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Введение

Зарождение турбулентности — одна из ключевых проблем фундаментальной

аэрогидродинамики и прикладной аэродинамики летательных аппаратов нового

поколения, таких как высокоэкономичные и экологически чистые транспортные

системы с естественной или искусственной ламинаризацией, сверхзвуковые са-

молёты с низким уровнем звукового удара [1]. Неугасающий интерес к проблеме

перехода обусловлен как важностью её решения для фундаментальной науки, так и

и большим прикладным значением этого решения. Дополнительное турбулентное

перемешивание приводит к тому, что в разы возрастают вязкие потери импуль-

са при формировании пограничного слоя, что приводит к возрастанию вязкого

трения на поверхности. При больших сверхзвуковых скоростях на первый план

выходит избыточный нагрев поверхности, который в турбулентном пограничном

слое оказывается в 3 – 6 раз выше, чем в ламинарном [2]. Естественно, что раз-

работчики летательных аппаратов хотят знать возможное положение ламинарно-

турбулентного перехода (ЛТП) при заданных условиях полёта, чтобы правильно

рассчитать аэродинамические характеристики и оптимизировать систему тепло-

защиты. Современные инженерные методы предсказания положения перехода

на сверхзвуковых летательных аппаратах основаны на полуэмпирических зави-

симостях и имеют погрешность более 100%. Из-за этого системы теплозащиты

проектируются с большим запасом, исходя из полностью турбулентного режима

течения на всей траектории полёта, а расчётная полезная нагрузка сокращается.

Например, оценки, проведённые в [3] для экспериментального аэрокосмического

самолёта Rockwell X-30, показывают, что увеличение протяжённости ламинарного

участка с 20% до 80% длины аппарата позволило бы уменьшить взлётный вес

аппарата как минимум вдвое.

Ламинаризация крыла сверхзвукового самолёта влечёт за собой ряд благо-

приятных последствий с точки зрения текущих требований к разрабатываемым

летательным аппаратам (ЛА): снижение потребной мощности силовой установки

и её габаритов; уменьшение шума струи силовой установки на режиме взлёта и

посадки; снижение количества продуктов сгорания авиатоплива, выбрасываемых

в атмосферу, и т.д. После завершения в 2003 г. эксплуатации сверхзвукового пас-

сажирского самолёта (СПС) Конкорд назрела необходимость в разработке СПС

нового поколения, удовлетворяющего жёстким ограничениям на уровень звуко-
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вого удара [1]. Для удовлетворения этих ограничений, в частности, потребуется

увеличить аэродинамическое качество самолёта1, что можно достичь с помощью

ламинаризации обтекания крыла и других элементов планера.

Несмотря на многолетние исследования научных лабораторий всего мира,

физические механизмы зарождения и развития турбулентности в пограничных

слоях до сих пор изучены слабо, особенно при сверхзвуковых скоростях потока.

Переход от хорошо предсказуемого структурированного ламинарного течения

к хаотичному нестационарному турбулентному течению был впервые описан без

малого два столетия назад немецким физиком-гидростроителем Готтхильфом Хаге-

ном. Спустя ещё почти полвека Осборн Рейнольдс опубликовал [4] результаты си-

стематических наблюдений этого явления, которые были получены в его известной

экспериментальной установке, бережно хранимой сегодня в университете города

Манчестера в Великобритании. Однако даже сегодня, за исключением небольшого

числа частных случаев, мы не в состоянии предсказать, в каком месте погранич-

ного слоя на фюзеляже или крыле самолёта при данных параметрах набегающего

потока изначально ламинарное течение начнёт превращаться в турбулентное. И

этому есть причина.

Подавляющее большинство пристенных течений сплошной среды, описыва-

емых в рамках уравнений Навье—Стокса, неустойчиво. Сегодня известно, что

именно неустойчивость пограничного слоя приводит к его турбулизации [5; 6].

Для описания начальной стадии развития неустойчивости (до тех пор, пока ампли-

туда мала и нелинейность несущественна) применяется математический аппарат

линейной теории устойчивости (ЛТУ). В общем случае неустойчивость можно

разделить на два типа: абсолютная или конвективная [7]. Математически было

показано [8], что сверхзвуковой пограничный слой является конвективно неустой-

чивым, то есть возмущение должно распространяться вниз по потоку и затухать в

любой точке пространства при достаточно большом времени наблюдения. Таким

образом, наличия самой по себе конвективной неустойчивости недостаточно,

чтобы течение стало турбулентным. Ключевую роль в зарождении турбулентности

играет начальный фон возмущений, проникающих в пограничный слой. Бушнелл

[9] обобщил возможные источники внешних возмущений. Среди них следует

выделить атмосферную турбулентность вихревой природы, акустический шум,

температурные флуктуации атмосферы, вибрацию поверхности вследствие работы

1Предполагается опосредствованное влияние качества на звуковой удар: рост качества позволит увели-

чить высоту крейсерского полёта и уменьшить угол атаки.
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силовой установки2 или возникающих в полёте автоколебаний, неоднородность

поверхности, атмосферные аэрозоли и даже кинетические (тепловые) флуктуации,

которые в отличие от других источников возмущений доступны с одинаковой

амплитудой в любой точке пограничного слоя3. Проникновение внешних возмуще-

ний внутрь пограничного слоя и возбуждение его собственных неустойчивостей —

отдельная задача восприимчивости. Каков бы ни был механизм восприимчивости,

в случае сверхзвуковых течений он значительно осложняется взаимодействием

внешних возмущений с головной ударной волной перед тем, как они достигнут

поверхности [12].

Фон внешних возмущений переменчив, поэтому даже наиболее детальное опре-

деление обтекаемой геометрии и условий полёта не позволит дать точный прогноз

положения ЛТП вдоль всей траектории полёта. Тем не менее, можно пытаться

давать среднестатистический прогноз на основе осреднённых характеристик атмо-

сферных возмущений. Сбор информации о спектральном составе атмосферных

возмущений является чрезвычайно трудоёмкой задачей. В последние годы Мини-

стерство обороны США выделяет значительные средства на программу MURI4,

целью которой является подробное экспериментальное изучение атмосферных

возмущений на высотах до 25–30 км [13]. Главные задачи этой программы —

тщательно измерить атмосферные пульсации, научиться предсказывать их стати-

стические характеристики при любых условиях предполагаемого полёта (время

года, местоположение на Земле, погода на низких высотах, др.) и интегрировать

разработанную методику в процесс моделирования восприимчивости и устойчи-

вости пограничного слоя. Программа [13], по-видимому, является единственной

комплексной работой такого рода. К сожалению, серьёзного продвижения в этом

направлении пока не обнародовано. Вероятно, разработать универсальную мо-

дель атмосферных возмущений для широкого частотно-волнового спектра вряд

ли возможно. Более реалистичный подход — выделить спектральные интервалы,

характерные для восприимчивости и устойчивости сверхзвукового пограничного

2Именно она стала причиной раннего перехода в лётном эксперименте на конусах, проведённом в ЛИИ

им. Громова в Жуковском. Во время испытаний работали жидкотопливные ракетные двигатели, в спектре

пульсаций которых присутствовали «опасные» частоты из неустойчивой области пограничного слоя. На тот

момент линейная теория устойчивости не была хорошо развита, и предвидеть такой исход событий было

затруднительно [10].
3В этом случае теоретическое предсказание начала ЛТП удаётся сделать без дополнительных предполо-

жений [11].
4Multidisciplinary University Research Initiatives Program —Многодисциплинарная программа исследо-

вательских инициатив университетов
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слоя, а затем для этих интервалов разработать или применить известные модели

внешних возмущений. Такой подход реализован в настоящей работе в главе 6.

Моделировать полётные условия в наземных аэродинамических установках

также не представляется возможным: фон внешних возмущений, в котором преоб-

ладает акустический шум от турбулентного пограничного слоя на стенках сопла и

рабочей части [14], уникален для каждой аэродинамической трубы (АДТ). Кроме

этого, течение может быть загрязнено микрочастицами (грязь, сажа, ржавчина,

старая краска и т.п.), что приводит к значительному разбросу результатов измере-

ния ЛТП на экспериментальных моделях [15]. Поэтому исследование положения

ЛТП в обычных аэродинамических трубах ограничено особенностями конкретной

трубы и вряд ли может помочь предсказать ЛТП в полётных условиях. Тем не

менее, важность экспериментального подхода к исследованию проблемы перехода

подчёркивалась многократно. Например, в вольном переводе автора диссертации

мнение известного учёного Кеннета Стетсона [16] по этому поводу звучит так:

— Чтобы сделать «хорошую» оценку положения перехода, имея скуд-

ную базу данных по ЛТП на близких геометриях, параметрах пото-

ка и спектрах внешних возмущений, необходимо понимать явление

неустойчивости, а также применимость теории устойчивости и чис-

ленных методов. Недостаточно просто наблюдать положение ЛТП в

эксперименте, чтобы понять механизмы, стоящие за ним. Необходимо

поставить эксперимент по изучению устойчивости пограничного слоя,

а затем сравнить полученные результаты с предсказанием теории и

численного моделирования.

Для исследования устойчивости пограничных слоёв используются малошумные

аэродинамические трубы (АДТ), в которых приняты меры по ламинаризации тече-

ния на поверхности сопла и рабочей части (например, отсос пограничного слоя

в горле сопла). Разработка таких установок для сверхзвуковых течений — очень

трудоёмкий процесс. Поэтому малошумные трубы уникальны и исчисляются еди-

ницами. Их характеризуют величиной степени возмущённости потока в рабочей

части (отношение амплитуды флуктуаций скорости к скорости течения), которая

существенно меньше 1% [5]. Впервые малошумная труба была создана под руко-

водством Хью Драйдена в национальном бюро стандартов США в начале 1940х

годов. В ней классиками Галеном Шубауэром и Гарольдом Скрэмстэдом были

получены основополагающие результаты, которые указали на практическую важ-
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ность выводов линейной теории гидродинамической устойчивости [17]. В середине

1960х годов под руководством Владимира Васильевича Струминского в ИТПМ

СО АН СССР5 были созданы малошумная аэродинамическая труба Т-324 для

исследования проблемы перехода при малых дозвуковых скоростях и малошумная

труба Т-325 для изучения этих же проблем при около- и сверхзвуковых скоростях

потока. Эти трубы работают и сегодня. В частности, АДТ Т-325 под руководством

Александра Дмитриевича Косинова позволяет исследовать устойчивость течений

при числах Маха от 2 до 4. В 1970 году Филип Клебанофф создал дозвуковую

малошумную АДТ KSWT6, в которой исследовались вопросы восприимчивости и

устойчивости и которая впоследствии была перемещена в университет Аризоны

(1984) и окончательно в Техасский университет (TAMU, 2005) под руководством

Уильяма Сарика, где располагается по сей день [18]. В списке сверхзвуковых ма-

лошумных АДТ следует отметить китайскую трубу на число Маха 6 в NUDT7

[19], американскую трубу в университете Пердью на число Маха 6 (см., напр.,

[20]), а также недавнее сообщение университета Пердью о создании аналогичной

установки на число Маха 8 [21]. Тихие трубы не моделируют возмущения в усло-

виях натурного полёта. Однако они расширяют возможности для исследования

механизмов ЛТП в контролируемых условиях.

Таким образом, внешние возмущения, запускающие процесс ламинарно-

турбулентного перехода, не моделируются в аэродинамических трубах, в то время

как лётные эксперименты затратны и малоинформативны. Поэтому важность тео-

ретических и численных исследований переходных явлений возрастает.

Линейная стадия развития неустойчивостей пограничного слоя исследована

наиболее подробно. В конечном итоге возбуждённые возмущения достигают ампли-

туд, достаточных для проявления эффектов нелинейного взаимодействия, которые

и приводят к формированию сначала локализованных областей турбулентного

течения (турбулентных пятен), а затем и развитого турбулентного пограничного

слоя. Влияние восприимчивости на нелинейные механизмы, посредством которых

формируются турбулентные пятна в естественных условиях сверхзвукового потока,

исследовано слабо.

В рамках целостного подхода к моделированию ЛТП экспоненциальный рост

возмущений на линейной стадии их развития описывается с помощью линейной

5Сегодня — Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского

отделения Российской академии наук (ИТПМ СО РАН)
6Klebanoff— Saric wind tunnel
7National University of Defense Technology — Оборонный научно-технический университет
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теории устойчивости; интегральное усиление возмущений характеризуется факто-

ром N , предполагающим увеличение амплитуды возмущений в eN раз, начиная с

момента их возбуждения. Начало ЛТП предсказывается с помощью метода eN —

наиболее физически обоснованного инженерного подхода к предсказанию перехо-

да [22; 23]. Недостатком метода eN является предположение о том, что возмущения

доступны всюду внутри пограничного слоя с равными амплитудами в широком

спектральном диапазоне, и поэтому начинают нарастать от соответствующих им

нейтральных точек. Это сильное предположение, однако метод позволяет доста-

точно надёжно предсказывать начало ЛТП, если есть априорная (главным образом,

эмпирическая) информация о величине критического N -фактора, Ncr, в данной

аэродинамической установке или для данных полётных условий. Таким образом,

метод eN учитывает действительный фон внешних возмущений косвенно через

величину Ncr. Характерные значения критического N -фактора для волн Толл-

мина—Шлихтинга в обычных трубных условиях — Ncr ≈ 4...5, а в полётных

условиях — Ncr ≈ 10...11. В случае, когда уровень внешних возмущений слишком

низкий, переход может инициироваться кинетическими флуктуациями, которые

идеально удовлетворяют предположениям метода eN , так как они доступны всюду,

а их амплитуда зависит только от температуры среды. В этом случае задача воспри-

имчивости решается аналитически [11], что позволяет получить оценку сверху для

величины критического N -фактора — Ncr ≈ 16...18. В ряде случаев (в частности,

для тех же кинетических флуктуаций) может применяться более обоснованный

амплитудный метод [24–26], учитывающий восприимчивость пограничного слоя к

внешним возмущениям и использующий асимптотический подход к построению

поля возмущений вдали от места их возбуждения. Амплитудный метод не исполь-

зует предположений eN , но для его реализации необходимо знать спектральный

состав внешних возмущений, который может меняться в зависимости от условий

течения и, как правило, не доступен исследователям или инженерам.

Ниже по потоку от предсказанной точки начала ЛТП используют ту или иную

эмпирическую модель для расчёта средних характеристик неравновесной (переме-

жающейся) турбулентности и с её помощью выходят на усреднённые по Рейнольд-

су уравнения Навье—Стокса (см., например, [27]). Такие эмпирические модели

базируются на ограниченной базе данных, в малой степени учитывают физиче-

ские механизмы неравновесной турбулентности и работают в узких диапазонах

определяющих параметров [28].
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Таким образом, надёжное предсказание положения ламинарно-турбулентного

перехода в сверхзвуковых пограничных слоях — исключительно сложная задача.

Проще управлять положением перехода, влияя на свойства пограничного слоя

различными способами, например, полируя и профилируя поверхность, изменяя её

структуру путём перфорирования или организации микрорельефа, отсасывая по-

граничный слой над ней. Однако понимание того, какие рычаги управления следует

задействовать, чтобы получить желаемый результат, должно быть основано на ре-

зультатах исследования механизмов, лежащих в основе ламинарно-турбулентного

перехода.

Темой исследования настоящей диссертационной работы является расчётно-

теоретическое исследование механизмов, связанных с зарождением турбулентно-

сти в номинально двухмерных сверхзвуковых пограничных слоях. Работа направ-

лена на получение новых знаний в этой области. В работе исследуются базовые

механизмы возбуждения и развития возмущений, приводящих к турбулизации мо-

дельных течений над заострёнными телами — плоской пластиной, клином, углом

разрежения, прямым крылом с тонким параболическим профилем. В этих течениях

продольный градиент давления либо отсутствует, либо является благоприятным

(отрицательным, разгоняющим поток) сосредоточенным или распределённым по

поверхности.

0.1. Пути к турбулентности в сверхзвуковых пограничных слоях

Под термином «ламинарно-турбулентный переход» будем понимать весь про-

цесс преобразования изначально ламинарного течения в развитое турбулентное

течение. Как показал Осборн Рейнольдс [4], определяющим параметром подобия

для проблемы ЛТП является число Рейнольдса Re. При достижении некоторого

конечного значения Re течение теряет устойчивость по отношению к возмуще-

ниям с определённым частотно-волновым составом. Такие возмущения растут и

достигают критических амплитуд, при которых начинает проявляться нелинейное

взаимодействие возмущений между собой. За счёт нелинейности начинает иска-

жаться среднее течение, изменяются характеристики его устойчивости: появляются

вторичные неустойчивости и неустойчивости более высокого порядка, частотно-
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волновой спектр возмущений быстро расширяется — течение турбулизуется. В

работе Юрия Семёновича Качанова [29] этот процесс разделён на пять характер-

ных стадий, описывающих малошумный сценарий развития турбулентности в

пограничном слое.

На стадии I восприимчивости возмущения набегающего потока проникают в

пограничный слой и возбуждают нормальные моды его собственных колебаний,

определяя начальные условия их развития (амплитуды, частоты, фазы) [30–33].

На стадии II линейной области ЛТП возбуждённые волны растут практически

экспоненциально. Рост описывается в рамках решения задачи на собственные

значения для линеаризованных уравнений устойчивости. На стадии III нелинейной

области ЛТП начинают проявляться нелинейные эффекты — спектр возмуще-

ний быстро расширяется. На стадии IV области распада возмущений возникают

высокочастотные выбросы, на которых зарождаются локализованные области тур-

булентного течения — турбулентные пятна. На стадии V слияние турбулентных

пятен приводит к установлению полностью развитого турбулентного режима тече-

ния. Стадии III –V, как правило, сменяются быстро по сравнению с протяжённой

областью линейного роста II, а область восприимчивости сосредоточена вблизи

передней кромки, где акустические возмущения, порождённые взаимодействием

возмущений любой природы с головной ударной волной, синхронизируются с

нормальными модами сверхзвукового пограничного слоя [34].

В зависимости от интенсивности внешних возмущений могут реализоваться и

другие пути, по которым течение переходит в турбулентное состояние [12; 35; 36].

Они схематично показаны на рис. 1.

Сценарий (A) соответствует переходу в тихих условиях, и состоит из трёх

основных этапов: восприимчивость (стадия I), линейное развитие неустойчивых

мод пограничного слоя (стадия II) и нелинейный распад возмущений, заверша-

ющийся развитым турбулентным течением (стадии III, IV и V). Этот сценарий

реализуется в случае гладких тел и низкого фона внешних возмущений, что, в

частности, типично для крейсерских условий полёта сверхзвукового пассажирско-

го самолёта. С увеличением уровня внешних возмущений становится возможен

механизм алгебраического роста (transient growth), при котором возбуждённые

собственные возмущения (моды) пограничного слоя могут взаимодействовать друг

с другом за счёт неортогональности (сценарий (B)). При достаточно большом

уровне внешних возмущений алгебраический рост может привести к амплитудам

возмущений, достаточным для начала нелинейной стадии (сценарий (C) и (D));
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A

B C D E

Увеличение уровня возмущений

Рисунок 1 — Сценарии ламинарно-турбулентного перехода в зависимости от

уровня внешних возмущений (рисунок взят из [37], его оригинальная версия опуб-

ликована в [12])

при этом стадия линейного роста отсутствует. Сценарии (B), (C), (D) характерны

для шероховатых тел и низкого фона возмущений в потоке, либо для внутренних

течений с высоким уровнем турбулентности. При очень большой интенсивности

внешних возмущений переход протекает по сценарию (Е) вне зависимости от

шероховатости поверхности. Все упомянутые сценарии справедливы и в дозвуко-

вых, и в сверхзвуковых пограничных слоях, отличие заключается в конкретных

характеристиках каждой стадии.

Крейсерский полёт сверхзвуковых летательных аппаратов осуществляется

на высотах порядка 20 км, где интенсивность внешних возмущений мала. Такие

условия принято называть тихими. При разработке систем ламинаризации предпо-

лагается, что поверхность ЛА является аэродинамически гладкой и не вибрирует

в неустойчивом частотном диапазоне. Исследования, проведённые в настоящей

диссертационной работе, сосредоточены на малошумном сценарии (А).



15

0.2. Степень разработанности темы исследования

Исследования проблемы ламинарно-турбулентного перехода в сверхзвуковых

пограничных слоях ведутся теоретическими, экспериментальными и численны-

ми путями с середины прошлого века. Несмотря на многолетние исследования

научных лабораторий всего мира, физические механизмы зарождения и развития

турбулентности в сверхзвуковых пограничных слоях изучены слабо.

Теоретические исследования. Исходное предположение о том, что зарождение

турбулентности связано с потерей устойчивости ламинарного течения, сегодня

является общепризнанным [5; 6]. Оно прослеживается в теоретических исследова-

ниях Уильяма Орра [38] и последующих работах Арнольда Зоммерфельда [39] и

Вернера Гейзенберга [40]. В конце 20-х годов XX века Уолтер Толлмин сформули-

ровал асимптотическую теорию, на основании которой Герман Шлихтинг провёл

первые расчёты устойчивости пограничного слоя для конечных чисел Рейнольд-

са (см., например, [41]). К настоящему времени проведено большое количество

теоретических и экспериментальных исследований устойчивости дозвукового по-

граничного слоя. Предсказания теории устойчивости для несжимаемого течения

хорошо совпадают с данными многочисленных экспериментов [5; 42; 43].

Первые теоретические исследования ЛТП сверхзвукового пограничного слоя на

простых телах (пластина, конус) были сосредоточены на определении характера и

свойств его собственных возмущений — нормальных мод. В классической работе

[44] Лэстор Лиз и Чио Чао Линь ввели обобщённый критерий перегибной неустой-

чивости — максимум величины ρ∂U/∂y, — а также классифицировали моды

возмущений на дозвуковые и сверхзвуковые по отношению к местному невязкому

течению. Все дозвуковые моды экспоненциально затухают вдали от поверхности.

При относительно небольших сверхзвуковых числах Маха в пограничном слое

присутствует единственная мода— первая мода по терминологии Мэка8 [45; 46].

Она имеет вязкую природу и является аналогом волн Толлмина—Шлихтинга в

дозвуковых течениях. С ростом числа Маха (приMe ? 2.2 на пластине с тепло-

изолированной поверхностью) появляется новый тип неустойчивостей — высшие

(вторая и более высокого порядка) моды акустической природы. Их существова-

ние предсказано теоретически [45] и подтверждено экспериментально [47–49].

8Далее для сокращения будем называть их просто «мода».
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Высшие дозвуковые моды Мэка являются пойманными в пограничном слое аку-

стическими волнами и появляются, когда поверхность движется со сверхзвуковой

скоростью по отношению к фазовой скорости возмущений (cr/aw > 1). В случае

теплоизолированной пластины вторая мода теряет устойчивость приMe ? 4, а

моды более высокого порядка, как правило, остаются устойчивыми. Среди возму-

щений первой моды наиболее быстро нарастают волны с наклонными фронтами,

а в случае второй моды — плоские волны [46]. Обе моды в сверхзвуковом погра-

ничном слое сосуществуют одновременно, и при достижении достаточно высоких

амплитуд начинается нелинейное взаимодействие между ними [50; 51]. Преоблада-

ние той или иной неустойчивой моды определяется локальными характеристиками

пограничного слоя. Первая мода интенсивно растёт на прогретых поверхностях

(температура поверхности сопоставима с температурой торможения невязкого

течения) или при наличии неблагоприятного градиента давления (см., например,

[42]). Вторая мода дестабилизируется с ростом числа Маха [52] и при охлаждении

поверхности [53]. Поэтому на гладкой поверхности сверхзвуковых летательных

аппаратов, температура которой может быть значительно ниже температуры тормо-

жения из-за радиационного охлаждения, неустойчивость первой моды подавляется

естественным образом, а неустойчивость второй моды становится преобладаю-

щей и может приводить к ЛТП. Таким образом, установлено, что сверхзвуковой

пограничный слой ведёт себя как конвективно неустойчивый волновод [8; 12], в

котором, как правило, развиваются две неустойчивые моды — первая и вторая.

Изначально считалось, что сверхзвуковые моды (cr < 1 − 1/Me) не имеют

отношения к модам дискретного спектра, так как естественные сверхзвуковые

возмущения не затухают вдали от поверхности [44]. Мэк расчётным путём проде-

монстрировал их экспоненциальное затухание [45]. Однако, как было отмечено в

[12], темпы роста сверхзвуковых мод оказались гораздо ниже, чем у дозвуковых

мод, поэтому их роль в процессе перехода требует дополнительного исследования.

Такое исследование проведено теоретическим и численным путём, а его результаты

представлены в главе 4 настоящей работы.

Далее был сделан учёт слабой непараллельности невозмущённого сжимаемого

течения. Теоретические исследования влияния растущего пограничного слоя на

характеристики возмущений были начаты в работах Сарика [54], Гапонова [55],

Тумина и Фёдорова [56]. Современные достижения в теории устойчивости с учё-

том сжимаемости и непараллельности течения во многом обусловлены вкладом

российских учёных Сергея Александровича Гапонова, Владимира Николаевича



17

Жигулёва, Анатолия Максимовича Тумина, Александра Витальевича Фёдорова

и других. Среди прочих следует отметить работу [57], в которой теоретически

объяснён механизм возбуждения неустойчивостей через механизм межмодового

обмена.

В пограничных слоях более сложной конфигурации могут возникать другие

неустойчивые моды. Так, при наличии угла скольжения потока в развитом трёхмер-

ном пограничном слое (например, на стреловидных крыльях или конусах под углом

атаки) возникает неустойчивость поперечного течения, которая проявляется в виде

стационарных или нестационарных продольных вихрей [58; 59], наблюдавшихся в

многочисленных экспериментах (см., напр., [60]). На вогнутых поверхностях за

счёт центробежной неустойчивости могут развиваться существенно трёхмерные

стационарные вихревые структуры типа продольных вихрей Жину—Гёртлера

[61], которые наблюдались экспериментально при обтекании поверхностей сжа-

тия [62–65]. Источником возмущений, перерождающихся в продольные вихри,

по-видимому, является шероховатость обтекаемой поверхности [25; 65].

Сравнительный анализ различных типов возмущений для сверхзвуковых режи-

мов полёта выполнен в [36; 66]. Показано, что для ЛТП, обусловленного неустой-

чивостью второй моды Мэка, одним из наиболее вероятных источников внешних

возмущений являются микрочастицы, проникающие в пограничный слой. Это сти-

мулировало теоретические [67] и дальнейшие численные исследования, которым

посвящена глава 7.

Экспериментальные исследования. Развитие теоретических моделей стимули-

рует проведение экспериментальных работ в области устойчивости сверхзвукового

пограничного слоя. Такие эксперименты сопряжены со значительными трудно-

стями. Например, в сверхзвуковых трубах высок уровень возмущений основного

потока; приборы для измерений пульсаций должны обладать временным разреше-

нием на порядок выше, чем аналогичная аппаратура для дозвуковых измерений. В

большинстве экспериментальных работ, выполненных при больших сверхзвуковых

скоростях, исследуется положение перехода в зависимости от влияния различных

факторов (число Рейнольдса, температурный фактор, шероховатость поверхности,

притупление передней кромки и др.) [42]. Изучение устойчивости сверхзвукового

пограничного слоя было проведено, например, в работах Кеннета Стетсона [49]

и Роджера Киммела [68], где исследовалось развитие естественных возмущений.

Как отмечалось выше, недостаток подобных исследований заключается в том, что



18

их результаты сложно перенести на условия натурного полёта, так как характери-

стики возмущений в трубных и в полётных условиях принципиально различаются

(примеры значительного влияния шума трубы при исследовании ЛТП представ-

лены в обзоре [69]). Кроме того, в таких экспериментах невозможно измерить

полное пространственное поле возмущений в пограничном слое. Такая информа-

ция может быть экспериментально получена только в контролируемых условиях

с помощью искусственных возмущений, когда измерение синхронизировано с

работой источника этих возмущений.

Первые эксперименты с использованием контролируемых возмущений были

выполнены Джоном Лауфером и Томасом Вребаловичем [70] для сжимаемого

пограничного слоя на плоской теплоизолированной пластине. В ИТПМ СО РАН

Анатолий Александрович Маслов, Александр Дмитриевич Косинов, Николай Ва-

сильевич Семёнов и их коллеги разработали эффективный метод исследования

волновых процессов в сверхзвуковых потоках. Он основан на контролируемых

волновых пакетах, возбуждаемых локализованным электроразрядным источником

с известным спектром и с хорошей повторяемостью от пуска к пуску [71–73].

Главное достоинство этого подхода — возможность получения фазовой информа-

ции об исследуемых возмущениях. Опубликованные результаты контролируемых

экспериментов немногочислены и принадлежат двум группам-лидерам в этом

направлении: отмеченная выше группа учёных ИТПМ СО РАН; группа Стивена

Шнайдера (США). Ниже цитируется большая часть этих экспериментов.

В работе [74; 75] выполнены термоанемометрические измерения волновых

поездов, порождённых гармоническим точечным источником типа тлеющего раз-

ряда. Испытания проводились в пограничном слое на плоской пластине при числе

Маха 2. В [51; 76] исследована устойчивость пограничного слоя на конусе при

числе Маха ≈ 6 с помощью искусственных возмущений от электроразрядного

источника. В [77] экспериментально исследована эволюция контролируемых воз-

мущений от тлеющего разряда на конусе при числе Маха 4. В [78–80] исследована

эволюция волновых пакетов и турбулентных пятен в пограничном слое на стенке

сопла тихой аэродинамической трубы при числе Маха 6. В [81] измерены темпе-

ратурные возмущения, создаваемые мощным лазером. Измерения проводились в

малошумной АДТ при числе Маха 6. В перечисленных экспериментах получаемые

данные о поле возмущений заметно ограничены, что обусловлено техническими

ограничениями при измерении высокочастотных пульсаций во множестве точек



19

сверхзвукового пограничного слоя. Тем не менее, результаты этих экспериментов

так или иначе подтвердили выводы линейной теории устойчивости.

Следует подчеркнуть эксперименты [82; 83] на остром конусе в высокоэнталь-

пийной трубе и эксперименты [84; 85] на сигарообразном затупленном теле в

ударной трубе, где ламинарно-турбулентный переход наблюдался не как единый

непрерывный процесс, а скорее как среднестатистический эффект от множества

независимых случайно появляющихся и сливающихся друг с другом турбулентных

пятен. Такое поведение наблюдалось не только на гладкой поверхности, но и за

изолированным элементом неровности определённой высоты, который размещался

на обтекаемой поверхности [85]. Это обосновывает утверждение о том, что ЛТП в

тихих условиях протекает через процесс зарождения, развития и последующего

слияния турбулентных пятен. Исследованию эволюции волновых пакетов и турбу-

лентных пятен в течениях с внезапным разрежением посвящена глава 5 настоящей

диссертации.

Численное моделирование. В отличие от физических экспериментов, прямое

численное моделирование (ПЧМ) даёт полную информацию о пространственно-

временном поле возмущений, которая позволяет выявить и детально изучить раз-

личные механизмы ЛТП. ПЧМ позволяет проводить целостный расчёт всех стадий

процесса ЛТП, что обеспечивается решением полных нестационарных уравнений

Навье — Стокса без каких-либо допущений о свойствах базового среднего течения

и амплитуде развивающихся в нём возмущений.

Численное моделирование восприимчивости сверхзвукового пограничного

слоя к возмущениям набегающего потока проводилось, например: в работах [86;

87] для вихревых возмущений; в работах [86; 88] для энтропийных возмущений

(температурная неоднородность потока); в работах [87; 89; 90] для акустических

волн с различными наклонами фронтов по отношению к обтекаемой поверхности.

В этих работах задача восприимчивости решается для детерминированных внеш-

них возмущений, спектр которых не моделирует спектры естественных случайных

возмущений, типичных для условий сверхзвукового полета. Стадия нелинейного

распада и возникновения турбулентности в таких работах, как правило, не исследу-

ется. До сих пор нет ответа на принципиально важные вопросы: 1) В какой степени

возникновение турбулентности зависит от внешних возмущений? 2) Можно ли

предсказать эту зависимость для типичных условий сверхзвукового полёта, чтобы
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обеспечить приемлемую точность расчёта аэродинамических характеристик ЛА

на переходных режимах обтекания?

В то же время работы, посвящённые нелинейному развитию неустойчивости,

сосредоточены на подробном описании процессов, свойственных тому или иному

механизму распада контролируемых возмущений (K-тип распада [91; 92], резо-

нанс наклонных волн [93], др.). В них, как правило, также исследуется развитие

детерминированных возмущений— ограниченного набора гармоник (обычно двух

или трёх), возбуждаемых искусственным путём и нелинейно взаимодействующих

между собой. Связь этих нелинейных механизмов с реалистичным спектраль-

ным составом атмосферных возмущений, проникающих в пограничный слой, не

обсуждается.

Первые работы по прямому численному моделированию ЛТП в сверхзвуковом

пограничном слое в полной пространственной постановке были выполнены в

научных группах Маркуса Клокера (Университет Штутгарда, Германия) и Германа

Фазела (Университет Аризоны, США) в начале 1990х годов [94]. Также одними

из первых такие расчёты выполняли группы Леонарда Клайзера (Технический

университет Цюриха, Швейцария) [95] и Нила Сэндхема (Стэнфордский универ-

ситет, США). Эти группы продолжают интенсивно работать в настоящее время.

Численное моделирование процессов, связанных с ламинарно-турбулентным пере-

ходом в сверхзвуковых пограничных слоях, бурно развивается в последние годы.

Подробно исследуются турбулентные пятна [96; 97], изучается влияние на переход

шероховатости обтекаемой поверхности [98]. В России работы в этом направлении

ведутся, например, в группе Алексея Николаевича Кудрявцева [99] (ИТПМ СО

РАН, Новосибирск) и в группе Ивана Владимировича Егорова (ЦАГИ9, МФТИ10,

Жуковский) [37; 100], в которую входит автор настоящей диссертации.

Влияние восприимчивости на нелинейные механизмы, посредством которых

формируются турбулентные пятна в естественных (стохастических, недетермини-

рованных) условиях сверхзвукового потока, исследовано слабо. Автору диссерта-

ции известны только две работы на эту тему [101; 102]. В [101] выполнено прямое

численное моделирование нелинейной стадии ЛТП в пограничном слое на конусе

под действием случайных возмущений давления. Возмущения вводились в узлах

сетки, лежащих на входной границе расчётной области вдоль линии симметрии по

азимутальному направлению. Возбуждался широкий спектр возмущений, напоми-

9Центральный аэрогидродинамический институт им. профессора Н. Е. Жуковского
10Московский физико-технический институт (национальный исследовательский университет)
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нающий белый шум. Выяснялось, в какой степени относительно простая модель

внешних возмущений позволяет воспроизвести сценарий ЛТП, наблюдаемый на

вогнутом конусе в малошумной аэродинамической трубе при числе Маха набе-

гающего потока М∞ = 6 [103]. Показано, что в расчётах доминирует K-режим

перехода (так называемый фундаментальный резонанс, «fundamental breakdown»),

исследованный авторами [101] ранее в случае детерминированных внешних возму-

щений. Численное моделирование дало такую же первичную и следующую за ней

вторичную структуру продольных полос повышенного теплового потока, как и в

трубных экспериментах [103]. На основе этого результата можно предположить,

что восприимчивость слабо влияет на нелинейные механизмы возникновения тур-

булентности в естественных условиях ЛТП. Таким образом, предполагается, что

один и тот же механизм должен преобладать в широком диапазоне параметров

атмосферных возмущений, типичных для сверхзвукового полёта. Здесь важно

отметить, что в работе [101] имеется два принципиальных недостатка. Во-первых,

вводимые возмущения нефизичны, а следовательно, нет гарантии их реализации в

естественных условиях. При навязывании таких возмущений возможна нефизич-

ная накачка мод пограничного слоя, которая аналогична эффекту классического

демона Максвелла при тепловом разделении молекул газа без подвода энергии

извне. Во-вторых, детерминированная структура появляющихся продольных по-

лос противоречит случайному характеру внешнего воздействия. Эти вопросы не

обсуждались в [101].

Следует отметить, что в численном моделировании нелинейных стадий ЛТП и

развитой турбулентности в высокоскоростных пограничных слоях часто применя-

ют искусственное порождение перехода в надежде, что развитие турбулентности

слабо зависит от предыстории её формирования. Это позволяет не моделировать

линейную стадию и тем самым сократить протяжённость переходной области и,

как следствие, понизить требования к необходимым вычислительным ресурсам.

Для этого внутри пограничного слоя вводятся возмущения специального вида

и спектрального состава, которые сразу настроены на резонансы нужного типа

(см., напр., [96; 99]). В настоящей работе развит подход, позволяющий исключить

моделирование линейной стадии за счёт использования расширенной информации

из линейной теории устойчивости (см. главу 3).

Для моделирования ЛТП обычно применяются специализированные числен-

ные методы, позволяющие сократить необходимые вычислительные ресурсы. На-
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пример, в обзорах Германа Фазела [104] и СяолиняЖонга [105] представленыПЧМ

развития контролируемых возмущений на простых конфигурациях — пластина

и конус под нулевым углом атаки. В [105] рассматривается метод, основанный

на конечно-разностной схеме сквозного счёта для расчёта стационарного обте-

кания передней кромки пластины с отошедшей ударной волной; ниже по потоку

используется схема высокого порядка с выделением ударных волн для расчёта

нестационарных возмущений. Когда возмущения достигают слишком высоких

амплитуд и в течении появляются большие градиенты газодинамических пере-

менных, могут проявляться вычислительные трудности. В [104] сначала применя-

ется квазимонотонная схема для расчёта стационарного поля обтекания полной

конфигурации, а затем из этого поля вырезается пристенная область, в которой

моделируется распространение возмущений с помощью гибридного численного

подхода с конечно-разностной схемой высокого порядка и спектральным методом

в одном из направлений. Таким образом, специализированные численные методы

применимы в ограниченном классе течений.

На практике удобнее использовать для ПЧМ один универсальный численный

метод, с помощью которого будут рассчитываться и стационарное поле обтекания

со всеми пространственными неоднородностями (ударные волны, отрывные об-

ласти и др.), и нестационарные возмущения без ограничения на их амплитуду. В

настоящей работе для этих целей используется полностью неявный метод сквозно-

го счёта второго порядка аппроксимации по пространству и времени. Повышен-

ная диссипативность квазимонотонной схемы, из-за чего амплитуды возмущений

нефизично уменьшаются, может быть преодолена путём достаточного измельчения

расчётной сетки и выполнения ресурсоёмких расчётов в параллельной постановке

на супер-ЭВМ. Вопросы применимости такого подхода обсуждаются в главе 2.

ПЧМ поздних нелинейных стадий ЛТП при натурных числах Рейнольдса тре-

бует применения подробных трёхмерных расчётных сеток. Характерный размер

ячеек должен иметь порядок масштаба Тейлора lT ∼
√
10Re−1/2

∞ , а в идеальном

случае быть близким к масштабу Колмогорова lK ∼ Re−3/4
∞ . В последнем случае

пространственно-временные затраты (с учётом временного шага ∆t ∼ Re−1/2
∞ ) на

проведение одного расчёта имеют порядок Re
11/3
∞ , что представляется нереализуе-

мым при текущем развитии вычислительных технологий. Последнее требование

относится к прямому численному моделированию развитого турбулентного те-

чения и является избыточным для численного анализа устойчивости и процесса

зарождения молодой турбулентности (начальной стадии развития турбулентного



23

режима течения). Оказывается достаточно разрешить основные волны неустой-

чивости с двумя-тремя их кратными гармониками. Надёжность такого подхода

подтверждается результатами главы 2, а также проверкой достоверности основ-

ных результатов диссертации по ходу их изложения. Поэтому используемые в

настоящей работе сетки содержат сотни миллионов узлов, а не сотни миллиардов.

Благодаря доступности современных многопроцессорных вычислительных си-

стем и методов параллельных вычислений такое сеточное разрешение оказывается

приемлемым с точки зрения необходимых вычислительных мощностей.

Практические приложения. Турбулизация сверхзвукового пограничного слоя

ведёт к росту сопротивления и тепловых потоков к поверхности летательного

аппарата. Поэтому управление положением ЛТП является важной задачей с прак-

тической точки зрения. Понимание физических механизмов, лежащих в основе

ламинарно-турбулентного перехода, — ключ к созданию способов управления.

Методы управления можно разделить на активные (с подводом вещества, импульса

и энергии в пограничный слой) или пассивные (без такого подвода). Пассивные

методы более просты в реализации, но теряют эффективность на нерасчётных

режимах. Активные, напротив, — более гибкие в применении, но требуют техни-

чески более сложной реализации. Подробный обзор по управлению положением

ЛТП на дозвуковых скоростях можно найти в работах [106; 107].

В сверхзвуковых пограничных слоях первая мода стабилизируется путём охла-

ждения поверхности, отсоса пограничного слоя и благоприятного градиента давле-

ния [42]. Как отмечалось выше, охлаждение дестабилизирует вторуюмоду, поэтому

для высокоскоростных летательных аппаратов неустойчивость первой моды подав-

ляется естественным образом, и усилия должны быть направлены на стабилизацию

неустойчивости второй моды.

Возмущения второй моды являются высокочастотными и имеют акустическую

природу. Из этих соображений в [108] была выдвинута и подтверждена теоретиче-

ски [108; 109] гипотеза о том, что пассивные пористые покрытия, поглощающие

ультразвук, могут эффективно подавлять вторую неустойчивую моду. Эффектив-

ный размер пор можно выбрать достаточно маленьким, чтобы шероховатость пори-

стой поверхности не влияла на структуру пограничного слоя и на течение в целом.

Выводы теории были подтверждены (в том числе, количественно) в экспериментах

с регулярно распределёнными порами [110; 111] и с хаотично распределёнными

порами в виде металлического фетра [112; 113]. Многочисленные расчётные иссле-
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дования (напр., [37]) также подтвердили работоспособность выдвинутой гипотезы.

Таким образом, пассивное пористое покрытие, поглощающее ультразвук, способно

затягивать ЛТП, вызванный неустойчивостью второй моды. Позже также было по-

казано, что пористое покрытие способно влиять и на нелинейную стадию развития

возмущений [114].

Слои смешения должны оказывать стабилизирующее влияние на развитие

второй моды. Исходя из этого в [115; 116] был предложен и подтверждён экспери-

ментально новый пассивный способ управления ЛТП, основанный на подавлении

пульсаций при помощи волнообразных покрытий. В настоящее время данная кон-

цепция развивается, но вместо волнообразной стенки используется периодическая

неровность в форме ряда локальных выступов [117].

Наиболее известным активным способом стабилизации течения является отса-

сывание пограничного слоя. Влияние отсоса на развитие неустойчивостей первой

[118] и второй [119] моды проявляется в уменьшении их максимальных темпов

роста. При этом отмечено, что отсос приводит к смещению неустойчивой области

в сторону больших частот. Это хорошо коррелирует с утончением погранично-

го слоя из-за отсоса. Также демонстрируется, что отсос более эффективен при

стабилизации вязкой неустойчивости, к которой относится первая мода. Поэто-

му влияние отсоса ослабевает с ростом числа Маха. Уменьшение максимального

инкремента не гарантирует полную стабилизацию течения: этого не достаточно,

чтобы интегральное усиление возмущений убывало на некоторой конечной длине.

Так, в работе [120] (число Маха 1.6) отмечается, что подавление возмущений лока-

лизовано вблизи участка отсасывания, а за этим участком наблюдается обратный

дестабилизирующий эффект, хотя к концу расчётной области интегральный эф-

фект стабилизации всё же сохраняется. Возможность дестабилизации течения за

областью отсоса продемонстрирована и подробно изучена при больших числах

Маха в работе [121]: за участком отсоса пограничный слой может оказаться менее

устойчивым, чем в случае без отсоса.

Возможность полной ламинаризации сверхзвуковых крыльев с помощью отсо-

са демонстрировалась экспериментально. Одними из первых таких исследований

на сверхзвуковых скоростях стали лётные испытания в ЛИИ им. Громова11 на базе

летающей лаборатории Су-7Б (1.4 6M∞ 6 2, высота полёта 11 – 15 км), проведён-

ные в 1970х годах. Исследовалась модель прямого крыла с параболическим профи-

лем, на котором было организовано многощелевое отсасывание пограничного слоя.

11Лётно-исследовательский институт им. М.М. Громова (Жуковский)
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С помощью отсоса удалось ламинаризовать участок поверхности до середины

хорды крыла. При этом сопротивление трения ламинаризованного участка поверх-

ности с учётом затрат энергии на отсасывание было снижено более, чем вдвое.

В лётных экспериментах [122], проведённых на экспериментальном самолёте F-

16XL-2 при числах Маха порядка 2, изучалось влияние отсоса на ламинаризацию

крыла большой стреловидности, на котором преобладает неустойчивость попе-

речного течения. Наилучшие результаты, достигнутые при оптимальном уровне

отсасывания, соответствовали ламинаризации почти половины поверхности крыла

вдоль хорды.

Следует отметить, что и сама параболическая форма профиля прямого крыла

подразумевает стабилизацию первой и второй неустойчивых мод благодаря бла-

гоприятному градиенту давления над всей поверхностью крыла. Исследованию

особенностей такой стабилизации посвящена глава 6.

∗ ∗ ∗

Вряд ли хватило бы ширины переплёта, чтобы объять знания по проблеме ЛТП

в сверхзвуковых пограничных слоях, накопленные за многие годы. Поэтому сде-

ланное введение не претендует на полноту обзора. Его главная задача — охватить

проблему в целом и акцентировать внимание на том, что могло бы пригодиться чи-

тателю, готовому ознакомиться с последующими главами научного исследования.

Сжатость введения, как надеется автор, компенсируется расширенным вступлени-

ем к каждой такой главе.

0.3. Общая характеристика работы

Цель работы— с помощью теоретических и численных методов в рамках

полных уравнений Навье—Стокса исследовать новые механизмы, свойственные

процессу ламинарно-турбулентного перехода в сверхзвуковых пограничных слоях

с благоприятным продольным градиентом давления и без него, а также предложить

рациональные подходы к исследованию этих и аналогичных механизмов.

Для достижения поставленной цели решены следующие задачи:

1. На ряде модельных задач изучить свойства используемого неявного числен-

ного метода сквозного счёта и сформулировать критерии его применимости
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при расчёте возмущённых сверхзвуковых пограничных слоёв. Обосновать

возможность моделирования развития различных стадий ЛТП (восприимчи-

вость, устойчивость, развитие нелинейности) с помощью данного метода.

2. Использовать расширенную информацию из линейной теории устойчивости

для исключения протяжённой линейной стадии развития возмущений в

пограничном слое из численного моделирования.

3. Исследовать физические эффекты, связанные с развитием сверхзвуковых

неустойчивостей пограничного слоя. Оценить их влияние на процессы ЛТП.

4. Исследовать роль внезапного разрежения потока в линейной и нелинейной

стадии развития возмущений в сверхзвуковом пограничном слое над углом

разрежения. Оценить возможность ламинаризации пограничного слоя в

таких условиях.

5. Выявить наиболее вероятный источник внешних возмущений, приводящих

к ЛТП на прямом крыле сверхзвукового пассажирского самолёта (СПС), ис-

следуя восприимчивость сверхзвукового пограничного слоя к реалистичным

возмущениям и развитие возбуждённых волн неустойчивости над крылом

вплоть до формирования турбулентных пятен. Предложить подходы к лами-

наризации обтекания таких крыльев.

6. Разработать подход к численному моделированию роли микрочастиц как

источника ЛТП в сверхзвуковых пограничных слоях и обосновать его при-

менимость. На базе этого подхода предложить статистическую модель ЛТП,

вызванного взвешенными в атмосфере микрочастицами.

Научная новизна:

1. Разработано простое нестационарное граничное условие, которое позво-

ляет исключить протяжённую линейную стадию развития возмущений из

численного моделирования процесса ЛТП. Применимость этого условия

подтверждена путём моделирования волновых пакетов первой и второй

моды сверхзвукового пограничного слоя.

2. В рамках численного эксперимента впервые показано, что вторая мода

сверхзвукового пограничного слоя над достаточно сильно охлаждённой

поверхностью может излучать акустические волны во внешнее невязкое

течение. Этот эффект, называемый спонтанным излучением звука, в главном

приближении не влияет на процесс перехода к турбулентности.
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3. Обнаружено, что характеристики устойчивости сверхзвукового погранично-

го слоя над угловыми конфигурациями масштабируются вместе с толщиной

пограничного слоя. При этом внезапное разрежение потока приводит к по-

давлениюмалых возмущений и задержке развития существенно нелинейных

образований (турбулентных пятен); последние полностью не подавляются.

4. Обнаружено, что возмущения, развивающиеся в сверхзвуковом погранич-

ном слое на прямом крыле с тонким параболическим профилем, не могут

нарастать выше определённого уровня.

5. Показано, что наиболее вероятным источником перехода на прямом крыле

СПС является акустический шум, излучаемый турбулентным пограничным

слоем с передней части фюзеляжа. Предложены подходы к ламинаризации

прямого крыла, основанные на уменьшении интенсивности акустического

шума.

6. Разработан вычислительный подход для численного моделирования вос-

приимчивости сверхзвуковых пограничных слоёв к твёрдым сферическим

микрочастицам. С его помощью показано, что восприимчивость к микро-

частицам сосредоточена внутри пограничного слоя в малой окрестности

точки столкновения и не зависит от того, падает ли частица на поверхность

или удаляется от неё. Это открывает возможность для постановки контро-

лируемого эксперимента по восприимчивости сверхзвуковых пограничных

слоёв к микрочастицам.

Теоретическая значимость работы заключается в том, что получены новые

фундаментальные знания о механизмах зарождения турбулентности в сверхзвуко-

вых пограничных слоях в малошумных условиях. Разработаны удобные расчётные

модели и подходы для исследования ЛТП в таких течениях. Полученные знания

обеспечивают основу для разработки и верификации физически обоснованных

целостных моделей ламинарно-турбулентного перехода вплоть до формирования

развитого турбулентного течения.

Практическая значимость работы заключается в том, что путём расчётно-

теоретического анализа получены важные выводы о стабилизации и ламинари-

зации сверхзвуковых пограничных слоёв в течениях разрежения. На их основе

предложены и могут быть впоследствии реализованы системы затягивания ЛТП на

крыльях современных сверхзвуковых пассажирских самолётов. Результаты работы

могут быть применены для оптимизации поверхностей элементов сверхзвуко-

вых летательных аппаратов, таких как профиль крыла или отклоняемые органы
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управления. Результаты численного моделирования возмущений от искусственного

источника будут полезны при подготовке и интерпретации результатов контролиру-

емых экспериментов по устойчивости в сверхзвуковых аэродинамических трубах.

Наконец, полученные данные численного моделирования дают полную инфор-

мацию о трёхмерном нестационарном течении, из которой исследователи могут

извлекать любые характеристики, необходимые для валидации и интерпретации

результатов своих исследований.

Методология и методы исследования базируются на опыте научной группы

в ЦАГИ и МФТИ, к которой принадлежит автор, и воплощаются в проведении

теоретических и расчётных исследований с помощью методов вычислительной

аэродинамики, а также в последующей взаимной интерпретации полученных

результатов с применением аналитических подходов.

На защиту выносятся следующие основные положения.

– Предложенное на основе расширенных данных линейной теории устойчиво-

сти асимптотическое граничное условие пригодно для порождения развитых

волновых пакетов неустойчивых мод в сверхзвуковых пограничных слоях.

– Неустойчивость второй моды сверхзвукового пограничного слоя над доста-

точно сильно охлаждённой поверхностью способна излучать акустические

возмущения из пограничного слоя (спонтанное излучение звука).

– Внезапное разрежение течения в сверхзвуковых пограничных слоях приводит

к стабилизации волновых пакетов и задержке развития турбулентных пятен.

– В условиях распределённого благоприятного продольного градиента дав-

ления, типичного для сверхзвукового пограничного слоя на прямом крыле

СПС, интегральное усиление возмщуений ограничено сверху.

– Акустический шум, излучаемый турбулентным пограничным слоем с перед-

ней части фюзеляжа, является наиболее вероятным источником перехода на

прямом крыле СПС.

– Разработанная численная модель влияния микрочастиц на течение пригодна

для моделирования восприимчивости сильно непараллельного сверхзвуково-

го пограничного слоя к микрочастицам. Совместно с амплитудным критери-

ем и статистической моделью ЛТП, расчётная модель позволяет полностью

реализовать амплитудный метод предсказания перехода без использования

дополнительных предположений.
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Соответствие паспорту специальности. Содержание диссертации полностью

соответствует формуле специальности 1.1.912 «Механика жидкости, газа и плазмы»

и связано со следующими областями исследований, установленными в паспорте

специальности: 3 (ламинарные и турбулентные течения), 4 (течения сжимаемых

сред и ударные волны), 11 (пограничный слой), 13 (гидродинамическая устойчи-

вость), 14 (линейные и нелинейные волны в жидкостях и газах), 18 (аналитические,

асимптотические и численные методы исследования континуальных моделей од-

нородных и многофазных сред) — все главы; 6 (течение многофазных сред) —

глава 7. В работе применяется математическая модель уравнений Навье — Стокса,

а также разрабатываются и применяются новые теоретические и численные модели

(модель акустического шума из главы 6, модель микрочастицы из главы 7, др.).

Даётся интерпретация и проводится анализ полученных теоретических и расчёт-

ных результатов с целью прогнозирования явления ЛТП, обсуждаются возможные

способы затягивания ЛТП. Материалы диссертации частично относятся к смежной

и родственной специальности 1.2.213 «Математическое моделирование, численные

методы и комплексы программ».

Настоящая диссертация соответствует научно-квалификационной работе, в

которой разработаны теоретические положения, совокупность которых можно

квалифицировать как научное достижение.

Достоверность полученных результатов представляется высокой по следую-

щим причинам. В работе используется известный многократно апробированный

численный метод. Путём проведения дополнительных методических исследова-

ний получены критерии применимости численного метода при моделировании

нестационарных возмущённых сверхзвуковых течений с ударными волнами. На

протяжении всей диссертации проводится сопоставление расчётных и теоретиче-

ских результатов. При возможности, полученные результаты также сопоставляются

с теоретическими, численными и экспериментальными результатами других ав-

торов. Основные результаты работы физически непротиворечивы, качественно

согласуются с имеющимися представлениями о природе перехода к турбулентно-

сти, а также прошли широкую апробацию.

Апробация работы выполнялась путём обсуждения на международных и

российских конференциях и семинарах (в том числе на Видеосеминаре по аэро-

12Ранее — специальность 01.02.05
13Ранее — специальность 05.13.18
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механике ЦАГИ — ИТПМ СО РАН — СПбГПУ — НИИМ МГУ), а также на

еженедельных рабочих семинарах научной группы, в которую входит автор.

Наиболее значимые конференции: Всероссийский съезд по фундаментальным

проблемам теоретической и прикладной механики (Уфа, 2019); IUTAM Laminar-

Turbulent Transition Symposium (Лондон, Великобритания, 2019); International Con-

ference on the Methods of Aerophysical Research (ICMAR) (Новосибирск, 2018, 2020,

2022); AIAA Flow Control Conference (Вашингтон, США, 2016); AIAA Fluid Dy-

namics Conference (Денвер, США, 2017); Congress of the International Council of

the Aeronautical Sciences (ICAS) (Белу-Оризонти, Бразилия, 2018; Шанхай, Китай,

2020); European Conference for Aerospace Sciences (EUCASS) (Мадрид, Испания,

2019).

Автор высоко ценит работу и время, проведённое на молодёжных конферен-

циях: Всероссийская школа-конференция молодых ученых «Проблемы механики:

теория, эксперимент и новые технологии» (Новосибирск, пос. Шерегеш, 2020,

2021, 2022); Международная конференция «Нелинейные задачи теории гидродина-

мической устойчивости и турбулентность» (НеЗаТеГиУс) (Звенигород, 2018, 2020);

Всероссийская научная конференция МФТИ (Жуковский, 2017, 2018, 2020).

Личный вклад автора заключается в

– постановке всех научных и расчётных задач, рассмотренных в диссертации;

– разработке новых теоретических моделей, предложенных в диссертации;

– реализации предложенных моделей в виде модулей для авторского пакета

прикладных программ;

– выполнении прямого численного моделирования процессов ламинарно-

турбулентного перехода в сверхзвуковых пограничных слоях для большей

части задач диссертации;

– анализе и интерпретации результатов моделирования, включая результаты

линейной теории устойчивости.

Публикации. Основные результаты по теме диссертации опубликованы в 64

работах, из которых 34— в изданиях, рекомендованных ВАК РФ, 43— в сборниках

трудов конференций.

Объём и структура работы. Полный объём диссертации составляет 337 стра-

ниц, включая 147 рисунков и 24 таблицы. Список литературы содержит 267 наиме-

нований.
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Диссертация состоит из введения, семи глав с выводами по каждой главе,

заключения, списка обозначений и списка процитированной литературы.

В главе 1 описывается постановка задачи. Приводятся уравнения Навье—Сток-

са в консервативной безразмерной форме, формулируются граничные условия.

Далее кратко описывается численный метод— аппроксимация дифференциальных

уравнений и способ решения получаемых алгебраических сеточных уравнений.

Указывается методология получения и обработки рассчитываемых нестационар-

ных полей течения.

В главе 2 путём перекрёстного сравнения результатов ЛТУ и ПЧМ исследуется

достоверность используемого численного метода. На задаче моделирования ЛТП

по механизму нелинейного распада наклонных волн (раздел 2.3) демонстрируется

хорошее согласие с результатами, полученными другими авторами с использова-

нием низкодиссипативного численного метода. Отдельно рассматриваются две

модельные задачи, что позволяет выработать критерии применимости используе-

мого численного метода. Первая задача посвящена затуханию монохроматической

акустической волны в однородном потоке и позволяет количественно оценить

эффект численной диссипации в зависимости от пространственно-временного

разрешения нестационарного возмущения (раздел 2.1). Вторая задача посвящена

взаимодействию малых возмущений со скачком уплотнения и позволяет сфор-

мулировать условия, при которых поле возмущений за скачком будет физически

корректным, а также способы достижения этих условий (раздел 2.2).

В главе 3 излагается теоретический базис и выводится асимптотическая фор-

ма волнового пакета, который формируется в сверхзвуковом пограничном слое

вдали от места его возбуждения. На основе этой формы предлагается нестацио-

нарное граничное условие, позволяющее породить волновой пакет при численном

моделировании без необходимости рассчитывать линейную стадию его роста от

места возбуждения пакета. Путём перекрёстного сравнения результатов ЛТУ и

ПЧМ исследуется применимость предложенного асимптотического граничного

условия, когда преобладают возмущения первой или второй неустойчивой моды

сверхзвукового пограничного слоя.

В главе 4 в двухмерной постановке исследуется развитие неустойчивости вто-

рой моды пограничного слоя над заострённой пластиной с достаточно сильно

охлаждённой поверхностью. Демонстрируется, что пограничный слой может из-

лучать акустические волны во внешнее невязкое течение. Анализ этого эффекта,

называемого спонтанным излучением звука, проведён в рамках ЛТУ и ПЧМ: иссле-
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дуются волновые поезда и волновые пакеты, обсуждается необычное поведение

возмущений при их развитии. Демонстрируется хорошее согласование числен-

ных и теоретических результатов. В завершение главы обсуждается роль эффекта

спонтанного излучения в процессе ЛТП.

В главе 5 на примере течения в угле разрежения исследуется влияние внезап-

ного разрежения на устойчивость пограничного слоя и на развитие нелинейной

стадии роста возмущений. Результаты линейной теории сопоставляются с резуль-

татами трёхмерного численного моделирования эволюции волновых пакетов и

турбулентных пятен. Иллюстрируется и обсуждается эффект стабилизации низ-

коамплитудных волновых пакетов. Эти исследования проводятся как для случая

первой (раздел 5.3) так и второй неустойчивой моды (раздел 5.2). В разделе 5.4

проводится обобщение полученных результатов. В разделе 5.5 анализируется за-

паздывание развития турбулентного пятна при переходе через угол разрежения.

В главе 6 исследуются процессы ЛТП в пограничном слое над прямым крылом

с тонким параболическим профилем, которое может применяться на современных

СПС. В этом случае продольный градиент давления оказывается распределён над

поверхностью, а не сосредоточен вблизи некоторой точки (такой как угол разреже-

ния в главе 5). В разделах 6.1 и 6.2 анализируются особенности устойчивости таких

течений и демонстрируется, что максимально возможное интегральное усиление

возмущений над поверхностью крыла ограничено сверху. В разделе 6.3 путём ввода

искусственных возмущений с поверхности крыла проводится проверка сеточной

сходимости и определяется достаточное для дальнейших расчётов сеточное разре-

шение. Далее исследуется важность различных источников внешних возмущений

для ЛТП на крыле. В разделе 6.4 строится численная модель атмосферной турбу-

лентности и исследуется восприимчивость пограничного слоя к ней. Аналогичное

исследование проводится в разделе 6.5 для акустического шума от турбулентного

пограничного слоя на фюзеляже гипотетического СПС. Расчёты ведутся вплоть до

формирования турбулентных пятен. Перекрёстное сравнение результатов прово-

дится в разделе 6.6. В разделе 6.7 обсуждается роль микрочастиц, взвешенных в

атмосфере.

В главе 7 исследуется возможность численного моделирования динамического

взаимодействия течения с движущейся в нём микрочастицей. В разделах 7.1 – 7.4

приводятся математическая и предлагается численная модель частицы, обсуждает-

ся теоретическое решение задачи восприимчивости сверхзвукового пограничного

слоя на клине к микрочастице, сталкивающейся с поверхностью клина. В разделе



33

7.5 численно исследуется развитие волнового пакета, порождённого микрочасти-

цей, анализируется его модальный состав, а также обосновывается возможность

постановки эксперимента по восприимчивости к микрочастицам. В завершение

главы (раздел 7.6) предлагается статистическая модель ЛТП, вызванного микроча-

стицами, хаотично взвешенными в атмосфере.

