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Введение

Актуальность и степень научной разработанности проблемы

1. В последние десять лет при активном развитии информационно-коммуни-
кационных технологий возник новый тип высокотехнологичных систем: системы
с интенсивным программным обеспечением (software-intensive systems1). К нему
относятся такие высокотехнологичные инженерно-технические системы, как

– цифровые системы широкополосной связи,
– интернет-системы (устройства, сети передачи данных и интернет-сервисы),
– информатизированные центры обслуживания и колл-центры,
– автоматизированные энергосети и системы распределения энергии,
– интеллектуальные транспортные системы (авиадиспетчерские службы, си-

стемы дорожного транспорта и др.),
– платформы электронной торговли,
– автоматизированные системы в здравоохранении

и другие. Для всех этих систем характерны: большой объем накапливаемых и об-
рабатываемых данных, сложная взаимозависимость программных компонент
и огромное количество аппаратных элементов, а также чрезвычайно большое
число людей, использующих систему для различных целей. Как показывает изу-
чение существующих аппаратно-программных комплексов, в настоящее время
одной из их центральных проблем является низкая надежность их эксплуатации:
неизбежные при крупном масштабе программные, аппаратные и антропогенные
отказы являются на практике нормой, а не исключением [5]. Согласно иссле-
дованию [86], доминирующей причиной системных отказов является именно
возникновение сбоев программного обеспечения. Таким образом, обеспечение

1Согласно стандарту ISO/IEC/IEEE 42010:2011(E) — системы, функциональность которых определяется
главным образом их программными средствами [33]; согласно Стратегии развития отрасли информацион-
ных технологий в Российской Федерации на 2014–2020 годы и на перспективу до 2025 года — аппаратно-
программные комплексы с большим удельным весом программной части [102]
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бесперебойной и эффективной эксплуатации высокотехнологичных систем с ин-
тенсивным ПО представляет собой крупную проблему, для устранения которой
необходимо прежде всего предотвращение отказов их программной составляю-
щей, в частности, их быстрое и точное обнаружение.

2. В ряде работ предложены подходы к обнаружению проблемного поведе-
ния ПО (дефектов, вредоносного вмешательства и т. д.) на основании данных,
собираемых при эксплуатации системы — измерений количества обработанных
запросов и средней длительности ожидания в единицу времени, измерения
объема переданного сетевого трафика и т. д.:

– в [63] измерения объема передаваемого сетевого трафика используются для
обнаружения перегрузок сетевого ядра;

– в [82] измерения профиля сетевого трафика применяются для детектирова-
ния внедрений в компьютерные сети;

– в [3] измерения характеристик потоков данных в распределенной сети видео-
наблюдения используются для обнаружения перегрузки автомагистралей;

– в [8] измерения погрешности определения псевдодальности используются
для выявления неисправных навигационных спутников;

– в [21] измерения сетевого трафика используются для обнаружения аномалий
компьютерных сетей (вредоносного или содержащего ошибки трафика),
приводящих к сбою сети или сетевого сервиса;

– в [32] рассматривается подход к обнаружению системных отказов распреде-
ленных компьютерных систем на основании анализа данных в их узлах;

– работы [6; 45–47] исследуют подходы к обнаружению системных сетевых
сбоев, используя измерения объема переданного сетевого трафика;

– в [20; 60] рассматриваются подходы к эффективному обнаружению измене-
ний с помощью распределенных систем сенсоров.

Рассмотренные в этих работах задачи сводятся к выявлению момента резкого
изменения некоторых характеристик рассматриваемой системы на основе на-
блюдаемых статистических данных о других характеристиках этой системы [95].
Задачи такого типа (задачи о разладке) были рассмотрены А. Н. Колмогоровым,
А. Н. Ширяевым и рядом других авторов [9; 96; 99; 104; 106]. Для решения задач
типа задачи о разладке, к которым относится и задача обнаружения отказов
реальных информационных систем, рядом исследователей были предложены
процедуры обнаружения разладки, такие как:
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– метод кумулятивных сумм [49; 54; 64; 69; 105];
– метод контрольных карт [57; 75];
– процедура Ширяева-Робертса [70; 107];
– Байесовские подходы Гиршика, Рубина и Ширяева [2; 24; 108];
– процедуры на основе деревьев контекста [10; 11];
– процедуры на основе методов разложения многомерных данных, таких как

анализ главных компонент [6; 45–47; 63] и анализ сингулярного спектра [27;
28; 87; 88].

и др. Однако прямое использование названных процедур для обнаружения
разладок реальных систем с интенсивным ПО неэффективно по следующим
причинам.

3. Системы с интенсивным ПО являются системами массового обслуживания
и испытывают антропогенные циклы нагрузки на ряде масштабов времени (день,
неделя, год). В силу изменчивости на большом масштабе времени основной цикл
будет стохастическим. Стандартные процедуры обнаружения разладки, напро-
тив, предполагают стационарность наблюдений на рассматриваемом промежутке
времени, за исключением момента появления разладки. Поэтому для успешного
решения задачи обнаружения разладок сложных систем необходим эффектив-
ный аппарат математического моделирования и оценивания квазипериодических
сигналов.

4. Типичным свойством потоков данных в информационных системах явля-
ется также длинная память (long-range dependence). Длинная память является
основной причиной возникновения всплесков нагрузки и присутствует на чрезвы-
чайно большом диапазоне масштабов времени; известно ее значительное влияние
на эффективность систем массового обслуживания [18]. Таким образом, для
идентификации и оценивания реальных сигналов, порожденных системами с ин-
тенсивным ПО, необходимо использование специальных стохастических моделей,
позволяющих моделировать длинную память.

5. Применение процедур обнаружения разладки, упомянутых выше, требует
определить математическую модель возникающего отказа в терминах распреде-
лений наблюдаемых характеристик. На практике сделать это часто невозможно,
так как типы возникающих отказов и сопутствующие им изменения статистиче-
ских характеристик априори произвольны; как следствие, в этих задачах могут
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быть неэффективны даже теоретически оптимальные методы обнаружения
разладки [16; 44; 53; 71; 83].

В области машинного обучения широко известен подход на основе алгоритми-
ческой композиции или ансамбля, который заключается в совместном использо-
вании множества «слабых» алгоритмов для получения лучшей предсказательной
силы [72]. Согласно композиционному подходу, процедуры обнаружения разлад-
ки, для которых сигналы тревоги слабо (однако больше, чем просто случайно)
коррелируют с истинным разладками, естественно рассматривать как «слабые»
детекторы. В этих условиях для эффективного обнаружения разладки доста-
точно использовать ее стандартную математическую модель2 и для каждого
класса наблюдений, представленного обучающей выборкой, выбрать наиболее
эффективную композицию.

6. В последние десять лет возникли существенно новые практические условия,
в которых беспрецедентные объемы данных обостряют проблему высокоэффек-
тивного автоматизированного обнаружения разладок современных больших
систем [5]. В этих условиях возникают и новые усиленные требования к ме-
тодологии и алгоритмике решения описываемых задач. До сих пор не было
предложено единой архитектуры, пригодной для обнаружения разладок слож-
ных естественных и инженерных систем крупного размера.

Таким образом, для обнаружения отказов крупных систем с интенсивным
ПО актуально исследование методов моделирования сигналов с квазиперио-
дическим трендом и с шумовой компонентой, обладающей длинной памятью,
исследование методов обнаружения разладки в случае нарушения стандарт-
ных предположений о ее модели, а также разработка единой масштабируемой
программной архитектуры для обнаружения разладок и аномалий в условиях
больших объемов данных.

Цели работы

Целями настоящей диссертационной работы являются разработка и исследова-
ние математических методов, алгоритмов и комплексов программ обнаружения

2В литературе, как правило, стандартная модель разладки заключается в изменении среднего значения
стационарной гауссовской случайной последовательности. В этом случае наблюдаемый процесс 𝜉 = (𝜉𝑡)𝑡>0

имеет вид 𝜉𝑡 = 𝜇1{𝑡>𝜃}(𝑡) + 𝜈𝑡, где 𝜇 ∈ R — магнитуда разладки, 𝜃 > 0 — момент появления разладки,
и 𝜈 = (𝜈𝑡)𝑡>0 — последовательность независимых стандартно нормально распределенных случайных величин.
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разладок и аномалий больших динамических систем при наличии квазипериоди-
ческих трендов, шумовой компоненты с длинной памятью, в случае нарушения
стандартных предположений о модели разладки.

Задачи работы

Для достижения поставленных целей в настоящей диссертационной работе
рассматриваются следующие задачи:

– разработка и исследование математических методов оценки параметров
сигнала по данным измерений, выполненных во фрактальном шуме;

– разработка и исследование алгоритма обнаружения разладки на основе ан-
самбля «слабых» детекторов для повышения эффективности обнаружения
разладки в случае нарушения стандартных предположений о ее модели;

– разработка математических моделей и алгоритмов оценивания сигналов
с трендом (в частности, квазипериодического сигнала) и обнаружения
разладок и аномалий на фоне тренда;

– создание комплекса программ, реализующих разработанные методы для
решения модельных и реальных задач обнаружения разладки.

Научная новизна работы

Научная новизна результатов, полученных в диссертационной работе, состоит
в том, что в ней

1. Впервые поставлены и решены задачи фильтрации сигнала, представля-
емого в виде разложения по заданной системе функций, по данным его
регистрации во фрактальном шуме и при различных типах дополнительной
информации о сигнале.

2. Впервые разработан и исследован алгоритм обнаружения разладки времен-
ного ряда, основанный на совместном использовании множества процедур
обнаружения разладки.

3. Предложены и исследованы математические модели временных рядов с трен-
дом (в частности, квазипериодического временного ряда) и обнаружения
разладок и аномалий на фоне тренда.
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4. Создано и внедрено в производство в компании «Яндекс» новое программ-
ное обеспечение, реализующее методы оценки параметров и процедуры
обнаружения разладок реальных сигналов.

Теоретическая и практическая значимость работы

Результаты диссертационной работы носят теоретический и практический
характер. Теоретические результаты относятся к теории оптимальной фильтра-
ции фрактальных динамических систем, позволяют теоретически исследовать
фильтры, основанные на конкретных системах функций, и могут применяться
при построении и оценке эффективности компонент автоматизированных инфор-
мационных систем, используемых для решения задач прогнозирования сигналов.
Практические результаты диссертационной работы заключаются в том, что раз-
работанные в ней подходы моделирования сигналов с трендом и обнаружения
разладок, были успешно применены для решения следующих прикладных задач:

1. Задача оценки параметров наблюдаемых сигналов больших информацион-
ных систем компании «Яндекс» в режиме реального времени.

2. Задача обнаружения отказов программного обеспечения больших информа-
ционных систем компании «Яндекс» в режиме реального времени.

3. Задача оценки нагрузки больших сети передачи данных Абилин на основе
измерений объема передаваемого между узлами сети трафика.

Методология и методы исследования

В диссертационной работе используются:
– подходы стохастического анализа,
– подходы теории непараметрического оценивания сигналов,
– методы численной оптимизации выпуклых функций,
– методы Монте-Карло эмпирического исследования созданных алгоритмов,
– подходы объектно-ориентированного программирования с использованием

языка программирования python.

Основные результаты, выносимые на защиту

Основными результатами настоящей диссертационной работы являются:
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1. Разработаны новые математические методы оценки параметров сигнала по
данным измерений, выполненным во фрактальном шуме, в том числе:

– получена оценка максимального правдоподобия параметра сигнала;
– получены оптимальные Байесовские оценки для случаев нормального

и равномерного априорных распределений параметра сигнала;
– охарактеризован оптимальный момент остановки измерений сигнала

для случая нормального априорного распределения параметра сигнала.
2. Разработан и исследован алгоритм обнаружения разладки временного ряда

на основе ансамбля процедур обнаружения разладки, предложен метод
настройки параметров ансамбля.

3. Предложена и исследована методология моделирования квазипериодиче-
ских сигналов и обнаружения их разладок, в том числе:

– предложена математическая модель квазипериодического временного
ряда на основе разложения по заданной системе функций и вычис-
лительный алгоритм оценки ее параметров на основе оптимального
фильтра п. 1;

– предложена многокомпонентная математическая модель квазипери-
одического временного ряда и вычислительный алгоритм оценки ее
параметров на основе непараметрической регрессии;

– предложена математическая модель краткосрочной разладки квазипе-
риодического временного ряда и процедура обнаружения этой разладки
на основе ансамблей «слабых» детекторов.

4. Создан комплекс программ, реализующий предложенные в диссертацион-
ной работе вычислительные алгоритмы фильтрации тренда фрактального
случайного сигнала, оценивания квазипериодического сигнала, настройки
параметров ансамбля и обнаружения разладки временного ряда на основе
ансамбля.

Степень достоверности и апробация работы

Достоверность полученных результатов гарантируется использованием стро-
гих доказательств, основанных на хорошо изученных методах стохастического
анализа; совпадением полученных оценок с известными результатами в частных
случаях линейных задач; описаниями проведенных экспериментов, допускающи-
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ми их воспроизводимость; успешным применением результатов исследования в
реальных задачах обнаружения программных отказов систем с интенсивным
ПО.

Результаты работы докладывались и обсуждались на следующих российских
и международных научно-технических конференциях и семинарах:

1. Научный семинар кафедры математического моделирования и информати-
ки физического факультета МГУ им.М.В.Ломоносова под руководством
профессора Ю. П. Пытьева (05.03.2015).

2. Научный семинар «Математические методы в естественных науках» физиче-
ского факультета МГУ им. М. В. Ломоносова под руководством профессора
А. Н. Боголюбова (26.03.2015).

3. XXII международная научная конференция студентов, аспирантов и моло-
дых учёных «Ломоносов-2015», 13–17 апреля 2015 г., Москва, Россия.

4. Научный семинар «Practical Machine Learning» компании «Яндекс» под
руководством к. ф.-м. н. М. А. Ройзнера (04.06.2015).

5. Научный семинар «Математические модели информационных технологий»
департамента анализа данных и искусственного интеллекта Высшей школы
экономики под руководством профессора С. О. Кузнецова (18.06.2015).

6. Научный семинар отдела Интеллектуальных систем ВЦ РАН под руковод-
ством члена-корреспондента РАН К. В. Рудакова (24.06.2015).

7. Научный семинар «Случайные процессы и стохастический анализ» ка-
федры теории вероятностей механико-математического факультета МГУ
им.М.В.Ломоносова под руководством академика РАН А.Н. Ширяева
(23.09.2015)

8. Научный семинар Yandex Data Factory под руководством к. ф.-м. н. Е. А. Ря-
бенко (09.10.2015).

9. Научный семинар лаборатории математического моделирования сложных
естественных и инженерных систем МГУ им.М.В.Ломоносова под руко-
водством доцента Е.А. Грачева (06.11.2015).

10. The 8th International Conference on Machine Vision, 19–21 November 2015,
Barcelona, Spain.

11. 58-я научная конференция МФТИ, 23–28 ноября 2015 г., г. Долгопрудный,
Россия.
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12. Общемосковский постоянный научный семинар «Теория автоматического
управления и оптимизации» ИПУ РАН им.В.А. Трапезникова под руко-
водством профессора Б. Т. Поляка (11.12.2015).

13. Deep Machine Intelligence Workshop, Skolkovo Institute of Science and
Technology, 4–5 June 2016, Moscow, Russia.

14. Международная конференция по стохастическим методам, 27 мая–
03 июня 2016 г., пос. Абрау-Дюрсо, г. Новороссийск, Россия.

15. Международная конференция по алгебре, анализу и геометрии, 26 июня–2
июля 2016 г., г. Казань, Россия.

16. 9th European Summer School in Financial Mathematics, 29 August–2 September
2016, Pushkin, St. Petersburg, Russia.

Личный вклад автора

Автор внес следующий личный вклад в работах, выполненных с соавторами:
1. В работах [1,4] предложены модели квазипериодических сигналов и алгорит-

мы оценивания их параметров, проведены вычислительные эксперименты
для оценки качества предложенной методологии обнаружения разладок.

2. В работе [2] проведен теоретический подсчет структуры оптимальных филь-
тров во всех случаях, а также численное исследование функции штрафа
для случая нормального априорного распределения.

3. В работе [3] предложен критерий качества процедур обнаружения раз-
ладки и алгоритм оптимизации этого критерия для ансамблей «слабых»
детекторов, проведены вычислительные эксперименты для оценки качества
ансамблей.

Публикации

По теме диссертационной работы опубликовано 7 печатных работ, в том числе
1 работа в журнале из списка ВАК и 3 работы в журналах из списка Scopus.
Наиболее значимые работы:
[1] Artemov A. V. Effective signal extraction via local polynomial approximation

under long-range dependency conditions // Accepted for publication in
Lobachevskii Journal of Mathematics. — 2016. — Vol. 37. — Issue 1.
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[2] Артёмов А. В., Бурнаев Е. В. Оптимальное оценивание сигнала, наблю-
даемого во фрактальном гауссовском шуме // Теория вероятностей и ее
применения. — 2015. — Т. 60. — №. 1. — С. 163–171.

[3] Artemov A., Burnaev E. Ensembles of detectors for online detection of transient
changes //Eighth International Conference on Machine Vision. — International
Society for Optics and Photonics, 2015. — pp. 98751Z–98751Z-5.

[4] Artemov A., Burnaev E., Lokot A. Nonparametric decomposition of quasi-
periodic time series for change-point detection //Eighth International Conference
on Machine Vision. — International Society for Optics and Photonics, 2015. —
pp. 987520–987520-5.

Структура и объем диссертационной работы

Диссертация состоит из титульного листа, оглавления, введения, пяти глав,
заключения и списка литературы, включающего 108 наименований. Работа
изложена на 122 страницах и содержит 27 рисунков.

Введение. Охарактеризована проблематика исследования; приведен анализ
ее разработанности; обоснована актуальность диссертационной работы; сформу-
лированы цели и задачи диссертационной работы; охарактеризованы научная
новизна и практическая значимость исследования, приведено краткое содержа-
ние диссертации; приведен список опубликованных по теме диссертации работ.

Первая глава. Теоретическое исследование задачи оценки параметров сиг-
нала по данным его измерений, выполненным во фрактальном шуме (шуме с
длинной памятью). Вычисление оценки максимального правдоподобия и Бай-
есовских оценок, учитывающих дополнительную информацию о параметрах
сигнала.

Вторая глава. Разработка математических методов обнаружения разладки
динамической системы на основе ансамблей «слабых» детекторов при нарушении
стандартных предположений о модели разладки. Описания и результаты вы-
числительных экспериментов для исследования эффективности разработанного
подхода.

Третья глава. Разработка методологии моделирования и обнаружения раз-
ладок сигналов с квазипериодическим трендом. Модели сигналов с квазипе-
риодическим трендом на основе локально полиномиального приближения и
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на основе явного учета сезонности. Вычислительные алгоритмы оценивания
параметров моделей квазипериодических сигналов. Алгоритмы обнаружения
разладок и аномалий на основе ансамблей «слабых» детекторов.

Четвертая глава. Описание структуры и функционала разработанного
комплекса программ.

Пятая глава. Применение разработанных математических методов и алго-
ритмов в задачах анализа реальных сигналов.

Заключение. Кратко перечислены основные результаты диссертационной
работы.



16

Глава 1

Оценивание параметров сигнала,

наблюдаемого во фрактальном

гауссовском шуме

1.1 Введение

Проблема оценивания параметров сигнала, наблюдаемого в шуме с длинной
памятью, является задачей статистики случайных процессов. В литературе
рассматривается три основных класса задач такого типа, а именно

– задачи прогнозирования [25],
– задачи оценки параметра [14; 37; 61; 67; 92],
– задачи фильтрации [38–41].

История исследования явления длинной памяти и понятия фрактального бро-
уновского движения, её моделирующего, приведена в разделе 1.1.1 Обзор некото-
рых работ по фильтрации для управляемых фрактальным броуновским движени-
ем процессов дан в разделе 1.1.2. Для некоторых из названных задач существуют
эффективные процедуры оценивания, однако нельзя сказать, что теория оп-
тимальной фильтрации процессов, управляемых фрактальным броуновским
движением, завершена [38]. В частности, за исключением случая линейного
тренда отсутствуют теоретические результаты о структуре оптимальной оценки
параметра тренда фрактального броуновского движения. Кроме того, даже для
случая линейного тренда в рамках Байесовского подхода отсутствуют теорети-
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ческие результаты о структуре оптимальной оценки, за исключением случая
нормального априорного распределения параметра тренда [14].

В данной главе рассматривается задача оценки векторного параметра тренда
случайного сигнала, моделируемого фрактальным диффузионным процессом.
Подсчитывается оценка максимального правдоподобия для этого параметра,
а также последовательная Байесовская оценка для нормального априорного
распределения в предположении нелинейного тренда и для случая равномер-
ного априорного распределения в предположении линейного тренда. Также
описывается структура оптимального момента остановки наблюдений в случае
нормального априорного распределения.

1.1.1 Фрактальное броуновское движение

Броуновское движение является широко используемой математической мо-
делью многих физических и биологических процессов, а его математическая
теория — это мощный инструмент анализа широкого круга естественных явлений.
Универсальная применимость модели броуновского движения основана на пред-
положении о структуре рассматриваемой системы, которая должна состоять из
большого числа независимых или слабо зависимых компонент. Однако существу-
ют естественные структуры и процессы, проявляющие долгосрочные временные
и пространственные корреляции. Например, в ряде задач статистической ме-
ханики появляются распределения вероятностей, в которых коэффициенты
корреляции довольно медленно стремятся к нулю. Это означает, что случайные
величины в таких задачах нельзя считать слабо зависимыми [103]. Затухание кор-
реляций определяется степенным характером убывания спектральной плотности
мощности, обратно пропорциональной частоте. Такая зависимость спектральной
плотности мощности от частоты характерна для весьма различных по своей
природе процессов:

– флуктуаций нормального периода сердцебиений человека [42];
– флуктуаций тока и магнитного поля в системах заряженных частиц [34;

97];
– вариаций объема трафика, передаваемого по сети Ethernet [1; 62];
– вариаций объема информации, кодирующего видеосигнал [22];
– флуктуаций уровня воды в водоемах [31],
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– и даже флуктуаций мощности и частоты аудиосигнала в музыке [89];
– исследования в области макроэкономики, финансов, моделей ценообра-

зования и доходности также указывают на наличие «длинной памяти»
для процессов, соответствующих динамике цен, эволюции экономических
показателей, изменениям курсов обмена валют, динамике процентных ста-
вок и т. п. [7].

Все эти и другие эмпирические данные говорят о необходимости изучения
фрактальных стохастических процессов для моделирования, идентификации и
оценивания реальных сигналов.

Теория фрактального броуновского движения — это математическое обоб-
щение классической теории случайного блуждания и броуновского движения.
Термин «фрактальное» соответствует фрактальному интегрированию и диф-
ференцированию [79; 80]. Процесс фрактального броуновского движения был
впервые рассмотрен Колмогоровым [98] и позднее был задан Мандельбротом
и ван Нессом посредством стохастического интеграла по обыкновенному бро-
уновскому движению [51]. Приведем обозначения на основе принятых в работе
Клепцыной [38].

Стандартное фрактальное броуновское движение 𝐵𝐻 =
(︀
𝐵𝐻
𝑡

)︀
06𝑡6𝑇

на [0,𝑇 ]

с параметром Хёрста 𝐻 ∈ (0,1) — это гауссовский процесс с непрерывными
траекториями такой, что

𝐵𝐻
0 = 0, E𝐵𝐻

𝑡 = 0, E[𝐵𝐻
𝑡 𝐵

𝐻
𝑠 ] =

1

2

(︀
|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡− 𝑠|2𝐻

)︀
.

В случае, когда 𝐻 = 1/2, фрактальное броуновское движение является обыкно-
венным броуновским движением, в случае же 𝐻 ̸= 1/2 процесс 𝐵𝐻 не является
мартингалом [101].

В противоположность классическому броуновскому движению, имеющему
независимые приращения, основными свойствами фрактального броуновского
движения являются длительность и интенсивность его пространственных и вре-
менных корреляций. Диапазон времен, для которых приращения фрактального
броуновского движения являются зависимыми, можно назвать бесконечным [51].
С эмпирической точки зрения этот эффект (наличие «длинной памяти») может
быть определен как устойчивость наблюдаемых автокорреляций [7]. Понятие
фрактального броуновского движения тесно связано с рядом понятий статисти-
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H = 0.1

H = 0.3

H = 0.5

H = 0.7

H = 0.9

Рисунок 1.1: Примеры реализаций фрактального броуновского движения с различными
значениями показателя 𝐻

ческой физики, включая понятия масштабной инвариантности, фрактальной
размерности и показателя Херста, а также с описанными выше эмпирически-
ми явлениями, такими как фликкер-шум или шум 1/𝑓𝑎. Последний является
процессом фрактального броуновского движения с показателем Херста 𝐻 = 𝑎−1

2 .

1.1.2 Некоторые известные из литературы результаты по фильтра-

ции для фрактального броуновского движения

Литература содержит ряд работ, посвященных оценке параметров фракталь-
ных динамических систем. Отметим, что подходы стандартной теории стоха-
стического интегрирования в случае, когда управляющим процессом является
фрактальное броуновское движение, непременимы. По этой причине значитель-
ный объем литературы посвящен обобщению результатов стандартной теории
на случай фрактального броуновского движения: были предложены подходы к
расширению теории стохастического интегрирования на системы, управляемые
фрактальным броуновским движением и, в частности, предложен фрактальный
аналог теоремы Гирсанова [38; 61; 80]. Для целей настоящей главы централь-
ными являются работа Клепциной [38], в которой описана структура процесса
правдоподобия для общего вида процесса диффузионного типа, а также ра-
бота Четина [14], в которой рассматривается Байесовская задача оценивания
параметра линейного сноса в системе, управляемой фрактальным броуновским
движением.
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Задачи оценивания параметров динамических систем, управляемых фрак-
тальным броуновским движением, рассматриваются с 1990-х гг., когда Нор-
рос доказал теорему Гирсанова для фрактального броуновского движения в
предположении линейного снова, получил явный вид оценки максимального
правдоподобия коэффициента сноса и исследовал его асимптотические свой-
ства [61]. Аналогичный результат получен Ху, который рассматривал задачу
оценивания параметра линейного сноса fBm методом максимального правдо-
подобия в дискретном времени, использовав теорему о нормальной корреля-
ции [92]. Лишь недавно Четин, Новиков и Ширяев рассмотрели Байесовскую
задачу последовательного оценивания параметра линейного сноса fBm, в ко-
торой последний априори нормально распределен, и аналитически получили
оптимальную Байесовкую оценку и оптимальный момент остановки для квад-
ратичного и дираковского штрафов [14]. Отметим, что в обоих этих задачах
рассматривались модели, в которых тренд (снос) являлся линейной функцией, и
лишь в работе Четина делались априорные предположения о параметре тренда.
Также задачи оценки параметра сноса рассматривались для фрактальных ана-
логов процесса Орнштейна-Уленбека, где были получены оценки максимального
правдоподобия этого параметра, исследованы их асимптотические свойства и до-
казана состоятельность [37; 67]. Наконец, рядом авторов рассматривалась задача
оценки параметра сноса в частично наблюдаемой фрактальной диффузионной
системе [12].

