
ik
, каждая из 

которых содержит два соответствующих друг другу класса эквивалентности 

таблиц-операндов. Размещение данных в памяти фрагмент-процессоров произ-

водится на основе принципа симметричного горизонтального распределения. 

Фрагмент-процессор выполняет операцию JOIN над фрагментами файлов 

и передает на выход либо весь результат операции, либо фрагмент, содержащий 

результат декартова произведения классов эквивалентности очередной пары Gij.  

При таком сочетании конвейерной (MISD) и SIMD-архитектур вычисли-

тельных комплексов можно добиться значительного повышения эффективности 

процессов МОД. 

Такой подход позволяет использовать несколько различных потоков. По-

токи чтения индексно-последовательных файлов читают значения ключей в об-

ласти памяти. Далее поток распределения передает значения ключей и распо-

ложения классов эквивалентности кластеру вычислителей. Кластер, состоящий 

из нескольких вычислителей, выполняет декартово произведение классов экви-
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валентности. Кластер в данном случае может быть, как машиной баз данных, 

так и группой компьютеров, объединенных сетью под общим управлением. 

4.4.3. Параллельная реализация операции слияния нестро-
го упорядоченных файлов с использованием ассоциатив-
ных вычислительных систем 

Вычислительная система с ассоциативным распределением ресурсов 

(ВСАРР) создавалась для решения широкого класса математических задач. 

Академик Бурцев В.С. инициировал исследование данной архитектуры для ре-

шения задач нечисловой обработки информации. Параллельная система баз 

данных на основе вычислительной системы «ВСАРР» работает с базами дан-

ных, обеспечивая аппаратную поддержку ассоциативного поиска. Использова-

ние вычислительной системы «ВСАРР», работающей по принципу потока дан-

ных, помогает решить ряд проблем, которые возникали при использовании 

универсального аппаратного обеспечения.  

В архитектуре «ВСАРР» исполнение программы описывается в терминах 

приема, обработки и выдачи токенов, содержащих некоторое данное и тег. За-

висимости между данными транслируются в совпадение и преобразование те-

гов, в то время как обработка данных имеет место тогда, когда несколько сов-

павших токенов приходят в исполнительное устройство. Команда, которая 

должна быть выбрана из памяти команд (в соответствии с информацией, при-

сутствующей в теге токена), содержит информацию о том, что должно быть 

выполнено над пришедшими данными и как следует изменить теги. Устройство 

совпадения и исполнительное устройство соединяются через асинхронный кон-

вейер с очередями, добавленными для сглаживания неравномерностей нагруз-

ки. Поиск токенов с совпадающими тегами выполняется в ассоциативной памя-

ти. 

Процесс вычислений наглядно изображается в виде направленного графа, 

по дугам которого перемещаются тегированные данные (токены), а в имено-

ванных узлах которого исполняется одна или несколько команд. Каждый узел 
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графа имеет один или два входа и много выходов. Узел представляет собой од-

ну операцию или несколько операций, называемых программой узла [200, 201]. 

Граф вычислений [202], приведенный на рисунке 4.13, соответствует опе-

рации соединения без использования индексно-последовательных файлов. 

 Память команд исполнительного устройства: 

Адрес про-

граммы узла 
Команда 1 Команда 2 Команда 3 

1 ЧТЕНИЕ Контекст=0 

Выдать токен 

<Адрес про-

граммы узла 2> 

2 

ДЕКАРТОВО 

ПРОИЗВЕДЕ-

НИЕ 

Выдать токен 

результат 

<Адрес резуль-

тата> 

 

 

Граф алгоритма имеет четыре узла: два экземпляра узла «чтения» для 

каждого из файлов, один экземпляр узла «сравнение» и один экземпляр узла 

«декартово произведение» (рисунок 4.13). На входы узлов поступают токены: 

тегированные данные, в тегах которых передается ключ поиска в ассоциатив-

ной памяти: физический адрес программы узла в памяти команд и контекст ис-

полнения программы узла.  

Узел «чтение» получает на вход адрес нестрого упорядоченного файла, 

токены будут идентифицироваться по значению ключа класса эквивалентности, 

узел «декартово произведение» будет выполнять декартово произведение по-

ступивших в него данных. Сравнение классов эквивалентности будет происхо-

дить в ассоциативной памяти. 

 

 

 



197 

 

 

Рисунок 4.13. Граф вычислений операции соединения. 

 При использовании файла индексов граф вычислений имеет два узла чте-

ния индексных файлов («чтение иф»), узел распределения, два узла чтения, два 

узла «чтение» (выполняющие чтения нестрого упорядоченных файлов), узел 

декартово произведения. Граф вычислений изображен на рисунке 4.14. 

Адрес про-

граммы 

узла 

Команда 1 Команда 2 Команда 3 

1 ЧТЕНИЕ ИФ Контекст=0 

Выдать токен <Ад-

рес программы узла 

2> 

2 
РАСПРЕДЕ-

ДЕЛЕНИЕ 
Контекст=0 

Выдать токен <Ад-

рес программы узла 

3> 

3 ЧТЕНИЕ Контекст=0 

Выдать токен <Ад-

рес программы узла 

4> 

4 

ДЕКАРТОВО 

ПРОИЗВЕДЕ-

НИЕ 

Выдать токен ре-

зультат 

<Адрес результа-

та> 

 

Узел «чтение иф» выполняет чтение файлов индексов и передает их в 

узел распределения. Узел распределения  передает в узлы «чтение» индекс 

и адреса и мощности классов эквивалентности. Узлы «чтения» передают про-
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читанные данные узлу «декартово произведение», который в свою очередь пе-

редает результат на вывод.   

 

Рисунок 4.14. Граф вычислений операции соединения 

с использованием файла индексов 

4.5. Заключительные замечания к главе 4 

 В главе рассмотрены этапы построения программно-аппаратных ком-

плексов, реализующих МОД.  

Предложена архитектура программно-аппаратного комплекса для реали-

зации многомерно-матричной модели данных. Подробно рассмотрена архитек-

тура, ориентированная на реализацию операции (, )-свернутого произведения 

многомерных матриц на основе сечений по совокупности скоттовых индексов. 
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Рассмотрены возможные архитектуры программно-аппаратных комплек-

сов для реализации простых операций теоретико-множественной модели дан-

ных: внешней сортировки, выборки, сечения и слияния строго упорядоченных 

файлов.  

Предложена архитектура программно-аппаратного комплекса для парал-

лельной реализации операции слияния нестрого упорядоченных файлов в тео-

ретико-множественной и реляционной моделях данных на основе принципа 

симметричного горизонтального распределения таблиц-операндов и приводит-

ся описание параллельной реализации этой операции для выскоактивных дан-

ных с использованием алгоритма черпака. 

Предложена и рассмотрена параллельная конвейерная реализация после-

довательности операций слияния нестрого упорядоченных файлов на основе 

стандартных архитектур вычислительных систем.  

Предложена параллельная реализация операции слияния нестрого упоря-

доченных файлов на основе архитектуры вычислительных систем с ассоциа-

тивным распределением ресурсов. 

Основные результаты, полученные в данной главе, были опубликованы в 

работах [117, 188-192, 202]. 
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Глава 5. ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ПРОГРАММНО-
АППАРАТНЫХ РЕАЛИЗАЦИЙ МАССОВОЙ ОБРАБОТКИ 
ДАННЫХ 

5.1. Анализ параллельной реализации операции умножения 
многомерных матриц 

Для умножения использовался блочный параллельный алгоритм умно-

жения многомерных матриц, описание которого приведено в главе 3.  

Эксперимент [147, 174, 175] проводился для трехмерных (Alsc, Bscm) и четырех-

мерных ),(
2121
cmsscsls BA  числовых матриц. Все индексы трехмерных матриц 

принимали значения от 10 до 300 с шагом 10, а четырехмерных – 10 до 70 с 

шагом 2. 

На каждом шаге эксперимента выполнялись последовательное и параллельное 

(8 и 27 потоков) умножение многомерных матриц. Таким образом, для трех-

мерных матриц выполнялось (1, 1)-свернутое произведение, а для четырехмер-

ных – (2, 1)- свернутое произведение. Программно-аппаратные комплексы со-

здавались как виртуальные машины Microsoft Azure на основе процессора Xeon 

E5-2673. Использовались конфигурации с восьмью и шестнадцатью ядрами.  

Результаты эксперимента, приведенные на рисунке 5.1, показывают, что с уве-

личением размерности индексов возрастает эффективность параллельного ал-

горитма. 

 

А) трехмерные матрицы                 

0,000
50,000

100,000
150,000
200,000
250,000
300,000
350,000

140 160 180 200 220 240 260 280 300

последовательно 8 потоков
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Б) четырехмерные матрицы 

Рис. 5.1. Зависимость производительности алгоритма от размерности  

индексов 

На рисунке 5.2 приведены результаты анализа производительности алгоритма 

параллельного умножения многомерных матриц в зависимости от соотношения 

числа потоков и числа вычислителей (ядер).  

 

Рис. 5.2. Зависимость производительности алгоритма от числа вычислителей 

Результаты эксперимента позволяют утверждать, что предложенный алгоритм 

обеспечивает высокую производительность при умножении многомерных мат-

риц. 
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5.2. Анализ параллельной реализации операции слияния 
нестрого упорядоченных файлов  

Для параллельной реализации теоретико-множественной модели данных 

могут использоваться различные архитектуры вычислительных комплексов, 

например, массивно-параллельные системы (MPP) или симметричные мульти-

процессорные системы (SMP). То есть, это могут быть как неоднородные, так и 

однородные вычислительные системы, в простейшем случае – система с одним 

или несколькими многоядерными процессорами. Единственное требование со-

стоит в том, чтобы каждый процессор (ядро) был ассоциирован с собственным 

устройством массовой памяти (в простейшем случае – дисковым накопителем). 

Общая архитектура вычислительного комплекса для реализации теоретико-

множественной модели приведена на рисунке 5.3. 

 

Рис. 5.3. Архитектура вычислительной системы для реализации теоретико-

множественной модели 

5.3. Анализ параллельной реализации операции слияния 
нестрого упорядоченных файлов средствами СУБД и SMP-
архитектуры 

Для оценки качества распараллеливания операции слияния нестрого упо-

рядоченных файлов на симметричной мультипроцессорной системе был прове-

ден вычислительный эксперимент на основе вычислительной системы со сле-

дующими характеристиками: 
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̶ четырехядерный центральный процессор Intel CORE i7, поддерживаю-

щий технологию гиперпоточности (HTT) и, соответственно, имеющий 

восемь виртуальных ядер; 

̶ оперативная память 6 Гбайт; 

̶ внешняя память 1 Тбайт. 

Исходные данные представляли собой таблицы базы данных Microsoft 

Sql-Server, а операция слияния нестрого упорядоченных файлов реализовыва-

лась операцией Join.  Подфайлы-операнды каждой пары генерировались таким 

образом, что содержали классы эквивалентности с одинаковыми значениями 

экземпляров множества ключей, но различными количествами записей. На 

каждом шаге генерировалось по четыре пары подфайлов, которые одновремен-

но обрабатывались четырьмя параллельными процессами, результаты которых 

объединялись в один файл-результат. Затем все подфайлы-операнды объединя-

лись в два файла операнда. И выполнялся один процесс, реализовавший опера-

цию слияния нестрого упорядоченных файлов последовательно. Количество 

обрабатываемых на каждом этапе записей приведено в таблице 5.1. 

