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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В последние десять лет при активном разви-
тии информационно-коммуникационных технологий возник новый тип высо-
котехнологичных систем: системы с интенсивным программным обеспечением
(software-intensive systems1). К этому типу относятся цифровые системы ши-
рокополосной связи, интернет-системы (включая устройства, сети передачи
данных и интернет-сервисы), информатизированные центры обслуживания и
колл-центры, интеллектуальные транспортные системы, платформы электрон-
ной торговли, автоматизированные системы в здравоохранении и др. Для всех
этих систем характерны: большой объем накапливаемых и обрабатываемых
данных, сложная взаимозависимость программных компонент и огромное ко-
личество аппаратных элементов, а также чрезвычайно большое число людей,
использующих систему для различных целей. Как показывает изучение суще-
ствующих аппаратно-программных комплексов, в настоящее время одной из их
центральных проблем является низкая надежность их эксплуатации: неизбеж-
ные при крупном масштабе программные, аппаратные и антропогенные отказы
являются на практике нормой, а не исключением2. Согласно исследованиям3,
доминирующей причиной системных отказов является именно возникновение
сбоев программного обеспечения. Таким образом, обеспечение бесперебойной и
эффективной эксплуатации высокотехнологичных систем с интенсивным ПО
представляет собой крупную проблему, для устранения которой необходимо
прежде всего предотвращение отказов их программной составляющей, в частно-
сти, их быстрое и точное обнаружение.

В ряде работ предложены подходы к обнаружению проблемного поведения
ПО (дефектов, вредоносного вмешательства и т. д.) на основании данных, со-
бираемых при эксплуатации системы — измерений количества обработанных
запросов и средней длительности ожидания в единицу времени, измерения объ-
ема переданного сетевого трафика и т. д. Среди таких работ отметим работу
Casas, 20104, где измерения объема передаваемого сетевого трафика исполь-
зуются для обнаружения перегрузок сетевого ядра, работу Tartakovsky, 20135,

1Система, функциональность которой определяется главным образом ее программными средствами, соглас-
но стандарту ISO/IEC/IEEE, “Systems and software engineering – Architecture description,” in ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), 2011.

2 Yigitbasi N. et al. Analysis and modeling of time-correlated failures in large-scale distributed systems //Grid
Computing (GRID), 2010 11th IEEE/ACM International Conference on. — IEEE, 2010. — Pp. 65–72.

3 Northrop L. et al. Ultra-large-scale systems: The software challenge of the future. — Carnegie Mellon Software
Engineering Institute, Ultra-Large-Scale Systems Study Report, 2006.

4Casas P. et al. Optimal volume anomaly detection and isolation in large-scale IP networks using coarse-grained
measurements //Computer Networks. — 2010. — Vol. 54. — no. 11. — Pp. 1750–1766.

5Tartakovsky A. G., Polunchenko A. S., Sokolov G. Efficient computer network anomaly detection by changepoint
detection methods //Selected Topics in Signal Processing, IEEE Journal of. — 2013. — Vol. 7. — no. 1. — Pp. 4–11.
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в которой измерения профиля сетевого трафика применяются для детектиро-
вания внедрений в компьютерные сети. Рассмотренные в этих работах задачи
сводятся к выявлению момента резкого изменения некоторых характеристик
рассматриваемой системы на основе наблюдаемых статистических данных о
других характеристиках этой системы. Задачи такого типа (задачи о разладке)
были рассмотрены А.Н. Колмогоровым, А.Н. Ширяевым6,7,8 и др. Однако на
практике соответствующие методы детектирования разладок обладают рядом
ограничений ввиду следующих особенностей сигналов реальных систем.

Будучи системами массового обслуживания, системы с интенсивным ПО
испытывают антропогенные циклы нагрузки на ряде масштабов времени (день,
неделя, год). В силу изменчивости на большом масштабе времени основной цикл
будет стохастическим. Поэтому для успешного решения задачи обнаружения
разладок сложных систем необходим эффективный аппарат математического
моделирования и оценивания квазипериодических сигналов.

Значимой характеристикой потоков данных в информационных системах
является также длинная память (long-range dependence). Длинная память явля-
ется основной причиной возникновения всплесков нагрузки и присутствует на
чрезвычайно большом диапазоне масштабов времени; известно ее значительное
влияние на эффективность систем массового обслуживания9. Таким образом,
для идентификации и оценивания реальных сигналов, порожденных системами
с интенсивным ПО, необходимо использование специальных стохастических
моделей, позволяющих моделировать длинную память.

Для решения задач обнаружения отказов реальных информационных систем
естественно использовать специальные статистические процедуры обнаружения
разладки, такие как метод кумулятивных сумм10, метод контрольных карт11,

6Ширяев А. Н. Задача скорейшего обнаружения нарушения стационарного режима // Доклады Академии
наук. — 1961. — Т. 138, № 5. — С. 1039–1042.

7Ширяев А. Н. Обнаружение спонтанно возникающих эффектов // Доклады Академии наук. — 1961. — Т.
138. — С. 799–801.

8Колмогоров А.Н., Прохоров Ю.В., Ширяев А.Н. Вероятностно-статистические методы обнаружения
спонтанно возникающих эффектов // Теория вероятностей, теория функций, механика, Сборник обзорных
статей 5. К 50-летию Института. — Труды Математического Института им. В.А.Стеклова, Т. 182. — М.: Наука,
1988. — С. 4–23.

9Erramilli A., Narayan O., Willinger W. Experimental queueing analysis with long-range dependent packet
traffic //IEEE/ACM Transactions on Networking (TON). — 1996. — Vol. 4. — no. 2. — Pp. 209–223.

10Page E. S. Continuous inspection schemes //Biometrika. — 1954. — Pp. 100–115.
11Shewhart W. A. Economic control of quality of manufactured product. — ASQ Quality Press, 1931.
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процедуру Ширяева-Робертса12,13, Байесовские подходы14,15 и т. п., поскольку
для этих процедур существуют теоретические результаты об эффективности
обнаружения разладки. В свою очередь, для применения таких процедур тре-
буется определить математическую модель возникающего отказа в терминах
распределений наблюдаемых характеристик. На практике сделать это часто
невозможно, так как типы возникающих отказов и сопутствующие им изменения
статистических характеристик априори произвольны; как следствие, в этих
задачах могут быть неэффективны даже теоретически оптимальные методы
обнаружения разладки16.

В области машинного обучения широко известен подход на основе алго-
ритмической композиции или ансамбля, который заключается в совместном
использовании множества «слабых» алгоритмов для получения лучшей предска-
зательной силы17. Согласно композиционному подходу, процедуры обнаружения
разладки, для которых сигналы тревоги слабо (однако больше, чем просто слу-
чайно) коррелируют с истинными разладками, естественно рассматривать как
«слабые» детекторы разладки. В этих условиях для эффективного обнаружения
разладки достаточно использовать ее стандартную математическую модель18

и для каждого класса наблюдений, представленного обучающей выборкой, вы-
брать наиболее эффективную композицию.

В последние десять лет возникли существенно новые практические условия, в
которых беспрецедентные объемы данных обостряют проблему высокоэффектив-
ного автоматизированного обнаружения разладок современных больших систем2.
В этих условиях возникают и новые усиленные требования к методологии и ал-
горитмике решения описываемых задач. До сих пор не было предложено единой
архитектуры, пригодной для обнаружения разладок сложных естественных и
инженерных систем крупного размера.