Среди задач фильтрации центральное место занимает цикл работ Клепциной
и ле Бретона, которые предложили алгоритмы фильтрации для однородных ли-
нейных систем, управляемых фрактальным броуновским движением [36; 39–41;
48] и расширили фильтр Калмана-Бьюси на фрактальные линейные системы [19].

1.2 Постановка задачи

Пусть на вероятностном пространстве (Ω,ℱ ,P) выделена фильтрация ℱ =

(ℱ𝑡)𝑡>0 и задан случайный процесс 𝜉 = (𝜉𝑡)06𝑡6𝑇 , имеющий представление

𝜉𝑡 = 𝑓(𝑡) + 𝜈𝑡, (1.1)
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где снос 𝑓(𝑡) удовлетворяет условию абсолютной интегрируемости на [0, 𝑇 ],´ 𝑇
0 |𝑓(𝑡)|𝑑𝑡 <∞, а шум 𝜈𝑡 задается соотношением

𝜈𝑡 = 𝜎(𝑡)𝐵𝐻
𝑡 , (1.2)

в котором коэффициент диффузии 𝜎(𝑡) — квадратично интегрируемая на [0, 𝑇 ]

функция,
´ 𝑇
0 |𝜎(𝑡)|2𝑑𝑡 <∞, а процесс 𝐵𝐻 =

(︀
𝐵𝐻
𝑡

)︀
06𝑡6𝑇

— фрактальное броунов-
ское движение с показателем Хёрста 𝐻 ∈ (0,1). В настоящей главе функция 𝜎(𝑡)
предполагается известной. Пусть коэффициент сноса 𝑓(𝑡) представим в виде
разложения

𝑓(𝑡) =

𝑛𝜃∑︁

𝑖=0

𝜃𝑖𝑔𝑖(𝑡) (1.3)

по заданной системе
{︀
𝑔𝑖(𝑡)

}︀𝑛𝜃
𝑖=0

абсолютно интегрируемых функций, а парамет-
ры 𝜃𝑖, 𝑖 = 0, . . . , 𝑛𝜃 — неизвестны. Для краткости примем векторные обозначения
𝜃 =

(︀
𝜃0, . . . , 𝜃𝑛𝜃

)︀ᵀ, 𝑔(𝑡) =
(︀
𝑔0(𝑡), . . . , 𝑔𝑛𝜃(𝑡)

)︀ᵀ, тогда

𝑓(𝑡) = 𝜃ᵀ𝑔(𝑡). (1.4)

Рассмотрим задачу нахождения оценки значения 𝜃 по реализации
{︀
𝜉𝑠, 0 6

𝑠 6 𝑡
}︀
, доступной до момента времени 𝑡. Для ее решения рассмотрим два широко

используемых подхода: подход на основе метода максимального правдоподобия
и Байесовский подход. В первом подходе 𝜃 считается вектором неизвестных
параметров и требуется отыскать оценку ̂︀𝜃ML = ̂︀𝜃ML(𝑡), максимизирующую
правдоподобие соответствующего наблюдаемого процесса. Байесовский подход
основан на предположении, что 𝜃 — случайный вектор из R𝑛𝜃+1, имеющий
известное априорное распределение 𝑝𝜃(x),x ∈ R𝑛𝜃+1. В таких предположениях
рассматривается задача нахождения последовательного правила оценивания
𝛿BAYES =

(︀
𝜚BAYES, ̂︀𝜃BAYES

)︀
, такого, что

inf
𝛿∈D

E
[︀
𝑐𝜚+ ‖𝜃 − ̂︀𝜃‖2

]︀
= E

[︀
𝑐𝜚BAYES + ‖𝜃 − ̂︀𝜃BAYES‖2

]︀
, (1.5)

где D =
{︀
𝛿 | 𝛿 =

(︀
𝜚,̂︀𝜃
)︀ }︀

— класс правил оценивания с конечными моментами
остановки 𝜚 6 𝑇 < ∞ относительно фильтрации ℱ𝑡 = 𝜎

(︁{︀
𝜉𝑠, 0 6 𝑠 6 𝑡

}︀)︁
,

а 𝑐 > 0 — заданная постоянная, интерпретируемая как плата за длительность на-
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блюдений. Байесовская стратегия последовательного оценивания 𝜃 заключается
в том, что наблюдения останавливаются в момент 𝜚BAYES, и ̂︀𝜃BAYES принимается
оптимальной оценкой значения 𝜃. Заметим, что если для случайной величины ̂︀𝜃
имеет место соотношение E

[︁
‖𝜃 − ̂︀𝜃‖2

]︁
<∞, то выполнено равенство

E
[︀
𝑐𝜚+ ‖𝜃 − ̂︀𝜃‖2

]︀
= E

[︁
𝑐𝜚+ E

[︀
‖𝜃 − ̂︀𝜃‖2

⃒⃒
ℱ 𝜉
𝑡

]︀]︁
.

Величину E
[︀
‖𝜃 − ̂︀𝜃‖2

⃒⃒
ℱ 𝜉
𝑡

]︀
тогда можно подсчитать как среднее по условному

распределению 𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
:

E
[︀
‖𝜃 − ̂︀𝜃‖2

⃒⃒
ℱ 𝜉
𝑡

]︀
=

ˆ

R𝑛𝜃+1

‖𝜃 − ̂︀𝜃‖2𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
𝑑𝑥.

1.2.1 Теорема Гирсанова для фрактального броуновского движения

Приведем ряд результатов, относящихся к структуре процесса правдоподобия
для фрактального броуновского движения со сносом [38]. Для этого вначале
введем необходимые обозначения.

Известно следующее интегральное преобразование процесса 𝐵𝐻 , результатом
которого является мартингал. Обозначим для 0 6 𝑠 < 𝑡 6 𝑇

𝜅𝐻 = 2𝐻Γ

(︂
3

2
−𝐻

)︂
Γ

(︂
1

2
+𝐻

)︂
,

𝑘𝐻 (𝑡,𝑠) = 𝜅−1𝐻 𝑠1/2−𝐻 (𝑡− 𝑠)1/2−𝐻 ,

𝜆𝐻 =
2𝐻Γ (3− 2𝐻) Γ

(︀
1
2 +𝐻

)︀

Γ
(︀
3
2 −𝐻

)︀ ,

𝑤𝐻(𝑡) = 𝜆−1𝐻 𝑡2−2𝐻 , 𝑑𝑤𝐻
𝑡 = 𝑑(𝑤𝐻(𝑡))

и определим процесс 𝑀𝐻 =
(︀
𝑀𝐻

𝑡

)︀
06𝑡6𝑇

соотношением

𝑀𝐻
𝑡 ≡

𝑡ˆ

0

𝑘𝐻 (𝑡,𝑠) 𝑑𝐵𝐻
𝑠 . (1.6)

Так заданный процесс 𝑀𝐻
𝑡 является гауссовским мартингалом, причем его

квадратическая вариация
⟨︀
𝑀𝐻

𝑡

⟩︀
есть функция 𝑤𝐻(𝑡) [38; 61]. Для дальнейшего
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удобства зададим также процесс 𝑚𝐻 =
(︀
𝑚𝐻
𝑡

)︀
06𝑡6𝑇

соотношением

𝑚𝐻
𝑡 =𝑀𝐻

𝑡 /𝑤𝐻(𝑡).

Пусть на фильтрованном вероятностном пространстве (Ω,ℱ , (ℱ𝑡) ,P) задан
процесс 𝑌 = (𝑌𝑡)06𝑡6𝑇 , стохастический дифференциал 𝑑𝑌𝑡 которого удовлетво-
ряет соотношению

𝑑𝑌𝑡 = 𝐶 (𝑡) 𝑑𝑡+𝐵 (𝑡) 𝑑𝐵𝐻
𝑡 ,

где 𝐵𝐻 =
(︀
𝐵𝐻
𝑡

)︀
06𝑡6𝑇

— фрактальное броуновское движение с параметром 𝐻 ∈
(0,1), а неслучайная функция 𝐶(𝑡) таковы, что функция 𝑄𝐻(𝑡), задаваемая
соотношением

𝑄𝐻(𝑡) =
𝑑

𝑑𝑤𝐻
𝑡

𝑡ˆ

0

𝑘𝐻(𝑡,𝑠)𝐶(𝑠)𝑑𝑠, (1.7)

корректно определена. В последнем соотношении дифференцирование по вели-
чине 𝑑𝑤𝐻

𝑡 понимается в смысле следующей операции

𝑑𝑓(𝑡)

𝑑𝑤𝐻
𝑡

≡ 𝜆𝐻
2− 2𝐻

𝑡2𝐻−1
𝑑𝑓(𝑡)

𝑑𝑡
.

Задание такой функции позволяет сформулировать аналог теоремы Гирсанова
для процесса 𝑌 .

Теорема (Доказательство см. в [38]). Пусть 𝑄𝐻(𝑡) принадлежит
𝐿2
(︀
[0,𝑇 ] ,𝑑𝑤𝐻

𝑡

)︀
, где величина 𝑑𝑤𝐻

𝑡 определена в (1.6). Зададим случайный
процесс Λ𝐻 =

(︀
Λ𝐻𝑡
)︀
06𝑡6𝑇

соотношением

Λ𝐻𝑡 = exp

⎧
⎨
⎩

𝑡ˆ

0

𝑄𝐻(𝑠)𝑑𝑀
𝐻
𝑠 −

1

2

𝑡ˆ

0

(︁
𝑄𝐻(𝑠)

)︁2
𝑑𝑤𝐻

𝑠

⎫
⎬
⎭ . (1.8)

Тогда EΛ𝐻
𝑡 = 1 и распределение процесса 𝑌 по мере P𝑌 = Λ𝐻

𝑡 P совпадает с

распределением процесса
𝑡́

0

𝐵(𝑠)𝑑𝐵𝐻
𝑠 по мере P.

Случайный процесс Λ𝐻 называется процессом правдоподобия или производ-
ной Радона-Никодима 𝑑P𝑌

𝑑P меры P𝑌 по мере P.
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1.3 Оценка максимального правдоподобия параметра сно-

са

Рассмотрим задачу отыскания оценки максимального правдоподобия для
параметра 𝜃 коэффициента сноса 𝑓(𝑡) в (1.1). Согласно (1.1)–(1.3) процесс 𝜉𝑡
удовлетворяет уравнению

𝜉𝑡 =

𝑛𝜃∑︁

𝑖=0

𝜃𝑖𝑔𝑖(𝑡) + 𝜎(𝑡)𝐵𝐻
𝑡 , (1.9)

а его стохастический дифференциал — уравнению

𝑑𝜉𝑡 =

𝑛𝜃∑︁

𝑖=0

𝜃𝑖𝑔
′
𝑖(𝑡)𝑑𝑡+ 𝜎(𝑡)𝑑𝐵𝐻

𝑡 .

Структуру процесса правдоподобия и соответствующей оценки описывает сле-
дующая

Теорема 1. Пусть коэффициент сноса 𝑓() фрактального броуновского дви-
жения имеет вид (1.3)–(1.4). Тогда оценка ̂︀𝜃ML максимального правдоподобия
параметра 𝜃 имеет вид

̂︀𝜃ML = 𝑅−1𝐻 (𝑡)𝜓𝐻
𝑡 , (1.10)

где компоненты 𝑛𝜃 +1-мерного случайного процесса 𝜓𝐻 =
(︀
𝜓𝐻
𝑡

)︀
06𝑡6𝑇

и элемен-
ты детерминированной матрицы 𝑅𝐻(𝑡) равны

(𝜓𝐻
𝑡 )𝑖 =

𝑡ˆ

0

𝜓𝑖(𝑠)𝑑𝑀
𝐻
𝑠 и (𝑅𝐻(𝑡))𝑖𝑗 =

𝑡ˆ

0

𝜓𝑖(𝑠)𝜓𝑗(𝑠)𝑑𝑤
𝐻
𝑠 , (1.11)

𝑖,𝑗 = 0, . . . , 𝑛𝜃, соответственно, а функции 𝜓𝑖(𝑡), 𝑖 = 0, . . . , 𝑛𝜃, задаются
соотношениями

𝜓𝑖(𝑡) =
𝑑

𝑑𝑤𝐻
𝑡

𝑡ˆ

0

𝑘𝐻(𝑡,𝑠)𝑔
′
𝑖(𝑠)𝑑𝑠, 𝑖 = 0, . . . , 𝑛𝜃. (1.12)
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Доказательство. Для функции 𝑄𝜃𝐻(𝑡), общий вид которой определен в (1.7),
получим

𝑄𝜃𝐻(𝑡) =

𝑛𝜃∑︁

𝑖=0

𝜃𝑖
𝑑

𝑑𝑤𝐻
𝑡

𝑡ˆ

0

𝑘𝐻(𝑡,𝑠)𝑔
′
𝑖(𝑠)𝑑𝑠 =

𝑛𝜃∑︁

𝑖=0

𝜃𝑖𝜓𝑖(𝑡),

где приняты обозначения (1.12) для функций 𝜓𝑖(𝑡), 𝑖 = 0, . . . , 𝑛𝜃. Для процесса
правдоподобия Λ𝐻 , общий вид которого записан в (1.8), имеем

Λ𝐻𝑡 (𝜃) = exp

⎧
⎨
⎩

𝑛𝜃∑︁

𝑖=0

𝜃𝑖

𝑡ˆ

0

𝜓𝑖(𝑠)𝑑𝑀
𝐻
𝑠 −

1

2

𝑡ˆ

0

(︃
𝑛𝜃∑︁

𝑖=0

𝜃𝑖𝜓𝑖(𝑠)

)︃2

𝑑𝑤𝐻
𝑠

⎫
⎬
⎭ . (1.13)

Процесс Λ𝐻 определяет производную Радона-Никодима меры, порожденной
процессом 𝜉𝑠 из (1.9), относительно меры процесса 𝜉𝑠 = 𝐵𝐻

𝑠 , 𝑠 6 𝑡. Формулу (1.13)
можно записать более компактно, используя векторные обозначения:

Λ𝐻𝑡 (𝜃) = exp

{︂
𝜃ᵀ𝜓𝐻

𝑡 −
1

2
𝜃ᵀ𝑅𝐻(𝑡)𝜃

}︂
, (1.14)

где компоненты 𝑛𝜃 + 1-мерного процесса 𝜓𝐻 и элементы матрицы 𝑅𝐻(𝑡)

заданы соотношениями (1.11). Используя условие равенства нулю гради-
ента ∇𝜃 log Λ𝐻

𝑡 (𝜃), получим оценку максимального правдоподобия ̂︀𝜃ML =

argmax
𝜃

Λ𝐻𝑡 (𝜃) как решение системы алгебраических уравнений

𝑡ˆ

0

𝜓𝑖(𝑠)𝑑𝑀
𝐻
𝑠 −

𝑛𝜃∑︁

𝑗=0

𝜃𝑗

𝑡ˆ

0

𝜓𝑖(𝑠)𝜓𝑗(𝑠)𝑑𝑤
𝐻
𝑠 = 0, 𝑖 = 0, . . . , 𝑛𝜃,

или в векторном виде
𝜓𝐻
𝑡 −𝑅𝐻(𝑡)𝜃 = 0.

Если матрица 𝑅𝐻(𝑡) обратима для каждого 𝑡, то решением этой системы явля-
ется оценка ̂︀𝜃ML из (1.10). Теорема доказана.

Следствие 1 (Случай полиномиального сноса). Пусть 𝑔𝑖(𝑡) = 𝑡𝑖, 𝑖 = 0, . . . , 𝑛𝜃,
а коэффициент диффузии предполагается постоянным: 𝜎(𝑡) = 𝜎. Тогда на-
блюдаемый процесс имеет структуру 𝜉𝑡 =

∑︀𝑛
𝑖=0 𝜃𝑖𝑡

𝑖 + 𝜎𝐵𝐻
𝑡 , для функций 𝜓𝑖(𝑡)

имеем 𝜓𝑖(𝑡) = 𝛽𝐻(𝑖)𝑡
𝑖−1, 𝑖 = 0, . . . , 𝑛𝜃, а компоненты векторнозначного процес-
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са 𝜓𝐻 и элементы матрицы 𝑅𝐻(𝑡) заданных в (1.11), равны

(𝜓𝐻
𝑡 )𝑖 = 𝛽𝐻(𝑖)

𝑡ˆ

0

𝑠𝑖−1𝑑𝑀𝐻
𝑠 , (𝑅𝐻(𝑡))𝑖𝑗 = 𝛼𝐻(𝑖,𝑗)𝑡

𝑖+𝑗−2𝐻 ,

соответственно1, где

𝛼𝐻(𝑖,𝑗) = 𝜆−1𝐻 𝛽𝐻(𝑖)𝛽𝐻(𝑗)
2− 2𝐻

𝑖+ 𝑗 − 2𝐻
,

𝛽𝐻(𝑖) = 𝑖
2− 2𝐻 + 𝑖− 1

2− 2𝐻

Γ (3− 2𝐻)

Γ (3− 2𝐻 + 𝑖− 1)

Γ (3/2−𝐻 + 𝑖− 1)

Γ (3/2−𝐻)
,

где 𝑖,𝑗 = 0, . . . , 𝑛𝜃. Оценка ̂︀𝜃ML получается решением системы 𝜓𝐻
𝑡 −𝑅𝐻(𝑡)𝜃 =

0.

Отметим, что в случае 𝑛𝜃 = 1 наблюдаемый процесс удовлетворяет стоха-
стическому дифференциальному уравнению 𝑑𝜉𝑡 = 𝜃1𝑑𝑡+ 𝜎𝑑𝐵𝐻

𝑡 , а выражение
для процесса правдоподобия имеет вид Λ𝐻

𝑡 (𝜃) = exp
{︀
𝜃1𝑀

𝐻
𝑡 − 𝜃21𝜆−1𝐻 𝑡2−2𝐻/2

}︀
,

поэтому оценка максимального правдоподобия (̂︀𝜃1)ML для 𝜃1 имеет вид

(̂︀𝜃1)ML =
𝑀𝐻

𝑡

𝑤𝐻(𝑡)
. (1.15)

Этот результат получен Норросом [61].

1 Для подсчета величин вида
𝑡́

0

𝑠𝑖𝑑𝑀𝐻
𝑠 воспользуемся формулой интегрирования по частям

𝑡ˆ

0

𝑠𝑖𝑑𝑀𝐻
𝑠 = 𝑡𝑖𝑀𝐻

𝑡 − 𝑖
𝑡ˆ

0

𝑠𝑖−1𝑀𝐻
𝑠 𝑑𝑠.

Пользуясь той же формулой далее, для второго слагаемого получим

𝑡ˆ

0

𝑠𝑖−1𝑀𝐻
𝑠 𝑑𝑠 = 𝑡𝑖−1𝑁

(𝑖)
𝑡 − (𝑖− 1)

𝑡ˆ

0

𝑠𝑖−2𝑁 (𝑖)
𝑠 𝑑𝑠,

где 𝑁 (𝑖)
𝑡 =

𝑡́

0

𝑁
(𝑖−1)
𝑠 𝑑𝑠,𝑖 = 1,2, . . . ,𝑁

(0)
𝑡 =𝑀𝐻

𝑡 . Применяя формулу интегрирования по частям далее, получим
и все остальные слагаемые.
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1.4 Байесовская оценка параметра сноса. Случай нор-

мального априорного распределения

Рассмотрим задачу отыскания Байесовской оценки параметра 𝜃 ∈ R𝑛𝜃 , имею-
щего априорное распределение с плотностью 𝑝𝜃(𝑥), 𝑥 = (𝑥0, . . . ,𝑥𝑛𝜃) ∈ R𝑛𝜃 .

Согласно обобщенной формуле Байеса (см. [14; 100]) условная плотность рас-
пределения 𝜃 при условии наблюдений ℱ 𝜉

𝑡 = 𝜎
(︁{︀

𝜉𝑠, 0 6 𝑠 6 𝑡
}︀)︁

за процессом 𝜉

выражается в виде

𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
=
𝑑P
(︀
𝜃0 6 𝑥0, . . . , 𝜃𝑛 6 𝑥𝑛

⃒⃒
ℱ 𝜉
𝑡

)︀

𝑑𝑥0 · · · 𝑑𝑥𝑛
=

=
𝑝𝜃(𝑥)Λ𝐻𝑡 (𝑥)´

R𝑛𝜃

𝑝𝜃(𝑧)Λ𝐻𝑡 (𝑧)𝑑𝑧
, 𝑥 ∈ R𝑛𝜃 , (1.16)

где Λ𝐻𝑡 (𝑥) — процесс правдоподобия, структура которого описана в разделе 1.3.
Далее рассмотрим частные случаи, в которых априорное распределение является
нормальным и равномерным.

Рассмотрим случай нормального априорного распределения. Основной ре-
зультат настоящего раздела изложен в следующей теореме.

Теорема 2. Пусть 𝜃 — нормальный случайный вектор с математическим
ожиданием 𝑚 и ковариационной матрицей Σ. Тогда оптимальной в среднем
квадратичном Байесовской оценкой ̂︀𝜃BAYES значения 𝜃 является апостериорное
среднее

̂︀𝜃BAYES = E
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
=
(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1 (︀
𝜓𝐻
𝑡 +Σ−1𝑚

)︀
. (1.17)

Величина условной среднеквадратичной ошибки оценивания E
[︀⃦⃦
𝜃 −

̂︀𝜃BAYES
⃦⃦2⃒⃒ℱ 𝜉

𝑡

]︀
определяется следом условной ковариационной матрицей

cov
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
=
(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1
. (1.18)

Доказательство. Хорошо известно, что наилучшей в среднеквадратичном оцен-
кой значения вектора 𝜃 при условии наблюдений

{︀
𝜉𝑠, 0 6 𝑠 6 𝑡

}︀
𝑡 является

условное математическое ожидание E
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
, при этом величина среднеквадра-

тичной погрешности оценивания равна следу условной ковариационной матрицы
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cov
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
. Как будет показано ниже, для случая нормального априорного рас-

пределения эти величины легко подсчитать.
Используя формулы (1.14) и (1.16) и учитывая, что плотность нормального

случайного вектора

𝑝𝜃(𝑥) =
1

(︀
(2𝜋)𝑛𝜃 detΣ

)︀1/2 exp
{︂
−1
2
(𝑥−𝑚)ᵀΣ−1(𝑥−𝑚)

}︂
,

для условного распределения 𝜃 при условии наблюдений ℱ 𝜉
𝑡 = 𝜎

(︁{︀
𝜉𝑠, 0 6 𝑠 6

𝑡
}︀
𝑡
)︁

получаем

𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
= 𝑔(𝑥)/

´
R𝑛𝜃

𝑔(𝑧)𝑑𝑛𝜃𝑧,

𝑔(𝑥) = exp
{︀
𝑥ᵀ
(︀
𝜓𝐻
𝑡 +Σ−1𝑚

)︀
− 1

2𝑥
ᵀ
(︀
𝑅𝐻(𝑡) +Σ−1

)︀
𝑥
}︀
.

Пользуясь известной формулой
´
R𝑛 exp

{︀
−1

2𝑥
ᵀ𝐴𝑥+ 𝑥ᵀ𝑏

}︀
𝑑𝑛𝑥 =√︁

(2𝜋)
𝑛

det𝐴 exp
{︀
1
2𝑏

ᵀ𝐴−1𝑏
}︀
, последнее выражение преобразуем к виду

𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
=

√︃
det𝐴

(2𝜋)𝑛𝜃
exp

{︂
−1
2

(︀
𝑥ᵀ𝐴𝑥− 2𝑥ᵀ𝑏+ 𝑏ᵀ𝐴−1𝑏

)︀}︂
,

где детерминированная матрица 𝐴 = 𝐴𝐻(𝑡) и 𝑛𝜃-мерный случайный процесс
𝑏𝐻 =

(︀
𝑏𝐻𝑡
)︀
06𝑡6𝑇

задаются соотношениями 𝐴𝐻(𝑡) = 𝑅𝐻(𝑡) + Σ−1 и 𝑏 = 𝑏𝐻𝑡 =

𝜓𝐻
𝑡 +Σ−1𝑚 соответственно. Таким образом, условная плотность

𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
=

√︃
det𝐴

(2𝜋)𝑛𝜃
exp

{︂
−1
2

(︀
𝑥−𝐴−1𝑏

)︀ᵀ
𝐴
(︀
𝑥−𝐴−1𝑏

)︀}︂

является многомерной нормальной со средним и ковариационной матрицей

E
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
= 𝐴−1𝑏 =

(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1 (︀
𝜓𝐻
𝑡 +Σ−1𝑚

)︀
и

cov
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
= 𝐴−1 =

(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1
,
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соответственно. Величина E
[︀⃦⃦
𝜃 − ̂︀𝜃BAYES

⃦⃦2⃒⃒ℱ 𝜉
𝑡

]︀
условной среднеквадратичной

ошибки оценивания при этом равна

E
[︀⃦⃦
𝜃 − ̂︀𝜃BAYES

⃦⃦2⃒⃒ℱ 𝜉
𝑡

]︀
= E

[︁
tr
(︁ (︀
𝑅𝐻(𝑡) +Σ−1

)︀−1 )︁]︁
= tr

(︁(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1)︁
.

Теорема доказана.

Следствие 2. Пусть выполнены условия теоремы 2, тогда оптимальный
момент остановки в задаче (1.5) детерминирован.