Таблица 5.1. Объемы данных на каждом шаге эксперимента 

Шаг Количество записей (тысячи) 
Подфайлы пар (XM, YM) Файлы (XM, YM) 

1 200 400 
2 400 800 
3 600 1200 
4 800 1600 
5 1200 2400 

В ходе эксперимента были получены приведенные на рисунке 5.4 соот-

ношения между объемами базы данных (в тысячах записей) и временами обра-

ботки (в секундах) этой базы четырьмя параллельными процессами и одним 

последовательным процессом. На графике видно, что параллельная реализация 

операции слияния нестрого упорядоченных файлов четырьмя процессами тре-

бует в среднем в пять раз меньше времени, чем последовательная реализация. 
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Рис. 5.4. Зависимость времени выполнения операции слияния от объема данных 

Анализ загрузки процессами ресурсов (виртуальных ядер) центрального 

процессора показал (рисунок 5.5), что каждый процесс выполняется на одном 

виртуальном ядре, не более чем на половину используя его ресурсы. Из этого 

следует, что число параллельно выполняющихся процессов может быть вдвое 

большим, чем число выделенных для реализации операции ядер.  

 

Рис. 5.5. График загрузки ресурсов процессора 
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Рис. 5.6. Время реализации операции слияния нестрого упорядоченных 

файлов (Join) 

Результаты эксперимента, приведенные на рисунке 5.6, подтверждают, что 

применение предложенного метода параллельной реализации операции слия-

ния нестрого упорядоченных файлов более эффективно, чем реализация стан-

дартными средствами распараллеливания операции Join, реализованными в 

СУБД.  

При реализации операции слияния нестрого упорядоченных файлов алго-

ритмом черпака загрузка ядер процессора оказалась весьма высокой, что пока-

зано на рисунке 5.7. 

 
Рис.5.7. Загрузка процессоров (ядер) в виртуальном программно-аппаратном 

комплексе 
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5.4. Анализ параллельной реализации операции слияния 
нестрого упорядоченных файлов с использованием MPP-
архитектуры в облачной среде 

Облачные вычисления определяется как вычислительные концепции, ко-

торые подразумевают большое количество компьютеров, подключенных через 

сеть реального времени, подобную Интернет. Это синоним для распределенных 

вычислений по сети, а значит, возможность запуска программы или приложе-

ния на многих подключенных компьютерах одновременно. Облачные вычисле-

ния основаны на данных, приложениях, инфраструктуре и различных платфор-

мах для разработчиков приложений, расположенных в глобальной сети (WAN).  

Облачные системы предоставляют программисту большой набор инстру-

ментальных средств разработки приложений. Они объединены в подсистему, 

которая называется Платформа как сервис (Platform as a Service – PaaS). PaaS – 

это предоставление облачных вычислений, при котором потребитель получает 

доступ к использованию технологических платформ, размещённых в облачной 

системе, таких как: операционные системы, системы управления базами дан-

ных, связующее программное обеспечение, средства разработки и тестирования 

приложений. Далее рассматриваются методы и ресурсы необходимые для па-

раллельной обработки распределенных данных, которые обеспечивает разра-

ботчикам PaaS облачной системы Windows Azure. 

Первый основной ресурс – это виртуальная машина. Виртуальная машина 

конструируется пользователем в соответствии с его требованиями. Минималь-

ные возможности – это одноядерный процессор с 768 Мбайтами памяти, а 

наиболее мощный вариант – восьмиядерный процессор с 56 Гбайтами памяти. 

На виртуальной машине устанавливается операционная система Windows Serv-

er. Если виртуальная машина используется для работы с базами данных, то на 

ней также устанавливается СУБД Microsoft SQL Server Azure. Версия и 

настройка программного обеспечения определяется мощностью машины. 
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Второй основной ресурс – это отдельная база данных. Программисту 

предоставляется возможность создания необходимого количества баз данных 

на облачных ресурсах. Эти БД могут быть физически независимыми друг от 

друга, то есть располагаться на различных облачных хранилищах данных и об-

рабатываться различными облачными процессорами. Для создания БД и вы-

полнения запросов к ней используется СУБД Microsoft SQL Server Azure. 

Третий ресурс, который может быть использован для решения вспомога-

тельных задач параллельной обработки распределенных данных, – хранилище 

таблиц. К таблицам можно применять только простые запросы, не содержащие 

бинарных операций типа операции соединения. Таблицы могут использоваться 

как индексные файлы при индексно-последовательной организации данных. 

Далее рассматриваются методы взаимодействия прикладных программ с 

этими основными ресурсами [145, 193]. При этом предполагается, что: 

 организация данных реализована на основе принципа симметричного гори-

зонтального распределения; 

 программа реализует параллельное выполнение независимых потоков, ко-

торые вместе реализуют массовую обработку данных. 

 

Рис. 5.8. Взаимодействие между прикладной программой и облачными ресур-

сами 
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Общая схема взаимодействия прикладной программы с основными облач-

ными ресурсами показана на рисунке 5.8.  

Прикладная программа, которая реализует массовую обработку данных, 

может располагаться на рабочей станции пользователя или на виртуальной ма-

шине в облаке. В последнем случае пользователь получает к ней доступ с по-

мощью удаленного рабочего стола.  

Обработка данных, расположенных в облаке, может быть реализована 

различными способами. 

Первый способ реализует параллельную обработку на уровне запросов. В 

этом случае алгебраическое выражение запроса разбивается на подвыражения, 

которые могут выполняться одновременно на разных процессорах или ядрах 

одного многоядерного процессора.  

Пример 1. Пусть даны две таблицы с одинаковыми схемами: P(A, B) и 

Q(A, B), и таблица R(A, C). Эти таблицы участвуют в запросе, в котором снача-

ла выполняется операция объединения таблиц P и Q, а затем операция JOIN над 

результатом объединения и таблицей R. Этот запрос имеет вид: 

SELECT R.A, PUQ.B, R.C FROM R INNER JOIN PUQ ON R.A =PUQ.A; 

PUQ – запрос на объединение таблиц P и Q: 

SELECT P.A, P.B FROM P UNION SELECT Q.A, Q.B FROM Q; 

Этот запрос может быть преобразован в эквивалентный запрос:  

SELECT R.A, P.B, R.C FROM R INNER JOIN P ON R.A = P.A  

UNION  

SELECT R.A, Q.B, R.C FROM R INNER JOIN Q ON R.A = Q.A;  

(операции JOIN и UNION подчиняются закону дистрибутивности). 

Схема взаимодействия прикладной программы с распределенными между 

двумя БД в облаке данными и запросами приведена на рисунке 5.9. 
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Рис. 5.9. Взаимодействие прикладной программы с БД в облаке 

Прикладная программа может располагаться как на виртуальной машине в 

облаке, так и на компьютере пользователя. Во втором случае связь прикладной 

программы с базами данных осуществляется по глобальной сети. В обоих слу-

чаях связь прикладной программы и баз данных может быть реализована в мо-

дели ODBC. Первая база данных содержит таблицы R и P и запрос, в котором 

выполняется операция JOIN над этими таблицами. Вторая база данных содер-

жит таблицы R и Q, запрос, в котором выполняется операция JOIN над этими 

таблицами и запрос, в котором выполняется операция UNION над результатами 

обоих JOIN-запросов. Прикладная программа запускает два параллельных по-

тока, которые инициируют соответствующие им JOIN-запросы и отслеживают 

их состояния. Когда выполнение JOIN-запросов заканчивается, приложение за-

пускает выполнение UNION-запроса. Базы данных обрабатываются независимо 

друг от друга, поэтому можно считать, что для решения задачи создан вирту-

альный программно-аппаратный комплекс. Его архитектура имеет много обще-

го с такими распространенными архитектурами как симметричное мультипро-

цессирование (SMP) и массовый параллелизм (MPP). 

Второй способ основан на параллельной реализации операций, которые 

составляют запрос, при использовании принципа симметричного горизонталь-

ного распределения (параграф 3.6). 
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Симметричное горизонтальное распределение таблиц P и Q между N ба-

зами данных фактически приводит к построению виртуального программно-

аппаратного комплекса с MPP архитектурой, который располагается в облачной 

системе. Структура такого комплекса приведена на рисунке 5.10. 

 

Рис. 5.10. Структура виртуального программно-аппаратного комплекса для 

массовой обработки данных 

Для оценки качества распараллеливания операции JOIN был проведен 

вычислительный эксперимент.  Виртуальный комплекс был построен на основе 

Windows Azure – платформы Microsoft, разработанной для реализации облач-

ных вычислений. В состав комплекса входили пять независимых баз данных. 

Из них четыре использовались для симметричного горизонтального распреде-

ления таблиц. Результаты эксперимента приведены на рисунке 5.11. 

Эксперимент проводился для таблиц P и Q, число строк в которых изме-

нялось от 400000 до 2500000. Распределение таблиц производилось на основе 

алгоритма из раздела 3.5.3.1. На рисунке 5.11 приведены экспериментальные 

данные, подтверждающие тот факт, что применение предложенного автором 

метода параллельного выполнения операции JOIN дает существенное повыше-

ние производительности при реализации задач массовой обработки данных. 
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Рис. 5.11. Сравнительный анализ времени последовательного и параллельного 

выполнения операции JOIN 

5.5. Анализ параллельной реализации операции слияния 
нестрого упорядоченных файлов с использованием SMP-
архитектуры в облачной среде 

В этом эксперименте в облаке была создана виртуальная машина, на ко-

торой производилось сравнение реализации алгоритма черпака с фиксирован-

ным размером класса эквивалентности и реализации операции Join в Microsoft 

SQL Server. Для реализации предложенного параллельного алгоритма операции 

слияния нестрого упорядоченных файлов предложена архитектура программно-

аппаратного комплекса, основанного на архитектуре SMP и реализованного в 

облачной системе Microsoft Azure на виртуальной машине с четырехядерным 

процессором Xeon E5-2673. В роли файлов выступали таблицы в базах данных 

СУБД Microsoft SQL Server. 

В ходе эксперимента в основной базе данных последовательно создава-

лись таблицы, соответствующие файлам XK и YK . Таблицы содержали фиксиро-

ванное число строк, но различные (увеличивающиеся на каждом этапе экспе-

римента) размеры классов эквивалентности. Эти базы разбивались на четыре 

фрагмента, каждый из которых содержал 25% таблиц основной базы данных. 
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Разбиение производилось на основе принципа симметричного горизонтального 

распределения. 

На каждом этапе эксперимента программа, реализующая алгоритм слия-

ния нестрого упорядоченных файлов, четырьмя параллельными потоками счи-

тывала классы эквивалентности фрагментов таблиц. Каждый поток порождал 

два потока, которые выполняли декартово произведение этих классов эквива-

лентности. По завершении всех потоков, результаты объединялись в одну таб-

лицу. Затем выполнялась операция JOIN над таблицами основной базы данных. 

При выполнении этой операции использовались стандартные средства распа-

раллеливания, присущие СУБД Microsoft SQL Server. 

Результаты эксперимента представлены на рисунках 5.11,5.12. 

 

Рис. 5.12. Зависимость времени выполнения операции слияния нестрого упоря-

доченных файлов от размеров классов эквивалентности 

График, приведенный на этом рисунке, показывает, что предложенные алго-

ритм и архитектура программно-аппаратного комплекса обеспечивают более 

эффективную обработку данных, чем стандартные средства СУБД. 

На рисунке 5.12 показана загрузка процессоров при выполнении обоих 

способов реализации операции: А) – применение алгоритма черпака, Б) - стан-

дартными средствами. 
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А)    Б) 

Рис. 5.12. График загрузки процессора 

5.6. Анализ параллельной реализации операции слияния 
нестрого упорядоченных файлов с использованием SMP-
архитектуры и многоядерных графических процессоров 

Здесь описан эксперимент с использованием двух вычислительных 

архитектур [203]. В первом случае операция JOIN была реализована над 

двумя таблицами с помощью технологии CUDA и принципа симметрично-

го горизонтального распределения. Применение этого принципа позволило 

разработать алгоритм реализации операции JOIN, основанный на чтении 

(зачерпывании) исходных таблиц классами эквивалентности, соответству-

ющими фиксированному значению экземпляра множества ключей. После 

зачерпывания оба класса эквивалентности передавались в видеопамять, и 

выполнялось их декартово произведение ядрами графического процессора. 