В заключении излагаются общие выводы работы и отмечаются перспективы

применения основных результатов.
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восприимчивости сверхзвукового пограничного слоя на прямом крыле с тонким

параболическим профилем и подготовил некоторые иллюстрации раздела 6.4. Ас-
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использовать простую степеннуюмодель сеточной сходимости для анализа верифи-

кационных расчётов; большая часть иллюстраций раздела 6.3 подготовлена им же.

Аспирант Нгуен Ньи Кан провёл расчёты и построил большую часть иллюстраций

раздела 2.3. Описание общей постановки физической задачи и численного метода

частично заимствовано из текста диссертации доктора физико-математических
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наук А.В. Новикова, который является основным разработчиком используемого

пакета расчётных программ.

Больша́я часть исследований в рамках настоящей диссертационной работы

была выполнена в Московском физико-техническом институте (МФТИ) при

поддержке Российского научного фонда (проекты №14-19-00821 и №19-79-10132)

и в Центральном аэрогидродинамическом институте им. профессора Н. Е. Жу-

ковского при поддержке Российского фонда фундаментальных исследований

(проект №18-38-20091). Расчёты проводились с использованием оборудования

центра коллективного пользования «Комплекс моделирования и обработки дан-

ных исследовательских установок мега-класса» НИЦ «Курчатовский институт»,

http://ckp.nrcki.ru/, а также лаборатории Математического моделирования

нелинейных процессов в газовых средах МФТИ, http://flowmodellium.ru/, и

лаборатории Аэрофизических исследований МФТИ, https://aerophys.ru/.

Несмотря на общепринятые правила написания научных текстов автор, в виде

исключения и с молчаливого согласия читателя, завершит введение от первого

лица.

Благодарю безмерно своих наставников — моего научного руководителя во

времена студенчества в МФТИ, а теперь и моего научного консультанта Ивана

Владимировича Егорова и моего теневого научного консультанта Александра

Витальевича Фёдорова — за безусловную научную поддержку и верное слово в

нужный момент. Считаю, что мне очень повезло с учителями.

Благодарюмоего коллегу и друга Андрея Новикова, с которым бок о бок прошёл

путь от студента-четверокурсника до соискателя докторских степеней. Часть своей

аккуратности и скрупулёзности в проведении научных исследований и оформлении

результатов Андрей, похоже, передал мне. Вы когда-нибудь тратили на подготовку

одной иллюстрации полдня? Я тратил, и, кажется, не раз... Благодаря Андрею

я здорово продвинулся в программировании, что сыграло ключевую роль при

обработке терабайтов расчётных данных. Да и в конце концов, кто разберётся в

дебрях авторского кода лучше, чем сам автор?!

Благодарю моего бывшего коллегу Сергея Александрова за отличный порт

библиотеки CGNS14 на Python и последующую обёртку этой библиотеки, которая

сэкономила кучу времени и сил при анализе расчётных полей, а также за трёх-

14CFD General Notation System — международный стандарт формата файлов для хранения результатов

вычислительной аэродинамики [123], который используется в авторском пакете программ.

http://ckp.nrcki.ru/
http://flowmodellium.ru/
https://aerophys.ru/
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мерный интерполятор, который верой и правдой служит многие годы. Благодарю

Сергея и Женю Александровых за спокойное и весёлое время и за совместную

работу. Жаль, давно с ними не виделись.

Благодарю всех моих коллег, которые так или иначе были рядом и помогали

двигаться вперёд. Благодарю серьёзного специалиста по расчётам линейной тео-

рии устойчивости Антона Образа, который всегда не согласен и на любые мои

аргументы имеет разумные контраргументы. Благодарю бескорыстного и доброго

Ивана Ежова, который всегда согласен и готов оправдать даже самую безумную

гипотезу. Благодарю моего аспиранта Илью Погорелова и его одногруппника аспи-

ранта Ивана Илюхина, которые знают, что нужно делать и умеют это делать. Не

останавливайтесь, ребята!

Благодарю Александра Витальевича Фёдорова и Максима Владимировича

Устинова за ценные критические замечания по содержанию настоящей работы.

Благодарю мою супругу Леночку, которая считает автора диссертации очень

умным. Но, как заметил внимательный читатель, это положение не было вынесено

на защиту.

∗ ∗ ∗

Работа посвящается моим маленьким племянникам Святославу, Злате иМилане

в надежде на то, что они будут учиться прилежнее, чем когда-то учился автор.
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Глава 1. Общая постановка задачи и методы её решения

Все результаты диссертации получены в рамках единой математической мо-

дели, которая опирается на законы сохранения газодинамики. В данной главе

приводится общая математическая постановка задачи и излагается общий подход к

её численному решению, реализованный в авторском пакете расчётных программ.

Описываются используемые в работе методы анализа расчётно-теоретических

результатов.

1.1. Физическая постановка

В рамках механики сплошной среды движение газа описывается дифференци-

альными уравнениями Навье—Стокса в трёхмерной нестационарной постановке.

Эти уравнения выражают законы сохранения массы, импульса и энергии при дви-

жении вязкого сжимаемого газа. Газ предполагается совершенным, что упрощает

постановку широкого класса задач, связанных с возникновением и развитием воз-

мущений в сверхзвуковых пограничных слоях. Под совершенным будем понимать

вязкий сжимаемый химически нейтральный газ, находящийся в состоянии тер-

модинамического равновесия, у которого неизменны удельные теплоёмкости при

постоянном давлении и объёме, а внутренняя энергия и статическая энтальпия яв-

ляются функциями только температуры. Состояние газа описывается уравнением

Менделеева—Клапейрона.

В настоящей работе исследуются модельные течения совершенного двухатом-

ного газа— воздуха— для характерных условий аэродинамического эксперимента

при сверхзвуковых скоростях, а также для характерных полётных условий сверхзву-

кового пассажирского самолёта. Поэтому предположение о совершенстве воздуха

ограничено реальными свойствами газа с одной стороны и высокотемпературными

эффектами с другой.

Реальные свойства, такие как конденсация, проявляются при достаточно низких

температурах и высоких давлениях. В ударных аэродинамических трубах при

числе Маха M > 6 и невысокой температуре торможения T0 ∼ 400...700К поток

на выходе из сопла трубы может охлаждаться до довольно низких температур
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T ∗
∞ ≈ 50К. Однако при пониженном давлении в рабочей части трубы конденсации

не происходит [124; 125].

Высокотемпературные эффекты проявляются при сильном нагреве сверхзву-

кового потока в ударной волне или из-за вязкой диссипации в пограничном слое.

Принято, что свойства воздуха начинают отклоняться от свойств совершенного

газа при T ∗ & 800К, когда начинают возбуждаться уровни колебательной энергии

молекул, а теплоёмкость начинает зависеть от температуры. Дальнейший рост

температуры приводит к диссоциации и излучению; свойства такой газовой смеси

существенно отличаются от свойств совершенного воздуха [126]. Роль высоко-

температурных эффектов на заданном режиме течения можно оценить, опираясь

на температуру адиабатически заторможенного потока как предельно возможную

температуру совершенного газа с показателем адиабаты γ

T ∗
0 ' T ∗

∞

(
1 +

γ − 1

2
M2

∞

)
. (1.1)

Режимы течения, рассматриваемые в настоящей работе, характерны для ударных

аэродинамических труб или для условий полёта сверхзвукового пассажирского

самолёта: T ∗
∞ > 50К, T ∗

0 < 800К. Таким образом, дальнейшее применение модели

совершенного газа является обоснованным.

1.1.1. Дифференциальные уравнения Навье—Стокса

Уравнения Навье–Стокса в произвольной криволинейной системе координат

ξ, η, ζ , где x = x (ξ, η, ζ), y = y (ξ, η, ζ), z = z (ξ, η, ζ)— декартовы координаты, в

дивергентной форме имеют вид

∂Q

∂t
+
∂E

∂ξ
+
∂G

∂η
+
∂F

∂ζ
= S, (1.2)

где Q — вектор консервативных зависимых переменных, E, G, F — векторы

потоков в криволинейной системе координат, S— вектор источников. Векторы Q,

E,G, F и S связаны с соответствующими векторамиQc, Ec,Gc, Fc и Sc в декартовой
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системе координат формулами

Q = JQc, S = JSc, E = J

(
Ec
∂ξ

∂x
+Gc

∂ξ

∂y
+ Fc

∂ξ

∂z

)
,

G = J

(
Ec
∂η

∂x
+Gc

∂η

∂y
+ Fc

∂η

∂z

)
, F = J

(
Ec
∂ζ

∂x
+Gc

∂ζ

∂y
+ Fc

∂ζ

∂z

)
, (1.3)

где J = det[∂ (x, y, z) /∂ (ξ, η, ζ)]— якобиан преобразования координат. Криволи-

нейная система координат (ξ, η, ζ) применяется в настоящем методе для построе-

ния дискретизации с равномерным шагом. Для этого заданная расчётная сетка в

декартовой системе координат отображается на равномерную сетку в криволиней-

ной системе.

Задача рассматривается в безразмерном виде. Применяется стандартная проце-

дура приведения уравнений к безразмерному виду, в которой

– декартовы координаты x = x∗/L∗, y = y∗/L∗, z = z∗/L∗ отнесены к харак-

терному линейному размеру задачи L∗,

– компоненты вектора скорости V — u = u∗/V ∗
∞, v = v∗/V ∗

∞, w = w∗/V ∗
∞

вдоль осей x, y и z— к характерной скорости, соответствующей величине

модуля вектора скорости набегающего потока V ∗
∞,

– время t = t∗/ (L/V ∗
∞)—к характерному газодинамическому времени L∗/V ∗

∞,

за которое набегающий поток преодолевает расстояние L∗,

– давление p = p∗/
(
ρ∗∞V

∗2
∞
)
— к удвоенному скоростному напору набегающе-

го потока,

– остальные газодинамические переменные относятся к их значениям в набе-

гающем потоке:

– температура T = T ∗/T ∗
∞,

– плотность газа ρ = ρ∗/ρ∗∞,

– динамический коэффициент молекулярной вязкости µ = µ∗/µ∗∞.

Здесь и далее верхний индекс «*» означает, что данная переменная является размер-

ной; символ «∞» обозначает значение переменной в невозмущённом набегающем

потоке.

В рамках используемой модели совершенного газа удельные теплоёмкости

при постоянном давлении c∗p и постоянном объёме c∗v постоянны. В этом случае

обезразмеривание приводит к четырём определяющим параметрам подобия:

– γ = c∗p/c
∗
v ≡ γ∞ — показатель адиабаты,

– Pr∞ = µ∗∞c
∗
p/λ

∗
∞ — число Прандтля,

– M∞ = V ∗
∞/a∗∞ — число Маха (a— скорость звука),



39

– Re∞,L = (ρ∗∞V
∗
∞L

∗) /µ∗∞ — число Рейнольдса.

Векторы Qc, Ec, Gc и Fc выражаются следующим образом:

Qc =


ρ

ρu

ρv

ρw

ρe

 , Sc = 0, Ec =


ρu

ρuu+ p− τxx/Re∞

ρuv − τxy/Re∞

ρuw − τxz/Re∞

ρuH + Ix/Re∞

 ,

Gc =


ρv

ρvu− τyx/Re∞

ρvv + p− τyy/Re∞

ρvw − τyz/Re∞

ρvH + Iy/Re∞

 , Fc =


ρw

ρwu− τzx/Re∞

ρwv − τzy/Re∞

ρww + p− τzz/Re∞

ρwH + Iz/Re∞

 ,

где

e =
p

ρ(γ − 1)
+

1

2

(
u2 + v2 + w2

)
, H =

T

(γ − 1)M2
∞

+
1

2

(
u2 + v2 + w2

)
— полная энергия на единицу объёма и полная энтальпия на единицу объёма,

соответственно; τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 ≡ τ = µ 2s− 2

3
µdivV

1 0 0

0 1 0

0 0 1


— симметричный тензор вязких напряжений для нулевой объёмной вязкости (ги-

потеза Стокса), который линейно связан с тензором скоростей деформации

s =
1

2

(
gradV + (gradV )T

)
(1.4)
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и имеет компоненты

τxx = 2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

τyy = 2µ
∂v

∂y
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

τzz = 2µ
∂w

∂z
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
,

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
;

I = −λgradT − τV — вектор теплового потока с компонентами

Ix = −λ∂T
∂x

− (uτxx + vτxy + wτxz) , Iy = −λ∂T
∂y

− (uτyx + vτyy + wτyz) ,

Iz = −λ∂T
∂z

− (uτzx + vτzy + wτzz) .

Система (1.2) замыкается уравнением состояния

p =
1

γM2
∞
ρT, (1.5)

а динамический коэффициент молекулярной вязкости принимается зависящим

только от температуры по закону Сазерленда

µ =
1 + Tµ
T + Tµ

T
3
2 , (1.6)

где Tµ = T ∗
µ/T

∗
∞. Коэффициент теплопроводности линейно связан с динамической

вязкостью

λ =
µ

Pr (γ − 1)M2
∞
.

Для воздуха как совершенного двухатомного газа γ = 1.4, T ∗
µ = 110.4К, а число

Прандтля полагается постоянным: Pr ≡ Pr∞ = 0.72.
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1.1.2. Граничные и начальные условия

На неконсервативные («примитивные») зависимые переменные искомого ре-

шения накладываются базовые или возмущённые граничные условия. Базовые

условия используются для получения невозмущённого поля течения — стационар-

ного решения системы 1.2 — и включают следующие основные типы:

– изотермическая стенка, или поверхность модели в ударной трубе— прилипа-

ние и постоянство температуры (за короткое время эксперимента температура

поверхности изменяется слабо):

(u, v, w) = 0, T ≡ Tw = const;

– адиабатически прогретая поверхность, или поверхность летательного аппара-

та — прилипание и отсутствие теплообмена с потоком (учёт радиационного

охлаждения в задачах диссертации не требуется):

(u, v, w) = 0, ∂T/∂n ≡ 0,

где n— вектор внешней нормали к поверхности;

– невозмущённый поток — условие первого рода, фиксирующее поток в неко-

тором состоянии «0»:

(u, v, w) = (u0, v0, w0), T = T0;

частным случаем является набегающий вдоль оси x поток:

(u, v, w) = (V∞, 0, 0) = (1, 0, 0), T = T∞ = 1;

– линейная экстраполяция зависимых переменных на границу изнутри области;

для границы ξ = const имеет вид:

∂2u

∂ξ2
= 0,

∂2v

∂ξ2
= 0,

∂2w

∂ξ2
= 0,

∂2p

∂ξ2
= 0,

∂2T

∂ξ2
= 0,

используется для моделирования выхода потока из расчётной области; обес-

печивает неотражение возмущений от границы при сверхзвуковом истечении,

и вызывает малые локализованные ошибки вблизи границы при дозвуковом

истечении, которыми можно пренебречь;
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– симметрия; для границы ζ = const, совпадающей с z = 0, имеет вид:

∂u

∂ζ
= 0,

∂v

∂ζ
= 0, w = 0,

∂p

∂ζ
= 0,

∂T

∂ζ
= 0; (1.7)

– периодичность; поля течения на двух границах, которые могут быть совме-

щены параллельным переносом, идентичны:

(u1, v1, w1) = (u2, v2, w2), p1 = p2, T1 = T2.

Возмущённые граничные условия являются нестационарной или стационарной

модификацией базовых граничных условий, которая позволяет внести возмущения

в базовое решение. Эти условия разнообразны и обсуждаются индивидуально в

месте их определения.

В случае, когда в невозмущённом течении моделируется адиабатически прогре-

тая стенка (∂T/∂n ≡ 0), при моделировании возмущений невозмущённое распре-

деление температуры стенки фиксируется, что гарантирует отсутствие пульсаций

температуры на стенке: T ′
w ≡ 0.

Следует отметить, что граничное условие симметрии использовалось в старой

версии пакета авторских программ и могло приводить к избыточной численной

диссипации возмущений вблизи границы при их недостаточном сеточном разреше-

нии, как это отмечается в главе 7. В современной версии пакета программ граница

симметрии или периодическая граница рассматриваются как внутренние точки

расчётной области. Для этого расчётная сетка наращивается вовне сеточными

плоскостями на полуширину шаблона численной схемы — создаётся добавочная

расчётная область, состоящая из теневых узлов. В случае симметрии поле течения

в теневых узлах подменяется зеркальным отражением соответствующей области

нетеневого течения, а в случае периодической границы — копией поля течения из

окрестности второй периодической границы.

Начальное приближение. Если не указано иначе, при получении стационарного

решения в двухмерном случае в качестве начального приближения использует-

ся однородный набегающий поток. В процессе решения нестационарной задачи

он развивается в ламинарное стационарное течение, удовлетворяющее заданным

граничным условиям. Геометрия рассматриваемых в диссертации задач номи-

нально двухмерная. Поэтому стационарное решение в трёхмерном случае есть

соответствующее двухмерное стационарное решение, «вытянутое» в третьем на-

правлении. Следует отметить, что полученное таким образом поле течения не
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только математически корректно, но и согласовано с численным методом: оно

является сошедшимся численным решением.

При решении нестационарной задачи развития возмущений в качестве началь-

ного приближения задавалось предварительно рассчитанное стационарное поле

течения.

1.1.3. Элементарные возмущения в однородном потоке

Известно [127–129], что в движущейся сжимаемой среде могут распростра-

няться элементарные возмущения акустической, вихревой и энтропийной при-

роды. Акустические волны движутся со скоростью звука относительно потока.

Неакустические волны сносятся со скоростью потока. Если однородный поток

движется со скоростью U = (u, v, w) при температуре T и плотности ρ (число

МахаM = UM∞/
√
T , U = |U| =

√
u2 + v2 + w2), то элементарные возмущения с

частотой ω и волновым вектором k имеют вид

(u′, v′, w′, p′, T ′) = (δu, δv, δw, δp, δT ) · cos (k · x− ωt+ ϕ) , (1.8)

где ϕ— произвольная фаза волны.

а) Элементарные волны б) Однородный поток

Рисунок 1.1 — Сферическая система координат
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Волновой вектор k = (kx, ky, kz) = k∞ι в декартовой системе координат зада-

ётся амплитудой k∞ и направлением ι = (cos θ cosψ,− sin θ, cos θ sinψ), которое

определяет наклон волновых фронтов и в свою очередь задаётся двумя углами

θ и ψ в сферической системе координат (рис. 1.1а). Обычно пограничный слой

располагается вблизи плоскости xOz, и при θ > 0 волновой вектор направлен к

пограничному слою, как принято в других работах (например, в [130]).

Величину k∞ и амплитуды возмущения δ (·) удобно записать в системе отсчё-
та, у которой ось Õx сонаправлена с вектором скорости U. Для этого исходную

декартову систему Oxyz следует повернуть на угол атаки AoA и угол скольжения

AoS, определяемые направлением вектора U в декартовой системе координат (рис.

1.1б). В скоростной системе Ũ = (U, 0, 0), скалярное произведение сохраняется

Ũ · k̃ = U · k = Uk̃x = const; волновой вектор k̃ = k∞ι̃ имеет направление

ι̃ = (ιx̃, ιỹ, ιz̃) =
(
cos θ̃ cos ψ̃,− sin θ̃,+ cos θ̃ sin ψ̃

)
, θ̃ = θ + AoA,ψ̃ = ψ − AoS.

Характеристики возмущений приведены в таблице 1.1; параметр ε контролиру-

ет амплитуду волны. Верхний знак для акустических возмущений соответствует

быстрым волнам, нижний — медленным. Величина k∞ = ω/c, где c— фазовая

скорость волны в направлении волнового вектора

c =

Uιx̃, вихревые и энтропийные волны;

U (ιx̃ ± 1/M) , акустические волны.

Процедуру построения элементарного возмущения завершает обратный пере-

ход из скоростной в декартову систему координат для векторов δ̃u и k̃:

q =

 cosAoA cosAoS − sinAoA cosAoS − sinAoS

sinAoA cosAoA 0

cosAoA sinAoS − sinAoA sinAoS cosAoS

 q̃.

Двухмерный случай получается при w = 0, ψ̃ = 0: ι̃2D = (ιx, ιy) =(
cos θ̃,− sin θ̃

)
и для вихревого возмущения δ̃u = ε · (−ιy, ιx).

Возмущения плотности получаются дифференцированием уравнения состоя-

ния
δp

p
=
δρ

ρ
+
δT

T
. (1.9)
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1.2. Численный метод

Сформулированная начально-краевая задача решается численно на основе пол-

ностью неявного интегро-интерполяционного метода (метода конечного объёма)

второго порядка точности по пространству и времени. При аппроксимации кон-

вективных потоковых величин используется приближённый метод Роу решения

задачи Римана о распаде произвольного разрыва, а реконструкция зависимых пере-

менных на гранях ячейки проводится с применением схемы WENO-3 для большей

части проведённых расчётов. Аппроксимация диффузионных потоковых вели-

чин проводится с помощью центральноразностной схемы второго порядка. На

границах расчётной области порядок аппроксимации понижается до первого. По-

лученная при аппроксимации алгебраическая система нелинейных уравнений

решается модифицированным методом Ньютона — Рафсона; на каждой итерации

по нелинейности линеаризованная система уравнений решается с помощью метода

GMRes.

Расчёты проводятся на высокопроизводительных суперЭВМкластерного типа с

использованием параллельной версии пакета расчётных программ и многоблочных

структурированных расчётных сеток. Обмен информацией между процессами-

вычислителями организуется с помощью технологии MPI1, а распараллеливание

рутинных процедур — с помощью открытой библиотеки для научных вычислений

PETSc2.

В основу численного метода положена его оригинальная однопроцессорная

реализация [100]. Ряд численных подходов реализован автором [130]. Современное

состояние и параллельная реализация метода детально изложены в [37]. Ниже

для полноты изложения приводится расширенное описание численного метода,

частично заимствованное из [37].

1Message Passing Interface — интерфейс передачи сообщений
2Portable ExtensibleToolkit for ScientificComputation— портативный расширяемый набор инструментов

для научных вычислений
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1.2.1. Аппроксимация

Применение метода конечного объёма к уравнениям Навье — Стокса (1.2) даёт

разностные аналоги законов сохранения:

R
[n+1]
i,j,k ≡

3Q
[n+1]
i,j,k − 4Q

[n]
i,j,k +Q

[n−1]
i,j,k

2∆t
− S

[n+1]
i,j,k +

+
E
[n+1]

i+ 1
2 ,j,k

− E
[n+1]

i− 1
2 ,j,k

hξ
+
G

[n+1]

i,j+ 1
2 ,k

−G
[n+1]

i,j− 1
2 ,k

hη
+
F
[n+1]

i,j,k+ 1
2

− F
[n+1]

i,j,k− 1
2

hς
= 0 (1.10)

где R— оператор дискретизации; n— номер временного слоя; ∆t— величина

шага по времени; i, j, k и hξ, hη, hζ — номера узлов и шаги сетки по координатам

ξ, η, ζ соответственно; i± 1/2, j ± 1/2, k± 1/2 — полуцелые узлы, соответствующие

граням ячейки (элементарного конечного объёма).

Для построения схемы сквозного счёта (без явного выделения разрывов) вы-

числение потоков на гранях ячеек (в полуцелых узлах) осуществляется на основе

решения задачи Римана о распаде произвольного разрыва, который обусловлен

различиями дискретных значений неизвестных по обе стороны грани. Одним из

приближённых методов решения этой задачи является метод её расщепления по

обобщённым координатам с последующей линеаризацией расщеплённой задачи

путём представления матрицы Якоби A (например, A = ∂E/∂Q для направле-

ния ξ) в некотором осреднённом состоянии, обозначаемом нижним индексом LR:

ALR = [∂E/∂Q]LR. Линеаризованная задача легко решается с помощью диагональ-

ного разложения оператора A

ALR = BLRΛ(λLR)B
−1
LR,

где столбцы матрицы B есть собственные векторы оператора A, а диагональная

матрица Λ состоит из его соответствующих собственных значений λ.

При аппроксимации конвективной составляющей векторов потоков E, G, F в

полуцелых узлах использована монотонная схема типа Годунова [131] и прибли-

женный метод Роу [132] решения задачи Римана о распаде произвольного разрыва.

При этом расчётные формулы для векторов E, G, F аналогичны, поэтому ниже

речь будет идти о векторе E. На грани ячейки (в полуцелом узле) имеем:

Ei+ 1
2
=

1

2

[
E(QL) + E(QR)− BLRΛ(ϕ(λLR))B

−1
LR (QR −QL)

]
.



48

Здесь индексами L и R отмечены величины, которые рассчитаны по значениям в

соседних ячейках, соприкасающихся по рассматриваемой грани. Например, для

грани i+ 1/2 индекс L соответствует ячейке i (слева), а индекс R— ячейке i+ 1

(справа). Функция ϕ(λ) обеспечивает неубывание энтропии при численном ре-

шении линеаризованной задачи. В настоящей работе использована следующая

функция:

ϕ(λ) =

|λ|, если |λ| > ε

λ2+ε2

2ε , если |λ| 6 ε

где ε — параметр, отвечающий за диссипативные свойства разностной схемы

(ε = 0.01, если не указано иначе).

Осреднённое состояние оператора ALR рассчитывается согласно [132] по особо

осреднённым зависимым переменным задачи

uLR =
uL

√
ρL + uR

√
ρR√

ρL +
√
ρR

, vLR =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

, wLR =
wL

√
ρL + wR

√
ρR√

ρL +
√
ρR

,

HLR =
HL

√
ρL +HR

√
ρR√

ρL +
√
ρR

, a2LR = (γ − 1)

(
HLR − 1

2

(
u2LR + v2LR + w2

LR

))
где a— местная скорость звука.

Для повышения порядка аппроксимации (до третьего и пятого) при рекон-

струкции (интерполяции) зависимых переменных на грань элементарной ячейки

используется принцип WENO3 [133]. В рамках рассматриваемого численного метода

подход WENO-3 был реализован в [134] и сводится к выражениям:

QR = ω0RQ0R + ω1RQ1R, Q0R =
1

2
(Qi+1 +Qi) , Q1R = −1

2
Qi+2 +

3

2
Qi+1;

QL = ω0LQ0L + ω1LQ1L, Q0L =
1

2
(Qi +Qi+1) , Q1L = −1

2
Qi−1 +

3

2
Qi;

ω0R =
α0R

α0R + α1R
, ω1R =

α1R

α0R + α1R
; α0R =

d0

(ε+ β0R)
2 , α1R =

d1

(ε+ β1R)
2 ;

ω0L =
α0L

α0L + α1L
, ω1L =

α1L

α0L + α1L
; α0L =

d0

(ε+ β0L)
2 , α1L =

d1

(ε+ β1L)
2 ;

β0R = (Qi+1 −Qi)
2 , β1R = (Qi+2 −Qi+1)

2 ;

β0L = (Qi −Qi+1)
2 , β1L = (Qi −Qi−1)

2 ;
3Weighted Essentially Non-Oscillatory — взвешенная существенно не осциллирующая схема
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d0 =
2

3
, d1 =

1

3
, ε = 10−4.

Данная численная схема не удовлетворяет условию монотонности, в том числе в

смысле невозрастания полной вариации4. Поэтому вблизи сильных ударных волн

решение может содержать нефизичные осцилляции. Свойства принципа WENO га-

рантируют, что подобные осцилляции локализованы и в целом не существенны,

поэтому схема относится к классу схем сквозного счёта. Тем не менее, такие осцил-

ляции могут приводить к аномальному поведению возмущений, взаимодействую-

щих с ударной волной, что обсуждается в разделе 2.2. На гладких же решениях

схема WENO достигает целевого порядка аппроксимации и корректно воспроизводит

развитие малых возмущений (например акустических волн в однородном потоке)

без появления паразитных осцилляций, что также будет продемонстрировано в

2.2.

Также реализован и применён в нескольких расчётах метод WENO-5. Процедура

реконструкции применяется к примитивным переменным или к инвариантным пе-

ременным, из которых далее вновь восстанавливаются примитивные переменные.

Соответствующее описание опущено для краткости.

Для аппроксимации диффузионной составляющей векторов потоков E, G и

F на грани элементарной ячейки применена разностная схема типа центральных

разностей второго порядка точности, в рамках которой производные вычисляются

как
∂q

∂ξ

∣∣∣∣
i+ 1

2 ,j,k

=
1

hξ
(qi+1,j,k − qi,j,k) ,

∂q

∂η

∣∣∣∣
i+ 1

2 ,j,k

=
1

4hη
(qi+1,j+1,k + qi,j+1,k − qi+1,j−1,k − qi,j−1,k) ,

∂q

∂ς

∣∣∣∣
i+ 1

2 ,j,k

=
1

4hς
(qi+1,j,k+1 + qi,j,k+1 − qi+1,j,k−1 − qi,j,k−1)

Здесь q— любая из неконсервативных («примитивных») зависимых переменных

задачи u, v, w, p или T .

Граничные условия рассматриваются как часть оператора дискретизации R

(1.10) и непосредственно определяют его компоненты в узлах сетки, лежащих на

границах расчётной области. В дискретном виде основные граничные условия

(раздел 1.1.2) имеют вид:

4Подход TVD— Total Variation Diminishing
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– условие на стенке при j = 1 (граница η = const)

R
[n+1]
i,1,k ≡

(
u
[n+1]
i,1,k , v

[n+1]
i,1,k , w

[n+1]
i,1,k ,−3p

[n+1]
i,1,k + 4p

[n+1]
i,2,k − p

[n+1]
i,3,k , T

[n+1]
i,1,k − Tw

)T
= 0,

где условие на давление соответствует экстраполяции вдоль нормали к стенке

с постоянной производной ∂p/∂η = 0;

– условие набегающего потока

R
[n+1]
i,j,k ≡

(
u
[n+1]
i,j,k − 1, v

[n+1]
i,j,k , w

[n+1]
i,j,k , p

[n+1]
i,j,k − 1

γM2
, T

[n+1]
i,j,k − 1

)T

= 0,

где условие на давление p = 1/γM2 соответствует точному решению уравне-

ний Навье — Стокса для однородного потока;

линейная экстраполяция при i = nx (границы ξ = const)

R
[n+1]
nx,j,k

≡ q
[n+1]
nx,j,k

− 2q
[n+1]
nx−1,j,k + q

[n+1]
nx−2,j,k = 0, q = (u, v, w, p, T )T .

В последних версиях авторского кода граничные условия симметрии и перио-

дичности не аппроксимируются. Вместо этого расчётная сетка расширяется на

полуширину шаблона, и на соответствующих границах задача решается как и для

внутренних точек расчётной области. Такой подход используется в настоящей

работе, если явно не указано иное.

1.2.2. Решение сеточных уравнений

Описанная процедура аппроксимации сводит интегрирование системы диффе-

ренциальных уравнений (1.2) и граничных условий к решению системы нелиней-

ных алгебраических уравнений

R (U) = 0, (1.11)

где R— оператор дискретизации, вычисляющий вектор невязки согласно (1.10),

U — вектор искомых неконсервативных переменных (u, v, w, p, T ) во всех N

узлах расчётной сетки (итого 5N для трёхмерной постановки задачи и 4N для

двухмерной). Система сеточных уравнений (1.11) решается с помощью модифици-

рованного метода Ньютона — Рафсона

U[k+1] = U[k] − τ [k]
(
J[k0]

)−1

R

(
U[k]
)
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где k, k0 — номера итераций по нелинейности, k0 6 k, J[k0] = (∂R/∂U)[k0] —

матрица Якоби системы нелинейных уравнений, R
(
U[k]
)
— вектор невязки, τ —

параметр регуляризации. Произведение
(
J[k0]

)−1
R
(
U[k]
)
≡ Y[k] является решением

линейной системы уравнений

J[k0]Y[k] = R

(
U[k]
)
. (1.12)

Параметр регуляризации ограничивает изменение решения на итерации метода

Ньютона, опираясь на эволюцию решений линейной системы на предыдущих

итерациях [135]

τ [k] = max[0.01,−τ [k−1]

(
Y[k] − Y[k−1]

)
· Y[k](

Y[k] − Y[k−1]
)2 ].

По мере сходимости итерационного процесса τ [k] → 1, а скорость сходимости

теоретически стремится к квадратичной.

Матрица Якоби J[k0] = (∂R/∂U)[k0] формируется численно на итерации по нели-

нейности k0 с помощью универсальной процедуры конечных приращений вектора

невязки R по вектору искомых переменных U, которая применима к произвольной

системе сеточных уравнений [37].

Формирование матрицы Якоби — очень трудоёмкий процесс [37]. Её уточ-

нение на каждой итерации по нелинейности как правило улучшает сходимость

метода Ньютона, однако не влияет на сошедшееся решение. Поэтому повторное

использование матрицы Якоби при k > k0 позволяет ускорить процесс расчёта.

Если сходимость метода Ньютона остаётся удовлетворительной, матрицу Якоби

достаточно вычислить лишь на начальной итерации по нелинейности (k0 = 0) и

использовать её без пересчёта в течение всего шага по времени. Более того, если

среднее поле течения не меняется в процессе расчёта, а развивающиеся в потоке

возмущения малы (линейный режим), матрицу Якоби достаточно вычислить лишь

на первом шаге по времени и далее её не пересчитывать. Применимость такого

подхода проверена в расчётах подраздела 3.2.

Сходимость метода Ньютона контролируется с помощью невязки по норме `∞

(‖R‖∞ = maxn |Rn|— максимальный по абсолютной величине элемент вектора).

Для рассматриваемых задач размерность системы (1.12) линейных алгебраиче-

ских уравнений, получаемой на итерации по нелинейности, достигает 109. Такие

системы возможно решить только с помощью итерационных методов, наиболее
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эффективными из которых являются сжимающие методы подпространства Кры-

лова и, в частности, метод обобщённых минимальных невязок GMRes (generalized

minimal residual) [136]. В результате тестовых расчётов [37] выбран оптимальный

метод решения линейных систем DGMRes(k) [137] с предобуславливателем ILU

(incomplete Low-Upper factorization—неполное разложение на нижнююи верхнюю

треугольные матрицы), реализованный в библиотеке подпрограмм PETSc.

1.2.3. Исследование возмущённых течений

Исследование возмущённых течений разбивается на два основных этапа. На

первом этапе с высокой точностью вычисляется невозмущённое поле течения —

стационарное поле ламинарного обтекания исследуемой конфигурации. На втором

этапе путём активации возмущённого граничного условия (см. подраздел 1.1.2) —

стационарного или нестационарного — в невозмущённое поле течения вносятся

искусственные возмущения и рассчитывается серия полей в последовательные

моменты времени.

Всякое рассматриваемое в работе невозмущённое течение номинально двухмер-

ное. НаправлениеOz, для которого все сечения z = const невозмущённого течения

эквивалентны, будем называть боковым. Направление движения набегающего по-

тока (как правило, +Ox) будем называть основным; нормальное к основному и

боковому направлениям — поперечным (как правило, +Oy). Орты направлений

Ox, Oy, Oz— i, j и k, соответственно, — всегда образуют правую тройку.

1.2.3.1. Получение полей течения

Невозмущённое течение вычисляется методом установления: задаётся началь-

ное течение (см. подраздел 1.1.2) и численно решается нестационарная задача его

развития до момента установления, когда поле перестаёт изменяться со време-

нем в пределах заданной точности. Если не указано иное, процесс установления

завершается при достижении целевого значения невязки метода Ньютона 10−11

на начальной итерации по нелинейности. Для рассматриваемых задач это значит,
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что за единицу расчётного времени зависимые переменные задачи изменяются в

пределах 10−11. По опыту расчётов, эти изменения сосредоточены в пограничном

слое вблизи выходной границы. Учитывая, что наименьший уровень обсуждаемых

в работе возмущений составляет 10−8, а времена нестационарных расчётов не

превышают десяти, выбранная точность установления невозмущённого течения

является источником погрешности нестационарных результатов не более 1%. В

действительности, уровень возмущений оказывается на несколько порядков выше,

и выбранная точность невозмущённого течения избыточна. Сам процесс установ-

ления невозмущённого течения не представляет интерес, и достижение точности

установления на каждом шаге по времени не требуется. Поэтому для ускорения

и стабилизации вычислений процесс решения сеточных уравнений на каждом

шаге по времени принудительно останавливается после одной-двух итераций по

нелинейности, в общем случае без достижения фиксированной точности. По мере

установления невязка на временном шаге уменьшается, достигая в конечном итоге

целевого значения.

При получении невозмущённых полей течения используется шаг по времени

∆t, постоянный во всей расчётной области, но постепенно увеличивающийся по

мере установления поля. Теоретически максимальная величина ∆t не ограничена

сверху в силу устойчивости применяемой неявной численной схемы, но прак-

тически в настоящей работе отношение ∆t/hmin, hmin = min(∆x,∆y,∆z), не

превышало 10.

Нестационарное возмущённое течение моделируется путём численного ре-

шения нестационарной задачи с фиксированной точностью на каждом шаге по

времени. В качестве начального приближения используется соответствующее

невозмущённое поле течения U(t = 0). Размер шага по времени фиксируется

из соображений достаточного временного разрешения характерных колебательных

процессов (как минимум 25 точек на период). На каждом шаге по времени вычис-

ляется мгновенное квазистационарное поле U(t) с заранее заданной точностью,

которая по крайней мере на порядок меньше амплитуды исследуемых возмущений.

Для этого итерационный процесс решения системы сеточных уравнений (1.11) на

каждом временном шаге продолжается до тех пор, пока нужная точность не будет

достигнута (обычно до двадцати итераций в зависимости от амплитуды развиваю-

щихся возмущений). Последовательность таких квазистационарных решений U(t)

на каждом шаге по времени, очевидно, моделирует физический процесс развития

возмущений во времени. Для экономии места на файловом хранилище полные
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трёхмерные поля U(t) сохраняются в файлы через временной интервал, соответ-

ствующий нескольким шагам ∆t интегрирования по времени. Чаще сохраняются

данные о течении на двухмерных сеточных поверхностях (например, поле дав-

ления на стенке) для последующего изучения спектральных и статистических

характеристик возмущений.

Если постановка задачи позволяет, возмущённое течение моделируется в под-

области исходной расчётной области. Размеры подобласти выбираются так, чтобы

развивающиеся в процессе расчёта возмущения покидали расчётную область через

выходную границу и не взаимодействовали с новыми входными границами, где

в качестве новых граничных условий фиксируются параметры исходного невоз-

мущённого течения в полной области. На новых входных границах производные

рассчитываются по односторонним разностным формулам, а не как для внут-

ренних точек расчётной области. Поэтому невозмущённое течение в подобласти

требует дополнительного установления. Процесс установления идёт монотонно с

экспоненциальной скоростью сходимости; полученное невозмущённое течение в

подобласти стационарно и соответствует исходному невозмущённому течению с

погрешностью не более 0.01%, что практически не влияет эволюцию возмущений.

Далее возмущения вводятся непосредственно в подобласти. Применимость данной

процедуры будет неоднократно подтверждена результатами настоящей работы.

Описанный подход можно использовать для переноса возмущений из исходной

области (или подобласти) в подобласть-преемник, когда вычислительных ресурсов

недостаточно для проведения моделирования в единой расчётной области. При

этом к невозмущённому течению в подобласти-преемнике добавляется поле возму-

щений из исходной области. Перенос поля возмущений не приводит к появлению

существенных паразитных возмущений даже тогда, когда сетки (исходная и преем-

ник) не перекрываются узел в узел, а перенос возмущений осуществляется путём

пространственной линейной интерполяции. Этот подход позволяет моделировать

зарождение возмущений с высоким пространственным разрешением, и понижать

разрешение впоследствии для экономии ресурсов. Подход, в частности, применён

при моделировании развития волновых пакетов и турбулентных пятен над углом

разрежения в главе 5.
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1.2.3.2. Анализ возмущённых полей

Для анализа возмущённого решения удобно использовать мгновенные поля

возмущенийU′(t), которые получаются путём вычитания невозмущённого решения

из возмущённого в каждый конкретный момент времени t : U′(t) = U(t)− U(t =

0). Например, поле возмущений давления вычисляется так: p′ = p(t, x, y, z) −
p(0, x, y, z).

Развитие возмущений по времени для некоторой газодинамической перемен-

ной q (например, давления p) удобно представлять с помощью осциллограмм

q′(t, xfix, yfix, zfix) в некоторых фиксированных точках пространства. Такое пред-

ставление соответствует результатам экспериментальных исследований, когда

временной сигнал измеряется с помощью точечных датчиков. Для построения

осциллограммы на основе результатов численного моделирования обрабатывается

последовательность рассчитанных полей возмущений U′(tm) (полных трёхмерных

полей или двухмерных сеточных сечений), где tm, m = 0, . . . , ñt−1—равноудалён-

ные моменты времени, в которые поле было сохранено. Из каждого мгновенного

поля извлекаются значения q′ в точке с заданными координатами xfix, yfix, zfix;

∆̃t = tm − tm−1 = const—шаг дискретизации осциллограммы.

Спектральный анализ осциллограмм выполняется с помощью одномерного

дискретного преобразования Фурье, реализованного в библиотеке numpy языка

программирования Python [138] с помощью алгоритма быстрого преобразования

Фурье. Получаемые комплексные амплитуды Âm нормируются обычным образом:

на единицу для прямого преобразования и на ñt для обратного. Спектр одномерно-

го дискретного вещественнозначного сигнала эрмитово-симметричен по частоте,

то есть гармоники с отрицательными частотами не несут дополнительной информа-

ции. Поэтому анализируются только гармоники с частотами из отрезка ω ∈ [0, ωcut],

где ωcut = 2π/∆̃t— круговая частота отсечки:

ωm =
m

ñt
ωcut, m = 0, . . . , ñt//2− 1; (1.13)

символ // обозначает деление нацело.

Распространение трёхмерных волн исследуется с помощью двухмерных

пространственно-временных спектров. Они строятся путём двухмерного дискрет-

ного преобразования Фурье [138] от осциллограммы вдоль всей сеточной линии в
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боковом направлении: q′(tm, xfix, yfix, zl), гдеm = 0, . . . , ñt−1—номер сохранён-

ного мгновенного поля, l = 0, . . . , nz − 1— номер узла сеточной линии. Комплекс-

ные амплитуды двухмерного спектра Âm,l нормируются аналогично: на единицу

для прямого преобразования и на ñt·nz для обратного. Спектр двухмерного дискрет-
ного вещественнозначного сигнала симметричен в одном из Фурье-направлений.

В настоящей работе он строится симметричным по частоте, поэтому анализиру-

ются только гармоники с частотами (1.13). Для каждой частоты ωm гармоники во

всём доступном диапазоне волновых чисел β ∈ [−βcut, βcut] соответствуют волнам
разных наклонов в физической области и поэтому анализируются без сокращения:

βl =
l

nz
βcut, l = −nz//2, . . . , nz//2− 1, (1.14)

где βcut = 2π/∆z— волновое число отсечки, а∆z—расстояние между точками, в

которых снимаются осциллограммы;∆z равен шагу сетки в боковом направлении,

если он постоянный, иначе осциллограммы интерполируются на равномерную

сетку с шагом ∆z, и затем выполняется дискретное преобразование Фурье.

Для локализованных во времени возмущений, таких как волновые пакеты и

турбулентные пятна, дискретное преобразование Фурье позволяет определить

суммарную энергию возмущения, которая пропорциональна квадрату амплитуды

Фурье |Â|2. При сравнительном анализе спектров сигналов, полученных при раз-

личных условиях расчёта (сетки, временной интервал, временной шаг), амплитуды

Фурье нормируются на количество точек в сигнале: ñt для одномерного спектра

и ñtnz для двухмерного. Если условия расчётов идентичны, допускается сравне-

ние модулей комплексных амплитуд |Â|. Исследование спектрального состава не
локализованных во времени сигналов (например, стохастических возмущений в

главе 6) проводится с помощью спектральной плотности мощности сигнала psd,

которая не зависит от выбора расчётной сетки, интервала времени и временного

шага

psd(ω, β) =

∣∣∣∣∣Â(ω, β)ñtnz

∣∣∣∣∣
2

· (tmax − tmin)(zmax − zmin) (1.15)

Для визуализации пространственных вихревых структур используются изопо-

верхности Q-критерия [139].

Q =
1

2

(
‖Ω‖2 − ‖s‖2

)
, Ω =

1

2

(
gradV − (gradV )T

)
, s =

1

2

(
gradV + (gradV )T

)
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где ‖·‖— евклидова норма `2 тензора, т. е. ‖A‖ =
√
tr AAT =

√∑
i

∑
j a

2
ij; тензор

завихренностиΩ и тензор скоростей деформации s (1.4) представляют собой асим-

метричную и симметричную части тензора градиента скорости gradV , соответ-

ственно. Таким образом, Q— это второй инвариант тензора gradV . В декартовой

системе координат скалярный инвариант Q записывается как

Q = −1

2

(
∂u

∂x

)2

− 1

2

(
∂v

∂y

)2

− 1

2

(
∂w

∂z

)2

− ∂u

∂y

∂v

∂x
− ∂u

∂z

∂w

∂x
− ∂v

∂z

∂w

∂y
. (1.16)

Согласно Q-критерию, вихрь — это область пространства, где Q > 0, т. е.

завихренность преобладает над скоростью деформации. Для трёхмерной визуали-

зации вихря строится поверхность постоянного уровня Q = const > 0. Величина

константы подбирается в каждом конкретном расчётном случае из соображений

информативности визуализации.

1.2.3.3. Свойства пограничного слоя

Состояние пограничного слоя характеризуется безразмерными коэффициента-

ми, отражающими локальные свойства давления, трения и теплового потока.

Коэффициент давления вычисляется в виде:

cp = 2
p∗ − p∗∞
ρ∗∞V

∗
∞

= 2

(
p− 1

γM 2
∞

)
. (1.17)

Коэффициент вязкого трения на поверхности вычисляется в виде:

cf =

[
τ ∗‖

]
w

1
2ρ

∗
∞V

∗
∞

=
2

Re∞

[
µ
∂u‖
∂n

]
w

, (1.18)

где n— единичная нормаль к поверхности, направленная внутрь расчётной обла-

сти, а символ ‖ обозначает проекцию вектора на поверхность. Отрыв и присоеди-

нение номинально двухмерного пограничного слоя характеризуются изменением

знака коэффициента трения, что соответствует появлению возвратного течения в

отрывной области. Распределение коэффициента трения по поверхности отражает

состояние пограничного слоя — ламинарный, переходный или турбулентный.

Аналогично состояние пограничного слоя можно характеризовать безразмер-

ным коэффициентом теплового потока к поверхности — числом Стантона, —
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который для совершенного газа вычисляется в виде:

Stтеор =
q∗w

ρ∗eu
∗
ec

∗
p(T

∗
r − T ∗

w)
, (1.19)

где q∗w — плотность теплового потока к поверхности, который значительно проще

измерять в аэродинамическом эксперименте по сравнению с поверхностным тре-

нием τ ∗‖ . В общем случае экспериментальное измерение параметров на границе

пограничного слоя (·)e и температуры восстановления T ∗
r затруднительно, поэтому

под числом Стантона подразумевается иная величина, опирающаяся на известные

параметры набегающего потока

St =
q∗w

ρ∗∞u
∗
∞c

∗
p(T

∗
0 − T ∗

w)
=

µw
Re∞Pr

1

T0 − Tw

(
∂T

∂n

)
w

= Stтеор ·
ρ∗eu

∗
e

ρ∗∞u
∗
∞

T ∗
r − T ∗

w

T ∗
0 − T ∗

w

(1.20)

где температура торможения T0 вычисляется по формуле (1.1). Чтобы обеспечить

единство определения коэффициента теплового потока при верификации расчётно-

экспериментальных результатов по известным корреляциям, необходимо оценить

величины ρ∗e, u
∗
e; температура восстановления оценивается по формуле

T ∗
r = T ∗

e (1 + Prn · γ − 1

2
M 2

e ), (1.21)

где n = 1/2 выбирается для ламинарного состояния пограничного слоя и n = 1/3

для турбулентного. Параметры на границе пограничного слоя, отмеченные нижним

индексом «e», определяются на высоте ye, которая определяется по критерию

∂u(y)/∂n = 0.01 · (∂u/∂n)w, если не указано иное.
Нагрев поверхности при сверхзвуковом обтекании вызван вязкой диссипацией

энергии, поэтому коэффициенты cf и Stтеор тесно связаны
5, а их распределения

по поверхности качественно повторяют друг друга. Поэтому распределение St по

поверхности также позволяет судить о состоянии пограничного слоя.

Для описания характеристик возмущённого пограничного слоя на переходном

режиме течения, когда степень стохастизации велика, используется осреднение

поля течения q(t, x, y, z) по времени и/или в боковом направлении z

〈q〉t (x, y, z) =
∑m2

m=m1
q(tm, x, y, z)

m2 −m1
, (1.22)

5для простых безградиентных течений (например, над заострённой пластиной или конусом) связь

линейная через коэффициент аналогии Рейнольдса
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〈q〉z (t, x, y) =
∑l2

l=l1
q(t, x, y, zl)

l2 − l1
. (1.23)

Здесьm1,m2, l1, l2 — индексы диапазонов осреднения;m ∈ [1; ñt]— номер мгно-

венного поля, сохранённого в процессе расчёта; l ∈ [1;nz]— номер узла равномер-

ной расчётной сетки в z-направлении (неравномерное распределение узлов сетки

по направлению z переводится в близкое равномерное путём билинейной интерпо-

ляции). В некоторых случаях боковое осреднение имеет смысл проводить не по

всему размаху расчётной области (l1 = 1, l2 = nz), а в пределах, где располагается

ядро возмущённого потока (например, раскрывающийся по x турбулентный клин

при zl1(x) < z < zl2(x); зависимости zli(x) линейные и подбираются параллельно

границам клина).

Не локализованные по времени возмущения (детерминированные волновые по-

езда или стохастическое внешнее воздействие) периодичны в настоящей работе. По-

этому интервал осреднения tm2
− tm1

кратен их периоду T . Момент времени tm1
вы-

бирается произвольно после завершения всех переходных процессов, связанных с

внезапным включением возмущений в изначально невозмущённом течении. Такой

режим течения далее называется квазипериодическим, или квазистационарным в

том смысле, что средние характеристики течения перестают меняться во времени.

Критерий достижения квазистационарного режима: ||q(t+ T )− q(t)||`∞ < 10−4.

1.3. Выводы по главе

Авторский пакет расчётных программ для целостного моделирования трёх-

мерных нестационарных вязких течений при сверхзвуковых скоростях на основе

численного решения уравнений Навье — Стокса на высокопроизводительных

многопроцессорных суперЭВМ расширен и адаптирован для задач настоящей

диссертации.

Предложен подход к переносу поля возмущений между расчётными сетками

с целью сокращения расчётной области и управления размерностью сетки для

оптимизации требуемых расчётных мощностей, в том числе с использованием трёх-

мерной интерполяции, когда сетки в пересекающейся части расчётных областей

не совпадают узел в узел. Подход применён в расчётах глав 5 и 7.
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Разработаны различные процедуры для обработки, анализа и визуализации

результатов численного моделирования. Предложенные подходы и разработанные

процедуры внедрены в авторский пакет программ; продемонстрирована их при-

менимость. Развитие пакета программ, выполненное в рамках настоящей работы,

а также применимость предложенных вычислительных подходов обсуждаются в

последующих главах.
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Глава 2. Критерии применимости и достоверность численного метода

Верификация и валидация современной версии авторского пакета расчётных

программ выполнены основным разработчиком А.В. Новиковым и обобщёны в

его диссертации [37]. Большой вклад в разработку и проверку достоверности

однопроцессорной версии кода внёс В.Г. Судаков [130]. Понятие верификации

подразумевает установление соответствия между расчётной моделью и исходными

дифференциальными уравнениями Навье — Стокса (математической моделью).

Оно включает проверку корректности работы численных алгоритмов и сходимости

численного решения по мере уменьшенияшага расчётной сетки (сходимость по сет-

кам, сеточная сходимость). Понятие валидации подразумевает определение степени

соответствия расчётной модели реальным физическим явлениям, происходящим

в исследуемых течениях. Для проведения валидации результаты моделирования

сопоставлялись либо с данными других расчётов (в предположении, что те в свою

очередь достаточно валидированы), либо с данными эксперимента в аэродинамиче-

ской трубе, либо с аналитическими результатами линейной теории устойчивости.

В [37] отмечается, что проверка сеточной сходимости требует значительных вы-

числительных ресурсов и зачастую опускается, когда размерность расчётных сеток

исчисляется сотнями миллионов узлов.

Для всех задач настоящей работы выполняется проверка достоверности по-

лученных результатов, что значительно расширяет объём верификационных и

валидационных исследований, проведённых в [37].

В данной главе рассматриваются две модельных задачи, которые позволяют

сформулировать универсальные критерии к численному моделированию сверхзву-

ковых возмущённых течений: распространение акустических волн в однородном

потоке (раздел 2.1) и взаимодействие малых возмущений со скачком уплотнения

(раздел 2.2). Далее численный метод валидируется на задаче о нелинейном распа-

де наклонных волн первой моды сверхзвукового пограничного слоя на пластине

вплоть до зарождения турбулентного течения (раздел 2.3).
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2.1. Численная диссипация

Численный метод неизбежно привносит в нестационарное решение дополни-

тельную диссипацию, обусловленную аппроксимацией исходного непрерывного

решения на дискретной пространственно-временной сетке. Численная диссипация

— или схемная вязкость, или численная вязкость, или диссипативные свойства

численного метода и т. д. — зависит от используемого численного метода и обязана

уменьшаться по мере уменьшения шага сетки (свойство сходимости численного

решения). В задачах настоящей работы численная диссипация проявляется в виде

избыточного затухания возмущений, развивающихся в расчётной области.

Оценим диссипативные свойства используемого численного метода. Для этого

проведём методические исследования простейшего процесса — затухания моно-

хроматической акустической волны в однородном набегающем потоке. Предпола-

гается, что такая оценка будет справедлива для широкого класса задач.

Для выбранной задачи можно получить точное теоретическое решение.

2.1.1. Затухание акустических волн в однородном потоке

Для простоты рассмотрим задачу в одномерной постановке. После простых

алгебраических преобразований уравнения Навье—Стокса (1.2) сводятся к виду

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0,

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
− 4

3Re∞,L

∂

∂x

(
µ
∂u

∂x

)
= 0,

1

γ

∂ρT

∂t
+
∂ρuT

∂x
−(γ−1)M 2

∞u
∂p

∂x
− 1

Re∞,LPr

∂

∂x

(
µ
∂T

∂x

)
− 4µ

3Re∞,L

(
∂u

∂x

)2

·(γ−1)M 2
∞.

γM 2
∞p = ρT

Линейное приближение этой системы относительно набегающего потока —

(u, ρ, p, T ) = (1, 1, 1/γM2
∞, 1) + (u′, ρ′, p′, T ′)— имеет вид:
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∂ρ′

∂t
+
∂u′

∂x
+
∂ρ′

∂x
= 0,

∂u′

∂t
+
∂u′

∂x
+
∂p′

∂x
− 4

3Re∞,L

∂2u′

∂x2
= 0,

M 2
∞

(
∂p′

∂t
+
∂p′

∂x

)
+
∂u′

∂x
− 1

Re∞,LPr

∂2T ′

∂x2
= 0,

γM 2
∞p

′ = ρ′ + T ′.

Будем искать решение в виде бегущей волны (u′, ρ′, p′, T ′) =
(
û, ρ̂, p̂, T̂

)
exp(iαx−

iωt), где ω — действительная частота, а α — комплексное волновое число. То-

гда система дифференциальных уравнений сводится к системе алгебраических

уравнений с малым параметром ε = 1/Re∞,L � 1

 iα γM 2
∞(iα− iω) −iα + iω

iα− iω + 4α2

3 ε iα 0

iα M 2
∞(iα− iω) α2

Prε


 û

p̂

T̂

 ≡ A

 û

p̂

T̂

 = 0.

В главном приближении по ε (при ε = 0) условие разрешимости detA = 0

даёт известные дисперсионные соотношения для энтропийной и акустической

волн, которые обобщены в подразделе 1.1.3: α0 = ω для энтропийной волны;

α0(1± 1/M∞) = ω для акустических волн (верхний знак соответствует быстрой

волне, нижний — медленной). Учёт первого приближения проведём, раскладывая

искомое собственное значение α по формуле Тейлора до o(ε) при ε→ 0

α(ω) ≡ α0 + α1 + o(ε) = α0 +

(
dα

dε

)
ε=0

ε+ o(ε).

Производную (dα/dε)ε=0 найдём, дифференцируя систему по параметру ε:(
dA

dε

)
ε=0

 û

p̂

T̂

 = 0.

После ряда алгебраических манипуляций получим:(
dα

dε

)
ε=0

= i · α
2
0

Pr

M 2
∞(α− ω)2(4Pr + 3γ)− 3α2

0

9M 2
∞(α− ω)2 + ω2 − (3α0 − ω)2

.

Так как α0 ∈ R, элементарные волны не затухают в отсутствие вязкости. В

линейном приближении вязкость приводит исключительно к демпфированию ко-

лебаний. Декремент вязкого затухания для энтропийной волны (α0 = ω) есть
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α1,i =
ω2

Re∞,LPr
,

а для акустической волны (α0c ≡ α0(1± 1/M∞) = ω)

α1,i =
2

3

ω2

c3Re∞,L

(
1 +

3

4

γ − 1

Pr

)
. (2.1)

В классической книге [140] с помощью общих энергетических соображений

получен аналогичный результат, который в случае нулевой объёмной вязкости

(гипотеза Стокса) согласуется с формулой (2.1).

Из полученного следует, что в предельном случаеRe∞,L → ∞ вязкое затухание

отсутствует и любое наблюдаемое затухание есть проявление диссипативных

свойств численного метода. Исследуем этот случай численно.

2.1.2. Невязкий случай

Расчёты, воспроизводящие невязкий случай Re∞,L → ∞, выполнены в рамках

полных уравнений Навье—Стокса при числе Рейнольдса Re∞,L = 1016 в квази-

одномерной постановке: плоская монохроматическая волна распространяется в

однородном потоке в направлении x. Направление y моделируется формально на

ширину шаблона в 5 сеточных узлов. В базовом случае рассматривается медленная

акустическая волна с частотой ω = 131 и амплитудой давления δp = 10−5p∞,

число Маха M∞ = 6. Эта общая постановка характерна для задач настоящей

диссертации.

Расчётная сетка размерностью Nx × 5 построена в прямоугольной области

x ∈ [0, 2] × [0, 0.4] 3 y; по направлению y накладывается условие симметрии;

при xmax — граничное условие экстраполяции; на входной границе xmin зада-

ётся набегающий поток и монохроматическое возмущение. Для исследования

пространственно-временной сходимости результатов рассматривается поле воз-

мущения давления p′ (или температуры T ′ в случае энтропийной волны) в мо-

мент времени t0 ≈ 3. Базовый случай покрыт сеткой расчётов с различным ко-

личеством сеточных узлов вдоль x— Nx ∈[501, 595, 707, 841, 1001, 1190, 1415,
1501, 1683, 2001, 2380, 2501, 2830, 3001, 3366, 4003, 4501, 4760, 5661, 6001, 6732,

7501, 9001, 9520, 11322, 13464, 16012, 18001, 19041, 22644, 36001] — и различ-

ным суммарным количеством временных шагов — Nt ∈[938, 1115, 1326, 1577,
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1875, 2230, 2652, 3153, 3750, 4460, 5303, 6307, 7500, 8919, 10607, 12613, 15000,

17838, 21213, 25227, 30000, 35676, 42426, 50454, 60000, 71352, 84853, 100908,

120000]. Такое покрытие представляет собой прямоугольную сетку из 31 × 29

расчётов. Эта сетка содержит равномерную сетку в логарифмических координа-

тах log2(Nx) × log2(Nt) с равномерным шагом 1/4. Количество узлов на длину

волны составляет Nλ = Nxω(xmax − xmin)/(2πc) = Nxω/(πc), где c— фазовая

скорость (1 − 1/M∞ для медленной акустической волны или 1 для энтропий-

ной волны). Количество временных шагов на период возмущения составляет

Nτ = Ntt0ω/(2π) = 1.5Ntω/π. Финальный момент времени t0 может незначи-

тельно отличаться из-за равномерности шага по времени в течение всего расчёта.

Точным аналитическим решением данной задачи является незатухающая

монохроматическая волна, занимающая всю расчётную область: p′теор(t, x) =

ε sin (ω(x/c− t)).

Квинтэссенцией проведённого многопараметрического исследования является

рис. 2.1, на котором изображено поле логарифмического декремента затухания

акустической волны в базовом случае для всей сетки расчётов. Сходимость к

точному решению αi,числ = 0 наблюдается при одновременном увеличении и

пространственного, и временного разрешения. При увеличении одного из них

величина численной диссипации выходит на некоторый постоянный уровень и

более не изменяется. Этот факт отражает теоретическую точность разностных

схем, которая математически выражается в виде остаточного члена o(∆xm +∆tp)

при представлении схемы формулой Тейлора вблизи некоторой точки (t0, x0).

Таким образом, при Nλ,max можно оценить порядок сходимости численной

диссипации возмущений по времени, а при Nτ,max — по пространству. Результаты

такого анализа представлены на рис. 2.2: в обоих случаях достигается практически

третий порядок сходимости: порядок по пространству 2.98; порядок по времени

2.97. При расчёте последнего несколько точек, отмеченных крестиками, отклоня-

ются от прямолинейной зависимости и исключены из рассмотрения. Отклонение

объясняется недостаточным пространственным разрешением Nλ.
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а) αi,числ

б) На длину волны, αi,числ · λ
Рисунок 2.1 — Численная диссипация в зависимости от пространственно-

временного разрешения
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Рисунок 2.2 — Сходимость αi,числ к нулю по пространству и по времени. Крести-

ками отмечены точки, не участвующие в линейной регрессии

2.1.3. Сходимость по времени

Используемый численный метод основан на аппроксимации временных произ-

водных со вторым порядком точности, а пространственных производных конвек-

тивных потоковых величин — с третьим (см. раздел 1.2.1). Однако полученный

третий порядок временной сходимости для декремента затухания αi,числ не проти-

воречит следствию теоремы Филиппова—Рябенького, в соответствии с которым

порядок аппроксимации должен совпадать с порядком сходимости, если схема

устойчива.