Доказательство. Действительно, для определения оптимального момента оста-
новки 𝜚BAYES необходимо решить следующую задачу оптимальной остановки

𝜚BAYES = arg inf
𝜚∈D

E
[︁
𝑐𝜚+ E

[︀
‖𝜃 − ̂︀𝜃BAYES‖2

⃒⃒
ℱ 𝜉
𝑡

]︀]︁
= arg inf

𝑡∈[0,𝑇 ]
𝐹𝐻(𝑡),

где функция

𝐹𝐻(𝑡) = 𝑐𝑡+E
[︀
‖𝜃− ̂︀𝜃BAYES‖2

⃒⃒
ℱ 𝜉
𝑡

]︀
= 𝑐𝑡+tr

(︁(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1)︁
, 𝑡 ∈ [0, 𝑇 ] (1.19)

детерминирована.

Следствие 3 (Случай полиномиального сноса). Пусть 𝑔𝑖(𝑡) = 𝑡𝑖, 𝑖 = 0, . . . , 𝑛𝜃,
коэффициент диффузии 𝜎(𝑡) = 𝜎 постоянен, а матрица Σ — диагональная
(координаты вектора 𝜃 независимы). Тогда функция 𝐹𝐻(𝑡) из (1.19) имеет
единственный минимум при 𝑡 ∈ [0, 𝑇 ].

Доказательство. Действительно, пусть Σ = diag(𝛾20 , . . . , 𝛾
2
𝑛), где 𝛾2𝑖 — диспер-

сия координаты 𝜃𝑖, 𝑖 = 0, . . . , 𝑛𝜃. Тогда след условной ковариационной матрицы
равен

tr
(︁(︀
𝑅𝐻(𝑡) +Σ−1

)︀−1)︁
=

𝑛∏︁

𝑖=0

(︀
𝛼𝐻(𝑖,𝑖)𝑡

2𝑖−2𝐻/𝜎4 + 𝛾−2
)︀−1

и является строго убывающей функцией при 𝑡 > 0. Поэтому 𝐹𝐻(𝑡) в (1.19)
является суммой строго возрастающей и строго убывающей функций и имеет
при 𝑡 ∈ [0, 𝑇 ] минимум, и притом единственный.

Аналогичный результат известен для случая линейного сноса 𝑎(𝑡) = 𝜇𝑡 [14].
Для случая кубического сноса и значений 𝐻 = 0.2, 𝑐 = 0.02 график функ-
ции 𝐹𝐻(𝑡) представлен на рис. 1.3.



30

0 1 2 3 4 5 6

Время t

−10

0

10

20

30

40

Наблюдения ξt
Тренд a(t)

Фильтр â(t)

Рисунок 1.2: Траектории результата на-
блюдения 𝜉𝑡, тренда 𝑓(=)

∑︀3
𝑘=0 𝜃𝑖𝑡

𝑖 и филь-
тра ̂︀𝑓(𝑡) = ∑︀3

𝑘=0(
̂︀𝜃BAYES)𝑖𝑡

𝑖, 0 6 𝑡 6 𝑇 , в
модельной задаче выделения кубического
тренда при значении параметра 𝐻 = 0.8
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Рисунок 1.3: Значения функции штрафа
𝐹𝐻(𝑡) в модельной задаче выделения по-
линомиального (кубического) тренда при
значениях параметров 𝐻 = 0.8, 𝑐 = 0.02

Заметим, что если наблюдаемый процесс удовлетворяет стохастическому
дифференциальному уравнению с линейным сносом 𝑑𝜉𝑡 = 𝜃1𝑑𝑡 + 𝜎𝑑𝐵𝐻

𝑡 , в ко-
тором 𝜃1 — нормально распределенная случайная величина с математическим
ожиданием 𝑚 и дисперсией 𝛾2, то условная плотность распределения 𝜃1 является
нормальной:

𝑝𝜃1
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
=

√︂
𝑤𝐻(𝑡)/𝜎2 + 1/𝛾2

2𝜋
×

× exp

{︃
−
(︂
𝑥− 𝑀𝐻

𝑡 /𝜎 +𝑚/𝛾2

𝑤𝐻(𝑡)/𝜎2 + 1/𝛾2

)︂2
𝑤𝐻(𝑡)/𝜎

2 + 1/𝛾2

2

}︃
,

а Байесовская оценка (̂︀𝜃1)BAYES = E
[︀
𝜃1
⃒⃒
ℱ 𝜉
𝑡

]︀
параметра 𝜃1 и условная средне-

квадратичная погрешность оценивания (̂︀𝛾21)BAYES = E
[︁(︀
𝜃1 − (̂︀𝜃1)BAYES)

)︀2⃒⃒ℱ 𝜉
𝑡

]︁

задаются соотношениями

(̂︀𝜃1)BAYES =
𝑀𝐻

𝑡 /𝜎 +𝑚/𝛾2

𝑤𝐻(𝑡)/𝜎2 + 1/𝛾2
и

(̂︀𝛾21)BAYES =
1

𝑤𝐻(𝑡)/𝜎2 + 1/𝛾2
,

соответственно. Этот результат (при 𝜎 = 1) получен Норросом [61].
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1.5 Байесовская оценка. Случай равномерного априорно-

го распределения

Рассмотрим задачу отыскания Байесовской оценки параметра 𝜃 ∈ R𝑛𝜃 в
случае равномерного априорного распределения на 𝑛𝜃-мерном параллелепипеде
𝑟 =

∏︀𝑛𝜃
𝑖=0[𝑎𝑖, 𝑏𝑖].

Плотность распределения параметра 𝜃 задается соотношением

𝑝𝜃(𝑥) =

𝑛𝜃∏︁

𝑖=0

1

𝑏𝑖 − 𝑎𝑖
1[𝑎𝑖,𝑏𝑖](𝑥𝑖) =

1

|𝑟|1𝑟(𝑥),

где 1𝑟(𝑥) =
∏︀𝑛𝜃

𝑖=0 1[𝑎𝑖,𝑏𝑖](𝑥𝑖), |𝑟| =
∏︀𝑛𝜃

𝑖=0(𝑏𝑖 − 𝑎𝑖)−1, а плотность условного распре-
деления выражается формулой

𝑝𝜃
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
=

1

𝑍𝐻
𝑡

1𝑟(𝑥) exp

{︂
𝑥ᵀ𝜓𝐻

𝑡 −
1

2
𝑥ᵀ𝑅𝐻(𝑡)𝑥

}︂
=

1

𝑍𝐻
𝑡

1𝑟(𝑥)Λ
𝐻
𝑡 (𝑥),

где процесс 𝑍𝐻 =
(︀
𝑍𝐻
𝑡

)︀
06𝑡6𝑇

, задаваемый равенством 𝑍𝐻
𝑡 =

´
r

Λ𝐻
𝑡 (𝑥)𝑑

𝑛𝜃𝑥, иг-

рает роль нормировочной постоянной, а процесс правдоподобия Λ𝐻
𝑡 (𝑥) задан

согласно (1.13).
Аналитический расчет нормировочного множителя 𝑍𝐻

𝑡 , условных среднего
E
[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
и ковариационной матрицы cov

[︀
𝜃
⃒⃒
ℱ 𝜉
𝑡

]︀
в случае произвольного 𝑛𝜃, во-

обще говоря, труден (соответствующий подсчет может быть выполнен численно,
например, с использованием алгоритма, предложенного в [23]). Остановимся
на расчете оценки для важного частного случая линейного сноса (𝑛𝜃 = 1), в кото-
ром наблюдаемый процесс 𝜉 определяется стохастическим дифференциальным
уравнением

𝑑𝜉𝑡 = 𝜃1𝑑𝑡+ 𝜎𝑑𝐵𝐻
𝑡 , (1.20)

где 𝜃1 ∼ 𝑈(𝑎, 𝑏). Результат подсчета в этой задаче составляет следующая

Теорема 3. Пусть в (1.20) 𝜃1 — равномерно распределенная на [𝑎,𝑏] случайная
величина, не зависящая от 𝐵𝐻

𝑡 . Тогда оптимальная в среднеквадратичном
Байесовская оценка параметра 𝜃1 имеет вид

(̂︀𝜃1)BAYES = 𝑚𝐻
𝑡 +

[︀
𝑍𝐻
𝑡 𝑤𝐻(𝑡)

]︀−1[︀
Λ𝐻𝑡 (𝑎)− Λ𝐻𝑡 (𝑏)

]︀
, (1.21)
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а условная среднеквадратичная погрешность оценивания равна

(̂︀𝛾21)BAYES = E
[︁(︀
𝜃1 − (̂︀𝜃1)BAYES)

)︀2⃒⃒ℱ 𝜉
𝑡

]︁
=
[︀
𝑤𝐻(𝑡)

]︀−1
+

+
[︀
𝑍𝐻(𝑡)𝑤𝐻(𝑡)

]︀−1 [︀
Λ𝐻𝑡 (𝑎)(𝑎−𝑚𝐻

𝑡 )− Λ𝐻𝑡 (𝑏)(𝑏−𝑚𝐻
𝑡 )
]︀
−

−
[︀
𝑍𝐻(𝑡)𝑤𝐻(𝑡)

]︀−2[︀
Λ𝐻𝑡 (𝑎)− Λ𝐻𝑡 (𝑏)

]︀2
, (1.22)

где

𝑍𝐻
𝑡 =

√︃
2𝜋

𝑤𝐻(𝑡)
exp

{︂
1

2

(︀
𝑚𝐻
𝑡

)︀2
𝑤𝐻(𝑡)

}︂
𝐶𝐻
𝑡 , (1.23)

𝐶𝐻
𝑡 = Φ

(︁(︀
𝑏−𝑚𝐻

𝑡

)︀√︀
𝑤𝐻(𝑡)

)︁
− Φ

(︁(︀
𝑎−𝑚𝐻

𝑡

)︀√︀
𝑤𝐻(𝑡)

)︁
.

Доказательство. Условное распределение 𝑝𝜃1
(︀
𝑥
⃒⃒
ℱ𝑡
)︀

легко подсчитать прямым
вычислением, оно выражается формулой

𝑝𝜃1
(︀
𝑥
⃒⃒
ℱ 𝜉
𝑡

)︀
=

1

𝑍𝐻
𝑡

1[𝑎,𝑏](𝑥) exp
{︁
𝑤𝐻(𝑡)

(︀
𝑥𝑚𝐻

𝑡 − 𝑥2/2
)︀}︁
,

где процесс 𝑍𝐻 определен согласно (1.23). Условные среднее и дисперсия полу-
чаются прямым вычислением соответствующих интегралов.

Рассмотрим несколько асимптотических свойств полученного байесовского
фильтра (1.21).

При 𝑎→ −∞, 𝑏→ +∞ (т. е. в случае априори произвольного 𝜃1) байесовская
оценка в (1.21) совпадает с оценкой максимального правдоподобия. Действи-
тельно, так как Λ𝐻𝑡 (𝑥)→ 0 при 𝑥→ ±∞, то второе слагаемое в (1.21) стремится
к нулю при 𝑥→ ±∞, и (̂︀𝜃1)BAYES → 𝑚𝐻

𝑡 .
При 𝑡 → ∞ байесовская оценка в (1.21) также совпадает с оценкой макси-

мального правдоподобия. Действительно, так как 𝑤𝐻(𝑡) → ∞ при 𝑡 → ∞, то
второй член в (1.21) стремится к нулю при 𝑡→∞, и (̂︀𝜃1)BAYES → 𝑚𝐻

𝑡 .
Рассмотрим задачу отыскания оптимального момента остановки в (1.5). Функ-

ция штрафа в этой задаче задается выражением

E
[︁
𝑐𝜚+ E

[︀(︀
𝜃1 − (̂︀𝜃1)BAYES)

)︀2⃒⃒ℱ 𝜉
𝜚

]︀]︁
= E

[︀
𝑐𝜚+ 𝛾𝐻𝜚

]︀
,
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где случайный процесс 𝛾𝐻 =
(︀
𝛾𝐻𝑡
)︀
06𝑡6𝑇

задается соотношением (1.22). Заметим,
что при 𝑡→∞ выполняется 𝛾𝐻𝑡 → 0. Для определения оптимального момента
остановки необходимо найти

𝜚BAYES = arg inf
𝜚
E
[︀
𝑐𝜚+ 𝛾𝐻𝜚

]︀
. (1.24)

В силу громоздкости формул (1.21), (1.22) и (1.23) не представляется возмож-
ным найти для 𝜚BAYES из (1.24) аналитическое описание (см. подходы в [65]),
возможно лишь только численное оценивание этого момента остановки.

1.6 Выводы

В настоящей главе рассмотрена задача оценки параметров тренда случайного
сигнала, моделируемого фрактальным диффузионным процессом. Вычислены
оценки максимального правдоподобия для этих параметров, а также последо-
вательные Байесовские оценки для нормального априорного распределения в
предположении нелинейного тренда и для случая равномерного априорного
распределения в предположении линейного тренда. Описана структура опти-
мального момента остановки наблюдений в случае нормального априорного
распределения, а также сделаны замечания, относящиеся к случаю равномер-
ного априорного распределения параметра линейного тренда. В случае, когда
система функций, параметризующая тренд, является системой полиномов, опти-
мальный момент остановки является неслучайной величиной.
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Глава 2

Ансамбли «слабых» детекторов

в задачах обнаружения разладки

2.1 Введение

Математические задачи «о разладке» составляют часть статистики случайных
процессов, связанную с вынесением (в режиме реального времени) суждений
об их характеристиках на основе анализа их реализаций. В данной главе всюду
принимается, что время дискретно: 𝑡 = 1, 2, . . . Пусть наблюдаемый случайный
процесс 𝜉 = (𝜉𝑡)𝑡>0 имеет структуру

𝜉𝑡 =

⎧
⎪⎨
⎪⎩
𝜉∞𝑡 , если 0 6 𝑡 < 𝜃,

𝜉0𝑡 , если 𝑡 > 𝜃,

(2.1)

где 𝜉∞ = (𝜉∞𝑡 )𝑡>0 и 𝜉0 =
(︀
𝜉0𝑡
)︀
𝑡>0

суть два различных по своей структуре случай-
ных процесса. Конкретный смысл процессов 𝜉∞ и 𝜉0 определяется приложением,
в теории же принято говорить, что процесс 𝜉∞ соответствует состоянию без раз-
ладки (нормальному), а 𝜉0 — состоянию с разладкой (аномальному); момент 𝜃
принято называть моментом появления разладки. Задача «о разладке» состо-
ит в следующем: пока наблюдения 𝜉 согласуются с нормальным состоянием,
требуется продолжать наблюдения. Если состояние изменяется на аномальное,
требуется обнаружить изменение как можно скорее, избегая ложных тревог.

Класс задач «о разладке» охватывает самые разнообразные реальные ситуа-
ции: разладка — это нарушение однородности, это нарушение нормального хода
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производственного процесса, это изменение вибрационных режимов, это изме-
нение критических режимов в электроэнергетических системах, это появление
«цели» в радиолокации, это выявление «разломов» в геологических данных, это
возникновение землетрясений, цунами, это появление фронта ударных волн и
т. д. [99]. Первые задачи типа задачи «о разладке» были рассмотрены еще в 40-х
годах А.Вальдом в рамках теории последовательного различения статистиче-
ских гипотез [96]. К настоящему времени теория оптимальных правил остановки
получила значительное развитие, обзор которого см. в работах А. Н. Ширяева,
M. Basseville и др. [9; 104; 106].

Отметим, что существует ряд общепринятых постановок задачи о разладке
случайной последовательности, а именно ряд стандартных допущений о распре-
делениях процессов 𝜉∞ и 𝜉0 и о моменте 𝜃. Обзор этих допущений (стандартных
моделей разладки) и некоторых оптимальных процедур обнаружения разладки
приведен в разделе 2.2. Ситуация нарушения этих предположений и ее значение
для эффективности обнаружения разладки обсуждается в разделе 2.3.1. В раз-
деле 2.3.2 рассматривается проблема обнаружения разладки временного ряда с
целью эффективного практического применения при нарушении стандартных
предположений о модели возникающей разладки и определяется процедура
обнаружения разладки на основе ансамбля. Критерии эффективности такого
подхода и метод настройки параметров ансамблей приводятся в разделе 2.4. В
конце главы в разделе 2.5 описаны результаты вычислительных экспериментов,
направленные на численное сравнение эффективности ансамблей и классических
процедур обнаружения разладки.

2.2 Известные модели и процедуры обнаружения в зада-

чах о разладке стационарной случайной последова-

тельности

Не задаваясь целью привести исчерпывающий обзор (если он вообще возмо-
жен) литературы по проблеме обнаружения изменения статистических свойств
случайных процессов, приведем в разделе 2.2.1 ряд постановок задач о разладке,
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для которых известны эффективные процедуры. (Для более полного обзора см.,
например, монографию [104].) Сами эти процедуры описываются в разделе 2.2.2.

2.2.1 Модели разладки стационарной случайной последовательно-

сти

В изложении ниже всюду предполагается, что наблюдаемый процесс 𝜉 =

(𝜉𝑡)𝑡>0 имеет конкретную структуру

𝜉𝑡 =

⎧
⎪⎨
⎪⎩
𝜎𝑍𝑡, 0 6 𝑡 < 𝜃,

𝜇𝑡+ 𝜎𝑍𝑡, 𝑡 > 𝜃,

(2.2)

где 𝜎 > 0, 𝜇 ̸= 0, 𝜃 – некоторый момент со значениями в [0,∞], и 𝑍 = (𝑍𝑡)𝑡>0 —
процесс стандартного нормального белого шума. Случай 𝜃 = 0 соответствует
появлению разладки в момент 𝑡 = 0. Случай 𝜃 = ∞ соответствует тому, что
разладка не появляется и вовсе, следовательно, все время наблюдается процесс
𝜉𝑡 = 𝜎𝑍𝑡.

Обозначим P𝜃 = Law(𝜉 | 𝜃) – распределение вероятностей процесса 𝜉 = (𝜉𝑡)𝑡>0

из (2.2), когда разладка происходит в момент времени 𝜃. В частности, P∞

есть распределение вероятностей процесса 𝜉, когда разладка не происходит.
Математическое ожидание по мере P𝜃 обозначим E𝜃.

Процедура обнаружения разладки — это момент остановки1 𝜏 = 𝜏(𝜔) со
значениями в [0,∞], интерпретируемый как момент подачи сигнала тревоги
о появлении разладки. Рассмотрим два события:

{𝜏 < 𝜃} и {𝜏 > 𝜃}.

Первое событие — это подача ложной тревоги (𝜏 < 𝜃). Когда же происходит
второе событие, то естественно интересоваться, насколько велико время за-

1 Случайная величина 𝜏 = 𝜏(𝜔) со значениями в [0,∞] является моментом остановки, если при каждом
𝑡 > 0 событие {𝜔 : 𝜏(𝜔) 6 𝑡} ∈ ℱ𝑡, где ℱ𝑡 = ℱ𝜉

𝑡 (= 𝜎(
{︀
𝜉𝑠, 0 6 𝑠 6 𝑡

}︀
)) есть 𝜎-алгебра событий, порождаемых

значениями
{︀
𝜉𝑠, 0 6 𝑠 6 𝑡

}︀
. Наглядный смысл этого условия состоит в том, что для каждого 𝑡 > 0 решение

вопроса о том, чтобы прекратить наблюдения или их продолжать зависит лишь от информации о процессе
𝜉, полученной на интервале времени [0, 𝑡] и не зависит от «будущего».
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паздывания 𝜏 − 𝜃 при «правильной» подаче сигнала о появлении разладки.
Сформулируем несколько вариантов оптимизационных задач о разладке.

Вариант A. Пусть 𝜃 = 𝜃(𝜔) есть случайная величина со значениями в [0,∞],
не зависящими от 𝑍 и такая, что

P(𝜃 = 0) = 𝜋, P(𝜃 > 𝑡
⃒⃒
𝜃 > 0) = 𝑒−𝜆𝑡, (2.3)

где 𝜋 ∈ [0,1) и 𝜆 являются известными величинами. Зафиксируем некоторую
константу 𝛼 ∈ (0,1] и обозначим ℳ(𝛼) = {𝜏 : P(𝜏 < 𝜃) 6 𝛼} — класс тех
моментов остановки 𝜏 (относительно (ℱ𝑡)𝑡>0), для которых вероятность ложной
тревоги P(𝜏 < 𝜃) меньше или равна 𝛼. Требуется найти момент 𝜏 *(𝛼) (если он
существует), являющийся решением задачи

E(𝜏 − 𝜃|𝜏 > 𝜃)→ inf
𝜏∈ℳ(𝛼)

. (2.4)

Для решения этой условно-вариационной задачи рассматривают байесовскую
постановку задачи о разладке — задачу на безусловный минимум

P(𝜏 < 𝜃) + 𝑐E(𝜏 − 𝜃)+ → inf
𝜏∈ℳ

, (2.5)

гдеℳ – класс моментов остановки, 𝑐 > 0 – константа и E(𝜏 − 𝜃)+ = E(𝜏 − 𝜃|𝜏 >

𝜃)P(𝜏 > 𝜃). Критерий (2.4) был предложен А. Н. Ширяевым [107].
В следующих вариантах (B, C, D и E) величина 𝜃 является просто пара-

метром, принимающим числовые значения в [0,∞]. При формулировке вари-
антов B, C, и D фиксируется некоторое число 𝑇 > 0 и рассматривается класс
ℳ𝑇 = {𝜏 : E∞ 𝜏 > 𝑇}, являющийся классом тех моментов остановки 𝜏 , для
которых среднее время E∞ 𝜏 до ложной тревоги (т. е. когда 𝜃 =∞) равно 𝑇 .

Вариант B. Требуется найти момент 𝜏 *𝑇 ∈ℳ𝑇 , являющийся решением задачи
на минимум

sup
𝜃>0

E𝜃(𝜏 − 𝜃|𝜏 > 𝜃)→ inf
𝜏∈ℳ𝑇

. (2.6)

Этот критерий введен Поллаком [66].
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Вариант C. Требуется найти момент 𝜏 *𝑇 ∈ℳ𝑇 , являющийся решением задачи
на минимум

sup
𝜃>0

ess sup
𝜔

E𝜃
(︀
(𝜏 − 𝜃)+|ℱ𝜃

)︀
(𝜔)→ inf

𝜏∈ℳ𝑇

, (2.7)

где ℱ𝜃 = 𝜎
(︀
{𝜉𝑠, 0 6 𝑠 6 𝜃}

)︀
и ess sup

𝜔
есть операция взятия существенного

супремума2. Описанный критерий называют критерием Лордена [49].
Вариант D. До сих пор рассматривались критерии, зависящие от времени

запаздывания в подаче сигнала о появлении разладки; при этом ограничения на
величину времени запаздывания не накладывались. Существуют приложения,
в которых необходимо обнаружить разладку в течение заранее заданного ин-
тервала времени: для момента подачи тревоги необходимо выполнение условий
𝜃 < 𝜏 6 𝜃+𝑚, где 𝑚 > 1 [26]. Для решения этой задачи Дж. Мустакидесом [57]
был предложен критерий, максимизирующий вероятность обнаружения разлад-
ки, оптимальным моментом остановки 𝜏 *𝑇 ∈ ℳ𝑇 в котором является решение
задачи на максимум

inf
𝜃>0

P𝜃(𝜃 < 𝜏 6 𝜃 +𝑚|𝜏 > 𝜃)→ sup
𝜏∈ℳ𝑇

. (2.8)

Вариант E, в отличие от вариантов A–D, не вводит специальных критериев,
а относится к задачам проверки статистических гипотез о равенстве средних в
последовательности независимых наблюдений. По заданной выборке 𝑋1, . . . , 𝑋𝑁

требуется проверять гипотезу

𝐻 : 𝜇1 = 𝜇2 = · · · = 𝜇𝑁 = 𝜇 (2.9)

против альтернативы

𝐾 : 𝜇 = 𝜇1 = · · · = 𝜇𝜃 ̸= 𝜇𝜃+1 = . . . = 𝜇𝑁 , (2.10)
2Пусть 𝑓 = 𝑓(𝜔) – неотрицательная случайная величина на вероятностном пространстве (Ω,ℱ ,P). Ее

существенным супремумом (или существенной верхней гранью) называют нижнюю грань тех 𝐶, для которых
P(𝑓(𝜔) > 𝐶) = 0. Это значение обозначают ‖𝑓‖∞, ess sup𝜔 𝑓(𝜔) или supvrai 𝜔𝑓(𝜔). Так что

‖𝑓‖∞ = inf{0 6 𝐶 6∞ : P (𝑓 > 𝐶) = 0}.
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где 𝜇𝑖 = E𝑋𝑖, 𝑖 = 1, . . . , 𝑁 . Задачи проверки гипотез такого рода рассматрива-
лись в работах [73; 74].

2.2.2 Некоторые широко используемые статистические процедуры

обнаружения разладки стационарной случайной последова-

тельности

Приведем ряд процедур обнаружения разладки с указанием соответствующих
критериев, для которых они являются оптимальными. Каждая процедура Π

предписывает подавать сигнал тревоги в момент времени 𝜏 первого достижения
некоторым процессом 𝑆 = (𝑆𝑡)𝑡>0 заданного уровня ℎ > 0: 𝜏 = inf{𝑡 > 0 :

𝑆𝑡 > ℎ}. Таким образом, различие между рассматриваемыми процедурами
заключается в выборе процесса 𝑆 (уровень ℎ можем без ограничения общности
выбрать равным единице).