Во втором случае операция JOIN тех же таблиц осуществлялась средства-

ми СУБД. Эксперимент поводился с использование двух СУБД: MySQL и 

Microsoft SQL Server 2014. Выбор этих СУБД определился тем, что они 

существенно различаются по производительности, кроме того СУБД Mi-

crosoft SQL Server 2014 многие действия реализует параллельно.  

В ходе эксперимента была реализована операция, которой соответ-

ствует SQL-запрос: 

SELECT T1.F1, SUM(T1.F2*T2.F2) FROM T1 INNER JOIN T2  

ON T1.F1 = T2.F1 GROUP BY T1.F1 ORDER BY T1.F1. 

Для эксперимента была использована 384-ядерная видеокарта Gigabyte 

GT730. Выполнялась операция JOIN над парами таблиц с одинаковым 

числом строк, которое изменялось от 73728 до 442368 (кратно числу ядер 
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графического процессора). Результаты, полученные в ходе эксперимента, 

приведены на рисунке 5.13 для СУБД MySQL и Microsoft Sql-Server. 

 

А)         Б) 

Рис. 5.13. Сравнение времени выполнения операции JOIN средствами 

СУБД и технологии CUDA 

5.7. Заключительные замечания к главе 5 

В главе приведены результаты экспериментов, проведенных с целью 

проверки полученных в предыдущих главах результатов. А именно: 

 анализ параллельной реализации операции умножения многомерных мат-

риц; 

 анализ параллельной реализации операции слияния нестрого упорядочен-

ных файлов; 

 анализ параллельной реализации операции слияния нестрого упорядочен-

ных файлов средствами СУБД и SMP-архитектуры; 

 анализ параллельной реализации операции слияния нестрого упорядочен-

ных файлов с использованием MPP-архитектуры в облачной среде; 

 анализ параллельной реализации операции слияния нестрого упорядочен-

ных файлов с использованием SMP-архитектуры в облачной среде; 



215 

 

 анализ параллельной реализации операции слияния нестрого упорядочен-

ных файлов с использованием SMP-архитектуры и многоядерных графических 

процессоров. 

Проведенный экспериментальный анализ предложенных в предыдущих 

главах алгебраических методов массовой обработки данных показал их эф-

фективность. 

Основные результаты, полученные в данной главе, были опубликованы в 

работах [117, 145-147, 174-177, 188-192, 202, 203]. 
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Глава 6. ПРИМЕНЕНИЕ АЛГЕБРАИЧЕСКОГО ПОДХОДА ДЛЯ 
РЕШЕНИЯ ПРИКЛАДНЫХ ЗАДАЧ 

6.1. Использование предложенного метода для решения 
задач о кратчайшем пути 

 6.1.1 Решение традиционной задачи 

Здесь рассматривается один из способов решения широкого класса опти-

мизационных задач, общее название которых "задачи о кратчайшем пути". Ис-

ходными данными для этих задач служат нагруженные графы. Нагруженный 

граф – это граф, в котором каждому ребру e присваивается число w(e), называ-

емое его весом. Задача о кратчайшем пути состоит в том, чтобы найти такой 

путь между двумя вершинами в графе, что сумма весов составляющих его ре-

бер минимальна [204,205].  

Как показано в параграфе 2.1.3, на практике к этому классу относятся 

различные задачи. Это могут быть как классические задачи о выборе пути с 

определенными свойствами (минимальной или максимальной длины), так и за-

дачи, связанные с доступностью вершин, и задачи из области управления про-

изводством, например, определение входимости узлов и деталей в изделия (за-

дача разузлования) [206]. Поэтому веса ребер графа могут быть элементами 

различных алгебраических систем. Выбор алгебраической системы определяет 

семантика предметной области, к которой принадлежит решаемая задача. При-

меры алгебраических систем для различных задач приведены в таблице 6.1. 

Таблица 6.1. Алгебраические системы для решения задач о выборе пути 

Задача Множество 
Операции и нейтральные элементы 

Аддитивная Мультипликативная 

Нахождение кратчайших 

путей в единицах длины 
R+

 Min, ∞ +, 0 

Нахождение путей с 

наибольшим числом 

пройденных вершин 

{0, 1} Max, 0 +, 0 
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Определение доступности 

вершин графа 
{0, 1} , 0 , 1 

Разузлование проектиру-

емого изделия 
R0 +, 0 , 1 

Для решения этих задач используются различные алгоритмы, например, 

алгоритм Флойда-Уоршалла. Он используется для нахождения кратчайших пу-

тей в нагруженном графе, а также для нахождения транзитивного замыкания 

некого отношения R. Выполнение алгоритма позволяет найти длины (суммар-

ные веса) кратчайших путей между всеми парами вершин, хотя и не возвращает 

детали самих путей, например, в виде последовательностей вершин, через ко-

торые проходят эти пути.  

Кроме этого алгоритма известны и другие, например, алгоритм, основан-

ный на вычислении транзитивного замыкания матрицы весов графа G, которое 

вычисляется как ZGKiZGGG Kk
K

k

k  



 1

1

),(,ˆ  (Z – нуль-матрица) . Этот ал-

горитм основан на умножении матриц и поэтому легко распараллеливается. Из-

вестны эффективные алгоритмы параллельного умножения матриц, такие как 

алгоритм Фокса и алгоритм Кэннона. Но большинство достоинств этих алго-

ритмов теряются в том случае, когда матрица G разреженная, то есть содержит 

большое число нейтральных элементов. Пример такого графа и его матрицы 

весов показан на рисунке 6.1. 

 

Рис. 6.1. Граф и разреженная матрица весов его ребер 
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Ранее были рассмотрены различные технологии хранения и обработки 

разреженных матриц [169]. Выбрана та из них, которая основана на том, что в 

памяти вычислительной системы матрица хранится как совокупность кортежей 

вида (i, j, w), i, j – индексы элемента матрицы, w –вес ребра между вершинами i 

и j (значение w отлично от нейтрального элемента алгебраической системы, ко-

торой принадлежат веса ребер графа). Если использовать такое представление 

разреженных матриц, то их можно хранить и обрабатывать в реляционных ба-

зах данных. Далее рассмотрено использование реляционной модели SQL, для 

решения различных модификаций задачи о кратчайшем пути.  

В параграфе 2.4.2 доказано соответствие алгебры многомерных матриц и 

реляционной алгебры. Более того, в рассматриваемом случае между этими ал-

гебрами может быть установлено соответствие изоморфизма [110]. Действи-

тельно, каждой разреженной матрице соответствует единственное отношение 

со схемой G(i, j, w). Все необходимые операции алгебры матриц могут быть ре-

ализованы операциями реляционной алгебры или их композициями. Операции 

умножения матриц соответствует композиция операций SELECT … GROUP 

BY… и JOIN. Запрос SELECT Gk.i, G.j, Q(G.w  Gk.w) AS w FROM Gk INNER 

JOIN G ON Gk.j= G.i GROUP BY G k.i, G.j;  последовательно выполняет все воз-

ведения в степень таблицы G, получая в результате последовательность таблиц 

со схемой Gk(i, j, w) (k = 1, …, K). Q – это функция, которая реализует группо-

вую операцию, такую как Sum, Min, Max и им подобные. Таблица GK+1 не со-

держит ни одной строки и соответствует нуль-матрице Z.  

Поскольку вычисление степеней матрицы весов G – циклический про-

цесс, то для его реализации можно использовать язык программирования Trans-

act-SQL. Фрагмент программы, вычисляющей кратчайшие пути в графе, приве-

ден в листинге 6.1. 

Листинг 6.1. Вычисление кратчайших путей в графе  

1 INSERT INTO Gk SELECT * FROM G 

2 SELECT @q = COUNT(*) FROM Gk  

3 WHILE @q > 0 

4 BEGIN 
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5     INSERT INTO @tcG SELECT * FROM Gk 

6     INSERT INTO @GkNext SELECT Gk.i, G.j, Min(Gk.w + G.w) AS w 

7         FROM Gk INNER JOIN G ON Gk.j = G.i 

8         GROUP BY Gk.i, G.j ORDER BY Gk.i, G.j 

9     DELETE * FROM Gk 

10     INSERT INTO Gk SELECT * FROM @GkNext 

11     SELECT @q = COUNT(*) FROM Gk 

12     DELETE @GkNext 

13 END 

14 SELECT tcG.i, tcG.j, MIN(tcG.w) AS w FROM @tcG 

15 GROUP BY tcG.i, tcG.j ORDER BY tcG.i, tcG.j 

Здесь q – число строк в очередной вычисленной таблице. Таблицы и мат-

рицы соответствуют друг другу следующим образом: G –матрица весов графа, 

Gk, GkNext – k-я и (k+1)-я степени матрицы весов, tcG – транзитивное замыка-

ние матрицы весов. 

Реализация алгоритма состоит из следующих шагов. 

1. Таблице Gk присваивается первая степень матрицы G (строка 1); 

2. Вычисляется число строк в таблице Gk (строка 2); 

3. Выполняется основной цикл до тех пор, пока таблица Gk (очередная сте-

пень матрицы G) содержит хотя бы одну строку (строки 3-13);  

4. В теле цикла: 

4.1. Строки таблицы Gk добавляются в таблицу tcG (транзитивное замыкание 

матрицы весов) (строка 5); 

4.2. Выполняется операция JOIN, которая реализует умножение матриц 

(строки 6-8);  

4.3. Таблице Gk присваивается очередная степень матрицы G, и вычисляется 

число строк в таблице Gk(строки 9-12); 

5. Вычисляется окончательное значение транзитивного замыкания матрицы 

весов G (строки 14-15). 

Итак, решение традиционных оптимизационных задач на графах, при 

условии, что матрица весов графа – разреженная матрица, возможно средства-

ми баз данных. Однако в реальных условиях количество вершин в графе и со-

единяющих их ребер может быть настолько велико, что возникает проблема 
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обработки больших данных (Big Data). При этом в большинстве случаев время 

решения задач должно быть очень мало. Типичный пример такого рода реаль-

ных задач – это задача прокладки маршрута в навигационных системах, которая 

должна решаться каждый раз, когда изменяется ситуация, для большого числа 

движущихся объектов за очень короткий временной интервал.  

На листинге 6.1 видно, что основная операция, используемая при реше-

нии задачи поиска кратчайших путей – это операция JOIN. Эта операция обла-

дает большой вычислительной сложностью. Поэтому время ее реализации на 

больших данных велико. Поэтому целесообразно использование принципа 

симметричного горизонтального распределения. Его использование позволит 

существенно ускорить решение этой задачи для больших данных. 

Из сказанного можно сделать вывод о том, что при решении оптимизаци-

онных задач, принадлежащих классу задач о кратчайшем пути возможно при-

менение методов, основанных на базах данных. Можно сделать вывод о том, 

что эти методы наиболее эффективно применяются при использовании матрич-

ных алгоритмов в тех случаях, когда матрица весов графа разреженная. Также 

становится очевидным тот факт, что современные языки манипулирования 

данными позволяют эффективно реализовать матричные алгоритмы. Предло-

женный подход позволяет эффективно решать оптимизационные задачи на 

графах на основе использования принципа симметричного горизонтального 

распределения данных. Этот принцип дает возможность построения виртуаль-

ных программно-аппаратных комплексов, ориентированных на эффективное 

решение конкретных задач за счет параллельной реализации массовой обработ-

ки данных. Поскольку рассмотренный класс задач относится к этому типу об-

работки данных, повышение эффективности их решения становится возмож-

ным. 
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Рис. 6.2. Сравнение реализации алгоритма поиска кратчайших путей обычными 

средствами и средствами параллельной реализации в СУБД 

На рисунке 6.2 приведены результаты эксперимента, проведенного для 

сравнения реализаций алгоритма поиска кратчайших путей обычными сред-

ствами и средствами параллельной реализации в СУБД. Эксперимент прово-

дился для графов с большим числом вершин.  