Рассмотрим одностороннюю аппроксимацию временной производной (1.10)

на временном шаге n+1. Представим числитель формулой Тейлора в окрестности

t[n+1] с учётом обозначений Q[n] ≡ Q(t[n+1] −∆t) и Q[n−1] ≡ Q(t[n+1] − 2∆t):

3Q[n−1] − 4Q[n] +Q[n+1]

2∆t
=
∂Q[n+1]

∂t
−∆t2

3

∂3Q[n+1]

∂t3
+
∆t3

4

∂4Q[n+1]

∂t4
+o(∆t3), ∆t→ 0.

Очевидно, что в общем случае достигается второй порядок аппроксимации.

Однако в рассматриваемом случае слабо затухающей монохроматической волны в

однородном потоке все нечётные производные поля течения обращаются в ноль

в экстремумах гармонического возмущения — вблизи огибающей возмущения

порядок аппроксимации повышается до третьего. Поэтому численный декремент

затухания, который получен из аппроксимации этой огибающей, сходится к теоре-

тическому значению также с третьим порядком точности по времени (p = 3):
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max
x

|αi − αi,теор| ≡ ||αi − αi,теор||∞ 6 C ·∆tp. (2.2)

Рассмотрим сходимость численного решения в классическом определении:

||q − qтеор||∞ = max
x

|q − qтеор| 6 C ·∆tp. (2.3)

На рис. 2.3 представлены примеры распределения возмущений в зависимости от

пространственного (рис. 2.3а) и от временного (рис. 2.3б) сеточного разрешения.

В первом случае фиксировано наиболее подробное временное разрешение Nτ =

const. Численное решение развивается практически синфазно с точным решением,

а амплитуда стремится к амплитуде точного решения с ростомNλ. Во втором случае

фиксировано наиболее подробное пространственное разрешение Nλ = const.

Поведение амплитуды волны не изменяется, однако недостаточное временное

разрешение порождает фазовую разбежку вычисленного и точного возмущений в

некоторый момент времени. Эта разбежка стремится к нулю с ростом Nτ .

Фазовая разбежка обусловлена тем, что фазовая скорость акустической волны

при численном моделировании отличается от истинной на величину (ω∆t)2/3 ∼
N−2

τ . Это следует из теоретического анализа линеаризованных уравнений Эйлера

с учётом аппроксимации временной производной и хорошо согласуется с прове-

дёнными методическими расчётами1. Подробности опущены для краткости.

Из-за фазовой разбежки абсолютная погрешность численного решения нарас-

тает вниз по потоку и при разбежке π достигает максимума (рис. 2.4 слева) —

1Данный теоретический результат получен аспирантом 2го года МФТИ И.О. Погореловым.

а) Nt = Nt,max б) Nx = Nx,max

Рисунок 2.3 — Распределение возмущения давления в медленной акустической

волне при разных пространственных и временных разрешениях, t = 3



69

истинный максимум гармонического возмущения становится минимумом при

некотором x. Такая ситуация наблюдается только при достаточно грубом времен-

ном разрешении, которое далеко от практики. В остальных случаях наибольшая

погрешность достигается вблизи правой границы расчётной области. Используя

классическое определение сходимости (2.3), можно вновь оценить порядок сходи-

мости численного решения к точному по времени. Он очень близок к двум (рис. 2.4

справа). Следует отметить, что из линейной регрессии исключены расчёты, в

которых временная разбежка превышала π (крестик на рис. 2.4 справа).

Таким образом, амплитуда возмущений сходится по времени с третьим поряд-

ком точности, хотя глобально достигается лишь второй порядок, что обусловлено

фазовой разбежкой между численным и точным решениями.

2.1.4. Инвариантность численной диссипации

Аналогичные расчёты проведены при числе Re∞,L = 106, для которого мо-

нохроматическая волна медленно затухает из-за вязкости и теплопроводности.

Оказалось, что полученные выше результаты с высокой точностью повторяются

для величины αi,числ = αi − αi,теор, где теоретическое значение вычисляется по

формуле (2.1). Все иллюстрации, в частности, рис. 2.1, визуально не изменяются и

поэтому не приводятся повторно. Таким образом, численная диссипация является

добавочным эффектом, который отделяется от физической картины явления.

Рисунок 2.4 — Распределение абсолютной погрешности численного решения

|p′ − p′теор| при Nx = Nx,max и анализ временной сходимости
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Аналогичное методическое исследование проведено при различных числах

МахаM∞ = 3, 4.5, 7.5, 9 как для акустических, так и для энтропийных возмуще-

ний с различными частотами ω = 65.5, 131, 232 и амплитудами ε = 10−4, 10−3.

Установлено, что численное затухание возмущений на масштабе длины волны,

αi,числ. · λ, зависит только от количества точек на длину волны Nλ и количества

временных шагов на период возмущения Nτ . Используя эту инвариантность (неза-

висимость величины αi,числ ·λ от физических параметров задачи), можно оценивать
численную диссипацию, масштабируя рис. 2.1 на случай произвольных параметров

набегающего потока и элементарного возмущения.

2.1.5. Общие замечания

Предложенная и рассмотренная задача представляется универсальным спосо-

бом оценки диссипативных свойств любого численного метода. Она также поз-

воляет валидировать численный метод: численное решение должно сходиться

к теоретическому при уменьшении шага по пространству и по времени. Таким

образом, в настоящем разделе проведена валидация используемого численного

метода, изложенного в главе 1.

Базовый расчётный случай (M∞ = 6, Re∞,L = 106, ω = 131) является ха-

рактерным для задач, которые будут рассмотрены далее. Численный декремент

αi,числ = 0.1 подразумевает, что амплитуда элементарного возмущения уменьшится

примерно на 10% на единице длины расчётной области, или на 0.4% на масшта-

бе длины волны базового возмущения. То есть, численная вязкость привносит в

физическую задачу отрицательное интегральное усиление возмущений с факто-

ром N ≈ −0.1. В рассматриваемых задачах N -факторы достигают характерных

значений N ? 5 на тех же масштабах длины. Таким образом, численная дисси-

пация приводит к ограниченной погрешности расчётов в пределах нескольких

процентов, что не может существенно повлиять на основные выводы, сделанные в

диссертации.

В полной пространственной постановке численная диссипация зависит от се-

точного разрешения во всех трёх направлениях. По предыдущему опыту расчётов,

она проявляется в каждом направлении индивидуально, то есть практически не за-

висит от сеточного разрешения в других направлениях. Поэтому анализ численной
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диссипации, проведённый выше на одномерной задаче, годится и в многомерном

случае.

Вопрос сходимости исследован для большинства результатов настоящей диссер-

тации. Эти исследования так или иначе подтверждают, что выводы настоящего раз-

дела можно количественно применять при моделировании развития возмущений в

сверхзвуковых пограничных слоях — численная диссипация возмущений слабо

зависит от особенностей течения и в большей мере определяется пространственно-

временным разрешением конкретного возмущения. Тем не менее, по мнению

автора диссертации, аккуратное исследование сходимости должно проводиться в

каждом расчётном исследовании, а полученные в данном разделе базовые знания

о схемной диссипации численного метода можно рассматривать как надёжную

отправную точку для прогнозирования эффекта численной диссипации и общей

постановки расчётных задач.

2.2. Взаимодействие малых возмущений со скачком уплотнения

Амплитудный метод предсказания ламинарно-турбулентного перехода [24]

опирается на начальные амплитуды возмущений, возбуждённых в пограничном

слое. При численном моделировании переходных сверхзвуковых пограничных

слоёв такие амплитуды определяются внешними возмущениями за ударной волной.

Поэтому необходимо надёжно моделировать взаимодействие возмущений среды с

ударными волнами (скачками).

Мотивацией данного раздела стало исследование сеточной сходимости следую-

щей модельной задачи. Опуская несущественные детали, рассмотрим двухмерное

невозмущённое сверхзвуковое течение около тела с плоским торцом. Предположим,

что в течение одного периода по гармоническому закону с торца в невозмущённый

поток вносится возмущение с помощью вдува – отсоса газа по нормали к поверхно-

сти (при x = 0 на рис. 2.5). Возмущение распространяется к скачку по дозвуковой

части ударного слоя и затем отражается от скачка. Рассмотрим мгновенное поле

возмущения в некоторый момент времени после отражения: на исходной сетке

(рис. 2.5а) и на сетке, которая однородно деформирована в направлении скачка так,

чтобы скачок оказался сдвинут на пол-ячейки (рис. 2.5б). Условия расчёта идентич-

ны в обоих случаях за исключением этого минимального различия в сетках. Тем
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не менее фаза отражённой волны отличается на π, а амплитуда волны на исходной

сетке в несколько раз выше! Очевидно, что эта аномалия связана с численным

методом.

Уравнения Эйлера допускают существование разрывных решений — ударных

волн, или скачков. Учёт вязкости и теплопроводности (уравнения Навье — Стокса)

устраняет разрывы: скачок приобретает гладкий профиль [141] с толщиной поряд-

ка длины свободного пробега молекул газа. Далее будем называть эту толщину

вязкой толщиной скачка. Таким образом, уравнения Навье — Стокса формально

не применимы внутри скачка. Методы сквозного счёта для уравнений Эйлера и

Навье — Стокса способны воспроизводить скачки на расчётных сетках вне за-

висимости, являются ли они физическими разрывами или нет. Обычно вязкая

структура скачка не разрешена на расчётной сетке и зависит как от этой сетки, так

и от используемого численного метода. Профиль такого скачка занимает несколько

сеточных ячеек; их общая ширина далее называется численной толщиной скачка, а

сам скачок — пойманным на сетке. Когда ударная волна достаточно разрешена, её

численная толщина прекращает зависеть от расчётной сетки и должна приближать-

ся к вязкой толщине. Такой скачок будем называть разрешённым. Консервативные

свойства методов сквозного счёта гарантируют, что на скачке выполняются законы

сохранения, но они могут нарушаться внутри скачка [142; 143]. Таким образом, для

невозмущённого поля течения сходимость численного решения может быть достиг-

нута без адаптации сетки к скачку. Это утверждение неверно для нестационарных

течений по следующей причине.

а) Скачок в узле сетки б) Скачок между узлов сетки

Рисунок 2.5 — Аномальный переворот фазы при отражении пакета акустических

волн от скачка. Скачок отмечен белым пунктиром. На врезке показано распределе-

ние сеточных узлов поперёк скачка, положение которого указано стрелкой
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Рассмотрим простой расчётный случай, когда численная схема первого порядка

аппроксимации применяется к одномерным уравнениям Эйлера, и используется

точное решение задачи Римана о распаде разрыва [143]. Численная структура пой-

манного скачка имеет единственное промежуточное состояние, которое является

следствием применения конечнообъёмного метода и решения задачи Римана для

потоковых величин на гранях ячейки. Промежуточное состояние неединственно!

Это степень свободы численного метода, которая порождает собственные моды

промежуточного состояния. При достижении некоторого критического значения

числа Маха (для двухатомного газа примерно 6), промежуточное состояние теря-

ет устойчивость вблизи переднего фронта скачка [143]. Данный теоретический

результат исследован в одномерной и двухмерной постановках [144]. Опробова-

но множество решателей задачи Римана; положение скачка внутри ячейки сетки

варьировалось с помощью начальных условий. Авторы [144] предложили увеличи-

вать численную диссипацию ∆F поперёк скачка, чтобы устранить неустойчивость

в нормальном к скачку направлении. Здесь используется стандартное выражение

для вектора потоковых величин, F = Fm − ∆F: Fm — некоторое осреднённое

состояние на грани ячейки; ∆F— контролируемый диссипативный член. Однако

авторы [144] предупредили, что это может привести к продольной неустойчиво-

сти скачка. В аналогичном исследовании [145] было показано, что выполнение

закона сохранения массы поперёк прямой ударной волны является достаточным

условием устойчивого счёта в случае сильных скачков. Результаты численных экс-

периментов и анализа линеаризованной задачи также подтвердили, что источник

неустойчивости скрыт в численной нефизичной структуре скачка. Обсуждаемая

выше фундаментальная неустойчивость схем сквозного счёта связана с известны-

ми численными аномалиями, такими как карбункулы и нефизичные возмущения

за медленно движущимися скачками. Но как возмущения в потоке будут взаимо-

действовать с пойманным скачком, и какова окажется чувствительность такого

взаимодействия к расчётной сетке?

Ответ нетривиален и должен зависеть от того, движется ли скачок или поко-

ится относительно расчётной сетки (это можно изменить путём выбора системы

отсчёта при описании физической задачи). Например, паразитные возмущения за

медленно движущимся скачком [146] становятся слабее с ростом скорости скачка

[147]. Поэтому можно рассмотреть задачу в системе отсчёта, где скачок движется

быстрее по отношению к расчётной сетке. В этом смысле представляет интерес

классическая невязкая задача [148] о движении пойманного скачка через покоящий-
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ся газ с периодически возмущённым полем плотности. В соответствии с линейным

анализом [127–129] такой скачок порождает за собой акустические волны. Далее

этот эффект будет воспроизведён в рамках уравнений Навье — Стокса. Однако,

если скачок неподвижен относительно расчётной сетки, то порождаемое им поле

возмущений начинает зависеть от положения скачка внутри сеточной ячейки (как,

например, показано на рис. 2.5). Настоящий раздел посвящён рассмотрению этого

аномального эффекта.

Литературу по вопросу взаимодействия стационарного скачка с возмущениями

можно разделить на две большие ветви:

– взаимодействие скачка с турбулентностью (направление 1, [149–156]);

– взаимодействие малых элементарных возмущений со скачком (направление

2, [67; 86; 87; 157–164]).

В работах [149–151] рассматривается взаимодействие турбулентности с прямым

скачком при числахМахаM < 3. Результаты для пойманного скачка приближаются

к результатам прямого численного моделирования (ПЧМ) с разрешённым скачком

по мере измельчения сетки. Сообщалось, что результаты ПЧМ воспроизводились

на недоразрешённом скачке при условии, что шаг сетки был∆x1/δ
weak
s,v 6 7/3 [150],

где δweaks,v = 8M∞/ (3Re∞,L(M∞ − 1)) — оценка безразмерной толщины слабого

скачка. Такое разрешение в семь раз грубее, чем соответствующее разрешение

скачка в ПЧМ [149]. Сделанная оценка, по-видимому, осталась в силе позднее

[152]. К сожалению, теоретический масштаб δweaks,v не проверялся напрямую на

результатах ПЧМ, как и не было показано положение скачка на расчётной сетке.

Важность сеточного разрешения скачка подчёркнута в [153]. Авторы провели

расчёты с разрешённым скачком при числах Маха 1.2 и 1.5 и подтвердили уни-

версальность диссипативных численных схем второго порядка аппроксимации по

пространству и времени. Указано лишь общее количество точек поперёк скачка,

при этом толщина скачка не определена в тексте. Работа [153] подтверждает ре-

зультаты [154] (число МахаM 6 8, равномерные сетки), где разрешение скачка не

обсуждается, хотя сетка измельчается до такой степени, что уровень паразитных

возмущений за скачком [147; 148] становится приемлемым.

В работе [155] рассматривается взаимодействие турбулентности с прямым

пойманным скачком при числе Маха 2. Продемонстрировано, что турбулентная

статистика за скачком монотонно сходится к некоторой предельной статистике

при измельчении сетки. Следует отметить, что скачок не являлся стационарным

и осциллировал в пределах нескольких сеточных ячеек. Средняя амплитуда этих
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осцилляций была значительно больше, чем мгновенная толщина скачка δs. В ка-

честве определяющего параметра для сеточной сходимости рассматривалось не

разрешение скачка, а разделение масштабов: толщины пойманного скачка δs,c и

колмогоровского масштаба ηk. Для выбранного численного метода величина δs,c

пропорциональна шагу сетки, что позволяет управлять отношением δs,c/ηk, из-

меняя сетку [155]. Сам параметр δs,c/ηk был предложен в [156]. Также в [155]

сообщалось, что результаты ПЧМ приближаются к результатам линейного при-

ближения по мере уменьшения параметра δs,c/ηk. Но это скорее относится к при-

менимости линейного приближения, а не к аномальным численным эффектам.

Следует отметить, что последние не наблюдались за скачком, который двигался

через газ с возмущённым полем плотности [148]. Возможно, по той же причине

они не наблюдались и в [155], где скачок осциллировал по ячейкам: паразитные

осцилляции могли оказаться малыми или вовсе усреднялись по времени в процессе

расчёта, что в итоге не повлияло на статистику возмущений за скачком.

При моделировании процессов восприимчивости в сверхзвуковых погранич-

ных слоях (направление 2) вопросу сеточной сходимости нестационарных ре-

зультатов практически не уделяют внимания. В [87; 157; 158] рассматривалось

взаимодействие акустических и вихревых возмущений (число Маха невозмущён-

ного течения 6) с притупленным конусом. Грубые оценки показывают, что скачок

разрешён вблизи притупления. Однако невозможно понять, остаётся ли разрешён-

ным конический скачок ниже по потоку от притупления. Аналогичная конфигу-

рация рассмотрена в [159] (число Маха 8). Результаты работы верифицированы

путём сравнения другими работами, но вопрос сеточной сходимости в области

скачка не затронут. Стоит обратить внимание на то, что размер притупления мал

по сравнению с длиной волны возмущения или с характерным размером конуса.

Поэтому прямой скачок быстро распадается в наклонный конический скачок с

малой интенсивностью.

В серии работ [67; 86; 160–162] рассмотрено взаимодействие всех типов эле-

ментарных возмущений набегающего потока (число Маха 6) с пограничным слоем

над плоской пластиной. Скачок от передней кромки пластины не был разрешён2;

результаты сеточной сходимости для скачка не представлены. Лишь в [162] показа-

но успешное сравнение с результатами линейного анализа [127–129]. В работах [67;

86; 160–162] подчёркивается, что взаимодействие возмущений со скачком оказыва-

ет определяющее влияние на восприимчивость, причём первостепенное значение

2Источник: личная беседа с авторами работ [67; 86; 160–162]
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имеет порождаемое скачком акустическое поле. Таким образом, воспроизведение

корректных значений коэффициентов прохождения и порождения принципиально

важно при моделировании задач восприимчивости.

В работах [67; 86; 87; 157–162] не сообщалось о численных аномалиях, связан-

ных со скачком, и не приводилось каких-либо свидетельств появления численного

шума, связанного со скачком, который мог бы повлиять на физическое возмущён-

ное решение внутри пограничного слоя. В этом отношении следует выделить

работу [163] (числа Маха от 3 до 7.3), в которой рассматривается акустическая вол-

на, проходящая через скачок на 20-градусном притупленном конусе. Такой скачок

имеет большую интенсивность, чем скачок на пластине под нулевым углом атаки,

который обусловлен вязко-невязким взаимодействием. В работе продемонстри-

рованы две численных особенности. Во-первых, выравнивание сеточной линии

вдоль скачка устраняет стационарные паразитные возмущения от мест, где ска-

чок перепрыгивал с одной сеточной линии на другую. Во-вторых, выравнивание

совместно с выделением скачка на сетке (измельчением сетки поперёк скачка)

позволяет значительно уменьшить уровень паразитных возмущений, рождаемых

при взаимодействии акустических волн со скачком. Аналогичные наблюдения

сообщались в [165]. Несмотря на подробное обсуждение вопросов выделения скач-

ка и успешную верификацию расчётных данных с результатами других авторов,

сеточное разрешение вязкой структуры скачка в [163] не обсуждается. Однако

сопоставление результатов на клине [163] с результатам на пластинах и тонких

конусах под нулевым углом атаки и [67; 86; 87; 157–162] неявно указывают на то,

что паразитные эффекты из-за численной природы пойманного скачка становятся

тем сильнее, чем больше интенсивность скачка.

Взаимодействие прямого стационарного скачка с монохроматической акустиче-

ской волной моделировалось в рамках уравнений Навье—Стокса в [164]. Сеточное

разрешение вязкой структуры скачка было избыточным, а результаты моделирова-

ния идеально совпали с предсказаниями линейной теории [127–129]. К сожалению,

сеточная сходимость вблизи скачка не обсуждалась.

Наверное, наиболее подробное методическое исследование взаимодействия

элементарных акустических волн со скачком опубликовано в работе [166]. В вязкой

постановке использовалась сетка с избыточным сеточным разрешением, для кото-

рой число Рейнольдса по сеточному шагу составляло Re∞,∆x = 0.12, а на профиль

ударной волны приходилось около 20 сеточных узлов. Поддерживая такое сеточное

разрешение, авторы [166] показали быструю сходимость численных результатов



77

к теоретическим по мере увеличения отношения длины волны к вязкой толщине

скачка. Однако в невязкой постановке, когда скачок теоретически вырождается

в газодинамический разрыв (его толщина равна нулю), было обнаружено, что

коэффициенты прохождения акустической волны через скачок и сопутствующие

коэффициенты порождения энтропийной волны могут в разы отличаться от теоре-

тических значений. Было показано, что отклонение от теории возрастает с ростом

числа Маха и зависит от используемого численного метода. Было также отмечено,

что более диссипативный численный метод, размазывающий скачок на большее

количество сеточных узлов, приводит к меньшему отклонению от теоретических

значений. Такое поведение авторы [166] связали с тем, что профиль «размазанно-

го» скачка менее подвижен относительно расчётной сетки при взаимодействии

с акустической волной, поэтому амплитуда возникающих нефизичных возмуще-

ний уменьшается. Однако в расчётах настоящего раздела амплитуда возмущений

достаточно мала, чтобы скачок оставался практически неподвижен при любом

сеточном разрешении; при этом коэффициенты прохождения и порождения ведут

себя аномально и непредсказуемо, что обсуждается далее.

Следует также отметить, что имеется класс численных методов с предваритель-

ным выделением ударной волны3. Хотя они сложнее в применении по сравнению

с методами сквозного счёта, результаты, полученные с их помощью для задач о

взаимодействии малых возмущений со скачками, хорошо согласуются с результа-

тами ПЧМ и линейного анализа [167]. Этот класс методов менее универсален, но,

по-видимому, свободен от численных аномалий, обсуждаемых выше.

В свете сделанного обзора работ следует подчеркнуть призыв, прозвучавший в

[149] четверть века назад:

— Если сеточное разрешение вязкой структуры скачка недостижимо

на практике, точное предсказание взаимодействия турбулентности

с ударной волной может быть получено только после тщательного

тестирования сеточной сходимости.

Тем не менее, критерий сеточной сходимости для стационарного скачка остаётся

неясным. Такой критерий предложен ниже, указаны пути его достижения. Так-

же рассматриваются все типы элементарных возмущений, анализируется роль

различных параметров возмущений, исследуется влияние интенсивности скачка.

3В англоязычной литературе: shock-fitting methods
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2.2.1. Постановка задачи

Рассмотрим особенности постановки задачи для двухмерного случая. Поле

течения схематично показано на рис. 2.6. Стационарный скачок расположен при

x = 0, нормаль к фронту скачка смотрит вдоль Ox. Поток движется под углом β к

нормали скачка. Если не указано иное, набегающий поток в состоянии 1 исполь-

зуется для обезразмеривания: U ∗
∞ =

√
u∗21 + v∗21 . Нижний индекс «n» обозначает

составляющую вектора вдоль нормали скачка, например,M1n =M1 cos β1.

Расчётная область — прямоугольник [xmin, xmax]× [ymin, ymax]. Расчётная сетка

равномерна по x всюду, кроме окрестности скачка, где она сгущается или разрежа-

ется для достижения целевой величины шага dx, который остаётся постоянным на

всей ширине скачка. Для квазиодномерных расчётов с периодическим граничным

условием по y расчётная сетка имеет три или пять4 сеточных линий по всему раз-

маху вдоль y, ymax−ymin = 0.1. Для двухмерных возмущений шаг по y фиксируется

таким образом, что вдали от скачка сеточные ячейки оказываются квадратными.

Для моделирования покоящегося скачка внутри расчётной области наклады-

ваются соответствующие начальные и граничные условия. Начальное условие

учитывает скачкообразное изменение параметров течения на скачке:

(u, v, p, T ) =
(
cos β1, sin β1,

1
γM2

1
, 1
)

p2
p1

= 1 + 2γ
γ+1

(
M 2

1n − 1
)
,

ρ2
ρ1

= (γ+1)M2
1n

(γ−1)M2
1n+2

,
T2

T1
= p2

p1

ρ1
ρ2
,

u2

u1
= ρ1

ρ2
,

v2 = v1.

Чтобы контролировать положение скачка внутри сеточной ячейки, использу-

ется линейная интерполяция между начальными состояниями перед скачком и

за ним на протяжении двух сеточных шагов в направлении x (рис. 2.7). Похожий

подход использовался в [144; 145], где плотность нарастала линейно, а остальные

параметры течения менялись в соответствии с ударной адиабатой. Центр началь-

ного скачка x∗0 в ячейке [xj∗, xj∗+1] можно контролировать с помощью параметра

α:
4при использовании реконструкции WENO-5
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Рисунок 2.6 — Схема течения. Нижний индекс 1 соответствует состоянию течения

перед скачком, 2 — после

x∗ = (1− α)xj∗ + αxj∗+1; xj∗ = 0. (2.4)

Течение считается периодическим по направлению y. Входное и выходное

граничные условия соответствуют однородному потоку в состоянии «до скачка» 1

и «за скачком» 2, соответственно. После установления невозмущённого решения

положение скачка внутри ячейки сетки несколько отличается от величины α0,

устанавливаемой в начальном приближении. Окончательное положениеα нетрудно

восстановить по решению, принимая в качестве x∗ в (2.4) положение максимума

градиента давления |∂p/∂x|max по оси x.
Чтобы изучить взаимодействие малых возмущений со скачком, на невозму-

щённое течение накладываются элементарные возмущения, описанные в подраз-

деле 1.1.3. Для исследования коэффициентов прохождения возмущений через

скачок на входной границе можно инициировать волны любого типа. Для случая

возмущённой выходной границы имеет смысл рассмотреть случай отражения мед-

ленной акустической волны от скачка, когда течение за скачком дозвуковое (как,

например, за прямой ударной волной). Периодическое граничное условие по y

удовлетворяется при этом путём подбора волнового числа k таким образом, что

ky(ymax − ymin) = 2πn, n ∈ Z. Следует заметить, что проекция ky сохраняется при
переходе через скачок.

Невязкая линейная теория предполагает, что элементарные волны сосуществу-

ют независимо друг от друга в однородном потоке. Любая неоднородность, такая
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Рисунок 2.7 — Схема расположения скачка на сетке в начальном приближении

как скачки уплотнения, порождает связь между ними. Поэтому элементарная волна

не только проходит через скачок, но также порождает все остальные типы эле-

ментарных волн, взаимодействуя со скачком. Теоретическое исследование этой

проблемы дало коэффициенты прохождения, отражения и порождения, которые

связывают поле возмущений до и после скачка [127–129]. Чтобы получить эти

коэффициенты из возмущённого численного поля течения, абсолютная величина

экстремумов возмущения вдоль оси x экстраполируется на положение скачка с

помощью экспоненциального приближения f(x) = Ae−ki(x−x0), где A,ki и x0 —

определяются по методу наименьших квадратов. Таким образом, находятся ампли-

туды возмущений до взаимодействия со скачком и после взаимодействия, при этом

естественным образом учитывается вязкая диссипация возмущений. За скачком

обнаруживается как минимум 10 экстремумов. Однако до скачка их может быть

три при рассмотрении набегающих возмущений с увеличенной длиной волны,

что является слабым источником ошибки метода при количественном измерении

эффекта вязкой диссипации.

Параметры базового течения следующие: M1,b = 6,Re1,L,b = 11295.2, T ∗
1.b =

226.5К, β1 = 0; частота возмущения ωb = 125; амплитуда возмущения δqb ≡ εb =

2 · 10−4, где δq = δp для акустических волн, δq = δu— для вихревых, а δq = δT —

для энтропийных. Пример рассчитываемых полей показан на рис. 2.8.
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а) Установившееся поле давления б) Поле возмущения давления для

θ1 = −30°

Рисунок 2.8 — Пример расчёта при β1 = 30°

2.2.2. Вязкий профиль ударной волны

Рассмотрим теоретические результаты одномерного скачка уплотнения, по-

лученные в рамках уравнений Навье — Стокса для совершенного газа с числом

Прандтля Pr = 3/4 и степенным коэффициентом вязкости µ = T n. В этом слу-

чае уравнения Навье — Стокса сводятся к обыкновенному дифференциальному

уравнению [141], которое в результате численного взятия интегралов приводит к

вязкому профилю скачка. Толщину этого профиля можно оценить теоретически

как
δs,t
l1

= B (M1, n, γ) , (2.5)

l1 =
251

200

√
γ
M1

Re1,L
(2.6)

где l1 — длина свободного пробега молекул газа перед скачком.

Теоретические результаты представлены на рис. 2.9. На рис. 2.9а показан ряд

кривыхB(M1) при γ = 1.4 в зависимости от n как от параметра. Следует отметить

горизонтальную асимптоту B → 0.61 при M1 → ∞ и n = 0.5. Асимптотиче-

ское значение вдвое меньше, чем указано в [141]; причина этого расхождения

не установлена. При n > 0.5 по мере роста числа M1 или приближения его к

единице скачок утолщается по отношению к l1, с асимптотическим поведением

δs,t ∼ (M1 − 1)−1
приM → 1 + 0.

На рис. 2.9б теоретические результаты сопоставляются с результатами чис-

ленного моделирования базового течения. Оба подхода хорошо согласуются при

n ≈ 2/3, а небольшое расхождение можно объяснить разными законами вязкости
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и числами Прандтля. Такое же согласие наблюдается и для других численных ре-

зультатов, представленных ниже в данном подразделе, но для случая косых скачков

следует вместоM1 подставитьM1n в (2.5) и (2.6). В табл. 2.1 приведены значения

B для всех рассматриваемых ниже значенийM1n.

Определим вязкую толщину скачка как утроенное теоретическое значение,

δs,v = 3δs,t. Тогда для нормальной ударной волны при M1 = M1n = 6, γ = 1.4

можно сделать оценку

δs,v ≈ 4.3M1/Re1,L, (2.7)

которая остаётся верной для больших чисел Маха благодаря медленному росту

B(M1) (см. рис. 2.9а). Для параметров базового течения δs,v ≈ 2.3 · 10−3.

Ниже будем различать пойманный скачок, толщина которого имеет численную

природу и определяется местным шагом расчётной сетки, и разрешённый скачок,

у которого численно разрешена вязкая структура и который, таким образом, не

зависит от расчётной сетки (численная и вязкая толщины совпадают).

а) B (M1) б) Профили ударной волны

Рисунок 2.9 — Результаты одномерной теории

Таблица 2.1 — Значение величины B при различныхM1n; величина β1 указана
для случаяM1

β1 приM1 = 6 80° 75° 68° 60° 45° 30° 0° —

M1n 1.042 1.553 2.248 3 4.243 5.196 6 12

B(M1n,0.67, 1.4) 17.276 2.977 1.58 1.22 1.017 0.977 0.966 1.053
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2.2.3. Критерий разрешённого скачка

Рассмотрим прохождение медленной акустической волны через прямой пой-

манный скачок. На рис. 2.10а показан коэффициент прохождения Θ = δp2/δp1,

полученный с использованием различных решателей для задачи Римана (метод Роу,

метод AUSM+up), процедур реконструкции (TVD-minmod, WENO-3, WENO-5) для

примитивных («prim») и характеристических («inv») переменных. Естественно

ожидать, что Θ не должна меняться с изменением α. Однако вне зависимости от

используемого метода величинаΘ изменяется значительно, что можно назвать ано-

мальным поведением Θ(α). При приближении α к некоторому значению величина

Θ скачкообразно возрастает. Следует заметить, что использование характеристиче-

ских переменных значительно улучшает скорость сходимости невозмущённого

течения, но не устраняет наблюдаемое аномальное поведение.

Решатель Роу всегда приводит к хорошо установившемуся невозмущённому

решению, но решатель AUSM+up может вызывать малые колебания скачка даже в

квазиодномерной постановке. В общем случае, амплитуда таких колебаний весь-

ма мала и возникает вблизи α ≈ 0.61. Именно при этом значении наблюдался

аномальный скачкообразный рост на рис. 2.10а. Таким образом, малое измене-

ние величины α привело к значительному изменению в характере прохождения

возмущения через скачок. При этом в возмущённом течении скачок устойчиво

оставался неподвижным. Наблюдаемое поведение можно отнести к механизму

внутренней неустойчивости схем сквозного счёта [143], которое требует дополни-

тельного анализа. Следует также отметить, что в случае «WENO3(inv), Roe» кривая

Θ(α) стелется вблизи теоретического решения, что может быть ошибочно принято

за сеточную сходимость.

Дальнейшее рассмотрение сосредоточено на случае решателя Роу совмест-

но с реконструкцией WENO-3 для примитивных переменных. Будем использо-

вать названия very coarse (очень грубая), coarse (грубая), minimal (минималь-

ная) и sufficient (достаточная) для расчётных сеток, которые соответствуют по-

следовательно уменьшающемуся каждый раз вдвое шагу сетки поперёк скачка:

dxs = {2, 1, 0.5, 0.25} · 10−3. Вдали от скачка dx = 10−3 у всех четырёх сеток.

Имена подобраны визуально исходя из количества сеточных узлов, приходящихся

на вязкую толщину скачка δs,v: 7 для минимальной сетки и 13–14 для достаточной.
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а) Влияние численного метода б) Влияние сеточного разрешения вблизи

скачка, WENO3(prim) + метод Роу

Рисунок 2.10 — Зависимость коэффициента прохождения Θ от α для медленной

акустической волны; нормальный пойманный скачокM1 = 6

Рисунок 2.10б демонстрирует, что наблюдаемая аномалия исчезает по мере

разрешения скачка. Рассчитанное значениеΘ последовательно стремится к своему

теоретическому значению. При некотором сеточном разрешении скачок становит-

ся недоразрешённым, то есть его численная толщина перестаёт уменьшаться по

мере измельчения сетки. Физически скачок может установиться при произволь-

ном значении α при рассматриваемых граничных условиях. Это и наблюдается

для разрешённого скачка в численном моделировании (перевёрнутые синие тре-

угольники на рис. 2.10б). Размер ячейки становится существенно меньше, чем

δs, и профиль ударной волны остаётся практически неподвижным, хотя могут

достигаться различные значения α в зависимости от начального приближения α0.

Критерий независимости коэффициента прохождения от расчётной сетки —

критерий разрешённого скачка — удалось подобрать численно, дополнив прове-

дённые расчёты случаямиM1 = 3 иM1 = 12. В первом случае толщина скачка

примерно вдвое меньше по сравнению со случаем M1 = 6; во втором — вдвое

больше. Обнаружено, что для всех случаев достигается характерное значение

модифицированного сеточного числа Рейнольдса

R̃eh =
ρ |∆hu| dxs

µ
≈ ρ |∂u/∂x| dx2s

µ
≈ 0.3, (2.8)

где ∆hu— изменение продольной компоненты вектора скорости на одной сеточ-

ной ячейке. Для равномерной сетки R̃eh близко к приращению сеточного числа

Рейнольдса (ρu dx/µ)x+dx
x на ячейке. При R̃eh < 0.3 отклонение коэффициента про-
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хождения от теоретического значения составляет менее 0.5%, что остаётся верным

во всех остальных рассмотренных случаях с различными типами элементарных

возмущений, углами наклона волновых фронтов и скачка.

2.2.4. Численная природа аномального эффекта

Вызвана ли наблюдаемая аномалия лишь численной природой пойманного

стационарного скачка? Для всестороннего ответа на этот вопрос рассмотрим ряд

примеров: влияние толщины скачка по отношению к длине волны возмущения

δs/λ; другие типы элементарных возмущений; волна, падающая на скачок сзади;

скачок, движущийся через газ.

2.2.4.1. Эффект δs/λ

Как отмечалось выше, взаимодействие скачка с малыми возмущениями яв-

ляется невязким процессом и описывается уравнениями Эйлера. Учёт вязкости

добавляет затухание при распространении возмущения. Толщина скачка, как прави-

ло, мала по сравнению с длиной волны возмущения λ, и на малом масштабе скачка

вязкое затухание мало. В соответствии с [127–129], длина волны возмущения не

влияет на коэффициент прохождения Θ через прямой скачок. Поэтому сами по

себе число Рейнольдса Re1,L и длины волны λ не должны вызывать аномально-

го поведения Θ. Однако неясно, влияет ли соотношение характерных размеров

скачка и возмущения δs/λ на появление аномального эффекта — неясно, может ли

кажущийся численным эффект отчасти иметь физическую природу. Варьирование

δs и λ путём изменения числа Рейнольдса Re1,L (2.7) и частоты возмущения ω

показывает, что такое влияние отсутствует.

Это утверждение проиллюстрировано на рис. 2.11, где представлен результат

прохождения медленной акустической волны через скачок. В базовом случае с

δs ≈ 2.3 · 10−3 и λ = 2π(1− 1/M1)/ω ≈ 41.9 · 10−3, что даёт δs/λ ≈ 5.5%. Рисунок

2.11а демонстрирует подобные кривые при различных δs/λ, полученные на грубой

сетке, но сходимости Θ(α) по этому параметру к теоретическому значению нет.
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Толщина пойманного скачка уменьшается лишь при измельчении сетки, поэтому

на грубой сетке эффект числа Рейнольдса на Θ(α) оказывается мал, как и влияние

λ.

Более важную роль играет степень разрешения скачка. При его достаточном

разрешении согласие с теорией становится очевидным (рис. 2.11б). Тем не менее,

сеточное разрешение всё ещё неидеально, и между расчётом и теорией остаются

незначительные отклонения в пределах 0.5%. Кривые вновь развиваются подобно

друг другу с ростом α. Таким образом, только сеточное разрешение вязкой струк-

туры ударной волны определяет появление аномалии при взаимодействии скачка с

акустическими волнами.

Следует вновь отметить всплеск на рис. 2.11а при наибольшем рассмотрен-

ном числе Рейнольдса. Он расположен близко по α к аналогичному всплеску на

рис. 2.10а и напоминает поведение неустойчивой численной схемы вблизи некото-

рых положений скачка внутри ячейки [143].

2.2.4.2. Отражение от скачка

Рассмотрим отражение медленной акустической волны, которая набегает на

скачок из области дозвукового течения за скачком (рис. 2.12). Поведение коэффици-

а) Пойманный скачок на грубой сетке б) Разрешённый скачок на достаточной

сетке

Рисунок 2.11 — Влияние δs и λ на величину Θ в случае медленной акустической

волны
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ента отражения R = δpпад2 /δp2 вновь является аномальным, если скачок пойман на

сетке. Сходимость к результатам линейного анализа немонотонна по мере измель-

чения сетки. Следует вновь отметить значительный всплеск вблизи α ≈ 0.63 на

грубой сетке, который примерно втрое выше аналогичного всплеска на рис. 2.10а.

В остальных расчётах скачок не попадал в окрестность α ≈ 0.63, и очевидного

всплеска не наблюдалось. Это может указывать на неустойчивость используемой

численной схемы вблизи данного значения α. При некотором начальном положе-

нии скачка в ячейке сетки α0 невозмущённое решение в нескольких случаях вовсе

не устанавливалось, а в других случаях, наоборот, устанавливалось с высокой точ-

ностью, но к совершенно другому значению α 6= α0. Причина потери численной

устойчивости остаётся неясной, так как не удалось получить скачок α = 0.63 ни в

одном из хорошо установившихся невозмущённых течений. Тем не менее, если

скачок разрешён на сетке, численные результаты приближаются к результатам

линейного анализа равномерно по α, как показано на рис. 2.12.

При малых α отражение акустической волны от пойманного скачка может при-

водить к изменениюфазы отражённой волны на π. Это явление проще наблюдать на

примере пакета волн (рис. 2.13): максимум возмущения при x ≈ 0.3 на грубой сетке

(рис. 2.13а) превращается в минимум на подробной сетке (рис. 2.13б). Аналогичная

неоднозначность может проявляться и в случаях, представляющих практический

интерес, как например, в двухмерных расчётах, показанных на рис. 2.5, которые

стали мотивацией данного методического исследования.

Результаты, полученные при отражении и прохождении акустических волн

через скачок коррелируют друг с другом: амплитуда отражённой волны непредска-

зуема, пока скачок не разрешён на сетке.

2.2.4.3. Движущийся скачок

До сих пор аномальное взаимодействие возмущений с пойманным скачком

наблюдалось в связанной с ним системе отсчёта, где скачок имел стационарное

положение. Чтобы оценить важность этого условия, рассмотрим классическую

задачу движения скачка в покоящемся газе с периодическим изменением плотности

— с покоящейся в нём энтропийной волной. Рассмотрение проводится в двух

системах отсчёта: первая связана со скачком (скачок покоится); вторая связана с
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Рисунок 2.12— Коэффициент отражения медленной акустической волны от скачка

а) Грубая сетка

б) Достаточная сетка

Рисунок 2.13 — Пакет медленных акустических волн после отражения от скачка

в фиксированный момент времени. Скачок отмечен пунктиром. Слева показана

структура узлов расчётной сетки на распределении dp(x)/dx (не в масштабе с

осью x); стрелкой отмечено положение скачка
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газом (газ покоится, а скачок движется через газ). Постановка задачи дана в [148]

и кратко повторяется далее. Исходная амплитуда δρ = 0.1 уменьшена до 2 · 10−4,

чтобы соответствовать базовому случаю δT = 2 · 10−4 (следует из (1.9) при δp = 0,

T = 1, ρ = 1) и гарантировать линейную эволюцию волн в однородном потоке.

Рассмотрим прямой скачок, который движется при числе МахаM∞ = 3 слева

направо, оставляя за собой область течения, которая движется с числом Маха

M ′
∞ ≈ 0.4758. Таким образом, область справа от скачка соответствует состоянию

1 перед скачком, а область слева — состоянию 2 за скачком. Изначально скачок

располагается при x = 0 (α0 = 0). Область 1 (справа от скачка) покоится, а поле

плотности в ней возмущено периодически на протяжении семи периодов

ρ1 (t = 0, x) = 1+δρ1·sin (kxx) , x ∈ [0 + dx, 0.4375] , kx = 100.5310, δρ1 = 2·10−4.

Соответствующее возмущение температуры находится из (1.5) как T1 =

γM 2
∞p1/ρ1 = 1/ρ1. Невозмущённое поле течения перед и за скачком есть

(u, v, p, T )1,b =
(
0, 0, 1/

(
γM 2

∞
)
, 1
)
,

(u, v, p, T )2,b =
(
0, 740741, 0, 10.333333/

(
γM 2

∞
)
, 2.679012

)
.

В такой постановке скачок движется со скоростью us = 1 сквозь энтропийную

волну, оставляя за собой акустическое поле в области 2. Это явление можно коли-

чественно измерить через коэффициент порождения G— отношение амплитуды

давления δp2 акустической волны к масштабированной амплитуде энтропийной

волны δs1 в момент времени t = 0.3, когда скачок достигнет положения xs = 0.3.

Теоретическое значение безразмерного коэффициента порождения имеет вид

|Gt| =
γM 2

∞
T1,b

· δp2
δρ1

=
2γM 2

∞(M 2
∞ − 1)

(γ + 1)(1 +M 2
∞(1 + 2M ′2

∞))
≈ 4.525.

Чтобы найти величину G по результатам численного моделирования, следу-

ет учесть изменение амплитуды покоящегося возмущения во времени за счёт

теплопроводности. Для этого три максимума |p′| в области за скачком и четыре

максимума |ρ′| в области перед скачком по очереди аппроксимировались экспо-

ненциальной кривой (см. раздел 2.1) и далее экстраполировались на положение

скачка xs = 0.3 вдоль этой кривой. Численное моделирование движущегося скачка
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дало значение G = 4.53 на очень грубой сетке5, что иллюстрирует слабое влияние

расчётной сетки на порождаемое акустическое поле.

При рассмотрении той же физической задачи для пойманного стационарного

скачка и набегающей на него энтропийной волны положение скачка α становится

важным — проявляется численная аномалия (рис. (2.14)). Вновь наблюдается

равномерная сходимость G(α) к результатам линейной теории при улучшении

сеточного разрешения скачка. В случае движущегося скачка аномалия пропадает.

Это может означать, что возникающие численные ошибки компенсируют друг

друга по мере того, как скачок проходит всю сеточную ячейку (как отмечается

в [142; 145] в контексте поведения консервативных переменных поперёк скачка

в невозмущённом течении), что в результате приводит к корректному среднему

значению порождения акустической волны. Это направление представляет интерес

для теоретического анализа численных схем.

5Очень грубая сетка приM1 = 3 превращается в грубую приM1 = 6 из-за утолщения скачка

Рисунок 2.14 — Коэффициент порождения акустической волны при взаимодей-

ствии стационарного скачка с энтропийной волной
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2.2.5. Размывание скачка

Помимо измельчения сетки есть иной способ улучшить пространственное

разрешение скачка — уменьшить число Рейнольдса, что в соответствии с (2.7)

приведёт к увеличению толщины скачка и локальному усилению вязкого затухания

возмущений. Изменять число Рейнольдса разумно, влияя на коэффициент вязкости

µ.

Чтобы абстрагироваться от избыточного вязкого затухания, рассмотрим случай

большого числа Рейнольдса Re1,L = 100Re1.L,b. Влияние размывания скачка на

его взаимодействие с возмущениями проверим на примере исходно грубой сетки,

которую превратим в грубую, минимальную и достаточную, кратно увеличивая

коэффициент вязкости поперёк скачка по сравнению с исходным невозмущённым

течением, соответственно, вm = 2, в 4 и в 8 раз:

µ

µ∗
=


m, |x− xs| 6 ∆s,

1 + m−1
2

(
1 + cos

(
π |x−xs|−∆s

∆s

))
, ∆s < |x− xs| 6 2∆s,

1, иначе.

(2.9)

Здесь xs = 0, ширина размытия ∆s = 10−4, а длина 2∆s полностью покрывает

размываемый скачок. Суммарная длина 4∆s, на которой изменяется распределение

исходного коэффициента вязкости, не превосходит 1% от длины волны возмущения.

Поэтому, как будет показано ниже, вязкое затухание возмущения на масштабе этой

области мало.

Результаты обобщены на рис. 2.15. Изначально пойманный скачок, размываясь,

превращается в разрешённый, и зависимость Θ(α) становится всё слабее по мере

размытия, как будто улучшается сеточное разрешение скачка. Результаты, полу-

ченные на минимальной сетке как в случае измельчения сетки, так и при размытии

скачка, демонстрируют очень близкие зависимостиΘ(α). Эти зависимости остают-

ся близки и на грубой сетке, за исключением окрестности α = 0.6, где избыточная

вязкость подавляет внезапный аномальный рост коэффициента порождения, об-

суждаемый выше. Таким образом, введение избыточной вязкости поперёк скачка

хорошо коррелирует с измельчением расчётной сетки. Однако дополнительную

вязкость существенно проще реализовать в общем виде, опираясь на критерий

разрешённого скачка (2.8). Решения на достаточных сетках, использованные на

рис. 2.15, очевидно, удовлетворяет этому критерию.
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Слишком большая искусственная вязкость может привести к заметному затуха-

нию возмущения на длине 4∆s, где она добавляется. Нетрудно оценить добавочный

декремент ki, используя линеаризованное уравнение импульса в одномерном при-

ближении6

∂u′

∂t
+ uB

∂u′

∂x
= − 1

ρB

∂p′

∂x
+

4µB
3ρB

· 1

Re

∂2u′

∂x2
, (2.10)

где для нормировки используется некоторое опорное состояние потока. Для этого

рассмотрим возмущения u′ и p′ в виде простой волны q′ = q̂ exp (iωt− ikx), где q

обозначает u или p, а также используем связь амплитуд в медленной акустической

волне û = p̂M/ (ρBuB). Предположим, что затухание происходит медленно: |ki| �
|kr|, где k = kr + iki ∈ C — волновое число. Также предположим однородное

базовое течение uB = const, pB = const, µB = const, в котором сохраняется

единичный массовый расход ρu = ρBuB = 1. Используя (2.7), из уравнения (2.10)

можно получить

ki ≈
4µB
3ρB

· k2r
Re · c

=
4µB
3ρB

(2π)2

M1C (M1) c · δs
·
(
δs
λ

)2

≈ 2.45

δs

µB
ρB

·
(
δs
λ

)2

, (2.11)

гдеC (M1)—слабая функция отM1, как показано в подразделе 2.2.2, а c—фазовая

скорость малого возмущения.

Так как невозмущённое течение содержит скачок и не является однородным,

волна непрерывно меняется (усиливается или порождается) на протяжении об-

ласти неоднородности из-за появления межволнового обмена. Это существенно

невязкий механизм, который описывается уравнениями Эйлера (их одномерная

характеристическая форма приведена, например, в [168]). Даже если удастся от-

делить этот механизм от вязкого механизма, предложить простую модель вязкого

затухания волны на протяжении всей области представляется нетривиальной за-

дачей. Вместо этого оценим суммарный эффект вязкого затухания, предполагая,

что межволновой обмен сосредоточен вблизи начала xL области неоднородности

течения. В результате обмена формируется волна с некоторой амплитудой, которая

6Корректная постановка задачи о затухании элементарного возмущения опирается на все уравнения

Навье—Стокса и изложена в подразделе 2.1.1. Здесь же делается упрощённая (качественная) оценка, ос-

нованная только на уравнении импульса. Она учитывает затухание волны за счёт вязкости, но не тепло-

проводности. Так как число Прандтля принято постоянным, то вклад теплопроводности в затухание волны

должен быть пропорционален вкладу вязкости. Поэтому оценка (2.11) отличается от точного теоретиче-

ского решения постоянным множителем, в чём можно убедиться, сопоставив её с выражением (2.1) при

(uB, ρB, µB) = (1, 1, 1).
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Рисунок 2.15 — Эффект размывания скачка на прохождение медленной акустиче-

ской волны через него, Re1,L = 100Re1,L,b

впоследствии выпадает из анализа. Далее волна развивается при xL < x < xR, ис-

пытывая лишь вязкое затухание. В этом случае имеем оценку суммарного вязкого

ослабления волны

ln

(
δp2
δpo2

)
≈ −

ˆ xR

xL

(ki − koi ) dx ≈ −xR − xL
2

((
ki,L − koi,L

)
+
(
ki,R − koi,R

))
,

(2.12)

где верхний индекс «o» обозначает случай без дополнительной вязкости.

Рассмотрим случай, когда исходный коэффициент вязкости увеличивается на

отрезке [xL, xR] равномерно вm раз и не изменяется вне этого отрезка (упрощение

зависимости (2.9)). Связь между k0i,L и k
0
i,R оказывается простой в случае, когда

состояние L соответствует состоянию до скачка для медленной акустической

волны, а состояниеR—после скачка для быстрой акустической волны (медленная

волна отсутствует в дозвуковом потоке за прямым скачком). Положим [xL, xR] =[
−10−2, 10−2

]
. Если воспользоваться формулой (2.11), состоянием перед скачком

u1 = 1, ρ1 = 1, µ1 = 1 и сохранением массового расхода ρu = 1 поперёк скачка, то

в данной постановке уравнение (2.12) сведётся к виду

ln

(
δp2
δpo2

)
≈ −xR − xL

2
(m− 1)

(
1 +

µ2
u22

(
1− 1/M1

1 + 1/M2

)3
)

· koi,1 ≈ −0.06 (m− 1) .

(2.13)
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Таким образом простая модель указывает, что дополнительная вязкость приво-

дит только к вязкому затуханию, которое усиливается экспоненциально с ростом

коэффициента усиления вязкостиm. Следует отметить, что в модели не сделано

предположений о возможном влиянии дополнительной вязкости на взаимодействие

скачка с возмущениями. Для численной валидации модели рассмотрим случаи с

параметромm ∈ {1, 2, 3, 5, 7, 10}. Приm = 10 скачок занимает практически весь

отрезок [xL, xR]. На рис. 2.16 показаны результаты валидации, подтверждающие,

что дополнительная вязкость не влияет на взаимодействие скачка с возмущениями,

но может приводить к подавлению возмущений в случае, когда её величина оказы-

вается слишком большой. Наклон аппроксимирующей прямой не равен единице,

что, вероятно, обусловлено приближённым характером предложенной модели.

Важно подчеркнуть, что используя критерий (2.8), можно добавлять вязкость

только на толщине размытого скачка, то есть xR − xL ≈ δs. В этом случае из

выражения (2.13) после подстановки koi,1 в соответствии с (2.11), получается

ln

(
δp2
δpo2

)
≈ kiδs ∼

(
δs
λ

)2

.

Как правило, отношение δs/λ мало, и вязкое затухание физического решения

незначительно. Однако оно становится порядка единицы, когда рассматриваются

возмущения вблизи слабо притупленных кромок или на колмогоровском масштабе

длины в задачах взаимодействия турбулентности потока со скачком. В этом случае

следует использовать подход размытия скачка с осторожностью.

0.0 0.1 0.2 0.3 0.4 0.5
0.06 · (m− 1)

0.0

0.1

0.2

0.3

ln
(δ
p
R
/δ
p
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)

Numerics
Linear regression: y= 0.631x+ 0.003

Рисунок 2.16 — Влияние размывания скачка на численное затухание возмущений
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Численное моделирование при M1 = 6 с размыванием скачка показывает,

что коэффициент прохождения Θ уменьшается лишь на 0.2% от его величины

в исходной постановке задачи, даже если δs/λ < 0.1. Такое мягкое ограничение

привлекательно для приложений: допустимо локальное увеличение вязкости на

один-два порядка величины. Следует также отметить, что затухание возмущений

из-за введения дополнительной вязкости рассмотрено само по себе и поэтому не

зависит от сеточного разрешения.

2.2.6. Косой скачок уплотнения

При анализе роли наклона скачка β1 (см. схему на рис. 2.6) важно помнить,

что толщина скачка увеличивается при уменьшении числа Маха ниже значения

~3, как показано на рис. 2.9а. Рассмотрим очень грубую сетку, на которой скачок

оказывается пойманным во всех расчётных случаях этого подраздела. Также для

удобства сосредоточимся на случае быстрых акустических волн, фронты которых

параллельны фронту скачка (θ = 0). Таким образом, чем больше наклон скачка,

тем короче длина волны в направлении x.

Интенсивность скачка определяется нормальной составляющей числа Маха

M1n. Чтобы продемонстрировать, что численные аномалии постепенно исчеза-

ют по мере ослабления скачка, рассмотрим случай M1 = 6 при различных на-

клонах скачка β1 ∈ {0°, 30°, 45°, 60°, 68°, 75°, 80°}. Соответствующие значения
M1n =M1 cos β1 приведены в табл. 2.1 и покрывают диапазон от 1 до 6. Результаты

обобщены на рис. 2.17 в виде максимального по α относительного отклонения ко-

эффициента прохождения Θ от своего теоретического значения Θt [129] — то есть,

разные точки в общем случае соответствуют разным значениям положения скачка

α внутри сеточной ячейки. Также на рис. 2.17 помещены результаты расчётов с

прямым скачком, интенсивность которого соответствует анализируемым интен-

сивностям косого скачка (M1(β = 0) =M1n(M1 = 6)). Обе кривые расположены

близко друг к другу.

Три расчётных случая с определёнными значениями α были исключены из

рассмотрения (помечены кружком с крестиком), так как при них не было получено

хорошо сошедшегося невозмущённого течения. Это значит, что либо скачок не

оставался параллельным сеточной линии x = const (как, например, в [144]), либо
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Рисунок 2.17 — Влияние интенсивности косого скачка на аномальное поведение

быстрой акустической волны при прохождении через скачок

сам по себе проявлял малые нестационарные осцилляции в отсутствие внешних

возмущений.

Общее наблюдение можно сформулировать так: если пойманный скачок не

возмущён на расчётной сетке, аномальный эффект численного метода проявляется

при взаимодействии малых возмущений с наклонным скачком тем сильнее, чем

выше интенсивность скачка. Если же невозмущённое течение имеет признаки

искажения или вовсе не устанавливается (даже минимальные осцилляции скачка

имеют значение), аномальный эффект проявляется значительно сильнее. При этом

тяжело установить его связь с интенсивностью скачка из-за недостатка расчётных

данных. Тем не менее, все невозмущённые течения приM1n < 2 хорошо сошлись

для всех значений α.
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2.2.7. Замечание о роли наклона волновых фронтов

Эффект взаимодействия элементарных возмущений со скачком продолжает

проявляться для волн с наклоннымифронтами, θ1 6= 0, если вязкая структура скачка

не разрешена на расчётной сетке. Однако отклонение от теоретического значения

остаётся близким для всех углов θ1, если сеточное разрешение не изменяется.

Теоретическое значение достигается по мере разрешения скачка на сетке.

Единственным особым случаем, при котором пойманный скачок не приводит к

аномальному эффекту, является случай вихревого возмущения при θ1 = 0°, для

которого возмущена только составляющая вектора скорости, параллельная скачку.

В соответствии с [127–129], в этом случае за скачком не порождаются акустические

или энтропийные волны, и прямой расчёт подтверждает это. Однако в случае

наклонной волны завихренности, θ1 6= 0, за скачком возникают возмущения всех

типов, и проявляется их аномальное поведение, которое ослабевает при θ1 → 0°.

2.3. Волновой поезд первой моды

Монотонные схемы сквозного счёта диссипативны. Это позволяет устойчиво

рассчитывать течения с ударными волнами, отрывными областями, пограничны-

ми слоями и другими особенностями с учётом их взаимодействия. Избыточная

диссипация приводит к численному затуханию малых возмущений. Однако при

правильном выборе расчётной сетки темпы роста возмущений в неустойчивых

пограничных слоях заметно превосходят эффекты, связанные с численной дис-

сипацией. В данном разделе демонстрируется применимость численного метода,

описанного в разделе 1.2, для моделирования ламинарно-турбулентного перехода

сверхзвукового пограничного слоя на заострённой плоской пластине при числе

МахаM∞ = 3. Результаты моделирования верифицируются на результатах расчё-

тов [93; 169; 170] (преимущественно [169]), проведённых с помощью значительно

менее диссипативного метода. Этот метод основан на схеме четвёртого порядка

аппроксимации по продольному и нормальному к поверхности направлениям; в бо-

ковом направлении применяется спектральный метод; интегрирование по времени

проводится по методу Рунге–Кутты четвёртого порядка аппроксимации.
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Изложенные ниже результаты являются развитием работы [171]. Расчёты и

анализ результатов настоящего раздела выполнены совместно с аспирантомМФТИ

Нгуен Ньи Кан. Ниже представлены основные результаты верификации, а более

детальное сравнение можно найти в работе [172].

2.3.1. Постановка задачи

Постановка задачи соответствует постановке в работах [93; 169; 170]. Рас-

сматривается номинально двухмерное течение над заострённой адиабатически

прогретой плоской пластиной приM∞ = 3, T ∗
∞ = 103.6К, Re∞,1 = 2.181 · 106 м−1,

L = 0.7239м, Pr = 0.71. На обеих границах по z накладываются условия симмет-

рии.

Возмущения вводятся с помощью генератора — нормального к поверхности

вдува – отсоса газа, организованного при x∗ ∈ [x∗1;x
∗
2] = [0.394; 0.452]м. Математи-

чески генератор выражается нестационарным граничным условием, расширяющим

условие стенки:

v′ (x, t) = ε · v′p (xp) cos (β0z) cos (ω0t) ;

v′p =

1.54 (1 + xp)
3 (3(1 + xp)

2 − 7(1 + xp) + 4
)
, −1 6 xp < 0;

−1.54 (1− xp)
3 (3(1− xp)

2 − 7(1− xp) + 4
)
, 0 6 xp 6 1;

xp =
2x− (x2 + x1)

x2 − x1
.

Здесь ε = 0.00573— целевая амплитуда, которая плавно достигается спустя один

период фундаментальной гармоники с частотой ω∗
0/2π = 6.36 кГц и боковым

волновым числом β∗
0 = 211.52м−1. Плавное наращивание амплитуды помогает

значительно ослабить интенсивную головную часть порождаемого волнового по-

езда и быстрее достичь квазипериодического режима, на котором статистические

характеристики возмущённого течения постоянны и не зависят от начального эта-

па расчёта. Форма генератора вдоль направления x— v′p(xp)— представлена на

рис. 2.18.

Результаты проведённых расчётов качественно и количественно согласуются с

результатами [169]. Однако амплитуда возмущений ε в настоящей работе установ-

лена практически вдвое выше, чем в [169]. Это сделано для совпадения положения
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Рисунок 2.18 — Форма генератора возмущений вдоль потока, v′p(xp)

начала ЛТП в обеих работах. Ниже на примере распределений cf(x) будет показа-

но, что положение ЛТП практически не зависит от рассматриваемых расчётных

сеток — численная диссипация незначительна. Так как имеется общее хорошее

согласие полученных результатов с результатами [169], вероятно, что амплитуда

возмущений указана в [169] неверно.

Расчёт эволюции возмущений проводится в прямоугольной подобласти (см.

подраздел 1.2.3.1). Вдоль подобласти укладывается 14 длин фундаментальной

волны λ∗0,x = 2π/α∗
0,r, а в боковом направлении — ровно одна длина волны λ∗0,z =

2π/β∗
0 ≈ 0.03. Высота подобласти составляет не менее пяти толщин пограничного

слоя на выходной границе. Начало подобласти расположено перед генератором

возмущений (x∗ = 0.258 м от передней кромки) и не подвержено его влиянию.

Расчёты выполнены на грубой и подробной сетках, описанных в [172]. Подроб-

ная сетка содержит около 80 млн узлов (соответствует [169]) и имеет избыточное

разрешение на длину волны: до 320 точек на λ0,x и равномерно 201 = Nz точка

на λ0,z. Поперёк пограничного слоя приходится около 100 узлов. Грубая сетка

имеет вдвое меньшее количество узлов в направлениях x и z. При таком сеточном

разрешении эффект численной диссипации представляется незначительным.
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2.3.2. Возмущённое поле течения

Анализ нестационарных полей начинается с момента времени t ≈ 2.25, когда

течение выходит на квазипериодический режим — в каждой точке расчётной обла-

сти изменение газодинамических переменных периодично по времени и размаху

z. Развитое возмущённое течение изображено на рис. 2.19. Генератор возмущений

порождает стоячую по z волну, состоящую из пары наклонных волн (ω0,±β0),
которые эволюционируют вниз по потоку. Сначала наблюдается линейная стадия

усиления, далее проявляются признаки нелинейности в виде измельчения вихре-

вых структур в направлении z, после чего происходит быстрый распад возмущений

в мелкомасштабные структуры с развитием молодого турбулентного течения.

