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Введение

Диссертационная работа посвящена разработке высокоэффективных по быстро-

действию и достоверности алгоритмов семантической обработки изображений и раз-

витию теории построения систем технического зрения, в которых применяется син-

хронизация процессов управления параметрами приборов, например, углами поворота

поворотных платформ и углами зрения видеокамер, и процессов параллельной обра-

ботки изображений и сигналов от одного или нескольких датчиков для существенного

улучшения основных характеристик комплексов технического зрения.

Актуальность проблемы. По мере развития вычислительной техники системы

технического зрения используются всё шире, охватывая многие области деятельно-

сти человека [1]: от ставшей уже обыденной уборки помещений автоматами до ав-

томатического контроля изменений ландшафтов при слежении из космоса. Системы

технического зрения всё чаще применяют в автопилотах для автомобилей, для кон-

троля качества конвейерного производства и даже в устройствах, предназначенных

для игр и развлечений: при кажущейся несерьёзности последнего массовая реализа-

ция подобных устройств может дать очень значительный экономический эффект для

предприятия-производителя в частности и для страны-производителя в целом. Тем не

менее, наиболее значимым и актуальным применением систем технического зрения,

на наш взгляд, остаются охранные системы, предназначенные для предотвращения

неправомерных действий. Современные технические средства, предназначенные для

охраны, улучшают такие важные показатели, как своевременная реакция на нару-

шение, количество задействованного в охранном комплексе персонала, трудоёмкость

принятия решений при выполнении необходимых действий в ответ на нарушение. В

последнее время проблема эффективной охраны порядка стала особенно актуальной

в связи с повышением активности террористических организаций, поэтому задача со-

вершенствования охранных приборов является насущной. Исходя из необходимости

контроля соблюдения правопорядка, в последние годы органами местного управле-

ния по всему миру установлено огромное количество видеокамер, что ещё больше

повысило актуальность создания эффективных систем технического зрения и систем

видеонаблюдения как распространённый вид технических охранных средств. Как по-

казано в исследованиях [2, 3, 4], использование средств видеонаблюдения в комплексе

с административными мероприятиями позволяет более эффективно использовать ре-

сурсы охранных структур и организаций.

Приблизительно до середины-конца 90-х годов XX века понятие «система видео-

наблюдения» обозначало некоторый аппаратный комплекс, состоящий из видеока-

мер, аппаратуры, записывающей видеосигнал, терминалов с простым управлением

для просмотра видео в записи и в реальном времени, а также средств коммуника-
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ции между перечисленными элементами. Такие системы принято называть видеоре-

гистраторами. Чаще всего в видеорегистраторах используются неподвижные камеры,

реже — камеры на поворотных устройствах.

Подобного типа системы технического зрения обладают двумя основными недо-

статками. Во-первых, на операторов, в обязанности которых входит следить за про-

исходящим на изображении, налагается высокая нагрузка, и на практике её можно

выдержать только в течение 2–3 часов, даже если камера наблюдения всего одна. Во-

вторых, поиск события в видеоархиве, если время события известно не точно, может

быть проведён лишь при помощи просмотра архива целиком. Часто видеорегистрато-

ры снабжаются алгоритмами определения движения в кадре, что несколько повышает

эффективность использования системы видеонаблюдения. Однако простой детектор

изменения изображения бесполезен в условиях интенсивного движения, например, на

транспортных магистралях или многолюдных улицах.

К текущему моменту создано множество разработок в области семантической об-

работки цифровых изображений, которые используются для решения проблем тех-

нического зрения. Работы [5, 6, 7, 8, 9, 10] Ярославского Л.П., Грузмана И.С., Кири-

чука В.С., Косых В.П., Перетягина Г.И., Кузнецова А.Е, Спектора А.А, У. Претта,

Ханта Б.Р. и многих других учёных позволяют улучшить качество изображений и

сигналов с помощью первичной фильтрации для повышения эфективности основ-

ной семантической обработки и для увеличения информативности данных. В рабо-

тах Алпатова Б.А, Блохина А.Н., Бабаяна П.В., Степашкина А.И. [11, 12, 13, 14],

а также в работах [15, 16, 17, 18, 19, 20] зарубежных учёных Т. Канаде, Р. Ко-

линза, К. Стоуфера, В. Гримсона, Д. Коминисью, Дж. Малика и других предло-

жены различные алгоритмы выделения положения движущихся объектов в области

изображений при обработке потока сигналов от видеоприборов. Подобные алгорит-

мы могут быть использованы для привлечения внимания оператора видеосистем к

изображению видеокамеры, если на изображении происходит какое-то событие. Ещё

большее влияние на развитие систем технического зрения оказали достижения в об-

ласти машинного обучения и информационной семантической обработки, классифи-

кации и распознавании видеосигналов, которые основаны на теории, изложенной в

работах [21, 22, 23, 24] Харкевича А.А., Ковалевского В.А., Ф. Розенблата, Бравер-

мана Э.М., Айзермана М.А., Розоноэра Л.А. и получившей дальнейшее развитие в

работах [25, 26, 27, 28, 29, 30, 31, 32] Галушкина А.И., Ивахненко А.Г., Вапника В.Н.,

Червоненкиса А.Я., Журавлёва Ю.И., Злобина В.К., Р. Дуда, Д. Сторка, Р. Харта

и многих других. В теории распознавания образов существенно используется теория

статистических решений, в развитие которой основополагающий вклад внесли Кол-

могоров А.Н., Дж. Нейман, К. Пирсен. Семантическая классификация изображений
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позволяет создавать приборы обработки, которые не только реагируют на произволь-

ное изменение в области изображения видеокамер, но и анализируют тип изменений.

В итоге внимание операторов систем технического зрения привлекается не к каждому

изменению в области наблюдения, а только к тем, которые действительно представ-

ляют интерес с позиции решаемых аналитической видеосистемой задач. В связи с

проблемой распознавания и классификации изображений следует отметить большие

практические успехи [33, 34, 35, 36, 37], которые в последние несколько лет были до-

стигнуты при применении аппарата так называемых свёрточных нейронных сетей в

задачах машинного обучения: достоверность классификации изображений, получен-

ная с помощью нейронных сетей в данных работах, сопоставима с качеством клас-

сификации, выполняемой человеком. Однако алгоритмическая сложность глубоких

свёрточных нейронных сетей настолько высока, что на данный момент их невозмож-

но полноценно применять в системах реального времени, поскольку для этого нет

достаточно мощных вычислительных устройств.

Процесс развития систем технического зрения неотделим от процесса развития

техники, и качество современных систем определяется характеристиками оптических

приборов, эффективностью обработки сигналов и быстродействием вычислительных

устройств. Кроме того, большую роль играет развитие средств для разработки ал-

горитмов и программ. Прогресс в области быстродействия вычислительных машин

и компьютеров в настоящее время позволил достигнуть таких показателей произ-

водительности ЭВМ универсального назначения, что воплощение многих из пере-

численных методов для систем обработки видеосигналов реального времени уже не

является такой же сложной технической задачей, как это было десятилетие назад,

тем более появляются специализированные вычислительные системы на кристаллах

и микросхемы, специально предназначенные для быстродействующей семантической

обработки сигналов.Большой вклад в развитие элементной базы обработки сигналов,

вычислительной техники и в теорию построения и разработки алгоритмов внесли Ко-

тельников В.А., К. Шенон, Гуляев Ю.В., Глушков В.М., Валиев К.А., Гуськов Г.Я.,

Преснухин Л.Н., Стемпковский А.Л., Филатов В.Н., Красников Г.Я., Бетелин В.Б.,

Немудров В.Г., Шахнов В.А., Корячко В.П., Бархоткин В.А, Петричкович Я.Я. и

многие другие. Тем не менее, проблема быстрой обработки изображений до сих пор

актуальна, поскольку многие теоретические разработки в области семантической об-

работки видеосигналов применимы лишь в режиме постобработки, а не в реальном

времени, поскольку обработка одного кадра видеопоследовательности занимает слиш-

ком длительное время даже самыми современными вычислительными средствами.

В последнее время системы видеонаблюдения строятся по принципу объединения

в единую сеть различных датчиков [15, 38], регистрирующих обстановку в зоне на-
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блюдения. Заметим, что датчики — это не только видеокамеры, но и, например, дат-

чики объёма в помещениях, датчики открытия/закрытия дверей, датчики поворота

турникетов и т.п. В том числе датчиками комплексов технического зрения являются

видеоприборы: стационарные камеры и камеры с возможностью управления поло-

жением оптической оси и величиной оптической силы объектива. Цель объединения

видеокамер в единую систему заключается в том, чтобы выдавать общую информа-

цию о ситуации в зоне наблюдения в виде единого целого, а не как не связанные друг

с другом изображения с видеокамер. Основное назначение подобной системы — мак-

симально упростить анализ информации оператором за счёт первичной обработки и

оптимизированного с точки зрения эргономики вывода данных о событиях, происхо-

дящих в зоне действия видеоприборов системы.

Одним из важнейших типов сопряжения видеоприборов является сопряжение ви-

деокамер на поворотных устройствах с неподвижными видеокамерами. Поворотные

видеокамеры — это приборы, состоящие из объектива, камеры с чувствительной мат-

рицей и непосредственно механического устройства, которое позволяет изменять по-

ложение оптической оси объектива и направлять угол обзора видеокамеры в нужном

направлении. Современные поворотные устройства могут изменять угол оптической

оси со скоростью 300◦с−1 и более. Кроме управления положением оптической оси, по-

воротные устройства могут также управлять увеличением объектива, изменяя угол

зрения и фокусное расстояние с помощью управления системой линз. Поворотная ви-

деокамера с объективом, диапазон фокусного расстояния которого 10–86мм, может

получать изображения высокого разрешения для объектов в радиусе до 200 метров

от места установки видеокамеры. В то же время возможности по использованию со-

временных поворотных видеокамер в большинстве случаев ограничиваются ручным

управлением и наблюдением за обстановкой в поле зрения видеокамеры с помощью

оператора, поскольку в режиме перемещения оптической оси автоматическое выделе-

ние новых объектов в поле зрения поворотной камеры без участия человека является

сложной и не до конца решённой задачей. Для автоматического выделения движу-

щихся объектов на данный момент надёжнее всего применять неподвижные видео-

камеры, однако для того, чтобы покрыть сектор, например, с углом 360◦ и радиусом

200 метров неподвижными видеокамерами с фокусным расстоянием 86мм для получе-

ния разрешений, эквивалентных разрешениям изображения поворотной видеокамеры

с фокусными расстояниями 10–86мм, потребуется установить несколько тысяч непо-

движных видеокамер. Кроме того, фиксированный угол зрения, соответствующий

фокусному расстоянию 86мм, не обязательно оптимален для получения изображе-

ния объектов. Проблема получения изображений высокого разрешения может быть

решена с помощью сопряжения двух приборов: поворотной и неподвижной видеока-
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меры. Неподвижная видеокамера должна определять новые объекты, появляющиеся

в области наблюдения, а поворотная видеокамера должна наводиться на эти объек-

ты и сопровождать их в автоматическом режиме, управляя параметрами поворота и

увеличения таким образом, чтобы разрешение объекта было наилучшим, и в то же

время чтобы объект был в кадре, несмотря на погрешность наведения. Как показыва-

ет практика, подобный подход может в 5–10 раз сократить количество видеоприборов,

требуемых для получения изображения высокого разрешения.

Связь видеокамер между собой требует настройки ряда параметров, часть из ко-

торых нужно ввести вручную, а часть автоматически. Чем более прост и более авто-

матизирован процесс предварительной настройки, тем экономически более оправдано

применение видеосистемы.

Таким образом, основная проблематика в области систем технического зрения за-

ключается в трудоёмкости их настройки и эксплуатации. Несмотря на значитель-

ные усовершенствования, достигнутые благодаря развитию семантической обработки

изображений, многие проблемы остаются не решёнными:

− операторы систем видеонаблюдения вынуждены постоянно следить за массивом

изображений, поэтому из-за человеческого фактора велика вероятность пропуска со-

бытий в зоне наблюдения;

− для упрощения анализа информации, поступающей от приборов в информаци-

онных комплексах, используют связь видеокамер между собой, при этом возникает

проблема оптимизации времени предварительной юстировки сопряжения перед вво-

дом системы в эксплуатацию;

− необходимость увеличения разрешающей способности изображений, получае-

мых от неподвижных камер в составе видеосистем, требует значительного дополни-

тельного количества неподвижных камер, поскольку зависимость между требуемым

линейным увеличением разрешения и количеством камер квадратичная, естественно,

что повышение разрешающей способности путём установки дополнительных непо-

движных камер приводит к повышению сложности комплексов и увеличению затрат;

− в ряде приборных комплексов технического зрения есть возможность управле-

ния поворотными видеокамерами, и с их помощью можно получить изображение с

более высокой разрешающей способностью, чем на неподвижной камере, причём сек-

тор обзора поворотных камер достигает 360◦, однако для управления поворотными

камерами в существующих системах требуется непосредственное участие оператора,

что повышает вероятность пропуска событий в зоне наблюдения, кроме того, многие

поворотные видеокамеры могут осуществлять сканирование области контроля в авто-

матическом режиме, но при этом эффективных алгоритмов семантической обработки

панорамных изображений реального времени пока не существует;
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− использование стереокамер потенциально может существенно увеличить досто-

верность идентификации объектов в приборных комплексах технического зрения, од-

нако многие вопросы теории использования и обработки стереоизображений остаются

также не решёнными.

Цель работы. Цель данной диссертации — повысить эффективность контроля

зоны наблюдения с помощью комплексов технического зрения нового поколения за

счёт разработки и практической реализации способов автоматического сопряжения и

юстировки изображений видеокамер, создания и анализа алгоритмов синхронизации

процессов семантической обработки информационных сигналов от сети видеоприбо-

ров и автоматического управления поворотными камерами при наведении на объекты

в зоне наблюдения с последующим сопровождением или в режиме непрерывного ска-

нирования.

Задачи работы. Для достижения поставленной цели необходимо решить следу-

ющие задачи:

1. Провести функциональный анализ процессов семантической обработки видео-

сигналов и разработать описание модели распределённой системы коллективной об-

работки изображений различными приборами технического зрения.

2. Вывести соотношения, определяющие параметры сопряжения приборов техни-

ческого зрения, и создать на их основе алгоритмы сопоставления объектов в общей

зоне контроля приборов и алгоритмы наведения поворотных камер на сопровождае-

мые объекты с адаптивным упреждением.

3. Разработать методику тестирования и контроля алгоритмов семантической об-

работки изображений.

4. Разработать алгоритмы семантического анализа стереоизображений и оценить

эффективность их применения в системах технического зрения.

5. Разработать алгоритмы семантической обработки панорамных изображений

реального времени для видеоприборов, установленных на поворотной платформе, ко-

торая движется в режиме непрерывного сканирования.

Методы исследований. Задачи диссертационной работы решены с применением

теории сложности алгоритмов, методов обработки цифровых сигналов-изображений,

теории вычислительных методов оптимизации, фактов проективной и сферической

геометрии, теории вероятности и теории статистических решений.

Научная новизна состоит в разработке, анализе и применении в приборных ком-

плексах и в системах технического зрения эффективных алгоритмов синхронизации

процессов семантической обработки изображений и управления поворотными видео-

камерами, а также в создании способов автоматизации юстировки параметров сопря-
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жения приборов технического зрения. В работе развивается концепция систем видео-

наблюдения, которая строится на совместной семантической обработке информации с

различных видеокамер и на применении элементов теории распознавания образов. В

процессе выполнения диссертационной работы впервые получены следующие новые

научные результаты.

1. Впервые разработана теория параллельных вычислений для комплекса про-

грамм, осуществляющих коллективную обработку информации, поступающей от при-

боров технического зрения. Для данной модели создан новый сетевой протокол син-

хронизации данных, определены ограничения на количество сопряжённых приборов

в сети комплексов технического зрения, а также сформулирована и решена проблема

полуавтоматической юстировки начальных параметров сопряжения.

2. Выведены математические соотношения для сопряжения поворотных камер и

приборов технического зрения, на основе которых созданы новые алгоритмы сопостав-

ления изображений одного и того же объекта в поле зрения сопряжённых неподвиж-

ных видеокамер и алгоритмы автоматического наведения и сопровождения объектов

поворотными камерами для получения изображений бо́льшего разрешения на основе

адаптивного упреждения.

3. Разработана теория тестирования и контроля алгоритмов семантической обра-

ботки на основе формальной логики и математического аппарата теории множеств.

4. Предложен разработанный автором новый комбинированный алгоритм обра-

ботки моно- и стереоизображений, отслеживающий перемещение объектов с высокой

достоверностью.

5. Создан новый быстродействующий параллельно-конвейерный алгоритм по-

строения и анализа панорамных изображений в реальном времени для видеоприбо-

ров, установленных на поворотном устройстве и непрерывно сканирующих область

контроля.

Практическая значимость. Разработанные в диссертации алгоритмы, способы

и модели используются в следующих серийно изготавливаемых системах и приборных

комплексах технического зрения:

1) системы видеонаблюдения с компьютерным зрением «Orwell2k»

РАЯЖ 46652.001-ОС.ПЗ, ЛЦКБ.464412.002, ВАРШ.00001-01, ВАРШ.00003-01

(патенты РФ на полезные модели №36315 от 07.08.2003 и №36912 от 23.06.2003,

патенты РФ №2265531 от 07.08.2003 и №2268497 от 23.06.2003);

2) видеодетектор «Orwell2k-Barrier», определяющий объекты в состоянии свобод-

ного полёта;

3) система подсчета зрителей в кинозалах «Orwell2k-Cinema» (патент РФ на по-
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лезную модель №47546 и на изобретение №2296434 от 14.05.2005);

4) приборы подсчёта объектов «Statistics» ВАРШ.468196.001 и «Statistics-3d»

ВАРШ.463135.002-01;

5) системы контроля дорожного движения «Travio» ВАРШ.466452.001,

ВАРШ.466452.002 (патенты РФ №2014104763, №2015102323, патенты РФ на по-

лезную модель №2014104762, №2015102309, №2015102315);

которые были разработаны при непосредственном участии автора, что подтверждено

рядом свидетельств о регистрации программ для ЭВМ. Таким образом, тема диссер-

тации полностью соответствует направлению научно-производственной деятельности

организации, в которой выполнена работа.

Программное обеспечение семейства «Orwell2k», реализованное на основе разра-

ботанных в диссертации алгоритмов сопряжения, управления и юстировки поворот-

ными видеокамерами, поставляется на внутренний и зарубежный рынок в составе

серийно производимых комплексов технического зрения и является конкурентоспо-

собным продуктом на мировом уровне. Преимущества «Orwell2k» заключаются:

− в работоспособности при тяжёлых климатических и механических условиях экс-

плуатации;

− в автоматическом наведении поворотных камер на движущиеся объекты с уста-

новкой высокой разрешающей способности, при этом погрешность наведения на по-

движные объекты составляет 3◦, что при типичном угле зрения неподвижных камер

30◦–60◦ позволяет улучшить разрешающую способность на порядок по сравнению с

исходной разрешающей способностью изображения от неподвижных видеокамер;

− в выводе событий на топографический план с локализацией места события;

− в применении критерия идентичности изображений объекта в поле зрения пере-

секающихся камер с достоверностью сопоставления 99,0%;

− в классификации всех объектов по типу «человек/машина/группа людей»;

− в существенном сокращении времени реакции системы «Orwell2k» на новые объ-

екты, появляющиеся в зоне наблюдения, до 0,5с, что более чем на порядок превышает

показатели существующих систем;

− в повышении на порядок точности подсчёта числа объектов за счёт анализа

стерео-изображений по сравнению с существующим принципом обработки моноизоб-

ражений и уменьшению погрешности подсчёта до 3%;

− в применении анализа панорамных изображений, что позволяет в 10 раз и более

сократить количество камер, необходимых для контроля зон наблюдения.

Автор диссертации проводил исследования и разработки в рамках «Приоритетных

направлений развития науки, технологий и техники РФ» и «Критических технологий

РФ», утверждённых указом Президента РФ №899 от 7 июля 2011 года.
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Достоверность результатов подтверждается хорошей сходимостью результа-

тов моделирования основных параметров функционирования приборных комплексов

технического зрения, разработанных с участием автора, со значениями параметров

серийных образцов, полученными в ходе их промышленной эксплуатации на различ-

ных объектах.

Внедрение результатов. Результаты диссертационной работы внедрены

в системах технического зрения «Orwell2k» (ВАРШ.00001-01, ВАРШ.00003-01,

ЛЦКБ.464412.002), которые используются в целях обеспечения безопасности как в

России, так и за рубежом, в системах контроля безопасности дорожного движе-

ния «Travio» (ВАРШ.466452.001, ВАРШ.466452.002), в приборах подсчёта объектов

«Statistics» (ВАРШ.468196.001) и «Statistics-3d» (ВАРШ.463135.002-01). Данные при-

борные комплексы используются для охраны стратегически важных объектов, таких

как аэропорты, железные дороги, ГЭС, АЭС. Некоторые из перечисленных систем

применяют для мониторинга городских общественных территорий в целях обеспе-

чения безопасности. Приборы подсчёта объектов широко используются для управле-

ния хозяйственной деятельностью предприятий, предоставляющих услуги населению.

Применение систем подтверждено актами о внедрении и протоколами испытаний,

проводимых на объектах внедрения.

Личный вклад. Автором выявлены проблемы повышения эффективности ком-

плексов технического зрения и сформулированы задачи по их решению. Все материа-

лы, изложенные в диссертации, а именно: научные положения, технические решения,

математические модели, семантические алгоритмы и алгоритмы управления, мето-

дики и результаты испытаний опытных образцов — получены автором лично. Автор

создал архитектуру программного обеспечения, осуществляющего семантическую об-

работку, и участвовал в разработке программ и комплексов технического зрения, в

которых внедрены результаты диссертации. Работы, выполненные в соавторстве, по-

священы конструкторскому моделированию, производственным и эксплуатационным

вопросам.

На защиту выносится:

1. Впервые предложенная теория параллельного функционирования семантиче-

ских обработчиков в комплексах технического зрения и способы полуавтоматиче-

ской юстировки параметров сопряжения видеоприборов, позволяющие посредством

синхронизации информации об анализируемых изображениях объединять в сети со-

пряжённые приборы технического зрения.

2. Новые алгоритмы сопряжения поворотных и неподвижных видеокамер, обес-

печивающие достоверность сопоставления изображений в общей зоне контроля при-

боров 99,0%, а также автоматическое наведение поворотных камер с малыми погреш-
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ностями 0,5◦ на неподвижные объекты и 3◦ на подвижные объекты, позволяющие

получать изображения на порядок бо́льшего разрешения, причём время автоматиче-

ского наведения в 20 раз меньше времени, требуемого для ручного наведения.

3. Теория тестирования и контроля алгоритмов семантической обработки,

на основе которой создана распределённая система контроля и тестирования

«Супервизор», использованная в качестве программно-инструментального средства,

позволившего в 20 раз сократить частоту ложных идентификаций во время анализа

потока видеоизображений при неизменном уровне ошибок второго рода.

4. Новый комбинированный алгоритм семантического анализа стерео- и моно-

изображений, позволяющий вести подсчёт объектов с погрешностью 3%.

5. Впервые созданный алгоритм построения и семантической обработки панорам-

ных изображений с частотой 25 кадров в секунду в реальном времени.

6. Внедрение результатов диссертации при разработке приборных комплексов

технического зрения нового поколения «Orwell2k», в которых реализованы разрабо-

танные в диссертации алгоритмы и способы (свидетельство о регистрации программы

№2003612604 от 28.11.2003, патенты РФ на полезные модели №36315 от 07.08.2003,

№36912 от 23.06.2003, патенты РФ №2265531 от 07.08.2003, №2268497 от 23.06.2003) и

которые внедрены, как уже отмечалось, на ряде важнейших объектов.

Апробация работы. Результаты диссертации докладывались на XLVI, XLVII

и XLVIII научной конференции Московского физико-технического института, а так-

же на XV, XVI и XVII конференциях молодых ученых, аспирантов и студентов по

современным проблемам машиноведения в институте машиноведения им. А.А. Бла-

гонравова РАН. Информационные приборы и видеосистемы семейства «Orwell2k», в

которых внедрены результаты работы, демонстрировались на 20 выставках. Алгорит-

мы и информационные технологии, разработанные автором диссертации и реализо-

ванные в системе, получили признание специалистов и отмечены соответствующими

дипломами. В 2005 году видеосистема с компьютерным зрением «Orwell2k» удосто-

ена II Национальной премии по безопасности «За укрепление безопасности России»

(«ЗУБР-2005»).

Публикации. Основное содержание диссертации отражено в 70 опубликованных

работах, в том числе в 29 статьях в журналах, входящих в перечень, утверждённый

ВАК. Без соавторов опубликовано 36 статей. В соавторстве получены семь патен-

тов на изобретения, шесть свидетельств на полезную модель и шесть свидетельств о

регистрации программ.

Структура и объём диссертации. Диссертация состоит из введения, семи глав,

заключения, списка литературы и приложений. Работа содержит 250 страниц основ-
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ного текста, 50 страниц с рисунками и таблицами, список литературы из 215 наиме-

нований и приложений на 44 страницах.

Содержание и результаты работы. Во введении даётся обоснование актуаль-

ности темы диссертации, формулируются основные цели и задачи работы, описыва-

ется практическое значение полученных результатов, а также структура диссертации

и краткое содержание глав.

В главе 1 проведён обзор основных методов обработки цифровых видеосигналов,

а также методов классификации изображений. Выявлены достоинства методов, поз-

воляющие решать поставленные в работе задачи, и недостатки, которые необходимо

устранить. На основе анализа существующих видеосистем определены необходимые

параметры сопряжения и синхронизации изображения: оптимальная погрешность со-

пряжения поворотных и неподвижных видеокамер определена как 0,1◦, предельная

погрешность преобразования сопряжения неподвижных видеокамер, при которой ещё

возможно эффективное сопоставление изображений, равна 4 пикселам, и задержка

синхронизации данных не должна превышать 3 · 10−2с. Определены цели и задачи

работы, заключающиеся в достижении выведенных параметров за счёт разработки

высокоэффективных алгоритмов.

В главе 2 проведена разработка и функциональный анализ параллельных алго-

ритмов коллективной семантической обработки видеосигналов, созданы теоретиче-

ские основы синхронизации и сопряжения изображений, описана схема параллель-

ных вычислений распределённых обработчиков в комплексах технического зрения.

Проведён вывод ограничений на количество камер, которые могут взаимодейство-

вать друг с другом при использовании конкретного типа вычислительной техники.

Выведены соотношения для сопряжения видеокамер: неподвижных с неподвижны-

ми, неподвижных с планом местности, и неподвижных и поворотных. Предложены

способы автоматизации настройки сопряжения. Разработан алгоритм, полностью ав-

томатизирующий настройку управления фокусировкой при сопряжении поворотных

видеокамер.

В главе 3 на основе результатов предыдущей главы выполнены исследование и

разработка алгоритмов синхронизации, управления и семантической обработки ин-

формации в системах технического зрения, приведены оценки их быстродействия, а

также выведены соотношения для угла упреждения при управлении поворотной ка-

мерой в процессе наведения на движущиеся объекты, предложен критерий идентич-

ности изображений объектов в зоне пересечения областей зрения двух видеокамер.

Приведены оценки погрешности сопряжения поворотных и неподвижных видеока-

мер, а также разработан способ статистической оценки погрешности сопряжения. По

результатам теоретической оценки погрешность наведения на неподвижный объект
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0,5◦, на подвижный объект — 20◦ в исследованных условиях наведения. Рассмотрены

способы применения алгоритмов распознавания в аналитических видеосистемах.

В главе 4 приводится исследование и анализ методик сравнения алгоритмов семан-

тического сжатия видеоинформации, разработана теория тестирования алгоритмов

семантического сжатия на основе теоретико-множественных операций. Показано, что

методика тестирования выделения движущихся объектов должна существенным об-

разом учитывать качество работы алгоритмов сопоставления движущихся областей

изображений на последовательных кадрах. На основе предложенной теории создан

прототип системы тестирования «Супервизор».

В главе 5 разработаны алгоритмы выделения движущихся объектов с помощью

анализа изображений одной камеры, с помощью анализа стереоизображений, и с по-

мощью комбинированного алгоритма. В результате точность идентификации движу-

щихся моноизображений составила примерно 85%, точность идентификации движу-

щихся стереоизображений составила 90%, а точность идентификации с помощью ком-

бинированного алгоритма — 95%.

В главе 6 на основании исследования алгоритмов обработки панорамных изоб-

ражений, получаемых автоматически управляемыми поворотными видеокамерами в

режиме постоянного сканирования зоны обзора, создан новый быстродействующий

алгоритм анализа панорамных изображений. Алгоритм основан на построении пано-

рамы в реальном времени и применении разностной схемы для выделения движу-

щихся изображений на неподвижной панораме. Достигнутое время обработки одного

кадра 30–40мс позволяет обрабатывать изображения с частотой 25к/с, типичной для

большинства видеокамер. Для панорамного изображения разработаны специальные

поправки к методике сопряжения панорамы с планом местности.

В главе 7 описываются экспериментальная оценка эффективности разработанных

алгоритмов сопряжения, синхронизации, управления и семантического сжатия изоб-

ражений и практические результаты их внедрения. Предложены методики измере-

ния погрешности сопряжения и достоверности результатов алгоритмов распознава-

ния. Проведены экспериментальные измерения, в результате которых оказалось, что

погрешность наведения поворотных видеокамер на неподвижный объект равна 0,5◦,

а погрешность наведения на подвижный объект равна 3◦. Рассмотрены основные ре-

зультаты работы, которые нашли практическое внедрение при разработке аналити-

ческих видеосистем нового поколения. Экспериментально подтверждена эффектив-

ность тестовой системы «Супервизор», созданной на основе теории, предложенной в

главе 4, в том числе на примере анализа стереоизображений. Проведены сравнитель-

ные испытания радарной системы и систем видеонаблюдения с неподвижными ви-

деокамерами, тепловизионными видеокамерами в режиме шагового сканирования, и
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видеокамерами в режиме панорамного сканирования. Анализ результатов испытаний

показал преимущества радарной системы и системы видеонаблюдения с неподвижны-

ми камерами по достоверности идентификации перед системами сканирования мест-

ности видеоприборами на поворотной платформе, и выявил направления доработок

панорамной системы сканирования.

В заключении приведены основные результаты и выводы по диссертационной

работе.

В приложения включены свидетельства о регистрации программ (приложе-

ние 1), протоколы испытания приборных комплексов технического зрения на некото-

рых объектах государственной важности, подтверждающие экспериментальную часть

работы (приложение 2), акты внедрения результатов исследования на некоторых

предприятиях и объектах (приложение 3), список патентов, которые защищают интел-

лектуальную собственность результатов, полученных в диссертации (приложение 4)

и список отраслевых выставок приборов, систем и технологий обеспечения безопас-

ности, в которых проходили апробацию результаты работы (приложение 5).
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1. Алгоритмы семантического сжатия цифровых видеосигна-

лов

1.1. Алгоритмы семантического сжатия как основа современных комплек-

сов технического зрения

Этапы развития систем технического зрения. Первые системы видеонаблю-

дения появились вместе с изобретением телевидения в 30-х годах XX-го века[49]. До

90-х годов под понятием «система видеонаблюдения» подразумевался некоторый ап-

паратный комплекс, состоящий из видеокамер, устройств, записывающих видеосиг-

нал, терминалов с простым управлением для просмотра видео в записи и в реальном

времени, а также средств коммуникации между перечисленными элементами.