Таким образом, для обнаружения отказов крупных систем с интенсивным
ПО актуально исследование методов моделирования сигналов с квазиперио-

12Ширяев А. Н. Об оптимальных методах в задачах скорейшего обнаружения //Теория вероятностей и ее
применения. — 1963. — Т. 8. — № 1. — С. 26–51.

13Roberts S. W. A comparison of some control chart procedures //Technometrics. — 1966. — Т. 8. — № 3. — С.
411–430.

14Girshick M. A., Rubin H. A Bayes approach to a quality control model //The Annals of mathematical statistics.
— 1952. — Pp. 114–125.

15Ширяев А. Н. Задача скорейшего обнаружения нарушения стационарного режима //Докл. АН СССР. —
1961. — Т. 138. — №. 5. — С. 1039–1042.

16Lai T. L., Xing H. Sequential change-point detection when the pre- and post-change parameters are unknown
//Sequential Analysis. — 2010. — Vol. 29. — no. 2. — Pp. 162–175.

17Schapire R. E., Freund Y. Boosting: Foundations and algorithms. — MIT press, 2012.
18В литературе, как правило, стандартная модель разладки заключается в изменении среднего значения

стационарной гауссовской случайной последовательности. В этом случае наблюдаемый процесс 𝜉 = (𝜉𝑡)𝑡>0

имеет вид 𝜉𝑡 = 𝜇1{𝑡>𝜃}(𝑡) + 𝜈𝑡, где 𝜇 ∈ R — магнитуда разладки, 𝜃 > 0 — момент появления разладки,
и 𝜈 = (𝜈𝑡)𝑡>0 — последовательность независимых стандартно нормально распределенных случайных величин.
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дическим трендом и с шумовой компонентой, обладающей длинной памятью,
исследование методов обнаружения разладки в случае нарушения стандарт-
ных предположений о ее модели, а также разработка единой масштабируемой
программной архитектуры для обнаружения разладок и аномалий в условиях
больших объемов данных.

Целью работы являются разработка и исследование математических ме-
тодов, алгоритмов и комплексов программ обнаружения разладок и аномалий
больших динамических систем при наличии квазипериодических трендов, шу-
мовой компоненты с длинной памятью, в случае нарушения стандартных пред-
положений о модели разладки. Для достижения поставленной цели в работе
рассматривались следующие задачи исследования:

– разработка и исследование математических методов оценки параметров
сигнала по данным измерений, выполненных во фрактальном шуме;

– разработка и исследование алгоритма обнаружения разладки на основе ан-
самбля «слабых» детекторов для повышения эффективности обнаружения
разладки в случае нарушения стандартных предположений о ее модели;

– разработка математических моделей и алгоритмов оценивания сигналов
с трендом (в частности, квазипериодического сигнала) и обнаружения
разладок и аномалий на фоне тренда;

– создание комплекса программ, реализующих разработанные методы для
решения модельных и реальных задач обнаружения разладки.

Общая методика исследования. В диссертационной работе используют-
ся подходы стохастического анализа, теории непараметрического оценивания
сигналов, методы численной оптимизации выпуклых функций. Комплекс про-
грамм, реализующий алгоритмы фильтрации и методы обнаружения разладки,
выполнен на языке python в виде модульной системы с использованием подходов
объектно-ориентированного программирования.

Научная новизна результатов, полученных в диссертационной работе,
состоит в том, что в ней

1. Впервые поставлены и решены задачи фильтрации сигнала, представля-
емого в виде разложения по заданной системе функций, по данным его
регистрации во фрактальном шуме и при различных типах дополнительной
информации о сигнале.

2. Впервые разработан и исследован алгоритм обнаружения разладки времен-
ного ряда, основанный на совместном использовании множества процедур
обнаружения разладки.
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3. Предложены и исследованы математические модели временных рядов с трен-
дом (в частности, квазипериодического временного ряда) и обнаружения
разладок и аномалий на фоне тренда.

4. Создано и внедрено в производство в компании «Яндекс» новое программ-
ное обеспечение, реализующее методы оценки параметров и процедуры
обнаружения разладок реальных сигналов.

Теоретическая значимость работы. Результаты диссертационной рабо-
ты, имеющие теоретический характер, относятся к теории оптимальной филь-
трации фрактальных динамических систем. Они позволяют теоретически иссле-
довать фильтры, основанные на конкретных системах функций и могут приме-
няться при построении и оценке эффективности компонент автоматизированных
информационных систем, используемых для решения задач прогнозирования
сигналов. Результаты диссертационной работы, относящиеся к методам оцени-
вания квазипериодических трендов и обнаружения краткосрочных разладок
и аномалий, имеют практическую значимость и были успешно применены
для решения следующих прикладных задач:

1. Задача оценки параметров наблюдаемых сигналов больших информацион-
ных систем компании «Яндекс» в режиме реального времени.

2. Задача обнаружения отказов программного обеспечения больших информа-
ционных систем компании «Яндекс» в режиме реального времени.

3. Задача оценки нагрузки сети передачи данных Абилин на основе измерений
объема передаваемого между узлами сети трафика.

На защиту выносятся следующие научные результаты, носящие теорети-
ческий и прикладной характер:

1. Разработаны новые математические методы оценки параметров сигнала по
данным измерений, выполненным во фрактальном шуме, в том числе:

– получена оценка максимального правдоподобия параметра сигнала;
– получены оптимальные Байесовские оценки для случаев нормального

и равномерного априорных распределений параметра сигнала;
– охарактеризован оптимальный момент остановки измерений сигнала

для случая нормального априорного распределения параметра сигнала.
2. Разработан и исследован алгоритм обнаружения разладки временного ряда

на основе ансамбля процедур обнаружения разладки, предложен метод
настройки параметров ансамбля.

3. Предложена и исследована методология моделирования квазипериодиче-
ских сигналов и обнаружения их разладок, в том числе:

– предложена математическая модель квазипериодического временного
ряда на основе разложения по заданной системе функций и вычис-
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лительный алгоритм оценки ее параметров на основе оптимального
фильтра п. 1;

– предложена многокомпонентная математическая модель квазипери-
одического временного ряда и вычислительный алгоритм оценки ее
параметров на основе непараметрической регрессии;

– предложена математическая модель краткосрочной разладки квазипе-
риодического временного ряда и процедура обнаружения этой разладки
на основе ансамблей «слабых» детекторов.

4. Создан комплекс программ, реализующий предложенные в диссертацион-
ной работе вычислительные алгоритмы фильтрации тренда фрактального
случайного сигнала, оценивания квазипериодического сигнала, настройки
параметров ансамбля и обнаружения разладки временного ряда на основе
ансамбля.

Научная обоснованность и достоверность полученных результатов га-
рантируется использованием строгих доказательств, основанных на хорошо
изученных методах стохастического анализа; совпадением полученных оценок
с известными результатами в частных случаях линейных задач; описаниями
проведенных экспериментов, допускающими их воспроизводимость; успешным
применением результатов исследования в реальных задачах обнаружения про-
граммных отказов систем с интенсивным ПО.