6.1.2. Решение задачи с одновременным построением пути 

В этом разделе рассматривается применение предложенного метода к по-

вышению эффективности обработки данных при решении задач построения 

маршрутов. Задачи построения маршрутов – неотъемлемая составная часть 

геоинформационных, логистических, и навигационных информационных си-

стем.  Кроме того, этот класс задач широко используется для построения и ана-

лиза различных коммуникационных сетей, например, телекоммуникационных и 

социальных. В частности, моделирование средствами граф-моделей телеком-

муникационных сетей, состоящих из узлового сетевого оборудования и каналов 

связи, позволяет выбрать оптимальные маршруты передачи информации и схе-

му соединения узлов коммутации, а также оценить пропускные способности 

линий [207, 208]. Моделирование социальных сетей позволяет эффективно 

оценить экономические и коммуникационные связи между пользователями, 

выполнить анализ процессов распространения информации, нахождения раз-

личных неформальных объединений и связанных подгрупп, на которые можно 

разбить общую сеть социальных взаимодействий [209, 210].  
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Современная особенность задач построения маршрутов заключается в 

необходимости обработки больших и сверхбольших данных (Big Data). Тради-

ционный подход к их решению основан на математическом моделировании с 

использованием теории графов. При всей своей естественности для представ-

ления объектов предметных областей, их свойств и связей, этот подход облада-

ет одним существенным недостатком. Как было показано в предыдущем пара-

графе, традиционные полиномиальные алгоритмы на графах позволяют нахо-

дить свойства маршрутов: их существование между двумя вершинами, стоимо-

сти и тому подобные, но не позволяют получить сами маршруты как последо-

вательности вершин графа в порядке их прохождения.  

Большинство имеющихся подходов к решению задачи построения всех 

маршрутов в графе сводятся к переборным алгоритмам с экспоненциальной 

вычислительной сложностью. Для уменьшения сложности предлагаются раз-

личные способы, среди которых можно отметить решения на базе кластериза-

ции [211] и применение генетических алгоритмов [212]. Причем последние 

ориентированы на случай графа, полностью помещающегося в оперативной 

памяти. Недостатки такого рода решений заключаются в том, что, во-первых, 

часто они основаны на эвристиках, применимых исключительно к условиям 

конкретной предметной области, что требует существенной переработки алго-

ритмов при переходе к другим предметным областям; во-вторых, для повыше-

ния их эффективности с использованием методов параллельного программиро-

вания приходится использовать сложные искусственные приемы. 

  Предложенный в работе подход позволяет: 

 эффективное распараллеливание алгоритмов построения всех возможных 

маршрутов; 

 использование технологии in database для построения всех маршрутов, что 

возможно в силу изоморфизма алгебры многомерных матриц и реляционной 

алгебры для рассматриваемого класса задач. 

Решение задачи построения всех возможных маршрутов в ориентирован-

ном ациклическом графе легко реализуется на основе применения одного из 
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вариантов операции умножения многомерных матриц – (1, 0)-свернутого про-

изведения, при котором не производится суммирование элементов (отсутству-

ют кэлиевы индексы) [213-217]. Пусть матрица 𝐺 = ‖𝑤𝑖1𝑖2
‖ – матрица смежно-

сти (или весов ребер) графа. Элементы матрицы  𝑤𝑖1𝑖2
 принадлежат некоторому 

типу, например, логическому или числовому и имеют значения отличные от 

нейтрального элемента этого типа, если в графе есть ребро 𝑖1𝑖2, и есть 

нейтральный элемент в противном случае. После умножения матрицы 𝐺. на се-

бя получается трехмерная матрица 𝐺2 = ‖𝑤𝑖1𝑖2𝑖3
‖. Здесь индекс i1 обеих мат-

риц-операндов – свободный (в матрице-результате он повторяется и второе его 

вхождение получает новое обозначение – i3), а  индекс i2 – скоттов. Эта матрица 

содержит сведения обо всех маршрутах, проходящих по двум ребрам. После 

умножения матрицы G2 на матрицу G получается четырехмерная матрица  𝐺3 =

‖𝑤𝑖1𝑖2𝑖3𝑖4
‖.  В этой матрице индексы i1, i2 матрицы G2 и индекс i1 матрицы G (в 

матрице-результате он обозначается i4) – свободные. В качестве скоттовых ис-

пользуются индекс i3 матрицы G2 и индекс i2 матрицы G. Матрица G3 содержит 

сведения обо всех маршрутах, проходящих по трем ребрам. Процесс продолжа-

ется до тех пор, пока не будет получена матрица, все элементы которой – 

нейтральные. Предшествующая ей матрица Gk содержит сведения обо всех 

маршрутах, состоящих из k ребер. Тогда, если элемент 𝑤𝑖1
∗𝑖2

∗…𝑖𝑙
∗  (2 < 𝑙 ≤ 𝑘) от-

личен от нейтрального элемента, то последовательность значений индексов 

𝑖1
∗, 𝑖2

∗, … , 𝑖𝑙
∗ есть последовательность вершин, через которые проходит маршрут, 

начинающийся в вершине 𝑖1
∗,  заканчивающийся в вершине 𝑖𝑙

∗, проходящий по l 

ребрам и обладающий свойством, определяемым значением  𝑤𝑖1
∗𝑖2

∗…𝑖𝑙
∗ . Вычисли-

тельная сложность предложенного метода полиномиальная и имеет порядок 

𝑂(𝑛𝑘 + 𝑛𝑘−1 + … + 𝑛3), где n – число вершин графа, k –число ребер в самом 

"длинном" маршруте. 

 Используя предложенный метод, можно строить маршруты с различны-

ми свойствами. К их числу относятся: поиск кратчайших по протяженности или 

стоимости маршрутов, например, поиск маршрутов, проходящих через мини-
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мальное или максимальное число вершин, определение доступности вершин, 

производственные задачи построения спецификаций изделий.  

Так же, как и в случае, рассмотренном в параграфе 6.1.1, для каждого 

конкретного случая специфическим будет только тип элементов матриц.  

Пример 6.1. Пусть дан предложенный в параграфе 6.1.1 ориентированный 

ациклический граф (рисунок 6.1), и его матрица смежности G (таблица 6.2).  

Таблица 6.2. Матрица G смежности графа  

     

i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 1 1 1 0 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 0 

3 0 0 0 0 0 1 0 0 0 0 

4 0 0 0 0 1 0 1 1 0 0 

5 0 0 0 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 1 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

Требуется для каждой пары вершин найти все связывающие их маршру-

ты. Для решения поставленной задачи на этом 10-вершинном графе нужно по-

строить реальную матричную машину EM=<M, {0, 1}; +,×,,; 𝑀𝑘 = 𝑍>. 

Здесь структура – это множество M многомерных матриц, индексы которых 

принимают значения от 1 до 10, для которых определены операции сложения и 

(1, 0)-свернутого произведения, а тип – это множество {0, 1} с операциями 

дизъюнкции и конъюнкции. Предикат 𝑀𝑘 = 𝑍 (Z – нуль-матрица) принимает 

значение истина если все элементы матрицы 𝑀𝑘 равны 0 и значение ложь ес-

ли хотя бы один ее элемент равен 1. После выполнения операции 
1,0 ( )G G  по-

лучается трехмерная матрица G2 , которая содержит все маршруты, проходящие 

по двум ребрам. В таблице 6.3 (и всех последующих таблицах) полностью при-

ведены только содержащие единицы сечения этой и последующих матриц. 
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Таблица 6.3. Матрица G2 всех маршрутов, проходящих по двум ребрам 

 i3 

0 1…4 

    i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 1 0 1 0 0 0 0 0 0 

2…10 0 
 

5 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 0 1 0 0 0 0 0 0 0 

2…3 0 

4 0 0 0 0 0 0 0 1 0 0 

5…10 0 
 

6 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 1 0 0 0 0 0 0 

2…10 0 
 

7 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 1 0 0 0 0 0 0 

2…10 0 
 

8 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 

2 0 0 0 0 1 0 0 0 0 0 

3 0 0 0 0 0 1 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 

5…7 0 

8 0 0 0 0 0 1 0 0 0 0 

9…10 0 
 

9 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1…3 0 

4 0 0 0 0 0 0 0 1 0 0 

5…10 0 
 

10 

Анализ полученной матрицы показывает, что из вершины 1 в вершину 5 

ведут два маршрута (1, 2, 5) и (1, 4, 5), которым соответствуют равные единице 

элементы матрицы, w125 и w145. 

После выполнения операции 
1,0 2( )G G  получается четырехмерная мат-

рица G3 , которая содержит все маршруты, проходящие по трем ребрам. 
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Таблица 6.4. Матрица G3 всех маршрутов, проходящих по трем ребрам 

 i3 i4 

0  1…5 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 1 0 0 0 0 0 0 

2…10 0 
 

8 6 

0  7…8 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 1 0 1 0 0 0 0 0 0 

2…10 0 
 

5 

9 
   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 0 1 0 0 0 0 0 0 0 

           

2…3 0 

4 0 0 0 0 0 0 0 1 0 0 

5…10 0 
 

6 

   i2            

i1      

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 1 0 0 0 0 0 0 

2…10 0 
 

8 10 

В этой матрице элементы w1259, w1369, w1459 имеют значение 1, что означа-

ет, что существует три маршрута, соединяющие вершины 1 и 9 и проходящие 

по трем ребрам.  

После выполнения операции 
1,0 3( )G G  получается четырехмерная мат-

рица G4 , все элементы которой, кроме  w14869=1, равны нулю. Последователь-

ность значений индексов этого элемента соответствуют единственному марш-

руту, проходящему по четырем ребрам. 

После следующего умножения выполняется предикат 

1,0 4 5( ) ,G G G Z    что означает завершение процесса построения всех марш-

рутов. 

Предложенный метод особенно эффективно работает в том случае, когда 

матрица смежности графа не разрежена, то есть содержит незначительное ко-
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личество нейтральных элементов. В случае разреженных матриц эффектив-

ность существенно падает, так как вычислительная сложность остается без из-

менения. Выход из положения возможен за счет применения технологии in da-

tabase. Тогда каждой многомерной матрице может быть поставлена в соответ-

ствие таблица базы данных по следующему правилу 

1... 1( ... , ).
pi i pM w R i i w   

Cтроки этой таблицы соответствуют только тем элементам матрицы, ко-

торые не равны нейтральному значению, и для каждого такого элемента содер-

жат значения его индексов и его собственное значение.  

Операции (1, 0)-свернутого произведения соответствует реляционная операция 

Join. В рассматриваемом случае умножению матрицы 
1... k

k

i iM w   на матрицу 

1 2i iM w  соответствует запрос  

SELECT Mk.i1, …, Mk.ip, M.i1 AS ik+1, Mk.w+M.w AS w  

 INTO Mk+1  

FROM Mk INNER JOIN M ON Mk.ik= M.i1. 

Следующий пример демонстрирует реализацию применения технологии 

in database для случая, рассмотренного в примере 1. 

Пример 2. Матрице G ставится в соответствие таблица G и создается ее 

копия G1. Т таблица G и все последующие таблицы приведены в сводной таб-

лице 4. После выполнения запроса  

SELECT G1.i1, G1.i2, G.i2 AS i3, G1.w Or G.w AS w INTO G2 

FROM G1 INNER JOIN G ON G1.i2 = G.i1 

получается таблица G2, содержащая все маршруты, проходящие по двум реб-

рам. 