Несмотря на не слишком большой набор предоставляемых функций, системы по-

добного типа очень широко применяются и по сей день, поскольку их просто проекти-

ровать, устанавливать и использовать. В ходе технического развития таких комплек-

сов изменились лишь системы трансляции видеосигналов, а также способы сохране-

ния информационных видеомассивов: вместо аналоговой формы сигнала применяет-

ся цифровой способ передачи, для хранения информации используются не магнитные

аналоговые носители, а цифровые накопители, как правило, жёсткие диски. Кроме

того, по мере совершенствования элементной базы, устройства, являющиеся ядром

системы видеонаблюдения, называемые также «видеорегистраторами», становились

всё более и более компактными. Но идеология, заложенная в систему, основное назна-

чение которой заключается в поддержке охраны объектов и территорий, существенно

не меняется при применении устройств рассматриваемого класса.

Ассортимент видеорегистраторов на сегодня очень велик, полный каталог про-

дукции данного типа значительно превысил бы объём данной работы. Видеоприборы

данного типа применяются в разных областях, например, существуют видеорегистра-

торы для фиксирования событий вокруг автомобиля на носители видеосигнала[50].

Приведём краткую спецификацию одного из типичных видеорегистраторов „Sanyo

DSR-3000P”[51]. Основные функции „DSR-3000P” заключаются в записи видео на

встроенный жесткий диск, причём в целях резервирования и повышения надёжности

запись может производится на два жёстких диска одновременно. Для экономии про-

странства, занимаемого архивированным видеосигналом, перед записью производится

сжатие с помощью специальных алгоритмов компрессии. Предоставляется возмож-

ность просмотра архива видео в прямом и обратном направлении в обычном и уско-

ренном режиме. Присутствует возможность записи видео только в том случае, если

на входном сигнале от видеокамеры присутствуют значительные изменения на на-

блюдаемой сцене. Таким образом, видеорегистратор „DSR-3000P” является не только

устройством записи и чтения сигналов с видеокамер, в нём также реализованы неко-
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торые функции обработки видеосигналов с целью сжатия видеоархива и определения

движения на наблюдаемой территории. Функции сжатия видеосигнала и простого

анализа движения стали типичным дополнением к обычным функциям видеореги-

страторов примерно с середины 90-х годов XX-го века.

Развитие методов цифровой обработки видеосигналов началось в 70-х годах, чему

значительно способствовало изобретение ПЗС-матриц[52] и повсеместного внедрения

видеокамер на их основе. К середине 90-х годов появились высокопроизводительные

ЭВМ, благодаря которым стало возможным применять в режиме реального време-

ни многие из разработанных ранее методов обработки видеосигналов. Это привело

к тому, что возникли системы видеонаблюдения нового типа, в которых на основе

обработки видеосигналов автоматизировались функции анализа информации, ранее

выполняемые операторами систем.

Одни из первых работ, посвящённые описанию интеллектуальных систем видео-

наблюдения нового поколения, появились в результате исследований многих коллек-

тивов учёных[15, 38]. Остановимся подробнее на описании достижений авторов дан-

ных работ в области технических новаций в системах видеонаблюдения. Для опре-

делённости введём понятие «аналитическая система видеонаблюдения с элемента-

ми искусственного интеллекта», далее — просто «аналитическая видеосистема» или

«интеллектуальная видеосистема», чтобы обозначить системы, подобные [15, 38].

Функциональная схема типичных аналитических видеосистем. На ри-

сунке 1.1 представлена структура современной аналитической видеосистемы, вклю-

чающей в себя множество видеокамер, из которых часть является неподвижно за-

креплёнными, часть устанавливается на поворотных устройствах, причём у поворот-

ных видеокамер, как правило, объектив с управляемым увеличением. Видеокамеры

подключаются к одной или нескольким объединённым локальной вычислительной се-

тью (ЛВС) ЭВМ, назначение которых обрабатывать и анализировать видеосигналы.

Видеосистема состоит из кластеров оборудования двух типов: оборудование зоны

наблюдения и оборудование контрольного пункта (в случае небольших видеосистем

оборудование контрольных пунктов может объединяться оборудованием зон наблю-

дения).

Подвижные и стационарные видеокамеры, а также ЭВМ-серверы, обрабатываю-

щие видеосигнал с этих камер и управляющие поворотными видеокамерами, объеди-

няются в оборудование одной зоны наблюдения по принципу территориальной близо-

сти, которая позволяет соединить серверы быстродействующей сетью, и организовать

передачу сигналов видео и управления между камерами и ЭВМ. Также видеокамеры

объединяются в оборудование одной зоны наблюдения, если у них есть возможность
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Рисунок 1.1. Общая схема аналитической видеосистемы.

совместного наблюдения за событиями, происходящими в области зрения данных ви-

деокамер.

В контрольных пунктах с помощью терминалов видеосистемы отображается пе-

реданная по вычислительной сети информация, полученная в результате обработки

видеосигналов на серверах зон наблюдения. В ряде случаев требуется удалённое на-

блюдение за территорией из нескольких различных контрольных пунктов. Для ре-

шения данной задачи используются ЛВС, построенные на оптоволоконных каналах

связи.

Структура, представленная на рис. 1.1, может описывать не только аналитиче-

ские видеосистемы, но и более просто устроенные видеорегистраторы. Рассмотрим

основные понятия, описывающие отличительные характеристики аналитических ви-

деосистем.

Основные понятия и определения для аналитических видеосистем. Одна

из основных черт, отличающая аналитическую видеосистему от видеорегистратора, —

это применение достаточно сложных алгоритмов и методов обработки изображений,
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полученных с видеокамер с целью автоматического выявления ситуаций в поле зре-

ния камер, представляющих интерес для операторов системы. Чаще всего автомати-

ческое выявление ситуаций из видеосигнала обзорных камер основано на алгоритмах

выделения движущихся объектов наблюдаемой сцены и алгоритмах классификации

данных объектов. Чтобы формализовать понятие «алгоритм выделения движущихся

объектов», определим видеосигнал как последовательность кадров {Fi}∞i=1, в которой

каждый кадр Fi можно рассматривать как вектор-функцию:

Fi : (x, y) → (FR
i (x, y), FG

i (x, y), FB
i (x, y)) = (R,G,B),

x, y, R,G,B ∈ Z

1 6 x 6 W, 1 6 y 6 H,W ×H —разрешение кадра,

0 6 R 6 255, 0 6 G 6 255, 0 6 B 6 255,

(1.1)

то есть каждой паре (x, y) координат точки изображения сопоставляется три целых

числа (R,G,B), являющиеся компонентами цветности: красной, синей и зелёной, со-

ответственно. Таким образом, кадр представляется тремя одномерными функциями

FR
i , FG

i и FB
i . Данное представление соответствует формату кадра, который принято

называть «RGB24».

Определение 1.1. Алгоритм выделения движущихся объектов, который мы обо-

значим A, является процедурой, принимающей на вход один за другим кадры по-

следовательности Fi. Результатом процедуры является некоторая информация Ii о

движущихся объектах. Таким образом, при помощи алгоритма A для любого нату-

рального N можно построить соответствие

{Fi}Ni=1

A→ IN . (1.2)

Структура информации IN зависит от цели, для которой предназначен алго-

ритм A. Например, в видеорегистраторах алгоритмы определения движения выделя-

ют лишь факт присутствия или отсутствия движущихся объектов в кадре, поэтому

IN = {δi}Ni=1, где δi = 1, если алгоритм A обнаружил движение на i-м кадре, и δi = 0 в

противном случае. В [15, 38, 53] и во многих других источниках описываются алгорит-

мы выделения движения с более сложными выходными данными IN , содержащими

в себе информацию о положении движущихся объектов на текущем и предыдущих

кадрах. Формально это можно представить в виде

IN = {Ωj}MN

j=1 ,Ωj = {ωi}Ni=1 , ωi = (ri, χi), (1.3)

где Ωj — информация о j-м объекте из MN объектов, обнаруженных алгоритмом A
на кадре N (если MN = 0, то IN = ∅). Информация Ωj состоит из набора данных об

объекте ωi на каждом i-м кадре: ri — положение объекта, а χi — его свойства. Напри-

мер, в качестве ri могут быть координаты центра масс изображения объекта, либо
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множество всех координат точек объекта (силуэт), либо прямоугольная рамка, огра-

ничивающая это множество. В качестве χi может быть класс объекта, полученный в

процессе распознавания. Если объект отсутствует на i-м кадре, то ri = ε и χi = ε, ε —

«пустая» характеристика, специальное значение, показывающие отсутствие объекта

на кадре или отказ алгоритма A.

Обладая данными IN в форме (1.3), сравнительно легко строить гипотезы о тех

или иных событиях: анализ траекторий объектов и их классификация позволяют с

некоторой достоверностью автоматически выделять в зоне наблюдения аналитиче-

ской видеосистемы события следующего типа: присутствие человека в запретной зоне

∃N∃Ωj ∈ IN∃ωi = (ri, χi) ∈ Ωj : (ri попадает в запрещённую зону),

переход человека с шага на бег

∃N∃Ωj ∈ IN∃ωi = (ri, «человек») ∈ Ωj∃K < N :

(скорость вдоль траектории {ri} до кадра К

в несколько раз меньше скорости после кадра К),

наличие движения в i-м кадре

∃Ωj ∈ IN∃ωi ∈ Ωj : (ri 6= ε),

остановка объекта

∃N∃Ωj = {(ri, χi)} ∈ IN : (цифровой сигнал модуля

скорости вдоль траектории {ri} меньше шума

цифрового сигнала положения {ri})

и много других ситуаций. Именно достоверное определение событий по видеосигна-

лу расширяет возможности практического применения аналитических видеосистем в

различных приложениях по сравнению с видеорегистраторами: оператор таких си-

стем может меньше уделять внимание непосредственному контролю изображения с

видеокамер, ориентируясь на автоматические подсказки о ситуации в зоне наблюде-

ния.

Другая особенность аналитических видеосистем, рассмотренных в [15, 38], заклю-

чается во взаимодействии поворотных камер и неподвижных для получения более

детальных изображений событий на наблюдаемой территории. Автору данной диссер-

тации не удалось найти подробного описания механизма взаимодействия управления

поворотными камерами и программных модулей анализа видеосигнала с неподвиж-

ных камер, но сама идея использовать крупные изображения за счёт управления уве-

личением представляется исключительно важной при использовании аналитических

видеосистем. Введём определение сопряжения неподвижных и поворотных камер.
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меры C2 при наведении на объект

Рисунок 1.2. Схема сопряжения неподвижной и поворотной видеокамер.

Определение 1.2. Сопряжение пары неподвижной и поворотной видеокамер яв-

ляется операцией поиска функции, которая каждой области изображения неподвиж-

ной камеры сопоставляет такие параметры управления поворотного устройства и та-

кие значения увеличения и фокусировки объектива видеокамеры, что при применении

данных параметров изображение поворотной видеокамеры является сфокусирован-

ным изображением данной области с оптимальным увеличением.

Рисунок 1.2 иллюстрирует сопряжение неподвижной и поворотной камеры. На

неподвижной видеокамере C1 выделена область, содержащая изображение человека,

который находится в территории наблюдения M1M2M3M4 камеры C1. Поворотная

камера C2 наведена на выделенную область, и показывает изображение с большим

увеличением и лучшим разрешением. Ориентация оси C2A определяется углами по-

ворота, а увеличение — значением параметров управления объектива видеокамеры C2.

Необходимые значения параметров управления поворотной камеры, которые задают

наведение на требуемую область, согласно определению 1.2 получаются в результате

специальной процедуры сопряжения видеокамер.

Кроме сопряжения неподвижных и поворотных камер, могут быть сопряжены две

и более неподвижных камеры, зоны наблюдения которых пересекаются.

Определение 1.3. Сопряжение пары неподвижных камер — это поиск преобра-

зования, переводящего координаты точки изображения одной видеокамеры в коорди-
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Рисунок 1.3. Сопряжение неподвижных видеокамер.

наты соответствующего изображения другой видеокамеры в случае, если обе видео-

камеры направлены таким образом, что их зоны обзора пересекаются.

Пример сопряжения видеокамер представлен на рис. 1.3: на изображениях камер с

общей зоной обзора отмечены две четвёрки точек, соответствующих изображению од-

них и тех же объектов. С помощью преобразования координат должны переводиться,

например, отмеченные точки изображения левой камеры на отмеченные точки изоб-

ражения правой камеры. Способ вычисления преобразования координат определяется

в процессе сопряжения камер, согласно определению 1.3.

Основная цель сопряжения заключается в сопоставлении информации, получае-

мой при обработке видеосигналов от разных камер. Допустим, две видеокамеры по-

ставляют синхронизированные по времени потоки кадров {F 1
i }

∞
i=1 и {F 2

i }
∞
i=1, соответ-

ственно. После применения алгоритма выделения и классификации движущихся объ-

ектов A к первым N кадрам последовательностей получим информацию I1
N =

{
Ω1

j

}

и I2
N =

{
Ω2

j

}
об объектах на первой и второй камере в форме (1.3). Сопряжение двух

видеокамер с общей зоной обзора позволяет выявить для некоторых объектов из I1
N

и I2
N соответствие, т.е. определить, что оба объекта являются изображением одного

физического объекта. Если установлено соответствие Ω1
k ↔ Ω2

m, то можно говорить об

«обобщённом объекте» {Ω1
k,Ω

2
m}, который является совокупной информацией о пере-

мещении одного физического объекта в области наблюдения сопряжённых видеока-

мер системы. Обобщённые объекты позволяют более гибко анализировать события,

происходящие на наблюдаемой сцене, например, если объекты Ω1
k и Ω2

m (Ω1
k ↔ Ω2

m)

задействованы в ситуации, проанализированной как тревожная, то сообщение опера-

тору должно быть выдано одно, а не два. Кроме того, можно выделять более сложные

события, чем было указано ранее, например, можно выделить обобщённые объекты,

побывавшие в поле зрения различных видеокамер в специально указанной последо-

вательности.
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Как наведение поворотных камер на движущиеся объекты, выделенные со-

пряжёнными, в смысле определения 1.2, неподвижными камерами, так и сопоставле-

ние объектов на сопряжённых, в смысле определения 1.3, требует синхронной обра-

ботки данных в параллельных модулях анализа видеосигнала, запускаемых, возмож-

но, на различных серверах ЛВС видеосистемы. Например, в предыдущем примере

для сопоставления объектов должны быть синхронизированы во времени последо-

вательности кадров с двух видеокамер, а обработчики видеосигнала неподвижных

камер должны обмениваться информацией об объектах в общей зоне наблюдения, то

есть синхронизировать данные о положении объектов между собой. Модули управ-

ления поворотными видеокамерами также должны выполнять синхронизацию дан-

ных с неподвижными видеокамерами о положении и скорости объектов, на которые

необходимо произвести наведение. Исходя из этих соображений, введём определение

синхронизации.

Определение 1.4. Синхронизация — это способы обмена данными между парал-

лельными обработчиками видеосигналов камер, сопряжённых между собой, а так-

же алгоритмы взаимодействия обработчиков аналитической видеосистемы, например,

для наведении поворотных видеокамер на объекты или для сопоставления объектов

с различных неподвижных видеокамер.

Особый вид сопряжения, введённый в [15, 38] для аналитических видеосистем, —

это сопряжение плана местности (топографической карты) с неподвижными камера-

ми для того, чтобы повысить эргономические характеристики системы. Смысл со-

пряжения заключается в том, что поля́ зрения камер системы, а также выделенные с

помощью анализа видеосигналов события, отображаются на изображении карты мест-

ности, содержащей территорию наблюдения. С помощью представления информации

на плане местности удаётся облегчить восприятие оператором системы информации

о происходящих событиях в зоне наблюдения. Определение сопряжения неподвижной

камеры с планом местности можно свести к определению 1.3, если представить, что

план местности — это изображение видеокамеры, расположенной достаточно высоко

и обладающей оптической осью, перпендикулярной поверхности земли.

Понятие семантического сжатия изображений. В последние десятилетие

резко возросло количество цифровых изображений, которые формируются во многих

областях человеческой деятельности с помощью многочисленных устройств самого

разного назначения. Многие из этих изображений сохраняются в общедоступных хра-

нилищах мировой сети Интернет, в других случаях поток изображений сохраняется

в системах с ограниченным в силу ряда обстоятельств доступом. Поскольку объём

изображений становится огромен, остро стоит проблема индексации и поиска изоб-

ражений. Даже поиск одинаковых изображений в общем виде является нетривиаль-
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Рисунок 1.4. Пример исходного изображения 1000× 750 точек (слева) и того же изоб-
ражения, сжатого компрессором JPEG с большим коэффициентом.

ной задачей. При подобном поиске желательно найти не только файлы изображения,

полностью, вплоть до последнего бита, совпадающие с исходным файлом, но и изоб-

ражения с той же сценой, зарегистрированные в другое время или с несколько иначе

произведённым кадрированием, а также желательно находить те же самые изображе-

ния с изменёнными характеристиками из-за предобработки цифровыми фильтрами.

Ещё более сложную проблему представляет собой поиск изображений по его се-

мантическим признакам. Задачей поиска является выделение по текстовому семан-

тическому описанию подходящих под описание изображений. Примером семантиче-

ского описания изображений может служить следующий текст: изображение машин

красного цвета. Для выполнения семантического поиска необходимо сначала прове-

сти операцию составления семантического индекса, которая заключается в выделении

семантических признаков изображения с последующим построением сбалансирован-

ного дерева поиска из выделенных на изображении семантических характеристик.

При операции выделения семантических признаков полученная информация суще-

ственно меньше по объёму, чем объём данных, необходимый для представления ис-

ходного изображения. Поэтому целесообразно ввести термин «семантическое сжатие»

изображений для алгоритмов, которые выделяют отдельные семантические элемен-

ты. Поясним данный термин с помощью графических примеров.

На рис. 1.4 отображено исходное изображение городской сцены с ДТП в разре-

шении 1000× 750 пикселей, а также то же самое изображение, сжатое компрессором

JPEG с сильным коэффициентом сжатия, что приводит к заметности блочных шумо-

вых артефактов. Исходное изображение при кодировании каналов R, G и B с помощью

8 бит в каждой точке изображения требует 2 · 106 байт для хранения, а изображение,

преобразованное JPEG с сильным коэффициентом сжатия, требует 3 · 104 байт.

Рис. 1.5 является одним из примеров семантической разметки изображений, на

котором выделены элементы изображения (люди, деревья, здания, дорога и др.).

Каждый такой элемент представляет собой многоугольник с несколькими десятка-
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Рисунок 1.5. Пример семантической разметки изображения с помощью многоуголь-
ников

Рисунок 1.6. Иллюстрация информативности семантической разметки

ми вершин и текстовой меткой, описывающей выделенный семантический признак.

На рис. 1.6 проиллюстрировано, что семантическая разметка является достаточно

подробным описанием изображения, и даже без исходного изображения она даёт об-

щее представление о том, что было изображено. Объём семантического описания с

многоугольником включает в себя информацию с текстовыми метками и вершинами

многоугольников, и занимает для приведённого примера около 103 байт.

Если в рамках анализа изображения относительное положение элементов изобра-
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жения друг относительно друга не имеет значения, то исходное изображение можно

описать с помощью текстового перечисления семантических элементов: здания, ав-

томобили, трамвай, упавший мотоцикл, сотрудники ДПС, проезжая часть и т.д. Ин-

формационный объём такого описания по порядку величины 102. Для описания типа

наблюдаемого события, а именно: сцена ДТП, достаточно примерно 10 байт.

Представим себе, что приведённый пример изображения является одним из кад-

ров видеопотока одной из многочисленных камер, входящих в систему ситуационного

контроля крупного мегаполиса. В рамках анализа огромного объёма видеоданных,

генерируемого видеокамерами подобных систем, часто необходимо для каждого изоб-

ражения ограничится лишь однобитовым триггерным семантическим описанием: есть

на изображении событие «интереса» с точки зрения диспетчера, или нет. В случае

необходимости разбора события данный бит можно подвергнуть «семантической де-

компрессии», обратившись за расшифровкой к архиву видеоданных. Задача семанти-

ческого сжатия в представленной формулировке является сложной проблемой, кото-

рая окончательно не решена. Современное состояние компьютерного зрения таково,

что существует ряд известных открытых конкурсов по сегментации и классифика-

ции изображений [39, 40], в рамках которых тестируются различные подходы, са-

мые известные из которых базируются на основе аппарата свёрточных нейронных

сетей, либо на основе подхода SVM с нелинейными ядрами, либо на основе состав-

ных классификаторов с использованием гистограмм градиентов изображения и т.д.

Результаты тестирования показывают, что лучшие из методов сегментации достига-

ют точности порядка 50%. И хотя методы сегментации и классификации с каждым

годом совершенствуются, их достоверность пока не достаточна для применения в про-

мышленных масштабах. Тем не менее, существует ряд задач, для которых семанти-

ческое сжатие разработано с достаточной степенью достоверности [41, 42]. Существу-

ют помехоустойчивые способы выделять движущиеся объекты в системах охранного

видеонаблюдения, решена задача выявления возгораний на наблюдаемой сцене [43],

предметов и вещей, оставленных без внимания, переброшенных через ограждение

предметов, разработаны методы видеоконтроля транспортных средств в потоке и на

парковках [44, 45], находят широкое применение системы бизнес-мониторинга [46].

Вышесказанное позволяет ввести определение семантического сжатия.

Определение 1.5. Семантическое сжатие — это операция преобразования мно-

жества изображений в информационное описание значительно меньшего объёма, чем

исходный объём изображений, с обеспечением сохранения в сжатом описании эле-

ментов, достаточных для решения поставленной перед аналитической видеосистемой

задачи.

В ряде случаев возможно построение преобразования, обратного к преобразова-
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нию семантического сжатия, при котором на основе информации небольшого объёма,

полученной при обработке множества видеокадров, формируется более подробная ин-

формация. Для этого необходимо обеспечивать архивирование видеокадров в процессе

функционирования аналитических видеосистем. Тогда на основе операций сопряже-

ния и синхронизации, определённых выше, возможно, например, по изображению

низкого разрешения объекта с неподвижных камер восстановить либо изображение

высокого разрешения этого же объекта на поворотных камерах, либо изображение в

другом ракурсе, зафиксированное сопряжённой неподвижной камерой. Также по вре-

мени и месту автоматически зафиксированного события интереса восстановить видео-

последовательность, содержащую изображение события, в видеоархиве. Для краткого

обозначения операции восстановления информации после применения методов семан-

тического сжатия введём следующее определение.

Определение 1.6. Преобразование, обратное к операции семантического сжатия,

построенное на основе видеоархива, семантической обработки и операций синхрони-

зации и сопряжения, называется семантической декомпрессией.

Таким образом, концепция семантического сжатия изображений обобщает принци-

пы построения сложных алгоритмов обработки видеоинформации, применяемых как

при индексации поиска в больших массивах видеоданных, так и при построении совре-

менных видеосистем контроля и анализа наблюдаемых сцен и событий, состоящих из

большого количества видеокамер и других датчиков. Теоретическое и практическое

развитие алгоритмов семантического сжатия существенно увеличивает значимость

аналитических видеосистем в составе сложных экспертных систем поддержки приня-

тия решений при контроле крупных инфраструктурных объектов.

Существующие аналитические видеосистемы. На текущий момент суще-

ствует несколько десятков систем видеонаблюдения, которые в той или иной степени

обладают функциями аналитических видеосистем. Отметим среди них [53, 54, 55, 56,

57]. Указанные источники являются лишь перечислением функций систем, а не науч-

ными статьями с теоретическим и экспериментальным обоснованием, тем не менее,

из них тоже можно получить представление о современном состоянии отрасли.

Общая схема выполнения функций аналитических видеосистем представлена на

рис. 1.7. Как следует из данной схемы, время реакции на появление нового объекта в

зоне наблюдения без автоматизированных функций управления поворотными камера-

ми и локализации местоположения объекта на плане местности составляет примерно

10с.

Источник [53] описывает реализацию алгоритмов системы „W4”, которая, судя по

приведённым экспериментальным результатам, очень точно выделяет информацию

в форме (1.3) для обрабатываемых последовательностей кадров, что позволяет, как
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Внешние условия

Появление

объекта

Действия типичной видеосистемы

5мс

Автоматическое

выделение

5мс

Запись

видео

<1мс

Сохранение времени

появления в БД

0мс

Вывод сигнала об

объектах в запрещённой зоне

≈1с

Локализация оператором

места объекта на плане

≈10с

Ручное наведение

поворотной камеры

Рисунок 1.7. Выполнение функциональных блоков современных видеосистем.

уже отмечалось выше, определять широкий спектр событий автоматически.

В системе „iOmniscient”[54] декларируется автоматическое выделение из видеосиг-

нала событий многих типов: определение оставленных предметов среди оживлённого

движения людей, выделение краж, определение по видео людей, которые упали или

поскользнулись, определение проникновения в запретную зону. Наряду с этим реа-

лизованы функции подсчёта количества людей, проходящих в определённом месте

перед камерой. Сопряжение камер между собой и с планом местности, а также ис-

пользование поворотных камер в описании [54] не отмечено.

Система „IoImage”[55] также обладает «интеллектуальными» функциями выделе-

ния движущихся объектов, определения оставленного без присмотра багажа, проник-

новения в запретную зону. Кроме того, в ней реализовано автоматизированное управ-

ление поворотными камерами, позволяющие следить за объектами крупным планом.

Сопряжение камер между собой и с планом местности не упоминается.

В системе «Интеллект»[56] описываются функции определения автомобильных

номеров и номеров железнодорожных вагонов, а также функции выделения и рас-

познавания лиц. Описывается возможность связи видеокамер с планом помещений.

Сопряжение камер между собой, а также функции слежения за объектами не упоми-

наются.

Инструкция по использованию системы „Goal v8”[57] содержит упоминание о воз-

можности детектирования по видеосигналу бегущих людей, резкого возрастания чис-

ла людей на видеокамере, проникновение в запретную зону, определение оставленных

или, наоборот, унесённых предметов. В системе предусмотрено автоматизированное

управление поворотными камерами, и есть возможность использования внутренних
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планов помещений. Среди функций системы также можно отметить возможность со-

пряжения модулей, анализирующих видеосигнал и выявляющих события, и, напри-

мер, объёмными датчиками движения с целью сокращения числа ложных срабатыва-

ний. Сопряжение видеокамер между собой и сопряжение с планом местности в данном

источнике не упомянуты.

Таким образом, существует не так много современных систем видеонаблюдения,

в которых реализованы все функции, описанные в работах [15, 38] десятилетней дав-

ности. По-видимому, причины заключаются в том, что приведённые алгоритмы и

методы являлись либо требовательными к ресурсам ЭВМ настолько, что промыш-

ленный вариант применения становился очень дорогим, либо качество алгоритмов не

позволяло использовать системы с их реализацией из-за неприемлемости выходных

характеристик по точности результатов.

1.2. Выбор языковой среды, компиляторов и систем визуальной программ-

ной разработки алгоритмов семантического сжатия

В настоящее время можно выделить два направления разработки аналитических

видеосистем, которые различаются по типу оборудования, используемого в качестве

вычислительных приборов системы.

Одно направление заключается в том, чтобы в качестве вычислительных

устройств использовать специально разработанное для этих целей аппаратное обеспе-

чение. Чаще всего в основе таких устройств специализированные процессоры цифро-

вой обработки сигналов, иначе называемые DSP-процессорами (см., например, [58]).

Пример аналитической видеосистемы на основе специализированных вычислителей

см. в [55].

Второе направление базируется на том, что программное обеспечение аналитиче-

ских видеосистем разрабатывается полностью для ЭВМ универсального назначения.

Обычно для аналитических видеосистем используют ЭВМ, в основе которых лежит

центральный процессор с архитектурой x86-x64, впервые разработанной компанией

«Intel», а затем усовершенствованной как самой компанией «Intel», так и другими

предприятиями за рубежом и в России. В современном мире наиболее распростране-

ны ЭВМ именно этой архитектуры, усовершенствованной за 3 десятилетия с момента

её создания.

Преимущество специализированных устройств обработки изображений перед уни-

версальными ЭВМ заключается в том, что, во-первых, габариты специализированно-

го прибора чаще всего меньше габаритов универсальной ЭВМ с архитектурой x86-

x64, а во-вторых, специализированные приборы разрабатываются так, что для них в

большинстве случаев не требуется операционная система, и следовательно, установ-

ка и пуско-наладка систем со специализированными приборами быстрее и удобнее,
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чем установка аналитических видеосистем на универсальные ЭВМ, поскольку уни-

версальная ЭВМ сама по себе требует установки и настройки операционной системы

для нужд видеосистемы. Преимущество же видеосистем на основе универсальных

ЭВМ заключается в том, что доработка и модификация программного обеспечения

осуществляется стандартными средствами разработки, и потому циклы разработки

программного обеспечения завершаются гораздо быстрее, чем циклы разработки спе-

циализированных приборов. Кроме того, процессоры архитектуры x86-x64 постоянно

совершенствуются, причём не за счёт потери совместимости с программным обес-

печением. За последнее десятилетие производительность ЭВМ архитектуры x86-x64

возросла по совокупным показателям приблизительно в 10 раз. Это означает, что

программное обеспечение, единожды разработанное для ЭВМ архитектуры x86-x64,

может работать всё эффективнее и эффективнее без изменения кодов программ из-

за того, что аппаратное обеспечение постоянно совершенствуется мировым сообще-

ством разработчиков, чему способствует конкуренция среди производителей микро-

схем. Кроме того, огромное количество прикладных программ, необходимых в самых

разных сферах деятельности и разработанных для данной архитектуры, исключает

трудности с элементной базой: всегда найдётся производитель, выпускающий прибо-

ры для ЭВМ данной архитектуры, что не обязательно выполняется для некоторых

DSP-процессоров. Поэтому для разработки аналитических видеосистем чаще приме-

няются универсальных ЭВМ архитектуры x86-x64.

C самого начала существования архитектуры x86-x64 языковая среда «C» ста-

ла одной из самых применяемых для разработки программного обеспечения. Этому

способствовала гибкость конструкций языка, которые, с одной стороны, приближе-

ны к ассемблерным инструкциям машинного кода, а с другой стороны, более по-

нятны, чем конструкции ассемблера, что упрощает разработку программ. Самые

распространённые на сегодняшний день операционные системы: системы компании

«Microsoft» и «Unix»-подобные системы написаны в большей степени на языке «C».

Поскольку для аналитических видеосистем нужна операционная система, и посколь-

ку при решении большинства задач при разработке систем видеонаблюдения более

эффективно пользоваться существующими операционными системами, чем разраба-

тывать новые, то для создания оптимального кода с точки зрения скорости разработ-

ки и эффективного использования системных ресурсов удобнее всего использовать

язык «С».

Несмотря на то, что язык «С» значительно проще ассемблерного языка, у него

есть ряд недостатков, затрудняющих разработку сложных систем, каковыми являют-

ся аналитические видеосистемы. В нём отсутствует строгая проверка типов данных,

при решении ряда задач требуется прибегать к запутанным синтаксическим конструк-
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циям, затрудняющим поддержку кода, в сложных системах код сильно разрастается

по объёму и становится трудным для понимания, затруднена коллективная разработ-

ка систем из-за ряда синтаксических особенностей, например из-за невозможности

контролировать пересечения в пространстве имён функций и макросов у разных раз-

работчиков.

Практически всех этих недостатков лишён язык «C++», который, с одной сторо-

ны, почти полностью включает в себя синтаксис языка «C», и поэтому в нём нисколь-

ко не уменьшились возможности по эффективному использованию ресурсов операци-

онной системы, а с другой стороны, в «C++» реализованы синтаксические конструк-

ции, позволяющие в полной мере применять принципы объектно-ориентированных

подходов к программированию и разработке [59].

Подробное описание языка «С++» можно найти в [61], ниже перечисляются толь-

ко основные достоинства языка, которые делают его практически незаменимым при

разработке крупных программных проектов, в том числе аналитических видеосистем.

1. В 1998 году принят стандарт ISO для языка «С++» [60], и с этого момента про-

изводители компиляторов этого языка стремятся ему следовать. Поэтому упрощается

перенос исходного кода из одной операционной системы в другую.