Пусть в (2.1) (одномерные) плотности распределения процессов 𝜉∞ = (𝜉∞𝑡 )𝑡>0

и 𝜉0 =
(︀
𝜉0𝑡
)︀
𝑡>0

суть 𝑝∞(·) и 𝑝0(·) соответственно. Обозначим

𝑙𝑡 =
𝑝0(𝑋𝑡)

𝑝∞(𝑋𝑡)
, 𝜁𝑡 = log 𝑙𝑡, 𝑡 = 1, 2, . . . (2.11)

отношение правдоподобия и его логарифм, соответственно.
Когда момент появления разладки 𝜃 является случайной величиной (вариант

A), рассматривается следующий Байесовский алгоритм обнаружения разладки.
Пусть 𝜃 принимает значения 0, 1, . . . с вероятностями

P(𝜃 = 0) = 𝜋, P(𝜃 = 𝑡
⃒⃒
𝜃 > 0) = 𝑝(1− 𝑝)𝑡−1, 𝑡 = 1, 2, . . . ,

где 𝜋 и 𝑝 ∈ [0,1] — параметры модели. Введем процесс условной вероятно-
сти 𝜋 = (𝜋𝑡)𝑡>0, задаваемый рекуррентными соотношениями

𝜋𝑡 =
𝜙𝑡

1 + 𝜙𝑡
, 𝜙𝑡 = 𝑙𝑡

𝑝+ 𝜙𝑡−1
1− 𝑝 , 𝑡 = 1, 2, . . . (2.12)

Величина 𝜋𝑡 = P(𝜃 < 𝑡|ℱ𝑡) интерпретируется как условная вероятность появ-
ления разладки до момента времени 𝑡. Тревога поднимается при значениях 𝜋𝑡,
близких к единице. Процедура обнаружения разладки на основе статистики
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условной вероятности была предложена А. Н. Ширяевым и является оптималь-
ной для варианта A [107].

Процедура Ширяева-Робертса заключается в вычислении статисти-
ки 𝜓 = (𝜓𝑡)𝑡>0, задаваемой рекуррентным соотношением

𝜓𝑡 =
𝑡∑︁

𝜃=1

𝑡∏︁

𝑘=𝜃

𝑙𝑘 = (1 + 𝜓𝑡−1)𝑙𝑘, 𝜓0 = 0, 𝑡 = 1, 2, . . . (2.13)

Этот метод обнаржуения разладки был независимо предложен А. Н. Ширяевым
и С. Робертсом и является оптимальным для критерия Поллака (вариант B) [70;
107].

Процедура кумулятивных сумм (CUSUM) основана на рекуррентном под-
счете процесса 𝑇 = (𝑇𝑡)𝑡>0 согласно соотношениям

𝑇𝑡 = max
{︁
0, max

16𝜃6𝑡

𝑡∑︁

𝑘=𝜃

𝜁𝑘

}︁
= max(0,𝑇𝑡−1 + 𝜁𝑡), 𝑇0 = 0, 𝑡 = 1, 2, . . .

(2.14)
Данная процедура была предложена Е. Пейджем, ее оптимальность для мини-
максного критерия Лордена (вариант C) была показана Дж. Мустакидесом и
Я. Ритовым для случая дискретного времени и А. Н. Ширяевым для случая
непрерывного времени [54; 64; 69; 105].

Процесс контрольных карт Шухарта 𝑆 = (𝑆𝑡)𝑡>0 [75] задается соотноше-
нием

𝑆𝑡 =
𝑡∑︁

𝑘=𝑡−𝐾+1

𝜁𝑘, 𝑡 = 1, 2, . . . , (2.15)

где единственный параметр — величина 𝐾 — некоторая заранее заданная пере-
менная (размер скользящего окна). Дж. Мустакидесом [57] было показано, что
статистика контрольных карт Шухарта при 𝐾 = 1 максимизирует вероятность
обнаружения разладки в варианте E.

Процедура, называемая в диссертационной работе changepoint, изначально
была предложена для обнаружения изменения среднего значения гауссовской
последовательности [74]. Эта процедура строится на основе статистики 𝑆 =
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(𝑆𝑡)𝑡>0, задаваемой соотношениями

𝑆𝑡 = max
𝑡−𝐾6𝜃6𝑡

𝑋
𝑡
𝜃+1 −𝑋

𝜃
𝑡−𝐾√︀

(𝑡− 𝜃)−1 + (𝜃 − 𝑡+𝐾)−1)
√
𝑊
, 𝑡 = 1, 2, . . . , (2.16)

где 𝐾 — размер скользящего окна, и

𝑋
𝑗
𝑖 =

1

𝑗 − 𝑖

𝑗∑︁

𝑘=𝑖

𝑋𝑘,

𝑊 =
1

𝐾 − 2

[︁ 𝜃∑︁

𝑘=𝑡−𝐾

(︀
𝑋𝑘 −𝑋𝜃

𝑡−𝐾
)︀2

+
𝑡∑︁

𝑘=𝜃+1

(︀
𝑋𝑘 −𝑋 𝑡

𝜃+1

)︀2]︁
.

2.3 Нарушение стандартных предположений о модели

разладки. Ансамбли

2.3.1 Выполнимость широко используемых предположений о моде-

ли разладки

Большим ограничением стандартных моделей разладки (в том числе и мо-
делей A –E) на практике является то, что при их использовании принимается,
что распределения 𝑝∞(·) и 𝑝0(·) — нормальные, с известными математически-
ми ожиданиями и дисперсиями. А.Н. Ширяев пишет в своей работе [104]: «...
значительный материал будет посвящен моделям, основанным на броуновском
движении, что объясняется и тем, что такие модели представляют практический
интерес, и тем, что для них во многих случаях удается получить прозрачные
и точные результаты. (. . . Напомним также, что в других случаях для соответ-
ствующих характеристик были получены лишь приближенные результаты.)»
На практике это предположение нарушается по целому ряду пунктов, а именно:

1. Распределения 𝑝∞(·) и 𝑝0(·) являются ненормальными.
2. Параметры распределений 𝑝∞(·) и 𝑝0(·) неизвестны точно ни до появления

разладки, ни тем более после появления разладки.
3. Присутствует временная корреляция между наблюдениями 𝜉𝑡 и 𝜉𝑡+Δ𝑡 (на-

пример, процесс 𝜉 обладает длинной памятью, см. главу 1).
4. Присутствуют тренды или циклы, см. главу 3.
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5. Разладка не продолжается бесконечное время, возможен пропуск разлад-
ки, т.е. ситуация, в которой выдается ошибочный сигнал об отсутствии
разладки.

В ряде работ исследуется вопрос о нарушении стандартных предположений
о модели разладки, ведущий к снижению эффективности ее обнаружения [9;
44; 53; 71; 83]. В диссертационной работе рассматривается следующая общая
ситуация. Пусть наблюдаемый случайный процесс 𝜉 = (𝜉𝑡)𝑡>0 имеет структуру

𝜉𝑡 =

⎧
⎪⎨
⎪⎩
𝜉∞𝑡 , если 𝑡 ∈ 𝒯∞,

𝜉0𝑡 , если 𝑡 ∈ 𝒯0,

где случайные процессы 𝜉∞ = (𝜉∞𝑡 )𝑡>0 и 𝜉0 =
(︀
𝜉0𝑡
)︀
𝑡>0

имеют (вообще говоря,
неизвестные) плотности 𝑝∞(·) и 𝑝0(·) соответственно, а множества 𝒯∞ и 𝒯0
соответствуют состоянию без «разладки» (нормальному) и с «разладкой» (ано-
мальному), соответственно. В ряде задач, возникающих на практике, разладка
имеет конечную длительность либо должна быть обнаружена в течение заданно-
го времени [26; 81; 85]. Поэтому мы рассматриваем ситуацию «кратковременного
изменения», в которой

𝒯∞ = [0, 𝜃) ∪ [𝜃 +Δ,∞) и 𝒯0 = [𝜃, 𝜃 +Δ),

предполагающую конечную длительность аномального состояния. Такая ситуа-
ция допускает возникновение ошибок обоих родов (как ложной тревоги, так и
пропуска цели) и является более реалистичной при описании эффективности
процедур обнаружения разладки. Пока наблюдения за процессом 𝜉 согласуются
с нормальным состоянием, требуется продолжать наблюдения. Если состояние
изменяется, требуется обнаружить изменение как можно скорее, избегая ложных
тревог. При возврате к нормальному состоянию, однако, требуется как можно
скорее обнаружить последнее, «выключив» сигнал тревоги о наличии разладки.

2.3.2 Ансамбли «слабых» детекторов

Пусть Π1, . . . ,Π𝑛Π обозначают 𝑛 процедур обнаружения разладки, причем
каждая процедура Π𝑘 предписывает подавать сигнал тревоги в момент 𝜏𝑘 первого
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выхода некоторого процесса 𝑆𝑘 =
(︀
𝑆𝑘𝑡
)︀
𝑡>0

на некоторый уровень ℎ𝑘 > 0: 𝜏𝑘 =
inf{𝑡 > 0 : 𝑆𝑘𝑡 > ℎ𝑘}. Рассмотрим далее множество сигналов 𝑠𝑘 =

(︀
𝑠𝑘𝑡
)︀
𝑡>0

, 𝑘 =

1, . . . , 𝑛Π, задаваемых соотношениями 𝑠𝑘𝑡 = 𝑆𝑘𝑡 /ℎ𝑘, 𝑡 = 1, 2, . . ..

Определение 1. Процедура A обнаружения разладки называется ансамблем
детекторов Π1, . . . ,Π𝑛Π, если она предписывает подавать тревогу в момент 𝜏A
выхода процесса 𝑎 = (𝑎𝑡)𝑡>0 на заданный уровень ℎA > 0: 𝜏A = inf{𝑡 > 0 : 𝑎𝑡 >

ℎA}:
𝑎𝑡 = 𝜓(𝜆;S1

𝑡 , . . . ,S
𝑛Π
𝑡 ), (2.17)

где 𝜆 ∈ R𝑑 (𝑑 > 𝑛Π) и S𝑘𝑡 = {𝑠𝑘𝑠 , 0 6 𝑠 6 𝑡} — история сигнала 𝑠𝑘 =
(︀
𝑠𝑘𝑡
)︀
𝑡>0

до
момента времени 𝑡, 𝑘 = 1, . . . , 𝑛Π.

Заметим, что конкретный ансамбль полностью определен выбором «агрегиру-
ющей функции» 𝜓(·). Ее параметры 𝜆 ∈ R𝑑 могут быть выбраны по размеченной
выборке с помощью оптимизации некоторой меры эффективности (она будет
введена ниже в п. 2.4. Несколько примеров конкретный ансамблей представлено
ниже.

Ансамбль на основе голосования по большинству задается следующим выбо-
ром агрегирующей функции

𝜓Maj(𝜆;S
1
𝑡 , . . . ,S

𝑛
𝑡 ) =

2

𝑛Π

𝑛Π∑︁

𝑘=1

1{𝑠𝑘𝑡>1}(𝑡). (2.18)

Задавая ℎMaj = 1, получим правило остановки, предписывающее подавать
сигнал тревоги о появлении разладки в первый момент времени 𝜏Maj, когда
число 𝑛+ =

∑︀𝑛Π
𝑘=1 1{𝑠𝑘𝑡>ℎMaj}(𝑡) «голосов», поданных за появление разладки,

превысит число 𝑛− = 𝑛Π − 𝑛+ «голосов», поданных против разладки.
Другим вариантом ансамбля является взвешенное голосование, агрегирующая

функция для которого задается в виде

𝜓Weight(𝜆;S
1
𝑡 , . . . ,S

𝑛Π
𝑡 ) =

𝑛Π∑︁

𝑘=1

𝜆𝑘𝑠
𝑘
𝑡 . (2.19)

Как и выше, зададим порог ℎWeight = 1 и выберем 𝜆1, . . . , 𝜆𝑛Π таким образом,
чтобы получить оптимальное значение некоторого показателя эффективности
обнаружения разладки. Получим правило остановки, задаваемое моментом
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𝜏Weight = inf{𝑡 > 0 : 𝑎𝑡 > ℎWeight}. При появлении разладки детекторы
𝑠1, . . . , 𝑠𝑛Π накапливают информацию из наблюдений {𝜉1, . . . , 𝜉𝑡}, а агрегирую-
щая функция усиливает сигнал детекторов, используемый для подачи тревоги.

При появлении разладки, информация, предварительно фильтруемая детек-
торами, накапливается со временем и формирует сигнал, на основании которого
подается тревога о появлении разладки. Однако, на практике накопление ста-
тистики о появлении разладки может происходить медленно ввиду неточного
задания модели разладки или ее небольшой «магнитуды» (т.е. различия в
распределениях до и после разладки). Поэтому для более эффективного обна-
ружения разладки полезно использовать всю историю S𝑘𝑡 = {𝑠𝑘𝑢, 1 6 𝑢 6 𝑡}
сигнала 𝑠𝑘 =

(︀
𝑠𝑘𝑡
)︀
𝑡>0

(а не только его текущее значение 𝑠𝑘𝑡 ). Для этого рассмот-
рим два класса ансамблей, использующих значения сигналов с запаздыванием
величиной вплоть до 𝑝.

Ансамбль на основе взвешенного голосования с историей 𝑝 задается выбором
агрегирующей функции

𝜓Weight−𝑝(𝜆;S
1
𝑡 , . . . ,S

𝑛
𝑡 ) =

𝑝∑︁

𝑗=0

𝑛∑︁

𝑘=1

𝜆𝑘𝑗𝑠
𝑘
𝑡−𝑗. (2.20)

Естественно, как и выше, задать ℎWeight−𝑝 = 1, поскольку такая «нормиров-
ка» может быть достигнута масштабированием параметров 𝜆 =

(︀
𝜆𝑘𝑗
)︀
∈ R𝑛×𝑝.

Получим правило остановки, задаваемое моментом 𝜏Weight−𝑝 = inf{𝑡 > 0 : 𝑎𝑡 >

ℎWeight−𝑝}.
Еще один класс ансамблей, которые мы рассмотрим в диссертационной работе,

основан на использовании линейного классификатора в пространстве признаков,
образованном значениями сигналов каждого из детекторов. В качестве такого
классификатора рассмотрим логистическую регрессию, агрегирующую функцию
для которой можно записать в виде

𝜓Log−𝑝(𝜆;S
1
𝑡 , . . . ,S

𝑛
𝑡 ) = 𝜎

(︁ 𝑝∑︁

𝑗=0

𝑛∑︁

𝑘=1

𝜆𝑘𝑗𝑠
𝑘
𝑡−𝑗 − 𝜆0

)︁
. (2.21)

Значение 𝑎𝑡 = 𝜓Log−𝑝(𝜆;S1
𝑡 , . . . ,S

𝑛
𝑡 ) статистики ансамбля можно интерпрети-

ровать как условную вероятность события 𝑡 ∈ 𝒯0 (т.е. действия «аномального
состояния») при заданной истории Ξ𝑡 = {𝜉𝑢, 0 6 𝑢 6 𝑡} наблюдений до момента
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времени 𝑡. Заметим, что для такого ансамбля порогое значение ℎLog−𝑝 ∈ (0, 1),
а момент остановки 𝜏Log−𝑝 = inf{𝑡 > 0 : 𝑎𝑡 > ℎLog−𝑝}.

2.4 Критерии качества обнаружения разладки

Для того, чтобы охарактеризовать эффективность обнаружения разладки на
реальных данных, необходимо иметь:

– специальные функционалы, описывающие, какие эффекты следует ожидать
на практике при применении полученных методов;

– множество размеченных данных, т. е. таких реализаций 𝜉 = (𝜉𝑡)𝑡>0, для
которых множества 𝒯0 и 𝒯∞ известны (например, размечены пользователем
или получены в ходе моделирования).

В диссертационной работе используется подход, принятый в области ма-
шинного обучения, состоящий в использовании размеченный выборки Xℓ =

{(𝑋 𝑖, 𝑌 𝑖)}ℓ𝑖=1. Каждая точка (𝑋 𝑖, 𝑌 𝑖) ∈ Xℓ в нашей схеме — это пара временных
рядов 𝑋 𝑖 =

(︀
𝑋 𝑖
𝑡

)︀
𝑡>0

и 𝑌 𝑖 =
(︀
𝑌 𝑖
𝑡

)︀
𝑡>0

, причем 𝑋 𝑖 соответствует отрезку наблю-
дений фиксированной длины 𝑇 . Временной ряд 𝑌 𝑖 — это разметка: в каждый
момент времени 𝑡 ∈ [0, 𝑇 ] значение 𝑌 𝑖

𝑡 ∈ {0, 1}, где 1 обозначает разладку, а
0 — ее отсутствие. Таким образом, 𝑌 𝑖 можно интерпретировать как индикатор
аномального состояния: 𝑌 𝑖

𝑡 = 1𝒯0(𝑡). Поскольку мы рассматриваем ситуации, в
которых возможно появление и исчезновение разладки, то значения 𝑌 𝑖

𝑡 , 𝑡 ∈ [0, 𝑇 ]

формируются следующим образом: изначально в отсутствие разладки 𝑌 𝑖
𝑡 = 0;

при появлении разладки происходит переключение 𝑌 𝑖
𝑡 = 1; как только разладка

закончилась, 𝑌 𝑖
𝑡 снова становится равным 0.

Рассмотрим ряд общепринятых функционалов качества для процедур обнару-
жения разладки. Пусть, как и ранее, процедура Π заключается в подаче сигнала
тревоги в момент 𝜏 = inf{𝑡 > 0 : 𝑠𝑡 > ℎ} первого выхода статистики 𝑠 = (𝑠𝑡)𝑡>0

на заданный уровень ℎ.
1. Зависимость средней задержки в обнаружении разладки ADD(𝜏) = E𝜃(𝜏 −
𝜃|𝜏 > 𝜃) (average detection delay) от среднего времени до ложной тре-
воги ARL(𝜏) = E∞ 𝜏 (average run length, ARL) является наиболее часто
используемой оперативной характеристикой процедуры детектирования
разладки [50; 55; 56]. Ее подсчет заключается в оценке средней длины
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серии, требуемой статистике 𝑆 для выхода на уровень ℎ, для случаев рас-
пределений 𝑝0(·) и 𝑝∞(·), соответственно. Средняя длина серии должна
быть как можно больше, когда действует распределение 𝑝∞(·), и, насколько
возможно, меньше, когда действует распределение 𝑝0(·).

2. Другая оперативная характеристика основана на оценивании все той же
средней задержки в обнаружении разладки ADD(𝜏) на каждом уровне
вероятности ложной тревоги PFA(𝜏) = P∞(𝜏 < 𝜃) (probability of false alarm,
PFA), причем последняя понимается как ожидаемая доля таких точек за-
данной выборки, в которых при заданной задержке в обнаружении ADD(𝜏)

имела место ложная тревога, а ее эмпирическая оценка 1
ℓ

∑︀ℓ
𝑖=1 1{𝜏𝑖<𝜃𝑖}(𝑖),

где 𝜏𝑖 = inf{𝑡 > 0 : 𝑠𝑖𝑡 > ℎ} — момент подачи сигнала тревоги в точке
(𝑋 𝑖, 𝑌 𝑖) ∈ Xℓ, а 𝜃𝑖 — момент появления разладки в этой точке.

3. Как нетрудно понять, характеристики из пп. 1–2 не описывают ситуацию, в
которой возможен пропуск цели (ввиду конечной длительности разладки),
поскольку они не включают соответствующий функционал. Для описания
этой ситуации рассмотрим две следующие характеристики. Кривые типа
«точность — полнота» используются в области машинного обучения для опи-
сания эффективности алгоритмов классификации и могут быть применены
и при характеризации алгоритмов обнаружения разладок. Естественно рас-
сматривать разладку как некоторое событие, подлежащее «выделению» или
«фильтрации» из входящего потока наблюдений. С другой стороны, для каж-
дого значения порога ℎ любая процедура обнаружения разладки «выделяет»
из входящего потока некоторое множество событий, интерпретируемых этой
процедурой как разладки. Тогда «полнотой» назовем отношение количества
всех происшедших за время наблюдений разладок, которые были выде-
лены процедурой, к полному числу происшедших разладок. «Точностью»
же назовем отношение количества всех «выделенных» процедурой разла-
док, которые в самом деле ими являются, к полному числу выделенных
разладок.

4. В диссертационной работе предлагается следующий новый функционал для
описания эффективности процедуры обнаружения разладки.
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Определение 2. Математическое ожидание потерь, свойственных про-
цедуре обнаружения разладки Π,

F(Π) = 𝑐∞E∞

[︃∑︀
1{𝑠𝑡>ℎ}(𝑡)1𝒯∞(𝑡)∑︀

1𝒯∞(𝑡)

]︃
+ 𝑐0E0

[︃∑︀
1{𝑠𝑡<ℎ}(𝑡)1𝒯0(𝑡)∑︀

1𝒯0(𝑡)

]︃
, (2.22)

где 𝑐0 и 𝑐∞ суть потери за единицу времени, сопутствующие ошибочным
решениям о наличии и отсутствии разладки, соответственно. Согласно
этому определению, процедура обнаружения разладки Π тем лучше, чем
меньше сопутствующие ей ожидаемые потери; оптимальная процедура
обнаружения разладки определяется как решение задачи F(Π) → min

𝑠
.

Когда 𝑐∞ = 𝑐0 = 1, мера F(Π) имеет интерпретацию средней относительной
точности идентификации состояния наблюдений, т. е. доли времени, в
течение которого процедура обнаружения Π подает верный сигнал о наличии
либо отсутствии разладки.

2.4.1 Вычислительный алгоритм настройки параметров ансамбля

Оптимизация штрафа, заданного в (2.22), позволяет осуществить выбор па-
раметров 𝜆 ∈ R𝑑 ансамбля A в (2.17) и получить ансамбль A*, для которого
F(A*) = inf

𝜆∈R𝑑
F(A). Поскольку прямое вычисление математических ожиданий

в (2.22) в общем случае невозможно, рассмотрим аппроксимацию FEMP(Π) функ-
ции потерь F(Π), называемую эмпирическим риском:

FEMP(Π) = 𝑐∞
1

ℓ

ℓ∑︁

𝑖=1

[︃∑︀
1{𝑠𝑖𝑡>ℎ}(𝑡)1𝒯 𝑖

∞
(𝑡)∑︀

1𝒯 𝑖
∞
(𝑡)

]︃
+ 𝑐0

1

ℓ

ℓ∑︁

𝑖=1

[︃∑︀
1{𝑠𝑖𝑡<ℎ}(𝑡)1𝒯 𝑖

0
(𝑡)∑︀

1𝒯 𝑖
0
(𝑡)

]︃

=
1

ℓ

ℓ∑︁

𝑖=1

{︁ 𝑐∞
𝑇 𝑖∞

∑︁

𝑡∈𝒯 𝑖
∞

1{𝑠𝑖𝑡>ℎ}(𝑡) +
𝑐0
𝑇 𝑖0

∑︁

𝑡∈𝒯 𝑖
0

1{𝑠𝑖𝑡<ℎ}(𝑡)
}︁
, (2.23)

где 𝑠𝑖 =
(︀
𝑠𝑖𝑡
)︀
𝑡>0

— траектория процесса 𝑠, подсчитанная по наблюдениям𝑋 𝑖, а 𝒯 𝑖∞
и 𝒯 𝑖0 суть длительности нормального и аномального состояний в точке (𝑋 𝑖, 𝑌 𝑖).
Согласно классическому подходу статистической теории обучения, минимизация
эмпирического риска FEMP(Π) дает процедуру обнаружения разладки Π*, для ко-
торой ожидаемые потери F(Π*) близки к своему минимуму. Ввиду разрывности
градиента прямая оптимизация эмпирического риска FEMP(Π) трудна (если во-
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обще возможна); по этой причине рассмотрим сглаженную версию эмирического
риска FEMP(Π), задаваемую соотношением

FDIFF(Π) =
1

ℓ

ℓ∑︁

𝑖=1

⎧
⎨
⎩
𝑐∞
𝑇 𝑖∞

∑︁

𝑡∈𝒯 𝑖
∞

𝜎(𝑠𝑖𝑡 − ℎ) +
𝑐0
𝑇 𝑖0

∑︁

𝑡∈𝒯 𝑖
0

𝜎(ℎ− 𝑠𝑖𝑡)

⎫
⎬
⎭ , (2.24)

где 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) — логистическая функция. Так определенная функция
риска является дифференцируемой по параметрам ансамбля 𝜆 ∈ R𝑑, и может
быть оптимизирована градиентными методами.

2.5 Сравнительный анализ эффективности ансамблей

и классических процедур обнаружения разладки

Для всестороннего сравнения эффективности разработанных процедур об-
наружения разладки была проведена серия вычислительных экспериментов с
использованием искусственных наборов данных, различных по распределениям
вероятностей их значений и изменяющимся при разладке параметрам. Свой-
ства использованных данных приведены в таблице 2.1. В этих экспериментах
для каждого типа данных были смоделированы 1024 независимые реализации
длины 𝑇 = 1000, использовавшиеся для подстройки параметров ансамблей, и
другие 1024 реализации такой же длины для оценки качества и вычисления
оперативных характеристик. Для 5 «слабых» детекторов и 7 вариантов ансам-
блей, описанных в таблице 2.2, были вычислены оперативные характеристики,
описанные в разделе 2.4. Таблица 2.3 представляет результаты сравнения опи-
санных процедур обнаружения разладки в терминах стандартной для области
машинного обучения характеристики «площадь под кривой “точность–полнота”».
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Набор Тип данных
Изменяемые

параметры

Момент разладки 𝜃

и длительность Δ
Магнитуда разладки

WhiteNoise Белый гауссовский шум
математическое

ожидание 𝜇
случайные,

𝜃 ∼ 𝑈(200, 800),

Δ ∼ 𝑈(5, 100)

случайная,

𝜇 ∼ 𝑈(0.1, 2)Fractal Фрактальный гауссовский шум

Cauchy Белый шум Коши

ARMA-AR Процесс ARMA(10, 3) AR-члены 𝜙𝑖 случайная

ARMA-MA Процесс ARMA(10, 3) MA-члены 𝜃𝑗 случайная

GARCH1-ARMA GARCH(1, 1) + ARMA(10, 3) 𝛼1, 𝛽1, 𝜙𝑖, 𝜃𝑗 случайная

GARCH1 Процесс GARCH(1, 1) 𝛼1, 𝛽1
случайная, 𝛼1 ∼ 𝑈(.4, .8),

𝛽1 ∼ 𝑈(.1, .2),

Таблица 2.1: Характеристики использованных при сравнительном анализе искусственных наборов данных
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Процедура Статистика процедуры Параметры процедуры Параметры распределения

Posterior Статистика апостериорной вероятности (2.12) 𝑝 = 0.05

𝑝∞ = 𝒩 (0, 1),

𝑝0 = 𝒩 (1, 1)

SR Статистика Ширяева-Робертса (2.13)

CUSUM Статистика кумулятивных сумм (2.14)

Shewhart Статистика контрольных карт (2.15) 𝐾 = 20

Changepoint Статистика changepoint (2.16) 𝐾 = 24

Maj Ансамбль голосования большинством (2.18)
𝑝∞ = 𝒩 (0, 1),

𝑝0 = 𝒩 (1, 1)Weight–𝑝 Ансамбль взвешенного голосования (2.20) 𝑝 ∈ {0, 1, 2, 3}

Log–𝑝 Ансамбль-логистическая регрессия (2.21) 𝑝 ∈ {0, 1, 2, 3}

Таблица 2.2: Характеристики использованных при сравнительном анализе процедур обнаружения разладки



51

0 200 400 600 800 1000

Средняя задержка в обнаружении разладки

0

200

400

600

800

1000

С
ре

дн
ее

вр
ем

я
до

ло
ж

но
й

тр
ев

ог
и

0 200 400 600 800 1000

Средняя задержка в обнаружении разладки

0.0

0.2

0.4

0.6

0.8

1.0

В
ер

оя
тн

ос
ть

ло
ж

но
й

тр
ев

ог
и

0.0 0.2 0.4 0.6 0.8 1.0

Средняя доля времени ложных тревог

0.0

0.2

0.4

0.6

0.8

1.0

С
ре

дн
яя

до
ля

вр
ем

ен
и

ло
ж

но
го

м
ол

ча
ни

я

0.0 0.2 0.4 0.6 0.8 1.0

Полнота

0.0

0.2

0.4

0.6

0.8

1.0

Т
оч

но
ст

ь

Контрольные карты
Кумулятивные суммы
Статистика Ширяева-Робертса
Статистика Changepoint
Условная вероятность πt

Ансамбль Maj
Ансамбль Weight
Ансамбль Weight − 1

Ансамбль Weight − 2

Ансамбль Weight − 3

Ансамбль Log
Ансамбль Log − 1

Ансамбль Log − 2

Ансамбль Log − 3

Рисунок 2.1: Сравнительный анализ оперативных характеристик «слабых» детекторов и
ансамблей для набора данных Cauchy

Для всех наборов данных, исключая набор GARCH1-ARMA, предложенные
процедуры показывают более высокую эффективность обнаружения разлад-
ки в терминах кривой «точность–полнота» при близких параметрах времени
задержки в обнаружении разладки. Сказанное означает, что при одинаковой
задержке в обнаружении разладки (скорости реакции на изменение распределе-
ния данных) предложенные процедуры выделяют больше истинных разладок из
потока наблюдений, чем «слабые» детекторы. Ансамбли также показывают и
значительно более высокую точность сегментации (согласно кривой зависимости
средней доли времени ложного молчания от средней доли времени лолжной
тревоги). Последнее означает, что предложенные процедуры обеспечивают суще-
ственно лучшую среднюю относительную точность идентификации состояния
наблюдений.