Апробация работы. Результаты работы докладывались и обсуждались на
следующих научных и технических конференциях и семинарах:

1. Научный семинар кафедры математического моделирования и информати-
ки физического факультета МГУ им.М.В.Ломоносова под руководством
профессора Ю. П. Пытьева (05.03.2015).

2. Научный семинар «Математические методы в естественных науках» физиче-
ского факультета МГУ им. М. В. Ломоносова под руководством профессора
А. Н. Боголюбова (26.03.2015).

3. XXII международная научная конференция студентов, аспирантов и моло-
дых учёных «Ломоносов-2015», 13–17 апреля 2015 г., Москва, Россия.

4. Научный семинар «Practical Machine Learning» компании «Яндекс» под
руководством к. ф.-м. н. М. А. Ройзнера (04.06.2015).

5. Научный семинар «Математические модели информационных технологий»
департамента анализа данных и искусственного интеллекта Высшей школы
экономики под руководством профессора С. О. Кузнецова (18.06.2015).

6. Научный семинар отдела Интеллектуальных систем ВЦ РАН под руковод-
ством члена-корреспондента РАН К. В. Рудакова (24.06.2015).
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7. Научный семинар «Случайные процессы и стохастический анализ» ка-
федры теории вероятностей механико-математического факультета МГУ
им.М.В.Ломоносова под руководством академика РАН А.Н. Ширяева
(23.09.2015)

8. Научный семинар Yandex Data Factory под руководством к. ф.-м. н. Е. А. Ря-
бенко (09.10.2015).

9. Научный семинар лаборатории математического моделирования сложных
естественных и инженерных систем МГУ им.М.В.Ломоносова под руко-
водством доцента Е.А. Грачева (06.11.2015).

10. The 8th International Conference on Machine Vision, 19–21 November 2015,
Barcelona, Spain.

11. 58-я научная конференция МФТИ, 23–28 ноября 2015 г., г. Долгопрудный,
Россия.

12. Общемосковский постоянный научный семинар «Теория автоматического
управления и оптимизации» ИПУ РАН им.В.А. Трапезникова под руко-
водством профессора Б. Т. Поляка (11.12.2015).

13. Deep Machine Intelligence Workshop, Skolkovo Institute of Science and
Technology, 4–5 June 2016, Moscow, Russia.

14. Международная конференция по стохастическим методам, 27 мая–
03 июня 2016 г., пос. Абрау-Дюрсо, г. Новороссийск, Россия.

15. Международная конференция по алгебре, анализу и геометрии, 26 июня–2
июля 2016 г., г. Казань, Россия.

16. 9th European Summer School in Financial Mathematics, 29 August–2 September
2016, Pushkin, St. Petersburg, Russia.

17. Регулярный семинар «Структурные модели и глубинное обучение» ИП-
ПИ РАН им.А.А.Харкевича под руководством доцента Е.В.Бурнаева и
профессора В. Г.Спокойного (18.10.2016).

Личный вклад автора в работах, выполненных с соавторами, состоит в
следующем:

1. В работах [1,5–7] предложены модели квазипериодических сигналов и ал-
горитмы оценивания их параметров, проведены вычислительные экспе-
рименты для оценки качества предложенной методологии обнаружения
разладок.

2. В работе [2] проведен теоретический подсчет структуры оптимальных филь-
тров во всех случаях, а также численное исследование функции штрафа
для случая нормального априорного распределения.

3. В работах [3, 4] предложен критерий качества процедур обнаружения раз-
ладки и алгоритм оптимизации этого критерия для ансамблей «слабых»
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детекторов, проведены вычислительные эксперименты для оценки качества
ансамблей.

Публикации. По теме диссертационной работы опубликовано 7 печатных
работ, в том числе 1 работа в журнале из списка ВАК и 3 работы в журналах
из списка Scopus. Список публикаций приведен в конце автореферата.

Структура и объем диссертации. Диссертация состоит из введения, пяти
глав, заключения и списка литературы, включающего N наименования. Работа
изложена на M страницах и содержит K рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении характеризуется проблематика исследования; приводится ана-
лиз известных результатов, связанных с темой диссертационной работы, и
излагаются доводы в пользу актуальности последней; формулируются цели и
задачи диссертационной работы; приводятся ее краткое содержание и основные
результаты.

Первая глава посвящена исследованию задачи оценки параметров сигнала
по данным его измерений, выполненным во фрактальном шуме (шуме с длинной
памятью).

В первом разделе содержится постановка задачи оценивания тренда слу-
чайного процесса, управляемого фрактальным броуновским движением, и при-
водится обзор известных из литературы результатов по фильтрации тренда.

Стандартное фрактальное броуновское движения 𝐵𝐻 =
(︀
𝐵𝐻
𝑡

)︀
06𝑡6𝑇

на [0,𝑇 ] с
параметром 𝐻 ∈ (0,1) — это гауссовский процесс с непрерывными траекториями,
такой, что

𝐵𝐻
0 = 0, E𝐵𝐻

𝑡 = 0, E𝐵𝐻
𝑠 𝐵

𝐻
𝑡 =

1

2

(︁
𝑡2𝐻 + 𝑠2𝐻 − |𝑡− 𝑠|2𝐻

)︁
.

Пусть на фильтрованном вероятностном пространстве
(︀
Ω,ℱ , (ℱ𝑡)𝑡>0 ,P

)︀
задан

случайный процесс 𝜉 = (𝜉𝑡)06𝑡6𝑇 , имеющий представление

𝜉𝑡 = 𝑓(𝑡) + 𝜎(𝑡)𝐵𝐻
𝑡 , (1)

где 𝐵𝐻 =
(︀
𝐵𝐻
𝑡

)︀
06𝑡6𝑇

— стандартное фрактальное броуновское движение с пара-
метром 𝐻 ∈ (0,1), а коэффициенты сноса 𝑓(𝑡) и диффузии 𝜎(𝑡) удовлетворяют
условиям

´ 𝑇
0 |𝑓(𝑡)|𝑑𝑡 < ∞ и

´ 𝑇
0 |𝜎(𝑡)|2𝑑𝑡 < ∞ соответственно, причем функ-

ция 𝜎(𝑡) предполагается известной. Принимается, что коэффициент сноса 𝑓(𝑡)



10

можно представить в виде разложения

𝑓(𝑡) =

𝑛𝜃∑︁

𝑖=0

𝜃𝑖𝑔𝑖(𝑡) (2)

по заданной системе функций 𝑔𝑖(𝑡), таких, что
´ 𝑇
0 |𝑔𝑖(𝑡)|𝑑𝑡 <∞, 𝑖 = 0, . . . , 𝑛𝜃, а

параметры 𝜃𝑖, 𝑖 = 0, . . . , 𝑛𝜃 — неизвестны. Принимаются векторные обозначения
𝜃 = (𝜃0, . . . , 𝜃𝑛𝜃)

ᵀ, 𝑔(𝑡) = (𝑔0(𝑡), . . . , 𝑔𝑛𝜃(𝑡))
ᵀ, в терминах которых

𝑓(𝑡) = 𝜃ᵀ𝑔(𝑡). (3)