2. Стандарт [60] постоянно совершенствуется с целью приведения данного стан-

дарта в соответствие с современными методологиями разработки программного обес-

печения с использованием шаблонов проектирования, доказавшим свою эффектив-

ность. Официально стандарт был пересмотрен в 2011 и 2014 году, таким образом он

поддерживается в актуальном состоянии, при этом сохраняется совместимость с но-

вым стандартом для программных кодов, написанных в соответствии с предыдущими

версиям стандарта.

3. В «C++» поддерживаются классы объектов и шаблоны, что позволяет упро-

стить разработку за счёт более эффективного кода и более эффективных методов

проектирования.

4. В языке введена поддержка различных пространств имён, поэтому коллектив

разработчиков может более эффективно решать конфликты, возникающие при оди-

наковых названиях функций, методов и классов.

5. Многие синтаксические особенности языка «С++» нацелены на то, чтобы вы-

явить ошибку на этапе компиляции, ещё до окончательной отладки программы, что

повышает скорость завершения циклов разработки программного обеспечения.

6. Несмотря на то, что язык «C++» не создавался специально для решения ма-

тематических задач (в отличие, например, от языка «FORTRAN»), за время суще-

ствования языка разработано множество библиотек и модулей, упрощающие создание
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математического программного обеспечения.

7. Многие современные компиляторы «C++», например, компилятор компании

«Intel», широко используют автоматическую оптимизацию кода для различных со-

временных расширений архитектуры процессора x86-x64, позволяющие за время вы-

полнения одной команды процессора выполнить множество однотипных операций с

данными с помощью так называемых SIMD-инструкций (Single Instruction — Multiple

Data), что особенно важно в программах обработки видеосигналов.

Таким образом, язык «C++», в отличие от других языков высокого уровня, позво-

ляет эффективно использовать ресурсы ЭВМ посредством операционной системы, и

при этом снабжён удобными средствами объектно-ориентированной разработки про-

граммного обеспечением. Поэтому при разработке аналитических видеосистем чаще

всего применяется именно этот язык программирования.

1.3. Классификация алгоритмов семантической обработки цифровых ин-

формационных видеосигналов

В системах видеонаблюдения, подобных [15, 38, 53, 54, 55, 56, 57], в той или иной

используется методы семантической обработки видеосигналов. Среди них можно вы-

делить несколько основных категорий: методы предварительной обработки видеосиг-

налов, методы сопоставления изображений, выделение объектов из видеосигналов с

последующей идентификацией, методы сопряжения видеокамер и методы автомати-

ческого управления поворотными видеокамерами. Не претендуя на полноту обзора,

приведём несколько часто используемых методов в каждой из этих категорий.

Предварительная обработка видеосигналов. Перед анализом видеосигнала

часто возникает необходимость подвергнуть изображение фильтрации, например, для

упрощения извлечения информации на следующих этапах анализа, либо для пониже-

ния шума изображения, чтобы повысить качество функционирования анализирую-

щих алгоритмов. Приведём некоторые часто применяемые алгоритмы фильтрации

изображения, описанные в [5, 48, 10, 7, 62, 6].

Фильтры выделения границ используются для векторизации изображения и для

выделения дополнительных признаков. Пусть F — кадр в формате (1.1), а F ∗ — таким

образом преобразованный из F кадр, что область определения F ∗ (разрешение кадра

F ∗) совпадает с исходным, а в координатах граничных точек изображения F на кадре

F ∗ яркость значительно превышает яркость в других точках F ∗.

Наиболее часто для выделения границ используют фильтр Собела, описанный,

например, в [10]. Формулы преобразования F → F ∗ выглядят следующим образом:

∀ C ∈ {R,G,B} ∀(x, y) ∈ [2,W − 1]× [2, H − 1] : F ∗C(x, y) =
√
a2C + b2C , (1.4)
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aC = (FC(x+ 1, y − 1) + 2FC(x+ 1, y) + FC(x+ 1, y + 1))−
−(FC(x− 1, y − 1) + 2FC(x− 1, y) + FC(x− 1, y + 1)),

bC = (FC(x− 1, y + 1) + 2FC(x, y + 1) + FC(x+ 1, y + 1))−
−(FC(x− 1, y − 1) + 2FC(x, y − 1) + FC(x+ 1, y − 1)).

Из формулы (1.4) следует, что в каждой точке (x, y) функции F ∗R, F ∗G, F ∗B явля-

ются евклидовой нормой оценки градиентов функций FR, FG, FB (векторы (aR, bR),

(aG, bG), (aB, bB)), соответственно. Отсюда мы наблюдаем выделение границ на изоб-

ражении F ∗.

Повышение контрастности изображения F может быть довольно сложным

(см. [6]), однако чаще всего используют преобразование кадра F в более контраст-

ное изображение F ∗ простого типа:

∀ C ∈ {R,G,B} : F ∗C =
F ∗
max − F ∗

min

Fmax − Fmin

(FC − Fmin) + F ∗
min, (1.5)

где Fmin = min
C, x, y

FC(x, y), Fmax = max
C, x, y

FC(x, y), а F ∗
min и F ∗

max — параметры контра-

стирования. Обычно выбирают предельные параметры F ∗
min = 0 и F ∗

max = 255.

Повышение контрастности позволяет улучшить визуальное восприятие изображе-

ния человеком, однако при этом не улучшаются характеристики, необходимые при

дальнейшей обработке. Например, для алгоритма выделения особых точек объектов

требуется улучшить качество изображения таким образом, чтобы его стало возмож-

ным обрабатывать: необходимо снижать зашумлённость изображения с помехой.

Фильтр Винера - одно из эффективных преобразований для снижения соотноше-

ния сигнал-шум (см. [48, 6]). Для того, чтобы ввести фильтр Винера, нам потребу-

ются дополнительные обозначения. Пусть F̃ — «идеальное» изображение, на котором

отсутствует шум, а исходное изображение F является некоторым искажением иде-

ального изображения, F = F̃ + N , где N — это некоторый шум. Для идеального,

исходного и преобразованного изображения, а также шума введём обозначения

xij = F̃C(i mod W , j mod H), yij = FC(i mod W , j mod H),

x̂ij = F ∗
C(i mod W , j mod H), ni

j = NC(i mod W , j mod H),
(1.6)

где C обозначает одну из компонент цветности {R,G,B} (фильтрация производится

по каждому каналу цветности отдельно), а под операцией «mod » понимается остаток

от деления левого числа на правое. Таким образом, xij, y
i
j, x̂

i
j, n

i
j —это, соответственно,

периодические продолжения функций F̃C , FC , F ∗
C , NC прямоугольника [1,W ]× [1, H]

на всю двумерную целочисленную плоскость. Оценку x̂ сигнала без шума будем ис-

кать в виде

x̂ij =
∑

m, n

amn · yi−m
j−n , (1.7)
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где суммирование идёт по [1,W ] × [1, H]. Выражение (1.7) является формулой ли-

нейного фильтра, коэффициенты amn , m ∈ [1,W ], n ∈ [1, H] называются импульсной

характеристикой линейного фильтра. Для фильтрации Винера необходимо предпо-

ложить, что x и y — это некоторые случайные величины, и выбрать импульсные ха-

рактеристики anm таким образом, что значение математического ожидания квадрата

ошибки ε = x− x̂ для оценки сигнала x̂ минимально:

{amn } = argminMε2 = argminM(
[
x−

∑
amn · yj−m

i−n

]2
). (1.8)

Пусть Bxy(k, l) = M(xij · yi−k
j−l ) и By(k − m, l − n) = M(yi−k

j−l · yi−m
j−n ), тогда Mε2 =

M
(
(xij)

2
)
−2
∑
amn Bxy(m,n)+

∑
amn a

l
kBy(k−m, l−n) — квадратичная функция относи-

тельно {aij}, поэтому решение задачи (1.8) удовлетворяет уравнениям Винера-Хопфа,

полученным после дифференцирования по коэффициентам aij:





Bxy(k, l) =
∑
m, n

amn By(k −m, l − n),

k ∈ [1,W ], l ∈ [1, H].
(1.9)

Для решения уравнений (1.9) применяется быстрое преобразование Фурье для

двумерного случая (см. [71]). Поскольку правая часть уравнений является свёрткой,

то

Gxy(i, j) = Ai
j ·Gy(i, j) ⇒ Ai

j =
Gxy(i, j)

Gy(i, j)
, (1.10)

где Ai
j, Gxy, Gy — гармоники преобразования Фурье для, соответственно, aij, Bxy(i, j),

By(i, j). Поэтому, выполнив обратное преобразование Фурье для гармоник Ai
j, полу-

чим искомые характеристики {aij}.
Обучаемые фильтры повышения разрешения изображений. Задача повышения

разрешения изображения формулируется следующим образом: обладая изображени-

ем F̃ с разрешением WF × HF некоторой сцены, необходимо получить изображение

S̃ с разрешением WS ×HS, намного превышающим изображение исходного кадра F̃ .

В данной формулировке у задачи не определены исходные данные, которых было бы

достаточно для решения, поэтому вводятся дополнительные предположения о наблю-

даемой сцене.

Одним из простых способов повысить разрешение является интерполяция с помо-

щью двухмерных кубических сплайнов значений интенсивности кадра S̃ в точках, в

которые не попадают точки кадра F̃ после масштабирования сетки WF ×HF на сетку

WS ×HS. Впервые для повышения разрешения подобную интерполяцию было пред-

ложено использовать в [63], в этой работе введён термин бикубическая интерполяция

для данного метода обработки изображения.
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Рисунок 1.8. Пример подграфа марковского случайного поля, используемого для по-
строения изображения с высоким разрешением на основе изображения с малым раз-
решением.

Недостатком бикубической интерполяции является то, что результирующее изоб-

ражение не обладает высокой чёткостью текстур, данный метод сглаживает гранич-

ные переходы, что является свойством сплайнов. Существуют методы восстановления

текстур высокого разрешения на основе заранее составленных вероятностных моде-

лей. Для описания подобных моделей используется понятие марковского случайного

поля, которое, в отличие от марковской цепи, представляет собой граф G = (V,E), в

котором вершины V являются случайными величинами, а рёбра E связывают зависи-

мые случайные величины и не связывают независимые случайные величины. Понятие

случайного марковского поля введено в работе [64], с его помощью которой обобщает-

ся математический аппарат, лежащий в основе моделей ряда физических процессов и

явлений. Например, марковским случайным полем описывается двухмерная [65] и од-

номерная [65] модель Изинга взаимодействия магнитных диполей ферромагнетиков,

предложенная физиком Вильямом Ленцем [67].

В работе [68] для повышения разрешения в четыре раза (WS = 2WF , HS = 2HF )

в качестве элементов марковского случайного поля предлагается использовать от-

дельные небольшие части изображения F̂ , полученного из исходного изображения F̃

методом повышения разрешения с помощью интерполяции, например, бикубической

до разрешения WS × HS, и искомого изображения S̃. в форме векторов интенсивно-

стей в квадратных окрестностях размера N × N . Введём обозначения для данных

векторов:
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Sj
i = [S̃(i− ⌊N/2⌋, j − ⌊N/2⌋), ..., S̃(i+ ⌈N/2⌉ − 1, j − ⌊N/2⌋),

S̃(i− ⌊N/2⌋, j − ⌊N/2⌋+ 1), ..., S̃(i+ ⌈N/2⌉ − 1, j − ⌊N/2⌋+ 1),

...

S̃(i− ⌊N/2⌋, j + ⌈N/2⌉ − 1), ..., S̃(i+ ⌈N/2⌉ − 1, j + ⌈N/2⌉ − 1)],

F j
i = [F̂ (i− ⌊N/2⌋, j − ⌊N/2⌋), ..., F̂ (i+ ⌈N/2⌉ − 1, j − ⌊N/2⌋),

F̂ (i− ⌊N/2⌋, j − ⌊N/2⌋+ 1), ..., F̂ (i+ ⌈N/2⌉ − 1, j − ⌊N/2⌋+ 1),

...

F̂ (i− ⌊N/2⌋, j + ⌈N/2⌉ − 1), ..., F̂ (i+ ⌈N/2⌉ − 1, j + ⌈N/2⌉ − 1)]. (1.11)

На рис. 1.8 показано, как между вершинами марковского случайного поля вво-

дятся связи: между вершинами {Sj
i } и {F j

i } связь существует тогда и только тогда,

когда пары индексов i и j совпадают; между вершинами {F j
i } связь вводится тогда

и только тогда, когда лишь один из индексов i или j отличается на 1.

В работе [69] показано, что общая вероятность состояния системы, изображенной

на рис. 1.8, определяется произведением парных потенциалов, соответствующих кли-

кам графа (кликой графа называется любой полный подграф исходного графа):

p({Sj
i }, {F j

i }) =
∏

Ωj
i (S

j
i , F

j
i ) ·

∏
Ψj

i (F
j
i , F

j
i+1) ·

∏
Φj

i (F
j
i , F

j+1
i ),

причём, как следует из [70], функции Ωj
i , Ψj

i , Φj
i имеют форму потенциала Гибса

1/Z · e−U(x,y)
T , где Z — нормировочный коэффициент, U — функция энергии, а T —

условная температура, параметр, характеризующий состояние системы, а x, y — зна-

чения случайных величин марковского поля.

Наиболее востребованы методы повышения разрешения в современном цифровом

телевидении, однако их можно использовать для повышения эффективности иденти-

фикации типов изображений.

Методы сопоставления изображений. Предположим, заданы два кадра F и F̃ .

На кадре F̃ выделены точки изображения в прямоугольнике W̃ = [i0, imax]× [j0, jmax],

который принято назвать «окном» (i0, imax ∈ [1,W ], j0, jmax ∈ [1, H]). Для простоты

изложения будем считать, что imax = i0 +N − 1 и jmax = j0 +N − 1, то есть окно W̃ —

квадратное со стороной N точек.

Задача сопоставления изображений формулируется следующим образом: необхо-

димо на кадре F найти такое квадратное окно W = [i, i + N − 1] × [j, j + N − 1],

i ∈ [1,W −N +1], j ∈ [1, H−N +1], в котором изображение наиболее похоже на изоб-

ражение в окне W̃ кадра F̃ . В качестве меры близости изображений F и F̃ в окнах W
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и W̃ чаще всего используют либо сумму квадратов отклонений (квадрат евклидовой

нормы)

S(x− y) =
∑(

xmn − ym−i0+i
n−j0+j

)2
, (1.12)

либо корреляцию

ρ(x, y) =

∑(
(xmn − x̄) · (ym−i0+i

n−j0+j − ȳ)
)

√∑
(xmn − x̄)2 ·

√∑(
ym−i0+i
n−j0+j − ȳ

)2 . (1.13)

В (1.12) и в (1.13) суммирование идёт по координатам (m,n) ∈ W̃ , обозначения сиг-

налов xij, y
i
j введены в формулах (1.6). Средние значения сигналов x̄ и ȳ для форму-

лы (1.13) вычисляются, соответственно, в окнах W̃ и W .

Характеристика (1.12) более чувствительна к глобальным перепадам яркости на

кадре, зато для задачи поиска

min
i,j∈[−M,M ]

S(x− y) (1.14)

«оптимального окна» W в окрестности окна W̃ (по любой из координат точки окна W
удалены от окна W̃ не более, чем на M пикселов) существует алгоритм, позволяющий

отыскать argminS(x−y) за O(N2 log2N) операций [72]. Прямой перебор при решении

задачи (1.14) возможен за O(M2 ·N2) операций, что при значениях M , сравнимых со

значениями N , существенно больше O(N2 log2N).

Быстрый алгоритм решения задачи (1.14) основан на том, что

S(x− y) =
∑

(xmn )
2 − 2

∑
(xmn · ym−i0+i

n−j0+j ) +
∑

(ym−i0+i
n−j0+j )

2,

где сумма
∑

(xmn )
2 — постоянна относительно (i, j), сумму

∑
(ym−i0+i

n−j0+j )
2 мы предпо-

лагаем постоянной относительно (i, j) (данное предположение часто выполняется на

практике), и поэтому, чтобы найти решение для (1.14), необходимо найти

max
i,j∈[−M,M ]

∑
(xmn · ym−i0+i

n−j0+j ). (1.15)

Обозначим прямое и обратное преобразование Фурье, применяемое к значениям

изображения в окне W̃ , как, соответственно, F и F−1. Известно, что если обозначить

rij =
∑

(xmn · ỹm−i0+i
n−j0+j ), где ỹmn — это периодическое продолжение ymn с квадрата W̃ на

всю целочисленную плоскость, то с помощью быстрого преобразования Фурье можно

вычислить сразу все значения сумм попарных произведений за O(N2 log2N) (см. [71]):

rij = F−1(F(x) · F(y)),

где F(y) — операция комплексного сопряжения. При значениях M меньших, чем

примерно N/3, можно пренебречь отличием rij от
∑

(xmn · ym−i0+i
n−j0+j ), поэтому задача

поиска минимума (1.14) сводится к нахождению min rij.
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Развитие данного метода поиска соответствующих друг другу изображений мож-

но увидеть в работах [73, 74]. В [73] вычисляется коэффициент корреляции ρ(x, y)

(см. формулу (1.13)), а в [74] — норма S(x-y) по формуле (1.12), причём не делается

никаких предположений, влияющих на точность решения, и в то же время исполь-

зуется быстрое преобразование Фурье для ускорения поиска максимума коэффици-

ента корреляции при сравнении окон W и W̃ (идея применения преобразования Фу-

рье схожа с идеей поиска решения для (1.14)). Асимптотика описанных алгоритмов

O ((N +M)2 log2(N +M)).

В [75] описан наиболее быстрый из известных автору алгоритмов поиска миниму-

ма выражения S(x− y) (задача (1.14)). Алгоритм имеет вычислительную сложность

O (N2 log2M), и основан на эвристическом подходе.

Чтобы найти вектор смещения (δx, δy) окна W относительно W̃ , будем искать

min
δx,δy∈[−M,M ]

∑

(i,j)∈W̃

(
F (i+ δx, j + δy)− F̃ (i, j)

)2
, (1.16)

что эквивалентно (1.12)). Разности F (i+ δx, j + δy)− F̃ (i, j) можно приблизить диф-

ференциалом

F (i+ δx, j + δy)− F̃ (i, j) = F (i, j)− F̃ (i, j) +
∂F

∂x
(i, j) · δx +

∂F

∂y
(i, j) · δy,

где аппроксимация производных вычисляется по формулам

∂F

∂x
(i, j) =

F (i+ 1, j)− F (i, j)

1
,
∂F

∂y
(i, j) =

F (i, j + 1)− F (i, j)

1
.

Перейдя к обозначениям (1.6), получим, что (1.16) в дифференциальном приближении

записывается как

min
∑(

yij − xij + (yi+1
j − yij) · δx + (yij+1 − yij) · δy

)2
,

откуда, после дифференцирования и решения системы линейных уравнений из двух

неизвестных, можно получить решение





δx =
∑
((xi

j−yij)(y
i+1
j −yij))

∑
(yij+1−yij)

2−∑
((yi+1

j −yij)(y
i
j+1−yij))

∑
((xi

j−yij)(y
i
j+1−yij))

(
∑

(yi+1
j −yij)

2)(
∑

(yij+1−yij)
2)−

∑
((yi+1

j −yij)(y
i
j+1−yij))

,

δy =
∑
((xi

j−yij)(y
i
j+1−yij))

∑
(yi+1

j −yij)
2−∑

((yi+1
j −yij)(y

i
j+1−yij))

∑
((xi

j−yij)(y
i+1
j −yij))

(
∑

(yi+1
j −yij)

2)(
∑

(yij+1−yij)
2)−

∑
((yi+1

j −yij)(y
i
j+1−yij))

.
(1.17)

Поиск смещения с помощью дифференциального приближения уместен лишь при

соблюдении условий |δx| < 1, |δy| < 1. Если требуется найти вектор смещения (δx, δy) ∈
∈ [−M,M ]2, то необходимо использовать итерационный алгоритм поиска, заключаю-

щийся в нижеперечисленных шагах.
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1. Из изображений F и F̃ формируем конечную последовательность изображений

{Fi}Ki=0 и {F̃i}Ki=0, где K = ⌈log2M⌉ (округление вверх). Последовательность форми-

руем по следующим рекуррентным соотношениям:

F0 = F, F̃0 = F̃ , Fk = r(Fk−1), F̃k = r(F̃k−1), k = 1, . . . , K,

где r является оператором понижения разрешения кадра, функцию кадра F (x, y),

определённую на прямоугольнике [1,W ]×[1, H], r переводит в функцию F ′(x, y), опре-

делённую на [1, ⌊W/2⌋]× [1, ⌊H/2⌋], такую, что

F ′(x, y)=
F (2x, 2y) + F (2x+ 1, 2y) + F (2x, 2y + 1) + F (2x+ 1, 2y + 1)

4
.

2. Пусть окно

W̃K = [⌊i0/2K⌋, ⌊(i0 +N)/2K⌋]× [⌊j0/2K⌋, ⌊(j0 +N)/2K⌋].

Данное окно соответствует исходному окну W̃ на кадре пониженного разрешения

F̃K . Найдем смещение (δKx , δ
K
y ) окна WK на кадре FK относительно окна W̃K кадра

F̃K , воспользовавшись формулами (1.17). Использование этих формул правомерно,

поскольку благодаря снижению размерности смещения по обоим координатам не мо-

жет превышать единицы, если искомое исходное смещение действительно меньше M .

Обозначим

iK = i0/2
K + δKx , jK = j0/2

K + δKy .

Отметим, что iK и jK не обязательно целые.

3. Последовательно для каждого k = K − 1, K − 2, . . . , 1 выполним следующую

операцию: для окна

W̃k = [⌊2ik+1⌋, ⌊2ik+1⌋+ ⌊N/2k⌋]× [⌊2ik+1⌋, ⌊2ik+1⌋+ ⌊N/2k⌋]

на кадре F̃k найдём смещение (δkx, δ
k
y ) соответствующего ему окна Wk на кадре Fk по

формулам (1.17) и положим ik = 2ik+1 + δkx, jk = 2jk+1 + δky . За счёт итерационного

«восхождения» от пониженного разрешения к более высокому и из-за поправок к

положению окон W̃k, смещение на каждой итерации не должно превышать единицы

по любой из двух координат.

4. Окончательно, (δx, δy) = (i0 − 2i1 − δ1x, j0 − 2j1 − δ1j ) — смещение окна W относи-

тельно W̃ , причём результат не обязательно целый, то есть данный алгоритм может

потенциально выделять смещения меньшие, чем одна точка изображения.

Операция снижения размерности имеет сложность O((M + N)2) для требуемой

области кадра. Сложность операции расчёта смещения по формуле (1.17) оценива-

ется как O(N2). Поскольку эта операция выполняется ⌈log2M⌉, то сложность всего

алгоритма оценивается как O(N2 log2M) при достаточно больших M .
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Необходимость сопоставления изображений возникает во многих приложениях:

при вычислении оптического потока, при необходимости компенсировать глобальное

движение в кадре при плохом креплении видеокамеры к опоре и нестабильном изоб-

ражении, при попытке отследить перемещение объекта, который показывается доста-

точно крупным планом и в других задачах. Кроме параллельного переноса, иногда

возникает необходимость отслеживать более сложное перемещение изображений. Для

такой задачи тоже разработан ряд решений, см., например, [76].

Выделение движущихся объектов из видеосигнала. Как правило, если

изображение с видеокамеры статично, то никаких событий, которые могут заинте-

ресовать оператора системы видеонаблюдения, в области зрения рассматриваемой

видеокамеры не происходит. Однако простые алгоритмы определения наличия дви-

жения в кадре не всегда обеспечивают применимость средств видеонаблюдения в

некоторых приложениях, поэтому огромное количество работ посвящено детализа-

ции анализа изменений в кадре видеосигнала.

Целый класс алгоритмов разработан для того, чтобы отслеживать перемещение

объектов на изображении с помощью выделения различных характеристик, прису-

щих лишь данному объекту: форма контура, цветовые и текстурные параметры. В

работе [16] предложен алгоритм выделения перемещения объектов на изображении

видеокамеры при помощи сопоставления гистограмм яркости точек объекта на раз-

личных кадрах последовательности видеоизображений.

Для анализа изображений сцен с насыщенным движением (скопление людей,

оживлённая автомобильная трасса) разработаны алгоритмы выделения, группиров-

ки и сопоставления на соседних кадрах видеопоследовательности специальных особых

точек движущихся объектов, являющихся угловыми точками контуров [17, 18].

В работе [19] предложен способ выделения движения автомобилей, основанный на

сопоставлении и поиске трёхмерной модели контуров автомобилей среди выделенных

двумерных контуров кадра.

С точки зрения классификации выделенных объектов наиболее подходящий алго-

ритм выделения движущихся объектов описан в [38]. Предложенный способ выделе-

ния движущихся объектов называется методом адаптивного вычитания фона. Чтобы

получить характеристическую функцию движения точек ωi(x, y) для кадра Fi после-

довательности {Fi} (ωi(x, y) = 0, если точка (x, y) движется, и ωi(x, y) = 1, если точка

(x, y) не движется), используются следующие рекуррентные формулы:

ω1 = 0, B1(x, y) = F1, T1(x, y) = 7,
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Bi(x, y)=

{
αFi(x, y) + (1− α)Bi−1(x, y), ωi−1(x, y) = 0,

Bi−1(x, y), ωi−1(x, y) = 1,

Ti(x, y)=

{
α|Bi(x, y)− Fi(x, y)|+ (1− α)Ti−1(x, y), ωi−1(x, y) = 0,

Ti−1(x, y), ωi−1(x, y) = 1,

ωi(x, y)=

{
1, если ‖Fi(x, y)−Bi(x, y)‖∞ > 5 · Ti
0 в противном случае,

(1.18)

где Bi и Ti — оценка, соответственно, математического ожидания (фона) и дисперсии

точек изображения на i-м кадре последовательности, α — коэффициент обновления

(обычно 0.01 < α < 0.1), под нормой ‖·‖∞ понимается максимальное из трёх абсо-

лютных значений разности для трёх компонент цветности. Разбив множество движу-

щихся точек на i-м кадре, соответствующих функции ωi, на непересекающиеся ча-

сти без соседних точек, получим подмножества точек, соответствующих различным

движущимся изображениям объектов. Каждая область является каким-то объектом,

который, вероятно, присутствовал на предыдущих кадрах последовательности изоб-

ражений. Задача сопоставления новых областей уже существующим и выделенным

объектам сводится к проблеме поиска оптимальных паросочетаний. На рис. 1.9 про-

иллюстрированы основные этапы работы алгоритма выделения движущихся изобра-

жений.

Выделение движущихся объектов с помощью формул (1.18) не устойчиво по отно-

шению к следующим помехам: движение теней от объектов, качание веток деревьев,

волновые колебания поверхности воды, резкое изменение освещенности сцены из-за

переменной облачности. В некоторых работах метод адаптивного вычитания фона

развивается с целью уменьшить влияние данных помех. Например, в [20, 77] предла-

гается использовать модель суммы нескольких нормальных распределений для фона

в одной точке, тем самым уменьшается влияние перепадов яркости, связанных с пе-

ременной облачностью и некоторыми помехами от отброшенных объектами теней.

В [78] используется модель Ламберта для отражения света, чтобы устранить влияние

перепадов яркости от теней объектов и облаков. Анализ цветового состава точек для

отделения теней и объектов также приводит к фильтрации помех, связанных с из-

менением освещённости сцены и устраняет искажение силуэтов объектов[79, 80, 81].

Наконец, в [82] достигается фильтрация шумов от движения с колебательным харак-

тером (ветки деревьев, их тени, волны на воде) за счёт применения формул (1.18) не к

исходному изображению, а к полю векторов смещения каждой точки, рассчитанному

итерационно по формуле (1.17).

Таким образом, ряд методов позволяет с некоторой точностью получить исходные

данные о движущихся объектах в области зрения камер. Эти исходные данные могут
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Рисунок 1.9. Иллюстрация работы алгоритмов выделения движущихся изображений на основе алгоритма вычитания фона.
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использоваться при классификации и анализе событий в аналитических видеосисте-

мах.

Методы сопряжения видеокамер. Одна из моделей зрения, как технического,

так и биологического, представлена в работе [83]. С помощью данной модели можно

ввести сопряжение различных ракурсов наблюдения видеокамер. Видеокамеры могут

быть сопряжены как с физическим пространством, и тогда для каждой точки изобра-

жения существуют оценочные значения трёхмерных координат, так и друг с другом,

тогда координатам каждой точки кадра одной камеры соответствуют какие-то коор-

динаты изображения с сопряжённой камеры, и наоборот.

Например, в работе [84] используется сопоставление изображения видеокамеры

с физическими трёхмерными координатами для улучшения точности предсказания

положения на последующих кадрах движущихся объектов, выделенных в текущем

кадре. Расчёт коэффициентов проективного преобразования проводится на основе

предположения, что координаты четырёх точек физического пространства наблюда-

емой сцены нам известны.

В [85] для решения аналогичной задачи используются сложные цифровые карты

поверхности земли с указанием перепадов высот, и угловые координаты оптической

оси видеокамер в совокупности с тремя координатами.

Автоматическое сопряжение видеокамер между собой представлено в [86]: сопря-

жение изображений производится на основе предварительной калибровки камер, а

также на основе сопоставления координат изображений движущихся объектов в слу-

чае, если в области зрения сопрягаемых видеокамерах движется только один объект.

Схожий метод автоматического сопряжения представлен в [87]. Сопряжение видеока-

мер основано на выделении прямых-границ изображения общей зоны зрения. Полу-

ченные результаты используются для согласованного выделения движущихся объек-

тов в общей зоне зрения видеокамер.

В работах [88, 89, 90] представлено использование сопряжения трёх и более видео-

камер для получения трёхмерных координат объектов в приложении к видеонаблюде-

нию во внутренних помещениях. После оценки трёхмерные координаты переводятся

простейшим параллельным переносом на план помещений.

Системы автоматического управления поворотными видеокамерами.

Большинство поворотных устройств, на которые устанавливаются видеокамеры,

предназначены для выполнения простейших функций управления: повернуть оптиче-

скую ось камеры с помощью ручного манипулятора, уменьшить или увеличить угол

обзора, сфокусировать изображение. Некоторые поворотные видеокамеры позволя-

ют запоминать текущее состояние параметров поворотного устройства, чтобы затем

вернуться к этому состоянию по определённой команде управления.
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Идея автоматизированного управления поворотными видеокамерами описана, на-

пример, в [91]. Однако публикаций с описанием систем, использующих подобную идео-

логию, не очень много.

Известна система из трёх поворотных камер, установленных в разных точках лабо-

раторного помещения, которая отслеживает перемещения вошедшего в лабораторию

человека, причём все три камеры согласованы между собой таким образом, чтобы оп-

тические оси по возможности пересекались в одной точке. Поэтому, все три камеры

следят за перемещением человека, наводя на него оптическую ось, даже в том случае,

когда одна из видеокамер «не видит» объект[92]. В работе описан алгоритм слежения

за объектом наблюдения (на первом этапе он основан на [20], в процессе движения ка-

меры слежение происходит по алгоритму [16]), но не рассмотрены вопросы точности

и задержек управления.

Несмотря на отсутствие подробного описания в открытой литературе, функция

автоматического наведения поворотных видеокамер на объекты наблюдения — одна

из важных функций аналитических видеосистем, что следует из проспектов [55, 57]

и подобных материалов.

В завершение обзора методов обработки цифровых видеосигналов, приведём

структурную схему предложенной классификации, см. рис. 1.10.

1.4. Алгоритмы распознавания и идентификации видеоизображений

Классификация (распознавание) выделенных объектов — одна из основных особен-

ностей аналитических видеосистем. В работах [15, 38] предложено использовать клас-

сификацию для определения категорий движущихся объектов («человек», «группа

людей», «седан», «пикап», «грузовик», «автобус») и цвета, при этом использовались

известные алгоритмы классификации. Рассмотрим основные методы распознавания,

которые предлагаются в литературе для классификации.