Периодичность течения в нелинейной области (см. рис.2.20а) обусловлена пери-

одичностью вводимых возмущений (их частота фиксирована). Наиболее сильной

оказывается механизм квадратичной нелинейности, который приводит к порож-

дению гармоник с кратными частотами и волновыми числами по отношению к

фундаментальной волне (ω0, β0) — развивается детерминированная турбулент-

ность7. Это проиллюстрировано на рис. 2.20б, где изображены амплитуды Фу-

рье8 нелинейного сигнала: кратные гармоники возникают в шахматном поряд-

ке. Например, для стационарного возмущения ω = 0 и других чётных частот

(h = 0, 2, 4, ..., ω = h · ω0) наблюдаются только максимумы на чётных волновых

числах k = 0, 2, 4, 6, ... (β = k · β0), а для нечётных частот (h = 1, 3, 5, ...) — на

нечётных волновых числах k = 1, 3, 5, .... Такая картина свойственна механизму

наклонного распада, когда нелинейно (квадратично) взаимодействуют две гармони-

ки с одинаковыми частотами, но противоположными по знаку волновыми числами:

частота удваивается, а волновое число обнуляется: [1, 1] + [1,−1] → [2, 0]. Чем

ближе гармоника расположена к фундаментальной, тем выше её амплитуда. Это

связано с тем, что нелинейный распад продвигается в высокочастотную область

постепенно, а также с численной диссипацией коротковолновых гармоник.

7Причинно обусловленная (нестохастическая) турбулентность, у которой мгновенная структура, на-

пример, поля u(x, y, z, t) может быть воспроизведена многократно при воспроизведении всей предыстории
начальных условий. Термин «детерминированная турбулентность» вводится в обширном эксперименталь-

ном исследовании нелинейной стадии ЛТП в дозвуковых пограничных слоях [173] наряду с термином

«стохастическая турбулентность», у которой воспроизводятся среднестатистические характеристики, а

мгновенные — нет.
8Амплитуды нормированы на Nt ×Nz/4, где Nt и Nz — количество точек в сигнале по времени и по

координате z, соответственно
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Рисунок 2.19 — Возмущённое течение на подробной сетке при t = 5.2. Изоповерх-
ность Q = 10 раскрашена в соответствии с величиной продольной компоненты
скорости u. В сечении z = zmin показано поле давления p. Изображение включает
часть буферной зоны

а) Пример возмущённого сигнала

u′ (t, x0y0, z0), z
∗
0 = −0.0076

б) Амплитуды Фурье для u′ (t, x0y0, z)

Рисунок 2.20 — Возмущение u′ внутри пограничного слоя при y∗0 = 0.0035 в
области развитого нелинейного течения x∗0 = 0.9201
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Несмотря на детерминированность турбулентности и граничные условия сим-

метрии в боковом направлении, возмущённое течение развивается несимметрично

по z к концу расчётной области (см. рис. 2.21а). В спектральном составе воз-

мущений 2.21б проявляется субгармоника ω0/2. Несмотря на малую амплитуду

субгармоника участвует в квадратичном взаимодействии, что приводит к появ-

лению промежуточных спектральных пиков по частоте. Следует отметить, что

начальная стадия нелинейного взаимодействия по механизму субгармонического

резонанса реализуется в эксперименте и исследовалась на дозвуковых и сверхзву-

ковых скоростях (см., напр., [29; 174]).

2.3.3. Верификация на линейном режиме

Линейный режим развития возмущений наблюдается при 0.4 > x > 0.6. Ампли-

тудные (собственные) функций для фундаментального возмущения [h, k] = [1, 1] в

сечении x∗ = 0.5 хорошо согласуются с результатами работы [169], как показано

рис. 2.22. Для каждой из амплитудных функций можно выделить линию y = ymax,

где она достигает максимума. Для пульсаций u′ и T ′ эта линия располагается в

критическом слое пограничного слоя, ymax/δ ≈ 0.65. Развитие такого максимума

а) Поле амплитуды пульсаций

maxt (u
′(t, x0, y, z)); красным кружком

помечена точка (ymax, zmax) с
наибольшей амплитудой

б) Амплитуды Фурье для сигнала

u′(t, x0, ymax, zmax)

Рисунок 2.21 — Результаты расчёта перед входом в буферную зону (x∗0 ≈ 1.069м)
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вниз по потоку также хорошо согласуется с результатами [169] на линейном ре-

жиме даже на грубой сетке, хотя на нелинейном режиме появляются небольшие

отклонения (рис. 2.23а).

Инкремент пространственного роста возмущений чувствителен к численной

диссипации, зависит от структуры невозмущённого течения и поэтому пред-

ставляет интерес для верификации. Распределение инкремента, рассчитанного

для возмущения продольной составляющей возмущения скорости, −αi(x) =

d
(
lnu′[1,1],max(x)

)
/dx, приведено на рис. 2.23б. Наблюдается хорошее согласо-

вание результатов численного моделирования. Результаты соответствуют предска-

занию линейной теории устойчивости при x > 0.7. Далее расчётные инкременты

сильно отклоняются от теоретических, что соответствует началу нелинейной ста-

дии развития возмущений.

2.3.4. Верификация на нелинейном режиме

Нелинейная стадия проявляется на картинах Q-критерия в виде появления и

заметного усиления подковообразных вихрей (см. рис. 2.19). Процесс нелиней-

ного распада можно визуализировать с помощью развития максимальных по y

амплитуд различных гармоник. Резонанс наклонных волн протекает последова-

Рисунок 2.22 — Амплитудные функции фундаментального возмущения (ω0, β0) в
сечении x∗ = 0.5м: 1 — [169]; 2 — текущие расчёты
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а) u′[1,1](x, ymax, 0), 3 — текущие

расчёты (грубая сетка)

б) −α[1,1],i(x), 3 — линейная теория [169]

Рисунок 2.23—Поверхностное распределение максимума амплитудной функции и

инкремента роста фундаментального возмущения (ω0, β0): 1 — [169]; 2 — текущие

расчёты (подробная сетка)

тельно. Сначала нарастает преобладающая фундаментальная волна [1,±1]. При

достижении некоторой критической амплитуды нелинейное взаимодействие этой

волны с собой же порождает и далее подпитывает до достаточно высоких амплитуд

кратные гармоники (h = 0 и h = 2, k = 0 и k = 2). Далее кратные гармоники

начинают нелинейно взаимодействовать друг с другом и с фундаментальными

гармониками, порождая кратные гармоники более высокого порядка. Такой про-

цесс и его временная последовательность прослеживаются на рис. 2.24 и 2.25,

иллюстрирующих эволюцию амплитуд разных гармоник. Описанный механизм

объясняет шахматную структуру спектра на рис. 2.20б.

Следует отметить хорошее совпадение в эволюции гармоник [169] в областях

линейного и слабонелинейного развития возмущений. В области молодой турбу-

лентности согласие сохраняется для основных энергосодержащих гармоник (h = 0

и 1, k = 0 и 1), рассчитанных на подробной сетке, но с ростом h и k появляется

небольшое рассогласование. Результаты, полученные на грубой сетке, заметно

отличаются от результатов на подробной сетке во всей области молодой турбулент-

ности. При этом во всех случаях амплитуды гармоник остаются на одном уровне,

что может быть следствием накопления ошибки диссипативного метода.

На рис. 2.26 показано сопоставление эволюции полей завихренности с рас-

чётами [93], проведёнными в той же постановке, что и в работе [169], но на ещё

более подробной сетке в 211 млн узлов. Вихрь вблизи x∗ ≈ 0.84м (рис. 2.26а)
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а) h = 1 б) h = 3

Рисунок 2.24— Распределение

∣∣∣u′[h,k] (x, ymax, 0)
∣∣∣: 1, 4, 7— [169]; 2, 5, 8— текущие

расчёты (подробная сетка); 3, 6, 9— текущие расчёты (грубая сетка); 1 – 3— k = 1;
4 – 6 — k = 3; 7 – 9 — k = 5

а) h = 0 б) h = 2

Рисунок 2.25 — То же, что и на рис. (2.24), но для чётных частот: : 1, 2, 3 — k = 2;
4, 5, 6 — k = 4; 7, 8, 9 — k = 6
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сносится через точку x∗ ≈ 0.87м (рис. 2.26б) к положению x∗ ≈ 0.90м (рис. 2.26в),

где начинает активно распадаться на мелкие вихри, которые сносятся потоком до

x∗ ≈ 0.92м (рис. 2.26г). К этому моменту к сечению x∗ ≈ 0.84 подходит новый

вихрь, и процесс повторяется (квазипериодический режим). Период повторения

равен периоду фундаментального возмущения 2π/ω0, так как субгармонические

возмущения слишком слабы и не проявляются визуально.

Поведение основных крупномасштабных структур хорошо согласуется. В обо-

их случаях можно сделать вывод, что крупные вихри распространяются со ско-

ростью невязкого потока U ∗
∞. Мелкомасштабные вихри также воспроизводятся в

проведённых расчётах, но недостаточно детально по сравнению с результатами

[93].

Рисунок 2.27 сопоставляет структуры течения в нескольких сечениях x = const

в переходной области, подтверждая сделанные ранее выводы о согласовании полей

течения.

В завершение рассмотрим распределение локального коэффициента трения

cf(x), осреднённое на квазипериодическом режиме течения по интервалу времени

10·2π/ω0 и по всему размаху расчётной области (на длине волныфундаментального

возмущения λ0,z). Рисунок 2.28 показывает, что начиная с x
∗ ≈ 0.72м, величина cf

отклоняется от ламинарной ветви распределения. При x∗ > 0.86 результаты исполь-

зуемой диссипативной схемы совпадают с результатами [169] даже на грубой сетке.

Ниже по потоку распределение cf(x), полученное на грубой сетке, оказывается

ниже остальных кривых. Результаты, полученные на подробной сетке, продолжают

демонстрировать хорошее совпадение и в области молодой турбулентности при

x∗ ? 0.9м, достигая турбулентного уровня при x ≈ 0.95.

2.3.5. Выводы

Диссипативные численные схемы пригодны для моделирования процесса

ламинарно-турбулентного перехода и надежного воспроизведения локальных и

интегральных характеристик течения при правильном выборе параметров рас-

чётной сетки. Это подтверждено путем верификации используемого численного

метода на модельной задаче ламинарно-турбулентного перехода на пластине по

механизму наклонного распада волн (косого резонанса) — настоящие результаты
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а) t = t0

б) t = t0 + 0.3 · 2π/ω0

в) t = t0 + 0.6 · 2π/ω0

г) t = t0 + 0.9 · 2π/ω0

Рисунок 2.26 — Мгновенное поле z-компоненты вектора завихренности в сечении

z∗ = −0.0087м в различные моменты времени. Верхняя половина — текущие

расчёты; нижняя половина — [93] после отражения (сетка 211 млн. узлов)
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а) x∗ = 0.862м б) x∗ = 0.866м в) x∗ = 0.870м

Рисунок 2.27 — Мгновенное поле x-компоненты вектора завихренности в некото-

рый момент времени в различных сечениях x = const. Левая половина — [169];

правая половина — настоящие расчёты

Рисунок 2.28 — Поверхностное распределение коэффициента трения cf , осред-
нённого по t и z: 1 — ламинарная ветвь (настоящая работа); 2 — теоретическая

турбулентная ветвь [175]; 3 — работа [169]; 4 — грубая сетка; 5 — подробная сетка
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сопоставлены с результатами, полученными с применением низкодиссипативных

схем [93; 169; 170].

Положение точки начала перехода практически не зависит от количества узлов

сетки и порядка аппроксимации схемы, если основная фундаментальная гармони-

ка и ее ближайшие кратные гармоники достаточно хорошо разрешены. При этом

сеточное разрешение гармоник более высокого порядка, по-видимому, играет вто-

ростепенную роль при моделировании начала ЛТП и интегральных характеристик

течения.

Более детальное сопоставление расчётных результатов можно найти в статье

автора [172].

2.4. Замечание о заострённой кромке

Во всех расчётах настоящей диссертации рассматривается приближение острой

передней кромки, которая обычно располагается вблизи пересечения входной гра-

ницы расчётной области (набегающий поток при x = 0) и границы стенки (условие

стенки при y = 0). Теоретически на острой передней кромке возникает особен-

ность течения. Для корректного обхода этой особенности требуется учитывать

реальное малое притупление кромки, что значительно усложняет расчётную сетку

и процесс численного моделирования в целом. Если взаимодействие с передней

кромкой не исследуется, а реальное притупление кромки достаточно мало9 (кромка

является заострённой), приближение острой кромки представляется допустимым.

При этом теоретическая особенность снимается численно благодаря диссипатив-

ным свойствам применяемого численного метода, а неучёт реального притупления

кромки практически не влияет на течение за ней.

Также следует отметить, что характерная длина волны возмущений, попада-

ющих в пограничный слой из набегающего потока (акустические, вихревые и

энтропийные волны), на два порядка больше радиуса притупления реалистичной

заострённой передней кромки (~10 мкм для экспериментальных моделей). Поэто-

му приближение острой кромки в задачах настоящей диссертации представляется

разумным и обоснованным.

9Расстояние от кромки до точки поглощения энтропийного слоя пограничным слоем много меньше

характерного линейного масштаба задачи L∗.
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Приближение острой кромки получило широкое распространение при прове-

дении расчётных исследований (см., напр., [37]).

2.5. Выводы по главе

Исследована применимость численного метода к моделированию нестацио-

нарного развития возмущений. Показано, что при пространственном сеточном

разрешении в 30 точек на длину элементарной волны численное затухание до-

статочно мало и не должно влиять на результаты, обсуждаемые в последующих

главах. Исследовано появление численных аномалий, связанных с недостаточным

разрешением профиля ударной волны на расчётной сетке при моделировании

взаимодействия малых возмущений с ней. Получен критерий сеточного разре-

шения скачка с целью подавления аномальных эффектов; указаны способы его

достижения. Показано, что по мере уменьшения интенсивности скачка числен-

ные аномалии монотонно ослабляются и исчезают в отсутствие скачка. Это, в

частности, оправдывает отсутствие проверки сеточной сходимости для скачка при

исследовании нестационарных течений около тонких тел под нулевым углом атаки,

таких как пластина и конус.

Продемонстрирована применимость используемого диссипативного численно-

го метода для моделирования ламинарно-турбулентного перехода путём сопостав-

ления результатов настоящей работы с результатами, полученными с помощью

низкодиссипативного метода другими авторами.
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Глава 3. Способ возбуждения реалистичных возмущений

Для моделирования турбулентных пятен, развивающихся из детерминирован-

ных волновых пакетов, требуются большие вычислительные мощности, что свя-

зано с длительной стадией линейного роста волновых пакетов от момента их

возбуждения. Однако можно использовать расширенные данные из анализа ли-

нейной устойчивости пограничного слоя и на их основе построить процедуру

введения сформировавшихся волновых пакетов в расчётную область с помощью

специального нестационарного граничного условия. Данный раздел посвящён

теоретическому построению такого условия.

Чтобы описать развитие волновых пакетов, возникших в пограничном слое на

пластине в ответ на слабое внешнее воздействие, требуется решить две задачи:

определить начальные амплитуды каждой моды пограничного слоя (восприимчи-

вость) и рассчитать развитие этих мод вниз по потоку от места их возбуждения.

В силу малости амплитуд обе задачи можно рассматривать в рамках линеаризо-

ванных уравнений Навье — Стокса в локально-параллельном приближении, когда

Re∞,L � 1 и невозмущённое течение зависит от x как от параметра. В этом случае

решение представимо в виде разложения по собственным функциям линейного

оператора — по модам его дискретного и непрерывного спектра. В случае локали-

зованного воздействия в приближении параллельного пограничного слоя задача

восприимчивости формулировалась как начальная [33; 176] или начально-краевая

[177; 178] в зависимости от характера источника возмущений. В обоих случаях

решение представимо в виде разложения по временным или пространственным

модам пограничного слоя — в виде модового разложения. В дальнем поле от ис-

точника возмущений (пространственная задача устойчивости) в волновом пакете

остаются лишь неустойчивые моды, а остальные экспоненциально затухают или

нейтральны. Учёт слабого роста толщины пограничного слоя на пластине приводит

к тому, что частота преобладающей моды понижается вниз по течению.
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3.1. Пространственная задача устойчивости

В рамках коротковолнового приближения пространственной задачи устойчиво-

сти для пограничного слоя на плоской пластине вектор возмущения

Q (t, x, y, z) =

(
u′,

∂u′

∂y
, v′, p′, T ′,

∂T ′

∂y
, w′,

∂w′

∂y

)T

(3.1)

представляется в виде

Q (t, x, y, z) = R
[
q̂ (ω, β, Y, x) · eiS+iβz−iωt

]
,

где R обозначает действительную часть комплексной величины; частота воз-

мущения ω и боковое волновое число β действительны; продольное волновое

число α (ω, β) — комплексное собственное значение; Y = Re1/2y; S (x, ω, β) =´ x
x0
α (x̃, ω, β) dx̃— эйконал возмущения; x0 — точка потери устойчивости. В глав-

ном приближении по малому параметру Re−1/2 амплитудная функция q̂ удовлетво-

ряет системе уравнений устойчивости

dq̂

dY
= Hq̂. (3.2)

Матрица H имеет размерность 8× 8, а её явный вид известен [67; 179]. Воз-

мущения дискретного спектра удовлетворяют однородным граничным условиям:

прилипание на стенке с отстутствием пульсаций температуры, затухание вне по-

граничного слоя

Y = 0 : û = v̂ = ŵ = T̂ = 0,

Y → ∞ :
(
û, v̂, ŵ, T̂

)
→ 0.

(3.3)

Спектр задачи α (ω, β) = αr + iαi исследовался ранее [42; 180–182]. Следует

отметить, что αi < 0 соответствуют неустойчивым модам, растущим вниз по

потоку, а αi > 0— устойчивым затухающим. В рамках данного раздела система

(3.2) – (3.3) интегрировалась численно Фёдоровым А. В. (подробности даны в

[183]).
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3.1.1. Асимптотика трёхмерного волнового пакета

Будем считать, что в дальнем поле преобладает единственная мода с номером

m. Если волновой пакет модыm возбуждается локально (в окрестности некоторой

точки x0), развитие волновых компонент рассчитывается вниз по потоку от этой

точки. Если возбуждение равномерно распределено по x, волновые компоненты

рассчитываются от их точек потери устойчивости x0(ω, β). В точке наблюдения

(x, y, z), расположенной в дальнем поле, волновой пакет имеет вид

Ψm (t, x, y, z) =
1

(2π)2

ˆ ∞

−∞
dω

ˆ ∞

−∞
dβ
[
Dm (ω, β, x) · q̂m (ω, β, x, y) · eiS(x,ω,β)+iβz−iωt

]
(3.4)

Величина интегрального усиления N (ω, β, x) = −Si (ω, β, x)— N -фактор —

достигает больших значений в дальнем поле: N � 1. Поэтому разумно предпо-

ложить, что коэффициент восприимчивости Dm (ω, β) и собственные функции

q̂m (ω, β, x, y) слабо зависят от ω и β по сравнению с экспоненциальным множите-

лем eiS(ω,β). Заметим также, что вектор Ψm вещественнозначный. Это подразуме-

вает симметрию задачи, в частности: (ω, β) → (−ω,−β) ⇒ α→ −ᾱ, где верхняя
черта обозначает комплексное сопряжение. Тогда из определения эйконала сле-

дует, что S (−ω,−β) = S̄ (ω, β). Также имеется симметрия двухмерного течения

по β: S (ω,−β) = S (ω, β). Ввиду этого ограничим анализ трёхмерного (β 6= 0)

волнового пакета в области β > 0, ω > 0 и перепишем (3.4) в виде

Ψm (t, x, y, z) = R [I+] +R [I−] , (3.5)

I± =
1

2π2

¨ ∞

0

K (ω,±β) dωdβ,

гдеK (ω, β)— ядро подынтегрального выражения в (3.4).

Предполагая N � 1, оценим интеграл I+ с помощью метод перевала [184] (I−

оценивается аналогично). Основной вклад в интеграл даёт окрестность переваль-

ной точки (ωs, βs) ∈ C, которая определяется из соотношений ∂
∂ω (S + βzs − ωts) = 0,

∂
∂β (S + βzs − ωts) = 0

(3.6)
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В общем случае, эйконал S (ω, β) является аналитической комплекснознач-

ной функцией, производная которой не зависит от выбранного направления на

комплексной плоскости, а решение для действительных ts и zs соответствует фи-

зическому пространству (t, z) [179]. Поэтому условие (3.6) удобно разделить для

действительной и для мнимой осей:

∂Sr

∂ω − ts = 0,

∂Sr

∂β + zs = 0,

∂Si

∂ω = 0,

∂Si

∂β = 0.

(3.7)

В соответствии с двумя первыми условиями, максимум (горб) волнового пакета

будет наблюдаться при фиксированной продольной координате x в момент времени

ts и при боковой координате zs. Два последних условия в (3.7) определяют седловую

точку (ωs, βs)— параметры возмущения, преобладающего в сечении наблюдения

x. Седловая точка определяется численно в итерационной процедуре.

Введём краткие обозначения: ∆ω = ω − ωs, ∆β = β − βs, Ss = S(ωs, βs),

Sω = ∂S(ωs, βs)/∂ω = ts, Sβ = ∂S(ωs, βs)/∂β ≡ −zs; Sωω = ∂2S(ωs, βs)/∂ω
2;

Sωβ = ∂2S(ωs, βs)/∂ω∂β; Sββ = ∂2S(ωs, βs)/∂β
2, Dm,s = Dm (ωs, βs), q̂m,s =

q̂m (ωs, x, y, βs). Тогда

I+ ≈ Dm,sq̂m,s

iπ
√
SωωSββ − S2

ωβ

· exp (iS(x, ωs, βs) + iβsz − iωst) . (3.8)

Следует отметить, что выбор регулярной ветви корневой функции определяет

лишь фазу результата и не влияет на его абсолютную величину1.

3.1.2. Параболическая аппроксимация эйконала

Вблизи седловой точки показатель экспоненты в (3.4) имеет форму, близкую к

параболической. Представим эйконал по формуле Тейлора около (ωs, βs) с точно-

стью до второго порядка малости по
√

∆ω2 +∆β2 при ∆ω → 0, ∆β → 0:
1В конечном итоге, речь идёт о фазе и огибающей асимптотики исходного волнового пакета Ψm в

соответствии с (3.5).
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S ≈ Ss + Sω∆ω + Sβ∆β +
1

2
Sωω∆ω

2 + Sωβ∆ω∆β +
1

2
Sββ∆β

2 (3.9)

Тогда I+ запишется как

I+ ≈ 1

2π2
Dm,s · q̂m,s · eiSs · eiβsz−iωst · I, (3.10)

I =

ˆ ∞

0

dω

ˆ ∞

0

dβ×[
exp

(
i

2
Sωω∆ω

2 + iSωβ∆ω∆β +
i

2
Sββ∆β

2 + i∆β (z − zs)− i∆ω (t− ts)

)]
Аналогичный интеграл взят в [185] аналитически с помощью замены пере-

менных, предложенной в [186; 187]. В настоящей работе тот же аналитический

результат получен путём приведения квадратичной формы относительно∆ω и∆β

в показателе экспоненты к диагональному виду. Результат удаётся значительно

упростить и привести к виду:

I =
2π

i
√
SββSωω − S2

ωβ

·exp

[
1

2i

(
Sββ (t− ts)

2 + 2Sωβ (t− ts) (z − zs) + Sωω (z − zs)
2

SωωSββ − S2
ωβ

)]
(3.11)

В силу симметрии, интеграл I− получается из интеграла I+ подстановкой

β → −β, zs → −zs.
Как будет продемонстрировано далее, в некоторых случаях выбранную парабо-

лическую аппроксимацию следует уточнить, исходя из физических соображений.

3.1.3. Замечание о волновом пакете второй моды

В соответствии с (3.5), трёхмерный волновой пакет первой моды пограничного

слоя, возбуждённый на линии z = 0, состоит из двух цугов волн, симметричных

относительно плоскости z = 0. В волновом пакете второй моды пограничного

слоя преобладают плоские волны, у которых βs = 0 и Sωβ = 0. При этом седловая

точка вырождается по β, а вместе с ней в (3.5) два интеграла вырождаются в один:

Ψm (t, x, y, z) = R [I+]. В этом случае максимум возмущения распространяется

вдоль линии zs = 0 и седловая точка ωs > 0 определяется единственным условием
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∂S/∂ω = ts. Простая подстановка указанных значений в (3.8) позволяет выписать

решение метода перевала для волнового пакета второй моды

I+ ≈ Dm,sq̂m,s · exp (iS(x, ωs, 0)− iωst)

iπ
√

|SωωSββ| · exp
(
i arg

(√
SωωSββ

)) , (3.12)

где регулярная ветвь корневой функции выбрана явным образом [188]. Параболи-

ческая аппроксимация даст

I+ ≈ Dm,sq̂m,se
iSs−iωst

iπ
√

|SωωSββ| · exp
(
i arg

(√
SωωSββ

)) · exp[ 1

2i

(
(t− ts)

2

Sωω
+

z2

Sββ

)]
(3.13)

3.1.4. Нестационарное асимптотическое граничное условие

Приближённые условия (3.10), (3.11), (3.13) описывают асимптотическое пове-

дение волнового пакета Ψm в дальнем поле. С их помощью легко сформулировать

нестационарное граничное условие для прямого численного моделирования, с по-

мощью которого станет возможно порождать волновые пакеты в заданном сечении

x = const, используя расширенную информацию из анализа в рамках линейной

теории устойчивости — величины Sωω, Sββ, Sωβ, ωs, βs, q̂m,s. Для этого будем иг-

норировать общий аргумент комплекснозначных интегралов, который задаёт лишь

общий сдвиг фазы возмущений в пакете. Также выделим скалярный параметр ε,

который будет задавать амплитуду порождаемого волнового пакета, а собственные

функции нормируем на возмущение давления на стенке:

Âs =
q̂m,s

|p̂m,s|Y=0

.

Тогда в случае возбуждения волнового пакета при t = ts, z = 0 граничное условие

будет иметь вид

Ψ2D (t, xin, y, z) = ε ·R
[
Âs exp

(
1

2i

(
∆t2

Sωω
+

z2

Sββ

)
− iωst

)]
, (3.14)

Ψ3D
± (t, xin, y, z) = (3.15)

= ε ·R

[
Âs exp

(
1

2i

(
Sββ∆t

2 + 2Sωβ∆t∆z∓ + Sωω∆z
2
∓

SωωSββ − S2
ωβ

)
± iβsz − iωst

)]
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где ∆t = t− ts, ∆z∓ = z ∓ zs.

Условия можно использовать для порождения волновых поездов, полагая

Sωω → ∞.

3.2. Волновой пакет второй моды

В данном разделе обсуждается применимость предложенного нестационарного

граничного условия на базе линейной теории устойчивости (теоретическая часть

дана в разделе 3), а также проводится верификация численного метода на примере

развития волнового пакета и турбулентного пятна в пограничном слое на плоской

пластине. Параметры невозмущённого набегающего потока даны в табл. 3.1.

Анализ устойчивости проведён для автомодельного решения уравнений сжима-

емого безградиентного пограничного слоя. Профили пограничного слоя имеют вид

U (η), T (η), где η = y (Ree,L/x)
0.5
, представленный на рис. 3.1. Автомодельное

решение хорошо согласуется с профилями, полученными путём решения полных

уравнений Навье—Стокса. Это решение также показывает, что параметры течения

на внешней границе пограничного слоя близки к соответствующим величинам в

набегающем потоке: Ree,L (x)−Re∞,L < 0.0076Re∞,L, Te (x) < 1.0085 при x > 1.

Будем рассматривать волновые пакеты второй неустойчивой моды в двух сече-

ниях x = xin, соответствующих небольшим (случай LN) и умеренным (случай HN)

значениям N -фактора. Результаты расчёта по линейной теории устойчивости для

этих сечений даны в табл. 3.2. В случае LN величина N -фактора мала, поэтому

надёжность асимптотической оценки интеграла (3.4) вызывает сомнения.

Таблица 3.1 — Параметры набегающего потока

M∞ Re∞,L T ∗
∞ Tw/T∞ Tw/T0

6 106 300 К 1 ≈ 0.12

Таблица 3.2 — Параметры возмущения

Аббр. xin Ns = −Ss,i ωs βs Sωω × 103 Sββ × 103

LN 1.11 2.36 229.77 0 11.836 + 6.541i −0.762 + 9.876i
HN 3.57 5.02 129.87 0 81.546 + 36.815i −9.565 + 54.317i
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Рисунок 3.1 — Пограничный слой на плоской пластине в автомодельных перемен-

ных U (η), T (η). Self-similar — автомодельное решение; Navier—Stokes — ПЧМ

3.2.1. Свойства асимптотической формы волнового пакета

Из асимптотической формы волнового пакета (3.14) следует, что пакет имеет

несущую частоту ωs и гауссову форму по времени и по z. По мере продвижения

вниз по потоку дисперсионные множители Sωω и Sββ растут, а пакет сужается в

частотно-волновом пространстве (ω, β) и расширяется в физическом пространстве

(t, z).

Наличие действительной части у Sωω приводит к небольшой частотной разбеж-

ке между передним и задним временными фронтами пакета. Эту разбежку можно

оценить, если переписать временную часть показателя экспоненты (3.14) в виде

− (t− ts)
2

2 |Sωω|2 /Sωω,i

− i (t− ts) · (ωs +∆ω(t)) ,

∆ω(t) =
t− ts

2 |Sωω|2 /Sωω,r

.

Амплитуда колебаний пакета уменьшается в e−2 ≈ 7.3 раза при t = ts ±
2 |Sωω| /

√
Sωω,i. Принимая такие времена за условные границы пакета, получим
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приращение частоты по мере прохождения пакета через сечение x = xin:

∆ωres = ∆ω

(
ts + 2

|Sωω|√
Sωω,i

)
−∆ω

(
ts − 2

|Sωω|√
Sωω,i

)
= 2

Sωω,r

|Sωω|
√
Sωω,i

.

В обоих рассматриваемых случаях частота незначительно увеличивается:

∆ωres,LN ≈ 0.7, ∆ωres,HN ≈ 0.3. Если принять фазовую скорость волн c = ω/αr

слабо зависящей от частоты, то увеличение частоты будет соответствовать увели-

чению волнового числа (уменьшению длины несущей волны). Поэтому передний

фронт пакета в дальнем поле формируется длинноволновой частью спектра, а

его задний фронт — коротковолновой. Такая временная форма волнового пакета

качественно представлена на рис. 3.2.

Рассмотрим вид действительных и мнимых частей нормированных2 собствен-

ных функций Âs(xin, y) волнового пакета HN (рис. 3.3). Вектор Âs определяется с

точностью до сдвига фазы, и в силу двухмерности волнового пакетаw′(t) ≡ 0. Фор-

ма собственных функций характерна для второй неустойчивой моды. Пульсации

продольной u′ и нормальной v′ компонент вектора скорости достигают максимума

глубоко внутри пограничного слоя (при y ≈ 0.0025) и далее затухают по мере

приближения к его границе или к стенке. Пульсации температуры T ′ заметно ос-

циллируют в области критического слоя, который располагается вблизи верхней

границы пограничного слоя. Возле стенки формируется слой Стокса, толщина кото-

рого имеет порядок δ∗s ∼ (ν∗w/ω
∗)0.5, или в безразмерной форме δs ∼ (ωRe∞,L)

−0.5
,

2Нормировка проводится на величину |p̂w| ≡ |p̂(0)|, так что
(
Âs

)
p̂
= 1 при y = 0.

Рисунок 3.2 — Временная форма волнового пакета и её огибающая для модельных

параметров: ωs = 10, Sωω = 0.4 + 0.1i, ts = 1
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и во многих случаях оказывается сравнимой с толщиной слоя Кнудсена. Как пока-

зано в [189], слой Стокса практически не влияет на собственные значения второй

моды, поэтому в прямом численном моделировании не требуется подробно разре-

шать его на сетке. Результаты предварительных расчётов, не обсуждаемые здесь,

подтверждают это. Пульсация давления p′ ведёт себя наиболее плавно среди всех

компонентов вектор-функции Âs. По следу p
′ на обтекаемой поверхности можно

судить о форме волнового пакета, его затухании или усилении.

3.2.2. Постановка задачи

Невозмущённое поле давления, показанное на рис. 3.4, характерно для обтека-

ния плоской пластины под нулевым углом атаки: вблизи поверхности пластины

y = 0 давление постоянно, а вблизи носика при x = 0 формируется головной

скачок уплотнения. По мере продвижения вниз по потоку он вырождается в волну

Маха.

Параметры численного моделирования возмущённых течений в подобласти

резюмированы в табл. 3.3. При x > Lx имеется буферная зона с расширяющимися

ячейками. Расчёт возмущённого течения проводится в прямоугольной подобласти

(белая линия на рис. 3.4), начало которой совпадает с сечением ввода возмущений

x = xin, а высота y = ymx при x < Lx. Трёхмерная сетка получается вытягиванием

двухмерной сетки в направлении z в отрезке z ∈ [−zmx, zmx] с равномерным

шагом dz. На границах z = ±zmx ставится условие симметрии, а предположение

о симметрии течения относительно z = 0 не используется — волновой пакет

и его распад в турбулентное пятно моделируется полностью. Расчётные сетки

размерностиNx×Ny ×Nz сгущены к поверхности таким образом, что на входной

границе xin поперёк пограничного слоя оказывается Nδ (xin) сеточных плоскостей.

На границе xin накладывается нестационарное граничное условие (3.14). Неста-

ционарный расчёт ведётся с постоянным шагом по времени dt до тех пор, пока

максимум возмущения не достигнет передней границы буферной зоны x = Lx. В

этот момент волновой пакет уже отошёл от сечения x = xin на некоторое расстоя-

ние, достаточное для анализа спектральных характеристик сигнала.

Продольное сеточное разрешение возмущений можно оценить, приняв фазо-

вую скорость волн второй моды равной c ≈ 0.9: Nx,λ = c · 2π/(ωsdx). Исходя из
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Рисунок 3.3 — Поведение собственных функций Âs внутри пограничного слоя

для случая HN

результатов раздела 2.1, Nx,λ = 22 соответствует уменьшению амплитуды моно-

хроматической акустической волны менее 1% на длине волны; а для Nx,λ = 48

— менее 0.26%, что близко к естественной скорости вязкого затухания ~0.11%.

Временное разрешение возмущения Nt,λ = 2π/(ωsdt) достаточно подробное, и

связанная с ним численная диссипация мала (см. раздел 2.1).

На исследуемых режимах течения неустойчивость пограничного слоя начи-

нает излучать акустические волны во внешнее течение — наблюдается явление

спонтанного излучения звука, которому посвящена глава 4. Чтобы подавить зву-

ковые волны на подходе к верхней границе расчётной подобласти и избежать их

переотражения, сетка разрежена по y вблизи этой границы.

Численное моделирование выполнено для двух входных сечений (случаи LN и

HN) и трёх амплитуд p′w горба волнового пакета ε, которые соответствуют 10%,

50% и 100% от p∞. Далее детально будут рассмотрены только крайние случаи
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Рисунок 3.4 — Невозмущённое поле течения и структура подобласти для расчёта

возмущений в случае HN

10% и 100%, именуемые слабым и сильным волновыми пакетами, соответственно.

Результаты при ε = 0.5p∞ аналогичны результатам при ε = p∞, и поэтому далее

не рассматриваются.

3.2.3. Результаты

Общее представление о структурах, формирующихся из волнового пакета, дают

изоповерхностиQ-критерия, изображённые на рис. 3.5. Изоповерхности окрашены

в соответствии с величиной продольной компоненты скорости, что позволяет

оценить их положение внутри пограничного слоя. Пакет LN значительно короче

по x и t по сравнению с пакетом HN, что отражается на размере формирующегося

турбулентного пятна (рис. 3.5а и 3.5б). Несмотря на распад волнового пакета, его

исходная структура, по-видимому, сохраняется на дне пограничного слоя и у краёв,

о чём свидетельствует присутствие плоских волн β = 0, характерных для второй

моды. В следствие нелинейного распада волнового пакета появляются наклонные

волны, расходящиеся в боковые стороны от ядра возмущения. Слабый волновой

пакет (рис. 3.5в) практически не искажается в пределах расчётной области.

Порождаемые волновые пакеты имеют свойственный им вид, а паразитные

возмущения от входной границы подобласти не наблюдаются. Однако граничное

условие на базе асимптотической формы пакета (3.14) является приближенным, и

следует ожидать появления переходной области течения, в которой возмущение

подстраивается под течение. Визуализация полей течения не помогает отследить

данную область, но спектральный анализ величины p′w вблизи входной границы
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а) Сильный LN пакет при t = 2.4, Q = 30

б) Сильный HN пакет при t = 4.0, Q = 10

в) Слабый HN пакет при t = 4.0, Q = 10

Рисунок 3.5 — Визуализация изоповерхностей Q-критерия в изометрии

показывает, что протяжённость переходной зоны для волновых пакетов малой

амплитуды не превосходит двух – трех сеточных ячеек, что значительно меньше

длины несущей волны возмущения. В случае сильных возмущений не представ-

ляется возможным выделить переходную область, так как поле течения сразу

оказывается сильно возмущённым. Тем не менее, при визуализации исходный

пакет волн остается невозмущенным даже при больших ε. Данный факт проил-

люстрирован на рис. 3.6, где на начальном этапе отчётливо видна двухмерная

структура волнового пакета (рис. 3.6а).

При движении вниз по потоку сначала искажается центральная часть пакета

(рис. 3.6б), и далее на ней зарождаются мелкомасштабные структуры (рис. 3.6в). В

результате, вокруг горба пакета формируется молодое турбулентное пятно, которое

всплывает над стенкой и увлекается средним течением по направлению к головной

части пакета (рис. 3.6г, д).
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Так как применяется численный метод низкого порядка аппроксимации, рас-

чёты ведутся на достаточно подробных сетках. Структура турбулентного пятна

качественно согласуется с результатами расчетов [96], где использовался метод

высокого порядка (можно сравнить рис. 14 из работы [96], приведённый на рис. 3.7,

и рис. 3.6г, д).

Следует отметить, поля течений остаются симметричными относительно плос-

кости z = 0, хотя сечение z = 0 является внутренним для расчётной области (при

z = 0 не накладывается условие симметрии). Поэтому далее визуализация течения

будет проводиться только для половины стенки z > 0 или z 6 0.

3.2.3.1. Волновой пакет LN (случай малого N -фактора)

Несмотря на то, что величина N -фактора для волнового пакета LN невелика

(преобладающее возмущение усиливается слабо, в eN ≈ 11 раз) и предположения

асимптотического анализа нарушаются, асимптотическое граничное условие (3.14)

всё же позволяет сформировать неискажённый волновой пакет в пограничном слое.

Как показано на рис. 3.8, слабый пакет (ε = 0.1p∞) практически не проявляет

признаков нелинейного взаимодействия гармоник. Он движется вниз по течению

и быстро затухает, сохраняя исходную форму. В пределах расчётной области его

поведение качественно не меняется.

Сильный пакет (ε = p∞) развивается принципиально иначе. Пока горб пакета

не вышел из входного сечения x = xin, пакет эволюционирует линейно. Затем

(рис. 3.8а) на линии симметрии возникают продольные искажения (перетяжки)

из-за того, что движение в плоскости симметрии пакета тормозится по отношению

к его периферии. Далее горб пакета распадается на мелкомасштабные структуры, и

появляются следы от наклонных волн (рис. 3.8б). Однако эти возмущения быстро

затухают, и формируется новый горб, узкий по z (рис. 3.8в), который нарастает

вниз по потоку (рис. 3.8в, г) и на котором образуется молодое турбулентное пятно

(рис. 3.5а). Для сравнения на рис. 3.7 приведена иллюстрация турбулентного пятна,

полученного в расчётах [96], где также наблюдаются отмеченные особенности при

формирования пятна.

Рассмотрим результаты спектрального анализа для сильного волнового пакета

LN, представленные на рис. 3.9 в сечениях x > 1.3, сквозь которые возмущение
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а)

б)

в)

г)

д)

Рисунок 3.6 — Вид сверху, сбоку и спереди на изоповерхности Q-критерия в
последовательные моменты времени: а–д — t = 1.2; 2.0; 2.8; 3.6; 4.4

прошло полностью и в которых нелинейное искажение исходного возмущения

уже является значительным. Данные спектры качественно согласуются с резуль-

татами расчетов [190] обтекания острого кругового конуса при Me = 5.32, где

рассматривалось возмущение со схожими значениями N -фактора. Из рис. 3.10

видно, что в обоих случаях присутствуют спектральные пики на центральной

частоте возмущения в широком диапазоне волновых чисел β, и относительно сла-

бые пики на кратных частотах и нулевой частоте. Это может свидетельствовать о

том, что сценарии фундаментального (К-тип) и наклонного резонанса могут быть

основными механизмами нелинейного распада [190].

Следует отметить, что в работе [191] проведеноПЧМламинарно-турбулентного

перехода в пограничных слоях на плоской пластине и остром конусе с полууглом
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Рисунок 3.7 — Молодое турбулентное пятно на охлаждаемой поверхности, Tw =
T∞, приведённое на рис. 14 в работе [96]

а)

б)

в)

г)

Рисунок 3.8—Распределение пульсаций давления на стенке, p′w для слабого (снизу)
и сильного (сверху) волнового пакета LN в различные моменты времени: а – г —

t = 0.6; 1.2; 1.8; 2.4
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раскрытия 7° при числе Маха набегающего потока 6.8. Было показано, что ме-

ханизмы фундаментального и наклонного распадов работают в обоих случаях.

Однако, первый более выражен на конусе, а второй — на пластине. Эти результаты

относятся к переходу за источником контролируемого вдува–отсоса из щели на

поверхности: возмущение периодично во времени и по размаху щели, щель распо-

ложена поперёк потока. Хотя в проведённых расчётах рассматриваются волновые

пакеты, разумно предположить, что механизм наклонного резонанса также может

преобладать при их распаде.

Из рис. 3.9б–г видно, что на нелинейном режиме при продвижении вниз по

течению растут низкочастотные компоненты ω < ωs. Аналогичная картина на-

блюдается при линейном развитии волновых пакетов над холодной пластиной на

режиме спонтанного излучения акустических волн (см. главу 4), а также слабо-

нелинейных пакетов над холодным конусом [190] на режиме, близком к режиму

спонтанного излучения. В результате, вдали от входной границы начинает нарас-

тать возмущение с частотой ω ≈ 145 и в широком диапазоне волновых чисел

β (рис. 3.9г). Именно на нём к концу расчётной области формируется молодое

турбулентное пятно (рис. 3.5а).

Таким образом, асимптотическое граничное условие (3.14) позволяет ввести

волновой пакет в расчетную область даже в случае относительно малых значений

N -фактора (N ≈ 2.5) на входной границе. При достаточно больших начальных

амплитудах волновой пакет быстро эволюционирует в молодое турбулентное пятно

совместно через механизм фундаментального резонанса и механизм наклонного

распада.

3.2.3.2. Волновой пакет HN (случай большого N -фактора)

В случае HN пакета возмущение, вводимое в расчётную область, соответству-

ет большим значениям N -фактора: на стадии линейного роста в соответствии с

теорией устойчивости усиление составило e5.02 ≈ 151. Аналогично случаю LN,

слабый волновой пакет HN (ε = 0.1p∞) эволюционирует, проявляя минимальные

признаки нелинейного взаимодействия (рис. 3.11), которые обнаруживают себя

вдали от входной границы (рис. 3.11г). По мере эволюции пакет медленно затухает,

сохраняя свою форму.



129

а) б)

в) г)

Рисунок 3.9 — Амплитуды двухмерного преобразования Фурье от p′w(t, z) для
сильного волнового пакета LN в различных сечениях x = const: а – г — t =
1.3; 1.5; 1.7; 1.9

а) б)

Рисунок 3.10 — Качественное сопоставление амплитудных спектров Фурье: а —

нелинейный волновой пакет с усилением N ≈ 2 (рис. 20 из [190]); б — настоящая

работа
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Сильный волновой пакет HN (ε = p∞) начинает искажаться ещё до выхода его

горба через сечение x = xin (рис. 3.11а) — возмущения в плоскости симметрии на-

чинают отставать от тех, что на периферии. Далее следует быстрый распад плоских

волн преобладающего возмущения, и выделяются наклонные волны (рис. 3.11б–г).

При этом максимум амплитуды возмущения давления на стенке формируется вне

плоскости симметрии исходного волнового пакета.

Исходный волновой пакет HN практически втрое шире по t и z, чем пакет

LN. Это следствие более узкого спектрального состава, предсказанного линейной

теорией устойчивости. Но поведение пакетов HN и LN схоже. Аналогично случаю

LN, на рис. 3.12 представлены амплитуды двухмерного преобразования Фурье для

p′w(t, z) для сильного волнового пакета HN. В ранних сечениях x = const пакет

демонстрирует линейное поведение с появлением кратных гармоник по частоте

(рис. 3.12а). Однако быстро появляются признаки нелинейного взаимодействия

(рис. 3.12б), и пакет распадается вниз по потоку, превращаясь в турбулентное

пятно (рис. 3.12в, г). Вновь фундаментальный резонанс и наклонный резонанс,

по-видимому, являются основными нелинейными механизмами распада для возму-

щений второй моды. По мере движения вниз по потоку, спектр быстро уширяется

по волновому числу β и смещается в область низких частот ω < ωs.

Эволюция спектральных характеристик волновых пакетов качественно напоми-

нает результаты [192], где изучен К-режим нелинейного распада на остром конусе

при Me ≈ 5.35, Tw/Te ≈ 4.7 ∼ Tr/Te ≈ 5.9 и местном числе Рейнольдса Ree,L,

которое близко к случаю HN. Поведение возмущений на поверхности (рис. 3.12)

также схожа с результатами [192] для волновых пакетов на нелинейном режиме

развития. Однако в настоящей работе нарастание стационарных возмущений ω = 0

и заполнение низкочастотной спектральной области происходит заметно слабее,

чем в [192]. Это, по-видимому, обусловлено значительной разницей в величине

температуры поверхности Tw/Te.

Таким образом, при умеренных значениях N -фактора асимптотическое усло-

вие (3.14) позволяет без каких-либо физических искажений ввести в расчётную

область детерминированный пакет неустойчивых волн второй моды на входной

границе. При достаточной начальной интенсивности возмущений такой пакет

быстро распадается в турбулентное пятно по сценарию К-режима и наклонного

распада.
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а)

б)

в)

г)

Рисунок 3.11 — Распределение пульсаций давления на стенке, p′w для слабого

(снизу) и сильного (сверху) волнового пакета LN в различные моменты времени:

а – г — t = 0.6; 1.2; 1.8; 2.4

3.2.4. Выводы

Прямое численное моделирование с использованием предложенных граничных

условий подтвердило их применимость и согласованность с полными уравнениями

Навье–Стокса в случае преобладания плоских волн второй моды неустойчивости:

– пакет второй моды сохраняет асимптотическую структуру при выходе из

левой границы расчетной области;

– при малых амплитудах горба пакета (порядка 10% по возмущению давления

на стенке) наблюдается постепенное затухание пакета со слабым проявлени-

ем признаков нелинейности;

– при больших амплитудах горба пакета (более 50% по возмущению давления

на стенке) пакет быстро распадается по сценарию К-режима или наклонного

распада.
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а) б)

в) г)

Рисунок 3.12 — Амплитуды двухмерного преобразования Фурье от p′w(t, z) для
сильного волнового пакета LN в различных сечениях x = const: а – г — t =
1.3; 1.5; 1.7; 1.9

3.3. Волновой пакет первой моды

Как предсказывает линейная теория устойчивости, в отличие от пакета волн

второй моды, волновой пакет первой моды состоит из наклонных волн, которые

разбегаются от плоскости симметрии пакета по мере его развития. Таким образом,

в дальнем поле от места возбуждения пакета следует ожидать, что он расщепится на

два не взаимодействующих друг с другом пакета, каждый с выделенным наклоном

волновых фронтов. Основной механизм нелинейного распада возмущений первой

моды — резонанс наклонных волн, в котором участвует пара наклонных волн

(ω∗,±β∗), достигшая критических амплитуд. Но в разбежавшихся изолированных
«полупакетах» преобладает лишь одна из двух необходимых гармоник. Возникает
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вопрос: будет ли наблюдаться нелинейный распад изолированной группы волн, и

если да, то по какому механизму?

Для ответа на поставленные вопросы удобно использовать предложенное неста-

ционарное граничное условие на базе линейной теории устойчивости (3.15). Иссле-

дуем его применимость. Для этого рассмотрим сверхзвуковой пограничный слой

на плоской пластине при числеМаха 2, в котором преобладает первая неустойчивая

мода. Параметры набегающего потока даны в табл. 3.4.

Невозмущённое поле течения получено с помощью схемы WENO-3 для рекон-

струкции конвективных потоковых величин. Возмущения моделируются в под-

области с использованием схемы WENO-5, что позволяет уменьшить требуемое

пространственное разрешение и сокращает суммарное время расчётов примерно в

1.4 раза.

Расчёты выполнены в подобласти x ∈ [xin, 2.15] × [0, 0.2] 3 z на сетке

411× 154× 218, которая обеспечивает 23 точки на длину волны в продольном и

в боковом направлениях; высота подобласти составляет не менее 20δ(xin). Для

валидации предложенного метода также рассматривается задача развития возму-

щений в обычной постановке, когда возмущения вносятся в пограничный слой с

помощью генератора массового расхода типа «вдув—отсос». Для этого расчётная

подобласть расширяется вверх по потоку до генератора возмущений и по размаху,

x ∈ [0.1, 2.15] × [0, 0.25] 3 z, а размерность расчётной сетки увеличивается до

1079×154×218. Границы по z считаются плоскостями симметрии. Невозмущённое

поле течения и границы подобластей проиллюстрированы на рис. 3.13

Расчёты по линейной теории устойчивости проведены для автомодельного

пограничного слоя в рамках локально-параллельного приближения для точечного

источника возмущений с широким спектральным составом. Источник расположен

вблизи точки x0 ≈ 0.1— точки потери устойчивости гармоники, преобладающей

в сечении xin, в котором применяется предложенное граничное условие. Как пока-

зано на рис. 3.14, автомодельный и рассчитанный напрямую пограничные слои

хорошо согласуются.

Характеристики устойчивости (Sββ, Sωβ и т. п.) взяты для гармоники, растущей

в сечении xin и обобщены в табл. 3.5. Они соответствуют преобладающей гармо-

Таблица 3.4 — Параметры набегающего потока

M∞ Re∞,L T ∗
∞ T ∗

w Tw/T∞ Tw/T0
2 1.8 · 107 167 К 280.1К ≈ T ∗

r 1.677 0.932
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Рисунок 3.13—Невозмущённое поле давления в полной расчётной области. Грани-

цы подобластей для расчёта возмущенных течений выделены цветными линиями

Рисунок 3.14 — Профили пограничного слоя, η = y
√
Re∞,L/x
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нике, кроме величины Sωω,i, которая увеличилась в 1.7 раз (это увеличение связано

с уточнением аппроксимации спектра и обсуждается ниже). Время ts и боковая

координата zs прохождения горба пакета через входное сечение xin для удобства

заданы явно.

3.3.1. Генератор возмущений

Генератор моделируется прямоугольным отверстием, расположенным на по-

верхности при x ∈ [xs, xe]× [zs, ze] 3 z. Чтобы обеспечить широкий спектральный

состав возмущений, генератор помещается вблизи точки потери устойчивости,

предсказанной с помощью теории, и имеет куполообразную форму:

(ρv)′ = ε cos3
(
π
x− 0.5(xe + xs)

xe − xs

)
cos3

(
π
z − 0.5(ze + zs)

ze − zs

)
sin(ωct). (3.16)

Генератор действует в течение половины периода характерного возмущения — в

течение интервала времени ∆t = π/ωc. Выбранные параметры генератора приве-

дены в табл. 3.6.

Следует отметить, что пространственно-временной спектр генератора, а следо-

вательно, и формируемого начального возмущения выполаживается при умень-

шении частоты и волновых чисел, при этом спектральная амплитуда достигает

максимума при α = 0, β = 0, ω = 0. Параметры генератора подбираются с учётом

предсказания ЛТУ и гарантируют, что преобладающая в сечении xin гармоника

порождается генератором со спектральной амплитудой, которая близка к макси-

мальной3.

Таким образом, начальные характеристики волнового пакета в достаточной

степени соответствуют условиям анализа в рамках линейной теории устойчивости

(точечный источник с широким спектром).

3Иллюстрация аналогичного утверждения приведена, напр., в главе 5 (см. подраздел 5.1.2).
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Таблица 3.6 — Параметры генератора возмущений

xs xe zs ze ωc ε

0.10777 0.11777 -0.005 0.005 100 10−8

3.3.2. Уточнение параболической аппроксимации эйконала

В отличие от случая второй моды величина интегрального усиления Nωω =

−Sωω,i, которую предсказывает линейная теория устойчивости в сечении xin, за-

метно меняется в зависимости от предположения о возбуждении возмущений

и о параллельности пограничного слоя. Вместе с Nωω, естественно, меняется и

аппроксимация спектра волнового пакета при xin, которая используется для по-

строения нестационарного граничного условия. На рис. 3.15а–г показаны спектры,

полученные с помощью четырёх различных подходов. Качественно все они имеют

куполообразную форму с главными осями, расположенными под некоторым углом

к осям β и ω. Низкочастотная часть спектров заметно различается и для всех слу-

чаев оказывается более наполнена, чем в случае пакета от генератора возмущений

при x = xin (рис. 3.15д). Вниз по потоку преобладают всё более низкочастотные

возмущения. Поэтому избыточное спектральное наполнение низких частот про-

является при x > xin в виде слишком быстрого смещения волнового пакета в

низкочастотную область. (Конкретные параметры расчётов по ЛТУ и сравнение с

результатами ПЧМ не представлено, чтобы не запутывать изложение.)

Как видно из рис. 3.15д, форма спектра волнового пакета от генератора за-

метно отклоняется от гауссовой и не является симметричной относительно точ-

ки (ωmax, βmax). Поэтому естественно уточнить параболическую аппроксимацию

эйконала (3.9) путём добавления членов более высокого порядка по ∆ω и ∆β.

Однако такой подход затрудняет процедуру формирования граничного условия, в

частности, аналитическое взятие интеграла (3.4). Вместо этого можно уточнить

параболическую огибающую спектра возмущений N(ω, β) напрямую с помощью

дополнительной информации из ЛТУ (см. рис. 3.16а):

– в рамках ЛТУ рассчитать зависимость N(ω, βmax(ω)) при ω < ωmax (она

также не является симметричной относительно максимума и не может быть

аппроксимирована простой параболой);

– определить частоту ω1/2, для которой N(ω1/2) = 0.5Nmax ≡ 0.5N(ωmax);
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а) б)

в) г) д)

Рисунок 3.15 — Нормированный на максимум спектр возмущений для постро-

енного теоретического сигнала (а–г) и из ПЧМ возмущений от генератора (д) в

сечении xin. Устойчивость рассчитана в предположении e
N метода (а, б) или от

фиксированной точки (в, г) без учёта непараллельности течения (а, в) или с учётом

непараллельности (б, г). Шаг по волновому числу hβ ≈ 31, по частоте hω ≈ 1

– аппроксимировать низкочастотное плечо кривой N(ω) с помощью парабо-

лы, проходящей через три точки: (ωmax, Nmax), (ω1/2, 0.5Nmax), (2ωmax −
ω1/2, 0.5Nmax).

При таком подходе все комплекснозначные производные Sββ и Sωβ остаются прак-

тически неизменны, а Sωω,i увеличивается примерно в 1.7 раза при практически

неизменной величине Sωω,r (итоговые значения даны в табл. 3.5). Изменение фор-

мы спектра показано на рис. 3.16б. При уточнении низкочастотного плеча спектра

появляется погрешность в аппроксимации его высокочастотного плеча. Однако

высокочастотные возмущения затухают вниз по потоку и не оказывают влияния на

начало нелинейной фазы, поэтому их точным моделированием допустимо прене-

бречь.

Описанный выше метод уточнения аппроксимации эйконала (3.9) является уни-

версальным и зависит только от информации, полученной при анализе линейной

устойчивости пограничного слоя. Его можно использовать вне зависимости от

того, моделируется ли волновой пакет первой или второй моды.
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а) Построение б) Сопоставление

Рисунок 3.16 — Улучшение аппроксимации низкочастотного плеча спектра в рам-

ках ЛТУ и локально-параллельного приближения; β = βmax

3.3.3. Линейный режим

При порождении пакета в сечении xin в граничном условии (3.15) используется

амплитуда ε = 10−6 . Сформированный пакет показан на рис. 3.17а в некоторый

момент времени, когда горб пакета оказывается в середине расчётной области по x.

Аналогично на рис. 3.17б изображён пакет, развившийся от генератора возмуще-

ний. Волновая форма пакетов согласуется удовлетворительно. Вблизи плоскости

симметрии наблюдается шахматная картина возмущений давления, отражающая

интерференцию пакета с его ответной частью при z < 0. Такая картина проявля-

ется слабее в случае пакета от предложенного граничного условия, так как пакет

расплывается слабее по сравнению с пакетом от генератора. Следует отметить, что

нестационарное граничное условие хорошо согласовано с невозмущённым тече-

нием и не приводит к появлению паразитных возмущений при выходе волнового

пакета из сечения xin, как и в случае второй неустойчивой моды (см. раздел 3.2).

На рис. 3.18 показаны собственные функции возмущений в сечении xin. Вблизи

критического слоя пульсации температуры, продольной и боковой компонент ско-

рости сильно осциллируют, причём амплитуды T̂ , û, ŵ на два порядка превосходят

амплитуду p̂. По мере выхода из пограничного слоя возмущения затухают, и при

y > 15δ их можно положить равными нулю с абсолютной погрешностью 10−3.

Амплитудные (собственные) функции из ЛТУ хорошо согласуются с результатами

численного моделирования волнового пакета от генератора в сечении x = xin.
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а)

б)

Рисунок 3.17—Поле p′w(x, z) и распределения p
′
w вдоль отмеченных линий x = 1.5

и z = 0.095 для волнового пакета, горб которого подошёл к сечению x ≈ 1.75: а)
от генератора возмущений; б) от предложенного граничного условия. Палитра и

диапазоны p′w на распределениях подобраны пропорционально друг с другом

Рисунок 3.18 — Собственные функции возмущений
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На рис. 3.19 показана эволюция характеристик горба волнового пакета. По мере

продвижения вниз по потоку частота преобладающего возмущения уменьшается, а

горб движется практически прямолинейно, удаляясь от плоскости симметрии. Ре-

зультаты проведённых расчётов хорошо согласуются друг с другом и с результатами

линейной теории, в которой учтён эффект слабой непараллельности пограничного

слоя. Следует отметить, что и другие характеристики горба пакета, такие как βs,

также хорошо согласуются.

Серая кривая демонстрирует следствие недостаточно широкого спектра на-

чальных возмущений от генератора. Форма генератора по x для серой кривой

— один синусоидальный период. Не вдаваясь в подробности, следует отметить,

что характерная форма спектра генератора4 будет иметь нули при α/αc = 0 и 2,

где αc = 4π/(xe − xs). Если αc подобран без запаса (серой кривой соответствует

xe−xs ≈ λx), нули спектра могут пересечься с гармониками, которые должны пре-

обладать в сечении наблюдения. То есть, у гармоник с наибольшими N -факторами

(по методу eN ) амплитуда начального возбуждения оказывается слишком мала. В

этом случае в сечение наблюдения преобладающими окажутся другие гармоники,

что приведёт к невозможности аккуратно сопоставить результаты расчёта с вы-

водами теории, в которой используется широкий спектр начальных возмущений.

Недостаточно широкий спектр проявился в результатах расчётов преимущественно

в траектории горба пакета (рис. 3.19б): она лежит несколько ниже общей тенденции

и внезапно отклоняется от неё при x ≈ 1.6. Это указывает на важность контроля

спектральных характеристик используемого генератора возмущений.

Рассчитанные амплитуды пакетов также хорошо согласуются друг с другом,

как показано на рис. 3.20. Для согласования амплитуд возмущений, рассчитанных

различными методами, проведена их нормировка на условия ЛТУ при x1 ≈ 1.4.

3.3.4. Нелинейный режим (турбулентное пятно)

Предложенный подход можно использовать для порождения турбулентных

пятен, если повысить амплитуду ε волнового пакета, порождаемого в сечении xin.

На рис. 3.21 показаны отпечатки зародившегося турбулентного пятна при раз-

личных исходных амплитудах волнового пакета. Моменты времени t0 подобраны
4Спектральные характеристики аналогичного генератора обсуждаются в главе 4, см. рис. 4.6б.
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а) Частота ωs б) Траектория

Рисунок 3.19 — Эволюция горба волнового пакета

Рисунок 3.20 — Распределение амплитуды горба волнового пакета, p′w,max(x)
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таким образом, чтобы стадии зарождения пятна в обоих случаях были близки

(рис. 3.21б, в) — визуально пятна выглядят одинаково, но формируются в различ-

ных сечениях пограничного слоя. Критические значения N -фактора, при которых

плавный рост сменяется сначала постоянной величиной и далее резким нарастани-

ем, равны ≈ 1.8 для ε1 = 10−4 и ≈ 1.1 для ε2 = 2 · 10−4. Эти значения хорошо со-

гласуются с различием в исходной амплитуде возмущений: e1.8/e1.1 ≈ 2.0 = ε2/ε1.