Следующий запрос 

SELECT G2.i1, G2.i2, G2.i3, G.i2 AS i4, G2.w Or G.w AS w INTO G3 

FROM G2 INNER JOIN G ON G2.i3 = G.i1 

создает таблицу G3, содержащую все маршруты, проходящие по трем ребрам. 
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Запрос  

SELECT G3.i1, G3.i2, G3.i3, G3.i4, G.i2 AS i5, G3.w Or G.w] AS w INTO 

G4 

FROM G3 INNER JOIN G ON G3.i4 = G.i1 

создает таблицу G4, содержащую все маршруты, проходящие по четырем реб-

рам. 

Таблица 6.5. Сводная таблица построения всех маршрутов в технологии 

in database 

G G2 G3 G4 

i1 i2 w i1 i2 i3 w i1 i2 i3 i4 w i1 i2 i3 i4 i5 w 

1 2 True 1 2 5 True 1 2 5 9 True 1 4 8 6 9 True 

1 3 True 1 3 6 True 1 3 6 9 True  

1 4 True 1 4 5 True 1 4 5 9 True 

2 5 True 1 4 7 True 1 4 8 6 True 

3 6 True 1 4 8 True 1 4 8 10 True 

4 5 True 2 5 9 True 4 8 6 9 True 

4 7 True 3 6 9 True  

4 8 True 4 5 9 True 

5 9 True 4 8 6 True 

6 9 True 4 8 1

0 

True 

8 6 True 8 6 9 True 

8 1

0 

True  

Последим выполняется запрос 

SELECT G4.i1, G4.i2, G4.i3, G4.i4, G4.i5, G.i2 AS i6, G4.w Or G.w AS w 

INTO G5 

FROM G4 INNER JOIN G ON G4.i5 = G.i1; 

 Его результат – таблица G5(i1, i2, i3, i4, i5, i6, w), в которой должны быть 

отображены все маршруты, проходящие по пяти ребрам, не содержит ни одной 

строки. Это означает, что таких маршрутов нет, и процесс построения маршру-

тов завершен. 

Кроме значительного сокращения объемов данных за счет избавления от 

разреженности, технология in database обладает важным достоинством, заклю-

чающемся в возможности распараллеливания обработки данных. Во-первых, во 
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всех современных системах управления базами данных имеются средства, 

обеспечивающие параллельную реализацию операции Join. Во-вторых, приме-

нение принципа симметричного горизонтального распределения данных позво-

ляет существенно повысить эффективность распараллеливания за счет умень-

шения объема данных в параллельно обрабатываемых фрагментах таблиц. 

Из сказанного можно сделать следующие выводы: 

1. Применение предложенного подхода существенно упрощает решение 

задач построения маршрутов, поскольку позволяет разрабатывать простые и 

удобные для понимания и программирования алгоритмы. 

2. Простота алгоритмов, в свою очередь, обеспечивает возможность доста-

точно легкого распараллеливания на основе применения хорошо известных и 

проверенных методов. 

3. Алгебраический подход обеспечивает эффективное сочетание техноло-

гии in memory и in database, что позволяет проектировать программно-

аппаратные комплексы, наилучшим образом приспособленные для решения 

задач построения маршрутов. 

6.2. Использование предложенного метода для решения 
задачи вывода ассоциативных правил 

Здесь рассматриваются два метода повышения эффективности обработ-

ки данных при решении задач вывода ассоциативных правил. В отличие от 

большинства работ в этой области, в которых предлагаются методы улучшения 

запросов конечных пользователей, занимающихся анализом данных, здесь речь 

идет о методах, ориентированных на программиста разработчика аналитиче-

ских информационных систем. 

Ассоциативные правила в настоящее время превратились в мощный ин-

струмент аналитических информационных систем. Поскольку в основе любых 

информационных систем лежат базы данных, весьма актуально направление, 

связанное с реализацией алгоритмов интеллектуального анализа на языках ма-

нипулирования данными. Поэтому реализации вывода ассоциативных правил 
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средствами СУБД посвящено достаточно много исследований, например, [218-

220].  

В общем виде задача вывода ассоциативных правил выглядит следую-

щим образом. Имеется множество объектов I={i1, …,  in} и множество свойств 

P={p1, …,  ps}. Каждому объекту из I соответствует некоторое непустое под-

множество свойств из P. Вывод ассоциативных правил состоит из двух этапов. 

На первом этапе для каждого подмножества свойств определяется количество 

объектов, которые обладают всеми свойствами этого подмножества, и только 

этими свойствами. На втором этапе, на основе полученных статистических 

данных и требований пользователя-аналитика, выводятся сами ассоциативные 

правила.  

В работе рассмотрен только первый этап, который можно определить, 

как этап подготовки данных. Этот этап имеет высокую, как правило, экспонен-

циальную, вычислительную сложность. Повышение эффективности алгоритмов 

вывода ассоциативных правил достигается за счет распараллеливания извест-

ных алгоритмов, например, алгоритма Apriory [221]. Другой способ повышения 

эффективности алгоритмов состоит в использовании параллелизмов, реализо-

ванных в СУБД [222, 223]. Эти способы хороши для оптимизации запросов ко-

нечных пользователей, но они могут не учитывать всех возможностей вычисли-

тельных систем, на которых эти пользователи решают свои задачи. Для того, 

чтобы в конкретных организациях эти задачи решались эффективно, разраба-

тываются индивидуальные аналитические информационные системы. В этом 

случае программист-разработчик имеет возможность добиваться высокой эф-

фективности за счет построения программно-аппаратного комплекса, ориенти-

рованного на конкретный класс задач.  

Известны различные варианты реализации алгоритма Apriori средствами 

языка SQL [224- 227]. В дальнейшем рассматривается реализация, основанная 

на построении на каждой итерации промежуточной таблицы, которая использу-

ется на следующей итерации [228]. 



231 

 

База данных для решения задачи вывода ассоциативных правил, как 

правило содержит следующий набор таблиц: 

 R0(I, P1) – исходные данные, каждая строка содержит идентификатор объек-

та и одно из его свойств; 

 CopyR0(I, P1) – копия таблицы R0, она не обязательна и может использовать-

ся для ускорения процесса обработки данных; 

 R1(I, P1, P2), …, Rk-1(I, P1, …, Pk) – таблицы, получаемые на итерациях и со-

держащие данные для вывода ассоциативных правил на очередной итерации и 

используемые на следующей итерации как исходные данные. 

Запрос, исполняемый на l-той итерации имеет, следующий общий вид: 

Ql = INSERT INTO Rl (I, P1, …, Pl+1) 

     SELECT Rl1.I, R l1.P1, …, R l1.P l, R0.P1  AS Pl+1 

             FROM R l1 INNER JOIN R0 [на итерации 1 – CopyR0 ]  

                   ON R l1.I = R0.I AND (R l1.I, R l1.P1, …, R l1.P l, R0.P). 

(Ri l1.I, R l1.P1, …, R l1.Pl, R0.P) – предикат, запрещающий дублирование 

комбинаций свойств.  

Таким образом, если для построения ассоциативных правил необходимо 

знать количества всех объектов, содержащих комбинации свойств от одного до 

ks, выполняются запросы Q1 , …, Qk-1. Из таблиц R0, …, Rk-1, исходной и полу-

ченных в результате запросов, на втором этапе выводятся ассоциативные пра-

вила. 

Ускорение подготовки данных возможно за счет того, что современные 

СУБД имеют возможность параллельного выполнения запросов, в том числе, и 

запросов, содержащих операцию JOIN. Предложенный подход обеспечивает 

возможность применения симметричного горизонтального распределения таб-

лицы R0 по ключу I между несколькими базами данных, расположенными на 

физически разных серверах. Это усилит эффект ускорения за счет существен-

ного, практически, кратного числу серверов, уменьшения объемов фрагментов 

таблиц R0, …, Rk-1. Кроме того, дополнительного эффекта можно достигнуть за 
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счет применения конвейерного метода для цепочки операций JOIN, которые 

реализуют вычисления на итерациях. Это потребует дополнительных усилий 

программиста-разработчика, но обеспечит существенное ускорение этапа под-

готовки данных, особенно в сочетании с симметричным горизонтальным рас-

пределением таблицы R0. 

Применение многомерно-матричной модели позволяет существенно 

улучшить временные характеристики этапа подготовки данных. Если номера 

объектов и свойств использовать в качестве индексов, то исходные данные в 

этой модели – матрица   ....,,1,...,,1,0

0 sjnimM ij   При условии, что ,10 ijm

если объект Ii обладает свойством Pj и 0 в противном случае, матрица M0 вза-

имно однозначно соответствует таблице R0. Операции JOIN в алгебре много-

мерных матриц соответствует операция (, )-свернутого произведения, кото-

рая позволяет умножать матрицы с произвольным числом измерений, получая 

многомерные матрицы. В рассматриваемом случае на первой итерации вычис-

ляется трехмерная матрица   ,...,,1,...,,1,)( 1

00

0,1

1 sjnimМMM ijj  где 

001

ijijijj mmm   и двумерная матрица   ,...,,1,)( 1

00

1,0

1 sjtМMT jj   где 

.
1

001 



n

i

ijijjj mmt Матрица T1 также может быть получена из матрицы M1 операци-

ей свертки, однако, обе матрицы можно вычислять одновременно. На l-той ите-

рации вычисляются l+1-мерная матрица 
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которая будет использована для вывода ассоциативных правил. Также, как и 

при использовании реляционной модели, для получения всех возможных ком-

бинаций свойств от 1 до k необходимо выполнить k итераций. На последней 

итерации нет необходимости в построении матрицы Mk.  
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Для ускорения решения задачи вывода ассоциативных правил можно ис-

пользовать предложенный параллельный алгоритм умножения многомерных 

матриц, который рассмотрен в параграфе 3.4.2. Кроме того, симметричное го-

ризонтальное распределение в данном случае применимо для реализации рас-

сматриваемой задачи в многомерно-матричной модели данных. 

Для оценки предложенных методов был проведен вычислительный экс-

перимент. Анализу были подвергнуты три алгоритма вывода ассоциативных 

правил: 

1. алгоритм Apriory, взятый из пакета "Apriori 1.1.1", который находится в 

центральном репозитарии модулей языка Python – Python Package Index [220]; 

2. алгоритм, реализованный средствами СУБД Microsoft Sql Server 2017 (на 

основе операции JOIN); 

3. алгоритм на основе умножения многомерных матриц. 

Программное обеспечение разрабатывалось в Microsoft Visual Studio 

2017. Для алгоритма 1 исходные данные преобразовались из текстового файла в 

списковую структуру в оперативной памяти, необходимую для работы алго-

ритма. Для алгоритма 2 исходные данные располагались в таблице R0, а подго-

товка к работе заключалась в удалении всех строк из промежуточных и резуль-

тирующих таблиц. Для алгоритма 3 исходные данные преобразовывались из 

таблицы R0 в матрицу M0 в оперативной памяти. Программа, подготовки дан-

ных и вызова алгоритма 1 написана на языке Pyton. Алгоритм 2 реализован 

хранимыми процедурами, написанными на языке Transact Sql и вызываемыми 

из программы, написанной на языке C#. Алгоритм 3 реализован как процедура 

динамической библиотеки на языке C++, подготовка данных для которой и ее 

вызов осуществляются программой на языке C# [228]. 

Эксперимент производился на исходном наборе данных, содержащем 

миллион объектов, каждому из которых соответствовал набор от одного до пя-

ти свойств. Таблица R0 в этом случае содержала 2499677 строк. При обработке 

этих данных алгоритмы показали следующие результаты: 

 Алгоритм 1 – 37 сек. 
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 Алгоритм 2 – 30 сек. 

 Алгоритм 3 – 12 сек. 