Основные понятия и определения. Прежде, чем перейти к обзору методов

распознавания, введём необходимые для этого определения и обозначения. В целом

вводимые понятия соответствуют аналогичной терминологии в работах [29, 47, 94].

Пусть дано множество объектов M , называемое множеством допустимых объек-

тов (здесь и далее, если специально не оговорено противное, речь идёт о конечных

множествах, которые, возможно, содержат большое количество элементов). Множе-

ство M разбито на c подмножеств K1, ..., Kc (M =
c∪

i=1
Ki), называемых классами. Для

любого объекта S, S ∈ M , определена некоторая информация I(S). Будем называть

информацию I(S) стандартной, если I(S) = (x1, ..., xn) — вектор с вещественными

компонентами, которые мы назовём признаками объектов, соответственно n-мерное

вещественное пространство Rn в этом случае будем называть пространством призна-

ков. Также для каждого объекта S ∈ M может быть определён информационный
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Методы обработки видеосигналов

Предварительная

обработка:

− выделение
границ[10];
− выравнивание
контрастности[6];
−фильтрация
Винера-Хопфа[48, 6].

Управление

видеокамерами:

− наведение трёх
поворотных
видеокамер в одну
точку[92];
− видеосистемы с
синхронизацией и
сопряжением
поворотных и
неподвижных
видеокамер[55, 57].

Сравнение

изображений:

− поиск максимальной
корреляции[71, 73];
−минимизация
Евклидовой нормы[74];
− итерационный
поиск[75];
− поиск поворотов и
увеличения[76].

Сопряжение

изображений:

− сопоставление с
физическим
пространством[84];
− сопоставление с
цифровой картой
высот[85];
− сопряжение
изображений
видеокамер[86, 87].

Выделение

движения:

− сравнение
гистограмм яркости
областей[16];
− выделение
перемещающихся
особых точек[17, 18];
−моделирование и
поиск движущихся
форм на
изображениях[19];
− рекурсивная оценка
параметров движения в
точке[15]; − подавление
помех[20, 77, 78, 79, 80,
81, 82].

Классификация

изображений:

см. таблицу 1.1

Рисунок 1.10. Классификация методов обработки видеосигналов.

вектор α(S) = (α1, ..., αc), состоящий из c компонент. Компоненты αj принадлежат

множеству {0,∆, 1}, значению αj = 1 соответствует предикат Pj(S) ≡ S ∈ Kj, значе-

нию αj = 0 — предикат-отрицание Pj(S) ≡ S 6∈ Kj, αj = ∆ означает, что неизвестно,

выполняется предикат Pj(S) или нет. Информационный вектор α̃(S), состоящий толь-

ко из нулей и единиц, назовём истинным, если все соответствующие ему предикаты

выполняются.

Выделим из множества M подмножество L, и обозначим K ′
i = L ∩Ki (L =

c∪
i=1
K ′

i).

Мы будем считать, что разбиение L на классы K ′
i, i ∈ 1, c, нам известно, т.е. для

каждого S ∈ L нам известен истинный информационный вектор α̃(S). Назовём мно-

жество L обучающим. Далее мы будем считать, что обучающее множество L состоит

из l элементов S1, ..., Sl, называемых обучающими примерами. i-ый компонент истин-

ного информационного вектора α̃(Sj) обозначим как α̃ij.

Информацию I(S) мы можем определить на некотором множестве M ⊂ M при

помощи простого перечисления: I(M) = (I(S1), ..., I(Sk)), где {S1, ..., Sk} = M. Опре-
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делим также I(M1, ...,Ms) как перечисление (I(M1), ..., I(Ms)) для подмножеств

Mi ⊂ M , i ∈ 1, s. Информацию о классах I0(K
′
1, ..., K

′
c) мы назовём обучающим

информационным набором. Подчеркнём, что смысл перечисления I0 отличается от

смысла перечисления I(L), поскольку в последнем не присутствует информация о

разбиении объектов на классы.

Определив объекты I0(K
′
1, ..., K

′
c), и I(S), S ∈M , мы можем ввести понятие алго-

ритм распознавания A:

A(I0(K
′
1, ..., K

′
c), I(S)) = αA(S), (1.19)

где αA(S) — некоторый информационный вектор, который алгоритм A сопостав-

ляет объекту S, обладая информацией I0 и I(S). Задача распознавания заключа-

ется в том, чтобы построить такой алгоритм A, что для всех объектов S ∈ M

истинные информационные векторы α̃(S) практически не отличаются от векто-

ров αA(S), которые выдаёт алгоритм. Конкретные способы построения алгоритмов

распознавания весьма разнообразны и описаны во множестве работ, например, в

[93, 25, 28, 29, 47, 94, 95, 30, 96, 97, 32]. Далее рассмотрены наиболее часто при-

меняемые способы.

Квадратичный дискриминантный анализ. Условимся считать, что вектор

I(S) = (x1, ..., xn) = x является случайной величиной. Предположим также, что внут-

ри каждого класса Ki признаки объектов распределены по нормальному закону, т.е.

если I(S) = x, то x ∈ N(mi, Ri) при условии, что S ∈ Ki (обозначим плотность данно-

го распределения ωi(x)). Этой информации достаточно, чтобы посчитать по формуле

Байеса условную вероятность для объекта S (I(S) = x) принадлежать классу Ki:

P (S ∈ Ki|I(S) = x) =
P (I(S) = x|S ∈ Ki)P (S ∈ Ki)

P (I(S) = x)
. (1.20)

Если событие I(S) = x интерпретировать как событие x ∈ Ω, где Ω — некоторая

малая окрестность признака x, то мы получим, что P (I(S) = x|S ∈ Ki) =
∫
Ω

ωi(x)dx ≈
ωi(x)µΩ, где µΩ — мера множества Ω. Формула (1.20) преобразуется к виду

P (S ∈ Ki|I(S) = x) = ωi(x) ·
P (S ∈ Ki)µΩ

P (I(S) = x)
. (1.21)

Допустим, что объекты каждого класса встречаются с одинаковой частотой, тогда

P (S ∈ Ki) не зависит от класса Ki, и значит, согласно формуле (1.21) вероятность

P (S ∈ Ki|I(S) = x) максимальна для того класса Ki, у которого плотность распреде-

ления ωi больше всех в точке x.

Плотность распределения ωi(x) вычисляется по формуле

ωi(x) =
1

(2π)n/2(detR)1/2
exp

(
−1

2
(x−mi)

TR−1(x−mi)

)
. (1.22)
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Алгоритм A(I0, I(S)) строится следующим образом: i-ая компонента вектора

αA(S), соответствующая максимуму max
i=1,...,c

ωi(I(S)), устанавливается равной едини-

це, а все остальные компоненты — нулю. Поскольку значения mi, Ri не известны

изначально, необходимо их оценить, исходя из информации I0(K
′
1, ..., K

′
c):

mi =
1

|K ′
i|
∑

S∈K′

i

I(S), (1.23)

Ri =
1

|K ′
i| − 1

∑

S∈K′

i

(I(S)−mi)(I(S)−mi)
T , (1.24)

где |K ′
i| — количество элементов в множестве K ′

i.

Формулы (1.23) и (1.24) соответствуют подготовке начальных данных для алго-

ритма A, иначе говоря, обучению алгоритма. На этапе обучения требуется выполнить

порядка O(l) операций (напомним, что l = |L|). После подготовки начальных дан-

ных в основном процессе работы алгоритму распознавания A требуется всего O(c)

операций, чтобы вычислить αA(S) на основании формул (1.22).

Линейный дискриминантный анализ. Линейный дискриминантный анализ

не является способом построения алгоритма распознавания A. Суть линейного дис-

криминантного анализа — уменьшить размерность пространства признаков Rn при

помощи линейной проекции в пространство Rm. Собственно, любое преобразование

вида

y = V Tx, (1.25)

где V — матрица размерности n×m, уменьшает размерность пространства признаков

с n доm, нас будут интересовать такие матрицы V , при которых преобразование (1.25)

оптимально в определённом смысле.

Введём матрицу разброса внутри классов

W =
c∑

i

∑

S∈K′

i

(I(S)−mi)(I(S)−mi)
T , (1.26)

где mi считается по формуле (1.23), а также матрицу разброса между классами

B =
c∑

i

|K ′
i|(mi −m)(mi −m)T , (1.27)

где m =
1

l

∑
S∈L

I(S) =
1

l

c∑
i=1

|K ′
i|mi. Матрицы W и B задают эллипсоиды разброса внут-

ри классов и между классами, соответственно. После проекции при помощи матрицы

V эти эллипсоиды перейдут, соответственно, в V TWV и V TBV . Отношение произве-

дений квадратов полуосей этих эллипсоидов есть отношение определителей

J(V ) =
detV TBV

detV TWV
, (1.28)
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поскольку определитель является произведением собственных значений матрицы в

данном случае. Нас будут интересовать матрицы V , доставляющие максимум функ-

ционалу (1.28). Согласно [30, 98], столбцы оптимальной матрицы V соответствуют

максимальным собственным значениям уравнения

(B − λiW )vi = 0. (1.29)

Поиск решений для (1.29) описывается следующим алгоритмом:

1. С помощью процесса ортогонализации Грамма – Шмидта находим матрицу Q

такую, что QTWQ = E. Домножив уравнение (1.29) на матрицу QT слева, и сделав

замену переменных vi = Qv′i, получим равносильное уравнение

(QTBQ− λiE)v
′
i = 0.

2. Находим собственные значения λi и собственные векторы v′i для последнего

уравнения при помощи метода вращений.

3. Производим обратную замену по формулам vi = Qv′i и составляем матрицу V .

В силу свойств матриц W и B, которые следуют из способа их вычисления (1.26)

и (1.27), размерность нового пространства для признаков y не может превышать c−1,

т.к. уравнение (1.29) имеет не более c−1 собственных решений. Когда классификация

происходит по небольшому количеству классов, это может привести к потере исходной

информации при применении линейного дискриминантного анализа.

Сокращение размерности по описанному методу добавляет к основному процессу

обучения O(l) операций при подсчете по формулам (1.26) и (1.27), а также O(n2) опе-

раций (в среднем) при решении уравнения (1.29). В процессе работы при распознава-

нии добавляется незначительная операция расчёта подготовленного преобразования

(1.25).

Правило k ближайших соседей. Обозначим за V (S) выборку из k ближайших

по отношению к объекту S в признаковом пространстве элементов множества L \ S,

т.е.

V (S) = (S1, ..., Sk), где Sj = arg min
S′∈L\{S,S1,...,Sj−1}

ρ(S, S ′),

ρ(S, S ′) — расстояние между I(S) и I(S ′) в признаковом пространстве Rn.

Алгоритм A(I0, I(S)) определяет, что S ∈ Ki (иначе говоря, результат алгоритма

αA
ij(S) = δij, где δij — символ Кронекера), если в выборке V (S) наибольшее число

элементов из класса Ki. В случае, если максимум количества элементов в выборке

V (S) достигается для нескольких классов одновременно, алгоритм A выдает неопре-

делённый результат (∆, ...,∆).

Если следовать указанной схеме напрямую, то обучение у данного алгоритма во-

обще отсутствует, а при работе требуется O(k · l) операций, чтобы выдать результат



53

распознавания, что очень расточительно. Можно использовать так называемое kD-

дерево при поиске выборки V (S). Тогда на стадии обучения потребуется O(l) операций

для создания kD-дерева, и при распознавании каждого объекта будет выполняться

в среднем O(k log2 l) операций. В наихудшем случае время поиска выборки V (S) с

помощью kD-дерева увеличивается до O(k · l2/3) операций.

Нейросеть. Нейросетевым алгоритмам посвящено много литературы. В частно-

сти, в [99, 25, 31] очень подробно рассмотрены вопросы обучения и применения нейро-

сетей. В данном разделе нейросетевой подход описывается лишь с позиции примене-

ния нейросетей в качестве алгоритма распознавания в аналитических видеосистемах.

y

y = f(v)

v =
N∑
i=1

wixi + w0

x1 x2 · · · xN

Рисунок 1.11. Схема одного нейрона.

Нейроном является функция вида y = f(
N∑
i=1

wixi + w0). Функция f(v) называется

пороговой, а коэффициенты w0, w1, ..., wN — весами нейрона. Аргументы xi, i ∈ 1, N ,

называются входами нейрона, а значение y — выходом. На рис. 1.11 представлено

схематическое изображение нейрона.

Нейросеть — это граф специального вида, вершинами которого являются нейроны.

Предполагается, что веса у всех нейронов разные, а пороговая функция одинакова.

Нейросеть разбивается на несколько уровней, занумерованных по порядку, начиная с

единицы. Каждый нейрон принадлежит одному из уровней. На вход нейросети пода-

ется N-мерный вектор, который является входом для всех нейронов первого уровня.

Выходы каждого уровня, кроме последнего, являются входами для нейронов следу-

ющего уровня. Выходы последнего уровня называются выходом нейросети, который

является вектором с размерностью, равной количеству нейронов на последнем уровне.

Т.о., если x — вектор входов, y — вектор выходов, то описанная выше нейросеть од-

нозначно соответствует функции y = Y (x, w̄), где w̄ — набор весов всех нейронов,

входящих в нейросеть, а Y — довольно сложная композиция линейных функций с

коэффициентами w̄ и пороговой функции f .

Пример нейросети с тремя уровнями, тремя входами и двумя выходами схема-
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y1 y2

Уровень 3
Нейрон 1

Уровень 3
Нейрон 2

Уровень 2
Нейрон 1

Уровень 2
Нейрон 2

Уровень 2
Нейрон 3

Уровень 1
Нейрон 1

Уровень 1
Нейрон 2

x1 x2 x3

Рисунок 1.12. Пример нейросети с тремя уровнями.

тически представлен на рис. 1.12. В аналитическом виде формулы такой нейросети

записываются следующим образом:

y1 = f(
3∑

k=1

w31
k f(

2∑

j=1

w2k
j f(

3∑

i=1

w1j
i xi + w1j

0 ) + w2k
0 ) + w31

0 ),

y2 = f(
3∑

k=1

w32
k f(

2∑

j=1

w2k
j f(

3∑

i=1

w1j
i xi + w1j

0 ) + w2k
0 ) + w32

0 ),

где wjk
i — i-ый вес k-го нейрона на j-ом уровне.

Рассмотрим пороговую функцию

f(v) =

{
1, если v > 0,

0, если v < 0.
(1.30)

Область значений функции Y (x, w̄) нейросети с пороговой функцией (1.30) представ-

ляет из себя конечный набор векторов, компоненты которых равны 0 или 1. Прообраз

каждого из этих векторов будет множеством, составленным из комбинации объеди-

нений и пересечений полупространств, границы которых задают нейроны первого
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уровня. Меняя конфигурацию нейросети и веса нейронов, можно добиться такого

разбиения пространства признаков, что значение алгоритма A(I0, I(S)) = αA(S) бу-

дет значением нейросети на признаках x = I(S). Чтобы построить такую нейросеть

или, иначе говоря, обучить нейросетевой алгоритм, требуется выполнить нижепере-

численные действия.

Сначала выбирается конфигурация нейросети, т.е. количество уровней и количе-

ство нейронов на каждом уровне. Фиксируется лишь число входов на нижнем уровне,

которое соответствует количеству признаков в стандартной информации I(S), и число

нейронов на верхнем уровне, которое соответствует количеству классов c в обучающей

информации I0. Следует отметить, что слишком малое количество нейронов в сети

приводит к недостатку степеней свободы, что не позволяет довести процесс обучения

до удовлетворительного уровня; слишком большое количество нейронов, наоборот,

приводит к излишку степеней свободы, и нейросеть специально настраивается на ин-

формацию I0, иными словами, переобучается.

После выбора конфигурации мы, используя истинные информационные векторы

α̃(S), составляем функцию

E(w̄) =
∑

S∈L
(Y (I(S), w̄)− α̃(S))2 (1.31)

и находим веса w̄∗ = argminE(w̄) методом градиентного спуска. Для того, чтобы ме-

тод градиентного спуска можно было применить, функция (1.30) заменяется похожей

функцией

f(v) =
1

2

(
v

1 + |v| + 1

)
. (1.32)

Градиент функции E(w̄) в заданной точке считается с помощью специального метода

обратного распространения ошибки (см. [99]). Начальное приближение w̄0 задаётся

случайно, каждая компонента выбирается из равномерного распределения между

−1, 5 и 1, 5. Поскольку пороговая функция (1.32) выдаёт уже не только значения 0 и 1,

при окончательном расчёте ответа αA(S) по результату y = Y (I(S), w̄∗) используется

формула

αA
i (S) =





1, если 0, 5 + δ < yi,

0, если 0, 5− δ > yi,

∆, в противном случае.

Порог δ экспериментально подобран и равен 0, 05.

На этапе обучения, которое полностью состоит из минимизации функции (1.31),

требуется порядка O(L · n · I) операций, где n — количество нейронов сети, I — коли-

чество итераций. Для распознавания требуется всего O(n) операций.

Для получения приемлемых результатов обычно требуется I ∼ 105 и много бо-

лее итераций, поэтому нейросеть обучается долго, иногда в суток. Однако в качестве
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достоинств нейросети следует отметить быстрый способ вычислений на этапе распо-

знавания и широкие возможности по решению непараметрических многомодальных

задач распознавания (см. [96]). По этой причине нейросетевой подход применяется ча-

ще остальных в аналитических видеосистемах. Кроме того, в последние годы удалось

создать нейросети сложной структуры с большим числом нейронов и связей, которые

эффективно решают задачу распознавания и семантической обработки изображений,

см. [33, 34, 35, 36, 37], но при этом для расчёта прямого выхода данных нейросетей

только для одной подобласти изображения необходимо выполнить порядка миллиар-

да сложений и умножений, что не позволяет на текущий момент использовать эти

методы в системах реального времени.

Простейшие эвристики. Иногда природа признаков объектов настолько про-

зрачна, что не требуется использовать сложные алгоритмы классификации при по-

строении алгоритма A. Например, в простом случае алгоритм A(I0(K
′
1, K

′
2, K

′
3), I(S))

для объекта S со стандартной информацией I(S) = (x1, x2) мог бы быть следующим:

αA(S) =





(1, 0, 0), т.е. (S ∈ K1), если x1 < a,

(0, 1, 0), т.е. (S ∈ K2), если x1 > a и x2 < b,

(0, 0, 1), т.е. (S ∈ K3), если x1 > a и x2 > b,

где a и b — некоторые пороги, которые иногда можно выбрать «из общих сообра-

жений», практически без обучения, хотя на практике всё же при выборе порогов

используется статистика I0(K
′
1, K

′
2, K

′
3).

Критерии выбора алгоритма классификации. Характеристики рассмотрен-

ных выше алгоритмов классификации сведены в таблицу 1.1. Как правило, доля оши-

бок классификации зависит не от применяемого алгоритма, а от параметров I(S),

выбранных для обучения — чем сильнее параметры дискриминируют классы Kj,

тем лучше результат. Конечно, при этом следует учитывать, что, например, квадра-

тичный дискриминантный анализ предполагает одномодальные распределения I(S)

внутри каждого класса Kj, а методы типа нейросетевой классификации и алгоритм

выбора по k ближайшим соседям не накладывают таких ограничений. Могут быть и

другие ограничения на входные данные алгоритмов классификации, которые должны

выполняться при их применении. Часто ограничения одномодальности и другие мож-

но обойти с помощью преобразования в пространстве признаков, в противном случае

нужно выбрать альтернативный алгоритм классификации.

Главными критериями выбора метода классификации является сложность на эта-

пе обучения и на этапе распознавания. В аналитических видеосистемах обычно не

принимают во внимание сложность алгоритма классификации на этапе обучения, по-

скольку этот этап проводится предварительно до запуска системы. В штатном ре-

жиме работы системы в реальном времени модули классификации должны занимать
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Алгоритмы

Много-

модаль-

ность

Число операций при обучении

Число опе-

раций клас-

сификации

Квадратичный

дискриминантный

анализ

нет O(L+ cn3) O(cn2)

Линейный

дискриминантный

анализ

нет O(L+ n3) O(L1,5)

Метод k ближайших

соседей
да O(L) O(L1,5)

Классификация с

помощью нейросети
да

O(LNI), N — число нейронов,

I — число итераций
O(N)

Эвристики — — O(1)

Таблица 1.1. Характеристика алгоритмов классификации.

как можно меньше вычислительных ресурсов, то есть обладать как можно меньшей

сложностью на этапе классификации.

Исходя из этих условий и учитывая приведённые выше оценки сложности, чаще

всего при классификации объектов в аналитических видеосистемах используется ней-

росетевой подход, при котором количество операций, требуемых на классификацию,

постоянно для всех объектов и пропорционально числу всех входов у нейронов сети.

1.5. Теоретическая оценка достоверности выходных данных алгоритмов со-

пряжения, синхронизации и семантической классификации в системах

технического зрения

Основное назначение аналитических видеосистем — это достоверное представле-

ние данных для оператора о ситуации в зоне наблюдения видеокамер, входящих в

состав системы. Для достоверной оценки обстановки требуются надёжные способы

анализа событий, которые позволили бы выполнить ряд требований к аналитической

видеосистеме.

1. Наблюдаемый объект, отмеченный алгоритмом выделения движения (см. опре-

деление 1.1), находящийся в зоне наблюдения двух неподвижных камер, должен быть

отмечен в программе наблюдения, запущенной на терминале оператора, только один

раз.

2. Как можно больше наблюдаемых объектов должны попасть в поле зрения ка-

мер на поворотном устройстве за счёт наведения на объект, причём увеличение изоб-

ражения поворотной видеокамеры должно определятся на основе задач наблюдения.
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3. Движущийся объект должен быть классифицирован как принадлежащий к

каким-либо категориям, например, «люди» или «машины», чтобы была возможность

не выводить события некоторого типа и облегчить восприятие обстановки оператором

видеосистемы.

Для выполнения сопоставления данных об объекте, определенного с помощью вы-

деления движения на двух разных камерах, прежде всего требуется точное преоб-

разование координат точек изображения с одной камеры на другую и наоборот, то

есть требуется довольно точно выполнить операцию сопряжения двух неподвижных

камер (см. определение 1.3). Пусть в процессе такого сопряжения мы получили функ-

цию преобразования координат

(x′, y′) = f(x, y),

которая сопоставляет координатам изображения (x, y) одной камеры координаты

изображения (x′, y′) другой камеры. В силу возможных неточностей метода сопря-

жения, функция f определяет координаты (x′, y′) с некоторой ошибкой. Допустим

также, что «идеальное» преобразование сопряжения, у которого нет ошибок, задаётся

функцией f ′:

(x′, y′) = f ′(x, y).

В качестве оценки погрешности преобразования можно воспользоваться следующей

нормой:

∆f = max
(x,y)

‖f(x, y)− f ′(x, y)‖, (1.33)

где под знаком «max» стоит обозначение евклидовой нормы, т.е. корень из суммы

квадратов разностей координат x′ и y′ оцениваемого и «идеального» преобразования.

Величина погрешности ∆f , таким образом, измеряется в точках изображения камеры,

и поэтому является безразмерной.

Чем меньше погрешность сопряжения неподвижных камер ∆f , тем меньшего раз-

мера объекты из общей зоны наблюдения могут быть сопоставлены. Поскольку для

большинства алгоритмов выделения движения предельный минимальный размер объ-

екта, который может быть надёжно определён, равен 4 пикселам изображения, то ос-

новное ограничение, накладываемое на точность сопряжения, задаётся соотношением

∆f < 4. (1.34)

Синхронизация, понимаемая в смысле определения 1.4, также влияет на сопостав-

ление данных об объектах: при запаздывании обмена данными между обработчиками

видеосигнала, которые анализируют синхронизированные с разных камер данные об

объекте, уменьшается вероятность правильного определения идентичности. Необхо-

димая скорость синхронизации, т.е. время обмена данными между обработчиками,
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определяется скоростью движения объекта, однако существует время синхронизации,

уменьшать которое уже не целесообразно. При частоте обработки 25–30 кадров в се-

кунду (именно столько передают обычные видеокамеры), не имеет смысла добиваться

времени синхронизации меньшего, чем

1/30сек ≈ 3 · 10−2сек,

поскольку обновление данных об объекте всё равно происходит с частотой, равной

частоте анализа кадров видеопотока.

При сопряжении поворотной и неподвижной видеокамер, согласно определе-

нию 1.2, требуется найти соответствие между координатами изображения (x, y) непо-

движной камеры и углами поворота (α, β) оптической оси вращающейся камеры в

некоторой полярной системе координат с началом в точке крепления камеры (допол-

нительно определяются параметры увеличения объектива в соответствии с угловыми

размерами объекта). Таким образом, сопряжение неподвижной и поворотной видео-

камер — это поиск функции преобразования τ :

(α, β) = τ(x, y).

Допустимые отклонения значений функции τ(x, y), полученной при сопряжении, от

«идеальной» функции τ ′(x, y), не могут задаваться такими же простыми ограничени-

ями, как ограничения в формулах (1.33) и (1.34), потому что максимальное угловое

значение погрешности определяется расстоянием от поворотной камеры до объекта,

на который производится наведение. Если производится наблюдение за человеком,

находящимся, например, на расстоянии 400 метров от видеокамеры, то, считая ши-

рину плеч человека примерно равной половине метра, получим, что горизонтальный

угловой размер человека будет 0,5/400 ≈ 0,07◦, и для того, чтобы получить изображе-

ние лица хотя бы в половину ширины кадра видеокамеры, нельзя при сопряжении

ошибаться более, чем на указанный угол 0,07◦. Чем меньшего разрешения изображе-

ния объектов нужно получать на поворотной камере и чем ближе объект находится

к точке закрепления видеокамеры, тем большее значение погрешности является до-

пустимым, так что значение 0,07◦ можно считать оптимальной погрешностью.

В обычных условиях погрешность сопряжения больше 0,07◦. Большинство совре-

менных поворотных устройств с видеокамерами, применяемых в видеосистемах, в си-

лу электромеханических ограничений имеют неустранимую погрешность наведения

оптической оси, равную 0,1◦, по каждому из углов α, β. Поэтому в большинстве слу-

чаев погрешность сопряжения поворотной и неподвижной видеокамер можно считать

неулучшаемой, если

∆τ = max
(x,y)

‖τ(x, y)− τ ′(x, y)‖ < 0,1◦.



60

Синхронизация данных о положении объектов между обработчиками изображе-

ний неподвижной камеры и программными модулями управления поворотной каме-

рой также влияет на точность наведения на движущиеся объекты. Как и в случае

сопряжения двух неподвижных камер, время синхронизации данных менее 30мс не

имеет смысла улучшать. С другой стороны, задержки синхронизации вносят также

вклад в величину времени предсказания положения объекта, которое складывается

из времени поворота камеры при наведении на объект и времени задержки синхро-

низации. Таким образом, чем больше задержка, тем больше время экстраполяции

положения объекта относительно текущего, тем больше погрешность экстраполяции.

Время поворота камеры измеряется значениями от 0,1с до нескольких секунд, по-

этому и время синхронизации не должно по возможности превышать десятые доли

секунды, чтобы не вносить дополнительный вклад в погрешность по сравнению с той

погрешностью, которую вносит время поворота камеры на объект.

Классификация объектов по категориям может быть использована для фильтра-

ции событий, происходящих в зоне наблюдения, при выводе на терминал оператора.

Однако для того, чтобы сохранялась достоверность представления данных о событиях

на выходном терминале видеосистемы, алгоритмы классификации должны выдавать

результаты, соответственно, с высокой достоверностью, т.е. классифицировать объек-

ты с определённой долей ошибок, которая не превышает требуемое для конкретных

задач наблюдения значение. Во многих случаях считается достаточным, если коли-

чество ошибочных классификаций не превышает 5% от общего количества иденти-

фицированных объектов, однако для ряда приложений доля ошибок должна быть

значительно меньше.

Прежде всего требования к частоте ошибок классификации определяются плотно-

стью потока событий, которые анализирует аналитическая видеосистема. Если в зоне

наблюдения происходит всего 100 событий в день, то 5% ошибочно классифицирован-

ных событий означают всего лишь 5 событий, на которые оператор должен обратить

внимание в течение всего дня. Для систем с большим количеством видеокамер, ана-

лизирующих события в оживлённых местах, 5% ошибочных классификаций могут

обозначать для оператора системы необходимость анализировать 5 событий в секун-

ду, и поэтому такая достоверность классификации не является удовлетворительной.

Определив параметры, описывающие качество сопряжения, синхронизации и клас-

сификации, опишем основные цели и задачи диссертационной работы, которые как

раз заключаются в повышении достоверности анализа информации в видеосистемах

за счёт улучшения данных параметров.
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1.6. Анализ достоинств и недостатков традиционных подходов к обработке

информационных видеосигналов

Как следует из анализа обзора, сделанного в предыдущих параграфах, при раз-

работке аналитических видеосистем возникает множество проблем и задач, и для

каждой проблемы или задачи существует некоторое количество готовых решений:

либо теоретических, проверенных на практике, либо сугубо практических, не под-

креплённых публикациями теоретического характера.

В таблице 1.2 кратко перечислены основные достоинства и недостатки рассматри-

ваемых методов. Раскроем содержание этой таблицы более подробно.

Предварительная фильтрация позволяет повысить качество изображений, изме-

ряемое как объективными характеристиками, например соотношением сигнал/шум,

так и субъективным восприятием. В последнем случае для снижения субъективности

проводится опрос группы людей, и субъективная оценка усредняется.

Кроме высоких требований к вычислительным ресурсам (количество операций

любого преобразования фильтрации не менее количества точек изображения), к ос-

новным недостаткам предварительной обработки следует отнести неопределенность

выбора параметров преобразования изображения для большинства методов. Филь-

трация изображения F является некоторым преобразованием F , сопоставляющим

исходному кадру некоторый кадр F ′:

F ′ = F(F, α),

где α — параметры преобразования. Качество изображения F ′ существенно зависит

от выбора параметров α, однако, для многих фильтров не существует метода выбора

оптимального значения параметра. Например, фильтрация Винера-Хопфа (см. п. 1.3)

параметрически зависит от корреляции исходного изображения и шума в каждой точ-

ке. Чем выше предполагаемый шум, тем сильнее фильтр «сглаживает» изображение.

Выбор степени сглаживания можно произвести лишь эвристическими методами.

Методы поиска и сравнения фрагментов изображений, основанные на форму-

лах (1.14) и (1.17), при современном развитии ЭВМ позволяют сравнительно быстро,

в течение десятка миллисекунд устанавливать смещение изображений либо сопостав-

лять различные изображения. Данные методы позволяют решить широкий круг за-

дач: автоматически «сшивать»(сопрягать) два изображения с общей зоной обзора с

одинаковым увеличением в стереозрении, определять смещение крупных объектов на

последовательности видеоизображений, проводить сопоставление изображений для

сравнения, компенсировать глобальное движение при перемещении видеокамеры в

пространстве для выделения относительного движения объектов в поле зрения. Глав-

ный недостаток идеи вычислять смещения по изображению — это чувствительность
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Методы Достоинства Недостатки

Фильтрация
перед
обработкой

+ выделение новой информации
+ улучшение характеристик
изображения

− проблема выбора параметров
фильтрации
− число операций O(H · W ) и
выше (см. формулу-определе-
ние (1.1))

Поиск и
сравнение
фрагментов
изображений

+ автоматическое определение
смещений, необходимое во мно-
гих приложениях
+ отказ от полного перебора при
сравнении в пользу скорости
выполнения

− низкая устойчивость к поме-
хам изображений
− надёжность сопоставления
снижается при увеличении
«степеней свободы» искажения
сравниваемых изображений

Выделение
движения

+ рекурсивный способ оценки
характеристик изображения
ускоряет процесс выделения
движения
+ адаптивный выбор порогов

− низкая устойчивость к поме-
хам изображений средней и низ-
кой частоты

Сопряжение
изображений

+ при сопряжении повышаются
эргономические показатели тер-
миналов аналитических видео-
систем
+ сопряжение повышает каче-
ство распознающих систем

− при сопряжении используется
приближённая форма преобра-
зования, что снижает точность
− в аналитических видеосисте-
мах не применяется автоматизи-
рованное сопряжение
− не исследовано в полной ме-
ре сопряжение топографическо-
го плана с изображением

Определение
типов
изображений

+ существует много разнообраз-
ных методов классификации,
позволяющих провести разбие-
ние на классы на основе анализа
пространства признаков изобра-
жений

− процесс формирования набо-
ра признаков не формализован
− при распознавании в анали-
тических видеосистемах не при-
меняется сопряжение изображе-
ний

Таблица 1.2. Характеристика достоинств и недостатков методов обработки цифровых
видеосигналов.