Рассматривается задача нахождения последовательной оценки значения 𝜃
по наблюдениям {𝜉𝑠,0 6 𝑠 6 𝑡}, доступным до момента времени 𝑡. Предлагает-
ся рассматривать оценку максимального правдоподобия и последовательную
Байесовскую оценку. В случае оценки максимального правдоподобия 𝜃 счи-
тается неизвестным детерминированным вектором параметров, и требуется
отыскать оценку ̂︀𝜃ML = ̂︀𝜃ML(𝑡), максимизирующую правдоподобие наблюде-
ний. В случае Байесовской оценки предполагается, что 𝜃 — случайный элемент
R𝑛𝜃+1, имеющий известное априорное распределение 𝑝𝜃(x),x ∈ R𝑛𝜃+1, и рас-
сматривается задача нахождения такого последовательного правила оценивания
̂︀𝛿BAYES = (̂︀𝜚BAYES, ̂︀𝜃BAYES), что

E
[︁
𝑐̂︀𝜚BAYES + ‖𝜃 − ̂︀𝜃BAYES‖2

]︁
= inf

𝛿∈D
E
[︁
𝑐𝜚+ ‖𝜃 − ̂︀𝜃‖2

]︁
, (4)

где D =
{︀
𝛿 : 𝛿 =

(︀
𝜚,̂︀𝜃

)︀}︀
— класс правил оценивания с конечными момента-

ми остановки 𝜚 6 𝑇 < ∞ относительно фильтрации ℱ 𝜉
𝑡 = 𝜎 ({𝜉𝑠,0 6 𝑠 6 𝑡}),

а 𝑐 > 0 — заданная постоянная, интерпретируемая как плата за длительность на-
блюдений. Байесовская стратегия последовательного оценивания 𝜃 заключается
в том, что наблюдения останавливаются в момент ̂︀𝜚BAYES, и ̂︀𝜃BAYES принимается
оптимальной оценкой значения 𝜃.

Во втором разделе описывается структура оценки максимума правдопо-
добия параметра тренда 𝜃 ∈ R𝑛𝜃+1 для процесса (1). Для этого определяются
вспомогательный случайный процесс 𝑀𝐻 =

(︀
𝑀𝐻

𝑡

)︀
06𝑡6𝑇

, удовлетворяющий ра-
венству

𝑀𝐻
𝑡 ≡

𝑡ˆ

0

𝑘𝐻(𝑡,𝑠)𝑑𝜉𝑠,

где 𝑘𝐻(𝑡,𝑠) = 𝜅−1
𝐻 𝑠1/2−𝐻 (𝑡− 𝑠)1/2−𝐻 , 𝜅𝐻 = 2𝐻Γ

(︀
3
2 −𝐻

)︀
Γ
(︀
1
2 +𝐻

)︀
, и вспомога-

тельная функция 𝑤𝐻(𝑡) согласно равенству

𝑤𝐻(𝑡) = 𝜆−1
𝐻 𝑡2−2𝐻 ,
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где 𝜆𝐻 = 2𝐻Γ (3− 2𝐻) Γ
(︀
1
2 +𝐻

)︀ (︀
Γ
(︀
3
2 −𝐻

)︀)︀−1. Дифференциал 𝑑𝑤𝐻
𝑡 понима-

ется следующим образом: 𝑑𝑤𝐻
𝑡 = 𝜆−1

𝐻 (2− 2𝐻)𝑡1−2𝐻𝑑𝑡.
Структура оценки максимального правдоподобия параметра тренда описыва-

ется теоремой 1.
Теорема 1. Пусть коэффициент сноса 𝑓(𝑡) фрактального броуновского дви-
жения имеет вид (2)–(3). Тогда оценка ̂︀𝜃ML максимального правдоподобия
параметра 𝜃 имеет вид

̂︀𝜃ML = 𝑅−1
𝐻 (𝑡)𝜓𝐻

𝑡 , (5)

где компоненты (𝑛+ 1)-мерного случайного процесса 𝜓𝐻 =
(︀
𝜓𝐻
𝑡

)︀
06𝑡6𝑇

и эле-
менты неслучайной матрицы 𝑅𝐻(𝑡) равны

(𝜓𝐻
𝑡 )𝑖 =

𝑡ˆ

0

𝜓𝑖(𝑠)𝑑𝑀
𝐻
𝑠 и (𝑅𝐻(𝑡))𝑖𝑗 =

𝑡ˆ

0

𝜓𝑖(𝑠)𝜓𝑗(𝑠)𝑑𝑤
𝐻
𝑠 , (6)

𝑖,𝑗 = 0, . . . , 𝑛𝜃, соответственно, а функции 𝜓𝑖(𝑡), 𝑖 = 0, . . . , 𝑛 задаются соот-
ношениями

𝜓𝑖(𝑡) =
𝑑

𝑑𝑤𝐻
𝑡

𝑡ˆ

0

𝑘𝐻(𝑡,𝑠)
𝑑𝑔𝑖(𝑠)

𝑑𝑠
𝑑𝑠, 𝑖 = 0, . . . , 𝑛𝜃. (7)

Третий раздел посвящен отысканию оптимальной Байесовской оценки
параметра тренда рассматриваемого случайного процесса в предположении, что
параметр тренда является векторнозначной случайной величиной, имеющей
многомерное нормальное распределение. Доказывается следующая

Теорема 2. Пусть 𝜃 — нормальный случайный вектор с математическим
ожиданием 𝑚 и ковариационной матрицей Σ. Тогда оптимальной в среднем
квадратичном Байесовской оценкой значения 𝜃 является апостериорное среднее

̂︀𝜃BAYES = E
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
=

(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1 (︀
𝜓𝐻
𝑡 +Σ−1𝑚

)︀
. (8)

Величина условной среднеквадратичной ошибки оценивания E
[︀
‖𝜃 −

̂︀𝜃BAYES‖2
⃒⃒
ℱ 𝜉
𝑡

]︀
определяется следом условной ковариационной матрицы

cov
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
=

(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1 (9)

С применением теоремы 2 демонстрируется, что в случае полиномиального
сноса функция штрафа

𝐹𝐻(𝑡) = 𝑐𝑡+ E
[︀
‖𝜃 − ̂︀𝜃BAYES‖2

⃒⃒
ℱ 𝜉
𝑡

]︀

имеет единственный минимум при 𝑡 ∈ [0, 𝑇 ]. Этот результат иллюстрируется
рисунком 2, содержащим график функции 𝐹𝐻(𝑡) для случая кубического сноса
и значений параметров 𝐻 = 0.8, 𝑐 = 0.02.
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Рисунок 1: Траектории результата наблю-
дения 𝜉𝑡, тренда 𝑓(𝑡) =

∑︀3
𝑘=0 𝜃𝑖𝑡

𝑖 и филь-
тра ̂︀𝑓(𝑡) = ∑︀3

𝑘=0(
̂︀𝜃BAYES)𝑖𝑡

𝑖, 0 6 𝑡 6 𝑇 , в
модельной задаче выделения кубического
тренда при значении параметра 𝐻 = 0.8.
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Рисунок 2: Значения функции штрафа
𝐹𝐻(𝑡) в модельной задаче выделения по-
линомиального (кубического) тренда при
значениях параметров 𝐻 = 0.8, 𝑐 = 0.02.

В четвертом разделе подсчитывается и исследуется оптимальная Байе-
совская оценка параметра линейного тренда процесса (1) в предположении
равномерного априорного распределения параметра тренда.