Для алгоритмов 2 и 3 было выполнено симметричное горизонтальное 

распределение данных между четырьмя серверами для алгоритма 2 и таким же 

количеством потоков для алгоритма 3. Число строк в фрагментах таблицы R0 

незначительно отличалось от 625000 в обе стороны. С учетом времени распре-

деления и сбора результатов были получены следующие результаты;  

 Алгоритм 2 – 14 сек. 

 Алгоритм 3 – 4 сек. 

При распределении вычислений по алгоритму 3 по восьми потокам общее 

время выполнения не превысило полутора секунд. 

Из сказанного можно сделать следующие выводы: 

1. В том случае, когда объемы данных настолько велики, что их невозможно 

разместить в оперативной памяти, целесообразно использовать алгоритмы по-

добные алгоритму 2.  

2. Время решения задачи вывода ассоциативных правил таким способом сопо-

ставимо с временем широко используемых в настоящее время алгоритмов типа 

алгоритма Apriory, а при использовании симметричного горизонтального рас-

пределения данных существенно меньше. 

3. При возможности размещения данных в оперативной памяти алгоритмы, 

основанные на умножении многомерных матриц, значительно более эффектив-

ны и гораздо проще распараллеливаются, чем известные алгоритмы вывода ас-

социативных правил. 

4. Предложенные методы могут быть эффективно использованы при раз-

работке программного обеспечения аналитических информационных систем. 

6.3. Использование предложенного метода для решения 
задачи поиска изображений в базах данных  

В этом параграфе рассматривается метод повышения эффективности ре-

шения задачи поиска изображений в базе данных. В настоящее время эта задача 
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актуальна для обработки больших данных во многих предметных областях, 

например, в геоинформационных системах [229-231]. 

Предложенный метод основан на использовании перцептивного хеширо-

вания изображений, трех уровней распараллеливания данных и процедур поис-

ка изображений [232-234].  

6.3.1. Архитектура программно-аппаратного комплекса для 
поиска изображений в базах данных  

Подразумевается, что данные, необходимые для поиска изображений де-

лятся на два типа: эталонные, долговременно хранящиеся в базе данные, среди 

которых осуществляется поиск, и оперативные данные – набор поисковых об-

разов. Два изображения считаются близкими (сравнимыми, схожими), если 

расстояние Хэмминга между их ключами (значениями перцептивной хэш-

функции от сравниваемых изображений) не превышает заданной величины.  

Для уменьшения времени поиска предлагаются следующие подходы: 

 сокращение перебора (access scan) за счет введения понятия вес ключа; 

 использование параллельной обработки данных программно-аппаратным 

комплексом с SIMD архитектурой на всех уровнях вычислений: от выборки 

данных из базы до сравнения идентификаторов. 

Роль веса ключа в сокращении перебора состоит в том, что для вычисле-

ния расстояния Хэмминга используются не все ключи изображений, которые 

хранятся в базе. Ключ i-того поискового образа wi сравнивается только с теми 

ключами изображений, хранящихся в базе, для которых выполняется условие w 

 wi  ≤ d, (d – фиксированное значение расстояния Хэмминга). Такой подход не 

исключает таких случаев, как, например, при k = 3 веса w1 = 11110000 и w2 = 

00001111 равны, но расстояние Хэмминга между ними равно максимальному 

значению – 8. Однако, несмотря на это, эксперимент показал, что использова-

ние понятия веса ключа сокращает поиск и создает предпосылки для парал-

лельной обработки данных. 



236 

 

Очевидно, что эталонных данных значительно больше, чем оперативных, 

поэтому предлагается способ распределения данных в программно-аппаратном 

комплексе, показанный на рисунке 6.3.  

 

 
 

Рис. 6.3. Организация и распределение данных для поиска изображений 
 

Независимо от того как организованы данные об изображениях в основ-

ной БД (предполагается, что они хранятся в таблицах: R – эталонные изобра-

жения и O – оперативные изображения), для решения задачи поиска изображе-

ний используются две соответствующие им таблицы метаданных – индексные 

таблицы indR(Kph, w) и indO(Kph, w). Они имеют одинаковые схемы, где: 

 Kph  – ключ изображения (значение перцептивной хэш-функции от изобра-

жения):  

 w – вес ключа, который вычисляется по формуле 𝑤 (𝐾𝑝ℎ) = ∑ 𝑘𝑖  𝑛
𝑖=1 (n – раз-

мерность ключа, ki – значение координаты 0 или 1). 

Каждому процессору ставится в соответствие фрагмент основной БД, ко-

торый содержит фрагмент таблицы indR и фрагмент таблицы indO. Фрагменты 

таблицы indR содержат, по возможности, одинаковое количество строк, кото-
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рое определяется количеством процессоров. Следует заметить, что не обяза-

тельно выполнять создание и хранение полной таблиц indR в основной БД. Это 

требуется только в тех случаях, когда программно-аппаратный комплекс не 

имеет фиксированной структуры, например, при использовании грид-

архитектуры, когда число процессоров может меняться от случая к случаю. В 

том случае, когда программно-аппаратный комплекс имеет архитектуру MPP с 

фиксированным числом процессоров, таблица indR может быть сформирована 

как совокупность ее фрагментов в фрагментах основной БД, размещенных во 

внешней памяти каждого процессора. Тогда переформирование таблицы indR 

необходимо только в случае изменения таблицы R. Одновременно с таблицей 

indR создается таблица indSrv, в которой содержится информация о распреде-

лении таблицы indR между процессорами. Это необходимо для последующего 

распределения таблицы indO.  

Создание таблицы indO выполняется при каждом решении задачи поиска 

изображений, поскольку оперативные данные меняются от случая к случаю. 

Здесь возможны два варианта ее организации. В первом, копии таблицы indO 

одновременно создаются в фрагментах основной БД на каждом процессоре. Во 

втором, в фрагментах основной БД создаются таблицы-очереди, которые по-

полняются из основной БД либо одновременно через фиксированные проме-

жутки времени, либо по запросу процессора.  

Распределение таблицы indR между процессорами осуществляется на 

основе принципа симметричного горизонтального распределения. В качестве 

ключа, по которому производится распределение, используется поле w этой 

таблицы. 

6.3.2. Параллельное сравнение ключей изображений 

Ключ изображения обычно представляет собой двоичные векторы с 2k ко-

ординатами. Обычно, k=6, 7, … . В памяти современных вычислительных они 

хранятся как 64-битовые слова или массивы таких слов. Пусть k1 и k2 – ключи 

изображений, HD(k1, k2) – расстояние Хэмминга между этими ключами. Срав-



238 

 

нение изображений определяется соотношением HD(k1, k2)≤d (d 0).  Для уско-

рения вычисления этого соотношения целесообразно использовать архитектур-

ные особенности современных процессоров, которые состоят в возможности 

использования архитектуры SIMD на уровне регистров процессора. Эта воз-

можность у процессоров с архитектурой x86 реализована в технологиях SSE и 

AVX. Эти технологии обеспечивают параллельное выполнение различных 

арифметических и логических операций над восьмью (шестнадцатью) 128-

битовыми (256-битовыми) регистрами. Последний стандарт AVX-512 расшире-

ние до тридцати двух 512-битовых регистров. Для процессоров с архитектурой 

ARMv8 существуют SIMD-сопроцессоры, которые реализованы в технологии 

NEON. Эти сопроцессоры реализуют выполнение комбинированного 64-

битовых и 128-битовых операций над тридцатью двумя 128-битовыми реги-

страми. 

Далее приведен пример программы, которая реализует сравнение ключей с 

использованием регистров XMM. Эта программа сравнивает два 64-битных 

ключа поисковых изображений из оперативных данных с четырнадцатью клю-

чами изображений, которые хранятся в базе данных. Она разработана на языке 

программирования C ++, а параллельная обработка реализована на языке ас-

семблера. 

 1 int i, j; 

 2 unsigned CmpRes[28]; 

 3 unsigned *pB, *pS; 

 4 pB = BaseIm; 

 5 pS = SrchIm; 

 6 _asm 

 7 { 

 8  mov ESI, pB //Search Image pointer to [ESI] 

 9  movups  XMM0, [ESI] //Search Image  to xmm0 

10  mov ESI, pS //Base Image pointer to [ESI] 

11  mov ECX,0 
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12  movups  XMM1, [ESI][ECX] //Base Image  to XMM1  

13  pxor    XMM1, XMM0  

14  movups CmpRes[ECX], XMM1 

15  add     ECX, 16 

16    … 

17  movups  XMM7, [ESI][ECX] //Base Image  to XMM7 

18  pxor    XMM7, XMM0 

19  movups CmpRes[ECX], XMM7    

20 } 

21 for (i = 0; i < 14; i = i + 2) 

22 { 

23  HD7[i]=0; 

24  HD7[i+1]=0; 

25  for (j = 0; j < 2; j++) //Calc Hamming distance 

26   while (CmpRes[2 * i + j] > 0) 

27   { 

28    HD7[i]  = HD7[i]  + (CmpRes[2 * i + j] & 1); 

29    Res[2 * i + j] = Res[2 * i + j] >> 1; 

30   } 

31   while (Res[2 * (i + 1) + j] > 0) 

32   { 

33   HD7[i]  = HD7[i]  + (Res[2 * (i + 1) + j] & 1); 

34   Res[2 * (i + 1) + j] = Res[2 * i + j] >> 1; 

35  } 

36 }  

Программа начинается с объявления переменных, массива для сохранения ре-

зультатов сравнения ключей и указателей, которым присваиваются значения 

параметров: адреса массивов, содержащих сравниваемые ключи. Оба ключа по-

исковых образов помещаются в регистр XMM0 (строки 8-9). Настраивается ад-

рес массива ключей эталонных изображений и смещение относительно его 
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начала (строки 10-11). Затем семь раз повторяется последовательность дей-

ствий, состоящая в присваивании очередному XMM регистру пары значений 

ключей эталонных изображений, вычисление несовпадающих координат опера-

цией exjunction, сохранение результатов и увеличение смещения (строки 12-19). 

Остальные команды (строки 21-36) вычисляют расстояния Хэмминга и готовят 

возврат результатов вычислений в массиве HD14. 

6.3.4. Реализация и анализ метода поиска изображений в 
базе данных 

Для реализации и анализа предложенного метод поиска изображений в 

базе данных с использованием ключей изображений – значений перцептивной 

хэш-функции был проведен вычислительный эксперимент. Эксперимент 

проводился в следующих условиях: 

 вычислительная система – рабочая станция с процессором Intel Core i7, опе-

ративной памятью – 16 Гбайт, дисковой памятью – 1 Тбайт; 

 программное обеспечение: операционная система Windows 10, система про-

граммирования Microsoft Visual Studio 2017, СУБД Microsoft Sql Server 2016; 

 языки программирования Assembler, C++, C#, Transact SQL. 

На первом этапе эксперимента была проведена оценка метода сравнения 

ключей с использованием регистров XMM. В оперативной памяти было 

случайным образом сгенерировано 14 миллионов. 64-битовых ключей. Для 

сравнения с ними одного ключа с использованием регистров XMM 

потребовалось 7 секунд, и 41 секунда без их использования. Из этого можно 

сделать вывод о том, что ускорение, практически, пропорционально числу 

используемых регистров XMM. 

На втором этапе эксперимента исследовалась производительность 

предложенного метода распределенного поиска изображений в базе данных. 

Для этого была сделана оценка количества строк (Qi) в классах 

эквивалентности 𝒊𝒏𝒅𝑹𝒘𝒊
 таблицы indR. Очевидно, что верхняя граница 
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(супремум) Qi определяется по формуле 
 

!

! !
iw

n

i i

n
C

w n w



 (n – размерность 

ключа). На рисунке 6.4 распределение значений  Qi, для принятого в 

эксперименте 64-битового ключа показано штриховой линией. В реальных 

условиях Qi принимает случайные значения, которые не больше супремума. На 

рисунке 6.4 случайное распределение значений Qi показано сплошной линией. 