к помехам различного характера: как радиотехническим шумам видеосигнала, так и

помехам, связанным с естественными явлениями: изменение освещённости наблюда-

емой сцены при переменной облачности, перемещение посторонних объектов в зоне

наблюдения и другие. В силу увеличения количества помех при преобразованиях ти-

па поворот и изменение масштаба надёжность сопоставления также снижается при

изменении увеличения и при повороте сравниваемых изображений.

Методы выделения движущихся изображений, основанные на рекуррентных фор-

мулах (1.18), позволяют определить движение объектов в реальном времени, однако,



63

как и в случае сравнения изображений, несмотря на адаптивный выбор порога T и

другие способы снижения влияния естественных и технических помех, полностью из-

бавиться от ложного определения движения в кадре не удаётся ни одним из методов.

В силу природы оценок характеристик изображения по формулам (1.18), наиболее

часто ложное определение движения вызывают помехи средних и низких частот, рас-

пределённых во времени и пространстве (высокочастотные помехи отсеиваются за

счёт адаптивного порога). Неточное выделение информации о положении объекта

Ω (см. (1.3)), обусловленное некорректной работой алгоритма выделения движения,

впоследствии приводит к ошибкам классификации типа объекта.

Различные типы сопряжения изображений значительно повышают качество вос-

приятия информации оператором аналитической видеосистемы. Среди типов сопря-

жения изображений можно отметить сопряжение поворотных и неподвижных видео-

камер, сопряжение изображений неподвижных камер между собой и сопряжение изоб-

ражений неподвижных видеокамер с изображением плана местности.

Например, без использования поворотных видеокамер в аналитических видеоси-

стемах для того, чтобы увеличить разрешение изображения на одной из видеокамер в

S раз только с помощью других неподвижных камер, необходимо не менее S2 видео-

камер с фокусным расстоянием объективов в примерно S раз большим, чем на исход-

ной видеокамере. Пример увеличения разрешения в 4 раза с помощью неподвижных

видеокамер изображён на рис. 1.13, и из этого примера видно, что такое решение

приводит к резкому увеличению количества оборудования, что сильно усложняет как

монтаж, так и техническое обслуживание видеосистем. Кроме того, при контроле об-

становке в зоне наблюдения видеокамер потребуется следить не за одним изображени-

ем, а за 16 изображениями одновременно, и нагрузка операторов системы возрастёт.

Поворотная видеокамера, в которой реализовано управление увеличением и которая

сопряжена с обзорной видеокамерой, позволила бы как сократить количество видео-

приборов, необходимое для повышения разрешений изображений в зоне наблюдения,

так и выделять из потока событий в зоне наблюдения только необходимые для кон-

троля оператора.

Использование сопряжения неподвижных видеокамер между собой позволяет из-

бежать дублирования при передаче информационных сообщений об объектах в зоне

пересечения областей видимости сопряжённых видеокамер. Пример дублирования ин-

формации в терминале оператора изображён на рис. 1.14. При эксплуатации систем,

в которых количество видеокамер велико, исключение дублирования сообщений с

помощью сопряжения позволяет уменьшить количество случаев, требующих реакции

оператора системы. Таким образом, повышается автоматизация обработки видеоизоб-

ражений, и для обработки нештатных ситуаций в зоне видеонаблюдения требуется
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Рисунок 1.13. Пример увеличения разрешения изображений наблюдаемых объектов за счёт увеличения количества видеокамер.
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меньшее количество операторов аналитической видеосистемы.

Если видеокамеры сопряжены с топографическим планом местности, то возмо-

жен альтернативный способ визуального представления информации об обстановке в

области зрения видеокамер, см. рис. 1.15. Вместо того, чтобы непрерывно анализиро-

вать изображения массива видеокамер, количество которых может быть очень велико,

операторы системы могут наблюдать только за планом местности, на котором отоб-

ражаются любые объекты и события, выделенные аналитической видеосистемой. В

тех случаях, когда число событий невелико, например, менее одного события за 10

минут, один оператор с помощью сопряжения может контролировать ситуацию в зоне

наблюдения большого количества видеокамер, даже если это количество превышает

сотни единиц. Поскольку один оператор не в состоянии наблюдать за обстановкой

более, чем на 20 камерах, то преимущества видеосистем с применением сопряжения

с планом местности очевидны: для наблюдения за сотней видеокамер требуется не

менее пяти операторов, даже если информационный поток о событиях не велик, а

для наблюдения за планом местности достаточно одного человека.

Сопряжение изображений может применяться также в стереосистемах для оцен-

ки расстояния до наблюдаемых объектов, и при построении панорамных изображе-

ний. При использовании стереосистем повышается достоверность анализа событий

на наблюдаемой сцене, поскольку в анализ включается информация об изменении

расстояния до объектов. Панорамные изображения упрощают работу операторов ви-

деосистем при контроле событий в поле зрения поворотных видеокамер, работающих

в режиме сканирования.

Таким образом, видеосистемы, использующие сопряжение изображений, повыша-

ют надёжность классификации типов объектов, уменьшают количество сигналов о

«новых» событиях, на самом деле новыми не являющихся, появляется возможность

детализировать изображение событий системы, улучшается эргономика управления

выводом видеокамер и событий с помощью привязки к плану местности. Сопряже-

ние изображений в стереосистемах повышает достоверность детектирования событий

засчёт дополнительной информации, а сопряжение изображений на панораме во вре-

мя сканирования сцены с помощью видеокамеры на поворотном устройстве улучшает

восприятие информации операторами видеосистем. Тем не менее, существующие ви-

деосистемы не используют сопряжение видеокамер в полной мере, а в доступных

автору литературных источниках не освещены вопросы автоматической настройки

сопряжения синхронных изображений поворотных и неподвижных камер, не исполь-

зуются формулы проективного преобразования в прямом виде и не определяются

способы привязки камер к плану местности.

Классификация изображений по типу обычно проводится с помощью одного из
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Рисунок 1.14. Дублирование информационных сообщений при отсутствии сопряжения между неподвижными видеокамерами.
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Рисунок 1.15. Визуализация событий в области контроля видеосистемы, применяющей сопряжение камер с планом местности.
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алгоритмов, рассмотренных в п. 1.4. Точность результатов рассмотренных алгоритмов

классификации всецело зависит от распределения свойств объектов в пространстве

признаков. Не существует универсального и надёжного способа синтеза оптимального

набора признаков: каждый раз эта задача решается на основе интуитивных предпо-

ложений с последующим экспериментальным подтверждением или опровержением.

В публикациях не содержится описания экспериментов по синтезу набора признаков

для классификации объектов по видеосигналу на основе сопряжения изображений

видеокамер.

1.7. Результаты анализа и исследования современных методик оценки до-

стоверности алгоритмической обработки видеоинформации

Современные технологии разработки программного обеспечения предполагают ав-

томатизированное тестирование программных систем перед сдачей в эксплуатацию.

Автоматизация позволяет более полно покрыть тестами все способы использования

программ, а также позволяет избежать ошибок, допускаемых при тестировании вруч-

ную.

Алгоритмы обработки видеоинформации — это тоже программы, которые необ-

ходимо тестировать, причём трудоёмкость ручного тестирования программ компью-

терного зрения с алгоритмами семантического сжатия, как правило, выше, чем тру-

доёмкость тестрования обычных пользовательских программ, что обусловлено необ-

ходимостью наблюдения за большим потоком видеоинформации во время тестирова-

ния. Поэтому актуальность автоматизации тестирования для алгоритмов компьютер-

ного зрения очень высока.

Для автоматизации тестирования необходимы критерии оценки качества работы

алгоритмов семантического сжатия, которые могут быть рассчитаны автоматически.

На данный момент распространённым является подход, когда изображения хранятся

в качестве исходных данных для алгоритмов обработки в форме отдельных файлов

или видеофайлов, и вместе с этими данными содержится информация, описывающая

эталонный результат, или, иначе говоря, разметку исходных данных. В зависимости

от требуемого результата работы алгоритма, разметкой может быть следующая ин-

формация.

1. Категории объектов, присутсвующие на изображении, например см. [122].

2. Множество точек, которые явяляются точками изображения объекта. Приме-

ры поточечной разметки также есть в [122]. Как правило, границы объектов задают

с помощью кривых или многозвенных многоугольников, встречается также поточеч-

ная разметка, в которой принадлежность точки к тому или иному типу изображения

определяется функцией-маской, определённой на множестве точек изображения, на-
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пример, см. [123].

3. Разметка объектов может быть загрублена до минимального прямоугольника

с вертикальными и горизонтальными сторонами, включающего в себя все точки изоб-

ражения объекта. Такая разметка применяется из-за простоты её подготовки вручную

по сравнению с поточечной разметкой.

4. На видеопоследовательности в разметке может быть информация не только о

положении того или иного объекта в форме ограничивающего прямоугольника или

контура, но и о том, как объект перемещался между кадрами, т.е. о траектории объ-

ектов, см. [124].

Данная информация используется для расчёта следующих показателей работы

алгоритма.

1. Если алгоритм в результате выдаёт положение объекта в форме множества

точек A, а в разметке шаблонное расположение объекта задано с помощью множе-

ства точек T , то точность автоматического выделения позиции обычно оценивается в

литературе как

̺(A, T ) =
|A ∩ T |
|A ∪ T | .

При полном совпадении результата с шаблоном ̺ = 1, в противном случае это значе-

ние меньше 1.

2. Ошибка второго рода оценивается как отношение количества объектов из раз-

метки, которые алгоритм не выделил на изображениях, к общему количеству разме-

ченных объектов. В работе [122] критерий фиксации объекта разметки алгоритмом

заключается в том, что ̺(A, T ) > 0.5.

3. Ошибка первого рода оценивается как доля объектов в результатах работы

алгоритмов, для которых не нашлось пары в разметке, от общего числа выданных

алгоритмом объектов.

4. В работе [123] применяется поточечные оценки ошибок первого и второго рода.

Практика показывает, что перечисленных инструментов не достаточно для пол-

ноценной оценки качества работы алгоритмов семантического сжатия. В частности,

оценка качества сопровождения объектов алгоритмом вдоль его траектории почти не

отражается в приведённых выше оценках. Поэтому необходимо разрабатывать новые

методики тестирования для алгоритмов сопровождения.

1.8. Цели и задачи диссертационной работы

Учитывая недостатки методов обработки видеосигналов, используемых в анали-

тических видеосистемах, основываясь на анализе современного состояния в области
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систем информационной обработки видеосигналов и управления поворотными видео-

камерами, в диссертационной работе поставлены следующие цели и задачи.

1. Проанализировать функции компонент распределённой модели параллельной

обработки сигналов от различных видеокамер и разработать способы синхронизации

вычислительных процессов.

Поскольку задержки при передаче сообщений синхронизации между параллель-

ными процессами обработки изображений влияют на точность управления поворот-

ными камерами и точность сопоставления событий, необходимо разработать модель

взаимодействия распределённых модулей и проанализировать возможные времена ре-

акции системы на внешние события как теоретически, так и экспериментально. Необ-

ходимо также достичь показателя времени синхронизации, не превышающего значе-

ния примерно 100мс.

2. Вывести соотношения и исследовать их точность для сопряжения изображений

неподвижных видеокамер между собой, а также с топографической картой местности,

при неизвестных параметрах ориентации видеокамер в пространстве и неизвестных

характеристиках объективов.

Обычно при сопряжении изображений используют преобразования координат ви-

да

x′ = Ax+ By + Cxy +D,

y′ = Ex+ Fy +Gxy +H,

вместо более точных дробно-линейных формул проективного преобразования (здесь

A,B, C,D, F ,G,H — параметры преобразования), чтобы воспользоваться линейными

методами оптимизации при подборе преобразований. В данной работе планируется ис-

пользовать проективное преобразование с целью улучшения точности. Необходимость

разработки метода сопоставления точек изображения и плана местности при неиз-

вестных характеристиках объектива видеокамеры и её расположения в пространстве

обусловлена тем, что сложность измерения данных параметров достаточно высока и

требует лабораторных условий, что не приемлемо при развёртывании видеосистемы

в обычных эксплуатационных условиях. Предполагается, что точность сопряжения,

оцениваемая по формуле (1.33), не будет превышать 4 точек.

3. Разработать способы автоматизированного сопряжения поворотных видеока-

мер с неподвижными.

Существуют видеосистемы, в которых используется сопряжение поворотных и

неподвижных видеокамер, однако настройка этого сопряжения, по-видимому, про-

водится вручную. Автоматизация процесса сопряжения минимизирует ошибки, свя-

занные с неправильным сопоставлением изображений при ручном управлении, и зна-
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чительно уменьшает время первоначального развёртывания видеосистемы. В данной

работе планируется также оценить, насколько погрешность предложенного метода

сопряжения превышает 0,1◦.

4. Исследовать способы применения стереоизображений в системах техническо-

го зрения. Разработать меры по повышению эффективности работы тех или иных

элементов видеосистем с помощью откалиброванных парных видеокамер.

5. Провести анализ возможности создать алгоритм построения панорамных изоб-

ражений в системах реального времени и на основе анализа провести разработку дан-

ного алгоритма.

Построение панорамных изображений в режиме реального времени позволит суще-

ственно уменьшить требуемое для защиты объектов количество видеокамер за счёт

применения повортных устройств. Кроме того, это позволит улучшить эргономику

программного обеспечения охранных видеосистем, в составе которых используются

поворотные камеры, что, в свою очередь, повысит эффективность применения видео-

камер на поворотных платформах.

6. Разработать новые методики оценки качества работы алгоритмов семантиче-

ского сжатия. Исследовать результаты применения алгоритмов классификации объ-

ектов для подсистем распознавания образов, основанных на параметризации данных

обработки видеосигналов, в том числе с сопряжённых видеокамер.

Цель исследования — экспериментальная проверка эффективности использования

параметров определённого вида при классификации изображений объектов по типам.

В дополнение к параметрам, предложенным в работе [15] и аналогичным, предполага-

ется использовать параметры, полученные с помощью наведения поворотной камеры

на объекты наблюдения, и проверить, приведёт ли это к улучшению качества класси-

фикации. В конечном итоге необходимо оценить достоверность классификации, срав-

нить полученные результаты с 5%-м порогом допустимых ошибок.

При положительных результатах исследования указанного выше круга вопросов

значительно повышается достоверность результатов работы аналитических видеоси-

стем, а область применения таких систем значительно расширяется.

Выводы

1. Проведён обзор и анализ параметров современных приборных комплексов тех-

нического зрения, введено понятие «аналитическая видеосистема» и описаны его ха-

рактеристики. Приведена оценка времени реакции аналитических видеосистем с руч-

ным управлением, которая примерно равна 10с.

2. Введено понятие алгоритмов семантического сжатия, которое обобщает прин-
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ципы работы современных систем компьютерного зрения, призванных выделять из

видеопотока очень большого объёма небольшую, но достаточную для анализа собы-

тий часть.

3. Исследованы и классифицированы современные методы семантической обра-

ботки цифровых видеосигналов.

4. Выявлено, что существующие комплексы технического зрения не используют

в полной мере методы сопряжения видеокамер и приборов, а в доступных автору ли-

тературных источниках не освещены вопросы автоматической настройки сопряжения

синхронных изображений, не используются формулы проективного преобразования

в прямом виде и не определяются способы привязки камер к плану местности.

5. Анализ показал, что необходимо уменьшить количество видеокамер в системах

технического зрения, упростить анализ событий и уменьшить количество операторов.

6. На основе анализа недостатков известных видеосистем и методов обработки

видеосигналов поставлена цель диссертационной работы: разработать, проанализи-

ровать и внедрить более эффективные способы и алгоритмы семантического сжатия

информации, обработки сопряжённых видеосигналов и управления поворотными ка-

мерами при создании интеллектуальных автоматических приборных комплексов тех-

нического зрения нового поколения.
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2. Разработка и функциональный анализ параллельных алго-

ритмов семантической обработки видеосигналов и создание

теоретических основ синхронизации и сопряжения изображе-

ний

2.1. Разработка и описание распределённых алгоритмов семантической об-

работки синхронных видеосигналов от разных датчиков

Как правило, аналитические видеосистемы являются сложными комплексами, со-

стоящими из устройств различного типа, предназначенных для восприятия, передачи

и анализа видеосигналов, в том числе вычислительных устройств (ЭВМ). Видеосисте-

мы, построенные на с применением методов семантической обработки видеоинформа-

ции, также включают в себя программные модули, запускаемые на вычислительных

устройствах системы.

Прежде, чем перейти к описанию алгоритмов сопряжения, синхронизации и се-

мантического сжатия, рассмотрим сначала структурное описание устройств и про-

граммных модулей аналитической видеосистемы для того, чтобы определить место

данных алгоритмов в обозначенной структуре. Определение понятий «сопряжение»,

«синхронизация» и «семантическое сжатие» см. в п. 1.1.

Состав и основные характеристики устройств аналитических видеоси-

стем. Из рисунка 1.1 следует, что аналитическая видеосистема может состоять из

множества объединнёных локальной вычислительной сетью(ЛВС) ЭВМ, к которым,

в свою очередь подключается разветвлённая сеть из стационарных видеокамер и по-

движных видеокамер, установленных на поворотных устройствах.

Схема, изображённая на рис. 1.1, отражает строение системы в общем виде. В

самом простом случае видеосистема может состоять из одной ЭВМ и нескольких под-

ключенных к ней видеокамер. Данная ЭВМ будет и сервером для аналитических

обработчиков видеосигналов, и терминалом оператора, необходимость в сетевых ка-

налах в этом случае отпадает.

Рассмотрим основные типы устройств системы по отдельности.

Сетевые каналы. ЛВС используется в аналитических видеосистемах для решения

следующих задач: синхронизации данных для различных обработчиков видеосигнала,

расположенных на разных ЭВМ, передачи видеосигнала в сжатом цифровом виде и

сигналов о срабатывании фильтров событий на терминальные ЭВМ.

Пропускная способность сети определяет максимальное количество устройств, ко-

торые могут быть подключены в систему и работать при этом в синхронизированной и

сопряжённой между собой связке, поскольку чем больше видеокамер задействовано

в сопряжении, тем больше данных приходится передавать по сети между обработ-
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чиками видеокамер для синхронизации. В большей степени пропускная способность

сети ограничивает количество терминалов, которые могут одновременно подключит-

ся к серверам-поставщикам обработанного видеосигнала, поскольку поток цифровых

видеоданных даже в сжатом виде занимает значительную часть передаваемой по се-

тевым каналам системы информации.

Далее мы будем считать, что пропускная способность сети равна 100Мбит/с

(ста мегабитам в секунду), поскольку наиболее доступные устройства, позволяющие

организовать сравнительно быструю передачу данных в ЛВС, являются Ethernet-

совместимыми устройствами с указанной пропускной способностью.

Основные (неподвижные) видеокамеры. Введем термин мастер-камера или, более

коротко, мастер для обозначения неподвижных видеокамер.

Определение 2.1. Мастер-камеры — это видеокамеры, которые являются источ-

ником основной информации для анализа ситуаций и событий в зоне наблюдения с

помощью алгоритма определения движения (см. определение 1.1).

Конструкция камеры, и тип передаваемого сигнала не имеют решающего значе-

ния для функционирования алгоритмов обработчика видеосигналов: качество работы

алгоритмов выделения движения определяется характеристиками изображения, ко-

личеством кадров, передаваемых от видеокамеры к обработчику за секунду, разреше-

нием изображения, светочувствительностью (способностью работать в тёмное время

суток). Исходя из этих параметров выбираются видеокамеры для подключения в ана-

литическую видеосистему.

Объективы для камер выбираются из аналогичных соображений, но дополнитель-

но накладывается ограничение на фокусное расстояние объектива. Ограничение фор-

мируется из расстояния, на котором находится зона наблюдения относительно точки

закрепления камеры: чем дальше находится объект, тем большее фокусное расстояние

необходимо для обеспечения приемлемого углового разрешения объектов, за которы-

ми производится наблюдение. Например, для наблюдения за зоной, дальний край

которой находится на расстоянии 300 метров, требуется объектив с фокусным рас-

стоянием около 30мм (цифра зависит от размера ПЗС-матрицы), если изображение с

камеры поступает в формате 352×288 точек на кадр: в этом случае разрешение изоб-

ражения человека среднего роста по линейным размерам будет от 2 точек по ширине

до 10 точек по высоте на дальних расстояниях.

На данный момент наиболее часто используют цифровые видеокамеры с повы-

шенной чувствительностью (иногда в области инфракрасного спектра) с дальнейшей

аналоговой передачей сигнала в формате PAL или NTSC.

Вспомогательные (поворотные) камеры. Для поворотных видеокамер введём тер-

мин слейв-камера или слейв.
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Определение 2.2. Слейв-камера — это видеокамера, установленная на поворот-

ном устройстве, объектив которой поддерживает управление параметрами увеличе-

ния и резкости.

Терминология мастер-камера, слейв-камера заимствована из работ [15, 38]. Из

перевода термина с английского языка следует, что поворотные камеры выполня-

ют вспомогательные функции для мастеров, предоставляя возможность детализации

изображения событий, которые обнаруживают обработчики мастер-камер. Каждая

из слейв-камер обслуживает какой-то набор мастеров системы, с которыми она со-

пряжена.

Требования в вопросах передачи видеосигнала для слейв-камер в целом повторяют

требования для мастеров из предыдущего пункта за исключением того, что фокусное

расстояние слейв-камеры должно по возможности превышать фокусное расстояние

мастеров в несколько раз, чтобы детальное изображение событие со слейва было луч-

шего качества и с большим разрешением, чем на мастере, который данное событие

зафиксировал.

Чтобы поворотную камеру возможно было использовать в системе, её управление

должно удовлетворять ряду свойств. Эти свойства подробно описаны в п. 2.6.

Передача сигналов видео и управления. Наиболее распространённый способ пере-

дачи видеосигнала от поворотных и неподвижных видеокамер до обрабатывающих

ЭВМ — либо при помощи коаксиального кабеля, либо по витой паре. Дальность пе-

редачи по коаксиальному кабелю ограничена несколькими сотнями метров, при этом

сигнал в большой степени подвержен искажениям из-за внешних помех, если рассто-

яние передачи более 10 метров. Дальность передачи по витой паре — 2км.

Сигналы управления поворотными устройствами и объективами с переменными

параметрами чаще всего передаются по линиям последовательного интерфейса RS-

485, дальность передачи по которым не превышает несколько сотен метров. Скорость

передачи сигнала зависит от типа поворотной камеры и её настройки, наиболее рас-

пространены скорости 4800кбит/с, 9600кбит/с и 19200кбит/с.

Именно расстояния, на которых надежно работает передача сигналов видео и

управления, определяют то, что компоненты одной «зоны наблюдения» (см. рис. 1.1)

расположены не далее, чем в одном километре друг от друга.

Серверы и терминалы. Введём понятие «сервер» и «терминал» для аналитических

видеосистем.

Определение 2.3. Сервер аналитической видеосистемы — это вычислительное

устройство, предназначенное для цифрового преобразования и семантического сжа-

тия видеосигналов мастер-камер и слейв-камер, для запуска программных модулей

управления поворотными устройствами слейв-камер, а также для других программ-
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ных модулей, не предназначенных для визуализации данных операторам видеосисте-

мы.

Определение 2.4. Терминал аналитической видеосистемы — это ЭВМ, предна-

значенная для визуализации анализа обстановки в зонах наблюдения и снабжённая

устройствами ввода-вывода, предполагающих взаимодействие с оператором системы.

Любая ЭВМ, способная выполнять операции обработки видеопотока достаточно

быстро, может быть сервером аналитической видеосистемы. Количество видеокамер,

которое может быть подключено к одному серверу, определяется вычислительной

мощностью ЭВМ. Для сохранения архива видео и событий ЭВМ должна обладать

внешним носителем информации со скоростью записи и чтения данных, достаточной

для сохранения потока видео в реальном времени.

Поскольку программные модули, запускаемые на терминалах аналитических ви-

деосистем, должны принимать сжатый цифровой видеосигнал от многочисленных об-

работчиков мастер-камер и слейв-камер, и в реальном времени выполнять процедуру

декомпрессии видеосигналов, то требования к вычислительной мощности терминаль-

ных ЭВМ также достаточно велики.

Вычислительная мощность современных ЭВМ определяется многими параметра-

ми, из которых главные — это тактовая частота центрального процессора и скорость

обмена данными между центральным процессором и ОЗУ. Данные два параметра

определяют среднее количество операций в секунду для алгоритмов обработки ви-

деосигнала. Чтобы далее приводить оценки вычислительной сложности не только в

единицах количества операций, но и во времени, мы введём «эталонные» показатели

скорости вычисления, взяв за основу ЭВМ с частотой операций примерно 109 команд

в секунду и скоростью обмена 4 ·108 32-разрядных слов в секунду между оперативной

памятью и процессором.

Определение 2.5. Эталонная вычислительная мощность ЭВМ — это вычисли-

тельная мощность при частоте операций 3 ГГц и частоте обмена между ОЗУ и ЦП

1,6 ГГц при 64-разрядной шине данных.

Выбор данных параметров в качестве эталонных обусловлен широким распростра-

нением элементной базы, из которой состоит ЭВМ с указанными параметрами, а так-

же тем, что приведённая мощность вычислительных ресурсов заведомо достаточна

для выполнения нескольких модулей обработки видеосигнала в реальном времени

одновременно на одной ЭВМ.

Структура программных модулей аналитической видеосистемы. На

рис. 2.1 представлены программные модули, которые составляют математическое

обеспечение аналитических видеосистем. Обоснование такой структуры заключается

в том, что из назначения и функций аналитической видеосистемы вытекает необхо-
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Рисунок 2.1. Схема программных модулей видеосистем с применением семантической
обработки видеосигналов.

димость наличия следующих модулей: программы анализа видеоинформации (сервер

распознавания), программы контроля наблюдаемой обстановки на терминале (терми-

нальный модуль), модуль, реализующий передачу видеосигнала по сетевым каналам

от видеокамер к терминальным модулям и модулям анализа видеосигнала (сервер

видео), база данных для сохранения информации о событиях системы, и ряд на-

строечных программ, выполняющих предварительное сопряжение видеокамер перед

началом эксплуатации систем. Перечислим основные функции для данного перечня

программ.

Сервер видео — это программа, выполняющая функции ввода-вывода видеосиг-

налов от камер и сигналов управления для поворотных устройств в аналитической

видеосистеме.

Типичная операционная система обычно не позволяет работать сразу несколь-

ким модулям с одним устройством ввода-вывода видео или устройством передачи

сигналов управления. Основное назначение сервера видео — получить доступ к дан-

ным устройствам и позволить всем остальным модулям системы получать от этих

устройств данные и управлять ими, обеспечивая при этом одновременный доступ к

видеосигналу и последовательный доступ к управлению поворотными устройствами.

Различные поворотные устройства видеокамер значительно отличаются друг от

друга по протоколу передачи сигналов управления на низком уровне. Второе назначе-
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ние сервера видео — предоставить остальным модулям системы универсальный прото-

кол управления поворотными устройствами, который не зависит от типа поворотной

видеокамеры. Команды «универсального» протокола сервер видео должен преобразо-

вывать в специфичные команды для конкретного поворотного устройства. При таком

подходе разработка программных модулей управления поворотной камерой не зави-

сит от типа поворотного устройства, все специфичные функции поворотных устройств

обрабатываются в сервере видео.

База данных аналитической видеосистемы хранит реляционные таблицы с инфор-

мацией, описывающей состав видеосистемы и результаты семантической обработки,

а именно: таблица поворотных и обзорных видеокамер системы с настройками об-

работчиков для данных камер, таблица-архив событий вместе со свойствами (вре-

мя возникновения, распознанный тип, файл с фотографией, место события в архиве

видео, т.д.), таблица фильтров событий, иначе называемой таблицей «датчиков тре-

вог», таблица кластеров системы с их параметрами (см. определение 2.6 для понятия

«кластер»), таблица операторов системы с их правами и обязанностями, связанными

с наблюдением за зоной.

В системе, состоящей из небольшого числа видеокамер (не более 100), обычно

используется одна ЭВМ с реляционной базой данных. В более крупных системах ис-

пользуюется распределённая база данных для балансировки нагрузки при операциях

удаления и вставки данных методом распределения задач на несколько ЭВМ. Лю-

бой компонент системы получает доступ к данным в базе посредством SQL-запросов,

возможно, выполняемых по сети.

Сервер семантического сжатия запускает модули обработчиков видеосигнала,

выполняющих алгоритмы системы по семантическому анализу видео с целью распо-

знавания событий, а также алгоритмы управления поворотными камерами и сопря-

жения различных камер между собой. Выделенные и классифицированные события,

в том числе факты срабатывания одного из «датчиков тревог» в результате обнаруже-

ния события, прошедшего заданный фильтр, пересылаются по сети в терминальный

модуль, чтобы на терминале отображалась информация, полученная после семанти-

ческого сжатия видеосигналов в системе.

Терминальный модуль, иначе называемый «клиентом системы», запускается на

терминалах и отображает информацию с наблюдаемой территории, полученную по

сети от серверов системы. Внешний вид одного из режимов терминального модуля

представлен на рис. 2.2. На этом рисунке мы видим, как выделяются рамочками дви-

жущиеся объекты в кадре обзорной видеокамеры, каждому объекту приписана кате-

гория (человек, машина, группа людей), причем поворотная камера (левый верхний

угол) дает изображение одного из объектов крупным планом (функция наведения
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доступна после процедуры сопряжения поворотной и неподвижной видеокамер).

Под изображением от поворотной камеры отображен план местности с мнемо-

ническим отображением объектов со всех обзорных камер, причем мнемонические

изображения объектов рисуются именно в том месте на плане, где они на самом де-

ле находятся (автомобиль, проезжающий по дороге, будет двигаться по дороге и на

плане). На карте условно изображены области видимости камер, при указании кон-

кретной зоны с помощью устройства ввода-вывода можно выбрать камеру, которая

этой зоне соответствует. Данные функции доступны после процедуры сопряжения

неподвижных видеокамер с картой.

Помимо функций наблюдения за охраняемой территорией в терминальном модуле

для тех операторов, которым даны соответствующие полномочия, доступны функции

просмотра архивов и функции редактирования фильтров событий (датчиков тревог).

Программы настройки. Перед запуском систем семантического сжатия в эксплу-

атацию необходима предварительная настройка, большая часть которой связана с

определением ориентации камер в пространстве и взаимной ориентацией, т.е. с про-

цедурами сопряжения, определёнными в п. 1.1. Перечислим программы настройки

аналитических видеосистем.

1. Программа калибровки поворотных видеокамер. Программа позволяет выпол-

нять процедуру сопряжения неподвижных и поворотных видеокамер в полуавтома-

тическом режиме. Процедура сопряжения описана в п. 2.6.

2. Программа предварительной настройки сопряжения неподвижных видеокамер

между собой и планом местности. Процедура сопряжения описана в п. 2.3 и п. 2.4.

3. Программа настройки параметров семантической обработки сигналов видеока-

мер.

4. Редактор списка операторов видеосистемы. Программа предназначается для

ввода, редактирования и удаления операторов, обладающих полномочиями для рабо-

ты с терминалами. Для каждого оператора определены пароли и список доступных

функций терминального модуля. Например, некоторым операторам можно запретить

ввод и изменение тревожных датчиков (фильтров событий).