Поскольку аналитический расчет для общего случая 𝜃 ∈ R𝑛𝜃+1 труден, оценка
подсчитывается для важного частного случая линейного сноса, в котором наблю-
даемый процесс 𝜉 определяется стохастическим дифференциальным уравнением

𝑑𝜉𝑡 = 𝜃1𝑑𝑡+ 𝜎𝑑𝐵𝐻
𝑡 , (10)

где 𝜃1 ∼ 𝑈(𝑎, 𝑏). Результат подсчета в этой задаче составляет

Теорема 3. Пусть в (10) 𝜃1 — равномерно распределенная на [𝑎,𝑏] случайная
величина, не зависящая от 𝐵𝐻

𝑡 . Тогда оптимальная в среднеквадратичном
Байесовская оценка параметра 𝜃1 имеет вид

(̂︀𝜃1)BAYES = 𝑚𝐻
𝑡 +

[︀
𝑍𝐻
𝑡 𝑤𝐻(𝑡)

]︀−1[︀
Λ𝐻𝑡 (𝑎)− Λ𝐻𝑡 (𝑏)

]︀
, (11)

а условная среднеквадратичная погрешность оценивания равна

𝛾𝐻𝑡 = E
[︀
‖𝜃1 − (̂︀𝜃1)BAYES‖2

⃒⃒
ℱ 𝜉
𝑡

]︀
=

[︀
𝑤𝐻(𝑡)

]︀−1
+ (12)

+
[︀
𝑍𝐻(𝑡)𝑤𝐻(𝑡)

]︀−1 [︀
Λ𝐻𝑡 (𝑎)(𝑎−𝑚𝐻

𝑡 )− Λ𝐻𝑡 (𝑏)(𝑏−𝑚𝐻
𝑡 )

]︀
−

−
[︀
𝑍𝐻(𝑡)𝑤𝐻(𝑡)

]︀−2[︀
Λ𝐻𝑡 (𝑎)− Λ𝐻𝑡 (𝑏)

]︀2
,
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где

𝑍𝐻
𝑡 =

√︃
2𝜋

𝑤𝐻(𝑡)
exp

{︂
1

2

(︀
𝑚𝐻
𝑡

)︀2
𝑤𝐻(𝑡)

}︂
𝐶𝐻
𝑡 , (13)

𝐶𝐻
𝑡 = Φ

(︁(︀
𝑏−𝑚𝐻

𝑡

)︀√︀
𝑤𝐻(𝑡)

)︁
− Φ

(︁(︀
𝑎−𝑚𝐻

𝑡

)︀√︀
𝑤𝐻(𝑡)

)︁
.

Во второй главе разрабатываются и исследуются алгоритмы обнаружения
разладки временного ряда на основе ансамблей «слабых» детекторов в условиях
нарушения стандартных предположений о модели разладки.

В первом разделе приводится обзор известных из литературы постановок
задачи о разладке случайной последовательности и соответствующих процедур
обнаружения разладки, а также рассматривается модель разладки с конеч-
ной длительностью. Пусть наблюдаемый случайный процесс 𝜉 =

(︀
𝜉𝑡
)︀
𝑡>0

имеет
структуру

𝜉𝑡 =

⎧
⎪⎨
⎪⎩
𝜉∞𝑡 , если 𝑡 ∈ 𝒯∞,

𝜉0𝑡 , если 𝑡 ∈ 𝒯0,

где случайные процессы 𝜉∞ =
(︀
𝜉∞𝑡

)︀
𝑡>0

и 𝜉0 =
(︀
𝜉0𝑡
)︀
𝑡>0

имеют (одномерные)
плотности распределения 𝑝∞(·) и 𝑝0(·) соответственно, а множества 𝒯∞ ⊆ [0,∞)

и 𝒯0 ⊆ [0,∞) соответствуют промежуткам времени, в течение которых процесс𝑋
находится в состояниях без разладки (нормальном) и с разладкой (аномальном),
соответственно. Когда 𝒯∞ = [0, 𝜃) и 𝒯0 = [𝜃,∞), появление разладки соответ-
ствует установлению в момент 𝜃 нового режима наблюдений, причем последний
имеет бесконечную продолжительность. В диссертационной работе рассматрива-
ется ситуация кратковременного изменения, в которой 𝒯∞ = [0, 𝜃) ∪ [𝜃 +Δ,∞)

и 𝒯0 = [𝜃, 𝜃 + Δ), предполагающая длительность Δ аномального состояния
конечной: Δ <∞. Пока наблюдения за процессом 𝜉 согласуются с нормальным
состоянием, требуется продолжать наблюдения. Если состояние изменяется,
требуется обнаружить изменение как можно скорее, избегая ложных тревог.

Во втором разделе вводится понятие ансамбля процедур обнаружения
разладки и приводятся примеры конкретных реализаций ансамблей. Пусть
Π1, . . . ,Π𝑛Π — множество процедур обнаружения разладки, причем процедура
Π𝑘 предписывает подавать сигнал тревоги в момент 𝜏𝑘 первого выхода некоторой
статистики 𝑠𝑘 =

(︀
𝑠𝑘𝑡
)︀
𝑡>0

на заданный уровень ℎ𝑘 > 0, 𝑘 = 1, . . . , 𝑛Π: 𝜏𝑘 = inf{𝑡 >
0 : 𝑠𝑘𝑡 > ℎ𝑘}. Пусть S𝑘𝑡 =

{︀
𝑠𝑘𝑢, 0 6 𝑢 6 𝑡

}︀
— история сигнала 𝑠𝑘𝑡 до момента

времени 𝑡.
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Рисунок 3: Слева: Кривые «точность–полнота» для пяти «слабых» детекторов и девяти
рассматриваемых ансамблей для эксперимента по обнаружению разладки процесса Коши.
Справа: траектория наблюдений (верхний рисунок), статистики кумулятивных сумм (средний
рисунок) и ансамбля Log−019для эксперимента по обнаружению разладки процесса Коши.

Определение 1. Ансамблем процедур обнаружения разладки назовем про-
цедуру A обнаружения разладки, предписывающую подавать сигнал тревоги в
момент 𝜏A первого выхода некоторого процесса 𝑎 =

(︀
𝑎𝑡
)︀
𝑡>0

на заданный уровень
ℎA: 𝜏A = inf{𝑡 > 0 : 𝑎𝑡 > ℎA}. Процесс 𝑎𝑡 строится как функция траекторий
S1
𝑡 , . . . ,S

𝑛Π
𝑡 сигналов 𝑠1, . . . , 𝑠𝑛Π:

𝑎𝑡 = 𝜓(S1
𝑡 , . . . ,S

𝑛Π
𝑡 ,𝜃), (14)

где 𝜃 ∈ R𝑑(𝑑 > 𝑛Π) — параметры ансамбля, а функция 𝜓(·) — некоторая
заданная агрегирующая функция.

С помощью конкретного выбора агрегирующей функции вводятся ансамбль на
основе голосования большинством, ансамбль на основе взвешенного голосования,
а также ансамбль на основе логистической регрессии.