Для более детального анализа эффективности работы ансамблей была прове-
дена визуализация их траекторий на выбранных точках (𝑋 𝑖, 𝑌 𝑖) ∈ Xℓ. Сравне-
ние траекторий, представленное на рис. 2.3, показывает, что сигнал о наличии
разладки, генерируемый ансамблем, существенно «сильнее» коррелирует с ис-
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Рисунок 2.2: Сравнительный анализ оперативных характеристик «слабых» детекторов и
ансамблей для набора данных Fractal

тинным индикатором разладки, чем сигнал любого из рассмотренных «слабых»
детекторов.

2.6 Выводы

В настоящей главе рассмотрен алгоритм обнаружения разладки случайной по-
следовательности, модель разладки которой неизвестна. Этот алгоритм основан
на одновременном использовании ансамбля статистик, лежащих в основе класси-
ческих процедур обнаружения («слабых» детекторов), для достижения лучшей
предсказательной силы. Рассмотрен ряд конкретных реализаций процедур об-
наружения разладки на основе ансаблей «слабых» детекторов, отличающихся
выбором конкретной агрегирующей функции. Предложен новый функционал
качества процедур обнаружения разладки, физической смысл которого заклю-
чается в вероятности безошибочной сегментации траектории наблюдений на
промежутки без разладки и с разладкой. Предложен градиентный алгоритм
оптимизации дифференцируемой аппроксимации этого функционала по обучаю-



53

щей выборке. В ходе вычислительного эксперимента проведено эмпирическое
сравнение эффективности ансамблей и классических процедур обнаружения
разладки, показавшее эффективность первых в модельных задачах обнаружения
разладки.
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Процедура WhiteNoise Fractal Cauchy GARCH1 ARMA-AR ARMA-MA GARCH1-ARMA

Shewhart 77.52 24.44 05.45 32.08 19.80 76.37 40.00

CUSUM 61.11 30.70 19.24 59.88 28.74 89.90 75.44

SR 22.22 6.11 .40 50.06 24.17 7.15 72.72

Changepoint 60.62 45.42 24.18 21.94 13.03 57.15 22.98

Posterior 𝜋𝑡 27.38 7.76 .66 53.60 29.00 35.69 74.58

Maj 62.13 24.62 6.11 47.80 28.74 92.71 67.01

Weight− 0 71.73 38.94 25.08 55.62 24.94 79.48 67.23

Weight− 1 71.58 38.97 13.46 57.65 29.60 91.92 71.28

Weight− 2 73.89 39.63 12.29 56.57 30.45 91.13 69.28

Weight− 3 73.25 38.98 11.61 57.83 26.24 90.70 72.11

Log− 0 77.25 48.64 25.90 51.35 23.29 87.72 68.35

Log− 1 76.27 36.20 31.03 50.03 23.49 88.47 65.97

Log− 2 78.01 39.74 31.30 49.35 27.99 88.93 66.43

Log− 3 78.85 40.31 32.24 49.08 27.99 88.88 66.77

Таблица 2.3: Сравнительный анализ эффективности «слабых» детекторов и ансамблей для всех наборов данных в терминах площади
под кривой «точность–полнота». Полужирным шрифтом выделен лучший результат для каждого набора данных.
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(d) Пример данных (верхний график), траекто-
рии статистик апостериорной вероятности (сред-
ний график) и ансамбля Log−3 (нижний гра-
фик).

Рисунок 2.3: (a)–(b): Сравнительный анализ эффективности «слабых» детекторов и ансамблей
для набора данных Fractal.
(c)–(d): Сравнительный анализ эффективности «слабых» детекторов и ансамблей для набора
данных Cauchy.
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Глава 3

Математические модели сигналов

с квазипериодическим трендом

и обнаружение их разладок

3.1 Введение

Как было подчеркнуто в главе 2, выполнимость широко используемых пред-
положений о модели разладки на практике всегда лишь частичная; это обстоя-
тельство усугубляется при работе с циклическими временными сигналами. А по-
скольку многие сигналы, относящиеся к системам с интенсивным программным
обеспечением, являются периодическими по своей природе, для обнаружения
их разладок необходимо иметь математическую модель, позволяющую адекват-
но отображать их свойства. В настоящей главе рассматривается методология
моделирования и оценивания квазипериодических сигналов и обнаружения их
разладок для эффективного мониторинга сигналов больших систем с интен-
сивным ПО. В разделе 3.2 проведен краткий обзор литературы, связанной с
моделированием и оцениванием параметров периодических временных рядов.
Разделы 3.3 и 3.4 представляют математические модели и вычислительные
алгоритмы оценивания параметров квазипериодических сигналов систем с ин-
тенсивным ПО в предположениях наличия длинной памяти и стохастических
циклов, соответственно. Раздел 3.5 представляет модель разладки и алгоритм
ее обнаружения на основе оценок, выводимых в двух предыдущих разделах и
главе 2. Наконец, в разделе 3.6 содержатся результаты вычислительных экспери-



57

ментов, направленных на численное исследование эффективности предложенной
методологии обнаружения разладок и аномалий с использованием искусственных
данных.

3.2 Задача оценивания параметров сигнала с квазипери-

одическим трендом

Проблеме моделирования и оценивания периодических временных сигна-
лов посвящен весьма большой объем литературы. В диссертационной работе
проводится лишь краткий ее обзор и детально описывается два хорошо извест-
ных подхода к выделению периодического тренда, использованных ниже для
сравнительного анализа с разработанными в работе подходами.

3.2.1 Известные в литературе модели сигналов с периодической со-

ставляющей

Задачи оценивания параметров сезонных сигналов и их математические
модели рассматриваются в литературе с 1960-х гг. Одним из первых методов,
предложенных для прогнозирования ожидаемого значения временного ряда,
является алгоритм на основе экспоненциально взвешенного скользящего среднего
(exponentially weighted moving average, EWMA), подробно описанный Питером
Винтерсом [91]. В этом методе предлагается прогнозировать среднее значение
E 𝜉𝑡 временного ряда 𝜉 = (𝜉𝑡)𝑡>0 величиной

̂︀𝜇𝑡 = (1− 𝛼)̂︀𝜇𝑡−1 + 𝛼𝜉𝑡, 𝑡 > 0, (3.1)

где постоянная 𝛼 ∈ (0, 1) — параметр алгоритма. В случае, когда сигнал не
имеет четкой сезонности или долгосрочного тренда, т. е. когда среднее значение
𝜇 = E 𝜉𝑡 не зависит от времени, математическое ожидание оценки E ̂︀𝜇𝑡 = E 𝜉𝑡 = 𝜇.
В случае же, когда процесс наблюдений 𝜉 нестационарный, статистические свой-
ства оценки ̂︀𝜇𝑡 не будут столь очевидными; для улучшения эффективности
оценивания в таких ситуациях прибегают к методам экспоненциального сгла-
живания более высоких порядков. В настоящей работе они опускаются и для
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базового сравнения с разработанными методами рассматривается оригинальный
подход из (3.1).

Еще одним алгоритмом, эффективность которого была исследована в задачах
обнаружения разладки, является алгоритм на основе метода главных компонент
(principal component analysis, PCA) [6; 45–47; 63]. Он заключается в классифика-
ции поступающих наблюдений на «нормальные» и «аномальные» с помощью
разделения некоторого пространства наблюдений на главное и остаточное под-
пространства. Соответствующий алгоритм получил название «гусеница» или
анализ сингулярного спектра (singular spectrum analysis, SSA) [88]. Пусть процесс
наблюдений 𝜉 = (𝜉𝑡)𝑡>0 имеет некоторый известный период 𝑇 и пусть доступна
выборка Xℓ = {(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1, 𝑋𝑘 = 𝜉𝑡𝑘, 𝑘 = 1, . . . , ℓ, — реализация сигнала до
момента времени 𝑡ℓ, ℓ > 𝑇 . Выберем некоторую размерность 𝑑 > 𝑇 пространства
наблюдений и построим векторы 𝑥1, . . . ,𝑥𝑛 как отрезки наблюдений со сдвигом,
так что для каждого 𝑥𝑚 ∈ R𝑑 имеет место 𝑥𝑚 = (𝑋1+𝑚, . . . , 𝑋𝑑+𝑚),𝑚 = 1, . . . , 𝑛.
Предполагая существование в R𝑑 системы векторов {𝑒1, . . . , 𝑒𝑑} такой, что каж-
дый 𝑥𝑚 =

∑︀𝑑
𝑘=1 𝛼𝑘𝑒𝑘, найдем векторы этой системы как собственные векторы

матрицы Σ, строками которой являются наблюдения 𝑥1, . . . ,𝑥𝑛. Нахождение
векторов {𝑒1, . . . , 𝑒𝑑} легко осуществить с помощью сингулярного разложения
матрицы Σ.

Пространство наблюдений затем делят на 𝑑1-мерное главное пространство
ℒ(𝑒1, . . . , 𝑒𝑑1), описывающее «главную часть» информации выборки Xℓ, и оста-
точное подпространство ℒ(𝑒𝑑1, . . . , 𝑒𝑑), описывающее «шумовую часть» инфор-
мации в этой выборке. Наблюдения, имеющие высокую энергию (евклидову
норму) в остаточном подпространстве, классифицируются затем как аномаль-
ные.

Среди других подходов к моделированию сигналов с циклами, отметим на-
шедшие применение в различных приложениях модели на основе процесса
авторегрессии [59; 76], разложения временного ряда на компоненты [29; 78],
и параметрической регрессии [4; 13]. Отметим, что применительно к задаче
моделирования сигналов больших систем с интенсивным ПО такие подходы
неприменимы или лишь ограниченно применимы в силу следующих причин:

– невозможности изменения жестко заданной длины периода (как правило,
равной 12 месяцам в задачах моделирования экономических временных
рядов);
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– невозможности обработки пропусков в сигнале (что является типичной
ситуацией при большом количестве сигналов и высокой частоте регистрации
каждого сигнала);

– предположения о регулярном поступлении данных;
– предположения о фиксированной модели наблюдений (т. е. невозможности

детектирования разладки);
– высокого числа параметров (в случае регрессионных моделей) и сложности

модели.
Сверх упомянутого, ни один из описанных выше подходов не включает яв-

ной модели длинной памяти; следовательно, используя эти подходы, нельзя
добиться оптимального оценивания тренда. С другой стороны, первый подход,
разработанный в диссертационной работе, основан на теоретически оптимальном
фильтре, включающем явную модель длинной памяти (фрактального броунов-
ского движения), исследованную в главе 1. Во-вторых, второй предлагаемый
подход основан на методе непараметрической регрессии, позволяющем получить
явное разложение временного ряда на тренд, сезонную и шумовую компоненты.
Этот подход основан на хорошо исследованной ядерной оценке Надарая-Ватсона
(см. [58; 90]), причем в качестве используется ядро бесконечного порядка, что
улучшает свойства сходимости оценки для гладких функций [52]. Оценка на
основе непараметрической регрессии широко используется в приложениях (см.,
например, [84]) и хорошо зарекомендовала себя в задачах, рассмотренных в
диссертационной работе, в частности для случая большой длины периода и
гладких целевых функций.

3.2.2 Постановка задачи оценки гладкого тренда

Предполагается, что наблюдения 𝜉 = (𝜉𝑡)𝑡>0 выполнены согласно общей
модели

𝜉𝑡 = 𝑓(𝑡) + 𝜈𝑡, 𝑡 > 0, (3.2)

где 𝑓(𝑡) — неслучайная гладкая функция (тренд), наблюдаемая в шуме 𝜈𝑡,
E 𝜂(𝑡) = 0. По данным зашумленных измерений Xℓ = {(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1,𝑋𝑘 = 𝜉𝑡𝑘, 𝑘 =

1, . . . , ℓ, выполненным согласно (3.2), требуется оценить значение 𝑓(𝑡) = E 𝜉𝑡 для
каждого 𝑡 > 0. Для разработки алгоритмов решения этой задачи в следующих
двух разделах приняты более детальные предположения о тренде и шуме.
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3.3 Алгоритм оценивания параметров сигнала на основе

фильтра для наблюдений с длинной памятью

3.3.1 Описание алгоритма

Рассмотрим алгоритм оценивания параметров тренда на основе фильтра,
разработанного в главе 1. Этот алгоритм предполагает, что наблюдения 𝜉 =

(𝜉𝑡)𝑡>0 выполнены согласно модели (ср. (3.2)):

𝜉𝑡 = 𝑓(𝑡) + 𝜈𝐻𝑡 , 𝑡 > 0, (3.3)

где локально гладкий тренд 𝑓(𝑡) наблюдается на фоне шума 𝜈𝐻𝑡 , обладающего
свойством длинной памяти. Помеха 𝜈𝐻𝑡 моделируется с помощью фрактального
гауссовского шума 𝑍𝐻 =

(︀
𝑍𝐻
𝑡

)︀
𝑡>0

(fractional Gaussian noise, fGn) с некоторой
(неизвестной) дисперсией: 𝜈𝐻𝑡 = 𝜎𝑍𝐻

𝑡 .
Теоретические результаты раздела 1.3 могут применяться для оценивания

тренда 𝑓(𝑡) при выполнении следующих условий:
– функция 𝑓(𝑡) является достаточно гладкой, что позволяет рассмотреть ее

аппроксимацию многочленом конечной степени
∑︀𝑛𝜃

𝑖=0 𝜃𝑖(𝑡−𝑡0)𝑖 в окрестности
любого 𝑡0 > 0;

– значение параметра Херста 𝐻 известно (на практике для его оценивания
можно использовать подходы, предложенные в работах [15; 17; 31; 35]).

Кроме того, привлекательным свойством указанного подхода является тот факт,
что разработанная в нем оценка не зависит от значения дисперсии 𝜎.

Рассмотрим следующий алгоритм оценивания тренда 𝑓(𝑡).
1. Рассмотрим шагающее окно, позиция 𝑊 которого принимает последова-

тельно значения 𝑊1,𝑊2, . . ., где 𝑊𝑖 = [(𝑖 − 1)𝑠, (𝑖 − 1)𝑠 + ℎ], 𝑖 = 1, 2, . . .,
ℎ > 0 — ширина окна, 𝑠 < ℎ — шаг, на который сдвигается положение окна.

2. Вычислим оценку ̂︀𝑓𝑊𝑖
(𝑡) тренда 𝑓(𝑡) для 𝑡 ∈ 𝑊𝑖:

(a) Предполагая, что в окрестности точки 𝑡0 = (𝑖−1)𝑠+ℎ/2 модель тренда
задается кубическим полиномом

𝑋𝑘 =
3∑︁

𝑗=0

𝜃𝑗(𝑡𝑘 − 𝑡0)𝑗 + 𝜎𝑍𝐻
𝑘 (3.4)
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Рисунок 3.1: Зависимость среднеквадратич-
ной погрешности оценивания коэффициента
линейного сноса фрактального броуновского
движения от значения ̂︀𝐻 параметра Херста,
предполагаемого в оценке 1.3
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Рисунок 3.2: Результат применения алго-
ритма оценивания параметра тренда с по-
правкой на длинную память. Серым цве-
том показана траектория результата на-
блюдений 𝜉 в (3.4), синим — истинная тра-
ектория тренда 𝑓(𝑡), зеленым — результат
оценивания ̂︀𝑓(𝑡) без поправки на длинную
память (𝐻 = 1/2), розовым — результат
оценивания ̂︀𝑓(𝑡) c поправки на длинную
память (𝐻 = 0.11). Истинное значение
𝐻 = 0.1.

где 𝑡𝑘 ∈ 𝑊𝑖, дисперсия 𝜎 постоянна, и принято 𝐻 = 1/2, вычислим
оценку максимального правдоподобия ̂︀𝜃ML параметра 𝜃 = (𝜃0, . . . , 𝜃3),
используя соотношения из раздела 1.3.

(b) Вычислим оценку тренда для каждого 𝑡 ∈ 𝑊𝑖, используя соотношение
̂︀𝑓𝑊𝑖

(𝑡) =
∑︀3

𝑖=0(
̂︀𝜃ML)𝑖(𝑡− 𝑡0)𝑖.

(c) Вычислим оценку дисперсии помехи ̂︀𝜎 как выборочную дисперсию
величин 𝑌𝑘 = 𝑋𝑘 − ̂︀𝑓𝑊𝑖

(𝑡𝑘), 𝑡𝑘 ∈ 𝑊𝑖.
(d) Вычислим оценку показателя Херста ̂︀𝐻, используя подход из рабо-

ты [15] и стандартизованные остатки 𝑅𝑘 = 𝑌𝑘/̂︀𝜎, 𝑡𝑘 ∈ 𝑊𝑖.
(e) Используя полученную оценку показателя Херста ̂︀𝐻, вычислим скор-

ректированные оценки тренда и дисперсии в (a)–(c).
3. Вычислим оценку ̂︀𝑓(𝑡) тренда 𝑓(𝑡), усредняя локальные оценки
̂︀𝑓𝑊1

(𝑡), ̂︀𝑓𝑊2
(𝑡), . . ., полученные для каждого положения 𝑊1,𝑊2, . . . шага-

ющего окна:
̂︀𝑓(𝑡) = 1

𝑛(𝑡)

∑︁

𝑖: 𝑡∈𝑊𝑖

̂︀𝑓𝑊𝑖
(𝑡),
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где 𝑛(𝑡) — число окон, пересекающихся в точке 𝑡 (при равномерном поступ-
лении наблюдений 𝑛(𝑡) = 𝑛 = ℎ/𝑠+ 1).

Двухшаговая процедура вычисления оценки ̂︀𝑓(𝑡) необходима на практике
ввиду того, что показатель Херста 𝐻 является неизвестной, но важной постоян-
ной, влияющей на точность оценивания. Эта зависимость проиллюстрирована
на рис. 3.1, где показано, что погрешность в задании постоянной Херста влияет
на точность оценивания параметра тренда. Применяя поправку согласно схеме,
описанной в шагах 2a– 2c алгоритма, возможно уменьшить неопределенность
в значении 𝐻 и достичь лучшей точности оценивания тренда по сравнению с
подходом «по умолчанию», в котором 𝐻 = 1

2 , см. рис. 3.2.
Кратко опишем алгоритм прогнозирования будущих значений временного

ряда. Пусть Xℓ = {(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1 — данные, использовавшиеся для вычисления
оценки ̂︀𝑓(𝑡) тренда. Задача прогнозирования будущего значения временного
ряда на один шаг вперед заключается в вычислении оценки ̂︀𝑓(𝑡ℓ+1) ожида-
емого значения E𝑋𝑡ℓ+1

измерения 𝑋𝑡ℓ+1
, 𝑡ℓ+1 > 𝑡ℓ. Вычислим ℎ/(2𝑠) оценок

̂︀𝑓𝑊F
−ℎ
(𝑡), . . . , ̂︀𝑓𝑊F

−ℎ/(2𝑠)
(𝑡), используя описанный выше алгоритм (1)–(3) и позиции

𝑊 F
−ℎ = [𝑡ℓ−ℎ, 𝑡ℓ], . . ., 𝑊 F

−ℎ/(2𝑠) = [𝑡ℓ−ℎ/(2𝑠), 𝑡ℓ] шагающего окна. Оценка ̂︀𝑓(𝑡ℓ+1)

значения E𝑋𝑡ℓ+1
= 𝑓(𝑡ℓ+1), вычисляется согласно соотношению

̂︀𝑓(𝑡ℓ+1) =
2𝑠

ℎ

−ℎ/2∑︁

𝑘=−ℎ

̂︀𝑓𝑊F
𝑘
(𝑡ℓ+1).

3.4 Алгоритм оценивания параметров сигнала на основе

непараметрической регрессии

3.4.1 Модели наблюдений с явным учетом сезонности

Рассмотрим многокомпонентную математическую модель квазипериодическо-
го сигнала и алгоритм оценивания его параметров на основе непараметрической
регрессии. Пусть равенство

𝜉𝑡 = 𝑓(𝑡) + 𝜈𝑡, 𝑡 > 0, (3.5)
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задает модель сигнала 𝜉 = (𝜉𝑡)𝑡>0, в которой моделью тренда служит соотно-
шение 𝑓(𝑡) = 𝑄𝑡𝑆𝑡, где процессы 𝑄 = (𝑄𝑡)𝑡>0, 𝑆 = (𝑆𝑡)𝑡>0 и 𝜈 = (𝜈𝑡)𝑡>0 суть
ненаблюдаемые амплитуда и сезонная составляющая; модель случайной помехи
𝜈𝑡 задается равенством 𝜈𝑡 = 𝜎𝑡𝜀𝑡, где 𝜎𝑡 = 𝜎𝜙(𝑡) — неслучайная функция, а
𝜀 = (𝜀𝑡)𝑡>0 — процесс стандартного гауссовского белого шума. В модели (3.5)
𝑄 — случайный процесс, 𝑆𝑡 = 𝑆(𝜙(𝑡)) — детерминированная (неслучайная)
функция. Величина 𝜙(𝑡) = 2𝜋{𝑡/𝑇} имеет смысл фазы (известного) периода 𝑇 ,
соответствующего моменту времени 𝑡 (где {𝑥} = 𝑥 − ⌊𝑥⌋ — дробная часть 𝑥).
Назовем такое представление временного ряда моделью [𝑄,𝑆, 𝜈].

Факторизация представлений тренда и помехи в (3.5) позволяет выразить
важные свойства реальных сигналов систем с интенсивным ПО, такие как
медленный рост числа обрабатываемых запросов и его флуктуации в течение
суток. В модели тренда 𝑄 = (𝑄𝑡)𝑡>0 и 𝑆 = (𝑆𝑡)𝑡>0 интерпретируются как
ненаблюдаемые амплитуда и сезонная составляющая, соответственно.

Рассматривая различные модели амплитуды 𝑄, можно получать и модели
временного ряда 𝜉 с различными свойствами. При 𝑄𝑡 ≡ 1, 𝑡 > 0, соотношение

𝜉𝑡 = 𝑆𝑡 + 𝜈𝑡 (3.6)

задает строго периодическую модель [𝑆, 𝜈] наблюдений, где 𝑆 и 𝜈 имеют тот же
смысл, что и выше. С другой стороны, при 𝑄𝑡 = 𝐿𝑡𝐴𝑡, где 𝐿 = (𝐿𝑡)𝑡>0 и 𝐴 =

(𝐴𝑡)𝑡>0 — случайные процессы, моделирующие ненаблюдаемые долгосрочный
тренд и локальную амплитуду, соответственно, соотношение

𝜉𝑡 = 𝐿𝑡𝐴𝑡𝑆𝑡 + 𝜈𝑡 (3.7)

задает модель [𝐿,𝐴, 𝑆, 𝜈], учитывающую тренд на двух масштабах времени.
А именно, тренд 𝐿 предполагается случайным процессом, характерное время
изменения которого порядка Δ𝑡𝐿 ≫ 𝑇 , в то время как характерное время из-
менения процесса 𝐴 порядка Δ𝑡𝐴 ∼ 𝑇 . Моделирование тренда и амплитуды
случайными процессами означает интерпретацию цикла 𝐿𝑡𝐴𝑡𝑆𝑡 в (3.7) как сто-
хастического, а не детерминированного и позволяет называть модель в (3.7)
квазипериодической. Рассматривая модели [𝑆, 𝜈], [𝑄,𝑆, 𝜈] или [𝐿,𝐴, 𝑆, 𝜈], можно
выбрать удобную детализацию модели при моделирования наблюдений.
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3.4.2 Итеративные алгоритмы оценивания параметров моделей ква-

зипериодических сигналов

Рассмотрим алгоритм оценивания значений ̂︀𝑆𝜓𝑗
и ̂︀𝜎2𝜓𝑗

для каждой фазы
𝜓𝑗 = 𝜙(𝑡𝑗), где 𝑡𝑗 = 𝑗Δ,Δ = 𝑇/𝑝, 𝑗 = 1, . . . , 𝑝, по данным зашумленных
измерений Xℓ = {(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1.