Рассмотрим более подробно модули, в которых задействованы алгоритмы распо-

знавания, сопряжения и синхронизации.

Схема синхронизации обработчиков видеосигнала. Прежде всего, опишем

основные модули аналитических видеосистем — обработчики неподвижных и пово-

ротных камер.

Семантический обработчик изображений мастер-камер выделяет движущиеся

объекты в поле зрения видеокамеры, проверяет, нет ли событий соответствующих

тревожным фильтрам, сохраняет видеосигнал в архив. Схема алгоритма обработчика
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Рисунок 2.2. Внешний вид терминального модуля.
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начало

1. Получить кадр F из сервера видео.

2. Записать кадр в архив видео при помощи алгоритмов сжатия.

3. Обработать кадр алгоритмами выделения движения, получить ин-
дикаторную функцию l(x, y) и список объектов, запустить процедуру
классификации объектов.

4. Обработать сообщения от других модулей, проверить объекты с
других камер в общей зоне наблюдения и выделить факты совпаде-
ния объектов; переслать координаты объектов диспетчеру.

5. Обработать новые объекты, записать полученные события в ба-
зу данных, проверить, не сработали ли фильтры тревог, переслать
события для отображения на терминалах.

Сервер остановлен оператором?

конец

Да

Нет

Рисунок 2.3. Блок-схема алгоритма обработчика видеосигнала мастеров.

мастер камеры изображена на рис. 2.3.

На шаге 1 и 2 происходит получение кадра от сервера видео в форме (1.1) и со-

хранение в сжатой форме в архиве видео, соответственно. На шаге 3 выполняется

алгоритм выделения движения, см. определение 1.1. Информация о выделенных дви-

жущихся объектах поступает от алгоритма выделения движения в форме нескольких

параметров:

1) порядковый номер выделенного объекта nid;

2) минимальный прямоугольник [xmin, xmax]× [ymin, ymax], ограничивающий поло-

жение объекта в координатах изображения кадра F (задается четырьмя параметрами,

как следует из записи);

3) индикаторная функция l(x, y), определяющая положение каждой точки вы-

деленного объекта с номером nid следующим образом: точка с координатами (x, y)

принадлежит объекту в том и только том случае, если l(x, y) = nid (если точка (x, y)

не принадлежит ни одному выделенному объекту, то l(x, y) = −1);
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Рисунок 2.4. Граф перехода между состояниями для обработчика слейва.

4) параметры классификации и распознавания: номера категорий, к которым при-

надлежит принадлежит выделенный объект.

На шаге 4 выполняются основные процедуры синхронизации (см. определение 1.4):

производится сопоставление объектов, полученных с помощью сообщений от обработ-

чиков сопряжённых мастер-камер и информация о выделенных объектах отправля-

ется модулю-диспетчеру неподвижных и поворотных камер (о назначении диспетчера

см. ниже). Шаг 5 необходим для передачи данных о выделенных объектах и событиях

терминальным модулям с целью визуализации и для сохранения этих событий в базе

данных. Обработчик видеосигнала с мастер-камер циклически обрабатывает после-

довательность кадров до тех пор, пока сервер распознавания не завершит работу по

указанию оператора. Частота обработки зависит от вычислительной мощности ЭВМ

и количества модулей обработчиков, запущенных на ЭВМ одновременно.

Обработчики сигналов слейв-камер предназначены для выполнения функции на-

ведения поворотных камер на движущиеся объекты. Посредством сервера видео

модуль-обработчик поворотной камеры формирует команды управления, необходи-

мые для поворота оптической оси камеры и изменения параметров увеличения. Рабо-

ту обработчиков слейвов можно наглядно представить в форме детерминированного

конечного автомата ([125]), функция переходов которого представлена в виде графа

на рис. 2.4.

Множество состояний рассматриваемого конечного автомата является процедура-
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ми обработчика. Всего существует шесть состояний, они отображены в прямоугольни-

ках на рис. 2.4. Алфавит конечного автомата представляет набор выходных данных

процедур, соответствующих состояниям, в зависимости от результата на выходе про-

исходит переход в то или иное состояние, то есть выполнение той или иной процеду-

ры. Множество символов алфавита состоит из подписей на стрелках изображенного

графа перехода, в нём всего семь элементов, включая «пустой» символ. Начальным

является состояние «ожидание сообщения – 1», конечным — «выход из обработчика».

«Ожидание сообщения – 1» предварительно отсылает модулю-диспетчеру сообще-

ние о том, что обработчик готов к получению задания и находится в режиме бесконеч-

ного ожидания. Затем процедура ждёт первого сообщения, которое имеет отношение

к обработчику, все остальные сообщения игнорируются. Сообщения, принимаемые

обработчиком, могут быть указанием объекта-цели от диспетчера, либо командой за-

вершить работу.

Процедура «поворот камеры» передаёт через сервер видео сигналы управления

на слейв-камеру, необходимые для наведения на объект-цель. Параметры для этой

команды передаются от диспетчера, то есть диспетчер ответственен за расчёт упре-

ждения наведения на объект. Время выполнения команды зависит от конкретного

поворотного устройства, а также от величин углов поворота и смещения положений

увеличения и фокусировки. Максимальное время исполнения поворота устанавлива-

ется равным 4с, поскольку в противном случае из-за большой погрешности упрежде-

ния (см. п. 3.4) наведение на движущийся объект невозможно.

В случае успешного выполнения поворота запускается процедура «отослать за-

прос о положении», которая запрашивает текущее положение объекта у обработчика

мастера, с которого поступил сигнал-изображение объекта-цели. Затем в процеду-

ре «ожидание сообщения – 2» некоторое время (несколько секунд) ожидается ответ.

Время ожидания выбирается таким, чтобы оно значительно превосходило возможные

задержки передачи данных по сети и задержки приёма сообщения мастером.

Наконец, процедура «обработки картинки» сохраняет полученный сразу после по-

ворота снимок объекта в архиве, предварительно проанализировав, насколько пра-

вильно было дано упреждение, исходя из того, какое положение объекта было полу-

чено от мастера. Поскольку обработчик мастера каждый кадр обрабатывает сообще-

ния, то снимок и информация о положении объекта не сильно рассинхронизированы.

В процедуре может быть запущен алгоритм, уточняющий классификацию объекта на

основе более детального, чем на мастере, изображения.

Исходя из того, как закреплены поворотные и обзорные видеокамеры, существу-

ет возможность определить, какие обзорные камеры (мастеры) будут сопряжены с

какой-либо поворотной камерой (слейвом) с помощью программы калибровки. Таким
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Рисунок 2.5. Пример графа обработчиков системы (Mi — обработчики мастеров, Sj —
обработчики слейвов).

образом, все обработчики мастеров и слейвов системы являются вершинами графа, в

котором ребра между вершинами присутствуют в том и только том случае, если па-

ра вершин соответствует паре мастера и слейва, сопряжённых между собой. Между

двумя слейвами и между двумя мастерами не может быть рёбер, поэтому граф обра-

ботчиков двудольный. Такой граф мы назовём графом обработчиков аналитической

видеосистемы.

Определение 2.6. Кластером является изолированный подграф графа обработ-

чиков, то есть такой подграф, для которого любое ребро из графа обработчиков,

имеющее на конце вершину кластера, присутствует и в графе кластера.

Например, для графа, изображённого на рис. 2.5, подмножества вершин

{M1,M2,M3, S1, S2}, {M4,M5, S3} и их объединение могут образовать кластер, а вер-

шины {M1,M2,M3, S1, S3} — не могут, так как в подграф из этих вершин не войдут

рёбра M2S2, M3S2, M4S3, M5S3.

Одна из целей аналитической видеосистемы — по возможности получить деталь-

ные изображения для всех объектов, появившихся в зоне наблюдения. Для дости-

жения максимума детальных изображений необходим модуль диспетчера, который

организует общую последовательность наведения поворотных камер.

Модуль диспетчера запускается для кластера видеокамер, и принимает от мастер-

камер сообщения о положении объектов. На основе этого массива данных диспетчер

формирует задания для обработчиков слейв-камер. Описание алгоритмов синхрони-

зации диспетчера см. в п. 3.1.

В заключение представим общую схему, отображающую описанные взаимодей-

ствия сопряжённых модулей и их синхронизацию в кластере аналитической видеоси-

стемы (см. рис. 2.6).

2.2. Теоретический анализ ограничений, вытекающих из пропускной спо-

собности сети и быстродействия устройств обработки

Изображённая на рис. 2.6 модель взаимодействия модулей семантического сжатия

подразумевает, что количество обработчиков слейвов и мастеров, которые входят в

один кластер, ограничено, несмотря на то, что отдельные обработчики могут выпол-
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Рисунок 2.6. Схема взаимодействия обработчиков в кластере.

няться на отдельных ЭВМ, и вычислительных ресурсов достаточно для работы сколь

угодно большого количества обработчиков в режиме без сопряжения и синхрониза-

ции с остальными модулями при условии достаточного количества вычислительных

устройств. Ограничения возникают в силу двух причин: первая — это ограниченная

пропускная способность сети, по которой данные поступают к диспетчеру и к об-

работчикам, вторая — это ограниченная эталонная вычислительная мощность (см.

определение 2.5), не позволяющая диспетчеру выполнять необходимые действия для

большого количества обработчиков.

Ограничения пропускной способности сети. Синхронизация данных между

модулями кластера аналитической видеосистемы производится посредством передачи

сообщений в ЛВС. Сообщение — это набор цифровых данных, состоящих из заголов-

ка, определяющего тип передаваемой информации и, собственно, самой информации.

Список сообщений, которые решают задачу синхронизации данных в рамках схемы

взаимодействия модулей, изображённой на рис. 2.6, приведён в таблице 2.1.

Сообщения НОВАЯ_КАМЕРА, ГДЕ_ТЫ, Я_ЗДЕСЬ, НОВЫЙ_ДИСПЕТЧЕР, АДРЕС_ДИСПЕТЧЕРА

применяются при установки связи между модулями кластера с целью выяснить ад-

реса передачи сообщений. Эти сообщения посылаются только при начале работы мо-

дулей, поэтому они практически не занимают сетевой канал аналитической видеоси-

стемы. Точно также сообщение ВЫХОД используется только при завершении работы

модулей системы, а сообщение РУЧНОЕ_УПРАВЛЕНИЕ высылается только тогда, когда
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Сообщение Описание

ВЫХОД Сообщение, при получении которого диспетчер и обработчик
слейвов заканчивают работу.

НОВАЯ_КАМЕРА Обработчики слейвов и мастеров посылают это сообщение на
всем запущенным модулям системы, чтобы найти диспетчер
своего кластера.

АДРЕС_ДИСПЕТЧЕРА Ответ диспетчера на предыдущее сообщение.

ПЕРЕДАЧА_ОБЪЕКТОВ Сообщение отсылается диспетчеру обработчиками мастеров
со списком объектов в поле зрения мастера после обработки
каждого кадра.

НАВЕСТИ_СЛЕЙВ Сообщение от диспетчера обработчику слейва с указанием
точки наведения и/или объекта для наведения.

СЛЕЙВ_НАВЕДЁН Подтверждение от обработчика слейва для диспетчера о за-
вершении наведения, ошибочном или успешном.

ЗАПРОС_ПОЛОЖЕНИЯ Запрос текущего положения объекта от слейва мастеру.

ПОЛОЖЕНИЕ_ОБЪЕКТА Передача положения объекта и его свойств от мастера слейву
в ответ на предыдущий запрос.

РУЧНОЕ_УПРАВЛЕНИЕ Отключить определенные слейвы от управления диспетчера,
чтобы перевести их в ручное управление.

ГДЕ_ТЫ Сообщение высылается всем запущенным модулям системы,
чтобы связаться с определённым обработчиком мастера или
слейва.

Я_ЗДЕСЬ Ответ на сообщение ГДЕ_ТЫ.
НОВЫЙ_ДИСПЕТЧЕР Сообщение о запуске нового диспетчера. В сообщении пере-

сылается список камер, которые должны подключиться к но-
вому диспетчеру.

Таблица 2.1. Сообщения компонент сервера распознавания.

оператор переходит в ручной режим управления камерой.

Существенный вклад в использование сетевого канала вносят сообщения

ПЕРЕДАЧА_ОБЪЕКТОВ, ЗАПРОС_ПОЛОЖЕНИЯ, ПОЛОЖЕНИЕ_ОБЪЕКТА, НАВЕСТИ_СЛЕЙВ,

СЛЕЙВ_НАВЕДЁН, поскольку они высылаются на каждом шаге циклов обработчи-

ков, отображённых на рис. 2.3 и 2.4.

Для того, чтобы оценить, насколько пропускная способность сети w0 =1Гбит/с

ограничивает количество камер в кластере, введем следующие обозначения:

1) M — количество мастер-камер;

2) N — количество слейв-камер;

3) n — среднее количество объектов на одной обзорной камере;

4) wobj — объём данных в байтах, описывающих один объект при переда-

чи от обработчика мастера диспетчеру или от мастера к мастеру в сообщении

ПЕРЕДАЧА_ОБЪЕКТОВ;
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5) k — среднее количество мастеров, с которыми пересекается каждый мастер, и,

следовательно, должен передавать объекты своим k соседям;

6) wt — размер сообщения-целеуказания НАВЕСТИ_СЛЕЙВ от диспетчера, указыва-

ющее слейву, куда нужно повернуться;

7) wq — объём сообщения ЗАПРОС_ПОЛОЖЕНИЯ о положении объекта от поворотной

камеры к обзорной;

8) wa — объём ответа ПОЛОЖЕНИЕ_ОБЪЕКТА от мастера слейву;

9) wf — объём сообщения СЛЕЙВ_НАВЕДЁН о готовности принять следующее зада-

ние, передаваемое диспетчеру слейвом;

10) f — частота обработки кадров с обзорных камер;

11) TR — среднее время исполнения поворота слейвами.

Будем считать, что мы находимся в наихудших условиях, и все данные пересыла-

ются по сети (при пересылке данных в пределах одной ЭВМ тратится значительно

меньшее время, чем при пересылке в ЛВС). Объем данных, пересылаемых в единицу

времени, не превосходит

w = (1 + k)Mnwobjf +
1

TR
N(wt + wq + wa + wf ). (2.1)

Первое слагаемое в формуле (2.1) учитывает как пересылку Mnwobjf байт от

мастеров диспетчеру, так и пересылку kMnwobjf байт между обработчиками со-

пряжённых мастер-камер при сопоставлении объектов в общей зоне. Второе слага-

емое учитывает пересылку сообщений во время работы обработчика слейва в предпо-

ложении, что цикл посылки данных совпадает с циклом обработчика слейв-камеры и

выполняется 1/TR раз в секунду.

Обычно по экономическим соображениям N 6M/3 (поворотные камеры довольно

дороги, в несколько раз дороже обзорных), но мы сделаем оценку для наиболее слож-

ных для аналитической системы условий, предположив, что M = N , то есть каждую

мастер-камеру обслуживает в среднем один слейв. Тогда максимальное количество

мастеров в кластере мы можем получить иcходя из того, что при максимальной за-

грузке обменами сообщений
w

w0

= η, (2.2)

где η = 0, 5 — коэффициент «полезного действия» пересылки по сети: из-за издер-

жек протоколов на физическом и транспортном уровне невозможно добиться макси-

мальной пропускной способности w0, например, из-за наличия системной информа-

ции помимо основных данных в заголовках пакетов передачи, см. [126, 127]. Получаем
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максимальное число обзорных камер в кластере при M = N

Mmax =
ηw0

(1 + k)nwobjf + 1
TR

(wt + wq + wa + wf )
(2.3)

Чтобы передать минимум информации, необходимой для синхронизации распре-

делённых модулей, необходимы следующие объёмы данных:

1) wobj = 20 байт: по два байта на каждое из целых чисел xmin, xmax, ymin, ymax,

задающих минимальный прямоугольник изображения объекта, по четыре байта на

две вещественные компоненты оценки скорости движения изображения, два байта для

номера объекта и два байта для описания свойств объекта, полученных алгоритмами

классификации — итого, 20 байт;

2) wt = wq = wa = wf = 24 байта, поскольку у сообщений таблицы 2.1 есть заго-

ловок, составляющий 16 байт, остальные данные описывают специфику сообщения.

Для оценки наибольшего объёма передаваемых данных возьмем максимально воз-

можные значения для k, f , n и 1/TR: f = 25с−1, n = 50, TR = 500мс, k = 3. Значение

k = 3 очень велико, поскольку большинство мастер-камер в аналитических видеоси-

стемах не имеют общей зоны обзора. Подставив эти значения в формулу (2.3), полу-

чим Mmax ≈ 650 для максимального количества камер в одном кластере. В несколь-

ких кластерах камер может быть больше, поскольку ограничения рассчитывались

для одного компьютера.

Итак, даже в наихудшем случае сетевые ограничения позволяют подключить в

один кластер достаточно большое число камер. Ограничения, накладываемые на дис-

петчер производительностью процессора, сильнее, чем ограничения, накладываемые

пропускной способностью сети, как мы выясним далее.

Ограничение вычислительной мощности ЭВМ. Диспетчер примерно f раз

в единицу времени получает данные об объектах от каждого из M мастеров, и 1/TR

раз в единицу времени сообщения об готовности выполнять задания от N слейвов.

Диспетчер работает в режиме ожидания сообщений, после каждого сообщения он

может выполнять действия для распределения заданий поворотным камерам.

Как показано в [128] и в п. 3.1, при определённой организации работы диспетчера

доля процессорного времени, занимаемая алгоритмами синхронизации диспетчера,

задаётся соотношением

δ = fM(C1n+ C3Nn) +
1

TR
N(C2Mn+ C5N !Mn), (2.4)

где значения констант установлены экспериментально для эталонной вычислительной

мощности:

C1 = 0, 1мкс,

C2 = 2мкс,

C3 = C5 = 1мкс.

(2.5)
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На практике для диспетчера может быть выделено лишь 10% времени процессора,

то есть δ < 0, 1. Подставляя в это соотношение формулу (2.4), получим

(f(C1 + C5N) +
N

TR
(C2 log2(Mn) + C5N !))Mn < 0, 1. (2.6)

Подставив в это неравенство f = 25с−1, TR = 500мс, n = 50 и значения (2.5), а

также воспользовавшись неравенством N 6 M , можно легко решить (2.6) численно,

поскольку левая часть монотонно возрастает по M и по N . Перебор осуществляется

следующим образом: сначала перебираем значения N в порядке возрастания, начиная

с 1, затем проверяем неравенство (2.6) для всех M : N 6M при зафиксированном N .

Перебор заканчивается на том значении N , при котором неравенство не выполняется

уже при M = N . Решениями будут натуральные числа, удовлетворяющие соотноше-

нию 


{N = 4, M = 4},
{N = 3, 3 6M 6 9},
{N = 2, 2 6M 6 14},
{N = 1, M 6 28}.

(2.7)

Система (2.7) задает ограничение на число мастеров и слейвов, которое спосо-

бен обработать один диспетчер в наихудших условиях работы видеосистемы с точки

зрения оценки количества обработчиков в одном кластере. Если количество камер

в кластере N и M не удовлетворяют приведённым ограничениям, следует разбить

систему на большее число кластеров, возможно, пожертвовав при этом некоторыми

связями сопряжения мастер-слейв.

2.3. Основы теории алгоритмов сопряжения видеокамер с общей зоной об-

зора

Введём нумерацию видеокамер и соответствующих им обработчиков. Для сопо-

ставления объектов, выделенных обработчиками сопряжённых обзорных камер в об-

щей зоне видимости, требуется достаточно точно задать функцию перевода координат

(x′, y′) = ~uds(x, y) (2.8)

из координат (x, y) изображения мастера s в координаты (x′, y′) мастер d. Далее в

параграфе индексы s и d не указываются, поскольку рассматривается фиксирован-

ная пара камер. Введём также обозначения ~u′ = (x′, y′), ~v = (x, y), и будем считать

запись (2.8) эквивалентной записи ~u′ = ~u(~v).

Исходные данные для преобразования. Поиск функции преобразования ко-

ординат ~u(~v) можно провести при помощи интерполяции и экстраполяции заданных

в некоторых точках опорных значений для данной функции. Мы будем считать, что
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нам известны наборы значений координат {~ui}ki=1 мастера d, в которые переходят

точки ~vi, мастера s при применении преобразования (2.8), то есть ~ui = ~u(~vi), i ∈ 1, k.

Договоримся обозначать координаты векторов ~ui и ~vi как (xi, yi) и (x′i, y
′
i), соответ-

ственно.

Значения функций ~u сетке (xj, yj) задаётся вручную при помощи интерфейса про-

граммы настройки сопряжения, изображенной на рис. 2.7. На рисунке изображены

две камеры (справа), план местности (в центре) и список групп точек (слева). На

плане и камерах указаны пронумерованные группы точек, для удобства отображае-

мые разными цветами, которые расставляются вручную и как раз определяют сетку

{~vi} и значения {~ui}. Например, точки под номерами 1, 2, 3, 4 соответственно зелёного,

коричневого, синего и фиолетового цвета, присутствуют на рис. 2.7 на плане и на

«зеленой» камере №1 и «фиолетовой» камере №4. Координаты данной четверки на

камере №4 считаются сеткой, а на камере №1 — значениями для функции ~u14(~v). Для

функции ~u41(~v) смысл значений координат взаимно меняется.

Таким образом мы можем получить необходимые исходные данные (сетки и значе-

ния) для вычисления преобразования (2.8). Рассмотрим конкретные методы экстра-

поляции и интерполяции.

Метод приближенного определения преобразования координат. Рассмот-

рим три случая расположения двух мастер-камер s и d.

1. Камеры закреплены на значительном расстоянии друг от друга, поверхность

зоны наблюдения камер плоская.

2. Камеры закреплены на значительном расстоянии друг от друга, поверхность

зоны наблюдения не является плоской, т.е. на экране присутствуют крутые холмы

либо индустриальные объекты.

3. Камеры закреплены близко друг от друга настолько, что расстояние между

ними пренебрежимо мало по сравнению с расстояниями до зон наблюдения, форма

поверхности зоны наблюдения — произвольная.

Первому случаю соответствует рис. 2.8, на котором камера s закреплена в точке

C1 и обозревает зону M1M2M3M4 на плоскости наблюдения, а камера d закреплена в

точке C2 и обозревает зону M5M6M7M8. Введем на плоскости наблюдения M1M2M8

систему координат (x̃, ỹ). В силу законов геометрической оптики и свойств централь-

ной проекции преобразование координат (x, y) изображения мастера s в координаты

(x̃, ỹ) плоскости наблюдения является проективным. Аналогично, преобразование ко-

ординат (x̃, ỹ) в координаты (x′, y′) изображения с мастера d является проективным.

Рассматривая композицию преобразований

(x, y) → (x̃, ỹ) → (x′, y′),
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Рисунок 2.7. Интерфейс программы сопряжения изображений.
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C1
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M6
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M8

Рисунок 2.8. Два мастера, удалённые друг от друга на расстояние |C1C2|.

мы получаем, что преобразование (x, y) → (x′, y′) является проективным, и искомая

функция ~u(~v) задаётся формулами проективного преобразования:

x′ =
Ax+By + C

Gx+Hy + I

y′ =
Dx+ Ey + F

Gx+Hy + I

, где ∆ =

∣∣∣∣∣∣∣

A B C

D E F

G H I

∣∣∣∣∣∣∣
6= 0. (2.9)

Задача поиска функции преобразования ~u сводится к поиску девяти коэффициен-

тов A, B, C, D, E, F , G, H, I в формулах (2.9), если заданы значения ~ui на сетке

~vi, i ∈ 1, k. Поскольку при пропорциональном изменении всех девяти коэффициен-

тов формулы (2.9) переходят в эквивалентные, то без ограничения общности можно

считать, что либо I = 0, либо I = 1. Случай I = 0 соответствует переходу прямой

Gx+By +C = 0, проходящей через точку (0, 0) на мастере s, в бесконечность масте-

ра d. Так может быть, если, например, линия горизонта на изображении мастера s

проходит через точку (0, 0), т.е. через верхний левый угол изображения. На практике

такое происходит редко, и поэтому случай I = 0 отдельно не рассматривается, хо-

тя теоретически к этому нет никаких препятствий: можно подобрать коэффициенты

сначала при I = 0, затем при I = 1 и из двух приближений выбрать наилучшее.

Поскольку значения ~ui и ~vi заданы с некоторой погрешностью, то приходится при-

менять метод наименьших квадратов для поиска коэффициентов в формулах (2.9):

необходимо решить задачу

min
k∑

i=1

[(
x′i −

Axi +Byi + C

Gxi +Hyi + 1

)2

+

(
y′i −

Dyi + Eyi + F

Gxi +Hyi + 1

)2
]
. (2.10)

Формулы (2.9) нелинейны относительно искомых коэффициентов, поэтому зада-

чу (2.10) в общем случае приходится решать одним из методов градиентного спуска,
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например, методом Левенберга-Марквардта [110]. Однако в случае, когда k = 4, т.е.

сетка состоит из четырёх точек, можно рассмотреть систему уравнений




x′1 =
Ax1 +By1 + C

Gx1 +Hy1 + 1
, y′1 =

Dx1 + Ey1 + F

Gx1 +Hy1 + 1
,

x′2 =
Ax2 +By2 + C

Gx2 +Hy2 + 1
, y′2 =

Dx2 + Ey2 + F

Gx2 +Hy2 + 1
,

x′3 =
Ax3 +By3 + C

Gx3 +Hy3 + 1
, y′3 =

Dx3 + Ey3 + F

Gx3 +Hy3 + 1
,

x′4 =
Ax4 +By4 + C

Gx4 +Hy4 + 1
, y′4 =

Dx4 + Ey4 + F

Gx4 +Hy4 + 1
,

(2.11)

из которой следует система линейных уравнений




Ax1 +By1 + C − x′1(Gx1 +Hy1 + 1) = 0,

Dx1 + Ey1 + F − y′1(Gx1 +Hy1 + 1) = 0,

Ax2 +By2 + C − x′2(Gx2 +Hy2 + 1) = 0,

Dx2 + Ey2 + F − y′2(Gx2 +Hy2 + 1) = 0,

Ax3 +By3 + C − x′3(Gx3 +Hy3 + 1) = 0,

Dx3 + Ey3 + F − y′3(Gx3 +Hy3 + 1) = 0,

Ax4 +By4 + C − x′4(Gx4 +Hy4 + 1) = 0,

Dx4 + Ey4 + F − y′4(Gx4 +Hy4 + 1) = 0.

(2.12)

Система (2.12) при корректных исходных данных имеет единственное решение. Под-

ставив его в формулы (2.9), получим искомое преобразование.

Можно выписать систему линейных уравнений типа (2.12) и в случае, когда коли-

чество точек больше, чем 4, а затем найти решение с минимальной невязкой по мето-

ду наименьших квадратов (в данном случае метод наименьших квадратов сведётся к

решению системы линейных уравнений). Однако это решение будет соответствовать

минимуму невязки для уравнений типа (2.12), а не типа (2.11), поэтому его нель-

зя использовать в качестве окончательного ответа. Тем не менее, полученное решение

можно использовать в качестве начального приближения при поиске минимума (2.10)

методом градиентного спуска, причём практика показывает, что в подавляющем боль-

шинстве случаев при этом достигается удовлетворительный результат, т.е. формулы

(2.9) подбираются верно.

Во втором случае установки камер, когда наблюдаемая поверхность не плоская,

не существует простого вида формул для преобразования ~u(~v). В общем случае это

преобразование не является даже непрерывным: то, что находится в поле зрения ка-

меры s, на камере d может быть скрыто каким-нибудь препятствием. Чтобы получить

приближение для преобразования ~u(~v) в данном сложном случае, необходимо соста-

вить либо кусочное преобразование, отдельно выделив на камерах «приближенно-
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плоские» участки, либо использовать менее точные методы, описанные в п. 2.4. По-

следний способ не всегда даёт удовлетворительный результат, а выделение участков

плоской поверхности связано с объёмным и рутинным подбором исходных данных —

на каждом плоском «куске» требуется сетка из не менее, чем четырёх точек, чтобы

задать проективное преобразование. Поэтому на практике камеры, размещённые в

соответствии со вторым случаем, не сопрягают друг с другом.

Третий случай расположения камер в одной точке замечателен тем, что преобразо-

вание координат изображения с одной камеры на другую всегда проективное, незави-

симо от формы наблюдаемой поверхности. В доказательство, рассмотрим плоскость,

расположенную перпендикулярно оптической оси камеры s. Любая точка изображе-

ния в общей зоне соответствует прямой, проходящей через центр проекции для камеры

s и точку зоны, причем эта же прямая соответствует изображению данной точки и

для камеры d, поскольку центры проекции у камер s и d находятся в одной точке.

Рассматриваемая прямая пересекает введённую нами плоскость в некоторой точке,

поэтому мы можем интерпретировать изображение камер s и d как изображение, по-

лучаемое с введённой нами плоскости. Таким образом, третий случай расстановки

камер сводится к первому.

Таким образом, наиболее предпочтительно сопрягать камеры, расположенные в

одной точке. В этом случае формулы преобразования координат являются проек-

тивными, и можно применить описанный метод поиска преобразования с помощью

введённых вручную опорных точек.

2.4. Исследование особенностей преобразования алгоритмов переноса ко-

ординат изображения с видеокамер на топографический план местно-

сти

Аналогия с сопряжением неподвижных камер. Карту или план местности

можно рассматривать как изображение камеры, полученное сверху, «со спутника».

Поэтому сопряжение карты и камер проходит по схеме, при которой камеры закреп-

лены на некотором расстоянии друг от друга, см. [129]. Назначим изображению кар-

ты индекс m, отличный от всех номеров обработчиков камер. Как было установлено

в предыдущем параграфе, если поверхность плоская, то преобразование координат

изображения мастер-камеры s в координаты изображения карты m ~usm(~v), также как

и преобразование с карты на камеру ~ums(~v), задаётся формулами (2.9), коэффициен-

ты которых находятся при решении задачи (2.10). Исходные данные в виде сетки

и соответствующих её узлам опорным значениям вводятся с помощью интерфейса

программы сопряжения (см. рис. 2.7), также как при сопряжении мастер-камер.

Учёт погрешностей проективного преобразования. Можно выделить три

основных проблемы, которые могут встретиться при подобном подходе. Во-первых,
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местность, которую обозревает камера, часто бывает неровной, т.е. неплоской. Во-

вторых, план местности может быть нарисован схематично, без соблюдения масшта-

бов и пропорций. В обоих случаях проективное преобразование не годится в каче-

стве приближения. В-третьих, в отличие от изображений камер, иногда сложно сопо-

ставить изображение камеры и карты, например, если камера направлена на какое-

нибудь поле, которое отображено на плане монотонным пятном. В этом случае необ-

ходимо дополнительно решить, каким образом мы зададим исходную сетку значений

для подбора преобразований с карты на камеру и наоборот.

Для решения первых двух проблем в системе можно использовать два подхода.

Первый подход заключается в том, что неровность местности моделируется дополни-

тельными добавками (w и h — высота и ширина изображения карты/камеры, изме-

ряемая в точках изображения):

x′ =
Ax+ By + C

Gx+Hy + I
+

4∑

i=1

(
Ci cos(

xπ

w
i) + Si sin(

xπ

w
i)
)
,

y′ =
Dx+ Ey + F

Gx+Hy + I
+

4∑

i=1

(
C ′

i cos(
yπ

h
i) + S ′

i sin(
yπ

h
i)
)
,

(2.13)

т.е. неровность земной поверхности приближается первыми четырьмя членами ря-

да Фурье (см. [130]). Сначала все дополнительные шестнадцать коэффициентов Ci,

C ′
i, Si, S

′
i, где i ∈ 1, 4, считаются равными нулю, и решается задача (2.10) способом,

описанным в предыдущем пункте. Затем полученное решение принимается в качестве

нулевого приближения для нового градиентного спуска, уже с участием дополнитель-

ных слагаемых.