Это косвенно подтверждает амплитудный характер критерия перехода — интен-

сивный нелинейный распад возмущений начинается при достижении критической

амплитуды и слабо зависит от места пограничного слоя, где эта амплитуда была

достигнута.

Следует отметить, что перед турбулизацией (рис. 3.21а) волновой пакет раз-

вивается аналогично случаю малой амплитуды (рис. 3.17) с выраженным горбом

и периферийными возмущениями, в которых преобладает гармоника с характер-

ным наклоном волновых фронтов. Когда амплитуда горба достигает величины

max(p′w) ≈ 0.3%p∞, пакет начинает распадаться. При этом ранее экспоненциаль-

ный рост амплитуды горба ускоряется. Процесс распада в физическом простран-

стве проиллюстрирован на рис. 3.22. Его можно описать как быстрое нарастание

пульсаций p′w в ограниченной области — при продвижении вниз по потоку фор-

мируется всплеск, или выброс, величина которого насыщается на уровне ≈ 10%

от p∞ к концу расчётной области. При этом волновые фронты быстро выпола-

живаются вдоль оси Ox в окрестности горба пакета — пакет сильно искажается

(рис. 3.21б, в). В отличие от волнового пакета, траектория сформировавшегося

турбулентного пятна (рис. 3.21д) соответствует направлению внешнего невязкого

течения — пятно сносится с потоком, расширяясь в боковом направлении (вдоль

оси Oz).

Процесс формирования турбулентного пятна из волнового пакета проиллюстри-

рован на рис. 3.23 в спектральной плоскости (β, ω) в случае ε = 10−4. В ранних

сечениях x > 1.7 возмущение развивается как линейный волновой пакет. Далее

спектр расширяется в область больших волновых чисел β, его целостная структу-

ра расщепляется на несколько локальных максимумов, которые удаляются друг

от друга. Проявляется гармоника (ω, β) = (0, 0), свидетельствуя об изменении

среднего течения. Она быстро нарастает вместе с преобладающей гармоникой

искажённого пакета и начинает преобладать в пакете уже при x ≈ 2. Ниже по

потоку волновой пакет активно распадается, а в поле возмущения появляются

высокочастотные гармоники, быстро заполняющие весь спектральный диапазон. В
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а)

б)

в)

г)

Рисунок 3.21 — Поле p′w(x, z) при формировании турбулентного пятна в моменты
времени t0 = 2.08 (а, б) и 2.4 (в, г) при ε = 10−4 (а, в) и ε = 2 · 10−4 (б, г)
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а) ε = 10−4 б) ε = 2 · 10−4

Рисунок 3.22—Формирование выброса в поле p′w при продвижении вниз по потоку.
Каждая осциллограмма изображена при z = zmax, где (tmax, zmax)—точка максиму-

ма соответствующего сечения p′w(t, x0, z). Для читаемости каждая осциллограмма
смещена по оси ординат относительно предыдущей на +5%, кроме первой

том числе, проявляются волны, наклон которых близок к наклону преобладающей

гармоники в симметричной части волнового пакета (β > 0), которая изначально

не возбуждалась. Наблюдаемый процесс нелинейного распада не похож ни на

резонанс наклонных волн, ни на фундаментальный резонанс, ни на субгармони-

ческий резонанс и требует дополнительного рассмотрения, что выходит за рамки

настоящей главы.

3.3.5. Выводы

Прямое численное моделирование с использованием предложенных граничных

условий подтвердило их применимость и согласованность с полными уравнениями

Навье–Стокса в случае преобладания наклонных волн первой моды неустойчиво-

сти:

– пакет первой моды сохраняет асимптотическую структуру при выходе из

левой границы расчетной области;

– при малых амплитудах горба пакета (u′max ∼ 0.1%U∞) наблюдается эво-

люция возмущений в соответствии с линейной теорией устойчивости без

проявления признаков нелинейности;
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Рисунок 3.23 — Фурье-амплитуды для p′w(x, z) в нескольких сечениях x = const;
ε = 10−4

– при больших амплитудах горба пакета (u′max ∼ 10%U∞) пакет быстро рас-

падается в турбулентное пятно; для анализа сценария нелинейного распада

требуется дополнительное исследование;

– косвенно подтверждён амплитудный характер критерия ламинарно-

турбулентного перехода в сверхзвуковом пограничном слое.

Использование теоретического граничного условия позволяет исключить линей-

ную стадию развития возмущений из процесса численного моделирования. Вслед-

ствие этого суммарное время проведённых расчётов эволюции линейных волновых

пакетов сократилось примерно в 5,6 раза. Такое значительное ускорение получе-

но на фиксированных вычислительных ресурсах (12 узлов кластера лаборатории

FlowModelliumМФТИ, каждый по 24 вычислительных ядра) за счёт сокращения

расчётной области практически вдвое и за счёт сокращения времени расчёта. Сле-

дует отметить, что амплитуда возмущений от генератора оказалась на порядок

выше, чем амплитуда возмущений, вводимых с помощью граничного условия, что

также повлияло на скорость расчёта. Реалистичное оцениваемое ускорение при

прочих равных условиях составляет около четырёх.

В зависимости от задачи ускорение может как уменьшаться, так и увеличи-

ваться, потому что моделирование нелинейной стадии всегда более трудозатратно.

Например, если исследуется формирование турбулентного пятна и его последую-
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щий длительный рост, доля времени на моделирование линейной стадии окажется

незначительной. Напротив, для расчётного выявления амплитудного критерия

перехода без необходимости моделировать сильно нелинейную стадию и развитую

турбулентность предложенный подход позволит получить существенное сокраще-

ние времени расчёта.

3.4. Выводы по главе

На базе линейной теории устойчивости сформулированы новые нестационар-

ные граничные условия, выражающие асимптотическую форму волнового пакета.

Граничные условия применимы при достаточно больших значениях N -фактора.

Работоспособность предложенного метода подтверждена путём прямого числен-

ного моделирования развития возмущений в сверхзвуковых пограничных слоях

на пластине с заострённой передней кромкой для первой и второй неустойчивой

моды.

Предложенный подход позволяет порождать реалистичные волновые пакеты и

волновые поезда контролируемой амплитуды. При этом из расчёта исключается

длительная стадия линейного роста возмущений от момента их возбуждения, что

позволяет сосредоточиться на моделировании эволюции уже развитых возмущений,

в частности, на перерождении волновых пакетов в турбулентные пятна.

В рассмотренных случаях теоретическое граничное условие даёт экономию

времени расчёта примерно до четырёх раз и экономию ресурсов для хранения

данных до двух раз (за счёт сокращения расчётной области).
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Глава 4. Спонтанное излучение акустических волн

Как отмечено во введении, нарастание неустойчивых мод пограничного слоя

чувствительно к температуре поверхности, отнесённой к температуре внешнего

невязкого течения, Tw/Te. Охлаждение поверхности стабилизирует первую моду и

дестабилизирует вторую моду.

В работе [193] было отмечено, что устойчивость пограничного слоя исследо-

валась ранее лишь для умеренных уровней охлаждения (Tw/Te > 1). Однако в

высокоэнтальпийных ударных трубах и в некоторых полётных условиях ([194;

195]) отношение Tw/Te может быть меньше единицы. Это обстоятельство побудило

авторов [193] изучить влияние сильного охлаждения поверхности на устойчивость

высокоскоростных пограничных слоёв. В рамках ЛТУ в локально параллельном

приближении были рассчитаны характеристики устойчивости пограничного слоя

на плоской пластине в высокоэнтальпийном набегающем потоке. Было обнару-

жено, что сильное охлаждение поверхности (Tw/Te h 1) приводит к появлению

новых особенностей в спектре собственных возмущений пограничного слоя. В

частности, волны второй моды могут распространяться со сверхзвуковой скоро-

стью относительно внешнего невязкого течения. То есть, их фазовая скорость

может быть меньше, чем Ue − ae, где U и a— продольная компонента вектора

скорости и скорость звука, соответственно. Сверхзвуковые волны наблюдались

вблизи верхней ветви нейтральной кривой второй моды и приводили к расшире-

нию частотного диапазона неустойчивости. Следует отметить, что неустойчивые

сверхзвуковые моды обнаруживались и обсуждались ранее в нескольких других

исследованиях устойчивости высокоскоростных пограничных слоёв на пластинах,

клиньях и конусах [180; 196; 197]. Их также наблюдали в течениях со вдувом газа

[198] и над поверхностью с тонким пористым слоем [199; 200].

Важно, что сверхзвуковые моды пограничного слоя синхронизируются с мед-

ленными акустическими волнами непрерывного спектра, то есть их спектральные

характеристики (частота, фазовая скорость) могут оказаться очень близки друг

к другу. Теоретическая возможность такой синхронизации обсуждалась в [42].

Было отмечено, что она может привести к спонтанному излучению акустических

волн из пограничного слоя. Но реализуемость этого явления в рамках численного

моделирования ранее не подтверждалась.
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Спонтанное излучение может привести к новым физическим механизмам,

влияющим на эволюцию неустойчивостей пограничного слоя. В данной главе роль

спонтанного излучения в процессе ЛТП исследуется с помощью линейной теории

устойчивости и прямого численного моделирования.

4.1. Анализ устойчивости

Анализ устойчивости проводится для плоских волн β = 0, которые преоблада-

ют среди волн второй моды. Постановка задачи устойчивости согласуется с общим

трёхмерным подходом (подраздел 3.1), приведённым к двухмерной постановке:

β = 0, w = 0, ∂z(·) = 0.

Спектр линеаризованной задачи (3.2) – (3.3) исследовался ранее в работах [181;

182]. Было показано, что помимо дискретного спектра αn(ω), который удовлетворя-

ет однородным граничным условиям в невязком потоке (û, v̂, T̂ → 0 при y → ∞),

существует семь ветвей непрерывного спектра (см. рис. 4.1). Математически они

являются разрезами комплексной плоскости α и соответствуют возмущениям,

осциллирующим по y при y → ∞ — при удалении из пограничного слоя. Три

ветви α−
c,1, α

−
c,2, α

−
c,3 соответствуют волнам, которые быстро затухают, распростра-

няясь вверх по потоку. Две ветви α+
c,3, α

+
c,4 соответствуют акустическим волнам,

распространяющимся вниз по потоку (см. также подраздел 1.1.3)

α+
c,3 =

ωM∞ cos θ

M∞ cos θ − 1
+O

(
Re−1

)
, (4.1)

α+
c,4 =

ωM∞ cos θ

M∞ cos θ + 1
+O

(
Re−1

)
, (4.2)

где θ— угол между волновым фронтом и осью Oy. Фазовая скорость, c = ω/α,

лежит в области cr 6 1−1/M∞ для медленных волн и в области cr > 1+1/M∞ для

быстрых волн. Две ветвиα+
c,1,α

+
c,2 соответствуют волнам завихренности и энтропии,

которые распространяются вниз по потоку с фазовой скоростью cr = 1 +O(
√
Re).

Здесь и далее нижние индексы i и r отвечают, соответственно, за действительную

и мнимую части комплексной величины.

В качестве примера рассмотрим обтекание заострённой пластины с параметра-

ми набегающего потока, приведёнными в табл. 4.1. Анализ устойчивости проводит-

ся для автомодельного пограничного слоя. Профили невозмущённого пограничного
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слоя U(η) и T (η) в автомодельных переменных представлены линиями на рис. 4.2.

Рассматриваемый пограничный слой имеет две моды дискретного спектра: устой-

чивую первую (аналог волн Толлмина—Шлихтинга при дозвуковых скоростях) и

неустойчивую вторую моду по терминологии Мэка, которая имеет акустическую

природу и преобладает в рассматриваемом случае. Дальнейшее обсуждение сосре-

доточено на взаимодействии второй моды с акустическими волнами непрерывного

спектра.

На рис. 4.3а показаны пространственные инкременты роста σ = −αi второй мо-

ды в зависимости от продольной координаты x для различных значений частотного

параметра F . На рис. 4.3б показаны соответствующие траектории (дисперсионные

кривые) дискретной моды в комплексной плоскости (cr, ci), которые далее для крат-

кости также именуются фазовыми траекториями; толстой линией приближённо

отмечено положение ветви непрерывного спектра медленных акустических волн. В

отличие от высокочастотных возмущений (линии 1–4), траектории низкочастотных

возмущений (линии 5–10) испытывают излом, или кивок, в окрестности точки ветв-

ления, из которой начинается разрез медленных акустических волн, cS = 1−1/M∞.

Он подобен геометрической точке возврата кривой. Далее будем называть эту точку

сокращённо точкой кивка, или просто кивком. Ниже по потоку от кивка низкоча-

стотные возмущения распространяются со сверхзвуковой скоростью относительно

внешнего невязкого потока. Инкременты их нарастания изменяются медленно

вдоль x. В конце концов дисперсионные кривые сливаются с разрезом медленных

акустических волн — дискретная мода исчезает из теоретического решения.

Поведение возмущений иллюстрируется более детально на рис. 4.4. Низкоча-

стотная волна (рис. 4.4а) начинает развитие в точке ветвления быстрых акусти-

ческих волн, cF = 1 + 1/M∞. Это происходит в окрестности передней кромки

пластины при x→ 0. Стрелками показано, как меняется фазовая скорость с ростом

x. Поначалу ci < 0, что указывает на затухание возмущения вниз по потоку. Далее

фазовая траектория моды пересекает разрез волн завихренности и энтропии при

cr ≈ 1. Это явление исследовано в [33; 57]. Показано, что мода испытывает неболь-

шой разрыв в величине ci (заметно на рис. 4.4а) и продолжает развиваться слева

Таблица 4.1 — Параметры набегающего потока

M∞ Re∞,L T ∗
∞, К T ∗

w, К Tw/T∞
6 106 300 150 0.5
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Рисунок 4.1 — Схематическое изображение непрерывного (линии) и дискретного

(крестики) спектров в комплексной плоскости α для фиксированной действитель-

ной частоты ω; α+
c,1 — волны завихренности, α+

c,2 — волны энтропии, α+
c,3 и α

+
c,4 —

акустические волны, α−
c,1,2,3 — волны, распространяющиеся вверх по потоку; αn

— моды дискретного спектра

Рисунок 4.2 — Профили автомодельного пограничного слоя; η =
y∗/
√
µ∗∞x

∗/ρ∗∞U
∗
∞
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Рисунок 4.3 — Характеристики волн второй моды при различных частотных пара-

метрах F = ω/Re∞,L. Толстой линией отмечен разрез медленных акустических

волн

от разреза. Других особенностей, связанных с данным синхронизмом дискретного

и непрерывного спектров, в течении не возникает.

При дальнейшем увеличении x возмущение переходит в неустойчивую область,

ci > 0, и проходит выше точки ветвления медленных акустических волн cS = 1−
1/M∞, оставаясь в неустойчивой области и в конце концов сливаясь с непрерывным

спектром на верхнем берегу разреза медленных акустических волн при cs ≈ csr ≈
0.76. В окрестности точки ветвления cS , где фазовая траектория испытывает кивок,

формируется новая устойчивая мода дискретного спектра. Её траектория показана

пунктирной линией на рис. 4.4а.

Фазовая траектория высокочастотного возмущения (рис. 4.4б) качественно

отличается. Она начинается в окрестности точки ветвления cS (при x → 0) и по

мере развития не пересекается с разрезами вихревых, энтропийных и акустических

волн. С ростом x возмущение попадает в неустойчивую область и затем снова

возвращается в устойчивую область, оставаясь при этом дозвуковым (cr < cS).

Хотя фазовая траектория не пересекается с разрезом медленных акустических

волн, она проходит близко к точке ветвления cS.

Будем называть областью синхронизма некоторую область на поверхности

пластины (по x), в которой фазовая траектория неустойчивой моды проходит

рядом с точкой cS или же расположена вблизи медленной акустической ветви
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непрерывного спектра. Положение фазовой траектории в обоих рассматриваемых

случаях конкретизировано ниже.

Из рис. 4.4а видно, что характеристики второй моды остаются очень близки к

ветви непрерывного спектра медленных акустических волн в области csr < cr < 1−
1/M∞, что соответствует физической области течения 4.47 < x < 5.59 (см. линию

6 на рис. 4.3. Поэтому вторая мода слабо затухает по y во внешнем невязком течении

и должна излучаться в виде практически нейтральных медленных акустических

волн. Из (4.1) – (4.2) следует, что наклон фронтов θs таких волн должен возрастать

от 0° при x ≈ 4.47 до ≈ 46.5° при x ≈ 5.59. Это подтверждается локальным

полем возмущения давления, проиллюстрированным на рис. 4.5а вблизи точки

слияния x = xs ≈ 5.59, где c = cs ≈ 0.758 − 8.509 · 10−6i, а также на рис. 4.5б в

середине области синхронизма x = 5, где c = 0.794 + 1.693 · 10−4i. Во внешнем

течении поле возмущений есть наклонная медленная акустическая волна. Расчёты

показывают, что вертикальная составляются вектора потока энергии для этой

волны положительная, ey = (v̂rp̂r + v̂ip̂i)/2 > 0, — волна распространяется от

стенки.

Таким образом, ЛТУ предсказывает, что вторая мода Мэка, развивающаяся в

пограничном слое над достаточно холодной пластиной, должна излучать низкоча-

стотные медленные акустические волны. Следует отметить, что теоретическая

возможность излучения акустических волн сверхзвуковым пограничным слоем
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Рисунок 4.4 — Две характерные фазовые траектории волны второй моды Мэка

в комплексной плоскости фазовой скорости. Пунктиром изображена траектория

новой устойчивой моды
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Рисунок 4.5 — Поле возмущения давления, вызванного волной второй моды;

(ξ, η) = (x∗, y∗) /
√
ν∗∞x

∗/U ∗
∞; θ — угол наклона волновых фронтов во внешнем

невязком течении (η > 10 при толщине пограничного слоя ηδ99 ≈ 7.5)

обсуждалась в книге [42]. Это явление получило название спонтанного излучения

звука1.

В следующем разделе полученные теоретические результаты будут подтвер-

ждены с помощью прямого численного моделирования.

4.2. Численное моделирование

Уравнения Навье—Стокса численно интегрируются в прямоугольной расчёт-

ной области: x ∈ [0, Lx]× [0, Ly] 3 y. Стенка расположена при y = 0 и предполага-

ется изотермической, T = Tw. Поле течения над пластиной тривиально и поэтому

не иллюстрируется. Профили пограничного слоя хорошо согласуются с автомо-

дельным решением, как показано на рис. (4.2) для x = 4. Согласование проверено

при x = 0.5, 2.0, 6.0. Параметры на границе пограничного слоя очень близки к

набегающему потоку: Ue ≈ 1.000,Me ≈ 5.985, Te ≈ 1.005. Это подтверждает, что

вязко-невязкое взаимодействие пренебрежимо мало.

1Явление спонтанного излучения также обсуждалось классиками в [140] в связи с гофрировочной

неустойчивостью ударных волн.
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Возмущения вводятся в пограничный слой с помощью генератора

(ρv)′ = ε sin (αc(x− x0)) sin (ωct) , (4.3)

y = 0, x ∈ [x0, x0 + 2π/αc] , t ∈ [0, tmax] . (4.4)

Начальная точка x0 выбрана достаточно близко к нижней ветви нейтральной кри-

вой при частоте ωc; 2π/αc — продольная длина области вдува—отсоса, которая

соответствует длине волны возмущения на частоте ωc с фазовой скоростью c = 1.

Амплитуда массового расхода ε равна 10−4, если не указано иное. Она достаточно

мала, чтобы гарантировать линейный характер развития возмущений (подтвержде-

но расчётом с ε = 10−6).

Численное моделирование проводится для волновых поездов, порождаемых

непрерывно действующим генератором (tmax → ∞), и для волновых пакетов,

порождаемых действием генератора в течение двух периодов (tmax = 4π/ωc). В

обоих случаях рассматриваются две частоты: ωc = 131.24 (F = 1.3124 · 10−4) соот-

ветствует низкочастотному возмущению (НЧ) с фазовой траекторией на рис. 4.4а;

ωc = 205.90 (F = 2.0590 ·10−4) соответствует высокочастотному возмущению (ВЧ)

с фазовой траекторией на рис. 4.4б. Параметры генератора возмущений указаны в

табл. 4.2.

Спектральные образы используемого генератора для его пространственной

формы (f(ζ) = sin(2πζ), ζ = αc(x − x0)/(2π)) и временной формы ( f(τ) =

sin(2πτ), τ = ωct/(2π)) —

f̂ (α) =

+∞ˆ

−∞

f(ζ)e−iαζdζ, α = α/αc,

f̂ (ω) =

+∞ˆ

−∞

f(τ)e−iωτdτ, ω = ω/ωc

Таблица 4.2 — Параметры генератора возмущений для проведённых расчётов

Аббр. ε ωc tmax/(2π/ωc) x0 αc

НЧ поезд 10−4 131.24 ∞ 2.5 ωc

НЧ пакет 10−4 131.24 2 2.5 ωc

ВЧ поезд 10−4 205.90 ∞ 1.01448 ωc

ВЧ пакет 10−4 205.90 2 1.01448 ωc

адиаб. пакет 10−3 130.00 0.5 1.0 ωc
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— показаны на рис. 4.6. Амплитуды гармоник, представляющих интерес, распола-

гаются в окрестности максимумов α = 1 и ω = 1 и не приближаются к нулю.

Расчётная область для НЧ возмущений имеет размер Lx × Ly = 7.0 × 1.5 и

покрыта прямоугольной сеткой Nx × Ny = 5001 × 1001 узлов. Сетка сгущена к

передней кромке пластины (x = 0) и к поверхности. При x > 0.05 шаг сетки по

направлению x равномерный. За генератором (x > x0) поперёк пограничного слоя

приходится более 270 узлов. На длину волны преобладающего возмущения прихо-

дится около 27 узлов в продольном направлении. С учётом результатов раздела

2.1 такое сеточное разрешение представляется достаточным для целей настоящей

главы: численная диссипация приводит к затуханию возмущений примерно на

0.2% на длине волны, что в 10 раз меньше темпа нарастания неустойчивых мод.

Для низкочастотного волнового поезда (НЧ поезд) проведено исследование се-

точной сходимости по y. Значительного рассогласования по амплитуде возмущений

не наблюдается на сетках 5001× 2001 и 5001× 1001 (см. рис. 4.7); влияние генера-

тора вверх по потоку отсутствует. Несмотря на избыточное сеточное разрешение

в направлении y имеется заметное отличие амплитудных кривых, полученных

на более грубых по y сетках. Предположительно, это связано не столько с чис-

ленной диссипацией развивающихся возмущений, сколько с начальным участком

формирования волнового пакета: генератор возмущений работает при различном
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Рисунок 4.6— Генератор возмущений: 1— физическая форма; 2— её Фурье-образ
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сеточном разрешении, и спектр формируемого пакета может искажаться. Подроб-

ное исследование этого вопроса не проводилось за ненадобностью2.

Расчётная сетка для моделирования высокочастотных возмущений получена

путём масштабирования сетки 5001 × 1001, описанной выше для низкочастот-

ных возмущений. Предполагая, что фазовая скорость возмущений второй моды

слабо зависит от частоты, все характерные линейные размеры и временной шаг

численного интегрирования уменьшены в (ωc)ВЧ/(ωc)НЧ ≈ 1.57 раз.

4.2.1. Волновой поезд

Поле возмущения давления от низкочастотного волнового поезда показано на

рис. 4.8. В соответствии с линейной теорией устойчивости, поначалу возмущение

растёт экспоненциально за генератором. В окрестности кивка фазовой траектории,

xk ≈ 4.5, волновой поезд начинает проникать во внешнее течение (рис. 4.8c). В

области 4.5 < x < 5.6 (далее — область синхронизма), волновой поезд излуча-

2Тем не менее исследование этого вопроса является хорошей методической задачей, которую автор

когда-нибудь предложит своим студентам или аспирантам.

Рисунок 4.7 — Исследование сходимости по сеткам: Nx = 5001; Ny = 251 (1), 501
(2), 1001 (3), 2001 (4)
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ет медленные акустические волны, которые распространяются от поверхности,

формируя внешнее акустическое поле (рис. 4.8а). Углы наклона фронтов соответ-

ствуют предсказанию ЛТУ: от θ = 0° при x = 4.5 (рис. 4.8с) до θ ≈ 46° при x ≈ 5.6

(рис. 4.8d). Поле возмущений рис. 4.8d напоминает результаты ЛТУ, представлен-

ные на рис. 4.5. Ниже по потоку интенсивность излучаемого звука падает. Таким

образом, спонтанное излучение сосредоточено в области синхронизма.

Показанное на рис. 4.8 поле возмущения давления в дальнем поле похоже на

луч медленных акустических волн. Волновые фронты луча наклонены под углом

θ ≈ 33°. Луч направлен вдоль вектора групповой скорости, наклонённого под

углом ≈ 6°к поверхности пластины. Этот угол заметно меньше,чем угол распро-

странения волныМаха sin−1(1/M∞) ≈ 9.6°. Под главным лучом акустическое поле

имеет сложную структуру, характерную для интерференции нескольких плоских

монохроматических волн с различными углами наклона фронтов и амплитудами.

Присутствие такого набора волн может объясняться тем, что наиболее сильное

излучение формируется от области кивка (x ≈ 4.5) и возле точки синхрониза-

ции (x ≈ 5.6), где спектральные характеристики второй моды наиболее близки к

характеристикам акустической волны.

Рисунок 4.8b демонстрирует, что возмущение давления на стенке ведёт себя

практически нейтрально в области синхронизма, в то время как ЛТУ в локально-

параллельном приближении предсказывает небольшой экспоненциальный рост.

Данное рассогласование побудило к расчёту устойчивости с учётом эффектов непа-

раллельности с помощью асимптотического метода многих масштабов (см., напр.,

[179]). На рис. 4.9 сопоставляются фазовые скорости cr (рис. 4.9а) и инкременты

роста σ = −αi (рис. 4.9б), рассчитанные по ЛТУ в локально-параллельном при-

ближении и с учётом непараллельности (ЛТУ+Н), а также результаты прямого

Рисунок 4.8 — НЧ поезд: а — поле возмущений давления p′(x, y); b — распреде-

ление по поверхности p′w(x) ≡ p′(x, 0); c — область кивка фазовой траектории,

xk ≈ 4.5; d — область синхронизации, xs ≈ 5.6
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численного моделирования. Последние получены из мгновенных распределений

возмущения давления на стенке. Около точки кивка x = xk, где рассчитанная по

ЛТУ производная dσ(x)/dx терпит разрыв, поправка на непараллельность течения

имеет особенность. Вне этой области фазовые скорости, рассчитанные по ЛТУ и

ЛТУ+Н, хорошо согласуются с результатами ПЧМ. Все три решения указывают на

то, что возмущение является сверхзвуковым за точкой кивка, а в области x < xk ин-

кременты роста в рамках ЛТУ+Н удовлетворительно согласуются с результатами

прямого численного моделирования. В области спонтанного излучения (x > xk)

согласование качественное.

Из рис. 4.10а видно, что перед областью спонтанного излучения (x < 4.5) воз-

мущение давления усиливается в соответствии с ЛТУ+Н. Однако далее теоретиче-

ское решение продолжает расти, в отличие от численного решения. В этой области

течения инкременты нарастания малы и может проявляться эффект численной

диссипации возмущений3. Тем не менее, данные, представленные в логарифмиче-

ском масштабе (рис. 4.10б), указывают на то, что эффект численной диссипации

слабый.

Высокочастотный волновой поезд также излучает акустические волны, что

иллюстрируется на рис. 4.11. Это происходит возле точки x ≈ 1.9, где траектория

3Во время выполнения расчётов мы объясняли это расхождение тем, что возмущение теряет энергию за

счёт её излучения из пограничного слоя. Однако последующий анализ и более поздние исследования других

авторов [201] опровергли это предположение .

а) Фазовая скорость б) Пространственный инкремент

Рисунок 4.9 — Сопоставление результатов численного моделирования, ЛТУ в

локально-параллельном приближении и ЛТУ с учётом непараллельности течения

(ЛТУ+Н) для НЧ поезда
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а) Линейный масштаб б) Логарифмический масштаб

Рисунок 4.10 — Распределение амплитуды возмущения давления для НЧ поезда

фазовой скорости второй моды проходит вблизи точки ветвления разреза медлен-

ных акустических волн cS (см. рис. 4.4б). Аналогично случаю НЧ поезда, дальнее

поле возмущений напоминает луч, в котором преобладают акустические волны

с углом фронтов θ ≈ 39°. Однако излучающая область существенно уже, а ам-

плитуда излучаемого звука примерно в 20 раз меньше. Существенное падение

амплитуды можно объяснить тем, что, в соответствии с прогнозом ЛТУ, интеграль-

ное усиление ВЧ поезда должно быть примерно в 18 раз слабее, чем в случае НЧ

поезда. Под основным акустическим лучом наблюдается волновая картина, свой-

ственная медленным акустическим волнам, которые излучаются неподвижным

гармоническим источником. Предположительно, такой источник формируется

из-за пространственной неоднородности волнового поезда в области синхронизма.

Рисунок 4.11 — ВЧ поезд: а — поле возмущений давления p′(x, y); b — распреде-

ление по поверхности p′w(x) ≡ p′(x, 0); c — область синхронизации, xs ≈ 1.9; d —
за областью синхронизации
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4.2.2. Волновой пакет

В более реалистичной ситуации неустойчивость пограничного слоя проявляет-

ся в виде широкочастотного пакета волн. Сначала рассмотрим случай адиабатиче-

ски прогретой стенки, которая приближённо моделируется граничным условием

Tw/Te ≈ 7. В соответствии с анализом устойчивости, волны второй моды остаются

дозвуковыми, а их фазовые скорости далеки от фазовых скоростей медленных

акустических волн (см. рис. 4.4б). Параметры генератора возмущений (4.3) – (4.4)

для ПЧМ приведены в табл. 4.4 для случая «адиаб. пакет»: x0 = 1.0, ε = 10−3,

αc = ωc = 130. Время работы генератора составляет половину периода на цен-

тральной частоте, поэтому частотный спектр генератора в области низких частот

наполнен и плавно выходит не некоторый ненулевой уровень при ω → 0. Про-

странственная форма генератора не изменяется (рис. 4.6а). Расчёты показывают,

что волновой пакет не излучает акустические волны во внешнее течение. Это про-

иллюстрировано на рис. 4.12: волновой пакет имеет куполообразную огибающую,

а длина несущей волны медленно увеличивается вниз по потоку. Анализ линейной

устойчивости показывает, что неустойчивость развивается вниз по потоку обыч-

ным образом: возмущения остаются дозвуковыми (рис. 4.13а); их область роста,

изображённая на рис. 4.13б не вытянута вблизи верхней ветви нейтральной кривой

в отличие от режима спонтанного излучения (сравни с рис. 4.3а).

а)

б)

в)

Рисунок 4.12 — Поле возмущения давления p′(x, y) и распределение p′w(x) для
случая прогретой стенки (Tw/Te = 7) в моменты времени t = 5.0 (а), 12.0 (б), 19.0
(в)
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б) Инкремент роста σ = −αi

Рисунок 4.13 — Характеристики устойчивости для случая прогретой стенки,

Tw/Te = 7

Рассмотрим развитие волновых пакетов на охлаждённой стенке, Tw/Te = 0.5.

Генератор возмущений работает в течение двух периодов tmax = 4π/ωc; его осталь-

ные параметры даны в табл. 4.4. Частотный состав генератора проиллюстрирован

на рис. 4.6б. Результаты численного моделирования для НЧ и ВЧ пакетов представ-

лены на рис. 4.14 и 4.15, соответственно. В обоих случаях качественные особен-

ности поля возмущения сохраняются, но имеется значительное количественное

различие — ВЧ пакет усиливается слабее, и излучённое им акустическое поле

также слабее, чем в случае НЧ пакета.

Рассмотрим поле возмущения давления от НЧ пакета (рис. 4.14). В начальный

момент генератор порождает слабую акустическую волну, которая проявляется в

виде фронтов-полуокружностей. Вместе с ней генератор возбуждает пакет второй

моды, который нарастает в пограничном слое. Акустическая волна распростра-

няется быстрее, чем горб волнового пакета, и медленно затухает по мере распро-

странения. Кроме этого, волновой пакет излучает медленные акустические волны

очень малой амплитуды (см. мгновенные поля p′(x, y) при t = 2.0 и 3.2). Предпо-

ложительно, это излучение обусловлено эффектами непараллельности основного

течения, связанной с нарастанием пограничного слоя.

Первая значительная порция звука излучается в момент времени t ≈ 4.5. По

мере дальнейшего развития пакета его амплитуда растёт, а амплитуда излучённого

акустического «пятна» остаётся практически неизменной. Так как скорость рас-

пространения акустического пятна выше, чем скорость горба волнового пакета,

оно растягивается и трансформируется в акустический луч; основание луча следу-
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ет вместе с пакетом. Спустя некоторое время волновой пакет излучает ещё одно

акустическое пятно (t ≈ 5.6). Третья порция излучения отмечается при t ≈ 6.8, и

т.д. Этот каскадный процесс приводит к значительному вытягиванию исходного

возмущения вдоль потока. Неоднородное распределение компонент волнового

пакета и их взаимная интерференция с излучаемым акустическим полем приводит

к формированию сложной картины внешнего акустического поля.

В частности, появляется амплитудная модуляция возмущений внутри погранич-

ного слоя, как видно, например, на рис. 4.14г, д при t ≈ 5.6 и 6.8. Предположим, что

период модуляции ∆x— расстояние между соседними максимумами огибающей

p′w(x)—порядка продольной длины области, где несущая волна в волновом пакете

синхронизируется с соответствующей акустической волной. В окрестности точки

синхронизации xrad ≡ xc волновое число второй моды можно аппроксимировать

как

α ≈ αrad +
∂α(xrad)

∂x
∆x.

Тогда из определения эйконала S(x, ω) (см. подраздел 3.1) следует, что отстройка

эйконала второй моды от эйконала акустической волны ведёт себя как

∆S ≈ 1

2

∂α(xrad)

∂x
∆x2. (4.5)

Эффективное излучение звука происходит при небольшой расстройке эйко-

налов, |∆S| 6 1, то есть рассинхронизация должна оставаться относительно

небольшой при излучении. Используя это ограничение и оценивая собственное

значение α преобладающего возмущения второй моды для автомодельного погра-

ничного слоя4 как α ≈ α(xrad)
√
xrad/x, где α(xrad) = ω/c(xrad), можно оценить

масштаб длины модуляции из (4.5):

∆x ≈ 2
√
xradc(xrad)/ω.

Принимая во внимание, что излучение происходит вблизи c(xrad) ≈ cS = 1−1/M∞,

получаем∆x ≈ 0.36 для НЧ пакета (ω ≈ 131, xrad ≈ 5) и∆x ≈ 0.18 для ВЧ пакета

(ω ≈ 206, xrad ≈ 2). Данные оценки хорошо согласуются с длинами модуляции,

наблюдаемыми в численном решении на рис. 4.14 и 4.15.

Спектральные компоненты волнового пакета развиваются в соответствии с

предсказанием ЛТУ с учётом эффектов непараллельности для широкого диапазона

частот, как показано на рис. 4.16. Расчёт устойчивости проводится из начальной

4Оно масштабируется обратно пропорционально толщине пограничного слоя.
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а)

б)

в)

г)

д)

Рисунок 4.14 — Развитие НЧ пакета. Поле возмущения давления p′(x, y) с изоли-
нией p′ = 10−8 и распределение вдоль стенки p′w(x) в моменты времени t = 2.0 (а),
3.2 (б), 4.4 (в), 5.6 (г), 6.8 (д)
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а)

б)

в)

г)

д)

е)

Рисунок 4.15 — Развитие ВЧ пакета. Поле возмущения давления p′(x, y) с изоли-
нией p′ = 10−8 и распределение вдоль стенки p′w(x) в моменты времени t = 0.72
(а), 1.48 (б), 2.24 (в), 3.00 (г), 3.76 (д), 4.52 (е)
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точки x0 = 2.5, начальные амплитуды всех компонент равны единице. Амплитуды

ПЧМ приведены к амплитудам ЛТУ в точках xmax(ω) максимального темпа роста,

которые предсказаны ЛТУ и помечены крестиками на рис. 4.16:

p̂w,ПЧМ,норм(x) = p̂w,ПЧМ(x) ·
p̂w,ЛТУ+Н(xmax)

p̂w,ПЧМ(xmax)
.

Аналогично случаю НЧ волнового поезда (рис. 4.10), теоретическое решение

отклоняется от решения ПЧМ в области спонтанного излучения.

Амплитудно-частотные спектры возмущений, рассчитанные по численному

решению напрямую в сечениях x = const, указывают на аномальную дисперсию

волновых пакетов в области спонтанного излучения и за ней (рис. 4.17). — По

мере продвижения вниз по потоку спектр быстро расширяется в область низких

частот, достигая нескольких локальных максимумов.

В дальнем поле от источника возмущений ожидается асимптотическое пове-

дение спектров 4.17, которое должно обладать единственным выраженным мак-

симумом. Отличие от асимптотического поведения может проявиться, если ин-

тегральное усиление возмущений недостаточно велико5. При этом на результат

может влиять как начальный частотный состав возбуждённой моды, так и спектр

всего начального возмущения, в состав которого входят другие моды. По мере про-

5В этом случае метод перевала (см. главу 3) даёт большую погрешность.

Рисунок 4.16 — Усиление различных гармоник низкочастотного НЧ пакета. Кре-

стиками отмечены места нормирования результатов ПЧМ на результаты ЛТУ
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а) НЧ пакет б) ВЧ пакет

Рисунок 4.17 — Спектры волновых пакетов в различных сечениях x = const

движения вниз по потоку исходный спектр растущей моды становится уже, а его

начальная неравномерность проявляется всё слабее на фоне растущего максимума.

Возмущения устойчивых мод затухают вниз по потоку. Обсудим оба этих эффекта.

Распределения факторов интегрального усиления (N -факторов) для НЧ и ВЧ

волновых пакетов, рассчитанных по ЛТУ из фиксированной точки, представлено

на рис. 4.18. Спектр НЧ пакета в наиболее дальнем сечении x = 6.55, представ-

ленном на рис. 4.18а, соответствует достаточно большому значению N ≈ 7, и

асимптотическое решение должно быть справедливо в этом сечении. Аналогич-

ный спектр для ВЧ пакета (x = 4.3, рис. 4.18б) соответствует малому усилению

N ≈ 2, что ставит под сомнение применимость асимптотики дальнего поля.

а) НЧ пакет, x0 = 2.5 б) ВЧ пакет, x0 = 1.0

Рисунок 4.18 — Интегральное усиление возмущений, рассчитанное по ЛТУ из

фиксированной точки x0
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Эффект затухания немодальных возмущений можно оценить, рассматривая

спектры относительно некоторого сечения x = x0. Такие спектры представлены

на рис. 4.19 в логарифмическом масштабе. При x0 = 2.5 нормировка происходит

непосредственно на спектр генератора возмущений, и множественные максимумы,

отмеченные на рис. 4.17а, сохраняются. Спектры, нормированные в сечении x0 = 4,

обладают единственным максимумом, который растёт вниз по потоку и монотонно

смещается в область низких частот, что качественно согласуется с результатами

линейной теории устойчивости.

Таким образом, необычное поведение спектров на рис. 4.17б может объясняться

как невыходом на асимптотический режим, так и медленным затуханием других

мод, возбуждённых генератором в пограничном слое.

4.3. Влияние спонтанного излучения на переход к турбулентности

Изложенные выше результаты были подтверждены в работе [202], где отмечено,

что спонтанное излучение является механизмом для передачи энергии из погранич-

ного слоя во внешнее невязкое течение. В частности, отмечено, что излучает лишь

хвостовая часть волнового пакета, в которой сосредоточена сверхзвуковая мода

и которая располагается вблизи верхней ветви нейтральной кривой (то есть там,

где неустойчивость практически закончила свой рост). В то же время передняя

часть волнового пакета является дозвуковой, не излучает энергию во внешнее

течение и подвержена основному механизму роста. Это утверждение [202] можно

Рисунок 4.19—Амплитудные спектры НЧ пакета в различных сечениях x = const,
нормированные в сечении x0
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интерпретировать как сомнение в том, что спонтанное излучение способно вли-

ять на ламинарно-турбулентный переход сверхзвукового пограничного слоя над

охлаждаемыми поверхностями.

После получения изложенных результатов автор диссертации численно ис-

следовал формирование турбулентных клиньев и пятен на режиме спонтанного

излучения. К сожалению, из-за недостатка вычислительных ресурсов удалось

завершить меньше половины запланированных расчётов. Проведённые расчёты

показали, что влияние спонтанного излучения на процесс перехода к турбулентно-

сти маловероятно.

Следует отметить, что относительно недавно этот вывод подтверждён путём

параметрического численного моделирования развития турбулентных пятен [201].

Отмечено, что излучение акустической энергии из пограничного слоя даёт на

порядок меньший вклад, чем усиление второй моды, вызванное охлаждением

поверхности. Поэтому спонтанное излучение практически не оказывает влияния

на переход к турбулентности.

В связи с этим изложение и анализ результатов трёхмерного моделирования

волновых пакетов и турбулентных пятен, полученных автором диссертации, пред-

ставляется излишним.

4.4. Выводы по главе

В рамках численного моделирования подтверждены предсказания линейной

теории устойчивости о том, что вторая мода, развивающаяся в пограничном слое

над заострённой пластиной с достаточно сильно охлаждённой поверхностью,

может излучать акустические волны во внешнее невязкое течение. Численные и

теоретические результаты согласуются друг с другом.

Данный эффект — эффект спонтанного излучения звука — вызван синхрони-

зацией второй моды с непрерывным спектром медленных акустических волн. В

области синхронизма волны второй моды движутся со сверхзвуковой скоростью по

отношению к внешнему невязкому течению, а их фазовые и спектральные харак-

теристики оказываются очень близки к характеристикам медленных акустических

волн. Явление спонтанного излучения не оказывает существенного влияния на

процесс перехода к турбулентности.
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Глава 5. Развитие возмущений над углом разрежения

Обтекание элементов сверхзвуковых летательных аппаратов сопряжено с об-

разованием зон разгона и торможения потока. В них пограничный слой может

взаимодействовать со скачками уплотнения, отрываться и формировать зоны повы-

шенного теплообмена при последующем присоединении к поверхности. Турбули-

зация пограничного слоя значительно усиливает этот эффект. Зоны разгона потока

с благоприятным (отрицательным) градиентом давления встречаются на практике

не реже, чем зоны торможения (см. напр., [203–206]). Тем не менее большинство

расчётных, теоретических и экспериментальных работ посвящено именно конфигу-

рациям в угле сжатия, включая ламинарное, переходное и турбулентное состояние

пограничного слоя (см., напр., [207]). Несмотря на способность благоприятного

градиента давления приводить к частичной или полной стабилизации погранич-

ного слоя (например, к возврату турбулентного течения в ламинарное состояние,

или к реламинаризации [208]), течения разрежения получили значительно меньше

внимания научного сообщества [209].

Проблема реламинаризации исследовалась с середины прошлого века. Изуче-

ние дозвуковых турбулентных течений в присутствии большого отрицательного

градиента давления указало на возможность полной реламинаризации погранично-

го слоя [210–213], которая связана с искривлённым характером линий тока, а также

благоприятными продольным и нормальным градиентами давления, которые при-

водят к быстрому сокращению масштаба турбулентных пульсаций на разгонном

участке течения [214]. Величина продольного градиента статического давления и

число Рейнольдса набегающего потока были отмечены как основные параметры

течения, влияющие на возникновение и развитие процесса реламинаризации. По

этим параметрам и параметрам, характеризующим состояние пограничного слоя,

были предложены различные критерии реламинаризации [214].

На сверхзвуковом режиме течения реламинаризация ведёт к значительному

снижению сил вязкого трения и теплоотдачи от горячего газа к обтекаемой по-

верхности. На базе данных, полученных для умеренно сверхзвуковых течений

(M∞ < 2.3), предпринимались попытки определить критерий реламинаризации,

экстраполируя низкоскоростные данные [214].

Для больших чисел Маха экспериментально установлено, что эффекты сжима-

емости преобладают над другими эффектами во внешней части пограничного слоя
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(напр., [215; 216]). К эффекту сжимаемости относится слабое затухание и увеличе-

ние размера крупномасштабных вихревых структур в течении разрежения. В [215]

отмечено значительное подавление сдвиговых напряжений Рейнольдса, вследствие

чего крупные вихри ослабевают вниз по потоку. Также в ряде работ отмечается

значительное подавление мелкомасштабных структур сразу за веером волн раз-

режения. Например, в экспериментах [217] при M∞ = 6 за коническим углом

разрежения 5°подавляются волны неустойчивости, что приводит к значительному

ослаблению пульсаций давления на поверхности и рассеиванию возмущений во

внешнее течение. Эти выводы так или иначе подтверждаются в экспериментах [218;

219] приM∞ = 4.9, где обнаружено, что область перемежаемости пограничного

слоя в разгонном течении сокращается, смещаясь к его границе. Это затрудняет

подмешивание газа из внешнего течения в пограничный слой.

В экспериментах [220] приM∞ = 4 показана возможность частичной релами-

наризации пограничного слоя (пристенная часть до 40% от его полной толщины).

Отмечено, что рост числа Рейнольдса приводит главным образом к увеличению

протяжённости реламинаризованного участка течения, а больший разгон потока

(больший отрицательный градиент давления) в области взаимодействия приводит

к всё большему ослаблению турбулентных пульсаций. Отмечено, что критерии

реламинаризации, полученные при дозвуковых скоростях, можно применять при

сверхзвуковых скоростях. Эксперименты [221] приM∞ = 5...8 косвенно подтвер-

ждают стабилизирующее влияние благоприятного градиента давления на теле

вращения «оживало-конус-конус-цилиндр», а также указывают на реламинари-

зацию турбулентного клина за изолированной неровностью поверхности (рела-

минаризация наблюдалась по картинам теплового потока, полученным методом

чувствительных к температуре люминофоров, современное состояние которого

изложено в [65]).

Следует отметить работу [208]. В ней путём обобщения различных экспери-

ментальных данных показано, что реламинаризация течения в угле разрежения

хорошо коррелирует с величиной параметра

β̃ =
dp∗

dx∗
δ∗

τ ∗w
∼ ∆p∗

δ∗
δ∗

τ ∗w
= −cp

cf
? 70,

где ∆p— перепад давления при прохождении угла разрежения, а τw — трение

непосредственно перед углом. Отмечая, что коэффициент давления меняется слабо

(до двух раз) в изученных экспериментах, cp ? −0.2, и используя модель течения

Прандтля—Майера над углом разрежения величиной ε, автор [208] приводит
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критерий реламинаризации

εcr ? 5.74° ·
√
M 2

e − 1,

который допустимо использовать, по крайней мере, приMe 6 3 и Reδ2,x=0 > 105.

В случае Me = 3, который рассматривается в настоящей главе, критерий даёт

εcr = 16.2°, а в случаеMe = 6— εcr = 34.0°.

Экспериментальные работы, такие как [221], дают хорошую тестовую базу для

разработки расчётных моделей данного типа течений, применимых совместно с

уравнениями Рейнольдса и методом крупных вихрей. Однако из-за вычислитель-

ной сложности имеется очень мало публикаций по прямому численному модели-

рованию устойчивости ламинарного течения и реламинаризации турбулентного

течения при сверхзвуковых скоростях. Одними из немногих работ являются [222]

приM∞ = 2.9 и [223] приM∞ = 2.7. В этих работах рассмотрено турбулентное об-

текание угла разрежения. Обнаружена двухслойная структура разгонного течения

вблизи угла, подтверждающая экспериментальные наблюдения. Течение в верхнем

слое характеризуется сильным подавлением турбулентных пульсаций, которые

медленно восстанавливаются вниз по потоку. В нижнем слое пульсации подавляют-

ся только в небольшой окрестности области поворота и быстро восстанавливаются

вниз по потоку.

Применимость известных критериев реламинаризации, таких как описанный

выше критерий [208], к обтеканию углов разрежения приM∞ > 3 ставится под

сомнение в расчётах методом уравнений Рейнольдса [224]. В целом, сверхзвуко-

вые течения с резким разгоном потока (например, угол разрежения) исследованы

недостаточно, в том числе в открытых источниках мало данных о линейной устой-

чивости таких течений.

В рамках ЛТУ было показано, что неблагоприятный (тормозящий) продольный

градиент давления, порождаемый вогнутой поверхностью конуса при M∞ = 8

[225], приводит к увеличению инкрементов второй моды. Невозмущённое поле

течения было получено с помощью парабализованных уравнений Навье—Стокса

в допущениях теории пограничного слоя. Расчёты [226] сверхзвукового (M∞ = 6)

пограничного слоя на плоской пластине подтверждают, что неблагоприятный

продольный градиент давления приводит к увеличению инкрементов первой и

второй неустойчивых мод, за счёт чего переход к турбулентности начинается выше

по потоку. Однако процесс нелинейного распада возмущений для большинства

актуальных сценариев перехода — фундаментального резонанса второй моды, или
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К-типа распада; косого распада первой или второй моды — при этом качественно

не изменяется.

Выводы [225; 226] подтверждаются в работе [227]. Рассматривается гиперзвуко-

вое (M∞ ≈ 7.9) обтекание модели острого конуса с юбкой. Юбка имеет вогнутую

или оживально выпуклую форму, обеспечивающую постоянный продольный гра-

диент давления. При больших числах Рейнольдса начало перехода наблюдалось на

безградиентной конической части модели, а его окончание— на искривлённой. Это

подтверждает, что турбулентные пятна продолжают развиваться при появлении

благоприятного градиента давления. При низких числах Рейнольдса, когда начало

перехода оказывается на искривлённой поверхности, отмечается, что благоприят-

ный градиент давления сдвигает переход вниз по потоку. В отличие от дозвукового

случая, длина зоны перехода при этом сокращается по сравнению со случаем без-

градиентного течения на остром конусе. Автор [227] связывает это с ослаблением

турбулентного теплообмена, а также с замедляющимся вниз по потоку ростом

площади оживальной поверхности — турбулентное пятно будет покрывать такую

поверхность быстрее. Из обзора следует, что турбулентные пульсации ослабевают

в присутствии благоприятного градиента давления. Поэтому сокращение длины

переходной зоны, по-видимому, вызвано именно фактором формы поверхности.

Роль благоприятного градиента давления в устойчивости сжимаемых течений

исследовалась как для первой, так и для второй неустойчивых мод, 0 >Me > 10;

работы немногочисленны. Как правило, рассматриваются различные невозмущён-

ные течения, полученные в приближённых постановках, например: автомодельный

пограничный слой с учётом градиента давления Me ∼ 4.5 [228] или неавтомо-

дельный пограничный слой вдоль границы которого число Маха меняется по

степенному закону [228–230]. Было показано, что благоприятный градиент давле-

ния стабилизирует обе моды, причём для первой моды частоты и волновые числа

наиболее быстро растущего возмущения уменьшаются, а стабилизирующий эф-

фект ослабляется с ростом числа Маха [230]. Для второй моды (β = 0) отмечалось,

что частота наиболее неустойчивой волны может уменьшаться или увеличиваться

[228; 229]. Однако за счёт уширения области неустойчивости низкочастотных

возмущений частота преобладающего возмущения медленно понижается с ро-

стом благоприятного градиента давления [231]. Последнее также наблюдается для

случая угла разрежения приM∞ = 6, который будет рассмотрен ниже.

Уместно отметить, что в [225; 226; 228–231] исследована устойчивость по-

граничных слоёв, рассчитанных в приближённой постановке для простых кон-
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фигураций типа плоской пластины. Конфигурации, в которых пограничный слой

перестраивается быстро на масштабе нескольких своих толщин, по-видимому,

ранее не рассматривались. В рамках настоящей главы, в том числе, исследуется

устойчивость пограничного слоя, рассчитанного для конфигурации угла разреже-

ния в рамках полных уравнений Навье–Стокса.

Цель данной главы — исследовать развитие возмущений на конфигурациях

с резкой перестройкой пограничного слоя, которая имеет место, например, над

углом разрежения.

5.1. Постановка задачи

Для согласованности с другими разделами настоящей диссертационной работы

выбраны режимы с числами Маха 3 и 6. На первом режиме преобладает первая

неустойчивая мода пограничного слоя, которая активна в характерных полётных

условиях с адиабатически прогретой стенкой (в расчётах настоящей главы рас-

сматривается изотермическая стенка при Tw = Tr). На втором режиме могут быть

неустойчивы как первая, так и вторая мода. Чтобы выделить эффект второй моды,

рассматривается охлаждаемая стенка, для которой неустойчивость первой моды

частично подавлена. Рассматриваемые конфигурации представлены в табл. 5.1.

Для различных углов разрежения ε будем использовать сокращения: ε = 0° — FP1;

ε = 5° — EC05; ε = 10° — EC10, или EC2.

1Flat Plate — плоская пластина
2Expansion Corner — угол разрежения

Таблица 5.1 — Параметры набегающего потока и угла разрежения

M∞ Re∞,L T ∗
∞, К T ∗

0 , К T ∗
w, К Tw/T∞ Tw/T0 ε δ1

√
Re∞,L/x

3 106 103.57 290.0 261.8 2.53 0.90 0°, 10° 5.50

6 106 73.17 600.0 150.0 2.05 0.25 0°, 5°, 10° 7.82
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5.1.1. Устойчивость автомодельного пограничного слоя

Возмущения вносятся в пограничный слой перед изломом поверхности (углом)

с помощью генератора, размещённого на поверхности. Угол всегда расположен

в точке (x, y) = (0, 0). Расстояние от угла до острой передней кромки |lc| = 7.5,

положение и параметры генератора, температура поверхности (последняя в слу-

чаеM∞ = 6) подобраны на основе параметрических расчётов устойчивости ав-

томодельного пограничного слоя на плоской пластине, показанного на рис. 5.1.

Рассмотрим результаты этих расчётов для выбранных конфигураций.

Из рис. 5.2 видно, что область неустойчивости гармоник первой моды (M∞ = 3)

значительно шире, чем второй моды (M∞ = 6). Продольная длина волны λx

первой моды монотонно растёт вниз по потоку, а боковая длина волны λz остаётся

практически неизменной. В случае второй моды, напротив, λx убывает вниз по

потоку (λz = ∞ для плоских волн второй моды с β = 0). Однако волновой пакет с

широким спектральным составом перестраивается вниз по потоку так, что длина

преобладающей волны, которая соответствует верхней ветви нейтральной кривой,

растёт с ростом x (рис. 5.3б). В обоих случаях такой рост соответствует росту

пограничного слоя.

Рисунок 5.1 — Автомодельный пограничный слой на плоской пластине
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а)M∞ = 3 б)M∞ = 6

Рисунок 5.2 — Расчёт устойчивости автомодельного пограничного слоя: частота

возмущений в их области неустойчивости

а)M∞ = 3 б)M∞ = 6

Рисунок 5.3 — Расчёт устойчивости автомодельного пограничного слоя: длины

волн



177

Отмеченное различие в длине неустойчивой области для двух рассматриваемых

случаев компенсируется различием в величине инкрементов усиления возмущений,

−αi, — интегральные усиления возмущений оказываются близки. Это проиллю-

стрировано на рис. 5.4 кривыми N -факторов, которые получены в рамках метода

eN и демонстрируют монотонное практически экспоненциальное нарастание воз-

мущений вниз по потоку.

5.1.2. Генератор возмущений

Красным цветом отмечена гармоника на частоте ω∗, которая продолжает расти

при x > 0 и которую далее будем называть целевой. Развивающееся над углом

возмущение (а следовательно, и начальное возмущение пограничного слоя при x <

0) должно содержать в своём спектральном составе окрестность данной гармоники.

Для порождения такого возмущения на поверхности при x ∈ [xs, xe]× [zs, ze] 3 z

в течение интервала времени ∆t = 2π/ωc включается бигармонический генератор

массового расхода:

(ρv)′ = ε cos3
(
π
x− 0.5(xe + xs)

xe − xs

)
cos3

(
π
z − 0.5(ze + zs)

ze − zs

)
(sin(ωct) + sin(ωct/2)) ,

(5.1)

а)M∞ = 3 б)M∞ = 6

Рисунок 5.4— Расчёт устойчивости автомодельного пограничного слоя: интеграль-

ное усиление возмущений
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где ωc > ω∗. Выбранные параметры генератора приведены в табл. 5.2.

При движении вниз по потоку частота преобладающей гармоники уменьшается

(см. рис. 5.2). Поэтому гармоника ωc преобладает выше по потоку, чем целевая

гармоника ω∗. Частотный спектр генератора хорошо наполнен при ω < ωc и быстро

выполаживается по мере уменьшения ω (рис. 5.5). Таким образом, порождаемый

волновой пакет должен усиливаться в любом сечении пограничного слоя для

x > xs. ПриM∞ = 3 выбрано значение ωc = 2ω∗, а приM∞ = 6— ωc ≈ ω∗.

Размеры генератора таковы, чтобы обеспечить широкий пространственный

спектр порождаемых возмущений. Этот спектр должен содержать целевую гармо-

нику с корректными длинами волн λx,∗, λz,∗(рис. 5.3), а генератор должен распола-

гаться перед точкой потери устойчивости x0,∗, чтобы возмущение успело усилиться

в области x < 0. Поэтому размер генератора должен быть сопоставим с длиной вол-

ны целевой гармоники вблизи точки потери устойчивости — xe ≈ xs + λx,∗(x0,∗).

В случаеM∞ = 3 область неустойчивости отдельно взятой гармоники широкая

(рис. 5.2а) и xs = x0,∗. В случаеM∞ = 6 области неустойчивости слишком узкие

(рис. 5.2б), поэтому генератор помещён при xs < x0,∗. В направлении z генератор

имеет симметричную форму: −zs = ze ≈ λ∗(x0,∗)/4, где λ = λz при M∞ = 3 и

λ = λx приM∞ = 6.

В зависимости от начальной амплитуды генератора ε, в пограничном слое могут

развиваться низкоамплитудные волновые пакеты или существенно нелинейные

образования — турбулентные пятна. Далее будут рассмотрены оба случая. Для

них будут использованы сокращения WP3 и TS4, соответственно.

3Wave Packet — волновой пакет
4Turbulent Spot — турбулентное пятно

а) ω0 = 20.0 дляM∞ = 3 б) ω0 = 62.5 дляM∞ = 6

Рисунок 5.5 — Частотно-амплитудный спектр генератора возмущений
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Несмотря на нестрогий подход к определению параметров генератора, порож-

даемые им возмущения имеют широкий плавный частотно-волновой спектр. В

случае WP (малые возмущения) следует учесть достаточно большие значения ин-

тегрального усиления по мере приближения к углу (N ≈ 6.6 при x = 0, рис. 5.4),

что обеспечивает селективный характер усиления пограничного слоя. В случае

TS, развитие больших нелинейных возмущений не должно существенно зависеть

от предыстории их формирования из интенсивного волнового пакета. Таким об-

разом, небольшой произвол в выборе параметров генератора приведёт лишь к

несущественному количественному изменению результатов — основные выводы

настоящей главы сохранятся.

5.1.3. Условия расчётов

Общий подход к расчёту возмущённых полей, представленный в подразделе

1.2.3.1, сохраняется. Рассмотрим особенности процедуры расчёта, применяемой

ниже. Она состоит из пяти шагов и гарантирует одинаковые начальные поля сфор-

мированных перед углом возмущений внутри групп WP и TS.

Во-первых, методом установления по времени рассчитывается среднее течение

на пластине при −7.5 6 x 6 0.2.

Во-вторых, под головной ударной волной, порождённой вязко-невязким вза-

имодействием, выделяется первая подобласть, левая входная граница которой

расположена при l = lmin, 0 6 y > ymax, l — координата вдоль поверхности,

измеряемая от угла (l ≡ x при x < 0, l = x/ cos ε при x > 0). Верхняя граница

подобласти отдаляется от поверхности пропорционально толщине погранично-

го слоя δ99, обеспечивая Cδ = ymax(x)/δ99(x) ≈ const. Параметры, связанные с

подобластью 1, собраны в табл. 5.3.

В-третьих, установившееся в подобласти поле течения дублируется в боковом

направлении в диапазоне 0 6 z 6 zmax; в направлении z накладываются граничные

Таблица 5.2 — Параметры генератора возмущений

M∞ 2 · ε, WP 2 · ε, TS ωc xs xe zs ze
3 10−6 10−3 20.042 -6.9923 -6.6623 -0.036 0.036

6 10−4 10−1 62.5 -4.1751 -4.0841 -0.02275 0.02275
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условия симметрии. В момент времени t = 0 включается генератор возмущений,

описанный выше. Расчётная сетка в первой подобласти имеет избыточное разре-

шение Nx × Ny × Nz и обеспечивает nx,∗ точек на λx,∗. Временное разрешение

составляет nt,∗ шагов на период целевой гармоники 2π/ω∗. Развитие возмущений

моделируется до момента времени tmax, когда их передний фронт приближается к

сечению l = 0, а задний уже заметно удалился от l = lmin,1.

В-четвёртых, в соответствии с описанной выше процедурой рассчитывается

невозмущённое течение в расширенной по x и z подобласти 2 над пластиной или

углом разрежения: длина вдоль стенки l 6 6; левая граница подобласти начинается

при l = lmin, 0 6 y > ymax. Расширенная сетка разрешает длину волны базового

возмущения на 45 точках. Поперечное разрешение пограничного слоя по нормали

к поверхности не изменилось по сравнению с исходной сеткой в подобласти 1 и

составляет примерно 100–120 сеточных линий. При l > 6 расширенная расчётная

область замыкается буферной зоной. Следует отметить, что при ε 6= 0 и l > 0 вели-

чина Cδ увеличивается — внешняя граница удаляется от границы пограничного

слоя. Параметры, связанные с подобластью 2, собраны в табл. 5.4.

В-пятых, рассчитывается поле возмущений, полученное в подобласти 1 (шаги

1–3). Оно добавляется к невозмущённому течению в расширенной подобласти

2 (шаг 4). Так как сетки в подобластях не совпадают узел в узел, для переноса

возмущений применяется интерполяция 1го порядка точности. Таким образом,

начальные поля возмущений в расширенной расчётной подобласти одинаковы для

всех значений угла разрежения ε в пределах неизменного числа Маха. Следует

подчеркнуть, что процедура переноса возмущений с сетки на сетку не вносит

заметных паразитных возмущений в решение.