Количество классов эквивалентности в таблице indR определяется 

размерностью ключа. В эксперименте их шестьдесят три, так как каждый ключ 

содержит от одной до шестидесяти трех единиц.  

 

Рис. 6.4. Распределение значений Qi 

Распределение классов эквивалентности, которое было использовано в 

эксперименте показано на рисунке 6.5. Для этого была создана таблица indR, 

содержащая 3249491 случайным образом сгенерированных ключей. 

 

Рис. 6.5. Распределение значений Qi для эксперимента 

Симметричное горизонтальное распределение этой таблицы indR 

производилось по четырем фрагментам. Была использована хранимая 

процедура. Общее время выполнения процедуры, включая: удаление данных из 

таблиц-фрагментов, построение таблицы indRw и заполнение всех четырех 
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фрагментов таблицы indR данными составило 39 секунд. На рисунке 6.6 видно, 

что количество строк в таблицах-фрагментов примерно равны: Snp1R – 816830, 

Snp2R – 826194, Snp3R – 829139, Snp4R – 777328. 

 

Рис. 6.6. Результат симметричного горизонтального распределения 

таблицы indR 

На третьем, последнем, этапе эксперимента было проведено исследование 

процедуры поиска изображений в базе данных. Таблица indO была 

сгенерирована пять раз с различным (возрастающим) числом строк: 12880, 

17212, 25876, 51904, 129868. Эта таблица была распределена по четырем 

фрагментам. Затем, четырьмя потоками на четырех ядрах, была параллельно 

выполнена процедура слияния фрагментов таблиц indR и indO. В ходе слияния, 

для всех пар ключей из таблиц indR и indO, для которых выполняется условие 

iw w d  , вычислялось расстояние Хэмминга. Если вычисленное значение 

не превышало d, формировалась строка таблицы C, содержащая оба ключа. Эти 

строки отправлялись в базу данных образов для дальнейшей обработки. 

  

Рис. 6.7. Зависимость времени поиска от числа строк в таблице indO 
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На рисунке 6.7 показана зависимость времени слияния таблиц indR и indO 

от числа строк в таблице indO. На графике видно, что увеличение времени 

выполнения слияния пропорционально увеличению числа строк в ней. Из этого 

следует, что увеличение числа процессоров (горизонтальное масштабирование) 

существенно сокращает время поиска изображений. 

Предложенный метод поиска изображений в базе данных и описание 

вычислительного эксперимента позволяют сделать следующие выводы. 

 Использование перцептивного хеширования изображений позволяет выпол-

нять операции сравнения не самих данных (изображений) а соответствующих 

им метаданных. 

 Введение понятия "вес ключа" позволяет существенно сократить перебор 

ключей в процессе их сравнения. 

 Использование принципа симметричного горизонтального распределения 

данных позволяет существенно сократить время сравнения ключей за счет 

уменьшения количества строк в фрагментах обрабатываемых данных и парал-

лельной обработки этих фрагментов. 

 Сокращение времени сравнения ключей также достигается за счет исполь-

зования SIMD регистров процессоров и соответствующих им команд. 

 Применение технологии "in database" позволяет использовать возможности 

параллельной обработки данных, реализованные в современных СУБД. 

Сокращение времени поиска изображений пропорционально количеству 

процессоров, что свидетельствует о высокой масштабируемости программно-

аппаратных комплексов, разрабатываемых на основе предложенной архитекту-

ры. 

 

6.4. Реализация алгоритма шифрования Хилла на основе 
алгебры многомерных матриц 
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Алгоритм шифрования Хилла [235] относится к числу популярных алго-

ритмов при симметричном шифровании, что объясняется его достаточно высо-

кой криптостойкостью.  

6.4.1. Краткое описание алгоритма шифрования Хилла 

В общем виде этот алгоритм может быть представлен следующим образом. 

Пусть имеются алфавит A, символам которого соответствуют числовые коды, и 

два текста: T1 – кодируемый текст, T2 – кодирующий текст. Текстам (T1, T2) ста-

вятся в соответствие матрицы (M1, M2), элементы которых – коды символов, 

составляющих эти тексты. Эти матрицы совместимы по умножению, и матрица 

M2 имеет обратную матрицу M2
1. Кодирование текста T1 состоит в вычислении 

матрицы M3= M1×M2 mod mA (mA – количество символов в алфавите A). Деко-

дирование состоит в вычислении матрицы  M1= M3×M2
1 mod mA. 

Анализ посвященных алгоритму шифрования Хилла публикаций показы-

вает, что основные работы по его модификации и применению ведутся в двух 

направлениях. 

1. Уменьшение времени кодирования/декодирования текста (ускорение). 

2. Повышение устойчивости к различного рода атакам, таким как: 

 атака с использованием только шифрованного текста, когда для расшиф-

ровки сообщение используется только шифрованный текст; 

 атака с целью нахождения ключа при условии, что известны открытый и 

шифрованный тексты;  

 атака с избранным открытым текстом, когда существует возможность от-

сылать любое количество простых текстов и получать в ответ соответствующие 

шифрованные тексты; 

 атака с избранным шифрованным текстом, когда для подобранного от-

крытого текста можно получить шифрованный текст, а для подобранного шиф-

рованного текста – соответствующий открытый текст. 

Решение проблем ускорения осуществляется за счет распараллеливания 

операций кодирования и декодирования [236]. Проблемы повышения крипто-
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стойкости решаются посредством усложнения структуры кодирующей матрицы 

и операций над элементами матриц в операции их умножения [237-239]. 

Далее предложено использовать для кодирования больших текстов не 

обычные (плоские), а многомерные матрицы [240-242]. Выбор алгебры много-

мерных матриц может улучшить качество кодирования в силу следующих воз-

можностей. 

1. Увеличение криптостойкости за счет: 

 особенностей операции умножения многомерных матриц, позволяющих 

задавать различные количества индексов, по которым производится сравнение 

и суммирование;  

 существование для одной многомерной матрицы множеств различных де-

терминантов, единичных и обратных матриц (эти множества конечные). 

2. Простое распараллеливание операций умножения многомерных матриц, 

вычисления их детерминантов и обратных матриц. 

6.4.2. Дополнительные элементы алгебры многомерных 
матриц  

Далее предполагается, что все  элементы p-мерной матрицы A ai ip
1...

 –  

1 ... 0pi iA Z  (точнее, его конечному подмножеству), что позволяет определить за-

мкнутую на нем мультипликативную операцию и обратную к ней) и i1,…, ip = 1, 

…, n. Тогда, речь идет о целочисленной p-мерной матрице порядка n. 

Элементы матрицы, взятые в количестве, не превосходящем ее порядка n, 

называются трансверсальными, если ни одна пара их не принадлежит одному и 

тому же простому сечению какой-либо ориентации. Совокупность n элементов 

матрицы, ни одна пара которых не принадлежит одному и тому же простому 

сечению какой-либо ориентации, образует трансверсаль. Элементы трансвер-

сали называются трансверсальными. Число всех трансверсалей матрицы А рав-

но ( n!)p1. Среди них находятся 2p диагоналей, образованных элементами, рас-

положенными на прямых, соединяющих противоположные вершины матрицы. 

Диагональ, у которой в каждом элементе значения всех индексов одинаковы, 
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называется главной, а ее первый элемент a11…1 – главным. На рисунке 6.8 при-

веден пример диагонали и трансверсали трехмерной матрицы порядка 4. 

 

Рис. 6.8. Диагональ A111,…, A444 и транверсаль A112, A211, A333, A444 трехмерной 

матрицы 

Пусть:  

 индексы 𝑖𝜈
(1)

, … , 𝑖𝜈
(𝑛)

, і ( = 1, 2, ..., p), образуют перестановку из чисел 1, 

2, ..., n; 

  𝐴
𝑖1

(1)
,…,𝑖𝑝

(1) ⋅ … ⋅ 𝐴
𝑖1

(𝑛)
,…,𝑖𝑝

(𝑛) – произведение элементов некоторой трансверса-

ли;  

 m ≤ p –  четное неотрицательное число; 

 Iµ – число инверсий в перестановке 
(1) ( ),..., ni i   (1≤ µ≤ m) значений индекса 

iµ в произведении (1) ( )(1) ( )
1 1,..., ,...,

... n n
p pi i i i

A A  . 

Индексы 𝑖𝜇1
, … , 𝑖𝜇𝑚

 называются альтернативными, остальные  pm индек-

сов – неальтернативными. Алгебраическая сумма 
1

(1) ( )(1) ( )
1 1,..., ,...,

1

( 1) ...

m

n n
p p

In

i i i i
j

A A







      

есть p-мерный детерминант матрицы A. Поскольку число альтернативных 

индексов изменяется от 0 до p, число возможных детерминантов матрицы A 

определяется значением 
0

p
k

p

k

C


 . Выражение  1
...

pi i

 

(± для альтернативных ин-

дексов и + для неальтернативных) называется сигнатурой детерминанта.  
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Выражение 
1

(1) ( )(1) ( )
1 1 1,..., ,...,

1

... ( 1) ...

m

n n
p p p

In

i i i i i i
j

A A


  




     определяет детерми-

нант матрицы A с сигнатурой 
1
...

pi i

 
. 

Пример 6.2. Четырехмерная матрица второго порядка 𝐴 = ‖𝐴𝑖1𝑖2𝑖3𝑖4
‖ имеет 

16 детерминантов с разными сигнатурами. Среди них: 

 1 2 3 4
1111 2222 1112 2221 1121 2212 1122 2211 1211 2122 1212 2121

122` 2112 1222 2111 ( );

i i i i

A A A A A A A A A A A A A

A A A A гипердетерминант

               

   
  

1 2 3 4
1111 2222 1112 2221 1121 2212 1122 2211 1211 2122 1212 2121

122` 2112 1222 2111 ( );

i i i i

A A A A A A A A A A A A A

A A A A перманент

               

   
 

1 2 3 4
1111 2222 1112 2221 1121 2212 1122 2211 1211 2122 1212 2121

122` 2112 1222 2111 ( ).

i i i i

A A A A A A A A A A A A A

A A A A смешанный детерминант

               

    
 

Вычисление детерминанта многомерной матрицы рассмотрено в [235]. 

Поскольку в алгоритме шифрования Хилла используется только умноже-

ние матриц, то для повышения его криптостойкости имеет важное значение тот 

факт, что число всех возможных ( -свернутых произведений p-мерной мат-

рицы A на q-мерную матрицу B вычисляется по формуле 


 





),min(

0

,
)!(!!

!

)!(!!

!qp

qp
q

q

p

p
N

 
. 

Кроме того, для каждой многомерной матрицы можно определить некото-

рое количество единичных матриц, которые должны удовлетворять уравнениям 

вида , ( )A E A    . Тогда  количество индексов в разбиении m матрицы E 

должно равняться µ, а общее количество индексов в ней = + 2µ. Матрица 

csmE E  называется (, µ)-единичной матрицей матрицы A. csm cmE    (символ 

Кронекера) равняется 1, если все значения индексов разбиения c совпадают со 

значениями индексов разбиения m, и 0 в противном случае. 
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Количество (, µ)-единичных матриц для p-мерной матрицы равно 

( 1) ( 2)

2

p p  
 . 

Пример 6.3. Трехмерная матрица 
1 2 3i i iA A  второго порядка имеет десять 

(, µ)-единичных матриц. Далее приводятся списки значений индексов единич-

ных элементов некоторых из них (
1 2 1 2 1 2

, ,csm s s cm sc c m mE E E ).  