Второй способ обойти нелинейность поверхности и неточность графического пред-

ставления карты заключается в кусочно-линейном приближении преобразования

~u(~v). Для этого мы на сетке значений {~vi} проводим триангуляцию Делоне, а затем

в каждом треугольнике полученной триангуляцией с вершинами в точках ~va, ~vb, ~vc

определяем преобразование ~u(~v) как линейную функцию, подчиняющуюся условиям





~u(~va) = ~va

~u(~vb) = ~vb

~u(~vc) = ~vc

(2.14)

Таким образом мы определим преобразование ~u(~v) в каждом треугольнике триан-

гуляции, т.е. внутри выпуклой оболочки сетки {~vi}. Чтобы вычислить преобразова-

ние в точке ~v, нужно найти треугольник, в котором эта точка находится, а затем

вычислить линейную функцию, найденную с учётом условий (2.14). Для точек вне

выпуклой оболочки можно воспользоваться формулами (2.13), найденными методом
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первого подхода. При этом на границе выпуклой оболочки возможны большие скач-

ки найденного преобразования. Чтобы избежать их, рекомендуется добавлять точки

сетки в углы экрана. Тогда выпуклая оболочка закроет всё изображение камеры.

Оба метода обладают значительной погрешностью и плохо учитывают возмож-

ность разрыва внутри области определения преобразования. Разрыв в данном случае

может, например, возникнуть, когда камера смотрит на край обрыва: на изображении

камеры соседние точки края обрыва стоят близко, а на плане должен быть разрыв,

который может измеряться сотнями метров. Чтобы учесть такие разрывы, на карте

вводятся «тёмные зоны» для каждой камеры в форме многоугольников, т.е. зоны, ко-

торые камера не видит из-за препятствий. Преобразование с карты на мастер ~ums(~v)

в таких зонах неопределено, а если точка с мастера попадает в тёмную зону, то сраба-

тывает дополнительная функция: преобразование ~usm(~v) выдаёт ближайшую точку

границы зоны. Приведенные эвристики позволяют приблизительно отображать тра-

ектории выделенных движущихся объектов на карте. При сопряжении двух мастеров

такой подход не применим из-за сложности ручного ввода тёмных зон для двух камер.

Методы ввода исходных данных. Для того, чтобы составить сетку преобра-

зований между камерой и картой в условиях, когда на карте нет видимых на изоб-

ражении ориентиров, необходима техническая система измерения мировых коорди-

нат. Удобнее всего воспользоваться системой позиционирования с помощью спутника,

например, «Гланас» или GPS, однако точность определения координат в несколько

метров на данный момент предлагают лишь военные системы, для гражданского же

варианта точность составляет несколько десятков метров, что сравнимо с геометриче-

скими размерами зоны наблюдения. Поэтому задать сетку преобразования с помощью

гражданской системы спутниковой навигации затруднительно.

Если нам известны физические координаты не менее четырёх точек-ориентиров

в некоторой мировой трёхмерной декартовой системе координат, причем, во-первых,

положение этих точек на карте известно, во-вторых, эти ориентиры просматриваются

из наблюдаемой зоны, и, в-третьих, ориентиры не лежат в одной плоскости, то при со-

ставлении сетки преобразований можно обойтись лазерным дальномером и участием

двух человек[131]: оператора компьютера и наблюдателя. Обозначим мировые коор-

динаты ориентиров как (xi, yi, zi), i ∈ 1, 4. Ориентирами могут служить участки стен

зданий, вершины холмов, т.д. Пусть наблюдатель находится в точке с мировыми коор-

динатами (x, y, z). С помощью дальномера он может измерить расстояние li, i ∈ 1, 4,

до каждого из ориентиров соответственно. Координаты (x, y, z) задаются системой
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уравнений 



(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = l21,

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = l22,

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = l23,

(x− x4)
2 + (y − y4)

2 + (z − z4)
2 = l24,

которая эквивалентна системе




x1x+ y1y + z1z −R2/2 = (R2
1 − l21)/2,

x2x+ y2y + z2z −R2/2 = (R2
2 − l22)/2,

x3x+ y3y + z3z −R2/2 = (R2
3 − l23)/2,

x4x+ y4y + z4z −R2/2 = (R2
4 − l24)/2,

(2.15)

где R2 = x2+ y2+ z2, R2
i = x2i + y

2
i + z

2
i , i ∈ 1, 4. Последняя система является линейной

относительно четвёрки (x, y, z, R2), причем её определитель

∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 −1
2

x2 y2 z2 −1
2

x3 y3 z3 −1
2

x4 y4 z4 −1
2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 −1
2

x2 − x1 y2 − y1 z2 − z1 0

x3 − x1 y3 − y1 z3 − z1 0

x4 − x1 y4 − y1 z4 − z1 0

∣∣∣∣∣∣∣∣∣∣

=

=
1

2
·

∣∣∣∣∣∣∣

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

x4 − x1 y4 − y1 z4 − z1

∣∣∣∣∣∣∣
6= 0,

если точки-ориентиры не лежат на одной плоскости. Таким образом, решая систему

(2.15) относительно (x, y, z, R2), мы получим единственное решение. Если ориентиры

выбраны удачно, то данная система будет устойчива ко входным данным, и мы вправе

ожидать небольшого превышения окончательной погрешности координат (x, y, z) над

погрешностью измерения величин li, xi, yi, zi. Поскольку погрешность современных

дальномеров примерно 0,5–1 метр, то и результат (x, y, z) должен отклоняется от

действительного не более, чем на несколько метров.

Итак, наблюдатель измерил расстояния до ориентиров li. Теперь он может со-

общить их, например, по рации, оператору, который находится у терминала и видит

наблюдателя на изображении камеры. Оператор отмечает на камере точку положения

наблюдателя и вносит измеренные до ориентиров расстояния в программу. Програм-

ма решает систему (2.15) и находит мировые координаты (x, y, z) точки наблюдателя,

а также вычисляет положение этой точки на карте, поскольку по известным коор-

динатам ориентиров и известному их положению на карте не сложно составить ли-

нейные формулы параллельной проекции мировых координат в координаты карты.

Таким образом получается пара узла сетки и значения в этом узле (~v, ~u) для искомого

преобразования.
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Для повышения точности можно использовать измерение расстояний до бо́льшего,

чем четыре, количества ориентиров. Тогда система (2.15) будет состоять из бо́льшего

числа уравнений, и решать её нужно будет методом наименьших квадратов.

Вывод уравнения линии горизонта[132]. Вычислив преобразование с изобра-

жения мастер-камеры на план местности по формулам (2.9), мы найдём коэффици-

енты A, B, C, D, E, F , G, H. В случае, если наблюдаемая поверхность — плоская, то

уравнение линии горизонта на изображении мастер-камеры задаётся соотношением

Gx+Hy + 1 = 0, (2.16)

поскольку точки с координатами, удовлетворяющими данному уравнению, перехо-

дят в бесконечность при расчётах по формулам (2.9). Уравнение (2.16) может быть

использовано для дополнительной фильтрации движущихся объектов, поскольку в

обычных условиях наблюдение за объектами над горизонтом не ведётся.

2.5. Оценка точности преобразований координат объектов семантического

анализа при сопряжении изображений

Поскольку исходные точки для преобразования сопряжения (2.9) задаются с неко-

торой погрешностью, то коэффициенты преобразования, полученные при решении

задачи минимизации (2.10) или при решении системы (2.12) также содержат в себе

неточность, и, следовательно, преобразование тоже содержит погрешность.

Для оценки влияния погрешности входных данных на решение задачи (2.10) рас-

смотрим случай, когда опорных точек всего 4, и поиск коэффициентов сводится к

решению линейной системы (2.12).
Введём обозначения

M =




x1 y1 1 0 0 0 −x′1x1 −x′1y1

x2 y2 1 0 0 0 −x′2x2 −x′2y2

x3 y3 1 0 0 0 −x′3x3 −x′3y3

x4 y4 1 0 0 0 −x′4x4 −x′4y4

0 0 0 x1 y1 1 −y′1x1 −y′1y1

0 0 0 x2 y2 1 −y′2x2 −y′2y2

0 0 0 x3 y3 1 −y′3x3 −y′3y3

0 0 0 x4 y4 1 −y′4x4 −y′4y4




, r =




A
B
C
D
E
F
G
H




, b =




x′1
x′1
x′1
x′1
y′1
y′1
y′1
y′1




, (2.17)

тогда система (2.12) записывается в виде Mr = b. Известно (см. [133]), что вариация

решения при неустойчивых данных для линейных систем задаётся формулой

∆r =M−1(∆b−∆Mr), (2.18)

где r — точное решение системы, а ∆b, ∆M — дифференциалы при отклонении ис-

ходных точек от действительного положения.
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С другой стороны, обозначив L = Gx +Hy + 1 и дифференцируя формулы (2.9),

получим

∆x′ =
∂x′

∂A
∆A+

∂x′

∂B
∆B +

∂x′

∂C
∆C +

∂x′

∂G
∆G+

∂x′

∂H
∆H =

x

L
∆A+

y

L
∆B +

1

L
∆C − x′x

L
∆G− x′y

L
∆H =

=
1

L
(x̃,∆r), где x̃ = (x, y, 1, 0, 0, 0,−x′x,−x′y). (2.19)

Аналогично, ∆y′ =
1

L
(ỹ,∆r), где ỹ = (0, 0, 0, x, y, 1,−y′x,−y′y). Подставляя (2.18)

в (2.19), получим

∆x =
(x̃,M−1(∆b−∆Mr))

L
,

∆y =
(ỹ,M−1(∆b−∆Mr))

L
.

(2.20)

Полученные формулы линейны относительно дифференциалов-погрешностей ис-

ходных данных, поэтому, вычислив точную обратную матрицуM−1 и решение r, легко

найти максимальные отклонения ∆x и ∆y. Согласно теории линейного программиро-

вания, максимум погрешности соответствует одному из наборов максимальных по мо-

дулю отклонений от истинных значений введённых координат (x1, y1), (x2, y2), (x3, y3),

(x4, y4), (x
′
1, y

′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), (x

′
4, y

′
4), поскольку именно они являются вершинами

выпуклого множества, на котором ведётся поиск максимума.

Следствием данного факта является то, что если все координаты, кроме одной,

для определённости x1, заданы точно, то можно проверить значения погрешностей

по формулам (2.20) только для минимального и максимального значения отклонения

x1 от точного, а затем выбрать максимальные значения из двух полученных отдельно

для ∆x и ∆y, чтобы получить ожидаемый максимум ошибки в фиксированной точке

(x, y).

Отметим, что максимальная погрешность для преобразования сопряжения сильно

зависит от конфигурации точек в исходных данных, так какобусловленность матри-

цы M системы линейных уравнений (2.12), то есть величина отношения собственных

чисел матрицы MT ·M , определяет устойчивость численного решения данной систе-

мы. Например, если выбрать точки изображения близкими к какой-либо прямой, то

обусловленность матрицы будет велика, и, следовательно, велика будет погрешность

численного решения систем линейных уравнений, поскольку погрешность решения

системы линейных уравнений в первом приближении пропорциональна обусловлен-

ности [134]. Таким образом, при оценке погрешности численного решения с помощью

формул (2.20) необходимо также оценивать погрешность численного обращения мат-

рицы M−1, которая определеяется как раз обусловленностью данной матрицы.
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2.6. Разработка алгоритмов автоматизации настройки сопряжения непо-

движных и поворотных видеокамер

Команды управления поворотными камерами. Каждый тип поворотных ка-

мер поддерживает свой протокол команд для управления перемещением, но, несмотря

на различный формат управляющих сигналов, существует более-менее общий набор

команд, поддерживаемых всеми протоколами. Далее приведен список наиболее часто

встречающихся команд с описанием.

1. ПОВЕРНУТЬ(куда,vα,vβ): двигаться в одном из восьми направлений, задавае-

мых параметром куда, с параметрами скорости vα и vβ. Все камеры на поворот-

ных устройствах, как правило, могут вращаться вокруг оси подвеса, по азимуту, и

в плоскости, проходящей через линию подвеса, по склонению. Параметр куда при-

надлежит множеству значений влево (уменьшение азимута), вправо (увеличение ази-

мута), вверх (уменьшение склонения), вниз (увеличение склонения) и их комбинаци-

ям вверх_влево, вверх_вправо, вниз_влево, вниз_вправо, означающих одновременное

изменение азимута и склонения. Параметры vα и vβ являются целыми положитель-

ными номерами скоростей, которые исполнительное устройство поворотной видеока-

меры переводит в скорость изменения, соответственно, азимута и склонения, изме-

ряемую в градусах в секунду. Номер скорости переводится в величину физической

скорости согласно спецификации устройства.

2. УВЕЛИЧЕНИЕ(куда,vz): если куда=приблизить, то увеличить угол зрения по-

воротной камеры, то есть увеличить фокусное расстояние объектива. Если куда=

=удалить, то уменьшить угол зрения. Скорость изменения задается целым положи-

тельным параметром vz, обычно физический смысл данного параметра в специфика-

циях устройств не указывается.

3. ФОКУС(куда,vf): команда настройки фокуса. Изменяет положение фокальной

плоскости по отношению к чувствительному элементу камеры (ПЗС-матрице), не из-

меняя при этом (или изменяя незначительно) фокусное расстояние, то есть увеличе-

ние. Если куда=фокус+, то фокальная плоскость двигается в одном из направлений

по отношению к ПЗС-матрице, если куда=фокус–, то фокальная плоскость движется

в обратном направлении. Скорость движения задается номером скорости vf .

4. ОСТАНОВИТЬ(): остановить все движения — изменение углов, фокуса, увеличе-

ния. Таким образом, чтобы подвинуться на один градус влево, нужно сначала посмот-

реть в таблицу скоростей и выбрать в ней определенную скорость, например, v
ш
= 2.

Пусть она соответствует физической скорости 10◦c−1. Тогда необходимо выполнить

команду ПОВЕРНУТЬ(влево,2,0), затем сделать паузу в 100мс, затем послать камере

команду ОСТАНОВИТЬ().
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5. ЗАПОМНИТЬ_ПОЗИЦИЮ(n): запомнить позицию с номером n. Во внутренней памя-

ти некоторых поворотных устройств могут быть сохранены текущие значения ази-

мута и склонения, положение увеличения и фокусировки (фокальной плоскости), а

также некоторые настройки, например, степень раскрытия диафрагмы. Обычно ко-

личество позиций в памяти поворотного устройства ограничено. Обозначим через Np

количество доступных позиций.

6. ВЫЗВАТЬ_ПОЗИЦИЮ(n): восстановить позицию с номером n. При выполне-

нии команды поворотная видеокамера повернется в ту позицию и установит на

объективе такие увеличение и фокусировку, которые были сохранены командой

ЗАПОМНИТЬ_ПОЗИЦИЮ(n).

7. ВЫЗОВ_КООРДИНАТ(α,β,γ,f): запись координат в камеру. Некоторые камеры де-

лят диапазон углов азимута и склонения, а также диапазон изменения увеличения и

фокусировки на дискретные деления, приписывая каждому некоторую координату.

Команда ВЫЗОВ_КООРДИНАТ() позволяет установить камеру в положение с координа-

тами α, β, γ, f для азимута, склонения, увеличения и фокусировки, соответственно.

8. ЧТЕНИЕ_КООРДИНАТ(α,β,γ,f): чтение текущих координат. В переменных α, β, γ,

f сохраняется текущее положение поворотной камеры. Смысл параметров аналогичен

смыслу параметров предыдущей команды.

Чтобы поворотная видеокамера была приспособлена к работе в аналитической ви-

деосистеме, необходимо, чтобы она поддерживала по крайней мере первые 6 перечис-

ленных команд. Для большинства поворотных камер точность наведения с помощью

команд ВЫЗВАТЬ_ПОЗИЦИЮ() или ВЫЗОВ_КООРДИНАТ() меньше 0, 1◦ по азимуту и склоне-

нию, в то время как попытки использовать управление без обратной связи при помощи

только первых четырёх команд приводят к тому, что погрешность наведения постоян-

но возрастает, и уже после нескольких команд составляет больше градуса. Большая

погрешность наведения при помощи команд ПОВЕРНУТЬ()/ОСТАНОВИТЬ() обусловлена

не только отсутствием возможности проверить текущее положение, но и случайным

характером задержек передачи сигналов управления между исполнительным устрой-

ством камеры и алгоритмами наведения.

Пара команд ЗАПОМНИТЬ_ПОЗИЦИЮ()/ВЫЗВАТЬ_ПОЗИЦИЮ() работает с положением

камеры, которое запоминается поворотным устройством во внутреннем формате дан-

ных, и к ним нет доступа извне. Таким образом, эта пара команд даёт возможность

точного наведения только в Np позиций, которые надо предварительно установить

вручную. У пары команд ВЫЗОВ_КООРДИНАТ()/ЧТЕНИЕ_КООРДИНАТ() отсутствует та-

кое ограничение, но переход в заданное положение с помощью указания координат

обычно происходит медленнее, чем с помощью команд вызова позиций из внутренней

памяти.



102

В аналитической системе семантического сжатия перечисленные команды выпол-

няет модуль сервера видео, поэтому все поворотные камеры, независимо от особенно-

стей протокола, управляются другими программами с помощью приведённой общей

формы команд.

Постановка задачи автоматического сопряжения поворотной и непо-

движной камер[135]. Модуль обработчика слейва должен выполнять более слож-

ный тип перемещений поворотного устройства, чем перечисленные выше команды

управления низкого уровня. Определим этот тип перемещений как результат коман-

ды ПЕРЕЙТИ(s, m, x, y, z), где s — номер слейв-камеры, которая выполняет команду,

m — номер мастер-камеры, которая сопряжена со слейвом s, (x, y) — координаты

изображения мастер-камеры, указывающие точку, которая должна оказаться в цен-

тре изображения слейв-камеры после выполнения команды, и z — это коэффициент

увеличения изображения слейва по сравнению с изображением мастера после завер-

шения перемещения.

Реализация команды ПЕРЕЙТИ(s, m, x, y, z) полностью решает задачу сопряжения

поворотной и неподвижной видеокамер, согласно определению 1.2. Чтобы реализовать

данную команду, необходимо сначала построить преобразование, которое переводит

величины x, y, z в вектор координат углов поворота ~τ = (α, β) (азимут и склонение)

и величины увеличения γ и фокусировки f для заданной пары мастера m и слей-

ва s. Обозначим данное преобразование как asm: (~τ , γ, f) = asm(x, y, z). Затем, после

получения координат (~τ , γ, f), необходимо вызвать подходящие команды перемеще-

ния поворотной видеокамеры: либо ВЫЗВАТЬ_ПОЗИЦИЮ(), либо ВЫЗОВ_КООРДИНАТ() с

соответствующими параметрами. Как показано далее, эти два варианта существенно

отличаются друг от друга.

Основная задача «автоматизированной» настройки заключается в том, чтобы при

настройке преобразований сопряжения действия оператора сводились к минимуму.

Обычно это означает, что оператор вводит небольшое количество опорных точек пре-

образований, а далее система экстраполирует заданные значения для всех остальных

координат.

Преобразования asm для наведения слейв-камер задаются в программе калибров-

ки поворотных камер. Найденные преобразования сохраняются в специальном фор-

мате в базу данных, поэтому компонент системы может воспользоваться командой

ПЕРЕЙТИ().

Методика настройки сопряжения с использованием команды вызова по-

зиции. Камеры, не поддерживающие координатные команды перемещения, ограни-

чены в точности наведения в координаты x, y, z, поскольку существует не более N s
p

наборов координат ~τ , γ, f , в которые слейв-камера может переместиться с достаточ-
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Рисунок 2.9. Диалог для введения координат позиционирования x, y, z.

ной точностью (N s
p — количество зафиксированных в памяти позиций, поддержива-

емое камерой s). Из-за того, что слейв-камера обычно обслуживает сразу несколько

мастеров, N s
p позиций приходится распределять между разными мастерами, что ещё

больше ограничивает возможности наведения.

Определим позицию P из памяти поворотного устройства как тройку (~τ , γ, f). Со-

ответственно, обозначим множество фиксированных позиций камеры s как {Pi}N
s
p

i=1.

Напомним, что непосредственного доступа к координатам (~τ i, γi, fi) позиции Pi

для рассматриваемых камер не существует, у нас есть лишь возможность со-

хранить текущее положение камеры в i-ую позицию камеры, выполнив команду

ЗАПОМНИТЬ_ПОЗИЦИЮ(i), и только затем возвращаться к запомненным в позиции Pi

координатам при помощи команды ВЫЗВАТЬ_ПОЗИЦИЮ(i).

Пусть для определённости первые M s
p из N s

p позиции отведены для мастер-камеры

m. Для каждой позиции Pi, i ∈ 1,M s
p , мы определим тройку координат xi, yi, zi от-

носительно мастера m. Фактически мы для позиции Pi выделим на мастере m зону,

которую просматривает слейв в данной позиции. Для этой процедуры в программе ка-

либровки существует специальный диалог, внешний вид которого показан на рис. 2.9.

В этом диалоге можно либо воспользоваться предопределенной схемой расстановки

xi, yi, zi для всех M s
p позиций, либо расставить зоны вручную. Справа на рисун-

ке показана картинка с мастер-камеры, на которой зелеными кружками обозначены

все точки различных позиций. Синий кружок означает текущую точку, синий прямо-

угольник — зону текущей позиции. При креплении камер следует позаботиться о том,

чтобы горизонтальные линии кадра были параллельны горизонту для естественного
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восприятия видеоизображения. Если это условие выполнено и для слейва, и для ма-

стера, то зона позиции слейва будет прямоугольником со сторонами, параллельными

горизонтали и вертикали изображения, а размер прямоугольника будет ровно в zi

раз меньше размеров картинки мастера по каждому из измерений (zi соответствует

позиции Pi). Это следует из того, что камеры установлены в одной точке, а увели-

чение слейва является ничем иным, как сужение угла зрения по сравнению с углом

зрения мастера в zi раз. Слева на диалоге, изображённом на рис. 2.9, цифровым спо-

собом сделано увеличение мастера, чтобы показать, каким примерно должно быть

изображение со слейва, если его установить в данную позицию.

После установки соответствия между позициями Pi и координатами на мастере

xi, yi, zi, нужно сохранить в этих позициях соответствующие координаты (~τ i, γi, fi)

с помощью команды ЗАПОМНИТЬ_ПОЗИЦИЮ(i). Это можно сделать вручную при по-

мощи интерфейса, изображенного на рис. 2.10. Слева на рисунке — изображение

со слейв камер (на нижнее изображение может накладываться изображение с ма-

стера для наглядности совмещения), справа вверху — изображение мастер-камеры

с позициями слейва в виде зелёных кружков, справа внизу — цифровое увеличе-

ние мастера в районе текущей позиции из памяти слейва. С помощью кнопок « l↔րւցտ»,

«Увеличение +/−», «Фокус дальше/ближе» мы посылаем соответственно команды

ПОВЕРНУТЬ(), УВЕЛИЧЕНИЕ(), ФОКУС() при нажатии, и команду ОСТАНОВИТЬ() при от-

жатии, управляя тем самым поворотной камерой. С помощью этих кнопок необходимо

так повернуть слейв, чтобы нижние картинки совпадали. Тогда можно будет запом-

нить положение камеры в выделенной позиции Pi, нажав кнопку «Установить»; тем

самым будет выполнено сопоставление координат xi, yi, zi с позицией Pi = (~τ i, γi, fi).

Изменяя скорость для команд перемещения, можно выполнять точную и «грубую»

подстройку.

Операцию сопоставления xi, yi, zi и Pi = (~τ i, γi, fi) необходимо проделать для

всех позиций, задействованных в системе, поэтому при ручном сопряжении по запо-

минаемым позициям оператор производит довольно много действий. При некоторых

допущениях процесс сопоставления можно автоматизировать.

Мы будем считать, что нам известна функция ~r = ~d(F1, F2, w1, w2), которая опре-

деляет для двух квадратных окон w1 и w2 одинакового размера на изображениях

F1(x, y), F2(x, y) вектор параллельного переноса ~r, с помощью которого из изобра-

жения окна w1 получается изображение окна w2, если первоначально окна уже сов-

мещены (то есть для общего смещения картинок нужно к полученному смещению

добавить первоначальное смещение окон). Окном w является множество {(x, y)|xw 6

x 6 xw +N − 1, yw 6 y 6 yw +N − 1} точек изображения, его можно задать тройкой

чисел (xw, yw, N). Идея быстрого вычисления функции ~d описана в п. 1.3.



105

Рисунок 2.10. Интерфейс программы калибровки.
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Процесс автоматического сопоставления состоит из нескольких шагов, участие

оператора необходимо только на первом шаге.

1. После расстановки зон позиций из памяти поворотной видеокамеры на масте-

ре m оператор поворачивает слейв таким образом, чтобы картинки на слейве s и

мастере m совпадали, то есть слейв вручную устанавливается в положение x = w/2,

y = h/2, z = 1,0 относительно мастера (w × h — разрешение изображения мастера в

точках).

2. В автоматическом режиме производится измерение скоростей команды

ПОВЕРНУТЬ(). Скорости измеряются в координатах изображения мастер-камеры в се-

кунду, смещения вычисляются с помощью функции ~d(F1, F2, w1, w2).

3. После измерения скоростей для всех позиций Pi производится наведение в со-

ответствующие координаты (xi, yi) мастер-камеры с единичным относительным уве-

личением. После каждого наведения положение камеры запоминается при помощи

ЗАПОМНИТЬ_ПОЗИЦИЮ(i). Процедура перехода от позиции к позиции использует движе-

ние по команде ПОВЕРНУТЬ() с измеренными скоростями, время движения рассчиты-

вается исходя из данных, полученных на предыдущем шаге,а с помощью функции
~d(F1, F2, w1, w2) производится проверка действительного смещения. Более подробно

алгоритм смещения на заданный вектор описан в [136], а также далее по тексту.

4. С помощью команды УВЕЛИЧЕНИЕ() устанавливается некоторое увеличение в

каждой позиции Pi, одинаковое для всех на данном мастере. Если поворотная камера

поддерживает включение/выключение автофокусировки, то устанавливается фоку-

сировка средствами камеры. В противном случае с помощью команды Focus() под-

бирается положение фокусировки с максимальной мерой контраста (см. стр. 111). На

данный момент не разработано способов установки нужного увеличения для пози-

ции в памяти слейва из-за потери информации при цифровом увеличении мастера.

Поэтому в случае, когда необходимо устанавливать разные увеличения в различных

позициях, необходимо проводить ручную калибровку.

Рассмотрим более подробно некоторые шаги.

Будем называть скоростью камеры тройку чисел κ = (d, vα, vβ), где (d, vα, vβ) —

параметры команды ПОВЕРНУТЬ(). Измерение определенной скорости κ — это созда-

ние таблицы для функций ~rκ(ti) и σκ(ti), где ti — сетка отсечек времени. На практике

достаточно взять равномерную сетку с шагом 50мс на отрезке от 0 до 4с. Внача-

ле измерений мы запоминаем командой ЗАПОМНИТЬ_ПОЗИЦИЮ() в «служебную» пози-

цию начальное, совмещённое с мастером, положение поворотной камеры. Затем для

каждого ti производим 5 измерений смещения центра поворотной камеры, смещая её

командой ПОВЕРНУТЬ(κ) в течение времени t, возвращая перед каждым смещением

камеру в служебную позицию с помощью команды ВЫЗОВ_ПОЗИЦИИ(). Среднее пяти
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полученных при помощи функции ~d(F1, F2, w1, w2) смещений мы заносим в таблицу

как ~rκ(ti), а средне-квадратичное отклонение — как σκ(ti) (F1 — изображение мастера,

F2 — смещённое изображения слейва, w1 и w2 — окна в центре экрана). Измерения

начинаются с отсечки времени t0 = 50мс, затем время последовательно увеличивается

с шагом 50мс, пока либо не достигает четырёх секунд, либо смещение превышает N/4

точек изображения.

Справедливы следующие утверждения:

1◦. Скорости вида (влево, vα, vβ) и (вправо, vα, vβ) являются одной физической ско-

ростью для любых vβ, и, аналогично, скорости (вверх, vα, vβ) и (вниз, vα, vβ) являются

одинаковой скоростью для любых vα.

2◦. Тройка (вверх_влево, vα, 0) эквивалентна тройке (влево, vα, 0), тройка

(вниз_вправо, 0, vβ) эквивалентна тройке (вправо, 0, vβ), так далее.

3◦. Пусть κ1 = (d, vα, 0), κ2 = (d, 0, vβ), κ = (d, vα, vβ). Тогда

~rκ(ti) = ~rκ1(ti) + ~rκ2(ti), (2.21)

σκ(ti) =

√
σ2
κ1
(ti) + σ2

κ2
(ti)

2
. (2.22)

4◦. Если κ1 = (вверх, vα, vβ), κ2 = (вниз, vα, vβ), то

~rκ1(ti) = −~rκ2(ti), (2.23)

аналогичное утверждение справедливо для κ1 = (влево, vα, vβ) и κ2 = (вправо, vα, vβ).

Утверждения 1◦ и 2◦ справедливы всегда, 3◦ и 4◦ — в предположении, что углы

поворота камеры небольшие. Воспользовавшись этими свойствами, мы можем прове-

сти измерения только для скоростей (влево, vα, 0) и (вверх, 0, vβ), а таблицу ~rκ(ti) и

σκ(ti) для остальных скоростей κ заполнить, используя (2.21), (2.22) и (2.23).

На рис. 2.11 показана блок-схема алгоритма составного перемещения на вектор
~R. При поиске оптимальных (κ, i) используется полный перебор в таблице скоростей,

коэффициент 3 при σκ обозначает 99-процентную вероятность оказаться в пределах δ

после перемещения. При вычислении ~Rост = ~d(F1, F2, w1, w2) F1 — кадр слейва, F2 —

кадр мастера, w1 — окно в центре слейва, w2 — окно в окрестности той точки ма-

стера, в которой мы должны оказаться после перемещения на ~R. Если не вычислять

остаточное смещение, то в результате после перемещений будет накапливаться по-

грешность, см. рис. 2.12. Пользуясь процедурой перемещения, мы можем расставить

позиции в памяти слейва с единичным увеличением, по очереди передвигаясь из уже

установленных к ближайшей неустановленной.

Времена всех этапов автоматического сопоставления складываются так, что вре-

мя, за которое выполняется процесс автоматически, сравнимо с временем ручной на-

стройки. Кроме того, процесс не всегда работает устойчиво, и основной причиной
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~Rост = ~R

δ = min
(κ,i)

(|~Rост − ~rκ(ti)|+ 3σκ(ti))

(κ, i) = argmin(|~Rост − ~rκ(ti)|+ 3σκ(ti))

|~Rост| < δ

Выполнять Move(κ) в течение времени ti

~Rост = ~d(F1, F2, w1, w2)

Да

Нет

Рисунок 2.11. Блок-схема алгоритма составного перемещения на вектор ~R.

является то, что вычисление функции смещения ~d невозможно просто потому, что

структура изображений F1, F2 однородна (например, зона наблюдения — асфальти-

рованная площадка).

В итоге, после ручной или автоматической настройки преобразование для команды

ПЕРЕЙТИ(), которое мы настраивали, будет

asm(x, y, z) = arg min

Pi :
|x− xi| 6 w/2zi

|y − yi| 6 h/2zi

(W1

√
(x− xi)2 + (y − yi)2 +W2|z − zi|),

гдеW1 = 10 иW2 = 1 — некоторые веса. Команда ПЕРЕЙТИ(), таким образом, выбирает

наиболее удачную позицию из памяти поворотного устройства, которая показывает

окрестность точки (x, y) с наиболее близким к z увеличением.