Расчёты продолжаются до тех пор, пока возмущения не покинут расчётную

область, то есть пока максимальная поправка к зависимым переменным задачи

на шаге по времени не достигнет величины 10−7 для волновых пакетов и 10−4

для турбулентных пятен во всём поле течения. После этого анализируется поле

возмущения давления p′w(t, l, z) на поверхности.

Таблица 5.3 — Параметры расчётов в подобласти 1

M∞ lmin ymax zmax Nx ×Ny ×Nz Cδ nx,∗ nt,∗ tmax

3 −7.2 0.12 0.7 2023× 262× 330 24 – 26 90 125 7.5

6 −4.5 0.18 0.15 4554× 233× 101 10 90 100 4.3
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Суммарная погрешность полученных в настоящей главе нестационарных полей

возмущения оценивается в пределах 10% к концу расчётной области для случая

волнового пакета (WP). В случае турбулентного пятна (TS) порождаются возмуще-

ния меньших масштабов, которые подвержены большему численному затуханию.

Предполагается, что это обстоятельство не должно изменить выводы настоящей

главы.

5.2. Вторая мода

5.2.1. Невозмущённое течение

Невозмущённое течение для случая ε = 10° показано на рис. 5.6. Его невязкое

приближение известно как течение Прандтля—Майера [232]. В невязком анализе

газодинамические величины течения мгновенно меняются при переходе через

центр веера волн разрежения при l = 0 вблизи поверхности. Вязкое взаимодей-

ствие устраняет эту особенность. Поверхностное давление перестраивается на

масштабе толщины невозмущённого пограничного слоя δ0 непосредственно перед

углом. Этот масштаб практически не зависит от величины угла разрежения ε. Про-

фили температуры T и продольной компоненты скорости u перестраиваются на

длине порядка 20δ0, которая зависит от ε. Таким образом, при переходе через угол

параметры на границе пограничного слоя и его толщина меняются быстро, но не

скачкообразно.

Рисунок 5.6 — Невозмущенное поле числа Маха в подобласти 2. Сплошными

показаны линии тока (streamlines), проведённые через точки x = −0.1, y = δ и
x = −0.1, y = 2δ. На врезке: невозмущённое поле давления и граница подобласти
2 (subdomain)
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На рис. 5.7 показаны профили модуля вектора скорости, температуры и числа

Маха в нормальных к поверхности сечениях, которые отмечены на рис. 5.6. В

области взаимодействия, расположенной сразу за углом, профили скорости неодно-

родно изогнуты. Далее вниз по потоку они постепенно возвращаются к поведению,

свойственному автомодельному пограничному слою. Профили температуры и чис-

ла Маха иллюстрируют это более наглядно. Они также показывают, что параметры

течения на верхней границе пограничного слоя меняются слабо при l > 1, где веер

волн разрежения уже удалился от пограничного слоя на заметное расстояние.

На рис. 5.8 показаны две линии тока, проходящие через сечение l = −0.1 на

высотах δ0 и 2δ0. Полагая, что они распространяются синхронно с ростом толщины

пограничного слоя, рассмотрим нелинейную аппроксимацию их формы с помощью

степенной зависимости dw = A|l − l0|b + dw0. Врезка на рис. 5.8 демонстрирует,

что при l > 1 ≈ 33δ0 показатель степени b стремится к значению 0.5, которое

соответствует безградиентному автомодельному пограничному слою над плоской

пластиной.

Опираясь на это наблюдение, можно заключить, что отношение толщин погра-

ничного слоя на угле EC10 и на плоской пластине FP при фиксированном l должно

стремиться к постоянной величине вдали от области взаимодействия l ≈ 0. Такое

отношение можно оценить, используя теорию Прандтля—Майера и предполагая

постоянным массовый расход газа в пограничном слое:

δEC

δFP
=
ρ1U1

ρ2U2
=
ρ1M1

ρ2M2

√
T1
T2

=

(
2 + (γ − 1)M 2

2

2 + (γ − 1)M 2
1

) γ+1
2(γ−1) M1

M2
. (5.2)

а) Модуль вектора скорости б) Число Маха и температура

Рисунок 5.7 — Профили невозмущённого течения по нормали к поверхности в

разных сечениях lw = const
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Рисунок 5.8 — Распределение числа Маха и давления вдоль линий тока EC10,

проходящих через точки (l, y) = (−0.1, δ99) и (−0.1, 2δ99) и изображённых на

рис. 5.6, а также расстояние dw от этих линий до поверхности. На врезке: показатель
степени нелинейной аппроксимации dw(l) при l > 1

Соотношение (5.2) используется далее для быстрой оценки частоты неустой-

чивой области. Подстановка предельных значений числа Маха на границе погра-

ничного слоя перед углом,Me,1 ≈ 6, и после него,Me,2 = Me,EC10 ≈ 7.85, в (5.2)

даёт δEC10/δFP ≈ 3.3.

5.2.2. Анализ устойчивости

Анализ линейной устойчивости невозмущённого течения из подраздела 5.2.1,

которое получено в рамках уравнений Навье—Стокса, показывает, что над углом

разрежения существует только одна неустойчивая мода — вторая мода по термино-

логии Мэка [45]. Несмотря на заметное отклонение профилей пограничного слоя

от случая плоской пластины, процедура глобального поиска неустойчивостей не
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выявила новых мод. Известно, что наиболее быстро растут плоские волны второй

моды, β = 0; их длина пропорциональна местной толщине пограничного слоя

(λ ≈ 2δ), а фазовая скорость близка к скорости невязкого течения (c ≈ 0.9ue).

Поэтому отношение характерных частот неустойчивостей за углом, f2 при l > 1, и

перед углом, f1 при l < 0, можно оценить как f2/f1 = λ1/λ2 · c2/c1. Из рис. 5.7а
видно, что ue1 ≈ ue2. Поэтому отношение фазовых скоростей близко к единице и

f2
f1

≈ λ1
λ2

≈ δ1
δ2
. (5.3)

Используя оценку (5.2), получаем f2/f1 ≈ 0.6 в случае EC05 и f2/f1 ≈ 0.3 в случае

EC10. В рамках линейной теории частота элементарной волны, распространя-

ющейся с малой амплитудой в невозмущённом пограничном слое, сохраняется.

Поэтому ожидается, что высокочастотные возмущения на частоте f ∼ f1, к кото-

рым пограничный слой был неустойчив перед углом, могут оказаться в устойчивой

области пограничного слоя за углом и, таким образом, будут затухать. Для низ-

кочастотных возмущений на частоте f ∼ f2 ситуация обратная: они находятся в

устойчивой области перед углом при l < 0 и попадают в неустойчивую область

за углом при l ? 1. Это предположение подтверждается результатами линейной

теории устойчивости, которые обобщены на рис. 5.9.

На пластине (FP, чёрные линии) огибающая N -факторов монотонно растёт.

При l = 0 максимальное усиление Nmax ≈ 6.6 соответствует волне с частотой 113

кГц (ω ≈ 69), для которой нейтральная точка расположена при l ≈ −3.2. Так как

влияние угла разрежения вверх по потоку практически отсутствует, N -факторы

при l < 0 остаются идентичными во всех трёх случаях. За углами разрежения EC05

и EC10 ситуация меняется кардинально. Изначально растущие высокочастотные

возмущения быстро затухают, а низкочастотные возмущения начинают нарастать.

Следует отметить, что кривая N -фактора для возмущения ω ≈ 69 переходит в

огибающую N -факторов для случая EC05 (толстая красная линия) и случая EC10

(толстая синяя линия). Все нарастающие при l = 0 возмущения, для которых

кривые N -факторов расположены под огибающей (их частоты ниже 113 кГц),

затухают за углом, а их N -факторы следуют практически параллельно своим

огибающим (опущено на рис. 5.9 для читаемости). Таким образом, волновой пакет

второй моды должен монотонно затухать в области за углом разрежения, причём

частота его преобладающей гармоники должна сохраняться. Описанное поведение

наблюдается далее в прямом численном моделировании.
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Рисунок 5.9 — Факторы интегрального усиления отдельных гармоник (тонкие

линии) второй моды и их огибающие (толстые линии), полученные в рамках eN

метода для ПЧМ (пограничный слой из раздела 5.2.1); family components (enve-

lope) — семейство линий (их огибающая), которые соответствуют нарастающим

возмущениям перед углом (FP) и за ним (EC)

Рисунок 5.9 также показывает, что эффективность стабилизации растёт с ростом

угла разрежения ε: затухание высокочастотных возмущений проявляется сильнее,

а рост низкочастотных возмущений при l > 0 — слабее. Точки, где огибающие

затухающего и растущего пакета пересекаются, расположены при l ≈ 3.3 для

угла EC05 и l ≈ 2.2 для угла EC10. В этих точках преобладающие низкочастотные

возмущения имеют частоты 56 кГц (ω ≈ 34.2) и 35 кГц (ω ≈ 21.4), соответственно.

5.2.3. Линейный режим

Эволюция волновых пакетов, сформированных при l ≈ −4.2, показана на

рис. 5.10 для пластины (FP, верхняя половина каждого подрисунка) и угла ε = 10°

(EC10, нижняя половина). Сначала волновые пакеты развиваются идентично
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(рис. 5.10а – в): они растут вниз по потоку и выглядят, как ряд плоских волновых

фронтов, что типично для второй неустойчивой моды сверхзвукового пограничного

слоя на плоской пластине. Веер волн разрежения не оказывает влияния на волно-

вой пакет перед углом (при l < 0). Заметная продольная модуляция амплитуды

возмущений (рис. 5.10г – е) в случае плоской пластины вызвана неоднородностью

начального спектра волнового пакета, сформированного за генератором возму-

щений, а также эффектом спонтанного излучения звука при схожих параметрах

набегающего потока (детали даны в главе 4). За углом разрежения волновые пакеты

быстро затухают (рис. 5.10г–е) и не восстанавливаются в оставшейся части расчёт-

ной области. Таким образом, течение за углом разрежения оказывается устойчивым

по отношению к возмущениям, преобладавшим перед углом. В случае EC05 эволю-

ция волнового пакета протекает аналогично случаю EC10, но затухание волнового

пакета выражено слабее (детали не приводятся для краткости).

Распределение амплитуды возмущения давления на поверхности (рис. 5.11)

показывает, что в случае EC10 амплитуда уменьшается на порядок в области

0 < l < 0.7 и становится пренебрежимо малой при l > 1.5. В случае EC05 эффект

стабилизации проявляется похожим образом.

Рассмотрим частотно-волновой состав возмущений p′w(z, t) в нескольких ха-

рактерных сечениях l = const. Перед углом, l < 0, спектры идентичны во всех

а)

б)

в)

г)

д)

е)

Рисунок 5.10 — Отпечатки поля возмущения давления на поверхности в моменты

времени: а — 0.1, б — 2.15, в — 4.3, г — 6.45, д — 8.6, е — 10.75; вид сверху; WP.

Верхняя половина каждого подрисунка — FP, нижняя половина — EC10
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Рисунок 5.11 — Амплитуда p′w(t, l, z) при z = 0 в несколько моментов времени,
WP

рассматриваемых случаях, как продемонстрировано на рис. 5.12: левая половина

каждого подрисунка, соответствующая плоской пластине, является зеркальным от-

ражением правой половины, соответствующей углу разрежения. Волновые пакеты

возбуждаются в широком спектральном диапазоне, включая область, в которой

пограничный слой является локально неустойчивым. По мере развития волнового

пакета наибольший рост проявляют плоские волны в окрестности β = 0, которые

начинают преобладать в волновом пакете. Такое поведение согласуется с пред-

сказаниями ЛТУ и подтверждает эффективность возбуждения волновых пакетов

второй моды с помощью генератора (5.1).

На рис. 5.13 и 5.14 изображены аналогичные спектры в нескольких сечениях

за углом. На плоской пластине (FP) возмущения развиваются аналогично области

l < 0. При прохождении над углом разрежения преобладающее в пакете возму-

щение затухает. Однако помимо затухания исходных волн проявляются новые

низкочастотные плоские волны β ≈ 0, которые формируют новый максимум. В

случае EC10 их характерная частота примерно втрое меньше, чем частота макси-

мума исходного волнового пакета, что согласуется с оценкой по формуле (5.3).
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Рисунок 5.12 — Спектры p′w(t, z) перед углом при l = −3.5, −2, −0.5 (слева

направо). Левая половина каждого подрисунка — FP, правая половина — EC05

или EC10 (идентичны). Цветовая палитра задана в масштабе log10

Рисунок 5.13 — Спектры p′w(t, z) за углом при l = 0.5, 1.5, 2.5 (слева направо).
Левая половина каждого подрисунка — FP, правая половина — EC05. Цветовая

палитра задана в масштабе log10

Рисунок 5.14 — Спектры p′w(t, z) за углом при l = 0.5, 1.5, 2.5 (слева направо).
Левая половина каждого подрисунка — FP, правая половина — EC10. Цветовая

палитра задана в масштабе log10
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Рисунок 5.15 количественно иллюстрирует появление новых максимумов при

β ≈ 0. Сплошными изображён частотный спектр в сечении l = 0.5, расположен-

ном в области взаимодействия пограничного слоя с веером волн разрежения, а

пунктир соответствует дальнему сечению l = 6. Серые линии показывают спектры

в промежуточных сечениях l = const. На пластине поведение спектров обычное

(чёрные линии): частота преобладающего возмущения уменьшается и максималь-

ная амплитуда увеличивается вниз по потоку, ωmax ≈ 52 при l = 6. Для ненулевого

угла разрежения, ε 6= 0, поведение возмущений при l > 0 отличается: наряду с

затуханием изначально развивающегося высокочастотного волнового пакета фор-

мируется новый нарастающий низкочастотный волновой пакет. В дальнем сечении

l = 6 его частота равна ωmax ≈ 17.5 в случае EC10 и ωmax ≈ 31 в случае EC05.

Следует отметить, что отношение ωmax,FP/ωmax,EC10 ≈ 3.0, что близко к соот-

ветствующей теоретической оценке 3.3 на основе выражений (5.2)–(5.3). Также

следует отметить, что исходные волновые пакеты затухают равномерно по частоте,

при этом частота их максимума остаётся постоянной (сплошные синяя и красная

кривые на рис. 5.15). Такое поведение соответствует предсказаниям линейной

теории устойчивости (см. рис. 5.9 и обсуждение выше).

Рисунок 5.15 — Частотный спектр плоских волн (β = 0) для p′w(t, z) в сечениях
l = 0.5...6.0 с шагом 0.5
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Перекрёстное сравнение результатов. На рис. 5.16 частота преобладающего

возмущения ωmax из ЛТУ сравнивается с результатами ПЧМ. В случае ЛТУ при-

ведены распределения ωmax(l): N(ωmax, l) = Nmax(l) для волн второй моды. В

случае ПЧМ распределения ωmax(l) соответствуют движению двух максимумов,

показанному на рис. 5.15 стрелками. В области −3 < l < 0, которая расположена

перед углом и достаточно далеко от генератора возмущений, наблюдается един-

ственный максимум, которых хорошо предсказывается как линейной теорией, так

и прямым расчётом. Ниже по потоку при l > 0 результаты ПЧМ указывают на то,

что преобладающая гармоника в затухающем волновом пакете больше не зависит

от l. Центральная частота нового волнового пакета, который выделяется в ПЧМ

из фона возмущений при l ? 1, хорошо согласуется с частотой, предсказанной

в ЛТУ. Следует отметить, что центральная частота ωmax близка к верхней ветви

соответствующей нейтральной кривой, изображённой на рис. 5.16б. Перед углом

l < 0 нейтральные кривые совпадают для всех случаев. За углом l > 0 наблюдается

резкое смещение неустойчивой области в сторону низкочастотных возмущений.

Это смещение тем больше, чем больше угол разрежения ε. Разделение неустойчи-

вых областей при l ≈ 0 происходит быстро: области прекращают перекрываться

при l ? 0.4 (FP и EC05) и l ? 0.15 (FP и EC10), что указывает на полную стаби-

лизацию пограничного слоя по отношению к волновым пакетам, развивавшимся

перед углом разрежения.

а) ωmax(l) б) Область неустойчивости из ЛТУ

Рисунок 5.16 — Сопоставление результатов ЛТУ (LST) и ПЧМ (DNS): частоты

неустойчивых возмущений; unstable region — неустойчивая область; lower / upper

branch — нижняя / верхняя ветвь нейтральной кривой
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Сопоставим интегральные усиления, полученные в рамках ЛТУ и ПЧМ. На

рис. 5.17 представлены распределения ∆N — N -факторов относительно сечения

l1 при β = 0:

∆N(l1, l2, ω) ≡ N(l2, ω)−N(l1, ω) = ln

∣∣∣∣ p̂w(l2, ω)p̂w(l1, ω)

∣∣∣∣ ,
которые в случае ПЧМ рассчитаны по амплитудам двухмерного преобразова-

ния Фурье p̂w пульсаций давления на поверхности; для анализа выбран интер-

вал [l1, l2] = [2.5, 6.0]. Вертикальным пунктиром на рис. 5.17а отмечены частоты,

которые соответствуют максимумам ∆N и максимумам ωmax, введённым выше.

Следует отметить, что максимумы на рис. 5.17а с высокой точностью лежат на

одной прямой, что в совокупности с теоретической оценкой (5.2)–(5.3) открывает

возможность нахождения ∆N при других углах отклонения поверхности ε.

Теоретическое и расчётное распределения хорошо согласуются (рис. 5.17б).

Расхождение не превосходит 7% и, по-видимому, обусловлено эффектами непа-

раллельности, которые не учитывались в анализе ЛТУ. Таким образом, линейная

теория устойчивости даёт достаточно надёжную оценку интегрального усиления

(N -факторов) возмущений второй моды сверхзвукового пограничного слоя над

углом разрежения, где невозмущённое течение стремительно меняется в узкой

области взаимодействия пограничного слоя с веером волн разрежения.

а) ПЧМ: ∆N(l1, l2, ω) б) ∆N(l1, l, ωmax), l1 = 2.5

Рисунок 5.17 — Сопоставление результатов ЛТУ и ПЧМ: интегральное усиление
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5.2.4. Нелинейный режим (турбулентное пятно)

Рассмотрим аналогичные картины при амплитуде генератора возмущений на

три порядка выше, чем в случае линейного волнового пакета (WP). Развитие на-

чального возмущения в турбулентное пятно показано на рис. 5.18. Сначала фор-

мируется волновой пакет плоских волн с регулярными вертикальными фронтами,

что соответствует второй неустойчивой моде пограничного слоя при числе Ма-

ха 6 и визуально совпадает со случаем WP. Далее наблюдается быстрая стадия

нелинейного распада возмущений: плоские волновые фронты деформируются,

пакет искажается и превращается в молодое турбулентное пятно до момента, когда

возмущение начнёт пересекать сечение x = l = 0. При t = 4.3 одно и то же турбу-

лентное пятно «запускается» на каждой из трёх конфигураций стенки: FP, EC05,

EC10. На рис. 5.18 проиллюстрированы только случаи FP и EC10; картины для

случая EC05 аналогичны и занимают промежуточное положение по интенсивности

и вихревому наполнению возмущений.

Как и в случае волнового пакета WP, влияние угла разрежения вверх по по-

току не наблюдается. При прохождении угла отпечаток давления пятна заметно

ослабевает, хотя пятно не исчезает вниз по потоку. Мелкие вихревые структуры

отпечатка пропадают по мере того, как пятно EC10 покидает окрестность угла.

В случае пластины FP такие структуры эволюционируют при l > 0 без видимых

качественных изменений. За углом EC10 пятно продолжает развиваться, но ослаб-

ление пятна остаётся нескомпенсированным вниз по потоку: пятно FP выглядит

больше, интенсивнее и наполненнее, чем пятно EC10.

Примечательно, что пространственное вихревое наполнение турбулентного

пятна EC10, по-видимому, не ослабляется так сильно, как это следует из отпечатка

возмущения давления на стенке. Рассмотрим рис. 5.19, иллюстрирующий разви-

тие пятен с помощью изоповерхностей Q-критерия в трёх проекциях. За углом

пространственная вихревая структура остаётся хорошо развитой, но пятно в целом

приподнимается над поверхностью. После того, как пятно EC10 перевалило через

угол разрежения, оно продолжает расти вдоль отклонённой поверхности, как будто

расширения потока не было. Однако размеры пятна EC10 оказываются несколько

меньше, чем размеры пятна FP. Это наблюдение указывает на то, что влияние угла

разрежения локализовано в пространстве и проявляется как небольшая задержка

в развитии турбулентного пятна. По мере дальнейшего продвижения пятна над
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а)

б)

в)

г)

д)

е)

Рисунок 5.18 — Отпечатки поля возмущения давления на поверхности в моменты

времени: а — 0.1, б — 2.15, в — 4.3, г — 6.45, д — 8.6, е — 10.75; вид сверху; TS.

Верхняя половина каждого подрисунка — FP, нижняя половина — EC10

углом EC10 оно медленно возвращается к обтекаемой поверхности. Результаты

для пятна EC05 аналогичны и поэтому не иллюстрируются.

Спектры пульсаций давления в различных сечениях l = const представлены

на рис. 5.20, 5.21 и 5.22.

Как показано на рис. 5.18 при t = 2.15, раннее возмущение пограничного

слоя на плоской пластине выглядит, как обычный волновой пакет второй моды.

Это подтверждается спектром при l = −3 (рис. 5.20). Он состоит из единствен-

ного максимума около (ω, β) ≈ (90, 0), который соответствует плоской волне,

преобладающей в пограничном слое. Несколько ниже по потоку, при l = −2, пре-

обладающая волна смещается вниз по частоте (в соответствии с линейной теорией

устойчивости) и появляются множественные кратные гармоники, что указывает

на начало нелинейной стадии развития возмущений. При этом частотно-волновой

спектр стал существенно шире по β; появилось несколько наклонных гармоник

β 6= 0 на частоте преобладающей гармоники. Такой процесс нелинейного распада

напоминает механизм фундаментального резонанса, когда две симметричных на-

клонных волны (ω,±β) быстро нарастают вниз по потоку в присутствии сильной
плоской волны той же частоты (ω, 0). Возмущения волнового пакета распадаются

быстро и проявляют признаки молодого турбулентного пятна уже перед углом раз-

режения: их спектр наполняется и значительно уширяется (l = −0.5 на рис. 5.20).
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Рисунок 5.19 — Эволюция турбулентного пятна на примере изоповерхностей Q-
критерия в трёх проекциях в разные моменты времени. Слева — FP, справа —

EC10

Рисунок 5.20 — Спектры p′w(t, z) перед углом при l = −3, −2, −0.5 (слева напра-
во). Левая половина каждого подрисунка— FP, правая половина— EC05 или EC10

(идентичны). Цветовая палитра задана в масштабе log10
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При l > 0 спектр пятна FP всё активнее и равномернее заполняет низкоча-

стотный диапазон (рис. 5.21 и 5.22, левая половина подрисунков). Усиливается

гармоника с нулевой частотой, что указывает на значительное изменение среднего

течения в присутствии турбулентного пятна. Спектр сразу за углами разрежения

EC10 (рис. 5.21 и 5.22, правая половина подрисунков, l = 0.5) подтверждает, что

пятно затухает непосредственно вблизи угла во всём частотно-волновом диапазоне,

причём затухание проявляется тем сильнее, чем выше частота или волновое число.

Далее вниз по потоку спектры развиваются аналогично случаю FP: низкочастот-

ные гармоники медленно восстанавливаются (l = 1.5, 2.5), однако гармоники с

большой частотой или волновым числом восстанавливаются намного медленнее и

остаются заметно слабее к концу расчётной области, чем в случае FP.

Проиллюстрированное поведение спектра возмущений подкрепляет идею о

том, что турбулентное пятно не исчезает за углом и продолжает развиваться, но с

подавленными мелкомасштабными компонентами. Это также подтверждается на

распределениях максимальной по размаху амплитуды возмущений давления на

стенке (рис. 5.23). В любой фиксированный момент времени амплитуды возмуще-

ний FP, EC05 и EC10 эволюционируют бок о бок до самого угла (l < 0), а при l > 0

становятся меньше на угловых конфигурациях. При удалении от угла амплитуды

снова сближаются, но качественно расхождение сохраняется: чем выше величина

угла ε, тем ниже амплитуда.

5.3. Первая мода

Рисунок 5.21 — Спектры p′w(t, z) за углом при l = 0.5, 1.5, 2.5 (слева направо).
Левая половина каждого подрисунка — FP, правая половина — EC05. Цветовая

палитра задана в масштабе log10
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Рисунок 5.22 — Спектры p′w(t, z) за углом при l = 0.5, 1.5, 2.5 (слева направо).
Левая половина каждого подрисунка — FP, правая половина — EC10. Цветовая

палитра задана в масштабе log10

Рисунок 5.23 — Максимум амплитуды пульсаций p′w(t, l, z) на поверхности в

несколько моментов времени, TS
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5.3.1. Невозмущённое течение

Невозмущённое поле течения и граница расчётной подобласти 2, в которой

моделируется прохождение волновых пакетов и турбулентных пятен через сечение

l = 0, представлены на рис. 5.24. Общая структура течения аналогична случаю

M∞ = 6. Зелёной линией со стрелками показана линия тока, проходящая через се-

чение l = −1 на высоте 5δ(−1) ≈ 0.0221. Над углом линия тока заметно удаляется

от поверхности, указывая на резкое утолщение пограничного слоя.

На рис. 5.25 в нескольких сечениях до и за углом разрежения показаны рас-

считанные профили модуля скорости, числа МахаM и статической температуры

T ; dw — расстояние до стенки. Профили перед углом хорошо соответствуют про-

филям для случая плоской пластины и начинают испытывать искажения лишь

в непосредственной близости от угла при l > −0.1— влияние угла разрежения

вверх по потоку мало. Сразу за углом профили неоднородно искривляются. Далее

вниз по потоку их прежнее поведение медленно восстанавливается — они вновь

начинают походить на профили над плоской пластиной.

При переходе через угол скорость потока растёт незначительно, новое значение

модуля скорости на границе пограничного слоя Ue ≈ 1.056 на ~6% выше соответ-

ствующего значения перед углом. Ускорение потока с точки зрения числа Маха

Рисунок 5.24 — Невозмущенное поле модуля градиента давления в полной рас-

чётной области. Белой линией отмечена граница подобласти 2. Красной линией

отделена буферная зона
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осуществляется за счёт охлаждения потока (рис. 5.25б). Параметры течения на

верхней границе пограничного слоя устанавливаются уже при l < 0.3, что составля-

ет порядка десяти толщин пограничного слоя перед углом, 10δ. При этом веер волн

разрежения расположен достаточно высоко над поверхностью, и пограничный

слой формируется под ним. Относительная длина области установления погранич-

ного слоя на угловой конфигурации примерно вдвое меньше, чем в случаеM∞ = 6.

Это объясняется тем, что с ростом числа Маха веер располагается более полого и

медленнее удаляется от поверхности угла, из-за чего область взаимодействия за

углом удлиняется.

Следует отметить, что параметры потока на границе пограничного слоя за углом

хорошо соответствуют значениям, предсказываемым теорией Прандтля—Майера:

Me ≈ 3.58, Te ≈ 0.79. Поэтому вновь можно использовать эту теорию для быстрых

оценок характеристик течения и устойчивости над углом разрежения, опираясь на

оценку (5.2)–(5.3). Подставляя в эти формулыM1 = M∞ = 3 иM2 = Me ≈ 3.58,

получим δ2/δ1 ≈ 1.7. Соответствующая величина из прямого расчёта составляет

1.5. Сделанная оценка показывает, что за углом частота неустойчивости погранич-

ного слоя должна понизиться примерно в 1.7 раза. Поэтому вновь следует ожидать,

что растущие до угла возмущения превратятся в затухающие вниз по потоку от

угла. Подтвердим этот вывод в рамках прямого численного моделирования.

а) Модуль вектора скорости б) Число Маха и температура

Рисунок 5.25 — Профили невозмущённого течения по нормали к поверхности в

разных сечениях lw = const
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5.3.2. Развитие возмущений

В соответствии с анализом линейной устойчивости пограничного слоя на плос-

кой пластине, проведённым в подразделе 5.1.1, при рассматриваемых параметрах

течения имеется одна неустойчивая мода — первая мода в терминологии Мэка.

Возмущения первой моды являются наклонными волнами, которые распростра-

няются с углом наклона фронтов около 60...70°, имеют продольную длину волны

∼ 10δ и фазовую скорость ∼ 0.5Ue. Из рис. 5.26 слева видно, что за генератором

возмущений быстро формируется волновой пакет первой неустойчивой моды. Он

монотонно усиливается вниз по потоку, увеличиваясь пропорционально в продоль-

ном и в боковом направлениях до конца расчётной области в случае FP. Волновой

пакет EC развивается идентично до излома поверхности при l = 0, а ниже по

потоку затухает монотонно и быстро, но медленнее, чем в случаеM∞ = 6. Коли-

чественное сопоставление амплитуд волновых пакетов FP и EC дано на рис. 5.27а,

где приведены распределения максимальной по z величины p′w(x, z) в несколько

моментов времени. Амплитуда пакета FP растёт практически экспоненциально

вниз по потоку, в то время как пакет EC экспоненциально затухает при l > 0.

Турбулентное пятно на плоской пластине эволюционирует иначе (рис. 5.26

справа): оно монотонно растёт, удлиняясь вниз по потоку, но его амплитуда остаёт-

ся примерно на одном уровне (рис. 5.27б). На периферии пятна (особенно в его

передней части) имеется область пониженного давления, в теле пятна — область

повышенного давления. В окрестности пятна, где нелинейное взаимодействие

слабо, проявляются наклонные волновые фронты, геометрические параметры кото-

рых характерны для волнового пакета первой моды (рис. 5.26 слева). В отличие от

случая волнового пакета, турбулентное пятно EC ослабевает при движении над уг-

лом разрежения, но это ослабление носит локальный характер, и пятно продолжает

свой рост аналогично случаю FP при l ? 1. Появление угла разрежения вносит

задержку в развитие пятна. Это наблюдение подтверждается на рис. 5.27б: уровень

максимальной амплитуды возмущений в пятне скачкообразно падает за углом и

далее вниз по потоку медленно восстанавливается, приближаясь к соответствую-

щему уровню возмущений над плоской пластиной. В целом, поведение волновых

пакетов и турбулентных пятен на режимеM∞ = 3, где преобладает первая неустой-

чивая мода, качественно согласуется со случаемM∞ = 6, где преобладает вторая

неустойчивая мода.
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Рисунок 5.26—Отпечатки поля возмущения давления на поверхности (вид сверху)

в моменты времени (сверху вниз): 3.75, 7.5, 11.25, 15. Левый столбец—WP, правый

столбец — TS. Верхняя половина каждого подрисунка — FP, нижняя половина —

EC10

а) WP б) TS

Рисунок 5.27 — Максимум амплитуды пульсаций p′w(t, l, z) на поверхности в

несколько моментов времени, TS
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Турбулентные пятна при M∞ = 3 имеют выраженную пространственную

треугольную форму, которая остаётся самоподобной при развитии пятна и над

пластиной, и над угловой конфигурацией. Это проиллюстрировано с помощью

вихревой структуры пятна на рис. 5.28. Очевидно, что над обеими конфигурациями

пятно раскрывается в некотором характерном угле 2β1/2. Передний фронт пятна

FP движется со скоростью ule ≈ 0.89, задний фронт — ute ≈ 0.68, полуугол

раскрытия β1/2 ≈ 7.5°; по обобщённым данным экспериментов [233] β1/2 > 6.1°.

Рассогласование величины β1/2, вероятно, объясняется подходом к измерению. В

настоящей работе измерения сделаны визуально по рис. 5.28 (слева) для моментов

времени t = 8 и 14 по переднему фронту вихревых структур и по положению

максимального размаха пятна.

Следует отметить, что наблюдаемая форма пятна сильно отличается от слу-

чая M∞ = 6 на охлаждаемой стенке, где пятно сильно вытянуто вдоль потока

и зафиксировать его треугольную структуру затруднительно. Аналогичные из-

мерения, выполненные по рис. 5.19 по двум моментам времени t = 4.5 и 8.5,

дают: ule ≈ 0.95, ute ≈ 0.68 и β1/2 ≈ 3.5° (попадает в разброс экспериментальных

данных [233]). Если скорость заднего фронта пятна измерять по заднему фронту

изоповерхностей Q-критерия, где пятно ещё выглядит сформированным, то в слу-

чаеM∞ = 3 величина ute не изменяется, а дляM∞ = 6 понижается до ute ≈ 0.60.

Во всех случаях передний фронт пятна движется со скоростью, близкой с скорости

невязкого потока над пограничным слоем.

Рассмотрим эволюцию возмущений в спектральной плоскости. В случае WP

(рис. 5.29) спектры содержат два симметричных максимума, которые определя-

ют наклон волновых фронтов. Вниз по потоку частота и волновое число этих

максимумов медленно убывают, что соответствует результатам линейной теории

устойчивости и здесь подробно не обсуждается; спектральная амплитуда макси-

мумов растёт вниз по потоку. До угла l < 0 спектры волновых пакетов FP и EC

идентичны. За углом спектр возмущений в пакете EC монотонно и равномерно

затухает во всём спектральном диапазоне, за исключением ближней окрестности

нуля: β ≈ 2, ω ∼ 10. Здесь наблюдается слабый рост на уровне фонового шума.

Предположительно, это новый волновой пакет, который зарождается из фоновых

возмущений в перестроившемся пограничном слое. Из-за ограниченных размеров

расчётной области более детальный анализ такого роста на базе проведённых

расчётов представляется нецелесообразным.
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Рисунок 5.28 — Эволюция турбулентного пятна на примере изоповерхностей Q-
критерия в двух проекциях в разные моменты времени. Слева —WP, справа —

EC10

Рисунок 5.29 — Спектры p′w(t, z) для случая WP при l = −0.5, 0.5, 2.0 (слева
направо). Левая половина каждого подрисунка — FP, правая половина — EC10.

Цветовая палитра задана в масштабе log10
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Соответствующие спектры для случая турбулентного пятна (рис. 5.30) отлича-

ются качественно. Из-за большой амплитуды генератора возмущений начальный

спектр возмущений, порождённых в пограничном слое, не является простым, хотя

изначально выделяются два максимума первой моды, соответствующие макси-

мумам рис. 5.29. Нелинейное взаимодействие приводит к появлению гармоник

с кратными частотами и волновыми числами; спектр быстро наполняется, дро-

бится; появляется и усиливается гармоника (ω, β) = (0, 0), что свидетельствует о

растущем изменении среднего течения внутри пятна. Вновь для l < 0 спектры ока-

зываются идентичны, а различия появляются сразу при l > 0. Основное отличие

заключается в том, что спектр EC быстро теряет в амплитуде во всём частотно-

волновом диапазоне и становится менее наполненным, однако вниз по потоку он

медленно наполняется и восстанавливается по амплитуде. Тем не менее, напол-

ненность остаётся меньше по сравнению со случаем FP. Описанное спектральное

поведение возмущений за углом разрежения свойственно и турбулентным пятнам

приM∞ = 6, как проиллюстрировано на рис. 5.21 и 5.22.

Рисунок 5.30 — Спектры p′w(t, z): сверху — перед углом, l = −3, −2, −0.5; снизу
— за углом, l = 0.5, 2, 3 (слева направо). Левая половина каждого подрисунка —
FP, правая половина — EC10. Цветовая палитра задана в масштабе log10
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5.4. Сравнение линейного и нелинейного режимов

Выводы, сделанные для случаев волнового пакета WP и турбулентного пятна

TS, подтверждаются количественно распределениями максимума спектральной

амплитуды, резюмированными на рис. 5.31. Действительно, нарастание гармоники,

которая преобладает в турбулентном пятне, близко к экспоненциальному и прохо-

дит идентично для плоской пластины и для угловых конфигураций при l < 0. В

окрестности угла l ≈ 0 кривые быстро разделяются, а при l ? 1 вновь развиваются

практически синхронно, различаясь примерно постоянным множителем. Эффект

подавления возмущений в пятне сосредоточен в окрестности угла и тем больше,

чем сильнее отклоняется поток в угле, что проиллюстрировано здесь лишь для слу-

чаяM∞ = 6 на рис. 5.31а из-за ограниченных вычислительных возможностей. За

углом при 0 < l > 1 имеется область влияния угла, в которой происходит задержка

развития пятна. Изменение среднего течения при формировании пятна (гармоника

(ω, β) = (0, 0)) происходит наиболее активно при l < −2. Далее зависимость насы-

щается, что соответствует началу существенно нелинейной стадии развития пятна.

Сразу за углом разрежения преобладающая гармоника скачкообразно ослабевает

при 0 6 l > 0.5, но далее возобновляет свой рост с инкрементами, близкими к

случаю плоской пластины.

Поведение турбулентных пятен TS заметно отличается от поведения линейных

волновых пакетов WP. Пограничный слой за углом становится устойчивым к воз-

мущениям, которые нарастали перед углом, и эти возмущения монотонно затухают

ниже по потоку; затухание носит примерно экспоненциальный характер. За углом

появляется новая низкочастотная неустойчивость; амплитуды низкочастотных воз-

мущений малы из-за длительного участка их начального затухания перед углом.

Поэтому новые растущие волновые пакеты достигают существенных амплитуд на

больших расстояниях за углом. Для рассмотренных конфигураций новые волновые

пакеты второй моды (M∞ = 6, рис. 5.31а) оказались слабее на пару порядков по

сравнению с волновыми пакетами на плоской пластине, а волновые пакеты первой

моды (M∞ = 3, рис. 5.31б) не наблюдались вовсе. Поэтому общий эффект угла

разрежения на линейном режиме можно описать как существенную стабилизацию

пограничного слоя даже в случае относительно малых углов разворота потока

ε = 5°.
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а)M∞ = 6

б)M∞ = 3

Рисунок 5.31 — Сопоставление эволюции спектрального горба волнового пакета

(WP) и турбулентного пятна (TS)
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5.5. Задержка турбулентного пятна

Как отмечалось выше, присутствие угла разрежения задерживает развитие тур-

булентного пятна. Проиллюстрируем это утверждение, используя предположение

о треугольной форме турбулентного пятна (см. рис. 5.19 и 5.28 и обсуждение в

разделе 5.3).

5.5.1. Теоретическая модель

Пятна над пластиной (FP) оказываются больше, чем над угловыми конфигура-

циями, а размер пятен в профиль различается слабо. Поэтому следует ожидать, что

вклад большего пятна в силу вязкого трения окажется больше. Рассчитаем этот

вклад следующим образом:

∆Fv,x ≈
¨

S

∆cf,xdldz,

где S — площадь обтекаемой поверхности, а ∆cf,x — избыточный коэффициент

трения по сравнению со случаем невозмущённого течения, который обусловлен

присутствием турбулентного пятна. Величина cf,x определяется в соответствии с

формулой (1.18):

cf,x =
2

Re∞

[
µ
∂u

∂n

]
w

.

Центр приложения избыточной силы можно определить из простых геометри-

ческих соображений аналогично положению центра масс тела

rc ≡ (lc, zc) =

¨
S

r · dFv,x/∆Fv,x. (5.4)

5.5.2. Результаты численного моделирования

Центр приложения избыточной силы трения (lc, zc), рассчитанный по формуле

(5.4) для моделируемой половины пятна, располагается внутри пятна, как показано
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на рис. 5.32. Положение пятна над пластиной и над угловой конфигурацией различ-

ны. При переходе через угол EC10 коэффициент трения cf,x в пятне уменьшается

на порядок по сравнению со случаем плоской пластины. Очевидно, это отразится

на величине ∆Fv,x.

Эволюция центров lc(t) проиллюстрирована на рис. 5.33. Центры движутся

синхронно до некоторого момента времени (t > 5.5 приM∞ = 6 и t > 9.5 при

M∞ = 3), что соответствует расположению пятна перед углом: lc > −0.5. Ослабле-

ние пятен за углом приводит к тому, что вклад перевалившей через угол части пятна

растёт недостаточно быстро, и движение центра приложения избыточной силы

замедляется — наклон соответствующих кривых lc(t) уменьшается. Замедление

наблюдается до тех пор, пока значительная часть пятна остаётся перед углом и даёт

весомый вклад в трение. При переходе пятна через угол картина меняется на об-

ратную: рост головной части пятна за углом активизируется, а его хвостовая часть

всё сильнее подавляется разрежением. Таким образом, по мере прохождения угла

разрежения центр приложения избыточной силы трения сначала замедляется, а

затем ускоряется. Описанное поведение наблюдается во всех случаях на рис. 5.33а,

но проявляется слабее для пятна EC10 приM∞ = 6. На рис. 5.33 можно выделить

прямолинейные участки кривых lc(t) за углом и определить их наклон. Величины

рассчитанных наклонов приведены в табл. 5.5.

Вдали за углом следует ожидать, что наклон lc(t) выйдет на новый постоян-

ный уровень, который зависит от геометрических характеристик пятна (ule, ute,

β1/2), которые в свою очередь определяются характеристиками пограничного слоя

(Ue,Me, Tw). Анализ среднего течения и геометрии турбулентных пятен для всех

рассмотренных случаев показывает, что зависимость установившейся за углом

скорости движения пятна от этих величин не должна быть сильной. Таким образом,

пятна FP, EC05 и EC10 должны иметь близкие наклоны кривых lc(t) далеко за

углом разрежения. Учитывая, что величина Ue слабо растёт с ростом ε, можно

M∞ FP EC05 EC10 [t1, t2] Ue,EC10

3 0.678± 0.002 – 0.809± 0.005 [11.5, 16] 1.056

6 0.723± 0.004 0.792± 0.005 0.786± 0.004 [8, 12] 1.026

Таблица 5.5 — Установившаяся скорость точки приложения избыточной силы

трения, dlc/dt за углом, рассчитанная с помощью линейной регрессии в интервале

времени [t1, t2]. В качестве доверительного интервала выбрано удвоенное

среднеквадратичное отклонение из соответствующей процедуры линейной

регрессии
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а)M∞ = 6, t = 6.6

б)M∞ = 3, t = 10.7

Рисунок 5.32 — Поле избыточного коэффициента трения ∆cf,x от турбулентного
пятна в некоторый фиксированный момент времени: верхняя половина — FP,

нижняя половина — EC10. Крестиком показан центр приложения суммарной силы

трения в соответствии с (5.4)

предположить, что скорости ule и ute будут следовать за Ue. Это подтверждается

результатами проведённого численного моделирования.

Рассмотрим распределение вклада турбулентного пятна в трение (рис. 5.34).

Центр приложения силы lc лежит внутри пятна, поэтому lc < 0, когда пятно начи-

нает переваливаться через угол. В случаеM∞ = 6 (рис. 5.34а) стабилизирующее

действие угла начинается раньше по lc и простирается на большей длине по срав-

нению со случаемM∞ = 3. Это вызвано вытянутой формой турбулентных пятен

над охлаждаемой поверхностью при больших числах Маха.

В случае пятна EC10 распределение ∆Fv.x достигает локального минимума, за

которым инкременты величины ∆Fv,x свойственны пятну FP на плоской пластине.

Для угла EC05 такой минимум практически не выделяется (рис. 5.34а). Поэтому

разумно ограничить область задержки турбулентного сечениями, между которыми

темп роста ∆Fv,x на угловой конфигурации существенно отличается от темпа
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а)M∞ = 6 б)M∞ = 3

Рисунок 5.33 — Центр приложения избыточной силы трения от турбулентного

пятна

роста на плоской пластине. Такие области отмечены на рис. 5.34 вместе с их

размером ∆l, которым можно определить длину задержки турбулентного пятна

при прохождении угла разрежения. Физически длина задержки указывает, на каком

расстоянии за углом возобновится эффективное развитие турбулентного пятна,

при котором нарастание вклада пятна в трение будет близко к случаю плоской

пластины.

Следует отметить, что рост кривых ∆Fv,x(lc) замедляется при lc > 3. Это

связано с тем, что возмущения от пятна начинают взаимодействовать с боковой

границей расчётной области при z = zmax — размах пятна становится слишком

большим. При этом пятно уже не является изолированной областью турбулентного

течения, его следует трактовать как несколько сливающихся друг с другом пятен.

Замедление происходит более активно в случаеM∞ = 3, где пятно имеет чётко

выраженную треугольную форму (рис. 5.28). ПриM∞ = 6 пятна сильно вытянуты

вдоль потока (рис. 5.19) и замедление проявляется более плавно.

5.6. Выводы по главе

В рамках линейной теории устойчивости и прямого численного моделиро-

вания развития волновых пакетов и турбулентных пятен исследован механизм
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а)M∞ = 6 б)M∞ = 3

Рисунок 5.34 — Распределение избыточной силы трения от турбулентного пятна

стабилизации возмущённых течений из-за быстрого расширения потока над углом

разрежения. Рассмотрены случаи преобладания возмущений первой (число Маха 3,

прогретая стенка) и второй (число Маха 6, охлаждаемая стенка) неустойчивых мод

пограничного слоя на плоской пластине. Оба режима являются характерными для

реалистичных условий высокоскоростного полёта. По результатам исследований

можно сделать следующие выводы.

– Расширение потока над углом приводит к значительному, почти скачкооб-

разному утолщению пограничного слоя над отклонённой поверхностью,

вследствие чего неустойчивости пограничного слоя сдвигаются в область

пониженных частот, а высокочастотные волновые пакеты, нараставшие пе-

ред углом, затухают. Эффект стабилизации течения монотонно усиливается

с увеличением угла отклонения. Указанный механизм стабилизации течения

за углом разрежения одинаков как для первой, так и для второй неустой-

чивых мод пограничного слоя, которые доминируют при разных условиях

обтекания. Несмотря на значительную перестройку течения, в спектре мод

пограничного слоя над углом разрежения не появляются новые неустойчивые

моды.

– Прямое численное моделирование показывает, что на плоской пластине (без

угла) волновые пакеты и турбулентные пятна растут вниз по потоку. На

угловой конфигурации волновые пакеты нарастают до линии излома поверх-

ности и быстро (экспоненциально) затухают ниже по потоку. Наряду с этим

начинает нарастать новый волновой пакет, центральная частота которого
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соответствует новой области неустойчивости пограничного слоя вниз по

потоку от излома. В масштабах рассматриваемых конфигураций (и, вероятно,

в масштабах реальных конфигураций) амплитуда нового волнового пакета

оказывается на два порядка меньше, чем в случае плоской пластины даже

при минимальном рассмотренном угле разрежения 5°. Поэтому влияние рас-

смотренных угловых конфигураций можно трактовать как стабилизацию

пограничного слоя по отношению к малым возмущениям.

– Турбулентные пятна не подавляются за углом разрежения, а лишь испыты-

вают небольшую задержку в развитии на масштабах порядка 20-50 толщин

местного пограничного слоя. Это частично связано с локальным всплыва-

нием пятна над поверхностью. За областью задержки турбулентные пятна

продолжают развиваться, как на плоской пластине: они сохраняют самопо-

добную треугольную форму, а их размер монотонно увеличивается. Анализ

вклада пятна в сопротивление трения подтверждает предположение о задер-

живающем влиянии угла разрежения на развитие пятна. В связи с этим экспе-

риментальные картины пониженного теплового потока за углами разрежения

не обязательно указывают на реламинаризацию турбулентного течения и

могут свидетельствовать о локальном ослаблении влияния турбулентного

пограничного слоя на обтекаемую поверхность.

– Частота преобладающей за углом неустойчивости меняется обратно пропор-

ционально толщине пограничного слоя; частоту можно оценить в рамках

простой теоретической модели (5.2) – (5.3), основанной на модели течения

Прандтля—Майера. Результаты такой оценки и результаты линейной тео-

рии устойчивости хорошо согласуются с результатами прямого численного

моделирования низкоамплитудных волновых пакетов второй неустойчивой

моды. Поэтому ЛТУ можно применять для анализа устойчивости погранич-

ного слоя над углом разрежения, а тяжеловесные расчёты ПЧМ имеет смысл

проводить выборочно на поздних стадиях исследования.

По-видимому, близкими стабилизирующими свойствами должно обладать и

течение, в котором разгон потока осуществляется над протяжённой частью поверх-

ности, а не сосредоточен в окрестности некоторой характерной точки, такой как

угол разрежения. В этом случае следует ожидать, что характеристики устойчиво-

сти будут меняться постепенно. Модельным примером такого течения является
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пограничный слой над тонким параболическим профилем. Исследованию этого

течения посвящена глава 6.
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Глава 6. Переход на прямом крыле с тонким параболическим профилем

Современные сверхзвуковые пассажирские самолёты (СПС), — например,

серия СПС Aerion [234] — проектируются для крейсерского полёта на высотах

порядка 15 – 20 км при числе Маха от 1.5 до 4. Профиль крыла СПС тонкий и, как

правило, имеет выпуклую близкую к параболической форму. Некоторые модели

имеют крыло малой стреловидности, для которого механизм неустойчивости попе-

речного течения не реализуется. В этом случае ламинарно-турбулентный переход

(ЛТП) на гладкой поверхности крыла протекает по малошумному сценарию [235],

включающему восприимчивость пограничного слоя к внешнему воздействию

и дальнейший рост конвективно неустойчивой первой моды пограничного слоя

вплоть до формирования турбулентного течения. До недавних пор оставалось неяс-

ным, какое внешнее воздействие является определяющим в условиях натурного

полёта. Поиску такого воздействия посвящена настоящая глава.

На высоте 20 км возможными источниками возмущений, способных возбудить

в пограничном слое неустойчивые волны, являются [9]: 1) возмущения набегаю-

щего потока: атмосферная турбулентность, микрочастицы (пыль, кристаллы льда,

жидкие аэрозоли); 2) акустические волны, излучаемые турбулентным пограничным

слоем на передней части фюзеляжа; 3) возмущения, индуцированные обтекаемой

поверхностью: вибрации обшивки, шероховатость, неровности (уступы, выступы,

зазоры, каверны, волнистость и т.п.). Возмущения потока могут взаимодействовать

с возмущениями, индуцированными обтекаемым телом, формируя новые механиз-

мы возбуждения мод пограничного слоя. Например, акустические волны могут

рассеиваться на отдельных неровностях или распределённой шероховатости, обес-

печивая резонансную накачку неустойчивых волн первой моды [236; 237]. В связи

с этим поверхность ламинаризированного крыла предполагается аэродинамически

гладкой и не вибрирующей в диапазоне неустойчивых частот, и основное внимание

сосредотачивается на внешних источниках.
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6.1. Невозмущённое течение

Прототипом для выбора параметров сверхзвукового потока и профиля прямого

крыла послужил самолётAS2, который разрабатывался фирмойAerion [234] (США)

совместно с Airbus, Lockheed Martin и Boeing; проект закрыт в 2021 году из-за

финансовых трудностей. Внешний вид AS2 показан на рис. 6.1. Профиль крыла

имеет чечевицеобразную форму с заострёнными передней и задней кромками —

такая конфигурация соответствует концепции естественной ламинаризации. Отно-

сительная толщина профиля составляет около 6%. Из-за малой стреловидности

передней кромки крыла удаётся устранить неустойчивость поперечного течения

и избежать раннего ламинарно-турбулентного перехода. На поверхности тонко-

го профиля реализуется благоприятный градиент давления, что стабилизирует

первую моду сверхзвукового пограничного слоя — единственный тип неустойчи-

вости для данной конфигурации в случае низких уровней внешних возмущений.

Далее в качестве модели крыла будем рассматривать прямое крыло с острыми

кромками и тонким параболическим профилем относительной толщины τ 1:

yw = 2τ · x (1− x) . (6.1)

Для согласования с условиями других проведённых расчётов рассматривается

режим с числом МахаM∞ = 3. Характерные параметры течения для полёта на

высоте 20 км рассчитаны на основе стандартной атмосферы Земли и приведены в

табл. 6.1, в частности, линейный масштаб L∗ соответствует хорде профиля.

Рассчитанное невозмущённое поле числа Маха показано на рис. 6.2. У кромок

формируются наклонные скачки уплотнения, на которых поток изменяет направ-

ление движения и тормозится. Над поверхностью профиля поток разгоняется под

действием благоприятного градиента давления. В хвостовой части при x ≈ 0.84

имеется небольшая отрывная зона, что подтверждается распределением продольно-

го коэффициента трения по поверхности профиля. Перед ней формируется скачок

1Отношение максимальной толщины профиля, которая достигается при x = 0.5, к хорде профиля

Таблица 6.1 — Параметры задачи. Жирным выделены случаи для численного

моделирования

M∞ Re∞,L T ∗
∞ T ∗

0 стенка L∗ τ , %
3 27.205 · 106 230 К 644 К теплоизолированная 5 м 0, 1, 2.5, 5, 7.5, 10
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Рисунок 6.1 — Внешний вид СПСAerion AS2[234]

отрыва, который распространяется вниз по потоку и сливается с замыкающим

скачком.

В первом порядке невязкого приближения течение над тонким профилем связа-

но с формой профиля yw(x) аналитически

Ue = 1− τ
1√

M 2
∞ − 1

· dyw (x) /τ

dx
+ o (τ) ,

Te = 1 + τ
(γ − 1)M 2

∞√
M 2

∞ − 1
· dyw (x) /τ

dx
+ o (τ) ,

Pe =
1

γM 2
∞

+ τ
1√

M 2
∞ − 1

· dyw (x) /τ

dx
+ o (τ) .

Поэтому невязкое обтекание параболического профиля (6.1) происходит с по-

стоянным благоприятным градиентом давления

dPe

dx
= − 4τ√

M 2
∞ − 1

+ o (τ) . (6.2)

Теоретическое значение коэффициента давления (1.17) имеет вид:

cp =
2√

M 2
∞ − 1

dyw (x)

dx
= 4τ

1− 2x√
M 2

∞ − 1
.
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Рисунок 6.2 — Двухмерное невозмущённое поле течения и врезка с распределе-

нием cf,x вдоль поверхности. Границы подобластей для моделирования указаны

белым: сплошная — для верификации (раздел 6.3); пунктирная — для основных

расчётов (разделы 6.4 и 6.5). Цветовая шкала меняется дляM ∈ [2.5; 3.5]

Как видно из рис. 6.3, теоретическое и расчётное распределения согласуются

качественно: давление монотонно убывает, достигая значения p∞ посредине хорды

профиля при x = 0.5. Расчётное распределение всюду оказывается выше из-за

вязко-невязкого взаимодействия. Влияние отрывной зоны (рис. 6.2) локализовано

при x > 0.8 и не распространяется вверх по потоку, что позволяет исключить её

из численного моделирования процессов восприимчивости и устойчивости (она

не представляет интереса). Такой подход существенно экономит вычислительные

ресурсы. Как видно из рис. 6.3, исключение хвостовой части профиля с выставле-

нием граничного условия экстраполяции на правой границе (x < 0.8) не влияет на

невозмущённое течение: оно устанавливается с высокой точностью и согласуется с

расчётом в полной области. Таким образом, моделирование возмущённых течений

проводится в подобластях, схематично изображённых белыми прямоугольниками

на рис. 6.2.

Для изучения роли параметра τ рассмотрим пограничный слой над пластиной

с продольным градиентом давления в рамках локально автомодельного прибли-

жения. В каждом сечении x = const профили описываются сжимаемым аналогом

уравнений Фолкнера—Скэн; параметры на границе вычисляются из теории тон-

кого профиля, и используется степенной закон вязкости µ = T 0.75. Благоприятный

продольный градиент давления приводит к тому, что на границе пограничного
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Рисунок 6.3 — Распределение коэффициента давления над профилем

слоя монотонно растёт число Маха, в то время как на плоской пластине τ = 0

распределениеMe(x) не зависит от x. Закон роста пограничного слоя усложняется.

Недалеко от кромки x = 0 он соответствует случаю безградиентного пограничного

слоя, но ниже по потоку рост ускоряется и в распределении толщины вытеснения

δ1(x) появляется точка перегиба (рис. 6.4). Это наблюдается и для случая полных

уравнений Навье—Стокса, хотя имеется небольшое количественное рассогла-

сование зависимостей δ1(x) при τ > 0. Далее будет показано, что вблизи точки

перегиба характеристики устойчивости ведут себя необычным образом.

Точка перегиба тем ближе расположена к передней кромке, чем толще профиль.

Такое поведение можно объяснить качественно, рассматривая при каждом фикси-

рованном x толщину безградиентного пограничного слоя на теплоизолированной

плоской пластине, если на его границе число Маха меняется по линейному закону

Me(x) =M∞
Ue(x)√
Te(x)

=M∞−M∞
2 + (γ − 1)M 2

∞√
M 2

∞ − 1
·τ(1−2x)+o(τ) ≈M∞,1+b ·x,

δ1

√
Re∞,L

xC∗
= 1.72 + 2.21

γ − 1

2
M 2

e (x),

гдеM∞,1 — число Маха за косым скачком у передней кромки; C∗ — константа

Чепмена—Рубезина; b— величина, не зависящая от x. В рамках данной модели
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Рисунок 6.4 — Толщина вытеснения δ1 в локально автомодельном приближении

(автомод.) и в рамках полных уравнений Навье—Стокса (Н –С)

асимптотическое поведение пограничного слоя у передней кромки совпадает со

случаем плоской пластины с фиксированным числом МахаMe ≡M∞,1 (δ1 ∝
√
x

при x → 0), а вдали от кромки существенно отличается (δ1 ∝ x5/2 при x → ∞).

Следует отметить, что распределения δ1(x), представленные на рис. 6.4, достаточ-

но точно аппроксимируются функцией f(x) =
√
x
(
a0 + a1x+ a2x

2
)
как в случае

локально автомодельного пограничного слоя, так и в случае полных уравнений

Навье—Стокса. Очевидно, что у зависимости δ1(x) такого вида есть точка пере-

гиба xпер, которую можно выразить аналитически и для которой можно выписать

асимптотическое поведение xпер ∝ 1/τ при τ → 0.

Для рассматриваемых параметров потока зависимость xпер(τ) достигает мини-

мума xпер,min ≈ 0.085 при τmin ≈ 48%. Это значит, что при утолщении реалистич-

ных профилей (τ < 20%) точка перегиба монотонно движется к передней кромке,

а пограничный слой всё быстрее отстраивается от поведения, свойственного без-

градиентному пограничному слою на плоской пластине. Для оценки положим,

что неустойчивость пограничного слоя по отношению к некоторому элементар-

ному возмущению проявляется в ограниченном диапазоне по δ1. Таким образом,



220

утолщение профиля должно приводить к сокращению области неустойчивости. К

сожалению, эта простая модель не позволяет проанализировать темп роста элемен-

тарного возмущения и сделать вывод о его интегральном усилении над профилем.

Тем не менее, она позволяет сделать качественное предположение о том, что по

мере утолщения профиля пограничный слой над ним должен становиться более

устойчивым, а наиболее неустойчивая его область должна смещаться к передней

кромке.

6.2. Максимально возможное усиление возмущений

Рассмотрим результаты линейной теории устойчивости для локально автомо-

дельного пограничного слоя при продольном градиенте давления (6.2). Расчёты

показали, что спектр пограничного слоя остался простым: новых мод, обусловлен-

ных параболической формой профиля, не появилось, и преобладающей является

первая мода.

Характеристики возмущений масштабируются вместе с пограничным слоем

δ1(x) (рис. 6.5а): длина волны растёт вниз по потоку, а угол наклона волновых

фронтов arctg (β/αr) ≡ arctg (λx/λz) изменяется слабо, оставаясь при x ? 0.1

вблизи значения 70° (рис. 6.5б).

С ростом толщины профиля τ область неустойчивости каждой отдельно взятой

гармоники становится уже; аналогично ведёт себя распределение инкремента пре-

обладающей волны по поверхности (рис. 6.6а). Несмотря на небольшой участок

при x > 0.1, где максимальный инкремент незначительно подрастает, благопри-

ятный градиент давления оказывает стабилизирующее влияние: интегральное

усиление возмущений, рассчитанное по eN методу, уменьшается при утолщении

профиля (рис. 6.6б).

Следует отметить, что резкое утолщение пограничного слоя над углом разре-

жения, вызванное локализованным изменением давления на масштабе нескольких

толщин пограничного слоя (см. главу 5), привело к резкой перестройке характери-

стик устойчивости. Как следствие, пограничный слой мгновенно стабилизировался

по отношению к растущим перед углом возмущениям. На тонком параболическом

профиле градиент давления ограничен, и темп роста пограничного слоя увеличи-

вается постепенно, начиная с величины, которая свойственна плоской пластине
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а) Частота и волновые числа

б) Угол наклона волновых фронтов и длина волны

Рисунок 6.5 — Распределение характеристик гармоники с наибольшим инкремен-

том роста, −αi
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а) Инкременты, −αi, и их огибающие

б) Факторы интегрального усиления, N

Рисунок 6.6 — Характеристики устойчивости, рассчитанные по методу eN
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(∼
√
x). Распределение δ1(x) может иметь точку перегиба (рис. 6.4), за которой

пограничный слой начинает расти быстрее, чем по линейному закону. Ускоряю-

щийся рост приводит к сокращению области неустойчивости во всём спектральном

диапазоне. Чем толще профиль, тем раньше возникает перегиб и тем сильнее со-

кращается область неустойчивости. Очевидно, что в окрестности точки перегиба

можно ожидать плавную стабилизацию пограничного слоя.

Действительно, при τ > 2.5% распределение N(x) достигает максимума за

перегибом δ1(x). Это значит, что на профиле появляется точка x∗, за которой

возмущения из всего спектрального диапазона не могут достичь более высокой ам-

плитуды, чем та, что уже была достигнута в этой точке! Таким образом, сделанное

теоретическое наблюдение предполагает, что для ламинаризации рассматриваемо-

го класса профилей достаточно принять меры по ламинаризации лишь их части

x < x∗. Этот важный с практической точки зрения вывод будет подтверждён далее

в рамках прямого численного моделирования.