Таблица1.Списки значений индексов единичных элементов единичных матриц 

= + 

2µ 

 µ Индек-

сы 

Значения индексов 

3 1 1 scm 111, 211, 122, 222 

4 2 1 s1s2cm 1111, 1211, 1122, 1222, 2111, 2211, 2122, 2222 

5 1 2 sc1c2m1m

2 

11111, 11212, 21111, 21212, 12121, 12222, 

22121, 22222, 

При определенных условиях p-мерная матрица  A ai ip
1...

 может иметь не 

менее одной обратной матрицы, поскольку ей может соответствовать несколько 

единичных матриц. При обычном разбиении  индексов p-мерной матрицы 

lcsA A  порядка n и выбранной (′, µ′)-единичной матрице порядка n 

(′=′+2µ′, 0≤′+µ′≤p) (, µ)-обратная матрица (правая) 
1 1( , ) csmA A     нахо-

дится из уравнения , 1( ) ( ', ')A A E     . Такая обратная матрица имеет 

'q p     измерений (индексов).  Из уравнения   , 1( ) ( ', ')A A E       находит-

ся левая обратная матрица. Для вычисления обратной матрицы многомерной 

матрицы достаточно, чтобы ее гипердетерминант был отличен от нуля. На его 

основе можно вычислять элементы обратной матрицы. Условия существования 

и алгоритмы вычисления (, µ)-обратной матрицы по заданной единичной мат-

рице подробно изложены в [58]. Здесь же приводится простой пример ее вы-

числения.  
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Пример 6.4. Пусть lcsA A  трехмерная матрица второго порядка 

 
111 112 121 122

211 212 221 222

( )

( )

( )

lsc

s

cA A A A
A A

A A A A

l




 


 (=µ=1), а 

( )

( )1 11 1
(3,0)

1 11 1

( )

s

c
E

l







   (3, 0)-

единичная матрица (правая).  

В этом случае 

212 112 212 112 111 221 111 221

111 112 111 112 111 112 111 112

211 212 211 212 211 212 211 2121

222 122 222 122 121 211 121 211

121 122 121 122 121 122 121 122

221 222 221 222 221 222

scm

A A A A A A A A

A A A A A A A A

A A A A A A A A
A

A A A A A A A A

A A A A A A A A

A A A A A A A



   


   

221 222

( )

( ) ( )

s

c m

A



  . Эта 

матрица существует,  если определители 111 112

211 212

A A

A A
 и 121 122

221 222

A A

A A
 в знаменателях 

отличны от нуля. 

Кодирование в алгебре многомерных матриц производится следующим 

образом. Пусть A – матрица кодирующего текста, B – матрица кодируемого 

текста и E – единичная матрица для матриц A и B. Для создания конкретной си-

стемы кодирования необходимо определить следующие ее параметры: 

 размерности (p, q) матриц A и B; 

 место матрицы-операнда A в кодирующем произведении (левая – A B, 

правая – B A; 

 значения , , µ,  – количество индексов в разбиениях индексов матриц 

A и B; 

 место обратной к A матрицы-операнда в произведении (, µ(AA1) – правая 

или   

, µ(A1A) – левая). 

 ', µ', необходимые для построения для построения обратной матрицы 

𝐴−1. 
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После определения параметров и создания матрицы B строятся матрицы: 

A, заполненная конкретными значениями кодирующего текста, соответствую-

щая ей и матрице B (, µ)-единичная матрица и вычисляется обратная матрица 

𝐴−1. 

В простейшем случае для возможности создания системы кодирования на 

основе алгебры многомерных матриц достаточно, чтобы матрицы A и B были 

одного порядка n и ==µ=. Тогда каждая из них содержит n++µ = n+µ+ эле-

ментов. В этом случае любая  

(, µ)-единичная матрица будет применима к обеим матрицам (умножение на 

единичную матрицу  коммутативно). Для каждой из 
( 1) ( 2)

2

p p  
 (, µ)-

единичных матриц существует 
( 2) ( 1)

2

p p  
 правых и столько же левых (', µ')-

обратных матриц к матрице A. Из них выбирается единственная, которая будет 

использоваться для декодирования.  

Из сказанного можно сделать два основных вывода.  

1. Представление кодирующего и кодируемого текстов в виде многомерных 

матриц обеспечивает существенное ускорение основных процессов кодирова-

ния и декодирования, а именно: 

 подготовка по заранее заданным значениям n,  p, , , µ, и   многомер-

ной матрицы, обратной к кодирующей матрице; 

 умножение матрицы кодируемого текста на кодирующую матрицу и мат-

рицы закодированного текста на матрицу, обратную к кодирующей. 

Ускорение происходит за счет параллелизма алгоритмов всех операций 

над многомерными матрицами. Причем эти алгоритмы обладают высокой сте-

пенью масштабирования.  

2. Предложенный метод существенно повышает криптоскойкость кодиро-

вания. Этот вывод основан на том, что число вариантов параметров многомер-

ных матриц кодирующего и кодируемого текстов n,  p, , , µ, ,  количество 

детерминантов, единичных и обратных матриц задаются факториальными 
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функциями. Например, при большом количестве 224 символов в кодирующем 

тексте и n=2 и p=24 возможное число (, µ)-свернутых произведений равно 

1360135024740956026161. Следовательно, алгоритмы, реализующие все виды 

атак, будут иметь вычислительную сложность порядка O(N!), где значение N 

определяется значениями n и p. Даже при незначительном возрастании значе-

ний этих параметров многомерной матрицы вычислительная сложность их 

подбора, вычисления необходимых детерминантов, подбора единичной и вы-

числения обратной матрицы многократно возрастает. 

6.5. Заключительные замечания к главе 6 

В главе рассмотрено применение предложенного подхода к решению 

практических прикладных и системных задач массовой обработки данных. 

Первый раздел этой главы посвящен использования предложенного ме-

тода для решения задач о кратчайшем пути. Рассмотрено решение традици-

онной задачи матричной формы метода Флойда-Уоршелла. Показано, что при 

последовательном возведении матрицы весов ребер графа в (1, 0)-свернутую 

степень, набор значений индексов отличного от нейтрального элемента k-той 

степени этой матрицы есть последовательность номеров вершин графа. Это 

есть путь, начинающийся в вершине, номер которой соответствует значению 

первого индекса, заканчивающийся в вершине, номер которой соответствует 

значению последнего индекса, и проходящий через k2 вершины. Значение 

элемента есть стоимость этого пути. Рассмотрен случай, когда число ребер 

таково, что матрица весов сильно разрежена. На основе того факта, что для 

этой задачи алгебра многомерных матриц и реляционная алгебра изоморфны, 

предложено ее решение средствами языка Transact-SQL. Вычислительная 

сложность этих алгоритмов достаточно высока, однако использование пред-

ложенных методов распараллеливания умножения многомерных матриц и 

операции Join, позволяет получить результаты за приемлемое время. 

Во втором разделе показано, что использование предложенного в пер-

вом разделе метода возведения матрицы весов графа в (1, 0)-свернутую сте-
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пень может быть использовано для решения задачи вывода ассоциативных 

правил. 

В третьем разделе рассмотрено использование предложенного метода 

для решения задачи поиска изображений в базах данных на основе перцеп-

тивного хеширования. Каждому изображению ставится в соответствие двоич-

ное число 64 и более двоичных цифр (хеш-код), которое служит идентифика-

тором (ключом) изображения в БД. Два изображения считаются близкими, 

если расстояние Хэмминга между их хэш-кодами не превосходит заданного 

значения. Введено понятия веса ключа, которое позволило использовать ме-

тод симметричного горизонтального распределения для параллельной обра-

ботки запросов к БД. Предложен и реализован метод параллельного сравне-

ния ключей изображений с использованием SIMD-регистров процессора. 

Предложена архитектура программно-аппаратного комплекса для поиска 

изображений в базах данных. 

 Четвертый раздел посвящен реализации алгоритма шифрования Хилла 

на основе алгебры многомерных матриц. Приведены дополнительные элемен-

ты алгебры многомерных матриц: понятие трансверсали, детерминанта, об-

ратной многомерной матрицы. Показано, что криптостойкость обобщенного 

алгоритма Хилла повышается за счет свойств многомерных матриц, таких как 

количество и размерности индексов, выбора скоттовых и кэлиевых индексов, 

возможности построения различных единичных и, соответственно, обратных 

матриц. 

Основные результаты, полученные в данной главе, были опубликованы в 

работах [117, 213-217, 228, 232-234, 240-242]. 
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Заключение 

В диссертационной работе были рассмотрены вопросы построения про-

граммно-аппаратных комплексов для реализации массовой обработки данных 

на основе алгебраических моделей и методов. Предложен новый метод форма-

лизации моделей данных и моделей вычислений, основанный на универсаль-

ных многоосновных алгебраических системах и объектно-ориентированном 

подходе к проектированию и разработке программно-аппаратных комплексов 

для решения задач массовой обработки данных. Предложена и разработана тео-

ретико-множественная (файловая) алгебраическая система, которая использу-

ется для доказательства соответствия известных и используемых на практике 

моделей данных и моделей вычислений.  Описана алгебра многомерных матриц 

и предложен метод – абстрактная алгебраическая машина, который позволяет 

использовать в качестве элементов многомерных матриц различные, как про-

стые, так и структурные (кортежи), типы данных. Разработаны алгебраический 

и аксиоматический методы доказательства соответствия моделей данных и мо-

делей вычислений. Проведено доказательство гомоморфизма, а для конкретных 

задач – изоморфизма, теоретико-множественной, многомерно-матричной и ре-

ляционной моделей на основе использования обоих методов. Проведено иссле-

дование проблемы повышения эффективности процессов МОД и разработано 

обобщение алгоритма выбора последовательности операций умножения матриц 

методом динамического программирования для (, )-свернутого произведения 

многомерных матриц. Проведено доказательство того, что синтез оптимизиро-

ванного процесса МОД может быть реализован методом динамического про-

граммирования. Приведен пример синтеза такого процесса. Рассмотрена про-

блема повышения эффективности процессов МОД на основе параллельной реа-

лизации операций. Предложена стратегия повышения эффективности процес-

сов МОД на основе выбора модели данных и модели вычислений в зависимо-

сти от степени разреженности данных. Разработаны этапы построения про-

граммно-аппаратных комплексов, для реализации МОД. Разработана архитек-

тура программно-аппаратного комплекса для реализации многомерно-
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матричной модели данных. Разработаны архитектуры программно-аппаратных 

комплексов для реализации простых (однопроходных) операций теоретико-

множественной модели данных. Разработана архитектура программно-

аппаратного комплекса для параллельной реализации операции слияния не-

строго упорядоченных файлов в теоретико-множественной и реляционной мо-

делях данных для различных алгоритмов, в том числе с использованием ассо-

циативных вычислительных систем. Проведен экспериментальный анализ 

предложенных архитектур, подтвердивший их эффективность. Показана эф-

фективность предложенных методов МОД для решения различных прикладных 

задач.  

Публикации по теме диссертации 

Основные результаты диссертации полностью опубликованы в работах 

[52, 57, 62, 66, 67, 78, 79, 110, 121-123, 138, 139, 143-147, 151, 155-157, 167-170, 181-187, 195, 

196,  206-210, 221, 225-227, 233-235]. 

Направления дальнейших исследований 

Теоретические исследования и практические разработки, выполненные в 

рамках диссертационной работы, предполагается продолжить по следующим 

направлениям. 

1. Разработка системы автоматизации проектирования и программирования 

процессов массовой обработки на основе многомерно-матричной и реляцион-

ной моделей с применением предложенной системы оптимизации. 

2. Разработка многомерно-матричной машины баз данных с использованием 

современных облачных средств создания виртуальных кластеров на основе тен-

зорных и графических процессоров и современных программных средств, реа-

лизующих алгебру тензоров. 

3. Разработка на основе тех же аппаратных средств абстрактных (универ-

сальных) алгебраических машин для реализации обработки различных структур 

данных с произвольными элементами. 
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