Третий раздел содержит определение нового критерия эффективности про-
цедур обнаружения разладки и описание вычислительного алгоритма обучения
ансамбля по множеству размеченных траекторий Xℓ = {(𝑋 𝑖, 𝑌 𝑖)}ℓ𝑖=1, в котором
каждая точка (𝑋 𝑖, 𝑌 𝑖) состоит из пары «наблюдение–разметка», причем процесс
𝑋 𝑖 =

(︀
𝑋 𝑖
𝑡

)︀
𝑡>0

соответствует наблюдениям, а процесс 𝑌 𝑖 =
(︀
𝑌 𝑖
𝑡

)︀
𝑡>0

— индикатору
аномального состояния: 𝑌 𝑖

𝑡 = 1𝒯 𝑖
0
(𝑡), 𝑡 > 0.

Пусть процедура обнаружения разладки Π предписывает подавать сигнал
тревоги при выполнении условия выхода некоторой статистики 𝑠 =

(︀
𝑠𝑡
)︀
𝑡>0

на
заданный уровень ℎ > 0, т. е. при тех 𝑡 > 0, для которых 𝑠𝑡 > ℎ.
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Определение 2. Математическое ожидание потерь, свойственных проце-
дуре обнаружения разладки Π,

F(Π) = 𝑐∞E∞

[︃∑︀
1{𝑠𝑡>ℎ}(𝑡)1𝒯∞(𝑡)∑︀

1𝒯∞(𝑡)

]︃
+ 𝑐0E0

[︃∑︀
1{𝑠𝑡<ℎ}(𝑡)1𝒯0(𝑡)∑︀

1𝒯0(𝑡)

]︃
, (15)

где 𝑐0 и 𝑐∞ суть потери за единицу времени, сопутствующие ошибочным
решениям о наличии и отсутствии разладки, соответственно. Согласно
этому определению, процедура обнаружения разладки Π тем лучше, чем меньше
сопутствующие ей ожидаемые потери.

Оптимизация штрафа, заданного в (15), позволяет осуществить выбор па-
раметров 𝜃 ∈ R𝑑 ансамбля A в (14) и получить ансамбль A*, для которого
F(A*) = inf

𝜃∈R𝑑
F(A). Поскольку прямое вычисление математических ожиданий

в (15) в общем случае невозможно, в диссертационной работе рассматривает-
ся аппроксимация FEMP(Π) функции потерь F(Π), называемая эмпирическим
риском:

FEMP(Π) = 𝑐∞
1

ℓ

ℓ∑︁

𝑖=1

[︃∑︀
1{𝑠𝑖𝑡>ℎ}(𝑡)1𝒯 𝑖

∞
(𝑡)∑︀

1𝒯 𝑖
∞
(𝑡)

]︃
+ 𝑐0

1

ℓ

ℓ∑︁

𝑖=1

[︃∑︀
1{𝑠𝑖𝑡<ℎ}(𝑡)1𝒯 𝑖

0
(𝑡)∑︀

1𝒯 𝑖
0
(𝑡)

]︃

=
1

ℓ

ℓ∑︁

𝑖=1

{︁ 𝑐∞
𝑇 𝑖∞

∑︁

𝑡∈𝒯 𝑖
∞

1{𝑠𝑖𝑡>ℎ}(𝑡) +
𝑐0
𝑇 𝑖0

∑︁

𝑡∈𝒯 𝑖
0

1{𝑠𝑖𝑡<ℎ}(𝑡)
}︁
, (16)

где 𝑠𝑖 =
(︀
𝑠𝑖𝑡
)︀
𝑡>0

— траектория процесса 𝑠, подсчитанная по наблюдениям 𝑋 𝑖, 𝒯 𝑖
∞

и 𝒯 𝑖
0 суть промежутки времени нормального и аномального состояний в точке

(𝑋 𝑖, 𝑌 𝑖), 𝑇 𝑖∞ и 𝑇 𝑖0 — длительности этих промежутков, соответственно. Согласно
классическому подходу статистической теории обучения20, минимизация эмпи-
рического риска FEMP(Π) дает процедуру обнаружения разладки Π*

EMP, для
которой ожидаемые потери F(Π*) близки к своему минимуму. Ввиду разрывно-
сти градиента прямая оптимизация эмпирического риска FEMP(Π) трудна (если
вообще возможна); по этой причине в диссертационной работе предлагается
рассматривать сглаженную версию эмирического риска FEMP(Π), задаваемую
соотношением

FDIFF(Π) =
1

ℓ

ℓ∑︁

𝑖=1

⎧
⎨
⎩
𝑐∞
𝑇 𝑖∞

∑︁

𝑡∈𝒯 𝑖
∞

𝜎(𝑠𝑖𝑡 − ℎ) +
𝑐0
𝑇 𝑖0

∑︁

𝑡∈𝒯 𝑖
0

𝜎(ℎ− 𝑠𝑖𝑡)

⎫
⎬
⎭ , (17)

19Ансамбль Log−0 задается агрегирующей функцией 𝜓Log−0(𝜃;S
1
𝑡 , . . . ,S

𝑛Π
𝑡 ) =

𝑛Π∑︀
𝑘=1

𝜃𝑘𝑠
𝑘
𝑡 − 𝜃0 и соответствует

классификатору на основе логистической регрессии.
20Vapnik V. Principles of risk minimization for learning theory // In Moody, J. E., Hanson, S. J. & Lippmann, R.

P. (eds.), Advances In Neural Information Processing Systems 4, pp. 831–838. Morgan Kaufman, San Mateo, CA.
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где 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) — логистическая функция. Так определенная функция
риска является дифференцируемой по параметрам ансамбля 𝜃 ∈ R𝑑, и может
быть оптимизирована градиентными методами.

Четвертый раздел содержит результаты эмпирического анализа эффектив-
ности ансамблей «слабых» детекторов для различных агрегирующих функций,
полученные в вычислительном эксперименте при моделировании данных раз-
личной природы. Рис. 3 представляют результат вычислительного эксперимента
по обнаружению разладки сигнала с тяжелыми хвостами.

Третья глава посвящена разработке и исследованию математических мо-
делей и алгоритмов обнаружения разладок квазипериодических временных
рядов.

Первый раздел содержит постановку задачи оценивания параметров ква-
зипериодического тренда по данным зашумленных измерений. Предполагается,
что наблюдения 𝜉 =

(︀
𝜉𝑡
)︀
𝑡>0

выполнены согласно общей модели

𝜉𝑡 = 𝑓(𝑡) + 𝜈𝑡, 𝑡 > 0, (18)

где 𝑓(𝑡) — гладкая функция (тренд), наблюдаемая в шуме 𝜈𝑡, E 𝜈𝑡 = 0. По
данным зашумленных измерений Xℓ = {(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1, 𝑋𝑘 = 𝜉𝑡𝑘 , выполненным
согласно (18), требуется оценить значение 𝑓(𝑡) = E 𝜉𝑡 для каждого 𝑡 > 0.

Во втором разделе рассматривается алгоритм оценивания параметров трен-
да на основе фильтра, разработанного в первой главе.

1. Выбирается окно наблюдений 𝑊 (𝑎, 𝑏) = {(𝑋𝑘, 𝑡𝑘) : 𝑎 6 𝑡𝑘 6 𝑏} в окрестно-
сти некоторого 𝑡0 ∈ [𝑎, 𝑏].