Инициализация. Положим величину ̂︀𝑄𝑘 равной 1 для каждого 𝑘 = 1, . . . , ℓ, а
величину ̂︀𝜎2𝜓𝑗

для каждого 𝑗 = 1, . . . , 𝑝 положим равной дисперсии наблюдений
𝑋1, . . . , 𝑋ℓ.

Итерации. Повторим следующие шаги:
1. С использованием оценки Надарая-Ватсона переоценим ̂︀𝑆𝜓𝑗

:

̂︀𝑆𝜓𝑗
=

ℓ∑︀
𝑘=1

𝑤𝑘𝑋𝑘/ ̂︀𝑄𝑘𝐾ℎ(𝜙𝑘, 𝜓𝑗)

ℓ∑︀
𝑘=1

𝑤𝑘𝐾ℎ(𝜙𝑘, 𝜓𝑗)

(3.8)

где 𝜙𝑘 = 𝜙(𝑡𝑘) суть фазы в моменты времени 𝑡𝑘, 𝑘 = 1, . . . , ℓ, 𝐾ℎ(𝜙,𝜓) —
ядро ширины ℎ > 0, и 𝑤𝑘 — вес 𝑘-го измерения.

2. С использованием оценки Надарая-Ватсона переоценим ̂︀𝜎2𝜓𝑗
:

̂︀𝜎2𝜓𝑗
=

ℓ∑︀
𝑘=1

(︀
𝑋𝑘 − ̂︀𝑋𝑘

)︀2
𝐾ℎ(𝜙𝑘,𝜓𝑗)

ℓ∑︀
𝑘=1

𝐾ℎ(𝜙𝑘,𝜓𝑗)

. (3.9)

3. Переоценим ̂︀𝑋𝑘 = ̂︀𝑋(𝑡𝑘) и ̂︀𝑄𝑘 = ̂︀𝑄(𝑡𝑘), 𝑘 = 1, . . . , ℓ. Для вычисления
прогноза ̂︀𝑋𝑘 значения 𝑋𝑘 выберем некоторое 𝐻 > 0 и рассмотрим момен-
ты времени 𝑡𝑘−𝑝, . . . , 𝑡𝑘, где 𝑡𝑘 − 𝐻 6 𝑡𝑘−𝑝 < . . . < 𝑡𝑘. Согласно (3.5) в
предположении локально постоянной амплитуды

𝑋𝑖 = 𝑄𝑘
̂︀𝑆𝜙(𝑡𝑖) + 𝜈𝑖, 𝑖 = 𝑘 − 𝑝, . . . , 𝑘, (3.10)

где значение ̂︀𝑆𝜙(𝑡𝑖) получим кубической интерполяцией значений ̂︀𝑆𝜓𝑗
по

четырем ближайшим к 𝜙(𝑡𝑖) точкам сетки 𝜓1, . . . , 𝜓𝑛. В предположении
𝜈𝑖 ∼ 𝒩 (0, ̂︀𝜎2𝜓𝑖

) амплитуду 𝑄𝑘 в (3.10) оценим методом взвешенной линейной
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Алгоритм 1. Оценивание параметров квазипериодической модели 3.5

1: Вход: данные Xℓ = {(𝑋𝑘, 𝑡𝑘)}ℓ𝑘=1.
2: Положить ̂︀𝑄𝑘 = 1, 𝑘 = 1, . . . , ℓ.
3: Положить ̂︀𝜎2

𝜓𝑗
= ̂︀𝜎2 = var(𝑋1, . . . , 𝑋ℓ), 𝑗 = 1, . . . , 𝑝.

4: Повторять
5: Положить Diff𝑆 = 1/𝑝

∑︀𝑝
𝑗=1(

̂︀𝑆𝜓𝑗
− ̂︀𝑆PREV

𝜓𝑗
)2.

6: Положить Diff𝜎2 = 1/𝑝
∑︀𝑝

𝑗=1(̂︀𝜎2
𝜓𝑗
− (̂︀𝜎2

𝜓𝑗
)PREV)2.

7: Для всех 𝑗 = 1, . . . , 𝑝 выполнять
8: ̂︀𝑆PREV

𝜓𝑗
← ̂︀𝑆𝜓𝑗

, (̂︀𝜎2
𝜓𝑗
)PREV ← ̂︀𝜎2

𝜓𝑗
.

9: Обновить ̂︀𝑆𝜓𝑗
согласно (3.8).

10: Обновить ̂︀𝜎2
𝜓𝑗

согласно (3.9).
11: Конец цикла
12: Для всех 𝑘 = 1, . . . , ℓ выполнять
13: Вычислить ̂︀𝑄𝑘 и ̂︀𝑋𝑘 согласно (3.10)–(3.11).
14: Конец цикла
15: Пока выполняется Diff𝑆 < 10−6 и Diff𝜎2 < 10−6

регрессии с весами 𝜆𝑖 = 1/̂︀𝜎2𝜓𝑖
, 𝑖 = 𝑘 − 𝑝, . . . , 𝑘. Прогноз ̂︀𝑋𝑘 значения 𝑋𝑘

вычислим согласно равенству

̂︀𝑋𝑘 = ̂︀𝑄𝑘
̂︀𝑆𝜙(𝑡𝑘). (3.11)

Итерации останавливаются, когда среднеквадратичное изменение оценок ̂︀𝜎2𝜓𝑗
и

̂︀𝑆𝜓𝑗
становится меньше некоторого порогового значения (на практике, после 3–5

итераций алгоритма отличие в этих оценках становится меньше величины 10−6).

Алгоритмы оценивания для моделей [𝑆,𝜈] and [𝐿,𝐴,𝑆,𝜈]. Процедура оценивания
параметров модели [𝐿,𝐴,𝑆,𝜈] следует в точности тем же шагам 1–3, как и в
случае модели [𝑄,𝑆,𝜈] с заметой 𝑄𝑡 произведением 𝐿𝑡𝐴𝑡. В этом случае прямая
оценка локальной амплитуды становится недоступна.

Для модели [𝑆,𝜈] не требуется оценивание амплитуды 𝑄, и вся процедура
обучения становится проще: шаг 3, относящийся к регрессии (3.10), опустим, и
вычислим только ̂︀𝑆𝜓𝑗

и ̂︀𝜎2𝜓𝑗
(использя кубическую интерполяцию, описанную вы-

ше) в (3.8)–(3.9) для 𝑗 = 1, . . . , 𝑝. Оценка 𝑋𝑛 вычисляется согласно соотношению
̂︀𝑋𝑛 = ̂︀𝑆𝜙𝑛

.
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3.4.3 Практическая реализация алгоритмов оценивания на основе

непараметрической регрессии

Алгоритм 1 включает ряд параметров, выбор которых при программной
имплементации неясен. Обсудим некоторые подробности выбора параметров,
принятого в диссертационной работе.

Разность фаз. В диссертационной работе ядерная функция 𝐾ℎ(𝜙,𝜓) задана
зависящей от разности фаз посредством величины

𝛿(𝜙, 𝜓) = min(|𝜙− 𝜓|, |𝜙− 𝜓 − 2𝜋|, |𝜙− 𝜓 + 2𝜋|),

которая имеет смысл кратчайшего расстояния между фазами 𝜙 и 𝜓 с учетом
цикла.

Сглаживание и веса. Веса 𝑤𝑘, назначаемые измерениям 𝑋𝑘, 𝑘 = 1, . . . , ℓ,
в (3.8), задаются соотношениями:

𝑤𝑘 = (1− 𝛼)−(𝑡−𝑡𝑘)/Δ, (3.12)

где 𝛼 ∈ (0, 1) контролирует скорость затухания веса, назначаемого наблюдению,
а Δ > 0 является некоторой постоянной, имеющей размерность времени, так что
степень (𝑡− 𝑡𝑘)/Δ безразмерна (в диссертации для простоты принято, что эта
величина равна периоду наблюдений: Δ = 𝑇 ). Такой выбор весов в (3.8)–(3.9)
позволяет объединить усреднение внутри периода (с помощью ядерного сглажи-
вания) и усреднение по периодам (посредством экспоненциального сглаживания
с весами 𝑤𝑘). Сглаживание внутри периода (ядерное) позволяет использовать
временную локальность и вычислять оценку усреднением соседних точек (какие
именно точки являются соседями, определяется шириной ядра ℎ), а сглажива-
ние по периодам (экспоненциальное) — фазовую локальность, вычисляя оценку
усреднением точек с близкими фазами в предшествующих периодах наблюдений.
Заметим, что при ℎ→ 0 ядерная функция сколь угодно близко приближается
к дельта-функции Дирака, а формулы (3.8)–(3.9) сводятся к векторному слу-
чаю экспоненциально взвешенного скользящего среднего по точкам с близкими
фазами.

Выбор ядерной функции. В диссертационной работе рассматривались несколь-
ко типов ядерных функций: лапласовское, гауссовское и косинусное ядра, зада-
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Рисунок 3.3: Косинусное ядро и его Фурье-образ

ваемые соотношениями

𝐾GAUSS(𝛿) = exp
{︁
− 𝛿2/(2ℎ2)

}︁
,

𝐾LAPLACE(𝛿) = exp
{︁
− |𝛿|/ℎ

}︁
, и (3.13)

𝐾COS(𝛿) =
2

𝜋

cos(𝛿/(2ℎ))− cos(𝛿/ℎ)

𝛿2/ℎ2
,

соотетственно. Лапласовское и гауссовское ядра наиболее широко применяются
в непараметрической регрессии; эти функции являются ядрами второго порядка,
что ограничивает скорость сходимости оценки величиной 𝑂(ℎ2), где ℎ — ширина
ядра. Косинусное ядро, показанное на рис. 3.3, имеет бесконечный порядок,
что означает, что скорость сходимости непараметрической оценки ограничена
только степенью дифференцируемости оцениваемой функции [52].

Эффективная оценка дисперсии. Для малых выборок дисперсия в (3.9) часто
оказывается переоцененной. Чтобы улучшить свойства оценки, в диссертацион-
ной работе используется эффективная оценка дисперсии согласно соотношению,
справедливому для малых выборок

(̂︀𝜎𝜓𝑗
)eff =

1√
𝑛
̂︀𝜎𝜓𝑗

𝑡𝑛−1,1−𝛼/2, (3.14)
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где 𝑡𝑛−1,1−𝛼/2 является 𝛼-квантилем распределения Стьюдента, а величина 𝑛
имеет смысл эффективного объема выборки: 𝑛 =

∑︀ℓ
𝑘=1𝑤𝑘 [43]. Такая поправка

улучшает точность оценки дисперсии при малом объеме данных, например, в
случае появления нового потока наблюдений 𝜉 = (𝜉𝑡)𝑡>0 или при появлении
пропуска в наблюдениях.

3.5 Обнаружение моментов изменения свойств сигналов

с квазипериодическим трендом

Рассмотрим задачу обнаружения момента изменения вероятностно-
статистических характеристик квазипериодического сигнала, модель измерения
которого задана в (3.2). Методология, развиваемая в диссертационной работе,
предполагает осуществление фильтрации тренда в непрерывном времени с гене-
рированием ряда «текущих» характеристик наблюдаемого сигнала — бегущей
оценки ̂︀𝑓(𝑡) тренда 𝑓(𝑡), прогноза ̂︀𝜉𝑡 значения 𝜉𝑡, оценки ̂︀𝜎2𝑡 дисперсии 𝜎2𝑡 , а в
случае алгоритмов фильтрации на основе явной модели сезонности (3.5) — и
оценку ̂︀𝑄𝑡 амплитуды 𝑄𝑡 наблюдений. Значительное увеличение ошибки про-
гнозирования (а значит, и погрешности оценивания тренда), сопутствующей
фильтрации, указывает на возникновение структурных изменений модели (3.2).
Обнаружение этих изменений возможно с помощью анализа траекторий упомя-
нутых компонент сигнала, генерируемых фильтрацией. В настоящем разделе
рассмотрим две важные для практики задачи обнаружения разладки для квази-
периодических моделей.

3.5.1 Модели разладки квазипериодических сигналов и их адекват-

ность задачам обнаружения разладки

Рассмотрим первый тип изменений, интересный в практике — это краткосроч-
ные изменения с характерной длительностью много меньше периода наблюдений:
ΔS ≪ 𝑇 . Они представляют собой локальное отклонение в значениях наблюдае-
мого сигнала. Пример такого отклонения показан на верхней половине рис. 3.4.
Заметим, что квазипериодический тренд 𝑓(𝑡) при разладке этого типа сохраня-
ется неизменным; учитывая это, рассмотрим модель краткосрочной разладки
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Рисунок 3.4: Верхний график: месячная траектория числа запросов, заданных некоторо-
му интернет-сервису Яндекса, с отмеченными несколькими краткосрочными разладками.
Нижний график: месячная траектория усредненного времени ответа, этого интернет-сервиса,
с отмеченными двумя долгосрочными разладками. Показаны нормализованные на единицу
значения.

в (3.2):
𝜈𝑡 = 𝜇1[𝜃,𝜃+ΔS](𝑡) + 𝑍𝑡, 𝑡 > 0, (3.15)

где 𝜃 — неизвестный момент разладки, 𝜇 — неизвестная величина разладки,
ΔS — неизвестная длительность разладки, и 𝑍 = (𝑍𝑡)𝑡>0 — гауссовский про-
цесс белого шума. Согласно (3.15) разладка заключается в кратковременном
скачкообразном изменении среднего значения помехи 𝜈𝑡 с нуля на 𝜇, причем
естественно предполагать, что «магнитуда» изменения 𝜇 является неизвестным
параметром (вопрос определения ее значения при практической реализации
обсуждается ниже в п. 3.5.2). Отметим также, что, хотя описанное изменение и
имеет «короткую» продолжительность ΔS, она, тем не менее, может оказаться
ощутимой с точки зрения пользователя (так, например, при получасовом ин-
тервале измерения 𝑇 = 48, а продолжительность разладки ΔS = 6 выливается
в 3 часа недоступности сервиса).

Второй тип разладки, рассматриваемый в диссертационной работе, связан
с долгосрочными изменениями в модели [𝑄,𝑆,𝜈]. Рассмотрим модель долгосроч-
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ной разладки, в которой квазипериодическая компонента 𝑄

𝑄𝑡 =

⎧
⎪⎨
⎪⎩
1 + 𝑍𝑡, если 𝑡 /∈ [𝜃, 𝜃 +ΔL],

𝜇+ 𝑍𝑡, если 𝑡 ∈ [𝜃, 𝜃 +ΔL],

(3.16)

где 𝜃 — неизвестный момент разладки, 𝜇 — неизвестная величина разладки,
ΔL — неизвестная длительность разладки, и 𝑍 = (𝑍𝑡)𝑡>0 — стандартный гауссов-
ский процесс белого шума. Согласно (3.16) разладка заключается в изменении
масштаба наблюдаемого процесса 𝜉 и имеет характерную длительность поряд-
ка ΔL ≫ 𝑇 , как показано на нижней части рис. 3.4. Изменения такого типа
соответствуют, как правило, структурным изменениям в рассматриваемой си-
стеме (обновлению программного обеспечения, замене аппаратного обеспечения,
инициации нового режима работы и т. д.).

Обсудим вопрос об адекватности рассматриваемых моделей разладки задачам
их обнаружения. Очевидно, что эти модели являются лишь приближением
некоторой неизвестной истинной модели разладки в силу ошибок различного
типа, таких как

– ошибки аппроксимации, вызванной заменой в (3.4) истинного тренда его
кубическим приближением;

– ошибки оценивания параметров истинного тренда алгоритмами разделов 3.3–
3.4 по результатам зашумленных измерений;

– ошибки моделирования, связанной с интерпретацией изменения в (3.15)–
(3.16) как скачкообразного изменения среднего значения того или иного
случайного процесса;

– ошибки моделирования, связанной с интерпретацией помехи в (3.2) как
гауссовского или фрактального гауссовского шума.

Таким образом, стандартные предположения о модели разладки в рассмат-
риваемой методологии оказываются нарушены. Как обсуждалось в главе 2,
раздел 2.3.1, нарушение стандартных предположений о модели разладки, ведет,
естественно, к снижению эффективности ее обнаружения. Однако, как показано
там же, раздел 2.5, в этих условиях эффективность обнаружения разладки
может быть повышена использованием ансамблей «слабых» детекторов. Как
будет показано в п. 3.6, модели (3.15)–(3.16) обладают достаточной для обнару-
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жения разладок описательной силой в случае, если используются алгоритмы
обнаружения на основе ансамблей «слабых» детекторов.

3.5.2 Процедуры обнаружения разладки характеристик квазипери-

одических сигналов

Алгоритмы детектирования разладки, рассматриваемые в настоящем раз-
деле, основаны на преобразованиях «текущих» характеристик фильтруемого
по наблюдениям 𝜉 = (𝜉𝑡)𝑡>0 сигнала 𝑓(𝑡) и применении ансамблей «слабых»
детекторов.

Обнаружение краткосрочных изменений. Рассмотрим случайный про-
цесс 𝑅 = (𝑅𝑡)𝑡>0, задаваемый соотношением

𝑅𝑡 =
𝜉𝑡 − ̂︀𝑓(𝑡)
̂︀𝜎𝑡

, 𝑡 > 0, (3.17)

и имеющий смысл нормализованной ошибки прогнозирования наблюдаемой
в (3.2) случайной величины 𝜉𝑡 значением ̂︀𝜉𝑡. Так как согласно алгоритмам
разделов 3.3–3.4 математическое ожидание прогноза E ̂︀𝜉𝑡 = E 𝜉𝑡 = 𝑓(𝑡), то при
отсутствии разладки разность 𝜉𝑡−̂︀𝜉𝑡 является оценкой значения 𝜈𝑡, а значение 𝑅𝑡

является оценкой значения 𝑍𝑡 в (3.15). При появлении разладки равенство E ̂︀𝜉𝑡 =
E 𝜉𝑡 нарушается, поскольку E ̂︀𝜉𝑡 = 𝑓(𝑡) ̸= 𝑓(𝑡) + 𝜇𝜎2𝑡 = E 𝜉𝑡. Таким образом, для
математического ожидания E𝑅𝑡 имеем1 E𝑅𝑡 ≈ 𝜇1[𝜃,𝜃+ΔS](𝑡). Для обнаружения
разладки процесса 𝑅 используем ансамбль «слабых» детекторов, параметры
которого подберем по множеству размеченных траекторий процесса 𝜉.

Обнаружение долгосрочных изменений. Рассмотрим два вспомогательных
процесса 𝑍 = (𝑍𝑡)𝑡>0 и 𝑍S =

(︀
𝑍S
𝑡

)︀
𝑡>0

, задаваемых соотношениями

𝑍𝑡 = ln ̂︀𝑄𝑡,

𝑍S
𝑡 = (1− 𝜆)𝑍S

𝑡−1 + 𝜆𝑍𝑡, 𝑍S
0 = 𝑍0, 𝑡 > 0, (3.18)

1Знак “≈” обусловлен приближенным характером прогноза ̂︀𝜉𝑡, см. раздел 3.5.1.
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соответственно. Согласно (3.16)–(3.18) процесс 𝑍 имеет смысл логарифма2 ло-
кального масштаба наблюдений 𝐴, причем приближенно E𝑍𝑡 ≈ ln𝜇1[𝜃,𝜃+ΔL](𝑡).
В случае, когда медленно меняющийся тренд 𝐿 отсутствует (используется мо-
дель [𝑄,𝑆,𝜈]), достаточно использовать процесс 𝑍 для обнаружения разладки
процесса локальной амплитуды 𝑄 ≡ 𝐴. В случае же, когда в модели учи-
тывается и медленно меняющийся тренд (рассматривается модель [𝐿,𝐴,𝑆,𝜈],
𝑄𝑡 = 𝐿𝑡𝐴𝑡), рассмотрим сглаженную версию локальной амплитуды 𝑍S в (3.18),
в которой постоянная экспоненциального сглаживания 𝜆 выбрана таким обра-
зом, чтобы выполнялось соотношение 1/𝜆≫ 𝑇 . Тогда математическое ожида-
ние E[𝑍𝑡 − 𝑍S

𝑡 ] ≈ ln𝜇1[𝜃,𝜃+ΔL](𝑡). Для обнаружения разладки процесса разно-
сти 𝑍𝑡 − 𝑍S

𝑡 используем ансамбль «слабых» детекторов, параметры которого
подберем по множеству размеченных траекторий процесса 𝜉.

3.6 Эффективность обнаружения разладки квазиперио-

дического временного ряда

3.6.1 Вычислительный эксперимент и наборы данных

Эффективность алгоритмов фильтрации и обнаружения разладки была ис-
следована в ходе вычислительного эксперимента на двух искусственных на-
борах данных, обозначаемых в диссертационной работе Artificial-Easy и
Artificial-Hard. Результаты применения разработанной методологии в зада-
чах анализа реальных сигналов представлены в главе 5.

Искусственные наборы данных состоят из отрезков измерений
{︀
(𝑋𝑘, 𝑡𝑘)

}︀ℓ
𝑘=1

,
ℓ = 2016, интервал 𝑡𝑘+1 − 𝑡𝑘, 𝑘 = 1, . . . , ℓ − 1, между которыми фиксирован 5
минутами, выполненных согласно модели

𝑋𝑘 = 𝑓(𝑡𝑘) + 𝜈𝐻𝑡𝑘 , 𝑘 = 1, . . . , ℓ,

в которой тренд моделируется строго периодической функцией

𝑓(𝑡𝑘) = 𝐴 sin
(︁2𝜋𝑡𝑘
𝑇

)︁
, 𝑘 = 1, . . . , ℓ,

2Можно использовать и процесс локальной амплитуды 𝐴 без преобразований. Здесь взят натуральный
логарифм для единообразия статистических свойств сигнала при обнаружении разладки.
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Таблица 3.1: Точность выделения тренда для искусственного набора данных в терминах
относительной среднеквадратичной погрешности для процедуры EWMA, вариантов процедур
на основе анализа главных компонент (PCA и PCA-Pretrained) и рассматриваемого в
диссертационной работе подхода.

Постановка EWMA PCA PCA-Pretrained Наш подход

Аппроксимация тренда 7.84 8.96 5.58 5.72

Прогноз на одну точку вперед 7.34 5.65 3.80 3.06

с параметрами 𝐴 = 1.5, 𝑇 = 288, а процесс 𝜈𝐻 является процессом с длинной
памятью. Для моделирования разладки в искусственных данных в каждой
репликации измерений шум с длинной памятью 𝜈𝐻 формируется согласно моде-
ли (3.15), в которой дисперсия помехи 𝜎𝑡 ≡ 1, 𝑡 > 1, случайный момент появления
разладки 𝜃 ∼ 𝑈(𝑇, 6𝑇 ) и случайная длительность разладки ΔS ∼ 𝑈(5, 100), а
процесс 𝑍𝐻 =

(︀
𝑍𝐻
𝑡

)︀
𝑡>0

формируется как дискретная аппроксимация процесса
фрактального гауссовского шума с параметром Херста 𝐻 = 0.95. Для набора
данных Artificial-Easy магнитуда разладки в (3.15) принята равной 𝜇 = 5, а
для набора данных Artificial-Hard, магнитуда разладки 𝜇 = 3. Несмотря
на такую, казалось бы, высокую величину магнитуды разладки, как показано
ниже, сгенерированные разладки весьма трудно обнаруживать ввиду наличия
сезонного тренда и шума с длинной памятью. Было сформировано 1000 неза-
висимых репликаций выборки для обучения ансамбля и еще 1000 независимых
репликация для оценивания его качества.

3.6.2 Исследуемые процедуры

В вычислительных экспериментах в качестве «слабых» рассматриваются де-
текторы на основе статистики кумулятивных сумм (2.14), статистики Ширяева-
Робертса (2.13), контрольных карт Шухарта (2.15), статистики changepoint (2.16),
а также статистики апостериорной вероятности (2.12) (детали см. в разделе 2.2.2).
На вход каждому детектору подадим процесс «остатков» 𝑅, заданный соглас-
но (3.17). Используя траектории статистик этих детекторов, обучим ансамбль
на основе логистической регрессии, агрегирующая функция которого задана
согласно (2.21). Глубина истории, используемой ансамблем, варьировалась в
небольших пределах, 𝑝 ∈ {0, 1, 2, 3, 4}; наилучшие результаты согласно кривой
«точность–полнота» показывает алгоритм с глубиной истории 𝑝 = 4.
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Было проведено эмпирическое сравнение качества обнаружения разладки,
получаемого с помощью ансамблей и ряда других подходов: процедуры на
основе порогового фильтра, процедуры кумулятивных сумм, и методов на основе
анализа сингулярного спектра. Кратко опишем рассматриваемые подходы и их
применение в рамках сравнительного анализа.

Процедура на основе порогового фильтра EWMA-Threshold использу-
ет экспоненциально взвешенное скользящее среднее для оценивания текущего
среднего значения ̂︀𝜇𝑡 и дисперсии ̂︀𝜎2𝑡 временного ряда 𝜉, вычисляет «остат-
ки» 𝑅𝑡 = (𝜉𝑡 − ̂︀𝜇𝑡)/̂︀𝜎𝑡, и подсчитывает долю точек скользящего окна [𝑡−Δ, 𝑡],
которые превышают заданное пороговое значение ℎ. Момент подачи тревоги в
этой процедуре определяется согласно равенству 𝜏THR = inf{𝑘 > 1 : 𝑆𝑘 > ℎTHR},
где 𝑆𝑘 = Δ−1

∑︀𝑘
𝑖=𝑘−Δ 1{𝑅𝑖>ℎ}(𝑖). Пороговая доля точек ℎTHR, поточечный порог

ℎ и длина скользящего окна Δ являются параметрами алгоритма; представ-
ленные результаты вычислительного эксперимента для процедуры на основе
порогового фильтра получены при подобранных по равномерной сетке значениях
параметров, максимизирующих качество этой процедуры на тестовой выборке.

Процедура кумулятивных сумм EWMA-CUSUM заменяет статистику 𝑆 =

(𝑆𝑡)𝑡>0, заданную выше, статистикой кумулятивных сумм 𝑇 = (𝑇𝑡)𝑡>0, заданной
в (2.14). Плотности 𝑝∞(·) и 𝑝0(·) в этой процедуре предполагаются нормаль-
ными с единичными дисперсиями и математическими ожиданиями 𝜇∞ = 0 и
𝜇0 = 𝜇, соответственно; в последнем равенстве параметр 𝜇 подбирается для
максимизации качества на тестовой выборке.