Параметры гармоники, которая достигает максимального значения N -фактора,

даны в табл. 6.2. Случаи τ = 0% и 1% опущены, так как для них максимум внутри

профиля не достигался. При τ = 2.5% максимум N(x) появляется на задней кром-

ке профиля (отрыв не моделируется в локально-автомодельном приближении).

При утолщении профиля точка максимума монотонно движется к точке перегиба,

практически достигая её при τ = 10%. По-видимому, существование точки переги-

ба в δ1(x) является необходимым условием появления максимума в распределении

N(x). Однако вовсе не обязательно, чтобы точка перегиба являлась предельной

точкой, к которой x∗ стремится с ростом τ .

Характеристики, указанные в табл. 6.2 для случая τ = 10%, положены в основу

постановки задач прямого численного моделирования развития возмущений.

Следует отметить, что максимумы распределенийN(x) пологие. Поэтому даже

небольшое изменение условий моделирования (например, закона вязкости) может

привести к заметному смещению точки x∗. На рис. 6.7 показаны кривые N(x),

которые получены для невозмущённых полей течения, рассчитанных в рамках

уравнений Навье — Стокса. Максимумы сдвигаются вверх по потоку, и суще-

ствующие значения N(x∗) уменьшаются (сравните данные табл. 6.3 и 6.2). Ниже

результаты ПЧМ сопоставляются именно с этими результатами ЛТУ.
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Рисунок 6.7 — N -факторы и их огибающие по методу eN для невозмущённого

пограничного слоя, рассчитанного численно в рамках уравнений Навье—Стокса

6.3. Верификация

Для подтверждения результатов линейной теории и оценки параметров дальней-

ших расчётов рассмотрим модельную задачу развития возмущений, искусственно

введённых в пограничный слой путём вдува—отсоса газа с поверхности профиля

вблизи точки потери устойчивости x0,∗ максимально нарастающей гармоники. Ге-

нератор возмущений действует в прямоугольной области x ∈ [xs, xe]× [zs, ze] 3 z,

xe ≈ 0.041 ≈ x0,∗xs = 0.026 ≈ xe − λx,∗(x0,∗), ze = −zs = λz,∗/2 ≈ 0.0033 в

течение одного периода 2π/ω0 ≈ 0.0318, ω0 = 197.7 ≈ ω∗; граничное условие,

задающее работу генератора, имеет вид

(ρv)′ = ε cos3
(
π
x− 0.5(xe + xs)

xe − xs

)
cos3

(
π
z − 0.5(ze + zs)

ze − zs

)
sin(ω0t),

где ε = 10−6. Такая локализация в пространстве (рис. 6.8а) и времени гаранти-

рует широкий частотно-волновой состав начального возмущения, вводимого в

пограничный слой, что проиллюстрировано на рис. 6.8б с помощью десятично-

го логарифма спектральной плотности мощности генератора, нормированной на
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своё максимальное значение. Полоса «молчания» на частоте 2ω0 ≈ 400 может

быть получена аналитически путём преобразования Фурье временного сигнала

генератора. Присутствие такой полосы является допустимым при исследовании ли-

нейного режима развития возмущений, так как частота преобладающей гармоники

понижается при движении вниз по потоку (ωmax(x) < ω∗ при x > x∗), а кратные

гармоники не появляются из-за отсутствия нелинейного взаимодействия.

Численное моделирование возмущённых течений проводится для профиля

τ = 10% на расчётной сетке 3000× 300× 150 в области x ∈ [0, 0.6]× [0, 0.06] 3 z.

Поперёк пограничного слоя (до δ99(x)) равномерно укладывается не менее 100

(на большей части 125) сеточных линий. Для обеспечения плавного перехода к

области внешнего невязкого течения ещё 125 линий попадает в интервал [δ99, 3δ99]

с постепенным увеличением шага сетки по мере удаления от стенки. Вдоль про-

филя и в боковом направлении z сетка является равномерной. На длину волны λx

приходится примерно 75 точек, на λz — 17 точек. Такую сетку будем называть

базовой.

В боковом направлении z накладываются условия симметрии. Нестационарные

расчёты выполнены с шагом dt = 10−4.

а) Пространственная форма, t = 0.5π/ω0 б) Спектральная форма, x ≈ 0.034

Рисунок 6.8 — Генератор возмущений «вдув—отсос»
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6.3.1. Развитие возмущений от генератора

Эволюция волнового пакета над поверхностью проиллюстрирована на рис. 6.9

в компактном виде. Над пластиной (рис. 6.9а) пакет расширяется в пространстве и

возмущения монотонно нарастают вниз по потоку. Линия zmax(xmax), на которой

возмущения достигают наибольшей амплитуды, сначала лежит в плоскости сим-

метрии z = 0, но при x ? 0.25 отклоняется от неё и приближается к предсказанию

линейной теории устойчивости (детали этого сравнения опущены для краткости

и иллюстрируются для аналогичного возмущённого течения в главе 7). Над про-

филем τ = 10% (рис. 6.9б, пределы цветовой палитры уменьшены на порядок)

размеры волнового пакета также увеличиваются вниз по потоку, но амплитуда воз-

мущений достигает максимума вблизи x ≈ 0.2. Далее волновой пакет равномерно

и монотонно затухает.

Это наблюдение лучше иллюстрируется полем максимальной амплитуды вол-

нового пакета, которая была достигнута по мере его движения над поверхностью

(рис. 6.10). Ядро пакета над профилем имеет полосчатую структуру, которая соот-

а) Плоская пластина

б) Профиль τ = 10%

Рисунок 6.9 — Помещённые на одно изображение поля p′w(x, z) в несколько мо-
ментов времени: t = 0.025, 0.08, 0.14, 0.23, 0.36, 0.51, 0.71
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ветствует шахматной структуре возмущения на рис. 6.9 и усиливается до сечения

x = 0.2...0.25, а далее затухает. Ядро пакета над пластиной нарастает вниз по

потоку, причём при x ? 0.25 пакет раскрывается в полуугле ≈ 6.6° (по траек-

тории горба пакета), что близко к верхней границе ≈ 6.2° полуугла раскрытия

турбулентных пятен и клиньев по данным [233].

Эволюция спектров, проиллюстрированная на рис. 6.11, характерна для опи-

санного поведения волновых пакетов. Спектры имеют максимумы при ωmax 6=
0, βmax 6= 0, соответствующие преобладанию волн с характерным наклоном фрон-

тов± arctg(c ·βmax/ωmax), где c—фазовая скорость распространения возмущений.

По мере развития волновых пакетов в обоих случаях величины ωmax и βmax пони-

жаются в соответствии с предсказаниями ЛТУ.

Изначально в сечении x = 0.1 спектры для пластины и профиля близки. Ниже

по потоку спектры для пластины демонстрируют монотонный рост интенсивности

волнового пакета, а спектры для профиля — рост при x > 0.2 и дальнейшее

ослабление максимальной амплитуды. Следует отметить, что отдельно взятые

гармоники продолжают расти при x > 0.2, однако их амплитуды не превосходят

максимального значения, достигнутого преобладающей гармоникой при x ≈ 0.2.

а) Плоская пластина

б) Профиль τ = 10%

Рисунок 6.10 — Поле максимальной амплитуды возмущения давления на поверх-

ности за всё время расчёта
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Рисунок 6.11 — Десятичный логарифм спектральной плотности мощности p′w(t, z)
для профиля τ = 10% (левая часть) и пластины (FP, правая часть)

6.3.2. Сравнение с теорией

На рис. 6.12 сопоставляются N -факторы интегрального усиления возмуще-

ний относительно точки x0 = 0.1, где в ПЧМ волновой пакет уже сформиро-

вался. Это позволяет исключить из сравнения эффект различия в начальной ам-

плитуде возмущений. Для расчётов ПЧМ имеем ∆N(x) = ln(A(x)/A(x0)), где

A(x) = maxt,z p
′
w(t, x, z). На большей части пластины наблюдается хорошее со-

гласование зависимостей ∆N(x). Лишь при x ≈ 0.7, где возмущения достигают

больших амплитуд, кривая ПЧМ начинает отклоняться вверх. Такое поведение

может быть связано с появлением признаков нелинейных взаимодействий, которые

не представляют интереса для целей подтверждения результатов линейной тео-

рии устойчивости. В случае профиля наблюдается удовлетворительное согласие

при x > 0.3, в том числе по положению глобального максимума интегрального



231

усиления. Однако при x > 0.3 кривая ПЧМ заметно отклоняется вниз от кривой

ЛТУ, что указывает на более быстрое затухание возмущений в случае численного

моделирования. Есть две очевидные причины такого расхождения.

Во-первых, в расчётах ПЧМ не выполняется предположение eN метода о ра-

венстве амплитуд всех гармоник в их точках потери устойчивости. Несмотря на

широкий спектр начального возмущения, в ПЧМ возмущение локализовано вблизи

передней кромки. Поэтому изначально устойчивые низкочастотные гармоники

успевают ослабнуть до момента начала их роста. Такие гармоники преобладают ни-

же по потоку от точки максимума x∗, и начальный участок их ослабления приводит

к меньшему интегральному усилению по сравнению с результатами ЛТУ. По мере

движения вниз по потоку расхождение между результатами ПЧМ и ЛТУ растёт,

так как частота и волновое число преобладающего возмущения уменьшаются, а

область начального устойчивого развития увеличивается.

Во-вторых, расчёты ЛТУ проведены в рамках локально-параллельного при-

ближения, которое хорошо выполняется на плоской пластине. Однако непарал-

лельность течения на крыловом профиле τ = 10% может стать существенной.

Вероятно, что наблюдаемое на рис. 6.12 расхождение при x > 0.3 одновременно

обусловлено обеими причинами.

Кривые N -факторов для отдельно взятых гармоник из ПЧМ можно по-

строить с помощью спектральной плотности мощности: ∆N(ω, β, x) =

0.5 ln(psd(ω, β, x)/psd(ω, β, x0)). Такие кривые из ПЧМ и ЛТУ согласуются

удовлетворительно, как показано на рис. 6.13. Следует отметить, что в случае

параболического профиля (рис. 6.13б) точка максимального усиления возмущений

оказывается систематически ближе к передней кромке по сравнению с ЛТУ, а

само значение этого максимума оказывается систематически меньше величины,

предсказанной ЛТУ. Преждевременное затухание гармоник после достижения

максимума может объясняться как влиянием численной диссипации, так и необхо-

димостью учёта непараллельности течения в пограничном слое над искривлённой

поверхностью параболического профиля, что выходит за рамки настоящей работы.
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Рисунок 6.12 — Сопоставление огибающих N -факторов из ЛТУ (LST) и ПЧМ

(CFD) для профиля τ = 10% и пластины (FP) относительно точки x = 0.1. Крести-
ком отмечена точка нормировки кривых, относительно которой рассчитываются

приращения N -факторов

а) Плоская пластина, x0 = 0.2 б) Профиль τ = 10%, x0 = 0.1

Рисунок 6.13 — Сопоставление N -факторов некоторых гармоник относительно

точки x0
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6.3.3. Сеточная сходимость

Для анализа сеточной сходимости изучим поведение максимума в распреде-

лении амплитуды возмущения давления на поверхности в плоскости симметрии

z = 0. Несмотря на идентичные условия расчётов, амплитуда волнового пакета сра-

зу за генератором немного различается из-за различия в сетках. Поэтому для анали-

за сеточной сходимости рассматриваются амплитуды горба пакета, нормированные

на соответствующую амплитуду в сечении x = 0.05 > xe, которое расположено

ниже по потоку от генератора возмущений— p̄ ≡ p′w,max(x, 0)/p
′
w,max(0.05, 0) (мак-

симум берётся по времени). Нормированные амплитуды показаны на рис. 6.14а2.

Наиболее интересно влияние продольного сеточного разрешения на численную

диссипацию возмущений. Величины максимумов p̄∗ ≈ 1.94, 2.25, 2.49 и 2.58, отме-

ченные кружками на рис. 6.14а, получены на четырёх сетках с разным количеством

узлов по x, соответственно: N/Nx = 1/2; 1/
√
2; 1; 2 (сеточные шаги h/hx = 2,√

2, 1, 1/2). Nx и hx — параметры базовой сетки. Предположим, что существу-

ет предельное значение lim p̄∗ = p̄∗,lim при N → ∞, а порядок аппроксимации

численного метода равен q. Тогда для каждой из сеток с можно записать

p̄∗ = p̄∗,lim + const ·
(
h

hx

)q

. (6.3)

Полагая константу const не зависящей от расчётной сетки, получаем переопреде-

лённую систему из четырёх алгебраических уравнений. Оптимизация кривой p̄∗(h)

методом наименьших квадратов (рис. 6.14б) даёт следующие значения параметров:

p̄∗,lim ≈ 2.64, const ≈ −0.19 и q ≈ 1.90. Таким образом, порядок аппроксимации

близок ко второму, а относительная погрешность на базовой сетке в продольном

направлении составляет 5.9%.

Сеточному разрешению в направлениях y и z уделено меньше внимания

(рис. 6.14а). Эффект от Ny оказался незначительным и отрицательным (p̄∗ ↓ при
Ny ↑), а оценка погрешности в боковом направлении z не превосходит полученную

выше величину для продольного направления. Поэтому суммарную погрешность

результатов, полученных на базовой сетке, можно оценить сверху в 12%.

2Для экономного использования накопителей информации поле возмущений вычисляется по исходным

полям течения, рассчитанным с двойной точностью, и далее сохраняется с единичной точностью. По ошибке,

для нескольких верификационных расчётов такой порядок был нарушен: сначала был осуществлён перевод

полей течения в единичную точность, а затем рассчитаны поля возмущений. Из-за этого появилась ошибка
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а) Распределение б) Аппроксимация максимумов

Рисунок 6.14 — Проверка сеточной сходимости для нормированной амплитуды

горба волнового пакета на профиле при τ = 10%. Базовая сетка имеет размерность
Nx ×Ny ×Nz

6.4. Роль атмосферной турбулентности

Для многих практически важных случаев было показано [238], что характерный

линейный масштаб неустойчивости лежит в инерционном интервале атмосферной

турбулентности, где она описывается только двумя параметрами: кинематической

вязкостью ν∗∞ (стандартная атмосфера) и мощностью диссипации ε∗ кинетической

энергии турбулентности, которая изменяется примерно в пределах двух порядков

в зависимости от погодных условий [239]. Такая неопределённость в значении

ε∗ приводит к ошибке предсказания перехода лишь (∆x/x)t < 17% в широком

диапазоне по числу Маха и высоте полёта [238].

Оценим характерные значенияN -факторов перехода в условиях реалистичного

полёта, полагая λ ≈ ηK , где масштаб η
∗
K ≈ 7.4(ν∗3∞/ε)1/4 соизмерим с колмого-

ровским масштабом изотропной турбулентности. Используя спектр изотропной

турбулентности [240] и данные [239] о мощности диссипации энергии турбулент-

ности ε, получаем оценку для флуктуации скорости атмосферной турбулентности

на масштабе неустойчивой моды u′ ≈ 10−5. Полагая коэффициент восприимчиво-

сти равным примерно 10−2 [241], получаем амплитуду скорости, возбуждаемой

неустойчивой волны A0 ≈ 10−7. Считая, что начало перехода соответствует ам-

плитуде A ≈ 10−2 (1% от значения в набегающем потоке), оцениваем фактор

округления, которая объясняет ступенчатый характер большинства кривых на рис. 6.14а, но не затрудняет

проверку сеточной сходимости.



235

интегрального усиления N = ln(A/A0) ≈ 11, который близок к типичному для

свободного полёта эмпирическому значению N = 10. Для исследуемых крыло-

вых профилей толщиной τ > 5% N -фактор не превосходит значения 5.0 (см.

рис. 6.7). Таким образом, маловероятно, что атмосферная турбулентность может

инициировать ламинарно-турбулентный переход в исследуемом случае.

Проверим сделанную оценку с помощью прямого численного моделирования

восприимчивости и устойчивости пограничного слоя к атмосферной турбулент-

ности для штормовых погодных условий, когда интенсивность турбулентности

оказывается наибольшей.

Расчёты выполнены в области x ∈ [0, 0.42] × [0, 0.084] 3 z. Она отделена от

выходной границы буферной зоной, где сетка плавно и значительно разрежается в

направлениях x и y (рис. 6.15). Как отмечалось выше, такой подход не искажает

результаты нестационарного моделирования. Действительно, среднее течение не

меняется из-за проведения расчёта в сокращённой области. Отрывная область в

хвостовой части профиля не влияет на течение выше по потоку от неё, за исключе-

нием малой окрестности порядка толщины предотрывного пограничного слоя. При

турбулизации течения над профилем размер отрывной области сократится, и это

также не повлияет на процесс развитие возмущений при x < 0.42. Буферная зона

подавляет возмущения перед выходной границей (при x = 0.55), но не оказывает

влияния на возмущения, входящие в буферную зону при x = 0.42.

Многоблочная расчётная сетка имеет размерность 1451 × 351 × 187. Сетка

сгущена к передней кромке и к стенке так, что на толщину пограничного слоя

δ99 попадает около 125 сеточных линий при x > 0.05. Сетка разрешает длину

преобладающей волны λ∗ примерно 40 ячейками в направлениях x и z; на её период

2π/ω∗ приходится 159 временных шагов. По опыту численного моделирования

и в соответствии с результатами главы 2, такого пространственно-временного

разрешения достаточно для достижения точности порядка 10% по амплитуде

возмущений, развивающихся в пограничных слоях, в том числе для гармоник с

кратными частотами 2ω∗, 3ω∗ (не менее 50 точек на период).
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Рисунок 6.15—Невозмущённое поле числаМаха (базовое 2D течение). В буферной

области показана структура расчётной сетки

6.4.1. Нестационарные граничные условия

Стохастическую природу атмосферной турбулентности можно моделировать с

помощью подхода [242], в котором используется модельная форма её спектра. Ниже

этот подход модифицирован: дополнительно учтено, что малые вихревые возму-

щения сносятся со скоростью потока U∞. Тогда дисперсионное соотношение для

вихревых возмущений (k,U∞) = ω, где k— волновой вектор, ω— частота элемен-

тарного возмущения. Учитывая, что U∞ = (1, 0, 0), дисперсионное соотношение

сводится к виду kx = ω. Генерация синтетической турбулентности осуществляется

в виде нестационарного граничного условия: к невозмущённому полю течения

добавляется нестационарное вихревое возмущение вида

U′ ≡ (u′, v′, w′) =
N∑
i=1

√
2qiσ̂i sin (ki (x− U∞t) + ϕi) (6.4)

T ′ = 0, p′ = 0

со случайными начальными фазами, равномерно распределёнными по интервалу

ϕi ∈ [0, 2π). Волновые вектора ki получены в виде произведения ортов di и соот-
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ветствующих волновых чисел, разбивающих отрезок [kmin, kmax] с постоянным

шагом ∆k: ki = diki = di (kmin + i∆k). Орты di и σ̂i взаимно перпендикулярны

(следствие уравнения непрерывности для возмущений) и генерировались заранее

случайным образом с равномерным распределением по сфере и по окружности,

соответственно. Амплитуда гармоник вычислялась исходя из энергетического

спектра турбулентности [242]:

qi = Ei∆k,

Ei = A
(ki/ke)

4

(1 + 2.4(ki/ke)2)
17/6

· fη(ki)fcut(ki),

fη = exp

(
−
(
12ki
kη

)2
)
,

fcut = exp

(
− (4max (ki/ke − 0.9, 0))3

)
,

где Ei — спектральная плотность мощности для данного волнового числа ki;

ke — характерный масштаб турбулентности (ke = 0.01 � kmin ≈ 0.1). Функ-

ции fη(k) и fcut(k) обеспечивают затухание спектра на масштабе Колмогоро-

ва kη = 2π(ν∗3∞/ε)−1/4 и на масштабе спектральной отсечки kcut = 2π/lcut,

lcut = 2max (dx, dy, dz); dx, dy и dz — местные шаги сетки на входной грани-

це; ε— мощность диссипации турбулентной энергии. Коэффициент A позволяет

нормировать спектр в инерционном интервале на данные эксперимента [240],

чтобы получить физически корректную амплитуду возмущений:

A = αε2/3 · 2.4
17/6

k
5/3
e

, (6.5)

гдеα = 1.7—эмпирический коэффициент. В случаештормовых погодных условий,

когда атмосферная турбулентность наиболее интенсивна, на высоте 20 км ε∗ =

0.06м2/с3 [239], а множитель из (6.5) равен

αε2/3 = α

(
ε∗ ·
(
u∗3∞
L∗

)−1
)2/3

≈ 9.2 · 10−7 / 10−6.

Из дисперсионного соотношения kx = ω следует, что |ω| = |kx| 6 |k|. Для удо-
влетворительного заполнения частотного интервала вблизи ω∗, который покрывает
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основную часть неустойчивой области пограничного слоя, требуется использо-

вать большое число коротковолновых гармоник. Кроме этого, из-за случайного

направления волнового вектора k недостаточное количество гармоник приводит к

нефизичным провалам по частоте в спектре генерируемого сигнала. В результате

анализа статистической неопределённости для (6.4) выбрано значение N = 104

гармоник с волновыми числами ki ∈ [60, 600], что обеспечивает диапазон моде-

лируемых частот ωi ∈ [60, 600]. При этом статистическая неопределённость для

мощности, заключённой в узкой части волнового спектра 180 < kx∗ = ω∗ < 220

не превышает 10%, как показано на рис. 6.16. Серыми точками отмечены значе-

ния мощности E для спектра каждой сгенерированной реализации атмосферной

турбулентности. Чёрные символы соответствуют среднему значению 〈EN〉 и двум
среднеквадратичным отклонениям σ от него для каждого фиксированного значения

N . Сплошной линией обозначено математическое ожидание E (величина Elim),

пунктиром — аппроксимация границ вероятных значений этой величины. Симво-

лом × обозначено значение E для спектра, использованного ниже; его близость

к Elim случайна. Данные рис. 6.16 использовались лишь для выбора подходящей

величины N .

На рис. 6.17а представлен пример стохастического поля в сечении z = 0, ко-

торое было сгенерировано при t = 0 для тестового спектра, представленного на

рис. 6.17б. Для восстановления волнового спектра по сгенерированному трёхмер-

ному полю использовано трёхмерное преобразованиеФурье, все волновые векторы

отсортированы по длине, и далее путём осреднения мощности гармоник внутри

выбранных волновых интервалов ∆̃k = const рассчитана спектральная плотность

мощности psd. Исходный и восстановленный спектры хорошо согласуются друг с

другом.

6.4.2. Результаты

На рис. 6.18 изображены поля возмущения давления на стенке (вид сверху) в два

фиксированных момента времени, для которых головная часть возмущений уже по-

кинула расчётную область и возмущённое течение вышло на квазипериодический

режим. На этом режиме структура возмущений может быть проиллюстрирована

снимком в любой конкретный момент времени, например, при t = 2 (рис. 6.18а).
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Рисунок 6.16 — Сходимость мощности атмосферной турбулентности E вблизи

неустойчивой области по общему числу N гармоник в спектре

а) Поле u′(x, y, 0) б) Верификация спектра, kNyquist = π/∆x—
наибольшее разрешимое волновое число

Рисунок 6.17 — Синтетическая атмосферная турбулентность в кубе с ребром 5 и

равномерным разрешением 501× 501× 501
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Атмосферная турбулентность приводит к порождению серии волн с выделя-

ющимся наклоном волновых фронтов. Эти волны наблюдаются при x > 0.1. Их

амплитуда визуально усиливается, достигает максимума в окрестности x = 0.2 и

далее убывает. Величина возмущения давления на стенке остаётся малой всюду за

исключением области вблизи передней кромки: p′w < 10−4. Признаков турбулиза-

ции не наблюдается: течение носит случайный характер благодаря стохастической

природе внешнего воздействия, но турбулентных пятен не образуется в течение

всего расчёта.

Следует отметить две особенности, которые являются следствием постановки

расчётной задачи. Во-первых, на рёбрах периодических границ — x = 0, z = 0,

z = 0.084— невозможно согласовать периодические граничные условия на вих-

ревые возмущения. Из-за этого на рёбрах формируется пара слабых косых волн,

которые распространяются над поверхностью и сходятся вблизи x = 0.1, z = 0.042,

становясь дополнительным нефизичным источником возмущений наряду с атмо-

сферной турбулентностью. Эти возмущения являются длинноволновыми и облада-

ют исходным частотным составом. Во-вторых, вблизи передней кромки (x ≈ 0.02)

появляется слабо заметная серия коротковолновых плоских волн (kx � 1, kz = 0),

которая быстро затухает и не наблюдается ниже на основной части профиля. Пред-

положительно, эти волны появляются из-за взаимодействия атмосферной тур-

булентности с головным скачком. Они также могут иметь численную природу.

Отмеченные особенности слабы и визуально не влияют на развитие возмущений

над поверхностью крыла, в частности, не приводят к турбулизации течения.

Эволюция (β, ω)-спектров возмущений проиллюстрирована на рис. 6.19 в рав-

ноудалённых друг от друга сечениях x = const. Спектры построены для интервала

времени t ∈ [1.15, 1.15 + π].

Форма спектра вблизи передней кромки (x 6 0.1) связана с тем, что волновой

вектор элементарной гармоники, входящей в состав сгенерированной атмосферной

турбулентности, имеет случайное направление. Из-за этого возмущения, возбужда-

емые в пограничном слое, состоят из волновых пакетов плоских волн, в которых

преобладают гармоники с малыми волновыми числами, β < 60, а наклонные волны

практически не выделяются на их фоне. Ниже по потоку плоские волны медленно

затухают и проявляются спектральные области с наклонными волнами (x > 0.15),

которые соответствуют волнам первой моды пограничного слоя и спектр которых

имеет характерную V-образную форму. Интенсивность этих волн мала, и нелиней-
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а) t = 2

б) t = 3

Рисунок 6.18 — Поле возмущений давления на поверхности в разные моменты

времени и распределения p′w вдоль двух линий z = const
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ные эффекты не наблюдаются ниже по потоку: спектр не уширяется и постепенно

ослабевает при x > 0.25.

Появление V-образной формы спектра соответствует выделению наклонных

волн на поле возмущений давления (рис. 6.18). Линейная теория даёт фазовую

скорость распространения волн первой моды cr ≈ 0.5, что подтверждается в чис-

ленном моделировании. Учитывая это, можно оценить наклоны волновых фронтов

через наклон прямолинейных плеч V-образной структуры спектра. Например, для

x = 0.2 получаем:

arctg

(
∆̃β

∆̃αr

)
= arctg

(
cr
∆̃β

∆̃ω

)
≈ arctg

(
0.5 · 1000− 0

300− 100

)
≈ 68.2°.

Это значение хорошо согласуется с предсказаниями линейной теории устойчи-

вости для автомодельного пограничного слоя в сечении x = 0.2 (см. раздел 6.2,

рис. 6.5б). Плечи спектра не являются узкими прямыми линиями, поэтому сде-

ланная оценка имеет некоторую погрешность (строгого регрессионного анализа

не проводилось). Для невозмущённого течения в рамках полных уравнений На-

вье — Стокса теория даёт угол 70.4° (табл. 6.3), что, по-видимому, остаётся в

пределах этой погрешности.

6.5. Роль акустического шума

Хорошо известно, что акустические волны, излучаемые турбулентным погра-

ничным слоем на стенках сопла и рабочей части сверхзвуковой аэродинамической

трубы, являются основным источником ЛТП на испытываемых моделях [14]. В

обычных трубах среднеквадратичный уровень пульсаций скорости в ядре потока

составляет несколько процентов, что приводит к раннему началу перехода при

факторах интегрального усиления возмущений (N -факторах) N > 5, в то время

как их характерное значение в полёте равно 10–11. Таким образом, акустические

возмущения, излучаемые турбулентным пограничным слоем на передней части фю-

зеляжа и падающие на крыло, являются возможным источником турбулентности в

пограничном слое на крыле.

В расчётах данного раздела использовалась та же расчётная сетка, что и при

моделировании восприимчивости к атмосферной турбулентности (см. рис. 6.15 в
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Рисунок 6.19 — Спектральная плотность мощности возмущения давления на

стенке в различных сечениях x = const



244

разделе 6.4). На период преобладающей волны 2π/ω∗ приходится 318 временных

шагов.

6.5.1. Нестационарные граничные условия

Акустический шум от турбулентного пограничного слоя исследован в рамках

прямого численного моделирования [243] приMe = 2.5. Показано, что в акустиче-

ском поле преобладают волны с определённым углом наклона фронтов, средне-

квадратичное отклонение от которого можно оценить примерно в 10%. Приведены

частотно-амплитудные спектры шума и показано, что возмущение давления в

дальнем поле имеет постоянную среднеквадратичную амплитуду. — Дополненная

характеристиками турбулентного пограничного слоя работа [243] даёт достаточно

данных для воссоздания акустического поля, приходящего со стороны фюзеляжа

на крыло СПС типа Aerion AS2 [234].

Оценка статистических свойств акустического излучения от турбулентного

пограничного слоя сделана в [244]. Расчёты [243] подтверждают, что при числе Ма-

ха 2.5 над турбулентным пограничным слоем преобладают именно акустические

волны, а интенсивность энтропийных и вихревых возмущений мала. Установлена

связь между излучаемыми волнами и их источниками, двигающимися в турбу-

лентном пограничном слое со сверхзвуковой скоростью Ub ≈ 0.4Ue относительно

скорости внешнего потока. Такая связь соответствует преобладанию определённого

наклона волнового вектора акустических волн по отношению к стенке

cosψ =M−1
e (Ub − 1)−1 .

Корреляционный коэффициент для флуктуаций давления Cpp (∆t,∆x), пред-

ставленный в [244] изолиниями в плоскости (∆t,∆x), имеет близкую к гауссовой

куполообразную форму с двумя выделяющимися направлениями. Наклон главного

направления задаёт величину Ub, а среднеквадратичное отклонение от главного

направления — её неопределённость

∆Ub =
σU∗

b

U ∗
e

=
σ∆x∗

U ∗
e∆t

∗
0

=
Ω0

2π

σ∆x∗

δ∗
,
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где∆t∗0 = 2π/ω∗
0, а ω

∗
0 —преобладающая частота излучаемого акустического шума

в дальнем поле: ω∗
0δ

∗/U ∗
e = Ω0 ≈ 1.45 (все параметры даны в [243]). Величину σ∆x∗

можно найти, аппроксимируя поле Cpp (∆t
∗,∆x∗) при любом фиксированном ∆t∗.

Наиболее удобно сделать это при ∆t∗ = 0, так как для этого момента времени из

соответствующей иллюстрации в работе [243] можно снять наибольшее количество

точек:

Cpp(0,∆x) = Cpp,0 + A · exp
(
−(∆x∗ −∆x∗0)

2

2σ2∆x∗

)
.

Аппроксимация оказывается очень близка к сечению исходного поля при

∆t = 0 и даёт σ∆x∗ ≈ 0.00146м, что соответствует∆Ub ≈ 0.044. Поэтому неопреде-

лённость∆Ub/Ub составляет около 10%. Предполагая, что Ub и∆Ub слабо меняют-

ся при небольшом увеличении числа Маха, можно вычислить наклон ψb волнового

вектора преобладающей акустической волны для выбранных условий обтекания

фюзеляжа (Me ≈M∞ = 3):

cos ς ≈ 1

M∞ (Ub ±∆Ub − 1)
≈ 1

M∞ (Ub − 1)

(
1∓ ∆Ub

Ub − 1

)
= cos ςb ∓∆(cos ςb) .

Таким образом, ς = ςb ±∆ςb ≈ 123.75°± 2.78°, и далее полагается, что излу-

чаемый акустический шум имеет постоянный наклон волновых фронтов ς = ςb в

широком диапазоне частот.

Турбулентный пограничный слой излучает медленные волны под углом ςb−π =

−56.25° относительно оси x. Если рассматривать акустические волны, приходящие

на крыло от поверхности фюзеляжа, геометрическая интерпретация акустического

поля по отношению к оси фюзеляжа будет выглядеть как угол скольжения ψb =

ςb − π, а угол атаки θb будет равен нулю (см. схему на рис. 1.1а). Элементарная

акустическая волна (1.8) с таким волновым фронтом и амплитудой пульсаций

давления δp = ε будет иметь амплитуды

(δu, δv, δw, δp, δT ) = ε ·
(
−M∞ cosψb, 0,−M∞ sinψb, 1, (γ − 1)M 2

∞
)

и волновой вектор

k =
ω

cosψb − 1/M∞
· (cosψb, 0, sinψb) .
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Стохастический сигнал генерируется аналогично предыдущему случаю в виде

суммы элементарных гармоник около ω = ω∗, которые равномерно заполняют

диапазон частот [ωmin, ωmax] с шагом ∆ω (см. табл. 6.4):

p′ =
∑
i

√
2Φ(ωi)∆ω · cos (kix− ωit+ ϕi) .

Сдвиги фаз ϕi случайны и равномерно распределены в интервале [0, 2π). Ам-

плитуду возмущений давления δpi =
√
2Φ(ωi)∆ω можно рассчитать на основе

данных [243] о форме спектра Φ(ω) и среднеквадратичном значении p′rms/cf =

0.5p′∗rms/τ
∗
w ≈ 0.2. Спектр, нормированный таким образом, что площадь под ним

равна единице, показан на рис. 6.21а. Коэффициент трения cf оценивается через

параметры турбулентного пограничного слоя в точке поверхности фюзеляжа, из

которой акустические волны падают на среднюю хорду крыла. Используя гео-

метрию аппарата Aerion AS2 [234] (рис. 6.20) и направление распространения

акустической энергии (φ ≈ 13.2°) для найденного выше угла фронтов акустиче-

ских волн, получаем, что источник акустических волн на фюзеляже расположен

при x∗0 ≈ 9.57м от носа фюзеляжа. Используя теоретическое решение [245] для

турбулентного пограничного слоя на конусе, получим значение коэффициента тре-

ния cf ≈ 1.136 · 10−3 на плоской поверхности при x∗0 (меньше значения на конусе

в
√
3 раз), откуда p′rms ≈ 2.272 · 10−4 ≈ 2.86 · 10−3p∞. Подстановка этого значения

в частотный спектр [243] замыкает описание акустического поля, накладываемого

на входной границе в виде нестационарного граничного условия.

Важно подчеркнуть, что фюзеляж является осесимметричным (грубо — ци-

линдрическим) источником возмущений, а не плоским. В этом случае амплитуда

излучаемых акустических волн убывает обратно квадратному корню из расстояния

от оси фюзеляжа, и значение p′rms возле передней кромки крыла оказывается в√
z2/z1 раз ниже, чем от плоского источника. Опираясь на геометрию аппарата

Таблица 6.4 — Параметры случайных акустических возмущений, падающих на

крыло

Тип фюзеляжа ωmin ωmax ∆ω rms по всему спектру

плоский 100 300 2 2.272 · 10−4

осесимметричный 100 300 2 9.434 · 10−5

осесимметричный 60 600 2 9.434 · 10−5

осесимметричный 60 600 1 9.434 · 10−5
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[234] (рис. 6.20), полученную выше величину p′rms следует уменьшить в
√
5.8 раз,

что даст p′rms ≈ 9.434 · 10−5 ≈ 1.19 · 10−3p∞.

В рамках настоящей главы ПЧМ проведено для четырёх случаев, указанных в

табл. 6.4.

6.5.2. Результаты

Поля возмущений давления на квазипериодическом режиме течения представ-

лены на рис. 6.22 (случай плоского источника-фюзеляжа). Этот режим устанавли-

вается спустя ∆t ≈ 1 после начала возмущённого расчёта.

В отличие от атмосферной турбулентности акустические возмущения, проникая

в пограничный слой, заметно растут вниз по потоку. Их амплитуда достигает макси-

мума в интервале 0.15 < x < 0.25. Далее возмущения либо нелинейно распадаются

с порождением ограниченных областей турбулентного течения (турбулентных пя-

тен), либо затухают без признаков нелинейности. Пятна рождаются волновыми

пакетами, которые возбуждаются локальными всплесками акустических возму-

щений и достигают критической амплитуды. Рождение пятен происходит дальше

25% хорды и имеет случайное распределение по размаху крыла. Этот процесс не

прекращается со временем, в отличие от случая атмосферной турбулентности, где

пятна вовсе не появляются (рис. 6.18). Зародившиеся пятна увлекаются потоком,

увеличиваясь в размерах и формируя подобие турбулентных клиньев, вершина

Рисунок 6.20 — Схема излучения плоских акустических волн от фюзеляжа в

направлении средней хорды крыла (геометрия аппарата соответствует дизайну

Aerion AS2 [234]
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а) Спектр [243] после нормализации б) Сгенерированные сигналы (один

период)

Рисунок 6.21 — Построение стохастического сигнала

которых сносится по потоку медленнее, чем пятно в целом. Вершины таких пятен

расположены, например, при x ≈ 0.37, z ≈ 0.06 на рис. 6.22а или при x ≈ 0.35,

z ≈ 0.02 на рис. 6.22б).

Для осесимметричного источника возмущений картина принципиально не

меняется, но пятна рождаются ниже по потоку (при x > 0.3, рис. 6.23). Это проис-

ходит значительно реже, чем в случае плоского источника. Большую часть времени

возмущённый пограничный слой остаётся ламинарным (рис. 6.23б). При этом уро-

вень возмущений давления на поверхности продолжает оставаться на порядок

выше, чем в случае воздействия атмосферной турбулентности.

Верификационные расчёты, проведённые с расширенным спектральным со-

ставом акустического шума (см. табл. 6.4) в целом подтверждают результаты,

полученные в исходной постановке (ω ∈ [100, 300], ∆ω = 2). Поэтому похожие

иллюстрации в случае осесимметричного источника-фюзеляжа не повторяются.

Эволюция (β, ω)-спектров возмущений проиллюстрирована на рис. 6.24 и 6.25

в равноудалённых друг от друга сечениях x = const. Спектры построены для интер-

вала времени t ∈ [1.15, 1.15+π], который соответствует периоду сгенерированного

случайного сигнала 2π/∆ω с шагом по частоте ∆ω = 2.

Исходный спектр акустического шума соответствует спектру волнового пакета,

состоящего из волн с фиксированным наклоном волновых фронтов — прямой

линии в плоскости (ω, β). Линейная форма спектра наблюдается вблизи передней

кромки и сохраняется по мере удаления от неё. При этом максимум спектральной

плотности сдвигается в область более низких частот, оказываясь вблизи ω = 200 ≈
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а) t = 1.1

б) t = 3

Рисунок 6.22 — Поле возмущений давления на поверхности в разные моменты

времени и распределения p′w вдоль двух линий z = const. Источник возмущений
— акустический шум от плоского фюзеляжа, ω ∈ [100, 300], ∆ω = 2
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а) t = 1.4

б) t = 2.8

Рисунок 6.23 — Поле возмущений давления на поверхности в разные моменты

времени и распределения p′w вдоль двух линий z = const. Источник возмущений
— акустический шум от осесимметричного фюзеляжа, ω ∈ [60, 600], ∆ω = 2
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ω∗ при x = 0.2. Это соответствует предсказаниям линейной теории устойчивости

и свидетельствует о линейном характере эволюции волновых пакетов при x < 0.2.

В случае плоского источника-фюзеляжа (рис. 6.24) линейная форма спектра

сохраняется до сечения x = 0.2, где возмущения достигают пиковых амплитуд. Ни-

же по потоку (x > 0.2) проявляется нелинейное взаимодействие волн в волновом

пакете: спектр уширяется по волновому числу (x = 0.3) и быстро распадается в ши-

рокополосный (x = 0.35) с появлением выраженного изменения в среднем течении

— гармоники (ω, β) = (0, 0) (плохо заметно на рисунках из-за подробного шага по

частоте ω). Следует отметить, что зарождение турбулентных пятен не наблюдает-

ся при x < 0.25, где возмущения развиваются на линейном и слабонелинейном

режиме.

Спектр уширяется вниз по потоку как для плоского, так и для осесимметрично-

го источника-фюзеляжа. Для плоского источника (рис. 6.24) наблюдается активный

нелинейный распад возмущений по мере их эволюции над крылом; уширение за-

метнее и больше соответствует переходному состоянию пограничного слоя. В

случае осесимметричного источника-фюзеляжа признаки нелинейного распада на

спектрах выражены значительно слабее (рис. 6.25). При этом пятна образуются

редко, и можно характеризовать этот случай как начальный переходный. Для кон-

кретной рассматриваемой конфигурации это означает, что пятна развиваются над

крылом независимо и не формируют развитого турбулентного пограничного слоя

— крыло большую часть времени обтекается ламинарным потоком.

6.6. Перекрёстное сравнение результатов

Сделанные наблюдения подтверждаются на рис. 6.26, где показаны коэффици-

енты трения cf,x(x), усреднённые по времени и размаху крыла в каждом x-сечении

для рассмотренных случаев. В случае акустического шума от плоского источни-

ка наблюдается переходный пограничный слой с началом перехода при x ≈ 0.3,

хотя область возмущённого трения начинается при x ≈ 0.1. В случае осесиммет-

ричного источника наблюдается зарождающееся начало перехода, при котором

распределение cf(x) лишь начинает отклоняться от ламинарного при x ≈ 0.35.

В случае воздействия атмосферной турбулентности отклонения коэффициента
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Рисунок 6.24 — Спектральная плотность мощности возмущения давления на

стенке в различных сечениях x = const. Источник возмущений — акустический

шум от плоского фюзеляжа, ω ∈ [100, 300], ∆ω = 2



253

Рисунок 6.25 — Спектральная плотность мощности возмущения давления на

стенке в различных сечениях x = const. Источник возмущений — акустический

шум от осесимметричного фюзеляжа, ω ∈ [60, 600], ∆ω = 2
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трения от ламинарной ветви отсутствуют — возмущённый пограничный слой

остаётся ламинарным.

Таким образом, акустические возмущения от турбулентного пограничного слоя

на фюзеляже способны приводить к ламинарно-турбулентному переходу в тихих

условиях сверхзвукового полёта через механизм формирования, роста и последу-

ющего слияния турбулентных пятен. Численное моделирование слияния пятен

и формирования режима развитой турбулентности выходит за рамки настоящей

работы.

Рисунок 6.27 демонстрирует хорошее согласие теоретических и численных

результатов для амплитуды гармоники, которая по предсказанию теории долж-

на преобладать в пограничном слое в сечении наибольшего усиления x ≈ 0.2:

(ω∗, β∗) ≈ (197.5, 1055.3) (табл. 6.3). Расчёт N -факторов выполнен в рамках eN ме-

тода: N = 0.5 ln(psd/psdпу), где нижний индекс «пу» соответствует точке потери

устойчивости. В случае акустического воздействия исходный сигнал формировался

для β > 0, и для него берётся только гармоника β > 0. Атмосферная турбулент-

ность генерировалась для всего диапазона волновых чисел, и в теории нет различия

между гармониками (ω,±β). На рис. 6.27 сопоставляются лишь гармоники с β > 0.

Рисунок 6.26 — Перекрёстное сравнение распределений усреднённого по времени

и размаху крыла коэффициента трения на поверхности
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Из-за стохастического характера генерируемых сигналов спектры получаются

зашумленными. Поэтому проводилось дополнительное осреднение спектральной

плотности по четырём соседним ω-гармоникам. По волновому числу β такого

осреднения не проводилось. Распределение ∆N (величины N -фактора относи-

тельно сечения x = 0.1) в случае атмосферной турбулентности хорошо согласуется

с теорией, в том числе положение максимума, которое близко к положению глобаль-

ного теоретического максимума для всех возможных волн. В случае акустического

шума распределение сначала соответствует теоретическому, но далее заметно от-

клоняется от него вверх, при этом максимум вблизи x ≈ 0.2 достигается только в

одном из четырёх случаев, что скорее является совпадением. Это связано с прояв-

лением нелинейных эффектов из-за большого уровня возмущений в пограничном

слое. Кривые сильно различаются, так как представляют результат, полученный для

разных реализаций одного и того же случайного сигнала. Провести параметриче-

ские расчёты и выполнить усреднение по ансамблю реализаций не представлялось

возможным и не требовалось в рамках данной работы.

Основываясь на проведённых расчётах, следует отметить, что отклик погранич-

ного слоя на на акустический шум не выявляет максимума в распределении∆N(x),

в отличие от случая атмосферной турбулентности. Начиная с x ≈ 0.3 активный

рост гармоники прекращается, наступает состояние насыщения. Такое поведение

наблюдалось ранее и свойственно началу перехода к турбулентности (см., напр.,

[246]).

Следует отметить, что распределения∆N(x) имеют начальный участок убыва-

ния, который сменяется ростом в соответствии с ЛТУ в окрестности 5% длины

хорды. Очевидно, что область восприимчивости сосредоточена при x 6 0.05. Более

точная оценка может быть сделана путём разложения решения ПЧМ по собствен-

ным модам пограничного слоя с последующим выделением сечения, за которым

первая неустойчивая мода начинает расти в соответствии с предсказаниями ЛТУ.

6.7. О роли микрочастиц

Оценка роли микрочастиц основана на данных о микрочастицах [66; 247], на

теоретической [67] и численной [248] моделях восприимчивости к частицам и на

расчётах в рамках линейной теории устойчивости (раздел 6.2).
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Рисунок 6.27 — Перекрёстное сравнение N -факторов относительно сечения x =
0.1 (отмечено стрелкой) для гармоники (ω∗, β∗) = (197.5, 1055.3)

Согласно теории [67], для возбуждения неустойчивых волновых пакетов с необ-

ходимыми начальными амплитудами требуются частицы радиуса более 10 микрон.

Концентрация таких частиц на высоте порядка 20 км не превосходит величины

C∗ = 102 м−3. Следуя работе [66], частоту столкновений частиц с поверхностью

профиля можно оценить как f ∗ < C∗U ∗
∞S

∗, гдеS∗ ≈ λ∗zh
∗; h∗—толщина профиля в

сечении, соответствующем точке потери устойчивости x∗0,∗ преобладающей волны;

λ∗z,∗ — характерная длина волны вдоль размаха крыла. Отсюда безразмерная сред-

няя частота столкновений оценивается сверху как f ≡ f ∗L∗/U ∗
∞ < C∗L∗3λzτx0,∗.

В соответствии с результатами ЛТУ для первой моды, приведёнными в табл. 6.3

получаем f < 0.26 на профиле τ = 10% и f < 0.17 на профиле τ = 5%.

Период возбуждения волновых пакетов, f−1, по крайней мере, вчетверо пре-

восходит глобальное аэродинамическое время L∗/U ∗
∞. В этом случае, даже если

волновые пакеты успели переродиться в турбулентные пятна до точки x∗ < 0.5

наибольшего интегрального усиления возмущений, такие пятна будут распростра-

няться индивидуально, не сближаясь друг с другом и не формируя единую линию

ламинарно-турбулентного перехода над крылом. Таким образом, маловероятно,

что микрочастицы в типичных атмосферных условиях могут служить источником

перехода. Однако в случае высокой облачности, вулканической активности или при
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повышенном содержании продуктов сгорания ракетных топлив в районах с частым

полётом ракет концентрация требуемых микрочастиц может возрасти на несколько

порядков, а их роль в турбулизации обтекания крыла может стать определяющей.

Поэтому задача восприимчивости пограничного слоя к микрочастицам остаётся

актуальной.

6.8. Выводы по главе

В качестве объекта исследования выбрано аэродинамически гладкое прямое

крыло с тонким чечевицеобразным (параболическим) профилем, которое может

применяться на современных сверхзвуковых пассажирских самолётах. Выбран ха-

рактерный крейсерский режим полёта: стандартная атмосфера, высота 20 км, число

Маха 3. На такой конфигурации невозмущённое течение является номинально

двухмерным и неустойчивость поперечного течения не реализуется.

– Анализ устойчивости сверхзвукового пограничного слоя над таким крылом

показал, что существует некоторая пороговая толщина профиля, начиная с

которой возмущения, развивающиеся в пограничном слое, достигают мак-

симума во внутренней точке профиля. Величина максимума уменьшается

с ростом толщины профиля (с ростом благоприятного продольного гради-

ента давления). Это значит, что на профиле появляется точка, за которой

возмущения из всего спектрального диапазона не могут достичь более вы-

сокой амплитуды, чем та, что уже была достигнута в этой точке. Это ведёт

к двум важным практическим выводам. Во-первых, существует пороговый

уровень начальных амплитуд неустойчивых волн, ниже которого точка на-

чала перехода должна резко сдвигаться вниз по потоку, и вся поверхность

профиля должна обтекаться в ламинарном режиме. Такой скачок к ламинар-

ному обтеканию, по-видимому, можно наблюдать в трубном эксперименте

и относительно легко реализовать в натурных условиях. Во-вторых, лами-

наризация рассматриваемого типа крыльев может проводиться не для всего

крыла, а лишь до точки максимума, положение которой надёжно предсказы-

вает линейная теория устойчивости.

– Теоретические результаты подтверждены количественно путём прямого чис-

ленного моделирования развития малых возмущений, искусственно внесён-



258

ных в исследуемый сверхзвуковой пограничный слой. Это позволяет сделать

третий важный вывод. Для быстрых параметрических расчётов характери-

стик устойчивости пограничного слоя и оценок местоположения начала

перехода на тонких профилях можно использовать упрощённый алгоритм,

основанный на линейной теории невязкого обтекания тонких тел, теории

локально-автомодельного пограничного слоя и линейной теории устойчи-

вости в локально-параллельном приближении. Более трудоёмкие расчёты,

основанные на решении полных уравнений Навье—Стокса, имеет смысл

выполнять выборочно на поздних стадиях исследований.

– Проанализированы частотно-волновые характеристики атмосферных возму-

щений, свойственных реалистичному сверхзвуковому полёту. Потенциально

«опасные» частотно-волновые компоненты имеют: атмосферная турбулент-

ность; акустический шум от турбулентного пограничного слоя на передней

части фюзеляжа; микрочастицы, взвешенные в атмосфере. С помощью про-

стых физических моделей выполнена оценка роли различных источников в

формировании ламинарно-турбулентного перехода (ЛТП) на прямом крыле.

В чистой атмосфере концентрация микрочастиц мала, их столкновения с

поверхностью редки, порождаемые столкновениями волновые пакеты раз-

виваются независимо и не способны формировать развитый турбулентный

пограничный слой. «Опасные» компоненты атмосферной турбулентности

попадают в инерционный интервал спектра турбулентных пульсаций вблизи

области вязкой диссипации. Их интенсивность оказывается мала, чтобы вы-

звать ЛТП. Наиболее вероятным источником перехода на аэродинамически

гладком прямом крыле является акустический шум, излучаемый турбулент-

ным пограничным слоем на передней части фюзеляжа. Его интенсивность

сопоставима с шумом в тракте аэродинамических труб, где он является

главным инициатором ЛТП на экспериментальных моделях.

– Предложены и обоснованы способы численного моделирования атмосфер-

ной турбулентности и акустического шума от фюзеляжа. Результаты прямого

численного моделирования восприимчивости и устойчивости подтверждают

теоретические прогнозы и количественно согласуются с результатами линей-

ной теории устойчивости. Акустический шум приводит к спорадическому

рождению турбулентных пятен ниже по потоку от области максимального

усиления возмущений. Возмущения от атмосферной турбулентности оказы-

ваются на порядок слабее даже в случае штормовых погодных условий и не
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способны привести к ЛТП в рассмотренных случаях (турбулентные пятна

не появляются, пограничный слой остаётся ламинарным).

– Результаты проведённых исследований подсказывают возможные подходы к

ламинаризации прямых крыльев сверхзвуковых пассажирских самолётов,

основанные на уменьшении интенсивности акустического шума: подбор

формы фюзеляжа; полировка его поверхности; отсос пограничного слоя;

применение устройств, разрушающих когерентные турбулентные структуры

над фюзеляжем.



260

Глава 7. Восприимчивость к микрочастицам

В работе [9], обобщающей возможные источники атмосферных возмущений

в условиях полёта, отмечается, что твёрдые микрочастицы являются одним из

главных источников, участвующих в возбуждении неустойчивых мод сверхзву-

ковых пограничных слоёв. Несмотря на то, что частицы всегда присутствуют в

тракте аэродинамических установок (если не предприняты специальные меры по

очистке от частиц), их характеристики значительно лучше задокументированы для

атмосферы, нежели для АДТ. Появление микрочастиц в атмосфере связывается

с формированием ледяных облаков, вулканической активностью, деятельностью

человека, а также с космической пылью [247; 249]. Общая структура аэрозолей

в стратосфере описана в [250], где анализировались данные атмосферных изме-

рений (счетчики частиц, метеорологические зонды, спутники). Результаты [250],

дополненные данными [247] о типах частиц и распределении их концентраций по

высотам, обобщены в работе [66]. Значительная доля микрочастиц состоит из про-

дуктов сгорания ракетного топлива (размер ∼ 10мкм) после проведённых полётов

и сульфатных образований (размер ∼ 0.1мкм), которые способны пребывать в

стратосфере годами, не осаждаясь.

Частицы могут влиять на ЛТП посредством различных механизмов:

– столкновение с поверхностью с прилипанием или образованием кратеров на

ней;

– порождение завихренности частицей, пересекающей пограничный слой;

– собственное вращение частицы и связанное с ним вращательное движение

газовой среды;

– порождение слабых ударных волн1 за головной ударной волной от обтекае-

мого тела;

– отражение частицы от поверхности тела с последующим динамическим

взаимодействием частицы с головным скачком; результатом такого взаимо-

действия может стать формирование погруженных слоёв смешения и струй

[251];

– прямое возбуждение неустойчивых мод микрочастицами, размер которых

значительно меньше характерного размера области восприимчивости (дина-

мическое взаимодействие).

1В англоязычной литературе reverse shocklet — обратный скачочек
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Это обстоятельство побудило автора [67] к анализу модельной задачи восприимчи-

вости, описывающей возбуждение неустойчивых мод сферическими микрочастица-

ми, которые взаимодействуют с ламинарным потоком около тела, движущегося со

сверхзвуковой скоростью. Анализ сосредоточен на динамическом взаимодействии

частицы с пограничным слоем. Эффекты, связанные с сопутствующим порож-

дением вихревых возмущений, акустических волн или неровности поверхности,

которая могла бы образоваться после удара частицы, не рассматривались. Ана-

литическое решение задачи восприимчивости подавалось на вход амплитудному

методу Мэка [24], чтобы предсказать положение начала перехода, вызванного

частицей. В качестве примера в [67] рассматривалось обтекание заострённого

клина с полууглом раскрытия 14°, летящего в условиях стандартной атмосферы на

высоте 20 км при числе Маха 4 под нулевым углом атаки. В этом случае переход

вызван неустойчивостью первой моды по терминологии Мэка [45]. Было пока-

зано, что сферические микрочастицы радиуса 10–20 мкм и плотностью больше

1 г/см3 способны приводить к началу перехода с фактором интегрального усиления

N = 9...10, что согласуется с полётными данными [252].

Следует отметить, что во многих аэродинамических установках кратковремен-

ного действия, которые используются для наземного исследования сверхзвуковых

конфигураций, поток может быть сильно загрязнён частицами различного рода:

фрагменты диафрагм, частички ржавчины или сажи, пыль и др. Измерение по-

ложения перехода в таких условиях в значительной мере подвержено влиянию

микрочастиц. Так, в работе [15] продемонстрировано, что тщательная аккуратно

задокументированная процедура чистки ударной трубы T5 в Калифорнийском тех-

нологическом институте позволила улучшить повторяемость измерений ЛТП. До

чистки на поверхности моделей непредсказуемо появлялись турбулентные пятна.

Это наблюдалось в местах, которые нехарактерны для естественного положения

перехода. Чистка позволила практически полностью устранить эти аномальные

результаты.

Роль частиц изучалась ранее в работах Н.Н. Яненко, В.М. Фомина и их коллег

(ИТПМ СО РАН), где теоретическим и экспериментальным путём исследовалось

развитие двухфазных течений (облака микрочастиц в газе) в присутствии поверхно-

стей и ударных волн [253–255]. В этих работах представлены прекрасные теневые

визуализации поля слабых ударных волн от частиц, движущихся в потоке за ударны-

ми волнами, которые могут взаимодействовать с пограничными слоями, возбуждая

их неустойчивости.
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Насколько известно автору, влияние единичных микрочастиц на течение иссле-

довалось только в работахМ. Холдена. Частицы размером до 1 мм (как минимум, на

порядок больше тех, что взвешены в атмосфере [66; 247]) выстреливались навстре-

чу потоку из плоского торца продольно обтекаемого цилиндра [251] (M∞ > 6).

Было показано, что скачок от частицы, проникающей более, чем на диаметр цилин-

дра, взаимодействует с головной ударной волной. Такое взаимодействие приводит

к формированию слоёв смешения и высоконапорных струй, которые достигают

поверхности модели и тем самым могут провоцировать усиление теплообмена

до порядка величины. При этом поле течения вблизи носка оказывается сильно

возмущено, что может привести к раннему ламинарно-турбулентному переходу

на боковой поверхности обтекаемого цилиндра. Следует отметить, что и отскок

микрочастиц от поверхности может приводить к аналогичной существенной пере-

стройке всего течения и влиять на ЛТП, как иллюстрируется в [256]: частица пыли

в тракте АДТ отражается от носового притупления конуса и возвращается к голов-

ной ударной волне, вызывая отрыв потока, который сопровождается искажением

фронта ударной волны и смещением ЛТП к носку. Исследования взаимодействия

единичных частиц с ударными и пограничными слоями продолжаются и сегодня.

Среди прочих следует выделить работы Д. Ревизникова (Московский авиационный

институт, МАИ) (напр., [257]). Они подтверждают экспериментальные резуль-

таты Холдена и дают расширенное представление о процессах влиянии частиц

на течение и теплообмен, которое проблематично получить экспериментальным

путём.

Теоретическая модель [67] разработана для относительно простых течений, в

которых пограничный слой можно считать слабо непараллельным. Модель основа-

на на асимптотическом подходе в предположении, что местное число Рейнольдса

по толщине пограничного слоя велико. Задача возбуждения (восприимчивости) и

развития волновых пакетов от удара микрочастицы предполагает, что длина волны

преобладающего возмущения мала по сравнению с размерами обтекаемого тела

(так называемое коротковолновое приближение, или ВКБ2 приближение). Однако

в большинстве практически важных случаев частицы проникают в пограничный

слой в условиях сильно непараллельного течения (например, вблизи носового

притупления), где коротковолновое приближение не применимо. Чтобы обойти

это ограничение, в данной главе делается попытка заменить аналитическое ре-

шение задачи восприимчивости численным интегрированием полных уравнений

2WKB,Wentzel—Kramers—Brillouin
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Навье—Стокса с дополнительными членами-источниками, взятыми из ориги-

нального анализа [67] для описания нестационарного динамического воздействия

частицы на ламинарное невозмущённое поле течения.

В настоящей главе теоретический [67] и предложенный численный подхо-

ды подвергаются взаимной проверке путём детального сравнения характеристик

волновых пакетов, возбуждаемых частицей. На основе расширенной теоретико-

численной модели предлагается простая статистическая модель ламинарно-

турбулентного перехода, вызванного микрочастицами.

7.1. Математическая модель частицы

Рассмотрим ламинарное течение над заострённым клином длины L∗, помещён-

ным в сверхзвуковой набегающий поток. Ударный слой предполагается невязким

— его толщина существенно превосходит толщину пограничного слоя, развиваю-

щегося на поверхности клина, илиRe∞,L � 1 приM∞ ' 1. Пренебрегая влиянием

вязко-невязкого взаимодействия, будем считать, что течение в невязком ударном

слое является однородным с постоянной скоростью U∗
2, плотностью ρ∗2, температу-

рой T ∗
2 и давлением P

∗
2 . В начальный момент времени t∗ = t∗0 твёрдая сферическая

частица радиуса R∗
p и плотностью ρ∗p пересекает границу ударного слоя в точке

r∗ = r∗0, где r
∗ = (r∗1, r

∗
2, r

∗
3)— вектор в декартовой системе координат, показанной

на рис. 7.1. Система координат (x, y, z) связана с поверхностью клина. Здесь и

далее нижний индекс «p» указывает на отношение величины к частице.

В ударном слое движение частицы описывается уравнениями

m∗
p

du∗p
dt∗

= F∗
p, (7.1)

u∗p(t
∗
0) = (U ∗

∞, 0, 0)
T , (7.2)

где u∗p = dr∗p/dt
∗ — скорость частицы, mp = 4πR∗3

p ρ
∗
p/3 — её масса, F∗

p — сила

сопротивления, действующая на частицу со стороны потока. Силой гравитацион-

ного притяжения пренебрегаем. Обтекание частицы считается квазистационарным,

поэтому силу сопротивления можно рассчитать по формуле

F∗
p = −CD

ρ∗

2

∣∣u∗p − U∗∣∣ (u∗p − U∗) · πR∗2
p . (7.3)
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Рисунок 7.1 — Схема сверхзвукового течения около острого клина и принятые

системы координат. «ПС» соответствует верхней границе пограничного слоя

Коэффициент сопротивленияCD рассчитывается на основе модифицированной

эмпирической корреляции Кроу [258]

∆Up =
∣∣u∗p − U∗∣∣ ,

Rep = Re∞,L · ρ∆Up · 2Rp

µ
,

Mp =M∞ · ∆Up√
T
,

Tp = T,

Cinc =
24

Rep

(
1 + 0.15Re0.687p

)
,

G1 =

(
Rep
312

)0.6688

, log10G =
2.5G1

1 +G1
;

H =
4.6

1 +Mp
+ 1.7

√
Tp
T
,

Cd = 2 + (Cinc − 2) exp

(
−3.07

√
γMpG

Rep

)
+

H
√
γMp

exp

(
−0.5

Rep
Mp

)
. (7.4)

Корреляция (7.4) пригодна как при сплошносредном, так и при свободномолекуляр-

ном режиме обтекания частицы. В частности, она исходно описывает режимСтокса,

а при очень маленьких Rep и большихMp аппроксимирует режимы умеренных

и больших чисел Кнудсена. Последнее оказывается важным при моделировании

микрочастиц с радиусом порядка десятых долей микрометра, которые присутству-

ют в атмосфере в виде сульфатных образований [66]. В рассматриваемом ниже
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тестовом случае размер частицы достаточно велик, и вдоль всей траектории полёта

частицы работает сплошносредная ветвь корреляции (7.4).