2. В окрестности 𝑡 ∈ [𝑎, 𝑏] значения 𝑡0 рассматривается аппроксимация глад-
кого тренда кубическим полиномом, а в качестве модели шума рассматри-
вается процесс фрактального гауссовского шума 𝑍𝐻 =

(︀
𝑍𝐻
𝑡

)︀
𝑡>0

, так что
модель данных принимает вид

𝑋𝑘 =
3∑︁

𝑖=0

𝜃𝑖(𝑡𝑘 − 𝑡0)
𝑖 + 𝜎𝑍𝐻

𝑘 , (𝑋𝑘, 𝑡𝑘) ∈ 𝑊 (𝑎, 𝑏), (19)

где значение дисперсии 𝜎 > 0 принимается известным, а 𝜃 = (𝜃0, . . . , 𝜃3) яв-
ляется неизвестным параметром. Для оценивания значения 𝜃 используется
метод максимального правдоподобия и оценка ̂︀𝜃ML из первой главы.

3. Оценка ̂︀𝜃ML используется для вычисления оценки траектории с помощью
соотношения ̂︀𝑓[𝑎,𝑏](𝑡) =

∑︀3
𝑖=0(

̂︀𝜃ML)𝑖(𝑡−𝑡0)𝑖 для всех 𝑡 ∈ [𝑎,𝑏]. Итоговая оценка
̂︀𝑓(𝑡) для всех 𝑡 > 0 вычисляется усреднением согласно соотношению ̂︀𝑓(𝑡) =
(𝑛[𝑎,𝑏](𝑡))

−1
∑︀

(𝑎,𝑏):𝑎6𝑡6𝑏

̂︀𝑓[𝑎,𝑏](𝑡) по 𝑛[𝑎,𝑏](𝑡) =
∑︀
(𝑎,𝑏)

1[𝑎,𝑏](𝑡) локальных оценок.
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В третьем разделе рассматривается многокомпонентная математическая
модель квазипериодического сигнала и алгоритм оценивания его параметров на
основе метода непараметрической регрессии. Принимается, что равенство

𝜉𝑡 = 𝑓(𝑡) + 𝜈𝑡, 𝑡 > 0, (20)

задает модель сигнала 𝜉, в которой моделью тренда служит соотношение
𝑓(𝑡) = 𝑄𝑡𝑆𝑡, где 𝑄 =

(︀
𝑄𝑡

)︀
𝑡>0

— случайный процесс, а 𝑆𝑡 = 𝑆(𝜙(𝑡)) — неслучай-
ная функция; модель случайной помехи 𝜈𝑡 задается равенством 𝜈𝑡 = 𝜎𝑡𝜀𝑡, где
𝜎𝑡 = 𝜎𝜙(𝑡) — неслучайная функция, а 𝜀 = (𝜀𝑡)𝑡>0 — процесс стандартного гауссов-
ского белого шума. Величина 𝜙(𝑡) = 2𝜋{𝑡/𝑇} имеет смысл фазы (известного)
периода 𝑇 , соответствующего моменту времени 𝑡 (где {𝑥} = 𝑥− ⌊𝑥⌋ — дробная
часть 𝑥).

Факторизация представлений тренда и помехи в (20) позволяет выразить
важные свойства реальных сигналов систем с интенсивным ПО, такие как
медленный рост числа обрабатываемых запросов и его флуктуации в течение
суток. В модели тренда 𝑄 =

(︀
𝑄𝑡

)︀
𝑡>0

и 𝑆 =
(︀
𝑆𝑡
)︀
𝑡>0

интерпретируются как
ненаблюдаемые амплитуда и сезонная составляющая, соответственно.

Рассматривается алгоритм оценивания значений ̂︀𝑆𝜓𝑗
и ̂︀𝜎2𝜓𝑗

для каждой фа-
зы 𝜓𝑗 = 𝜙(𝑡𝑗), где 𝑡𝑗 = 𝑗Δ,Δ = 𝑇/𝑝, 𝑗 = 1, . . . , 𝑝, по наблюдениям Xℓ =

{(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1.
Инициализация. Величина ̂︀𝑄𝑘 = ̂︀𝑄(𝑡𝑘) полагается равной 1 для каждого

𝑘 = 1, . . . , ℓ, а величина ̂︀𝜎2𝜓𝑗
полагается равной дисперсии наблюдений 𝑋1, . . . , 𝑋ℓ

для каждого 𝑗 = 1, . . . , 𝑝.
Итерации. Повторяются следующие шаги:

1. С использованием оценки Надарая-Ватсона переоценивается ̂︀𝑆𝜓𝑗
:

̂︀𝑆𝜓𝑗
=

ℓ∑︀
𝑘=1

𝑤𝑘𝑋𝑘/ ̂︀𝑄𝑘𝐾ℎ(𝜙𝑘, 𝜓𝑗)

ℓ∑︀
𝑘=1

𝑤𝑘𝐾ℎ(𝜙𝑘, 𝜓𝑗)

(21)

где 𝜙𝑘 = 𝜙(𝑡𝑘) суть фазы в моменты времени 𝑡𝑘, 𝑘 = 1, . . . , ℓ, 𝐾ℎ(𝜙,𝜓) —
ядро ширины ℎ > 0, и 𝑤𝑘 — вес 𝑘-го измерения.

2. С использованием оценки Надарая-Ватсона переоценивается ̂︀𝜎2𝜓𝑗
:

̂︀𝜎2𝜓𝑗
=

ℓ∑︀
𝑘=1

(︀
𝑋𝑘 − ̂︀𝑋𝑘

)︀2
𝐾ℎ(𝜙𝑘,𝜓𝑗)

ℓ∑︀
𝑘=1

𝐾ℎ(𝜙𝑘,𝜓𝑗)

. (22)
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Рисунок 4: Слева: кривая «точность–полнота» для искусственных данных. Справа сверху:
пример недельного профиля нагрузки в искусственных данных и индикатора аномального
состояния. Справа в центре: траектория статистики кумулятивных сумм и индикатор ано-
мального состояния. Справа внизу: траектория статистики ансамбля Log−0 и индикатор
аномального состояния.

3. Переоценивается ̂︀𝑋𝑘 = ̂︀𝑋(𝑡𝑘) и ̂︀𝑄𝑘 = ̂︀𝑄(𝑡𝑘), 𝑘 = 1, . . . , ℓ. Для вычисления
прогноза ̂︀𝑋𝑘 значения 𝑋𝑘 выбирается некоторое 𝐻 > 0 и рассматриваются
моменты времени 𝑡𝑘−𝑝, . . . , 𝑡𝑘, где 𝑡𝑘 −𝐻 6 𝑡𝑘−𝑝 < . . . < 𝑡𝑘. Согласно (20) в
предположении локально постоянной амплитуды

𝑋𝑖 = 𝑄𝑘
̂︀𝑆𝜙(𝑡𝑖) + 𝜈𝑖, 𝑖 = 𝑘 − 𝑝, . . . , 𝑘, (23)

где значение ̂︀𝑆𝜙(𝑡𝑖) получено кубической интерполяцией значений ̂︀𝑆𝜓𝑗
по

четырем ближайшим к 𝜙(𝑡𝑖) точкам сетки 𝜓1, . . . , 𝜓𝑛. В предположении 𝜈𝑖 ∼
𝒩 (0, ̂︀𝜎2𝜓𝑖

) амплитуда 𝑄𝑘 в (23) оценивается методом взвешенной линейной
регрессии с весами 𝜆𝑖 = 1/̂︀𝜎2𝜓𝑖

, 𝑖 = 𝑘 − 𝑝, . . . , 𝑘. Прогноз ̂︀𝑋 значения 𝑋𝑘

вычисляется согласно ̂︀𝑋𝑘 = ̂︀𝑄𝑘
̂︀𝑆𝜙(𝑡𝑘).