Процедура PCA тесно связана с подходом на основе анализа сингулярного
спектра (SSA) и методами разделения на подпространства, представленными
в литературе [47; 63; 88]. Процедуре PCA основана на получении разложения
временного ряда 𝜉 = (𝜉𝑡)𝑡>0 с помощью процедуры SSA и анализе компоненты
𝜉RES𝑡 , принадлежащей остаточному подпространству. Статистика 𝑃 = (𝑃𝑡)𝑡>0

процедуры задается нормой компоненты 𝜉RES𝑡 : 𝑃𝑡 = ‖𝜉RES𝑡 ‖, 𝑡 > 0. Заметим, что
эффективность процедуры PCA определяется прежде всего объемом данных, ис-
пользуемых для получения разложения пространства наблюдений в нормальное
и аномальное подпространства. Для использования этой ее особенности подадим
на вход процедуре дополнительную неделю исторических данных для получения
более точного разложения. Полученную таким увеличением данных процедуру
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Рисунок 3.5: Пример данных из набора Artificial-Easy и результат выделения тренда,
полученный методом EWMA и предложенным в диссертационной работе подходом. Отмечены
сгенерированные разладки.

назовем PCA-Pretrained. Заметим, что никакая другая процедура, включая
ансамбль, не использовала никаких дополнительных данных для дообучения.

3.6.3 Точность аппроксимации тренда

Проведем сравнение точности оценивания тренда по выборке Artificial-

Easy для EWMA, PCA, PCA-Pretrained и предлагаемого подхода. Точность
оценивания трена характеризуется относительной среднеквадратичной погреш-
ностью оценивания (relative root mean squared forecast error, RRMSE), задаваемой
соотношением

RRMSE(𝜉𝑡, ̂︀𝜉𝑡) =

⎯⎸⎸⎷1

ℓ

ℓ∑︁

𝑡=1

(𝜉𝑡 − ̂︀𝜉𝑡)2
𝜉2𝑡

.

Табл. 3.1 представляет точность оценивания тренда в двух несколько отлича-
ющихся постановках: аппроксимации тренда и прогнозе на одну точку вперед.
Точность оценивания тренда RRMSE(𝑓(𝑡), ̂︀𝑓(𝑡)) характеризует близость оценки
̂︀𝑓(𝑡) и истинного тренда 𝑓(𝑡). Точность прогноза на одну точку вперед харак-
теризует качество прогнозирования новых данных 𝜉𝑡ℓ+1

при фиксированной
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Рисунок 3.6: Эмпирическое сравнение эффективности обнаружения разладки в данных
Artificial-Easy для процедур на основе EWMA, процедур на основе PCA, и алгоритма
раздела 3.3. Слева: кривые «точность–полнота». Справа: кривые средней относительной
точности сегментации, см. раздел 2.4.
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Рисунок 3.7: Эмпирическое сравнение эффективности обнаружения разладки в данных
Artificial-Hard для процедур на основе EWMA, процедур на основе PCA, и алгоритма
раздела 3.3. Слева: кривые «точность–полнота». Справа: кривые средней относительной
точности сегментации, см. раздел 2.4.

истории наблюдений {𝜉𝑘, 𝑘 = 1, . . . , 𝑡ℓ}. Исследование точности алгоритма на
выборке Artificial-Easy показывает, что предлагаемый в диссертационной
работе подход работает существенно точнее, чем EWMA и сравним по точности
с процедурами на основе анализа главных компонент. Пример решения задачи
оценивания тренда представлен на рис. 3.5; можно заметить, что предложенный
подход строит более робастную оценку тренда по сравнению с подходом EWMA.
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Рисунок 3.8: Сравнение траекторий статистик, используемых в процедурах CUSUM, PCA-
Pretrained и ансамбле Log-0 для данных Artificial-Hard. Верхний рис.: траектория
искусственных данных и индикатор разладки. Второй сверху рис.: траектория статистики
процедуры CUSUM и индикатор разладки. Заметим отсутствие корреляции с индикатором
разладки. Третий сверху рис.: траектория статистики процедуры PCA-Pretrained и ин-
дикатор разладки. Заметим слабую корреляцию с индикатором разладки. Нижний рис.:
траектория статистики процедуры Log-0 и индикатор разладки. Заметим высокую кор-
реляцию с индикатором разладки. Все статистики были отмасштабированы для удобства
просмотра.

3.6.4 Результаты

На данных Artificial-Easy предлагаемый в диссертационной работе под-
ход немного проигрывает лишь оптимальной процедуре кумулятивных сумм
в терминах площади под кривой «точность–полнота», см. левый рис. 3.6. На
данных Artificial-Hard предлагаемый подход работает лучше, чем все другие
процедуры, в равных условиях. Добавление дополнительной недели данных
для улучшения точности разложения временного ряда в методе PCA позволя-
ет этому подходу показать наилучшие результаты обнаружения разладки, см.
левый рис. 3.7. Предлагаемый в диссертационной работе подход осуществляет
наиболее точную сегментацию временного ряда, как можно заметить из правых
частей рис. 3.6 и рис. 3.7. На практике это означает, что с использованием
предлагаемого подхода можно добиться меньшей средней продолжительности
как ложной тревоги, так и ложного молчания о разладке.

Разработанный подход к обнаружению разладки значительно превосходит
другие процедуры в терминах кривой «точность–полнота». Причина повышения
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эффективности обнаружения разладки заключается в высокой корреляции
сигнала тревоги и индикатора истинной разладки, см. рис. 3.8. Заметим, однако,
что ввиду сложной природы рассматриваемых данных многие разладки трудно
обнаружить.

3.7 Выводы

Разработаны и исследованы математические модели временных рядов с трен-
дом, отталкивающиеся от различных предположений о структуре наблюдений:

– математическая модель на основе локально полиномиального разложения
тренда временного ряда, наблюдаемого в шуме с длинной памятью;

– математическая модель временного ряда, включающая явную модель се-
зонности.

Предложены алгоритмы оценивания параметров этих моделей по обучающей
выборке, их эффективность исследована эмпирически в ходе вычислительного
эксперимента. Сравнение точности оценивания тренда для указанных алго-
ритмов с рядом известных процедур показывает, что разработанные модели
и алгоритмы эффективны в задачах оценивания параметров квазипериодиче-
ских сигналов. Кроме того, эмпирическое исследование качества обнаружения
разладки квазипериодических сигналов указывает на то, что эффективность
обнаружения разладки с помощью предложенных подходов выше по сравнению
с подходами, известными из литературы.
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Глава 4

Комплекс программ

В настоящей главе обсуждаются идеологические и архитектурные предпо-
сылки комплекса программ, реализованного в ходе диссертационной работы; его
структуру и взаимосвязь его частей; краткое описание дополнительного функци-
онала, обеспечивающего гибкость комплекса как целого. Настоящий комплекс,
при грамотном использовании, позволяет реализовать высокоэффективную схе-
му обнаружения отказов программно-аппаратных комплексов очень высокой
сложности, и эта возможность будет продемонстрирована ниже в главе 5 на
примере огранизации мониторинга поискового сервиса Яндекса.

В каком-то смысле и вся диссертационная работа выросла из его программной
части, изучая и развивая которую, автор и его коллеги по Яндексу получили
ценный опыт разработки интеллектуальных алгоритмов анализа данных.

4.1 Предпосылки и архитектура

Программные модули, реализующие алгоритмы интеллектуального анализа
данных, как правило, удобно использовать в качестве «черных ящиков», т. е.
задействуя лишь внешний интерфейс и абстрагируясь от деталей реализации.
«Черный ящик» не только снижает сложность целой программной системы (как
и любой вызываемый модуль), но и избавляет от необходимости отладки реа-
лизованного программного кода, часто недокументированного, запутанного и
обладающего нетривиальной логикой. Согласно этой идеологии, на вход алго-
ритма обнаружения разладки, реализуемого таким модулем, поступает поток
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Рисунок 4.1: Принципиальная схема программного модуля процессинга данных с трендом

данных 𝜉𝑡; на его выходе формируется сигнал 𝑎𝜉𝑡 , который вспомогательный код
использует для передачи сообщения о появлении отказа1.

Пользуясь этой удобной логикой и применяя изложенные в главах 1–3 под-
ходы, легко изобразить принципиальную схему компоненты, реализующей ал-
горитм обнаружения разладки в потоке данных — она приведена на рис. 4.1.
Согласно терминологии программного комплекса, на вход автоматической ком-
поненте обнаружения разладки — профилю мониторинга (Profile) — в режиме
реального времени поступают данные — пары (𝑋1, 𝑡1), (𝑋2, 𝑡2), . . . «измерение—
момент времени». Профиль мониторинга осуществляет, если это требуется,
выделение независимых компонент этого входного потока, таких как теку-
щий профиль цикла и его амплитуду, и передает эти компоненты на обра-
ботку статистическим подпрограммам — статистикам (Statistic) и их ансамблям
(Aggregation). Последние реализуют алгоритмы обнаружения разладки временно-
го ряда, предполагая стандартную модель разладки2, и подают сигналы тревоги
(Alarm) 𝑎𝑖𝑡, 𝑖 = 1, . . . , 𝐾, — временные ряды, множества значений каждого из
которых ограничены интервалом [0, 2], где 𝐾 — число выделяемых независимых
компонент входного потока, причем аномальному состоянию соответствуют
значения 𝑎𝑖𝑡 > 1, 𝑖 = 1, . . . , 𝐾. Объединяя выходы этих подпрограмм (например,
взяв их максимум), получаем сигнал тревоги профиля мониторинга.

1например, сообщения электронной почты или смс-сообщения
2В литературе, как правило, стандартная модель разладки заключается в изменении среднего значения

стационарной гауссовской случайной последовательности. В этом случае наблюдаемый процесс 𝜉 = (𝜉𝑡)𝑡>0

имеет вид 𝜉𝑡 = 𝜇1{𝑡>𝜃}(𝑡) + 𝜈𝑡, где 𝜇 ∈ R — магнитуда разладки, 𝜃 > 0 — момент появления разладки,
и 𝜈 = (𝜈𝑡)𝑡>0 — последовательность независимых стандартно нормально распределенных случайных величин.
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4.2 Структура комплекса
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Рисунок 4.2: Структура основных составляющих реализованного программного комплекса

Разработанный программный комплекс организован в структуру из пяти
высокомодульных пакетов. Каждый из пакетов реализует одну из частей функ-
ционала, описанного в диссертационной работе.

1. Пакет, реализующий алгоритмы оптимального оценивания параметров
тренда сигнала, наблюдаемого во шуме с длинной памятью.

2. Пакет, реализующий вычислительный алгоритм оценивания компонент
квазипериодической модели (3.5).

3. Пакет для работы с ансамблями «слабых» детекторов, в том числе:
– модуль численной оптимизации сглаженного эмпирического риска (2.24)

по заданной обучающей выборке;
– модуль обнаружения кратковременной разладки случайного сигнала

на основе ансамбля (2.17) (в том числе в режиме реального времени).
4. Пакет моделирования реализаций случайных сигналов с заданными стати-

стическими параметрами, такими как кратковременные разладки, квазипе-
риодические тренды и длинная память.

5. Пакет оценивания эффективности исследуемых алгоритмов и визуализации
данных.

В качестве платформы для реализации разработанных математических методов
и алгоритмов используется язык программирования python, библиотека мате-
матических функций numpy и библиотека научных расчетов scipy. Диаграммы
всех классов, относящихся к описанным пакетам, приведены на рис. 4.3–4.4.
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Рисунок 4.3: Иерархия классов пакета статистических процедур
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Рисунок 4.4: Иерархия классов пакета моделирования реализаций случайных сигналов и пакет оценивания эффективности исследуемых
алгоритмов и визуализации данных
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4.3 Дополнительные функциональные возможности

Помимо базовых возможностей разработанного программного комплекса от-
метим еще две его особенности, превращающие его в настоящую промышленную
машину, способную оперативно разворачиваться для мониторинга крупных си-
стем с высоким числом наблюдаемых характеристик. Этими особенностями
являются возможность настройки алгоритма по умолчанию и возможность
эффективного масштабирования системы мониторинга. Таким образом, при
использовании программного комплекса можно осуществить «холодный старт»
мониторинга и получать разумные результаты при отсутствии больших обучаю-
щих выборок.

4.3.1 Алгоритм «по умолчанию»

На практике для получения устойчивых оценок в алгоритмах из разделов 3.3–
3.4 необходимо накопить не менее месяца наблюдений (что соответствует 1344
точкам для получасовых данных или 8064 точкам для пятиминутных данных).
Однако при запуске мониторинга нового сервиса эти данные, как правило,
недоступны.

Целью создания алгоритма «по умолчанию» являются автоматизация обработ-
ки новых наблюдений без необходимости оценивания параметров полноценных
моделей тренда; сокращение времени, требуемого для оценивания параметров мо-
делей тренда после передачи данных; создание настройки параметров разладок
по умолчанию для заказчиков. При этом естественным требованием, предъявля-
емыми к алгоритму, является не слишком большое снижение эффекитивности
обнаружения разладки.

В диссертационной работе предлагается простой подход, при котором оценка
тренда и дисперсии помехи для общей модели (3.2) выполняются с помощью
робастных версий скользящего среднего [30]. А именно, тренд 𝑓(𝑡) оценивается
величиной ̂︀𝜇 = (̂︀𝜇𝑡)𝑡>0

̂︀𝜇𝑡 = (1− 𝛼𝜇)̂︀𝜇𝑡−1 + 𝛼𝜇𝜂𝑡,

𝜂𝑡 = 𝜉𝑡 + ℎ(𝜉𝑡 − ̂︀𝜇𝑡−1; 𝛽𝜎̂︀𝜎𝑡),
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где 𝛼𝜇 — вес нового наблюдения, 𝛽𝜎 — фактор а функция ℎ(𝑥;𝑚𝑥) задается
соотношением

ℎ(𝑥;𝑚𝑥) =

⎧
⎪⎨
⎪⎩
𝑥, если |𝑥| 6 𝑚𝑥,

sign(𝑥)𝑚𝑥, если |𝑥| > 𝑚𝑥.

Таким образом, если величина 𝜉𝑡 − ̂︀𝜇𝑡−1 разности измеренного и ожидаемого
значения временного ряда превышает величину 𝛽𝜎̂︀𝜎𝑡, оценка ̂︀𝜇𝑡 изменяется не
более, чем на величину 𝛼𝜇𝛽𝜎̂︀𝜎𝑡. Такая схема изменения значения статистики
гарантирует защиту от сильного влияния выбросов в значениях наблюдений на
результат оценивания. Оценка дисперсии временного ряда обновляется согласно
схожему соотношению

̂︀𝜎2𝑡 = (1− 𝛼𝜎)̂︀𝜎2𝑡−1 + 𝛼𝜎𝜂𝑡,

𝜂𝑡 = ̂︀𝜎2𝑡−1ℎ
(︁𝜉𝑡 − ̂︀𝜇𝑡−1

̂︀𝜎𝑡−1
; 1
)︁
,

где 𝛼𝜎 — вес нового наблюдения. Алгоритмы обнаружения разладки используют
модель (3.17), в которой ̂︀𝑓(𝑡) ≡ ̂︀𝜇𝑡.

4.3.2 Возможности масштабирования системы обнаружения разла-

док

Предложенный подход оценивания параметров модели является существенно
непараметрическим. Большинство параметров, используемых в нем, имеют или
фиксированные значения, например, тип ядерной функции или параметр Δ

в (3.12), равный периоду сезонности, или оцениваются по данным, например
ширина ядра ℎ, периодическая компонента 𝑆𝜙(𝑡) и ее дисперсия 𝜎𝜙(𝑡). Поэтому
модели зависят лишь от параметров, имеющих ясный физический смысле: вес но-
вого наблюдения 𝛼 в (3.12), требуемое соотношение среднего времени до ложной
тревоги E∞ 𝜏 и задержки в обнаружении разладки E0 𝜏 (см. и другие крите-
рии раздела 2.4) и минимальные значения детектируемых величин разладки 𝜇
в (2.11) (в предположении нормальных наблюдений). Задавая эти параметры,
можем тонко настроить схему обнаружения для работы с потенциально очень
большой группой измеряемых характеристик, обладающих схожими свойствами.
Данный подход обеспечивает дешевое масштабирование системы детектирования
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разладок, поскольку он, во-первых, избавляет от необходимости выбора модели
для каждого регистрируемого временного ряда, и, во-вторых, делает возможным
автоматическое добавление новых измеряемых характеристик, если они имеют
известные системе свойства. Благодаря этим качествам система обнаружения
разладок легко масштабируется с увеличением числа регистрируемых данных
посредством добавления вычислительных узлов. Отметим, что система обна-
ружения разладок, развернутая в Яндексе, обрабатывает 3,5млн точек в день
(порядка 150 тыс. точек в час), при этом обработка одного нового наблюдения
составляет около 0,1–0,4 с.

4.4 Выводы

Предложенные алгоритмы реализованы в виде комплекса программ с модуль-
ной структурой, который интегрирован в библиотеку решения задач обнаруже-
ния разладок и аномалий сигналов с трендом. Помимо основной функциональ-
ности у комплекса есть ряд дополнительных возможностей, востребованных в
прикладных задачах. Среди таких функций отметим возможности одновремен-
ной обработки нескольких временных рядов, разметки полученных сообщений
об ошибках, обработки данных с пропусками и плавающим интервалом поступле-
ния, а также возможность обнаружения разладки алгоритмом «по умолчанию»,
позволяющая осуществлять крупномасштабное развертывание системы в про-
мышленном окружении.
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Глава 5

Результаты решения прикладных задач

5.1 Введение

В данной главе описаны результаты применения классических и разрабо-
танных подходов в реальных задачах прогнозирования значений финансовых
показателей, оценки параметров нагрузки сетей передачи данных, обнаружения
разладок и аномалий системы Яндекс.Поиск и исследования возможности де-
тектирования изменения режима турбулентного течения. Использовались как
модельные (но полученных физически точным алгоримом моделирования), так
и реальные данные. В каждом из следующих разделов 5.2–5.5 подробно описы-
ваются: исследуемая задача; природа рассматриваемых данных; их источник
или параметры порождающего алгоритма; характеристики всего набора данных,
такие как число отсчетов и количество имещиюхся траекторий; предпосылки
и идеология использованного подхода анализа данных; его точные параметры
и установки; иллюстрации результатов его работы.

5.2 Задача прогнозирования значений финансовых пока-

зателей

Рассмотрим задачу прогнозирования цены закрытия финансового показателя
S&P 5001, исторические данные значений которого доступны, например, на
сервере Yahoo! Finance2. Задача прогнозирования заключается в предсказании

1https://en.wikipedia.org/wiki/S%26P_500_Index
2https://finance.yahoo.com

https://en.wikipedia.org/wiki/S%26P_500_Index
https://finance.yahoo.com
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Рисунок 5.1: Значения индекса S&P 500,
использованные при решении задачи про-
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Рисунок 5.2: Значения индекса S&P 500
(серая линия) и значения прогноза этого
индекса на один день вперед (зеленая ли-
ния)

значения 𝜉𝑡+1 цены закрытия в день 𝑡+ 1 по известному отрезку
{︀
𝜉𝑠, 0 6 𝑠 6 𝑡

}︀

значений наблюдаемого временного ряда 𝜉 = (𝜉𝑡)𝑡>0. В качестве критерия
точности рассматривалась относительная погрешность оценивания, даваемая
соотношением (3.6.3). В анализе использовалось 7073 точки, записанных за
период с 04.01.1988 по 31.12.2015, значения которых были загружены с помощью
библиотеки pandas-datareader3. Их значения показаны на рис. 5.1 вместе с
двумя важными событиями, происшедними в указанный период — началом
так называемого кризиса доткомов 2001 г. и началом ипотечного финансового
кризиса 2008 г.

Для решения задачи прогнозирования рассматривалась модель (1.1) в кото-
рой предполагался локально линейный тренд 𝑓(𝑡) = 𝜃0 + 𝜃1𝑡, а модель помехи
задавалась процессом фрактального броуновского движения 𝜈𝑡 = 𝜎𝐵𝐻

𝑡 , причем
значение показателя Херста 𝐻 было неизвестным. Для оценивания параметров
𝜃0, 𝜃1 тренда рассматривалось скользящее окно 𝑋𝑖, . . . , 𝑋𝑖+Δ последовательных
наблюдений, вычислялась оценка ̂︀𝐻 значения показателя Херста 𝐻 и затем оцен-
ки (̂︀𝜃0)ML, (̂︀𝜃1)ML согласно Теореме 1 раздела 1.3. Значение 𝜉𝑡+Δ+1 оценивалось
величиной ̂︀𝑓(𝑡+Δ+ 1) = (̂︀𝜃0)ML + (̂︀𝜃1)ML(𝑡+Δ+ 1).

Использовались значения Δ = 1000. Для оценивания значения показателя
Херста использовалась python-реализация4 алгоритма анализа бестрендовых
корреляций [15].

3https://github.com/pydata/pandas-datareader
4https://github.com/dokato/dfa

https://github.com/pydata/pandas-datareader
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Траектория результата прогноза ̂︀𝑓(𝑡) показана на рис. 5.2. Значение относи-
тельной погрешности оценивания составило 1.16% против 1.86% при использо-
вании 𝐻 = 1/2, что представляет снижение погрешности оценивания на 62%.

5.3 Задача оценки параметров нагрузки сетей передачи

данных
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Рисунок 5.3: Примеры недельных вре-
менных рядов, отвечающих нагрузкам
соединений Атланта–Лос Анджелес,
Лос Анджелес–Чикаго, Сиэтл–Лос Ан-
джелес, Чикаго–Лос Анджелес за неделю
14–21 июня 2004 г. в сети Абилин (2016
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Рисунок 5.4: Оценивание квазиперио-
дического тренда нагрузки соединения
Хьюстон-Чикаго

Рассмотрим задачу оценивания сезонного профиля нагрузки сети передачи
данных, используя публично доступные данные, описывающие нагрузку в Ин-
тернет 2-сети Абилин [77; 93]. Эта база данных часто используется для проверки
эффективности тех или иных алгоритмов выделения сезонной составляющей и
обнаружения разладок ввиду естественного наличия сезонности, а также анома-
лий, связанных с теми или иными аспектами работы сети [47; 63]. База данных
Абилин описывает сетевую нагрузку в сети Абилин5, предоставляя агрегирован-
ную за пятиминутные интервалы информацию об объеме трафика, прошедшего
между двумя узлами (endpoints) сети, в полугодовой период с 1 марта по 10
сентября 2004 года. В базе данных Абилин присутствует 132 временных ряда,

5https://en.wikipedia.org/wiki/Abilene_Network

https://en.wikipedia.org/wiki/Abilene_Network
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соответствующих передаче данных между 12 узлами сети. Несколько отрезков
этих временных рядов показано на рис. 5.3.

Задача оценивания сезонного профиля нагрузки заключалась в построении
оценки ̂︀𝑓(𝑡) гладкого тренда нагрузки 𝑓(𝑡) для каждого 𝑡 > 0 по отрезку наблю-
дений

{︀
𝜉𝑠, 0 6 𝑠 6 𝑡

}︀
. Для решения этой задачи рассматривалась модель (3.3),

в которой предполагался локально кубический тренд 𝑓(𝑡) =
∑︀3

𝑖=0 𝜃𝑖𝑡
𝑖, а модель

помехи задавалась процессом фрактального броуновского движения 𝜈𝐻𝑡 = 𝜎𝐵𝐻
𝑡 ,

причем значение показателя Херста 𝐻 было неизвестным. Для вычисления
оценки ̂︀𝑓(𝑡) применялся алгоритм оценивания тренда с поправкой на длинную
память, разработанный в разделе 3.3.

В качестве параметров использованного алгоритма были выбраны значения
ширины окна Δ = 128 точек, что соответствует примерно 10 часам наблюдений,
использовался сдвиг окна на одну точку, число повторений с переоценкой па-
раметра Херста равнялось двум. Для оценивания значения показателя Херста
использовался алгоритм анализа бестрендовых корреляций [15].

Результат оценивания нагрузки представлен на рис. 5.4. Общее время работы
алгоритма оценивания составило 12 секунд на одном вычислительном ядре.

5.4 Задача обнаружения разладок и аномалий поисковой

системы Яндекса

Поисковая система Яндекса является высоконагруженной программной систе-
мой, обрабатывающей около 5 млрд поисковых запросов ежемесячно6, вследствие
чего ее архитектура является существенно распределенной. Рассмотрим задачу
обнаружения отказов поисковой системы по данным измерения ее характеристик,
выполняемым в реальном времени. Основные типы измеряемых характеристик
включают так называемые счетчики, характеризующие интенсивность нагрузки
системы (число запросов, число срабатываний поискового алгоритма переран-
жирований, количество обращений к поисковому индексу), и так называемые
метрики, т. е. усредненные по выборке поисковых запросов показатели, отражаю-

6что составляет около 165 млн запросов в день или около 2000 запросов в секунду, данные согласно ис-
точнику http://www.vedomosti.ru/technology/articles/2013/02/07/yandeks_obognal_microsoft

http://www.vedomosti.ru/technology/articles/2013/02/07/yandeks_obognal_microsoft
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Рисунок 5.5: Результаты разложения временного ряда с использованием алгоритма разде-
ла 3.4.2 для трех различных наборов данных: описанного в разделе 3.4 искусственного набора
(левый столбец), описываемого в настоящем разделе набора данных Яндекса (центральный
столбец), и набора данных Абилин (правый столбец). На графиках представлены: исход-
ный временной ряд 𝜉, и результат оценивания тренда ̂︀𝑓(𝑡) с доверительными интервалами
̂︀𝑓(𝑡)± ̂︀𝜎𝜙(𝑡) (верхний рисунок), оценка ̂︀𝑆𝜙(𝑡) сезонной компоненты 𝑆𝜙(𝑡) с доверительными ин-
тервалами ̂︀𝑆𝜙(𝑡) ± ̂︀𝜎𝜙(𝑡) (второй сверху рисунок), оценка ̂︀𝑄𝑡 амплитуды 𝑄𝑡 сезонного профиля
(третий сверху рисунок), оценка ̂︀𝜈𝑡 случайной помехи 𝜈𝑡 (нижний рисунок).