Если радиус частицы много меньше, чем толщина пограничного слоя в сечении

столкновения, R∗
p � δ(xc), то задача (7.1) – (7.2) также описывает прохождение

частицы через пограничный слой3.

Решая задачу (7.1) – (7.3), можно отыскать скорость частицы в момент столкно-

вения, u∗p,w ≡ u∗c . Далее будем предполагать частицу достаточно тяжёлой, так что

её скорость при пролёте через пограничный слой остаётся постоянной и равной u∗c .

Предварительные расчёты траекторий частиц показали, что в рассматриваемых

ниже случаях скорость частицы уменьшается не более чем на 0.25% за время

прохождения пограничного слоя.

Для простоты будем считать, что частица прилипает к поверхности при соуда-

рении. Эффекты, связанные с образовавшейся неровностью поверхности или с

отскоком частицы от неё, не учитываются. Следует заметить, что поверхность кли-

на можно считать аэродинамически гладкой, если число Рейнольдса характерной

неровности ограничено сверхуRekk ≡ kuk/νk < 25, где uk и νk — скорость и кине-

матическая вязкость невозмущённого пограничного слоя на высоте неровности k

[259]. Рассматриваемые ниже случаи удовлетворяют этому ограничению [67]. При

пересечении пограничного слоя частица порождает возмущения (в том числе, воз-

буждает неустойчивые моды) в локальной области, где невозмущённое ламинарное

течение можно рассматривать как локально параллельное (см. рис. 7.1).

Маленькую частицу можно описать точечным источником сосредоточенной

силы и мощности. В общем случае наряду с механической мощностью, обуслов-

ленной силой сопротивления, источник мощности должен учитывать вклад тепло-

обмена, если частица не находится в тепловом равновесии с окружающим потоком.

Если включить такой источник в уравнения Навье—Стокса для совершенного газа

(см. раздел 1.1), то в безразмерном виде в декартовой системе координат вектор

источниковых членов (1.2) будет иметь вид

Sc = R2
pδ(r− rp) ·


0

Fp

up · Fp +
Qp

PrReRp(γ−1)M2
∞

 , (7.5)

где δ(r− rp)— трёхмерная дельта-функция Дирака; в уравнение энергии входит

точечный источник тепла от частицы Qp = 2πNu(Tp − T ) (Nu — число Нус-

3Здесь и далее нижний индекс «c» обозначает отношение к месту столкновения частицы с поверхностью
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сельта) и точечный источник мощности силы сопротивления, пропорциональный

скалярному произведению up · Fp, которая выделяется из-за торможения части-

цы в потоке; в уравнение импульсов входит точечный источник объёмной силы,

пропорциональный величине

Fp = CD
πρ

2
|up − U| (up − U) . (7.6)

7.2. Теоретическое решение

В теоретическом анализе [67] поле возмущённого течения представляется в

виде

q(x, y, z, t) = Q(x, y, z) +R2
pq̃(x, y, z, t),

где q—некоторая физическая величина (например, давление),Q—невозмущённое

поле течения,R2
pq̃ ≡ q′ —порождённое частицей возмущение; ортонормированная

система координат (x, y, z) показана на рис. 7.1.

Так как размер частицы мал,Rp � 1, в первом приближении поR2
p возмущение

подчиняется линеаризованным уравнениям Навье—Стокса. В рамках данного

приближения задача восприимчивости решается путём разложения возмущений

по биортогональной системе собственных функций линеаризованного оператора.

Иными словами, если частица сталкивается с поверхностью в точке xc = (x, y, z) =

(xc, 0, 0) в момент времени tc = 0, то индуцированное частицей возмущение q̃ моды

m можно выразить интегралом (3.4), в котором коэффициент восприимчивости

берётся в точке столкновения xc и может быть представлен в аналитическом виде

[67]. В данном случае эйконал возмущения S, определённый в подразделе 3.1

как интеграл от точки потери устойчивости x0, должен рассчитываться от точки

соударения xc.

Если сечение наблюдения x расположено достаточно далеко от точки соударе-

ния, x� xc, то |S| � 1 и интеграл (3.4) вновь можно оценить с помощью метода

перевала, как это сделано в подразделе 3.1.1. Следуя введённым ранее обозначени-

ям, для амплитуды горба возмущения, оцененного с помощью метода перевала,

можно записать

q′(ωs, βs, x) = CreceptCdispe
N(xc,x), (7.7)

Crecept = R2
p |Dm(ωs, βs)q̂m(ωs, βs, x)| , (7.8)
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Cdisp =
1

π

∣∣∣∣∣∂2S∂ω2

∂2S

∂β2
−
(
∂2S

∂ω∂β

)2
∣∣∣∣∣
1/2

(ωs,βs)

, (7.9)

N(xc, x) = −
xˆ

xc

αm,i(ωs, βs, x̃)dx̃. (7.10)

В данном разделе рассматривается первая неустойчивая мода по терминологии

Мэка [45], то есть нижний индексm обозначает первую моду. Собственные значе-

ния αm(ω, β, x) рассчитываются с учётом непараллельности пограничного слоя

по методу многих масштабов [55; 56; 179]. Так как в общем случае xc 6= x0, то

инкремент нарастания преобладающего возмущения в точке соударения отличен от

нуля, −αm,i(ωs, βs, xc) > 0. Поэтому коэффициент восприимчивости (7.8) должен

вычисляться при комплексных значениях αm. Для этого используется теоретиче-

ское решение [67] в предположении, что |αm,i| � αm,r при x = xc, ω = ωs, β = βs,

которое предполагает слабую зависимость коэффициента восприимчивости от

расстояния между точкой потери устойчивости и точкой столкновения. Предвари-

тельные расчёты показали, что это ограничение выполняется для рассматриваемого

ниже случая.

Следует отметить, что коэффициент Cdisp есть половина выражения, представ-

ленного в [67]. Для первой неустойчивой моды имеется две перевальные точки

(ωs,±βs), где ωs > 0, βs > 0 (см. главу 3). Поэтому в дальнем поле возмущение

расщепляется на два волновых пакета. Траектории их горбов zs(xs) на поверхности

клина симметричны по отношению к плоскости z = zc, проходящей через точку

столкновения (xc, zc).

7.3. Выделение моды из численного решения

Возмущения, порождённые частицей, содержат все моды дискретного и непре-

рывного спектров. Так как теоретическое решение (7.7) – (7.10) учитывает только

первую моду, для корректного сравнения теоретических и численных результатов

следует выделить волновой пакет первой моды из возмущения, рассчитанного в

ПЧМ. Эта процедура осуществляется методом разложения по биортогональной

системе собственных функций [5; 178]. В некотором сечении x0 вниз по потоку от
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точки столкновения xc рассчитывается спектральная плотность вектора возмуще-

ния ПЧМ (3.1), который обозначим через aПЧМ

âПЧМ (x0, y, β, ω) =
1

2π

∞̂

−∞

dz

∞̂

−∞

dt
[
aПЧМ (x0, y, z, t) · eiβz−iωt

]
.

Спектральная плотностью первой моды, заключённая в возмущении ПЧМ, есть

âR (x0, y, β, ω) =

〈
H2âПЧМ, b̂m

〉
〈
H2âm, b̂m

〉 âm,

где âm и b̂m — собственные функции прямой и сопряжённой задач устойчивости,

соответственно. Скалярное произведение определяется как〈
H2â, b̂

〉
=

∞̂

0

(
H2â, b̂

)
dy,

где (·, ·)— эрмитово скалярное произведение. Явный вид матрицы H2 рассчитыва-

ется в соответствии с [178].

Пакет первой моды, выделенный из решения ПЧМ, рассчитывается как обрат-

ное преобразование Фурье

aR (x0, y, z, t) =
1

2π

∞̂

−∞

dz

∞̂

−∞

dt
[
âR (x0, y, β, ω) · e−iβz+iωt

]
.

7.4. Численная модель частицы

Для валидации теоретического решения (7.7) – (7.10) проведём численное ин-

тегрирование полных уравнений Навье—Стокса с учётом источников, моделиру-

ющих влияние частицы. Для этого:

1. рассчитаем невозмущённое поле течения;

2. рассчитаем траекторию частицы в соответствии с моделью (7.1) и силой

сопротивления (7.3);

3. предложим модель дискретизации частицы на расчётной сетке;

4. смоделируем напрямую задачу восприимчивости пограничного слоя к пада-

ющей на него частице;
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5. изучим вопросы сеточной сходимости;

6. оценим применимость предложенного подхода путём перекрёстной валида-

ции решений ЛТУ и ПЧМ.

7.4.1. Траектория

Сначала в двухмерной постановке на тестовой сетке рассчитывается пол-

ное невозмущённое поле течения. Рассматривая частицу как точечный источ-

ник (Rp � 1), можно пренебречь её влиянием на окружающий поток и рассчи-

тать силу сопротивления (7.3) лишь с помощью невозмущённого течения. Зада-

ча (7.1) – (7.3) интегрируется численно с начальными условиями: rp(0) = rp0,

up(0) = up0 = (1, 0, 0)T , где точка rp0 расположена в набегающем потоке перед го-

ловным скачком. Для интегрирования применяется простая схема низкого порядка

аппроксимации up,n+1 = up,n + f∆t,

rp,n+1 = rp,n + 0.5 (up,n+1 + up,n)∆t.

Расчёт траектории ведётся в интервале времени 0 < t 6 tc до момента столк-

новения частицы с поверхностью клина в точке xp(tc) = (xc, 0, 0) (см. рис. 7.1).

При t > tc индуцированные частицей источниковые члены (7.5) равны нулю. В

настоящей главе рассматриваются относительно тяжёлые частицы (ρ∗p/ρ
∗
∞ > 104),

которые летят по практически прямолинейным траекториям в ударном слое.

Далее тестовая сетка уточняется возле траектории частицы. Поле течения

вновь устанавливается на новой сетке и далее служит для окончательного расчёта

траектории частицы — траектория сохраняется в файл как функция от времени с

желаемым временным шагом, а именно: положение частицы rp, её скорость up и

интенсивность источников R2
pFp.

С целью экономии вычислительных ресурсов задача восприимчивости решает-

ся в подобласти, которая целиком расположена под головным скачком уплотнения

и не включает начальную часть траектории частицы. Влияние такого подхода на

возбуждение возмущений пограничного слоя незначительно и обсуждается далее.

В расчёте ПЧМ частица начинает движение вблизи входной границы подобласти и
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движется строго вдоль предрассчитанной траектории. Индуцированные частицей

источниковые члены не конфликтуют с граничными условиями.

7.4.2. Точечный источник

Источниковые члены (7.5) описывают вклад от точечного источника объёмной

силы и мощности и пропорциональны дельта-функции Дирака

δ(r− rp) = δ(x− xp) · δ(y − yp) · δ(z − zp),

˚

R3

δ(r− rp)dr = 1. (7.11)

Эту функцию можно аппроксимировать колоколообразной поверхностью функ-

ции Гаусса

δh(r− rp) =


1(

σ
√
2π
)3 exp(− |r−rp|2

2σ2

)
, |r− rp| < 4σ,

0, |r− rp| > 4σ;
(7.12)

Дискретный точечный источник имеет ограниченный носитель (сфера радиуса

4σ), что очень удобно с вычислительной вычислительной точки зрения. Величина

отброшенного хвоста функции Гаусса приводит к незначительному уменьшению

∆I интегрального вклада точечного источника (7.11); таким уменьшением можно

пренебречь:

˚

R3

δh(r− rp)dr = 1−∆I ≈ 0.9998.

Источник с большим носителем (большие значения σ) легче разрешить на

расчётной сетке. Однако размер источника должен оставаться малым по сравне-

нию с толщиной пограничного слоя в области столкновения, чтобы обеспечить

корректное моделирование физического процесса.
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7.4.3. Тестовая задача

Рассмотрим конфигурацию течения из [67]: клин с полууглом раскрытия 14°

помещён в сверхзвуковой поток под нулевым углом атаки. Параметры набегающего

потока соответствуют стандартной атмосфере на высоте 20 км и приведены в

табл. 7.1 вместе с параметрами потока за косым скачком на клине (нижний индекс

2), которые близки к параметрам на границе пограничного слоя. Температура

стенки постоянна и близка к адиабатической температуре

Tw ≈ Tr = T2

(
1 +

√
Pr

γ − 1

2
M 2

2

)
.

Параметры сферической частицы приведены в табл. 7.2. Поверхность частицы

находится в тепловом равновесии с окружающим газом, то есть частица не являет-

ся источником тепла и Qp = 0. Траектория частицы практически прямолинейна

(частица очень тяжёлая, ρp � 1) и лежит в плоскости симметрии z = 0, поэтому

zc = zp ≡ 0. Траектория частицы сохранена с временным шагом dt = 8 · 10−5, кото-

рый соответствует временному шагу интегрирования уравнений Навье—Стокса.

Как показано на рис. 7.2а, в рассматриваемой тестовой постановке частица

прилетает на верхнюю границу пограничного слоя при числе МахаMp ≈ 0.76 и

числе Рейнольдса Rep ≈ 52.9 относительно местного невозмущённого течения

и ударяется о поверхность при Mp ≈ 2, Rep ≈ 51.1. Число Rep заметно изме-

няется внутри пограничного слоя. Такие параметры допустимы для применения

корреляции для коэффициента сопротивления [258].

Величины, пропорциональные источниковым членам в уравнении импуль-

сов (7.6), рассчитаны для невозмущённого течения и представлены на рис. 7.2б.

Следует отметить, что соответствующие проекции проиллюстрированы в общей

декартовой системе координат (см. рис. 7.1). Как видно, внутри пограничного слоя

Таблица 7.1 — Параметры набегающего потока и на границе пограничного слоя

M∞ M2 Re∞,L L∗, м T ∗
∞, К T ∗

2 , К P ∗
∞, Па ρ∗∞, кг/м

3 Tw
4 3 7.381 · 106 1 216.7 324.9 5530 0.0889 3.8

Таблица 7.2 — Параметры частицы и столкновения

ρ∗p, кг/м
3 ρp R∗

p, мкм rp0 xc zc δ99(xc)

1000 11248.6 10 (0.029, 0.016, 0)T 0.067 0 6.4 · 10−4
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величина F p,r1 испытывает наибольшее изменение и, по-видимому, вносит основ-

ной вклад в динамическое возбуждение волнового пакета внутри пограничного

слоя.

Теоретический анализ выполнен для автомодельного сжимаемого по-

граничного слоя с параметрами на границе, взятыми из прямого расчёта

(табл. 7.1). Следует отметить, что параметр вязко-невязкого взаимодействия

χ = M 3
eRe

−0.5
e,x (µwTe/(µeTw))

0.5 < 0.03 при x > xc, что указывает на то, что взаи-

модействие слабое и автомодельный профиль близок к профилю ПЧМ. Прямое

сравнение профилей U(y) и T (y) в различных сечениях x = const показало,

что имеется незначительное различие лишь в профилях температуры. Прове-

рочные теоретические расчёты восприимчивости с использованием профилей

пограничного слоя из ПЧМ при x = xc показали, что расхождение коэффици-

ентов восприимчивости (7.8) со случаем автомодельного пограничного слоя не

превышает 2.5%.

7.4.4. Расчётная сетка

Основные особенности трёхмерной расчётной сетки показаны на рис. 7.3. По-

лёт частицы моделируется в подобласти, граница которой показана жирной линией

на рис. 7.3а. Сетка в подобласти разделена на три зоны: область столкновения (ниж-

а)Mp и Rep б) Источники (7.6)

Рисунок 7.2 — Параметры вдоль траектории частицы
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ний индекс «c»), область волнового пакета (нижний индекс «WP») и переходная

область (окрашена серым).

Область столкновения содержит точку столкновения x = xc, помеченную крас-

ным кружком, имеет размах∆zc = 2zc и расположена между границей подобласти

xcL ≈ xc− 1.5∆xc и сечением xcR ≈ xc+0.5∆xc симметрично относительно плос-

кости z = 0. Сеточные узлы распределены равномерно по x и z вне переходной

зоны, которая служит для плавного изменения сеточного шага

dx =


dxc, xcL 6 x < xcR,

dxc → dxWP , xcR 6 x < xWP,

dxWP xWP 6 x 6 Lx;

(7.13)

dz =


dzc, 0 6 x < zc,

dzc → dxWP , zc 6 x < 1.25zc,

dzWP 1.25zc 6 x 6 Lz.

(7.14)

Так как угол фронта преобладающего возмущения примерно равен 70°, ша-

ги dxWP и dxWP связаны, чтобы сеточное разрешение волнового пакета было

примерно одинаковым в обоих направлениях: dzWP ≈ dxWP/ tg 70°.

а) Вид сбоку со стороны +Oz б) Вид снизу со стороны

−Oy. Стенка в области
столкновения

заштрихована

Рисунок 7.3 — Схема расчётной области. Красным отмечена точка столкновения.

Сеточные области с меняющимся сеточным шагом по x или z окрашены серым

цветом. Для базовой сетки z > 0
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Верхняя граница подобласти расположена при ∆y(xcL) ≈ 8δ99(xc) и удаляется

от стенки с ростом x.

Описанная расчётная сетка в подобласти далее упоминается как базовая. Её

параметры даны в табл. 7.3.

Полная сетка сгущена в области острой кромки при x < xle (см. рис. 7.3б)

таким образом, что ячейки у самой кромки оказываются квадратными в плос-

кости xOy. Сеточные линии сгущены вблизи скачка и у стенки. Поперёк погра-

ничного слоя приходится 140 – 150 узлов. При x > xcL пристенная ячейка сетки

покрывает диапазон 5 6 y+1 6 9 в пристенных единицах y+1 = ρ∗wU
∗
τ y

∗
1/µ

∗
w =

y1
√
ρwRe∞,L(∂u/∂n)w/µw. В случае σ = 5 · 10−5, который в совокупности с ба-

зовой сеткой далее упоминается как базовый, на частицу-источник приходится

примерно 6 сеточных точек (pps) в направлениях x и z: ppsx ≈ 6σ/dxc = 6,

ppsz ≈ 6σ/dxz = 6. В большинстве тестовых случаев рассматривается комбина-

ция различных значений σ и сеточного разрешения, которые дают определённое

значение pps. При анализе влияния определённого параметра остальные парамет-

ры соответствуют базовому случаю, если не указано иное.

Следует отметить, что граничное условие симметрии при z = 0 выставляется

напрямую в соответствии с формулой (1.7); комментарии даны в подразделе 1.1.2.

Поэтому возможная численная диссипация из-за недостаточного сеточного раз-

решения возмущений вблизи плоскости симметрии z = 0 также рассматривается

при исследовании сеточной сходимости ниже.

7.4.5. Верификация

Рассмотрим отпечаток волнового пакета на стенке — возмущение давления

p′w(x, z) в момент времени t = 0.24, когда волновой пакет уже хорошо развит

и полностью расположен внутри расчётной области. Во всех рассматриваемых

далее случаях форма отпечатка не изменяется, а амплитуда может меняться. Она

характеризуется, например, максимумом огибающей p′w в плоскости симметрии

z = 0, который может быть найден с помощью преобразования ГильбертаH

p′symw,max = max
x

|Hx (p
′
w(x, 0))| .
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Далее будем сопоставлять относительные отклонения этой величины

∆p′symw,max ≡
p′symw,max − p′symw,max,ref

p′symw,max,ref

, (7.15)

где нижний индекс ref обозначает результат для опорного случая (по-умолчанию,

это базовый случай).

На рис. 7.4 показан отпечаток волнового пакета, полученный в базовом случае в

момент времени t = 0.24. В нём преобладают наклонные волны с углами фронтов

65° – 75° по отношению к осиOz. Такие волны соответствуют первой неустойчивой

моде, что согласуется с результатами ЛТУ: так как число Маха на внешней границе

пограничного слоя относительно мало,Me ≈ 3, а температура поверхности близка

адиабатической, в пограничном слое существует единственная неустойчивая мода

— первая мода. Однако ЛТУ предсказывает, что линия максимума (траектория

горба волнового пакета) должна удаляться от плоскости симметрии, а на рис. 7.4

максимум достигается при z = 0. Это обусловлено тем, что волновой пакет ещё

не в достаточной мере удалился от области столкновения и помимо возмущений

первой моды включает и другие возмущения, которые асимптотически затухают в

дальнем поле.

Расчёты при различных значениях σ и фиксированных ppsx = ppsz = 6 по-

казывают, что относительные отклонения (по отношению к базовому случаю

σ = 5 · 10−5) малы:∆p′symw,max = −9.7% при σ = 10−4 и 0.3% при σ = 2.5 · 10−5. Это

отчасти подтверждает, что гауссова аппроксимация дельта-функции применима

и универсальна для рассматриваемой задачи восприимчивости. Рисунок 7.5 ил-

люстрирует быструю сходимость распределения p′symw (x) по величине σ. Таким

образом, частицу-источник с размером σ = 5 · 10−5 можно рассматривать как

точечный источник несмотря на то, что его диаметр (оценённый как ≈ 2σ
√
2)

составляет примерно 22% толщины пограничного слоя δ99(xc) = 6.4 · 10−4 в точке

столкновения.

Рассмотрим влияние продольного dxc и бокового dzc сеточного разрешения

волнового пакета, индуцированного частицей, а также влияние граничного условия

симметрии при z = 0, которое накладывается напрямую (см. подраздел 1.1.2).

Случаи σ = 5 · 10−5 и σ = 10−4 демонстрируют похожие результаты, обобщённые

в табл. 7.4 и 7.5. Неожиданно малое превышение p′symw,max(x) наблюдается в случае

без условия симметрии при грубом разрешении ppsx× ppsz = 3× 3, когда частица

полностью погружена в расчётную область.
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Рисунок 7.4 — Отпечаток волнового пакета на поверхности при t = 0.24, базовый
случай. Отпечаток отражён относительно z = 0 для наглядности

Рисунок 7.5—Влияние величины σ на возмущение давления на стенке в плоскости
симметрии z = 0 при t = 0.24
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Таблица 7.4 — Результаты исследования сеточной сходимости при σ = 5 · 10−5

при различном сеточном разрешении частицы-источника; «ns» — без условия

симметрии при z = 0; «ref» — опорный случай (см. (7.15))

ppsx = 3 6 12

ppsz = 3 +3.2% (ns)

6 +3.2%
0.0% (ref)

+0.1%
+0.6% (ns)

12
−1.5% +2.1%
+0.5% (ns) 0.0% (ns)

Таблица 7.5 — То же, что и в табл. 7.4, но при σ = 10−4

6× 6 12× 12 24× 24

0.0% (ref) −0.7% +0.5%
+1.5% (ns)

Рассмотрим эффект сеточного разрешения на эволюцию волнового пакета.

Сетка спроектирована таким образом, что разрешение преобладающей волновой

компоненты в боковом направлении всегда оказывается более подробным, чем в

продольном направлении (см. 7.13 – 7.14). Поэтому сосредоточимся на эффекте dx.

В зоне столкновения сетка имеет избыточное продольное разрешение. За ней шаг

плавно увеличивается в переходной зоне до величины dxWP и остаётся постоянным

в зоне волнового пакета при x > xWP . Чтобы оценить эффект dxWP , расчётная

область расширена до Lx = 0.6 и Lz = 0.05 с сохранением шага dxWP и dzWP .

Развитие волнового пакета рассчитано до момента времени t = 0.7, когда горб

пакета в плоскости симметрии добирается до точки xsymw,max ≈ 0.53.

На рис. 7.6 показано влияние измельчения сетки на относительное отклонение

(7.15) относительно случая с наиболее подробной сеткой dxWP,ref = 0.25dxWP . В

базовом случае, dxWP , влияние сетки наиболее выражено в ближнем поле непо-

средственно за областью столкновения. В поле возмущения значительную роль

играют мелкомасштабные структуры, которые лучше разрешены на подробной

сетке с шагом dxc. По мере распространения пакета вниз по потоку эти возмущения

затухают, а отклонение уменьшается до 6–7% к началу зоны волнового пакета, где

на длину доминирующей волны приходится около 25 точек. Отклонение достигает

локального максимума 8% при (t, xsymw,max) = (0.3, 0.26) и затем монотонно умень-

шается до 6.3% при (t, xsymw,max) = (0.7, 0.53). Тенденция к уменьшению отклонения

связана с дисперсией волнового пакета, которая приводит к увеличению количества
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сеточных точек на длину волны преобладающего в пакете возмущения. Аналогич-

ное поведение наблюдается в случае подробной сетки, 0.5dxWP , но отклонения

оказывается на порядок ниже, чем в базовом случае. Таким образом, на наиболее

подробной сетке достигнуто практически сошедшееся нестационарное решение.

Следует отметить, что функциональная зависимость dx(x) для базовой сетки

качественно отличается от двух оставшихся сеток в переходной области4. Отличие

не является критичным, так как оно влияет преимущественно в области ближнего

поля, где преобладают мелкомасштабные возмущения. Эти возмущения малы в

области ниже по потоку, где исследуется волновой пакет. Таким образом, базовая

сетка позволят моделировать распространение волнового пакета с ошибкой не

более 6.3% в области x > 0.53, где количество сеточных точек на доминирующую

длину волны больше, чем 35.

Временное разрешение было исследовано только в двухмерном случае (резуль-

таты тестирования не приводятся). Было обнаружено, что отклонение ∆p′2Dw,max

мало, если поперёк пограничного слоя имеется по крайней мере 25 временных

точек. Влияние временного разрешения при развитии волнового пакета таково,

4Откровенно говоря, не доглядели... Такое случается редко. Обычно приходится всё исправлять, преодо-

лев врождённую лень. Известно, что верификационные расчёты придают мало вдохновения [260]. Поэтому

глупо не попытаться найти разумное оправдание и ничего не переделывать. К счастью, в данном случае

такое оправдание нашлось.

Рисунок 7.6 — Сходимость по сеточному разрешению зоны волнового пакета.

Базовая сетка расширена по x и z
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что ошибка становится незначительной, если на период преобладающей волны

приходится более 60 временных точек (см. раздел 2.1). Последнее ограничение

оказывается менее строгим, так как время пролёта частицей пограничного слоя

мало по сравнению с периодом преобладающего возмущения. В проведённых

трёхмерных расчётах временной шаг постоянен, dt = 8 · 10−5. Он соответствует 35

временным точкам на полёт частицы внутри пограничного слоя и 450 временным

точкам на период преобладающего при t = 0.24 возмущения.

Также проведены трёхмерные расчёты с частицей, которая запущена вблизи

верхней границы пограничного слоя. В этом случае амплитуда волнового пакета

p′symw,max меньше соответствующей амплитуды в базовом случае на 0.3% при t =

0.24. Таким образом, внешняя часть траектории слабо влияет на возбуждение

возмущений в пограничном слое.

Обобщим полученные результаты верификационного исследования. Процесс

восприимчивости моделируется с ошибкой p′symw,max < 2.4%, если: точечный источ-

ник от частицы моделируется гауссовой формой (7.12) с характерным диаметром

2σ
√
2, который не превышает 22% толщины пограничного слоя в месте столкнове-

ния; сетка разрешает источник от частицы не менее, чем 6× 6× 6 точками, если

граничное условие симметрии моделируется напрямую. Если источник модели-

руется без наложения симметрии как граничного условия (частица полностью

погружена в расчётную область), ошибка становится меньше 1% и не превосходит

3.2% даже в случае сеточного разрешения 3 × 3 × 3 точек. Развитие волнового

пакета моделируется с ошибкой p′symw,max < 6.3%, если сетка равномерна по x и на

длину преобладающей волны приходится по крайней мере 25–30 сеточных точек.

Так как внешняя часть траектории частицы слабо влияет на процесс восприимчи-

вости, полёт частицы необходимо моделировать с высокой точностью лишь внутри

пограничного слоя.

7.5. Результаты

В данном разделе проводится перекрёстная валидация теоретической [67] и

предложенной выше численной модели. Для этого эволюция волнового пакета

рассматривается в расширенной области: Lx ≈ 1.21, Lz = 0.085. Сеточные ячейки
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дополнительно разрежены в боковом направлении при 0.93 < z/Lz < 1, что-

бы подавить нефизичное отражение возмущений границы z = zmax. Остальные

особенности базовой сетки сохранены.

7.5.1. Эволюция волнового пакета

Развиваясь вниз по потоку, волновой пакет растёт в пространстве и усиливается,

как показано на рис. 7.7. В нём преобладает пара наклонных волн, которые сим-

метричны относительно плоскости z = 0, формируются в головной части пакета

и медленно затухают в его хвостовой части. Пакет развивается самоподобным

образом, наращивая число волновых фронтов по мере удаления от места возбужде-

ния x = xc. В силу симметрии достаточно рассматривать только часть волнового

пакета z > 0.

Рисунок 7.8 иллюстрирует теоретическую и численную траектории (xmax, zmax)

горба волнового пакета, который, в соответствии с предсказанием теории, дол-

жен удаляться от плоскости симметрии. Теоретическая кривая рассчитывается с

помощью (7.7) как

zmax =

∣∣∣∣∂Sr

∂β
(βs, ωs, xmax)

∣∣∣∣ .
Численная кривая рассчитывается по отпечатку возмущения давления на поверх-

ности, p′w(x, z, t) следующим образом. В каждой фиксированной точке (x0, z0) рас-

сматривается осциллограмма пульсаций давления p′w(t) ≡ p′w(x0, z0, t). С помощью

преобразования ГильбертаH строится огибающая осциллограммы и определяется

максимум огибающей. Положение (xmax, zmax) и амплитуда p
′
w,max горба пакета в

точке x = xmax определяются как максимум полученной величины по размаху z:

p′w,max(x) = max
z

max
t

|Ht[p
′
w(x, z, t)]| . (7.16)

Данный максимум достигается в момент времени tmax, который также находится

при расчёте p′w,max.

В случае xc = 0.067 (рис. 7.8а) при xc < x > 0.35 горб пакета, рассчитанного в

ПЧМ, движется вдоль плоскости симметрии z = 0. Далее при x ? 0.4 (N(xc, x) > 4

в соответствии с [67]) его траектория быстро отклоняется и достигает теоретиче-

ской асимптотической кривой, а затем плавно линейно отклоняется от неё и вновь
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а)

б)

в)

г)

д)

е)

ж)

з)

Рисунок 7.7 — Возмущение давления на стенке p′w(x, z) и изолинии p
′
w = 5 · 10−7

в случае σ = 5 · 10−5 в равноотстоящие моменты времени t =0.01 (а), 0.19 (б), 0.37
(в), 0.55 (г), 0.73(д), 0.91 (е), 1.09 (ж), 1.27 (з). Момент столкновения частицы со

стенкой — tc ≈ 0.009

возвращается к ней. Такое поведение объясняется наличием нескольких слабо

отличающихся локальных максимумов по z, каждый из которых преобладает над

остальными в определённом интервале по x. При этом выражение (7.16) отслежи-

вает лишь наибольший из этих максимумов. Асимптотическая форма волнового

пакета имеет единственный максимум. Появление нескольких максимумов в ПЧМ,

по-видимому, связано со сложностью начального спектра волнового пакета, воз-

буждённого в пограничном слое (обсуждается далее). По мере продвижения вниз

по потоку отклонение численной траектории от асимптотической уменьшается, а

участки между «перескоками» с максимума на максимум удлиняются. Это свиде-

тельствует о постепенном приближении численного решения к асимптотическому
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виду волнового пакета в дальнем поле. В случае xc = 0.134 (рис. 7.8б) поведение

волнового пакета аналогично.

На рис. 7.9 сопоставляются углы наклона волновых фронтов ψ = arctg(β/α)

для преобладающей в пакете гармоники в зависимости от xmax. Теоретическое

распределение соответствует величинам β = βs(xmax) и α = αТШ,r(ωs, βs, xmax),

где αТШ — собственное значение первой моды. Численная кривая (ПЧМ) строится

с помощью двухмерного преобразования Фурье для момента времени tmax(xmax).

Каждое поле амплитуды Фурье имеет единственный хорошо выраженный макси-

мум в точке (αmax, βmax), что позволяет однозначно рассчитать угол ψ.

Размер вертикальных штрихов ∆ψ на рис. 7.9 определяется с помощью фор-

мулы Тейлора для функции ψ(α, β) с шагами ∆α = 2π/(Lx − xcL) и ∆β = π/Lz

в частотно-волновом диапазоне дискретного преобразования Фурье для точки

(α, β) = (αmax, βmax):

∆ψ = ± β/α

1 + (β/α)2

(
|∆α|
α

+
|∆β|
β

)
.

Как видно, теория завышает результаты ПЧМ менее, чем на 5% при xmax ≈ 0.5.

Рассогласование уменьшается вниз по потоку до 3% при xmax ≈ 0.9.

На рис. 7.10а сопоставляются амплитуды горба волнового пакета, возбуждён-

ного при xc = 0.067. Теоретическое значение рассчитывается по формуле (7.7)

при x = xmax. По мере удаления точки наблюдения xmax от точки столкновения xc

теоретическая и численная кривые медленно расходятся. Однако судя по кривизне

кривых, тенденция к расхождению монотонно уменьшается. К концу расчётной

области кривые развиваются практически параллельно друг другу, а наибольшее

а) xc = 0.067 б) xc = 0.134

Рисунок 7.8 — Траектория горба волнового пакета
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Рисунок 7.9 — Угол наклона волновых фронтов преобладающей гармоники, xc =
0.067

расхождение при x = 0.9 составляет около 42% по отношению к теоретическому

уровню.

Наблюдаемое расхождение можно отнести к нарушению теоретического огра-

ничения λs/xc � 1, где λs = 2π/αТШ,r(ωs, βs, xc)— длина волны в точке столк-

новения xc для возмущения, которое преобладает в сечении наблюдения xmax. В

этом случае хвост амплитудной функции первой моды q̂m(xc, y, ωs, βs) проникает

во внешнее невязкое течение на большое расстояние от стенки (экспоненциальное

а) xc = 0.067 б) xc = 0.134

Рисунок 7.10 — Амплитуда горба волнового пакета
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затухание слабое), как показано на рис. 7.11б. Глубину проникновения ∆y можно

оценить как ∆y = κ−1
r,min, где κr,min — действительная часть минимального темпа

роста в векторе собственных функций, который во внешнем невязком течении

пропорционален e−κy. На рис. 7.11а показана зависимость отношения λs/xc от

частотного параметра Fs = ω∗
sν

∗
e/U

∗2
e . В области низких частот, соответствующих

дальним сечениям рис. 7.10а, это отношение не является малым: λs/xc ≈ 0.5.

Чтобы проверить данное предположение о причине рассогласования по амплитуде

горба волнового пакета, дополнительно рассмотрен случай соударения частицы

ниже по потоку, при xc = 0.134. Как показано на рис. 7.10б, рассогласование в

сечении xmax = 0.9 уменьшилось практически вдвое, до 24% по отношению к

теории. При этом численный размер частицы (величина σ) практически не влияет

на амплитуду горба пакета в дальнем поле, что свидетельствует о сошедшемся

численном решении по σ.

Другой причиной рассогласования может быть низкая точность асимптотиче-

ской аппроксимации интеграла (3.4), которая основана на методе наискорейшего

спуска и предполагает, что селективное усиление пограничного слоя сильное, а

восприимчивость пограничного слоя слабо зависит от ω и β. Соответствующие

математические ограничения следующие:

N(ωs, βs) � 1,

а) Отношение λs/xc б) Глубина проникновения

Рисунок 7.11 — Характерные величины из ЛТУ в зависимости от частотного

параметра Fs = ωRe−1
∞,L
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εβ =

∣∣∣∂βf(ωs,βs)
f(ωs,βs)

∣∣∣
βs

∣∣∣∂2ββN(ωs, βs)
∣∣∣ � 1,

εω =

∣∣∣∂ωf(ωs,βs)
f(ωs,βs)

∣∣∣
ωs |∂2ωωN(ωs, βs)|

� 1,

где f(ω, β) = Dm(ω, β, xc)q̂m(x, y, β, ω) в (3.4). Как показано на рис. 7.12, пара-

метры εω и εβ уменьшаются медленно с ростом x. При x = 0.9 имеем параметры

εω ∼ εβ ≈ 10%, которые не являются малыми; фактор N < 7.5 также не яв-

ляется большим. Это обстоятельство подтверждается тем, что асимптотическое

положение горба волнового пакета в спектральной области (ωs, βs) отличается

от полученного из расчётов ПЧМ (см. рис. 7.13), а также имеется небольшое

систематическое расхождение в наклоне волновых фронтов (рис. 7.9).

7.5.2. Модальный состав возмущения

Спектральный состав возмущения, возбуждённого в пограничном слое микро-

частицей, также может стать причиной наблюдаемого рассогласования. В ПЧМ

начальное возмущение пограничного слоя состоит из всех мод дискретного и

непрерывного спектров, а теоретическое решение (7.7) – (7.10) состоит только

Рисунок 7.12 — Распределение величин εω, εβ и N -фактора на клине
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из первой моды. Рассмотрим спектральный и модальный состав возмущений из

ПЧМ в случае xc = 0.134 в двух сечениях: в ближнем поле при x = 0.2, которое

расположено прямо за точкой столкновения; в дальнем поле x = 0.6, где фактор

интегрального усиления (7.10) составляет N(xc, 0.6) ≈ 5.

Для проведения дискретного преобразования Фурье поле возмущений p′w(z, t)

рассматривается на равномерной сетке. Шаг сетки по времени соответствует вре-

менному шагу расчётов dt = 4 · 10−4, t ∈ [0, 1.754]. В направлении z проведена

интерполяция данных на равномерную сетку с шагом dz = 2 · 10−4. На рис. 7.13

показан модуль спектральной амплитуды возмущения давления на стенке.

В ближнем поле (рис. 7.13а) волновой пакет ПЧМимеет сложный спектральный

состав. Селективное усиление возмущений первой моды приводит к тому, что

спектральная форма волнового пакета существенно упрощается в дальнем поле,

как показано на рис. 7.13б — выделяется единственный максимум, положение

которого медленно приближается к предсказанию линейной теории устойчивости

при удалении от точки столкновения xc.

Чтобы подтвердить, что в дальнем поле волновой пакет состоит преимуще-

ственно из волн первой моды, на рис. 7.14 представлены результаты выделения

первой моды из поля возмущений ПЧМ (см. раздел 7.3). Исходное поле возму-

щения от частицы быстро переходит в волновой пакет первой моды и уже слабо

отличается от него при x = 0.6 (рис. 7.14б). Таким образом, рассогласование чис-

а) x0 = 0.2, (βs, ωs) = (584, 121) б) x0 = 0.6, (βs, ωs) = (402, 79, 5)

Рисунок 7.13 — Амплитудный спектр волнового пакета от частицы в различных

сечениях x = x0. Крестиком показано положение максимума из ПЧМ, а кружком

— теоретический максимум (βs, ωs) преобладающего возмущения, предсказанный
в ЛТУ
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ленных и теоретических результатов на рис. 7.10 не связано с присутствием других

мод пограничного слоя.

7.5.3. О постановке эксперимента

В главном приближении теоретическое решение не зависит от того, падает ли

частица на поверхность или удаляется от неё после абсолютно упругого столк-

новения. Иными словами, коэффициент восприимчивости (7.8) удовлетворяет

условию |Crecept (vp)| = |Crecept (−vp)|, где vp — составляющая вектора скорости

частицы по нормали к поверхности (по y). Чтобы проверить этот результат, вы-

полнено численное моделирование запуска частицы с поверхности клина из точки

(x, y, z)pw = (xc − ∆x, 0,0), xc = 0.067 с начальной скоростью, которая соответ-

ствует скорости упругого отскока падающей частицы от поверхности. Сдвиг точки

запуска ∆x = δ99(xc)/ tg(14°) добавлен для того, чтобы частица взаимодейство-

вала с тем же участком пограничного слоя, что и падающая частица в базовом

случае. Расчёты показали, что отклонение результатов от базового случая мало,

∆p′,symw,max ≈ −4.3%, что согласуется с предсказанием ЛТУ.

Этот результат указывает на возможность постановки контролируемого экс-

перимента по восприимчивости к микрочастицам. Выстреливая калиброванные

микрочастицы с поверхности и синхронизируя измерение возмущений в погранич-

ном слое с моментом выстрела, можно определить коэффициент восприимчивости.

а) (x0, z0) = (0.2, 0) б) (x0, z0) = (0.6, 0)

Рисунок 7.14 — Осциллограмма давления в точке (x0, z0)
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7.6. Статистическая модель ЛТП

Моделируя возбуждение волнового пакета от одной микрочастицы, можно

определить начальную амплитуду волнового пакета первой моды, который да-

лее развивается в соответствии с линейной теорией устойчивости. Результаты

единичных расчётов можно использовать для построения статистической моде-

ли ламинарно-турбулентного перехода, вызванного взвешенными в атмосфере

микрочастицами.

Предположим, в неподвижной среде имеются частицы с концентрацией C∗ м−3,

распределённые по объёму случайно с постоянной функцией распределения. Через

среду пролетает клин с полууглом раскрытия θ, и частицы сталкиваются с его

поверхностью, порождая волновые пакеты. Если рассматривать достаточно тяжё-

лые частицы, ρp � 1, то их траектория практически прямолинейна. В этом случае

средняя удельная частота столкновений частиц с поверхностью — количество

столкновений в единицу времени на единицу площади поверхности — постоянна

на всей поверхности клина и равна

ν∗ = C∗U ∗
∞ · sin θ.

Это среднестатистическая удельная частота рождения волновых пакетов на по-

верхности клина.

Для построения статистической модели сделаем несколько допущений:

1. Так как столкновение частиц с поверхностью случайно, возбуждаемые вол-

новые пакеты не являются когерентными. Тогда среднеквадратичная ампли-

туда возмущений в дальнем поле с учётом перекрытия пакетов определяется

путём сложения их интенсивностей (квадратов амплитуды).

2. Каждая частица формирует пакет с широким начальным спектром. Вос-

приимчивость слабо зависит от координаты x вдоль поверхности. Поэтому

каждая частица генерирует при соударении идентичные начальные пакеты

вне зависимости от места столкновения. — Начальная амплитуда волновых

пакетов ε постоянна.

3. Собственные функции возмущений не зависят от x.

4. В дальнем поле x � x0 каждый волновой пакет имеет гауссову форму.

Переход к турбулентности также начинается в дальнем поле.



290

5. Характерный масштаб, на котором изменяется амплитуда возмущений, зна-

чительно больше соответствующего колебательного масштаба (коротковол-

новое приближение).

Пусть x— точка наблюдения, а x′ — точка падения частицы на поверхность. В

точке наблюдения преобладает гармоника (ωs, βs), которой соответствует точка

потери устойчивости x0 = x0(ωs, βs). Из анализа линейной устойчивости известна

зависимость фактора интегрального усиления Ns(x) = N(ωs, βs, x), в том числе в

точке x′ ∈ [0, x]; Ns(0) = 0. Тогда к сечению наблюдения x фактор интегрального

усиления преобладающей гармоники составит Ns(x)−Ns(x
′).

Асимптотическая форма волнового пакета в дальнем поле (3.15) подразумевает,

что он возбуждается с некоторой характерной амплитудой ε, которая является

постоянной (допущение 2). При расчёте среднеквадратичной амплитуды возму-

щений I =
〈
Ψ3D

± ·Ψ3D
±
〉
колебательный множитель даёт вклад в интенсивность

волнового пакета 1/2, а амплитудная огибающая пакета получается выделением

действительной части подэкспоненциального выражения

2 · 1

2i

(
Sββ (t− ts)

2 + 2Sωβ (t− ts) (z ∓ zs) + Sωω (z ∓ zs)
2

SωωSββ − S2
ωβ

)
.

Эти части можно выписать в явном виде. При ∆t2:

Btt = −
|Sββ|2 Sωω,i + Sββ,i

(
S2
ωβ,r − S2

ωβ,i

)
+ Sββ,r · 2Sωβ,rSωβ,i∣∣∣SωωSββ − S2

ωβ

∣∣∣ ;

при ∆z2:

Bzz = −
|Sωω|2 Sββ,i + Sωω,i

(
S2
ωβ,r − S2

ωβ,i

)
+ Sωω,r · 2Sωβ,rSωβ,i∣∣∣SωωSββ − S2

ωβ

∣∣∣ ;

при ∆t∆z:

Btz =
|Sωβ|2 Sωβ,i − Sωβ,r (Sωω,rSββ,i + Sωω,iSββ,r) + Sωβ,i (Sωω,rSββ,r − Sωω,iSββ,i)∣∣∣SωωSββ − S2

ωβ

∣∣∣ .

В предположении двухмерного волнового пакета второй моды, для которой

Sωβ ≡ 0, эти выражения сводятся, соответственно, к − |Sββ|2 Sωω.i, − |Sωω|2 Sββ.i и

0.

Количество волновых пакетов, рождаемых за время dt на элементе поверхности

dx′dz, составляет νdx′dzdt. Таким образом, среднеквадратичная интенсивность
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волнового пакета без учёта нормированных волновых функций Âs запишется

следующим образом

I(x) =
ε2

2

+∞ˆ

−∞

+∞ˆ

−∞

xˆ

x′=0

νdx′d (∆t) d (∆z)
[
e2(Ns(x)−Ns(x

′)) · eBtt∆t2+2Btz∆t∆z+Bzz∆z2
]

=
νε2

2
· π√

BttBzz −B2
tz

xˆ

0

e2(Ns(x)−Ns(x
′))dx′,

где интегралы по ∆t и ∆z сходятся при условии BttBzz > B2
tz, Btt < 0, Bzz < 0.

Интеграл по x можно оценить, если как-либо аппроксимировать зависимость

Ns(x). Наиболее простой способ — кусочно-линейная аппроксимация

Ns(x
′) = Ns(x) ·

|x′ − x0|
x− x0

.

В этом случае

xˆ

0

e2(Ns(x)−Ns(x
′))dx′ =

e2Ns(x)

2Ns(x)
(x− x0) ·

[
2− e−2Ns(x) − e−2Ns(x)· x0

x−x0

]
.

Таким образом, построена простая статистическая модель развития возмуще-

ний от столкновения со случайно взвешенными в атмосфере микрочастицами.

Вместе с амплитудным критерием данная модель позволяет оценивать положе-

ние ламинарно-турбулентного перехода, вызванного микрочастицами. Эту модель

можно обобщить на более реалистичный случай, когда частицы распределены по

радиусу с известной функцией распределения.

Выявление амплитудного критерия и анализ применимости предложенной ста-

тистической модели перехода выходят за рамки настоящей диссертации и являются

предметом будущих исследований автора.

7.7. Выводы по главе

Разработан вычислительный подход для численного моделирования влияния

сферических микрочастиц на окружающее течение. Подход пригоден для моде-

лирования возбуждения волновых пакетов сферическими микрочастицами, пере-

секающими сверхзвуковой пограничный слой. Для этого аналитическое решение
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[67] заменено численным интегрированием уравнений Навье—Стокса с дополни-

тельными источниковыми членами, адаптированными из оригинальной работы

[67]. Перекрёстная валидация теоретической и численной моделей выполнена

на примере безградиентного сверхзвукового пограничного слоя над острым кли-

ном. Показано, что процесс восприимчивости к микрочастице моделируется с

погрешностью ∆p′,symw,max < 1%, если:

– индуцированный частицей точечный источник моделируется гауссовой фор-

мой с шириной σ, для которой характерный диаметр 2σ
√
2 не превосходит

22% от толщины пограничного слоя δ99 в сечении столкновения (критерий

точечного источника);

– сетка разрешает источник по крайней мере 6× 6× 6 точками вдоль траекто-

рии полёта частицы, в том числе и в области столкновения, где разрешение

в направлении y значительно выше, чем в остальных направлениях; ошиб-

ка возрастает до 3% при использовании сеточного разрешения 3 × 3 × 3

(критерий сеточного разрешения);

– на пересечение пограничного слоя приходится по крайнеймере 25 временных

шагов (критерий временного разрешения).

Сопоставление численного и теоретического решений показывает, что:

– траектория волнового пакета отклоняется от плоскости симметрии и медлен-

но приближается к асимптотической траектории, предсказанной линейной

теорией устойчивости для дальнего поля от места соударения с частицей,

где фактор интегрального усиления возмущений N(xc, x) ? 4;

– в дальнем поле теория переоценивает амплитуду горба волнового пакета, что,

по-видимому, связано с нарушением теоретического ограничения λs/xc � 1

и низкой точностью асимптотической аппроксимации (7.7) двойного инте-

грала (3.4).

Численные эксперименты подтвердили теоретические выводы [67] о том, что

восприимчивость к микрочастицам сосредоточена внутри пограничного слоя в

малой окрестности точки столкновения и не зависит от того, падает ли частица

на поверхность или удаляется от неё. Это открывает возможность постановки

контролируемого эксперимента по восприимчивости сверхзвуковых пограничных

слоёв к микрочастицам, где измерительное оборудование будет синхронизировано

с моментом выстрела микрочастицы с поверхности. Идея такого эксперимента

предложена в [67] со ссылкой на методику выстрела микрочастиц, которая успешно

применялась ранее в [251].
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Разработанная численная модель может применяться для расчёта восприимчи-

вости в сильно непараллельных градиентных течениях, например, в окрестности

носка обтекаемого тела, где теоретическая модель восприимчивости не работает.

На базе предложенной численной модели и асимптотического анализа в рамках

линейной теории устойчивости и амплитудного метода построена статистическая

модель для предсказания начала ламинарно-турбулентного перехода, вызванного

микрочастицами.

∗ ∗ ∗

Теоретические исследования роли микрочастиц в процессе ламинарно-

турбулентного перехода были начаты А.В. Фёдоровым летом 2010го года. Тогда

же наш Жуковский был окутан смогом от природных пожаров на подмосковных

торфяниках, и новая теория рождалась в условиях повышенной задымлённости:

концентрация взвешенных в атмосфере твёрдых микрочастиц превышала предель-

но допустимую норму в шестнадцать раз. Воистину удивительное совпадение! Эти

исследования увенчались теоретической моделью восприимчивости [67]. Далее в

течение нескольких лет (2015 – 2019) разрабатывалась численная модель частицы,

итоговый пространственный вариант которой описан выше и опубликован в

2019 году. В настоящее время разработанный численный подход применяется

к существенно непараллельным пограничным слоям (см. перечень публикаций

автора на стр. 329). В заключение данной главы следует отметить, что интерес

научного сообщества к роли микрочастиц в проблеме ЛТП возрастает в последние

годы [261–267].
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Заключение

По результатам представленной диссертационной работы можно сделать сле-

дующие общие выводы.

1. На ряде модельных задач изучены свойства используемого неявного числен-

ного метода сквозного счёта и сформулированы критерии его применимости

при расчёте возмущённых сверхзвуковых пограничных слоёв. Обоснована

возможность моделирования различных стадий ЛТП (восприимчивость,

устойчивость, нелинейное взаимодействие) с помощью данного метода.

а) Предложен подход к расчётному исследованию диссипативных

свойств численного метода применительно к развитию возмущений

в сверхзвуковых течениях. Подход заключается в анализе затухания

элементарных монохроматических волн, распространяющихся в

однородном потоке. Для этой задачи имеется теоретическое решение,

которое следует использовать для валидации численного метода.

б) Исследовано появление численных аномалий, связанных с недоста-

точным разрешением профиля ударной волны на расчётной сетке при

моделировании взаимодействия малых возмущений с ударной волной.

Получен критерий сеточного разрешения скачка, который гарантирует

подавление аномальных нефизичных эффектов; указаны способы его

достижения. Показано, что по мере уменьшения интенсивности скачка

численные аномалии монотонно ослабевают и исчезают в пределе ну-

левой интенсивности скачка. Поэтому проверка сеточной сходимости

для скачка при исследовании нестационарных течений около тонких

тел под нулевым углом атаки, таких как пластина и конус, не требуется.

2. Предложен вычислительный подход, который позволяет исключить протя-

жённую линейную стадию развития возмущений в пограничном слое из

численного моделирования и за счёт этого сократить суммарное время рас-

чёта до четырёх раз. Для этого исследовано асимптотическое поведение

волнового пакета в дальнем поле от места его возбуждения. Асимптотика

опирается на расширенную информацию из линейной теории устойчивости

и сводится к нестационарному граничному условию на входной границе

расчётной области. Применимость данного подхода подтверждена в случае

преобладания первой и второй неустойчивой моды.
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3. Расчётным путём продемонстрировано, что вторая мода сверхзвукового по-

граничного слоя над достаточно сильно охлаждённой поверхностью может

излучать акустические волны во внешнее невязкое течение. Этот эффект,

известный как спонтанное излучение звука, вызван синхронизацией второй

моды с непрерывным спектром медленных акустических волн. Уносимая

акустическая мощность незначительна, и существенное влияние спонтанно-

го излучения на процесс перехода к турбулентности маловероятно.

4. С помощью линейной теории устойчивости и прямого численного модели-

рования исследован механизм стабилизации сверхзвукового пограничного

слоя из-за резкого расширения потока над углом разрежения. Полученные

результаты качественно совпадают в случае первой и второй неустойчивой

моды. Показано следующее.

а) Резкое утолщение сверхзвукового пограничного слоя над углом при-

водит к пропорциональной перестройке неустойчивости в область

низких частот. Поэтому высокочастотные волновые пакеты (линейный

режим), нараставшие перед углом, экспоненциально затухают за ним.

б) Турбулентные пятна (существенно нелинейный режим) не подавля-

ются за углом, а лишь испытывают небольшую задержку в развитии

на масштабе порядка 20-50 толщин местного пограничного слоя. Это

отражается на вкладе турбулентного пятна в сопротивление трения.

Поэтому экспериментальные картины пониженного теплового потока

за углами разрежения не обязательно указывают на реламинаризацию

сверхзвукового турбулентного пограничного слоя и могут свидетель-

ствовать лишь о временном ослаблении влияния турбулентности на

теплообмен к поверхности.

5. В рамках метода eN линейной теории устойчивости исследовано обтекание

аэродинамически гладкого прямого крыла с тонким параболическим профи-

лем, типичным для сверхзвукового пассажирского самолёта. Обнаружено,

что, начиная с некоторой пороговой толщины профиля, на профиле появ-

ляется точка максимума интегрального усиления возмущений, за которой

возмущения из всего спектрального диапазона не могут достичь более вы-

сокой амплитуды, чем та, что уже была достигнута в этой точке. Данное

наблюдение подтверждено в рамках прямого численного моделирования и

ведёт к двум практически важным выводам:
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а) существует пороговый уровень начальных амплитуд волн неустойчи-

вости, ниже которого точка начала перехода должна резко сдвигаться

вниз по потоку, и вся поверхность профиля должна обтекаться в ла-

минарном режиме (такой скачок к ламинарному обтеканию можно

наблюдать в трубном эксперименте и относительно легко реализовать

в натурных условиях);

б) ламинаризация рассматриваемого типа крыльев может проводиться

не для всего крыла, а лишь до точки максимума, положение которой

надёжно предсказывает линейная теория устойчивости.

6. Наиболее вероятным источником перехода в сверхзвуковом пограничном

слое на аэродинамически гладком прямом крыле с тонким параболическим

профилем является акустический шум, излучаемый турбулентным погра-

ничным слоем на передней части фюзеляжа. Микрочастицы и атмосферная

турбулентность (даже в штормовых погодных условиях) являются маловеро-

ятным источником перехода. Эти выводы подтверждены в рамках прямого

численного моделирования эволюции естественных возмущений вплоть

до формирования турбулентных пятен. Предложены возможные подходы к

ламинаризации прямых крыльев сверхзвуковых пассажирских самолётов,

основанные на уменьшении интенсивности акустического шума:

а) подбор формы фюзеляжа;

б) полировка поверхности фюзеляжа;

в) отсос пограничного слоя над фюзеляжем;

г) применение устройств, разрушающих когерентные турбулентные

структуры над фюзеляжем.

7. Разработан подход для численного моделирования влияния сферических

микрочастиц на окружающее течение. На базе предложенного подхода и

асимптотического анализа построена статистическая модель ламинарно-

турбулентного перехода, обусловленного хаотично распределёнными в ат-

мосфере микрочастицами. В частности, показано следующее.

а) Подход пригоден для моделирования возбуждения волновых паке-

тов микрочастицами, проникающими в сверхзвуковой пограничный

слой. Результаты численного моделирования хорошо согласуются с ре-

зультатами теоретической модели восприимчивости при выполнении

сделанных в ней предположений.
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б) Численные эксперименты подтвердили теоретические выводы о том,

что восприимчивость к микрочастицам сосредоточена внутри погра-

ничного слоя в малой окрестности точки столкновения и не зависит

от того, падает ли частица на поверхность или удаляется от неё. Это

открывает возможность постановки контролируемого физического

эксперимента по восприимчивости сверхзвуковых пограничных слоёв

к микрочастицам, где измерительное оборудование будет синхронизи-

ровано с моментом выстрела микрочастицы с поверхности.

в) Разработанный подход пригоден для расчёта восприимчивости к мик-

рочастицам в сильно непараллельных градиентных течениях, таких как

ударный слой на носовой части обтекаемого тела, где теоретическая

модель оказывается неприменима.

Представленная диссертация на соискание учёной степени доктора физико-

математических наук соответствует требованиям Высшей атестационной комис-

сии (ВАК), предъявляемым к докторской диссертации: она является научно-

квалификационной работой, в которой на основании выполненных автором ис-

следований разработаны теоретические положения, совокупность которых можно

квалифицировать как научное достижение; результаты диссертационной работы

опубликованы в рецензируемых научных изданиях из списка ВАК в достаточном

количестве.
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Список сокращений и условных обозначений

L∗ характерная длина при обезразмеривании

M число Маха

N некоторое целое число (напр., размерность расчётной сетки в одном из на-

правлений); фактор интегрального усиления возмущений, −Si

Pr число Прандтля

Q второй скалярный инвариант градиента скорости, характеризующий границу

вихря (Q-критерий)

Re число Рейнольдса

S эйконал возмущения, S (x, ω, β) =
´ x
x0
α (x̃, ω, β) dx̃

T статическая температура

T0 температура торможения

Taw ≡ Tr температура теплоизолированной (адиабатически прогретой) стенки, или

температура восстановления потока

U ≡ V вектор скорости

c фазовая скорость

cp местный коэффициент давления; удельная теплоёмкость при постоянном

давлении

cf местный коэффициент трения

dw расстояние до стенки

f частота

h пространственный шаг расчётной сетки (hx — в направлении x)

i мнимая единица,
√
−1

k модуль волнового вектора, |k|
k волновой вектор

l расстояние вдоль поверхности

n некоторое постоянное число

n вектор нормали к поверхности

p давление

psd спектральная плотность мощности

q некоторая газодинамическая величина (u, v, w, p, T )

t время

u, v, w декартовы компоненты вектора скорости
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x, y, z декартовы координаты

x ≡ r радиус-вектор в декартовых координатах, (x, y, z)

α собственное значение пространственной задачи устойчивости, α = αr + iαi

α, β волновые числа в продольном (x) и боковом (z) направлениях

β1/2 полуугол, в котором возмущения развиваются над поверхностью

γ показатель адиабаты (отношение удельных теплоёмкостей c∗p/c
∗
V )

δ, δ1, δ99 толщина пограничного слоя, посчитана по критерию u(δ) = 0.99Ue

δ2, δ1 толщина вытеснения пограничного слоя

δ· амплитуды элементарных возмущений (δu, δT , ...)

∆· приращение величины относительно некоторого уровня (напр., ∆t = t− t0)

∆t временной шаг численного интегрирования

∂· частная производная по направлению, ∂x ≡ ∂/∂x

ε величина угла разрежения; мощность диссипации кинетической энергии

турбулентности

ε, ε задаваемая амплитуда возмущений (генератора, элементарной волны, ...)

η автомодельная переменная, выражающая расстояние до стенки,

y∗/
√
µ∗∞x

∗/ρ∗∞U
∗
∞ ≡ y

√
Re∞,L/x

ηk масштаб Колмогорова

θ угол атаки волнового вектора элементарного возмущения

λ длина волны; коэффициент теплопроводности

µ динамическая вязкость

ν кинематическая вязкость

ρ плотность

σ инкремент нарастания возмущения, −αi; ширина численной аппроксимации

точечного источника-частицы

τ безразмерная толщина параболического профиля

τ тензор вязких напряжений, τij

φ угол, характерный для рассматриваемой конфигурации

ϕ сдвиг фазы в элементарной волне

ψ угол скольжения волнового вектора элементарного возмущения

ω круговая частота, 2πf

R[·], I[·] действительная и мнимая части комплексной величины

Верхние индексы

·∗ размерная величина
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·′ возмущение величины (разница между текущим значением и невозмущён-

ным значением в момент времени t = 0)

·̂ Фурье-образ; амплитудная функция собственного возмущения пограничного
слоя

Нижние индексы

·пу в точке потери устойчивости

·S в точке ветвления медленных акустических волн, cS = 1− 1/M∞

·c в декартовых координатах; основная (центральная) характеристика генерато-

ра возмущений; в точке соударения микрочастицы с поверхностью; в точке

излома поверхности; в центре приложения избыточной силы вязкого трения

в трубулентном пятне

·cr критическое значение

·e на границе пограничного слоя

·i мнимая часть комплексной величины
·k в точке излома траектории фазовой скорости

·p величина, присущая микрочастице

·r действительная часть комплексной величины

·s на теоретическом горбе волнового пакета, предсказанном методом перевала

·w на твёрдой обтекаемой поверхности

·∞ значение в невозмущённом набегающем потоке

Аббревиатуры

2D двухмерный

3D трёхмерный, пространственный

ВЧ высокочатотный

ЛТП ламинарно-турбулентный переход

ЛТУ линейная теория устойчивости

ЛТУ+Н линейная теория устойчивости с поправкой на слабую нелинейность течения

НЧ низкочастотный

ПЧМ прямое численное моделирование

ПС пограничный слой

EC Expansion Corner, угол разрежения

EC10 угол разрежения величиной ε = 10°

FP flat plate, плоская пластина
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TS turbulent spot, турбулентное пятно

WENO Weighted Essentially Non-Oscillatory, в основном не осциллирующая числен-

ная схема с весами

WP wave packet, волновой пакет
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