В четвертом разделе содержится постановка задачи обнаружения разладки
квазипериодического сигнала и метод ее решения, основанный на применении ан-
самблей «слабых» детекторов, предложенных во второй главе. Рассматривается
модель краткосрочной разладки в (18):

𝜈𝑡 = 𝜇1[𝜃,𝜃+Δ𝑡](𝑡) + 𝑍𝑡, 𝑡 > 0, (24)

где 𝜃 — неизвестный момент разладки, 𝜇 — неизвестная величина разладки,
Δ𝑡 — неизвестная длительность разладки, и 𝑍 =

(︀
𝑍𝑡
)︀
𝑡>0

— гауссовский процесс
белого шума. Задается процесс

𝑅𝑡 = 𝜎−1(𝑋𝑡 − ̂︀𝑋𝑡), 𝑡 > 0, (25)
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Рисунок 5: Результат аппроксимации ло-
кального тренда нагрузки соединения
Хьюстон–Чикаго (по данным измерений
нагрузки сети Абилин).
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Рисунок 6: Результат решения задачи про-
гнозирования значения индекса S&P 500
на один день в предположении линейности
тренда.

где𝑋 — наблюдаемый в (18) процесс с (известной или оцениваемой) дисперсией 𝜎,
а значение ̂︀𝑋𝑡 процесса ̂︀𝑋 является оценкой значения 𝑋𝑡 процесса 𝑋 , полученной
одним из алгоритмов, описанных выше. Показывается, что при нормальном
режиме наблюдений E𝑅𝑡 ≈ 0, а при аномальном E𝑅𝑡 ≈ 𝜇, и для обнаружения
разладки процесса 𝑅 используется ансамбль «слабых» детекторов, параметры
которого подбираются по множеству размеченных траекторий процесса 𝑋.

В пятом разделе представлены описание и результаты вычислительных
экспериментов с использованием искусственных данных для оценки качества
обнаружения разладки сигнала с квазипериодическим трендом. Рис. 4 пред-
ставляет результат вычислительного эксперимента по обнаружению разладки
квазипериодического сигнала, наблюдаемого в шуме с длинной памятью.

Четвертая глава содержит описание структуры и функционала разработан-
ного комплекса программ. В качестве платформы для реализации разработанных
математических методов и алгоритмов используется язык программирования
python, библиотека математических функций numpy и библиотека научных рас-
четов scipy. Комплекс программ включает 5 основных пакетов:

1. Пакет, реализующий алгоритмы оптимального оценивания параметров
тренда сигнала, наблюдаемого во шуме с длинной памятью.

2. Пакет, реализующий вычислительный алгоритм оценивания компонент
квазипериодической модели (20).

3. Пакет для работы с ансамблями «слабых» детекторов, в том числе:
– модуль численной оптимизации сглаженного эмпирического риска (17)

по заданной обучающей выборке;
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Рисунок 7: Верхний ряд: пример искусственных данных (слева), данных сети Абилин (в
центре) и данных «Яндекса» (справа), а также результат выделения тренда с использо-
ванием экспоненциального сглаживания и подхода, предложенного в работе. Нижний ряд:
остатки, полученные вычитанием тренда из наблюдаемого сигнала. Стрелки указывают на
обнаруженные разладки.

– модуль обнаружения кратковременной разладки случайного сигнала
на основе ансамбля (14) (в том числе в режиме реального времени).

4. Пакет моделирования реализаций случайных сигналов с заданными стати-
стическими параметрами, такими как кратковременные разладки, квазипе-
риодические тренды и длинная память.

5. Пакет оценивания эффективности исследуемых алгоритмов и визуализации
данных.

В пятой главе излагаются результаты применения разработанных матема-
тических методов в задачах анализа реальных сигналов. В первом разделе
описываются результаты решения задачи оценки профиля нагрузки реальной
компьютерной сети Абилин21 по данным измерений объема трафика, переданно-
го между узлами сети. Для решения этой задачи был использован алгоритм 1
из второго раздела третьей главы. Во втором разделе рассматривается задача
прогнозирования значений экономических и финансовых показателей на момент
закрытия («цена закрытия») по историческим данным на один день вперед. В
заключительном третьем разделе описываются результаты решения задачи
обнаружения разладок реальной информационной системы в режиме реального
времени. В последней задаче для обнаружения разладки неоходимо было строить
оценку тренда квазипериодического сигнала по измерениям в шуме с длинной

21Данные измерений нагрузки сети Абилин за 2004 г. находятся в публичном доступе по ссылке http:
//www.cs.utexas.edu/~yzhang/research/AbileneTM (проверена 12.10.2016).

http://www.cs.utexas.edu/~yzhang/research/AbileneTM
http://www.cs.utexas.edu/~yzhang/research/AbileneTM
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или короткой памятью22. В разделе описываются два подхода к решению этой
задачи, основанные на предложенной в работе методологии.

В заключении сформулированы основные результаты работы:
1. Разработаны новые математические методы оценки параметров сигнала по

данным измерений, выполненным во фрактальном шуме, в том числе:
– получена оценка максимального правдоподобия параметра сигнала;
– получены оптимальные Байесовские оценки для случаев нормального

и равномерного априорных распределений параметра сигнала;
– охарактеризован оптимальный момент остановки измерений сигнала

для случая нормального априорного распределения параметра сигнала.
2. Разработан и исследован алгоритм обнаружения разладки временного ряда

на основе ансамбля процедур обнаружения разладки, предложен метод
настройки параметров ансамбля.

3. Предложена и исследована методология моделирования квазипериодиче-
ских сигналов и обнаружения их разладок, в том числе:

– предложена математическая модель квазипериодического временного
ряда на основе разложения по заданной системе функций и вычис-
лительный алгоритм оценки ее параметров на основе оптимального
фильтра п. 1;

– предложена многокомпонентная математическая модель квазипери-
одического временного ряда и вычислительный алгоритм оценки ее
параметров на основе непараметрической регрессии;

– предложена математическая модель краткосрочной разладки квазипе-
риодического временного ряда и процедура обнаружения этой разладки
на основе ансамблей «слабых» детекторов.

4. Создан комплекс программ, реализующий предложенные в диссертацион-
ной работе вычислительные алгоритмы фильтрации тренда фрактального
случайного сигнала, оценивания квазипериодического сигнала, настройки
параметров ансамбля и обнаружения разладки временного ряда на основе
ансамбля.

5. С помощью разработанного программного комплекса решен ряд приклад-
ных задач обнаружения отказов промышленных программных систем.

22 Во всех прикладных задачах для оценивания значения показателя Херста использовался подход, пред-
ложенный в работе Dubovikov M. M., Starchenko N. V., Dubovikov M. S. Dimension of the minimal cover and
fractal analysis of time series //Physica A: Statistical Mechanics and its Applications. — 2004. — Vol. 339. — no. 3.
— Pp. 591–608.
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