щие эффективность их обработки (среднее время ответа в секундах, показатели
кликабельности ссылок, доли запросов без кликов по результатам поиска и т. п.).

База данных соответствующих показателей содержит 8147 одновременно
наблюдаемых характеристик с временным разрешением 5мин, 30мин или 24 ч
(пятиминутные, получасовые или дневные варианты данных, соответственно). В
пятиминутных и получасовых данных присутствует суточная цикличность (дли-
на периода 𝑇 = 288 или 𝑇 = 48 точек в день, соответственно). Для небольшого
подмножества временных рядов (порядка 100) имеется экспертная разметка
наличия отказов. Пример временных рядов обоих упомянутых типов представ-
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Рисунок 5.6: Результаты обнаружения разладки поисковой системы Яндекса для случаев
краткосрочных изменений с характерной длительностью много меньше периода (левый
столбец) и долгосрочных изменений масштаба (центральный столбец). Для сравнения типов
рассматриваемых данных также представлены результаты обнаружения разладки по данным
Абилин (правый столбец, ср. раздел 5.3). На графиках представлены: исходный временной
ряд 𝜉 (верхний рисунок), выделяемая компонента, анализируемая на предмет разладки
(второй сверху рисунок): остатки 𝑅, вычисляемые согласно (3.17), для случая краткосрочных
разладок в данных Яндекса и в данных Абилин, и амплитуда 𝐴, вычисляемая согласно
алгоритму раздела 3.4.2, для случая долгосрочных разладок в данных Яндекса, и траектория
статистики кумулятивных сумм (нижний рисунок).

лен на рис. 3.4 вместе с метками, указывающими на долгосрочные изменения в
амплитуде и краткосрочные изменения в нерегулярной компоненте. Заметим,
что в данных присутствует медленно меняющийся тренд, соответствующий
изменениям масштаба наблюдаемого процесса.

Стандартный подход к обнаружению разладки распределенной поисковой
системы включает тщательную ручную калибровку параметров алгоритмов
обнаружения разладки для достижения оптимального компромисса между запа-
зыванием в обнаружении разладки и вероятностью ложного срабатывания (или
средним временем между ложными срабатываниями). Чрезвычайно высокий
объем рассматриваемой системы (более 8000 различных одновременно наблю-
даемых характеристик) делает эту задачу чрезмерно трудозатратной. Подход,
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рассматриваемый в диссертационной работе, напротив, исключает необходи-
мость ручного подбора параметров алгоритмов обнаружения разладки за счет
использования множества размеченных траекторий и автоматического подбора
параметров ансамбля. Поэтому для обнаружения разладок указанной систе-
мы использовался подход, состоящий в использовании алгоритма оценивания
тренда, предложенного в разделе 3.4.2, классических и предложенных в главе 2
алгоритмов детектирования разладки временного ряда.

Результаты применения указанного подхода представлены на рис. 5.5–5.6. Для
обучения параметров модели использовался непрерывный 4-недельный отрезок
временного ряда, следующий за ним недельный сегмент — для оценки качества
модели. Прогноз значения временного ряда использует как поступающие, так и
исторические данные, т. е. алгоритм может обновлять оценки, адаптируясь ко
входящим данным. Отрезки всех наборов данных имеют 8064 измерений (28 дней,
состоящих из 288 5-минутных интервалов каждый) для обучения и 2016 точек
(7 дней, состоящих из 288 5-минутных интервалов) для оценки, соответственно.
Пример результирующего прогноза вместе с разложением временного ряда
показан на рис. 5.5. Рис. 5.6 содержит результаты обнаружения разладки данных
Яндекса и Абилин.

5.5 Задача исследования возможности детектирования

изменения режима турбулентного течения

В этом разделе исследуется задача обнаружения изменения режима тур-
булентного течения гидродинамической системы, физическая модель которой
разработана в [94]. Физический смысл рассматриваемой задачи заключается
в поиске оптимального момента остановки гидродинамического эксперимента
при возникновении поломки оборудования с использованием данных измерения
относительного давления в различных точках объема модели. Предложены и ис-
следованы простейшие модели данных, представляющие практический интерес
в описанной задаче.
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5.5.1 Задача обнаружения изменения дисперсии случайного процес-

са

Рассмотрим стандартную модель разладки в (2.1), в которой распределения
𝑝∞(·) и 𝑝0(·) моделей наблюдений 𝜉∞ = (𝜉∞𝑡 )𝑡>0 и 𝜉0 =

(︀
𝜉0𝑡
)︀
𝑡>0

, отвечающих
состояниям до и после поломки, соответственно, суть

𝑝∞ = 𝒩 (0,𝜎2∞), 𝑝0 = 𝒩 (0,𝜎20),

что соответствует скачкообразному изменению дисперсии случайного процесса 𝜉
в момент 𝜃. Легко записать выражения для статистики кумулятивных сумм для
рассматриваемой модели; она задается соотношениями (2.11), (2.14), в которых
статистика 𝜁𝑡 принимает вид

𝜁𝑡 = log
𝑝0(𝑋𝑡)

𝑝∞(𝑋𝑡)
= log

𝜎∞
𝜎0

+
𝜉2𝑡
2

𝜎20 − 𝜎2∞
𝜎20𝜎

2∞
.

Принимая (без ограничения общности), что 𝜎∞ < 𝜎0, для величин E∞ 𝜁𝑡 и E0 𝜁𝑡

получим

E∞𝜁𝑡 = log 𝑟 +
1

2

(︀
1− 𝑟2

)︀
, E0𝜁𝑡 = log 𝑟 +

1

2

(︂
1

𝑟2
− 1

)︂
,

где 𝑟 = 𝜎∞/𝜎0 < 1, откуда следует E∞ 𝜁𝑡 < 0,E0 𝜁𝑡 > 0. Сигнал тревоги об
обнаружении поломки следует поднимать в первый момент времени 𝜏 *𝐵 такой,
что статистика 𝑇𝑛 (2.14) превысит некоторую величину 𝐵𝜏 :

𝜏 *𝐵 = inf {𝑡 > 1,𝑇𝑛 > 𝐵𝜏} .

Описанная модель сигнала требует, очевидно, оценивания дисперсии временного
ряда 𝑋𝑡 до и после разладки, в случае, если дисперсия неизвестна. Решить
эту проблему можно стандартным способом, используя вместо величин 𝜎2∞
и 𝜎20 их выборочные аналоги — статистики 𝑆2

0𝑛 и 𝑆2
∞𝑛, — подсчитанные по

соответствующим «отрезкам» данных, на протяжении которых заведомо не
наступает разладка.
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Результаты обнаружения разладки с использованием описанного подхода
представлены на рис. 5.7. Легко заметить, что обнаружение разладки в этом
случае не представляет трудностей.

Рисунок 5.7: Результаты решения задачи обнаружения изменения режима турбулентного
течения, соответствующего изменению дисперсии процесса относительного давления. Слева
представлены реализации процесса относительного давления, измеренного в двух различных
точках объема физической модели. Справа представлены реализации процесса кумулятивных
сумм.

5.5.2 Задача обнаружения изменения параметров процесса авторе-

грессии

Рассмотрим модель разладки, которая заключается в изменении значений
авторегрессионных коэффициентов в момент 𝜃. Одномерная авторегрессионная
модель порядка 𝑝 может быть записана в виде [68]

𝜉𝑡 =

𝑝∑︁

𝑖=1

𝑎𝑖𝜉𝑡−𝑖 + 𝜎𝑍𝑡,
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где 𝑎1, . . . ,𝑎𝑝 — набор коэффициентов авторегрессии, определяющих конкретный
вид процесса; 𝑍𝑡 ∼ 𝒩 (0,1) — последовательность независимых стандартных нор-
мальных величин (случайный процесс «белого шума»); 𝜎 — дисперсия процесса
«белого шума». Разладка в рассматриваемом случае случае состоит в изменении
значений коэффициентов авторегрессии 𝑎1, . . . ,𝑎𝑝. Пусть до момента разладки
авторегрессионная модели определяется набором коэффициентов

(︀
𝑎∞1 , . . . ,𝑎

∞
𝑝

)︀
,

а после разладки — коэффициентами
(︀
𝑎01, . . . ,𝑎

0
𝑝

)︀
, т. е.

𝜉∞𝑡 =

𝑝∑︁

𝑖=1

𝑎∞𝑖 𝜉𝑡−𝑖 + 𝜎𝑍𝑡, 𝑘 = 1, . . . ,𝜃 − 1,

𝜉0𝑡 =

𝑝∑︁

𝑖=1

𝑎0𝑖 𝜉𝑡−𝑖 + 𝜎𝑍𝑡, 𝑘 = 𝜃,𝜃 + 1, . . .

Легко показать, что при известных значениях коэффициентов
(︀
𝑎∞1 , . . . ,𝑎

∞
𝑝

)︀

и
(︀
𝑎01, . . . ,𝑎

0
𝑝

)︀
задача о разладке для процесса авторегрессии сводится к задаче

о разладке для среднего значения случайного процесса. В самом деле, распре-
деления случайной величины 𝜉𝑡 является условно-гауссовским с параметрами
E(𝜉𝑡

⃒⃒
𝜉1, . . . ,𝜉𝑡−1) =

∑︀𝑝
𝑖=1 𝑎𝑖𝜉𝑡−𝑖 и 𝑉 (𝜉𝑡

⃒⃒
𝜉1, . . . ,𝜉𝑡−1) = 𝜎2. Поэтому явный вид

величины 𝜁𝑡 выражается формулой

𝜁𝑡 =

(︃
𝜉𝑡 −

𝑝∑︁

𝑖=1

𝑎∞𝑖 𝜉𝑡−𝑖

)︃2

−
(︃
𝜉𝑡 −

𝑝∑︁

𝑖=1

𝑎0𝑖 𝜉𝑡−𝑖

)︃2

.

Сигнал тревоги об обнаружении поломки следует поднимать в первый момент
времени 𝜏 *𝐵 такой, что статистика 𝑇𝑛 (2.14) превысит некоторую величину 𝐵𝜏 :

𝜏 *𝐵 = inf {𝑡 > 1,𝑇𝑛 > 𝐵𝜏} .

В заключение остановимся на вопросе получения оценок 𝑎̂𝜃𝑖 ,𝑖 = 1, . . . ,𝑝,𝜃 =

0,∞, величин 𝑎𝜃𝑖 ,𝑖 = 1, . . . ,𝑝,𝜃 = 0,∞. Рассмотрим «отрезки» 𝑋1, . . . ,𝑋𝐾 и
𝑋𝑛−𝐾 , . . . ,𝑋𝑛 данных, выбрав 𝐾 таким, что распределение процесса 𝑋𝑡 при
𝑡 = 1, . . . ,𝐾 и при 𝑡 = 𝑛−𝐾, . . . ,𝑛 неизменно и равно 𝑃∞ и 𝑃0 соответственно.
Предполагая реализацию 𝑋1, . . . ,𝑋𝑛 заданной, запишем уравнения авторегрес-
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Рисунок 5.8: Результаты решения задачи обнаружения изменения режима турбулентного
течения, соответствующего изменению спектра процесса относительного давления. Слева
представлены реализации процесса относительного давления, измеренного в двух различных
точках объема физической модели. Справа представлены реализации процесса кумулятивных
сумм.

сии для отрезка 𝑋1, . . . ,𝑋𝐾 (систему уравнений Юла-Уокера [68])

𝑋𝑝+1 = 𝑎∞1 𝑋𝑝 + . . .+ 𝑎∞𝑝 𝑋1 + 𝜀𝑝+1,

𝑋𝑝+2 = 𝑎∞1 𝑋𝑝+1 + . . .+ 𝑎∞𝑝 𝑋2 + 𝜀𝑝+2,

. . .

𝑋𝐾 = 𝑎∞1 𝑋𝐾−1 + . . .+ 𝑎∞𝑝 𝑋𝐾−𝑝 + 𝜀𝐾 ,
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или в матрично-векторном виде
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋𝑝+1

𝑋𝑝+2

...

𝑋𝐾

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋𝑝 𝑋𝑝−1 . . . 𝑋1

𝑋𝑝+1 𝑋𝑝 . . . 𝑋2

... ... . . . ...

𝑋𝐾−1 𝑋𝐾−2 . . . 𝑋𝐾−𝑝

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎∞1

𝑎∞2

...

𝑎∞𝑝

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀𝑝+1

𝜀𝑝+2

...

𝜀𝐾

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.1)

Легко понять, что оценка ̂︀𝑎∞1 , . . . ,̂︀𝑎∞𝑝 параметров 𝑎∞1 , . . . ,𝑎∞𝑝 авторегрессии
может быть получена в виде оценки наименьших квадратов. А именно, обозначая
𝑎∞ =

(︀
𝑎∞1 , . . . ,𝑎

∞
𝑝

)︀
, 𝑥 = (𝑋𝑝+1,𝑋𝑝+2, . . . ,𝑋𝑝+𝐾) и матрицу в (5.1) 𝐴, получим

оценку в виде
̂︀𝑎∞ = (𝐴𝑇𝐴)−1𝐴𝑇𝑥.

Оценку дисперсии 𝜎 «шума» 𝑍𝑡 можно получить также в стандартном виде

̂︀𝜎2 =
⃦⃦
𝑥−𝐴(𝐴𝑇𝐴)−1𝐴𝑇𝑥

⃦⃦

𝐾 − 𝑝 .

5.5.3 Исследование оперативных характеристик решения задачи де-

тектирования изменения режима турбулентного течения

Видно, что статистика кумулятивных сумм позволяет с определенной точ-
ностью детектировать момент разладки. Для характеристики точности этого
определения рассмотрим две основные метрики: частоту ложных срабатываний
𝑝𝑓𝑎 и среднее время запаздывания в обнаружении разладки 𝐸(𝑡− 𝜃). Качество
каждого конкретного алгоритма, как и в случае любой многокритериальной
задачи оптимизации, выражается в виде зависимости 𝐸(𝑡− 𝜃) от 𝑝𝑓𝑎. В данной
работе указанные зависимости, для различных экспериментов и положений
датчиков, представлены на рис. 5.9.

Из полученных графиков можно сделать два важных вывода:
1. Если взять критерием адекватности полученного метода регистрации раз-

ладок 𝐸(𝑡− 𝜃)𝑝𝑓𝑎 < 1, т. е. факт того, что среднее запаздывание метода в
определении разладки меньше среднего времени между двумя соседними
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Рисунок 5.9: Оперативные характеристики решения задачи обнаружения изменения режима
турбулентного течения: зависимость среднего времени запаздывания в обнаружении разладки
от вероятности ложной тревоги для различных положений датчиков давления. 𝑙 — расстояние
от датчика до центра симметрии системы, 𝑟 — характерный радиус системы. Левый рис.:
изменение режима течения соответствует изменению дисперсии процесса относительного
давления. Правый рис.: изменение режима течения соответствует изменению спектра процесса
относительного давления.

ложными срабатываниями, то выбранные модели шума для использования
аппарата разладок оказались адекватными цели исследования.

2. Лучшее качество работы алгоритма достигается при использовании датчи-
ков давления, более удаленных от оси симметрии системы.

5.6 Выводы

Разработанные модели, алгоритмы и комплексы программ были применены
для решения реальных задач: прогнозирования значений финансовых показате-
лей, оценки параметров нагрузки сетей передачи данных, обнаружения разладок
и аномалий системы Яндекс.Поиск и исследования возможности детектирования
изменения режима турбулентного течения.

Алгоритмы оценки параметров временных рядов, использующие разработан-
ные в диссертационной работе подходы, основаны на теоретически эффективных
оценках. В частности, алгоритм оценки тренда, наблюдаемого в шуме с длинной
памятью, включает явную аналитическую модель длинной памяти, а алгоритм
оценивания сезонного тренда использует хорошо изученную оценку Надарая-
Ватсона; именно поэтому в практических ситуациях эти математические методы
гарантируют эффективность решения задач оценивания сигналов по их зашум-
ленным измерениям.
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Что касается алгоритма обнаружения разладки, использующего ансамбль
«слабых» детекторов, ввиду сложности оптимизируемого функционала получить
теоретические гарантии его эффективности чрезвычайно трудно. Однако на
практике, как в ходе вычислительных экспериментов с большим числом незави-
симых повторений (см. главу 2), так и в применении к реальным данным, этот
метод обнаружения разладки неизменно дает лучшие результаты по сравнению
с классическими процедурами детектирования разладок. Кроме того, важным
преимуществом ансамблей по сравнению с классическими процедурами является
отсутствие необходимости ручной настройки алгоритма, поскольку существует
метод оптимизации, позволяющий автоматически выбирать его параметры.
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Заключение

Комплексное рассмотрение проблем обнаружения отказов больших систем
с интенсивным программным обеспечением дало возможность создать алгорит-
мический задел и программную реализацию, которые обладают повышенной
эффективностью решения этих задач по сравнению с известными в литературе
подходами. Разработанные методология, алгоритмика и программный комплекс
гарантируют обнаружение разладок при малом числе ложных тревог; являются
гибкими при адаптации для новых источников данных, обладают малым числом
задаваемых вручную параметров; являются вычислительно легкими, линейно
масштабируются с ростом числа обрабатываемых временных рядов.

Гарантии эффективности алгоритмов оценки параметров временных рядов
проистекают из теоретически доказанных свойств оптимальности используемых
статистических оценок. В частности, алгоритм оценки тренда, наблюдаемого
в шуме с длинной памятью, включает явную аналитическую модель длинной
памяти, а алгоритм оценивания сезонного тренда использует хорошо изученную
оценку Надарая-Ватсона. Верификация свойств разработанных методов оцени-
вания трендов на модельных задачах и эмпирическое сравнение их качества
с известными подходами подтвеждают высокую эффективность оценивания
параметров сигналов.

Математический метод обнаружения разладки на основе ансамбля «слабых»
детекторов всесторонне исследован в ходе интенсивных вычислительных экспе-
риментов и доказал свою эффективность по сравнению с классическими проце-
дурами детектирования разладок в ряде модельных условий по всем метрикам
качества процедур этого класса. Кроме того, важным преимуществом ансамблей
по сравнению с классическими процедурами является отсутствие необходимо-
сти ручной настройки алгоритма, поскольку существует метод оптимизации,
позволяющий автоматически выбирать его параметры.
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Программная реализация разработанных подходов, выполненная в виде мо-
дульного комплекса пакетов программ на языке python, обеспечивает гибкость
как при вычислительных экспериментах, так и при промышленном разверты-
вании. Решения реальных задач, представленные в диссертационной работе,
полностью выполнены с использованием разработанного программного комплек-
са.

Основные результаты настоящей диссертационной работы заключаются в
следующем.

1. Проведено теоретическое исследование модели случайного процесса, управ-
ляемого фрактальным броуновским движением, в том числе получены
оценка максимального правдоподобия и Байесовская оценка параметра
тренда этого процесса, охарактеризован оптимальный момент остановки
измерений этого процесса.

2. Разработан и исследован математический метод обнаружения разладки
временного ряда на основе ансамбля «слабых» детекторов (т. е. классических
процедур обнаружения разладки, оперирующих в условиях нарушения
предположений о модели разладки).

3. Разработана и исследована математическая модель временного ряда с глад-
ким (в частности, квазипериодическим) трендом, наблюдаемым в шуме с
длинной памятью, и алгоритм оценивания параметров этого тренда.

4. Разработана и исследована математическая модель квазипериодическо-
го временного ряда с явным учетом сезонности и алгоритм оценивания
параметров профиля сезонности на основе непараметрической регрессии.

5. Предложена методология моделирования временных рядов с трендом и
обнаружения их разладок и аномалий.

6. Создан программный комплекс, предоставляющий эффективное решение
задач обнаружения разладок и аномалий реальных сигналов.

7. С помощью разработанного программного комплекса решен ряд задач
оценивания параметров и обнаружения разладок реальных сигналов.
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14. Çetin U., Novikov A., Shiryaev A. N. Bayesian Sequential Estimation of a

Drift of Fractional Brownian Motion // Sequential Analysis. — 2013. —

Vol. 32, no. 3. — Pp. 288–296.

15. Detrended fluctuation analysis: a scale-free view on neuronal oscillations /

R. Hardstone, S.-S. Poil, G. Schiavone, R. Jansen, V. V. Nikulin, H. D.

Mansvelder, K. Linkenkaer-Hansen // Scale-free Dynamics and Critical

Phenomena in Cortical Activity. — 2012. — P. 75.



105

16. Du W., Polunchenko A. S., Sokolov G. On Robustness of the Shiryaev-

Roberts Procedure for Quickest Change-Point Detection under Parame-

ter Misspecification in the Post-Change Distribution // arXiv preprint

arXiv:1504.04722. — 2015. — arXiv: arXiv:1504.04722v1.

17. Dubovikov M. M., Starchenko N. V., Dubovikov M. S. Dimension of the

minimal cover and fractal analysis of time series // Physica A: Statistical

Mechanics and its Applications. — 2004. — Vol. 339, no. 3–4. — Pp. 591–

608.

18. Erramilli A., Narayan O., Willinger W. Experimental queueing analysis

with long-range dependent packet traffic // IEEE/ACM Transactions on

Networking (TON). — 1996. — Vol. 4, no. 2. — Pp. 209–223.

19. Extension of the Kalman–Bucy Filter to Elementary Linear Systems with

Fractional Brownian Noises / M. L. Kleptsyna, M. L. Kleptsyna, a. L. E.

Breton, a. L. E. Breton // Statistical Inference for Stochastic Processes. —

2002. — Pp. 249–271.

20. Fellouris G., Moustakides G. V. Bandwidth and Energy Efficient Decentralized

Sequential Change Detection // arXiv preprint arXiv:1210.2029. — 2013. —

arXiv: arXiv:1210.2029v2.

21. Futamura K., Liu D. ANOMALY DETECTION METHODS FOR A

COMPUTER NETWORK. — 2007.

22. Garrett M. W., Willinger W. Analysis, modeling and generation of self-

similar VBR video traffic // ACM SIGCOMM Computer Communication

Review. — 1994. — Vol. 24, no. 4. — Pp. 269–280.

23. Genz A. Numerical computation of multivariate normal probabilities //

Journal of computational and graphical statistics. — 1992. — Vol. 1, no.

2. — Pp. 141–149.

http://arxiv.org/abs/arXiv:1504.04722v1
http://arxiv.org/abs/arXiv:1210.2029v2


106

24. Girshick M. A., Rubin H. A Bayes approach to a quality control model //

The Annals of Mathematical Statistics. — 1952. — Pp. 114–125.

25. Gripenberg G., Norros I. On the prediction of fractional Brownian motion //

Journal of Applied Probability. — 1996. — Pp. 400–410.

26. Guépié B. K., Fillatre L., Nikiforov I. Sequential Detection of Transient

Changes // Sequential Analysis. — 2012. — Vol. 31, no. 4. — Pp. 528–547.

27. Hassani H. A brief introduction to singular spectrum analysis. — 2010. —

URL: http://ssa.cf.ac.uk/a_brief_introduction_to_ssa.pdf

(visited on 06/14/2016).

28. Hassani H. Singular spectrum analysis: methodology and comparison //

Journal of Data Science. — 2007. — Vol. 5, no. 2. — Pp. 239–257.

29. Hodrick R. J., Prescott E. C. Postwar US business cycles: an empirical

investigation // Journal of Money, credit, and Banking. — 1997. — Pp. 1–

16.

30. Huber P. J. Robust statistics. — Springer, 2011.

31. Hurst H. E. Long-term storage capacity of reservoirs // Trans. Amer. Soc.

Civil Eng. — 1951. — Vol. 116. — Pp. 770–808.

32. In-Network PCA and Anomaly Detection / L. Huang, X. Nguyen, M. Garo-

falakis, M. I. Jordan, A. Joseph, N. Taft // Advances in Neural Information

Processing Systems 19. — 2007. — Vol. 19. — Pp. 617–624.

33. ISO/IEC/IEEE Systems and software engineering — Architecture descrip-

tion // ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007

and IEEE Std 1471-2000). — 2011. — Jan. — Pp. 1–46.

34. Johnson J. B. The Schottky effect in low frequency circuits // Physical

review. — 1925. — Vol. 26, no. 1. — P. 71.

http://ssa.cf.ac.uk/a_brief_introduction_to_ssa.pdf


107

35. Kirichenko L., Radivilova T., Deineko Z. Comparative analysis for estimat-

ing of the Hurst exponent for stationary and nonstationary time series //

Information Technologies & Knowledge. — 2011. — Vol. 5, no. 1. —

Pp. 371–388.

36. Kleptsyna M. L., Breton A. L., Viot M. Asymptotically optimal filtering

in linear systems with fractional Brownian noises // SORT. 2004, Vol. 28,
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Условные обозначения

Обозначения, принятые в диссертационной работе

Ниже представлены условные обозначения, общие для всей диссертационной
работы.

Символ Значение Размерность

𝑡,𝑠,𝑢 различные моменты времени скаляр

𝜉 сигнал-результат измерения скаляр

𝑋𝑡 значение результата измерения в момент 𝑡 скаляр

𝑓(𝑡) тренд исследуемого сигнала скаляр

𝜈𝑡 шум скаляр

𝜃 оцениваемый параметр скаляр

𝜃 вектор оцениваемых параметров вектор, 𝑛𝜃

𝑎(𝑡)
неслучайная функция 𝑡 (вместо 𝑎 может быть любая
латинская буква) скаляр

𝜙𝑡 = 𝜙(𝑡)
случайный процесс (вместо 𝜙 может быть любая
греческая буква) скаляр

𝐵𝐻 фрактальное броуновское движение скаляр

𝐻
параметр Хёрста фрактального броуновского
движения скаляр

Xℓ обучающее множество пар «данные–разметка» ℓ

Π процедура обнаружения разладки

A ансамбль процедур обнаружения разладки

𝜏 момент подачи тревоги при обнаружении разладки скаляр

Таблица 5.1: Общие для всей диссертационной работы условные обозначения

Общематематические обозначения
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Символ Значение Размерность, тип

P,P(·) вероятность

E символ математического ожидания

ℱ 𝜎-алгебра

R множество действительных чисел

R𝑛 𝑛-мерное евклидово пространство

Таблица 5.2: Общематематические условные обозначения
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