Методика настройки с использованием команд наведения по ко-

ординатам. Для камер, поддерживающих команды ВЫЗОВ_КООРДИНАТ() и

ЧТЕНИЕ_КООРДИНАТ(), подбор преобразования asm сразу решает задачу реализа-

ции команды ПЕРЕЙТИ(): достаточно вызвать полученные после преобразования

координаты на поворотном устройстве. Задача поиска преобразования asm разделяет-

ся на три разные функции: ~τ = As
m(x, y) (углы поворота не зависят от увеличения),

γ = Γs
m(z) (увеличение пропорционально углу обзора, поэтому нет зависимости от x

и y), f = Φs
m(x, y, z).
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Рисунок 2.12. Сравнение работы алгоритмов составного перемещения поворотной видеокамеры на заданный вектор.
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Введём несколько точек Ri = (τi, γi, fi) (i ∈ 1, K), которые назовём опорными

точками. Каждой опорной точке сопоставим тройку xi, yi, zi. Эта операция полно-

стью аналогична расстановке позиций из памяти поворотного устройства и описана в

предыдущем пункте: сначала расставляются точки на изображении мастер-камеры,

затем вручную совмещаются изображения слейва с изображением мастера. Соответ-

ствие устанавливается нажатием на кнопку «Установить» в программе калибровки.

Разница заключается в том, что значения координат (τi, γi, fi) в опорных точках до-

ступны для чтения.

Проведём триангуляцию среди опорных точек в координатах мастера (xi, yi). Это

можно сделать за O(K log2K) действий (см. [138]), однако, поскольку точек немно-

го, в действительности используется простейший алгоритм поиска ближайшей под-

ходящей точки с асимптотикой O(K2), тем более для него разработана целочислен-

ная реализация, свободная от ошибок округления. Для каждого треугольника данной

триангуляции с вершинами (x1, y1), (x2, y2), (x3, y3) на мастере и соответствующими

им координатами поворотной камеры ~τ 1 = (α1, β1), ~τ 2 = (α2, β2), ~τ 3 = (α3, β3) су-

ществует единственное аффинное преобразование As
m, для которого ~τ 1 = As

m(x
1, y1),

~τ 2 = As
m(x

2, y2), ~τ 3 = As
m(x

3, y3). Выбор аффинного преобразования обусловлен тем,

что мы работаем в приближении небольших углов. Если формулы преобразования

As
m записать в виде

α = ax+ by + c,

β = dx+ ey + f,
(2.24)

то коэффициенты преобразования получаются при решении системы линейных урав-

нений 

x1 y1 1

x2 y2 1

x3 y3 1






a

b

c


 =



α1

α2

α3


 ,



x1 y1 1

x2 y2 1

x3 y3 1






d

e

f


 =



β1

β2

β3


 .

︸ ︷︷ ︸

(2.25)

В результате получаем преобразование As
m для выпуклой оболочки точек (xi, yi). Что-

бы определить это преобразование на всей области изображения мастера, достаточно

ввести четыре опорные точки по углам изображения. Если при наведении в точку

(x, y) наблюдается значительное отклонение, то мы можем ввести новую опорную точ-

ку с координатами (x, y). Точность наведения повысится за счёт увеличения мелкости

разбиения треугольниками (определение понятия мелкости разбиения многомерного

множества см., например, в [137], с. 130). Именно этим обусловлено применение три-

ангуляции и линейной интерполяции при подборе преобразования As
m.

Функции увеличения Γs
m и фокусировки Φs

m зависят от устройства камеры[139].

Например, существует модель камеры, у которой координаты увеличения пропорци-
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ональны кратности увеличения, то есть

Γs
m(z) = ksmz, (2.26)

где ksm — постоянная для данной пары мастер-слейв. Фокусировка же для этой камеры

подчиняется модели

Φs
m(z) =

{
C, γ > B

Aγ, γ 6 B
, (2.27)

где A, B, C — некоторые коэффициенты, все лежат в пределах от 0 до 300, γ =

ksmz — значение координаты увеличения для z. Оказалось, что для всех практических

применений у данной камеры хватает глубины резкости для того, чтобы не учитывать

зависимость фокусировки от координат (x, y), то есть от расстояния до точки.

Постоянная ksm вычисляется при помощи метода наименьших квадратов из увели-

чений zi и соответствующих координат γi в введённых опорных точках:

ksm =
γz

z2
. (2.28)

Для определения A, B, C требуется сначала проделать серию измерений фокуси-

ровки хотя бы в одной точке (x, y) мастера. Для этого нам понадобится мера фоку-

сировки изображения φ(F ) на кадре F (x, y) = (FR(x, y), FG(x, y), FB(x, y)) (см. фор-

мулу (1.1)) с разрешением w × h. Известно, что мерой фокусировки служит мера

контрастности, один из способов оценить контрастность — это посчитать величину

φ(F ) =
4

w
· 4
h

w/4,h/4∑

x=0,y=0

imax(x, y)− imin(x, y)

imax(x, y) + imin(x, y) + 1
, (2.29)

imin(x, y) = min
1

3

∑

C

FC(x′, y′)

4x6x′<4(x+1)

4y6y′<4(y+1)

, imax(x, y) = max
1

3

∑

C

FC(x′, y′)

4x6x′<4(x+1)

4y6y′<4(y+1)

,

то есть φ(F ) — среднее арифметическое контрастностей в окошках изображения раз-

мером 4× 4. Усреднение введено, чтобы исключить влияние шума, из-за которого на

изображении практически обязательно присутствуют черные и белые точки.

Диапазон координат γ от нуля до 255 мы разобьём на 6 отсечек γj (число отсечек

подобрано экспериментально), и в каждой отсечке увеличения переберем координа-

ты фокуса в диапазоне от 0 до 300 с шагом 20 (таково минимальное изменение при

управлении командой ФОКУС() на минимальной скорости), выбирая оптимальную ко-

ординату фокусировки fj по мере (2.29). Далее мы перебором значений A, B, C с

шагом 20 в кубе [0, 300]3 решим задачу

min
A,B,C

6∑

j=1

(fj − Φs
m(γj/k

s
m))

2,
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Рисунок 2.13. Оптическая схема объектива.

где Φs
m рассчитывается по формуле (2.27). Вся процедура занимает около 6 минут для

каждой пары камер мастер-слейв, и не требует участия оператора после расстановки

нескольких опорных точек и точки измерения фокуса.

В общем случае для определения функций γ = Γs
m(z) и f = Φs

m(x, y, z) требуется

проделать более детальные измерения. Большинство производителей объективов не

указывает в спецификации зависимости между координатой увеличения и кратно-

стью увеличения; такую зависимость необходимо устанавливать экспериментально.

Кратность увеличения — отношение максимального угла зрения для данного объек-

тива к текущему углу зрения. Устройство современных объективов достаточно слож-

ное и включает в себя около десятка линз. Примерная оптическая схема объектива

представлена на рис. 2.13.

Для большинства объективов окуляр и ПЗС-матрица расположены неподвижно

на оптической оси, передняя группа линз регулирует фокусировку, а две системы

линз внутри объектива, эквивалентные двум тонким линзам, регулируют увеличение.

Изменение координаты γ влечет изменение положения увеличительных линз относи-

тельно окуляра; при изменении координаты f меняется расстояние OO3. Для объекти-

вов, использовавшихся в ходе диссертационной работы, экспериментально выявлены

следующие соотношения:

OO1 = χ(γ),

OO2 ∼ γ + const,

OO3 ∼ f + const,

(2.30)

где χ(γ) — некоторая нелинейная функция. При этом установлено, что функция

кратности увеличения объектива Γ̃(γ) и функция фокусировки Φs
m(x, y, z) являют-

ся дробно-линейными относительно γ:

Γ̃(γ) =
Aγγ + Bγ

Cγγ +Dγ

, (2.31)

Φs
m =

Afγ + Bf

Cfγ +Df

, (2.32)

где коэффициенты Aγ, Bγ, Cγ, Dγ постоянны для отдельно взятого объектива, а ко-
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эффициенты Af , Bf , Cf , Df зависят от расстояния до объекта, то есть от координат

(x, y). Это означает, что функцию (2.31) достаточно измерить один раз для данно-

го объектива, а затем использовать её при каждой настройке, в отличие от функ-

ции (2.32), которую необходимо измерять на некоторой сетке (x, y) координат мастер-

камеры, с которой проводится сопряжение.

Алгоритм измерения функции Γ̃ устроен следующим образом. Пусть γ ∈
[γmin, γmax]. Введём на этом промежутке равномерную сетку {γi}ni=0, n 6 6, γi =

γmin + i · (γmax − γmin)/n. Наведём объектив на такой объект, что при любом уве-

личении мы можем получить чёткое изображение. Сначала установим на объективе

координату γ0, вручную или автоматически подберём фокусировку и запомним изоб-

ражение с камеры как эталонное с увеличением кратности 1,0. Для остальных точек

сетки γi после установки фокусировки мы определяем кратность увеличения, исполь-

зуя совмещение картинки камеры с цифровым увеличением эталонного изображения.

Коэффициент цифрового увеличения подбирается вручную. Получив таким образом

таблицу значений Γ̃i в точках γi, мы можем найти коэффициенты Aγ, Bγ , Cγ, Dγ

методом наименьших квадратов:

Aγ, Bγ , Cγ, Dγ = argmin
n∑

i=0

(
Γ̃i −

Aγγi +Bγ

Cγγi +Dγ

)2

, (2.33)

эта задача решается, например, методом градиентного спуска.

Измерив функцию Γ̃(γ), легко определить функцию Γs
m(z), поскольку из соотно-

шений углов зрения следует, что

Γ̃(Γs
m(z)) = ksmz ⇒ Γs

m(z) = Γ̃−1(ksmz), (2.34)

то есть определение функции Γs
m(z) сводится к нахождению коэффициента ksm. Расчёт

коэффициента можно провести по формуле (2.28), подставив в неё данные введённых

опорных точек, предварительно произведя «замену координат» γ → Γ̃(γ).

Метод измерения функции фокусировки для модели (2.32) практически полностью

повторяет метод измерения функции (2.27). Отличия заключаются в том, что в силу

малой глубины резкости большинства объективов необходимо провести измерения в

сетке точек {(xk, yk)}mk=0, находящихся на разных расстояниях от объектива, и в том,

что задача минимизации для каждой точки сетки

min
Ak

f ,B
k
f ,C

k
f ,D

k
f

m∑

j=0

(
fk
j −

Ak
fγ +Bk

f

Ck
f γ +Dk

f

)2

решается методом градиентного спуска, а не полным перебором. В итоге подсчёт

функции фокусировки осуществляется по формуле

Φs
m(x, y, z) =

Ak
fΓ

s
m(z) + Bk

f

Ck
fΓ

s
m(z) +Dk

f

, (2.35)
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Рисунок 2.14. Мастер и слейв, удалённые друг от друга.

где k = argmin ((x− xk)
2 + (y − yk)

2) — индекс ближайшей к (x, y) точки из сетки

измерения фокусировки.

После ручного ввода данных для определения функции Γ̃(γ) и ввода опорных

точек Ri дальнейшая настройка объектива происходит автоматически. Из-за ограни-

чений, накладываемых глубиной резкости объектива, процедура определения функ-

ции фокусировки, задаваемой моделью (2.32), работает значительно дольше, чем для

модели (2.27). Время, необходимое для сопряжения, может достигать 40 минут для

одной пары камер мастер-слейв.

Особенности методики сопряжения для камер, закреплённых в

удалённых точках. Пусть наблюдаемый объект находится в точке A, слейв-камера

установлена в точке C2 и расположена на значительном расстоянии от мастера, уста-

новленного в точке C1, т.е. расстояние |C1C2| сравнимо с расстоянием |C1A| от точки

мастера до объекта (см. рис. 2.14). Тогда методы настройки функции asm(x, y, z), в

целом, не изменяются по сравнению с методами, описанными в двух предыдущих

пунктах. Однако необходимо иметь ввиду следующие особенности:

1. Установка позиций и опорных точек возможна только вручную, поскольку ме-

тод сравнения изображений в данном случае неприменим. Даже при ручной установ-

ке необходимы дополнительные ориентиры на изображении сопрягаемых видеокамер.

Иногда оператору требуется помощник, который перемещается по зоне наблюдения

и выполняет функции «ориентира».

2. В случае, если C2 лежит на большом расстоянии от оптической оси мастера

(см. рис. 2.14) или расстояние от мастера до объекта больше расстояния |C1C2| или

сравнимо с ним, линейность преобразования ~τ = As
m(x, y) соблюдается лишь в неко-

торой небольшой окрестности точки (x, y). Поэтому в данном случае требуется ввести
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большое количество опорных точек.

3. Модели для увеличения (2.26), (2.34) и для фокусировки (2.27), (2.32) не ра-

ботают, причем в данном случае функция γ = Γs
m(x, y, z) зависит от точки (x, y), в

которой объект находится на мастере. Чтобы учесть это, приходится вводить сетку на

координатах (x, y) мастере, и в каждом узле вручную проводить измерения функции

увеличения по приведённому выше алгоритму. Сетка требуется достаточно плотная,

обычно используется около 16 точек равномерной двумерной сетки.

4. Вероятность ошибочного наведения значительно возрастает при неправильном

определении рамки объекта на мастере.

Поясним последний пункт. На рис. 2.14 изображена ситуация, при которой только

верхняя половина объекта AB определена обработчиком мастер-камеры, расположен-

ной в точке C1. Чтобы навести слейв-камеру, установленную в точке C2, на объект, си-

стема сначала продолжит луч C1A
′ до пересечения с поверхностью M1M2M3M4 зоны

наблюдения мастера и получит положение объекта в физическом пространстве A′B′,

значительно отличающееся от действительного (иногда погрешность |AA′| бывает по-

рядка 10 метров). После наведения слейва по лучу C2B
′ объект, скорее всего, окажется

вне кадра. Погрешность выделения рамки не повлияла бы на точность наведения в

случае, если бы слейв находился бы вблизи оптической оси мастера, и выполнялось

бы ограничение |C1C2| ≪ |C2A|. В этом случае слейв-камера может быть наведена

по лучу C1B, который начиная с некоторого момента попадет в «пирамидный» конус

лучей проекции слейв-камеры, поэтому объект обязательно окажется в кадре, так как

точка B′ ∈ C1B.

Итак, использование удалённых пар камер мастер-слейв приводит к трудоёмкой

настройке и повышению погрешности наведения. Поэтому чаще всего поворотные ка-

меры ставят либо в одной точке с мастером, либо вблизи оптической оси сопряжённого

мастера (при этом необходимо, чтобы соблюдалось условие значительного превыше-

ния расстояния от мастера до объекта над расстоянием между слейвом и мастером).

Выводы

1. Определены основные понятия и термины, связанные с анализом систем тех-

нического зрения с применением семантического сжатия. Разработана модель вза-

имодействия распределённых модулей семантической обработки видеосигналов для

сопряжения видеокамер и для синхронизации данных на основе предложенного авто-

ром нового сетевого протокола информационного обмена.

2. Определены ограничения на количество видеоприборов, которые могут быть

сопряжены при помощи синхронизации данных. На основании теории сложности ал-

горитмов показано, что предельное количество видеокамер в кластере, обусловленное
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производительностью ЭВМ, оказалось значительно меньше, чем аналогичное ограни-

чение, обусловленное пропускной способностью ЛВС. Допустимое количество масте-

ров M и слейвов N , участвующих в сопряжении, определяется ограничениями M = 4

при N = 4, 3 6 M 6 9 при N = 3, 2 6 M 6 14 при N = 2 и M 6 28 при N = 1,

при N > 4 диспетчер не сможет обрабатывать видеокамеры на ЭВМ с эталонной

производительностью.

3. На основе полученных соотношений для сопряжения изображений двух непо-

движных видеокамер разработан способ подбора преобразования с помощью методов

оптимизации. Проанализированы ограничения метода: метод применяется при усло-

вии установки сопрягаемых камер в точках, находящихся близко друг от друга.

4. Исследованы особенности преобразования координат с изображения видеока-

меры на изображение карты. Использован метод приближения частичными суммами

ряда Фурье, определены простые способы подбора кусочных преобразований.

5. Разработан способ привязки изображения к плану местности при помощи ин-

струментов измерения расстояний, получено уравнение линии горизонта на изобра-

жении камеры.

6. Для случая сопряжения приборов технического зрения с помощью четырёх

опорных точек получена оценка погрешности сопряжения в виде линейных функци-

оналов погрешностей входных данных (см. формулу (2.20)).

7. Разработаны алгоритмы сопряжения поворотных видеокамер с приборами тех-

нического зрения для различных типов управления поворотным устройством. На ос-

нове математических моделей устройств управления разработаны алгоритмы, частич-

но автоматизирующие настройку сопряжения.

8. Предложен алгоритм составного перемещения поворотной видеокамеры, не

увеличивающий погрешность перемещения за счёт сравнения изображений. Полно-

стью автоматизирован выбор параметров управления фокусировкой и увеличением

объективов поворотных устройств на основе методов оптимизации и интерполяции.
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3. Исследование и разработка алгоритмов синхронизации,

управления и семантической обработки информации в си-

стемах технического зрения

3.1. Разработка алгоритмов синхронизации программных модулей обра-

ботки цифровых информационных массивов

В современных аналитических видеосистемах, как правило, применяются ком-

плексы видеокамер, как стационарных, так и установленных на поворотных плат-

формах. Используя методы семантического сжатия видеосигналов, программные мо-

дули могут выделить значимые события в поле зрения видеокамер и существенно

сократить объём информации, представляемой оператору видеосистемы через терми-

нальные модули.

Сопряжение видеокамер и синхронная обработка позволяет существенно повы-

сить детализацию информационных сообщений о событиях в поле зрения видеокамер

в тех случаях, когда за одними и теми же событиями производится наблюдение с

помощью нескольких различных видеокамер. Например, с помощью команд поворо-

та и управления увеличением видеокамер на поворотных платформах можно вместе

с видеозаписью событий представить детальное оптически увеличенное изображение

участников инцидентов. Однако для этого необходимо разработать алгоритмы син-

хронизации модулей обработки видеосигналов в составе одной видеосистемы семан-

тического сжатия.

Как следует из рис. 2.6 (с. 85), основную роль в синхронизации данных выполняет

диспетчер кластера видеокамер (см. также [128]). Именно в диспетчере должны быть

реализованы основные алгоритмы синхронизации программных модулей.

Введём обозначения, аналогичные обозначениям в п. 2.2:

1) M — количество мастер-камер в кластере диспетчера;

2) N — количество слейв-камер в кластере диспетчера;

3) n — среднее количество объектов на одной обзорной камере;

4) f — частота обработки кадров с обзорных камер;

5) TR — среднее время исполнения поворота слейвами.

Диспетчер примерно f раз в единицу времени получает данные об объектах от

каждого изM мастеров, и 1/TR раз в единицу времени сообщения о готовности выпол-

нять задания от N слейвов. Диспетчер работает в режиме ожидания сообщений, после

каждого сообщения он может выполнять действия для распределения заданий пово-

ротным камерам, чтобы они наводились на движущиеся объекты. Тем самым выпол-

няется синхронизация положения объектов между слейв-камерой и мастер-камерой,
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номер слейв-камеры и номер мастер-камеры, а также номер объекта выбирает дис-

петчер.

Существует несколько возможных алгоритмических схем работы диспетчера, в

каждой из схем тем или иным образом группируются пять элементарных блоков:

1) копирование данных об n объектах из сообщения от мастера во внутренние

переменные-массивы (разные для разных мастеров);

2) сортировка по приоритету объединения списка всех объектов, поступивших

диспетчеру (максимум Mn объектов, по n от каждой из M мастер камер) с целью вы-

делить наиболее вероятные объекты-кандидаты на фотографирование и поместить их

в начало общего списка (на данный момент приоритет определяется временем послед-

него снимка объекта, чем оно больше, тем приоритетнее объект для съёмки, только

что поступивший объект считается сфотографированным «бесконечно давно»);

3) проверка для n переданных от мастер-камеры и скопированных в блоке 1 объ-

ектов, может ли быть наведена на них какая-либо из N слейв-камер, т.е. можно ли

выполнить команду ПЕРЕЙТИ() для текущего положения объекта;

4) добавление n объектов из сообщения от мастера или из соответствующего

массива-копии в отсортированный список кандидатов, содержащий Mn элементов;

5) распределение Mn объектов из отсортированного списка по N поворотным ка-

мерам.

Введём для блоков 1 – 5 времена выполнения ti, i ∈ 1, 5. Для этих времён спра-

ведливы следующие соотношения (в наихудшем случае):

t1 = C1n (3.1)

t2 = C2Mn log2(Mn) (3.2)

t3 = C3Nn (3.3)

t4 = C4n log2(Mn) (3.4)

t5 = C5N !Mn (3.5)

Блоки 1 – 4 стандартны, подробное описание алгоритмов для них можно найти,

например, в источнике [140]. В этом источнике также приведены оценки времени ис-

полнения (3.1) – (3.4) в форме O(. . .). Пояснений требует лишь формула (3.5). Она

следует из устройства алгоритма пятого блока: для каждой перестановки из свобод-

ных слейв-камер происходит просмотр отсортированного списка объектов в порядке

убывания приоритета. Переход к следующему объекту в списке происходит в любом

случае, а переход к следующему слейву в рассматриваемой перестановке — только в

случае, если слейв может сфотографировать текущий объект (попутно для слейва по-

мечается, что ему может быть назначено задание на фотографирование данного объ-
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Получить сообщение

Тип
сообщения?

Блок 1: копирование

Блок 4: вставка с сохранением

сортировки

Блок 5: распределение заданий

Отослать задания

Пометить слейв свободным

объекты
мастера

слейв
готов к
заданию

сообщение
выхода

Рисунок 3.1. Блок-схема алгоритма диспетчера, функционирующего в цикле приёма
сообщений от обработчиков неподвижных камер.

екта). Из всех перестановок слейвов выбирается наилучшая, то есть та, при которой

сфотографировано наибольшее число объектов, которые находятся в верхней части

списка кандидатов. Поскольку в наихудшем случае свободно N слейвов, то необходи-

мо просмотреть N ! перестановок, для каждой перестановки происходит в наихудшем

случае один проход по списку из Mn объектов. Отсюда получаем формулу (3.5).

Рассмотрим три схемы работы диспетчера, изображённые на рисунках 3.1–3.5.

1. При каждом получении списка объектов от мастера диспетчер сохраняет объ-

екты (блок 1), добавляет их в отсортированный список (блок 4), и распределяет объ-

екты из отсортированного списка по свободным слейвам (блок 5). Все три операции

будут происходить с частотой fM . При получении сообщения от слейва диспетчер

лишь исправляет статус занятости слейва, что практически не занимает процессор-

ного времени. Таким образом, данный алгоритм большую часть времени работает в



120

Рисунок 3.2. Иллюстрация работы диспетчера в цикле приёма сообщений от обработчиков неподвижных камер.
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Получить сообщение

Тип
сообщения?

Блок 1: копирование

Блок 3: проверка слейвов

Есть
свободный?

Блок 2: сортировка

Блок 5: распределение заданий

Отослать задания

Пометить слейв свободным

объекты
мастера

Да

Нет

слейв
готов к
заданию

сообщение
выхода

Рисунок 3.3. Блок-схема алгоритма диспетчера, функционирующего в циклах приёма
сообщений от поворотных и неподвижных камер.

цикле приёма сообщений от мастеров. На рис. 3.1 изображена блок-схема алгоритма,

а рис. 3.2 иллюстрирует пример обработки сообщений.

2. При каждом получении списка объектов от мастера (частота fM) диспетчер

сохраняет объекты (блок 1), а затем проверяет, есть ли слейвы, которые могут дан-

ные объекты сфотографировать (блок 3). Только в случае, если последняя проверка

даёт положительный результат, запускаются процедуры сортировки списка объектов
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Рисунок 3.4. Иллюстрация работы диспетчера в цикле приёма сообщений от обработчиков неподвижных и поворотных камер.
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Получить сообщение

Тип
сообщения?

Блок 3: проверка слейвов

Есть
свободный?

Блок 1: копирование

Блок 4: вставка с сохранением

сортировки

Блок 5: распределение заданий

Отослать задания

Пометить слейв свободным

объекты
мастера

Да

Нет

слейв
готов к
заданию

сообщение
выхода

Рисунок 3.5. Блок-схема алгоритма диспетчера, функционирующего в цикле приёма
сообщений от поворотных камер.

(блок 2) и распределения заданий (блок 5). Последнее будет происходить со средней

частотой N/TR. Сообщение от слейва исправляет статус занятости слейва в диспетче-

ре. Работа алгоритма проводится как в цикле приёма сообщений от мастеров, так и в

цикле приёма сообщений от слейвов, см. блок-схему на рис. 3.3 и пример на рис. 3.4.

3. При получении объектов от мастера (частота fM) диспетчер производит про-
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Рисунок 3.6. Иллюстрация работы диспетчера в цикле приёма сообщений от обработчиков поворотных камер.
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верку на наличие свободных слейвов, которые могут сфотографировать данные объ-

екты, и при положительном результате (частота N/TR) сохраняет объекты (блок 1),

добавляет их в отсортированный список (блок 4) и раздаёт задания слейвам (блок 5).

Сообщение от слейва исправляет статус занятости. См. также рис. 3.5.

Каждая из схем обладает своими достоинствами и недостатками. Например, тре-

тья схема обладает задержкой обновления информации об объектах в диспетчере,

поскольку период обновления данных для этого алгоритма равен в среднем TR/N ,

что обычно значительно меньше, чем 1/fM для двух других вариантов работы. Это

может привести к потери точности наведения поворотных камер из-за задержки син-

хронизации данных о положении объектов при сбоях передачи данных по ЛВС.

Из всех характеристик главным критерием качества алгоритма синхронизации яв-

ляется скорость его работы. Чем быстрее выполняются циклы синхронизации между

ожиданием сообщений, тем для большего количество обработчиков видеокамер в кла-

стере диспетчер может синхронизировать данные о положении объектов. Рассмотрим

вычислительную сложность каждой схемы.

3.2. Теоретическая оценка быстродействия алгоритмов синхронизации

Для того, чтобы оценить вычислительную сложность для каждой из трёх алго-

ритмических схем синхронизации, мы будем пользоваться формулами (3.1) – (3.5)

для времён t1, t2, t3, t4, t5, обозначающих время выполнения элементарных блоков,

введённых в предыдущем пункте.

Рассмотрим свойства констант C1, C2, C3, C4, C5, задействованных в данных фор-

мулах. Заметим, что C3 = C5, поскольку речь идёт об одной и той же элементарной

операции проверки возможности выполнения команды ПЕРЕЙТИ(). По той же причине

C2 ≈ C4, в данном случае элементарной операцией является операция сравнения двух

времён при сортировке или поиске. Кроме того, при помощи счетчика тактов эталон-

ного процессора были экспериментально измерены константы формул (3.1) – (3.5):

C1 = 0, 1мкс,

C2 = C4 = 2мкс,

C3 = C5 = 1мкс.

(3.6)

Относительная погрешность измерения констант составляет 20%.

Для каждой схемы можно определить доли δ1, δ2, δ3 процессорного времени, в

течение которого будет работать диспетчер на ЭВМ с эталонной вычислительной
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double n=50,f=25,TR=0.5;
double C1=0.1e-6,C2=2e-6,C5=1e-6;
double t1,t2,t3,t4,t5;
double T1,T2;
double Nfact;
for (long M=1;M<100;M++){

Nfact=1;
for (long N=1;N<=M;N++) {

Nfact=Nfact*N;
t1=C1*n;
t2=C2*M*n*log(M*n)/log(2.0);
t3=C5*N*n;
t4=t2/M;//=C2*n*log(M*n)/log(2.0);
t5=C5*Nfact*M*n;
T1=f*M*(t1+t4+t5);
T2=f*M*(t1+t3)+(t2+t5)*N/TR;
if (T1<T2)

printf("Не выполняется для: M=%i, N=%i\n",M,N);
}

}

Рисунок 3.7. Программа, проверяющая неравенство δ1 > δ2.

мощностью:

δ1 = fM(t1 + t4 + t5), (3.7)

δ2 = fM(t1 + t3) +
1

TR
N(t2 + t5), (3.8)

δ3 = fMt3 +
1

TR
N(t1 + t4 + t5). (3.9)

В приведённых формулах учтена частота работы блоков, выполняемых при поступле-

нии сообщений о положении объектов от обработчиков мастер-камер, что происходит

fM раз в секунду, а также частота работы блоков, которые работают при появлении

свободного слейва, что происходит в среднем N/TR раз в секунду.

Пользуясь тем, что N 6 M , а также тем, что максимальная частота анализа

кадров обработчиками мастер камер является f = 25с−1, а минимальное время вы-

полнения команды ПЕРЕЙТИ() является TR = 500мс, мы можем получить неравенства

δ1 > δ2 > δ3. (3.10)

Неравенство δ1 > δ2 нелегко обосновать теоретически, однако тот факт, что оно

выполняется для M ∈ [0, 100], можно подтвердить при помощи небольшой программы

на языке C, см. рис. 3.7.
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Смысл данной программы в полном переборе всех допустимых пар (N,M), для

которых нужно проверить неравенство δ1 > δ2: если при каких то значениях неравен-

ство не выполняется, программа выводит сообщение: «Не выполняется для: M=...,

N=...». Ни для одной пары (N,M) при выполнении данной программы такого сооб-

щения не было выведено, что подтверждает справедливость неравенства.

Подобный подход можно использовать для проверки бо́льшего диапазона значе-

ний, однако при этом необходимо дополнительно реализовать арифметику и логику

чисел с «бесконечной» точностью. То есть необходимо ввести числа, точность которых

ограничена лишь объемом ОЗУ для ЭВМ, а также реализовать операции сложения,

вычитания, умножения, взятия логарифма и сравнения над этими числами.

Покажем, что δ2 > δ3:

δ2 − δ3 = (fM − N

TR
)t1 +

N

TR
(t2 − t4),

оба слагаемые положительны, потому что из неравенств

M > N

f > 1/TR

после умножения левых и правых положительных частей следует неравенство

fM > N/TR,

а из равенства t2 =Mt4 и неравенства M > 1 следует t2 > t4.

Итак, для вычислительной сложности рассмотренных трёх алгоритмов синхрони-

зации выполняется неравенство (3.10). Однако несмотря на то, что третья схема опти-

мальна по затрате процессорного времени, она обладает качественным недостатком:

информация об объектах обновляется в диспетчере с задержкой, что может приве-

сти к нежелательным последствиям. Поэтому третья схема используется только для

кластеров с одной слейв-камерой (N = 1), во всех остальных случаях следует исполь-

зовать вторую алгоритмическую схему.

3.3. Вычисление угла упреждения и разработка алгоритмов управления

наведением поворотных видеокамер на движущийся объект

Основное назначение модулей диспетчера и обработчиков слейва заключается в

том, чтобы поворотные устройства автоматически наводились на движущиеся объек-

ты (см. [141]). Диспетчер производит синхронизацию необходимых исходных данных

для наведения (положение и скорость) между семантическим обработчиком мастер-

камеры, который выделил движущийся объект, и обработчиком слейв-камеры, кото-

рый должен провести наведение на объект на основании данных, переданных ему от
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диспетчера. Введём для данных обработчиков видеокамер индексы: пусть m — индекс

обработчика неподвижной камеры, и s — индекс обработчика поворотной камеры.

Пусть {xmin, ymin, xmax, ymax} — координаты, ограничивающие положение объекта

на изображении мастер-камеры, т.е. изображение объекта-цели является подмноже-

ством минимального ограничивающего прямоугольника вида [xmin, xmax]×[ymin, ymax].

Введём обозначения ~r1 = (x1, y1) для текущего положения той точки изображения

объекта в координатах мастера m, в которую требуется произвести наведение, и

~τ 1 = (α1, β1) для соответствующих этому положению углов азимута и склонения по-

воротной камеры s. Из всего множества точек движения объекта координаты наведе-

ния ~r1 выбираются исходя из постановки задачи. В простом случае можно в качестве

~r1 выбрать «центр масс» множества точек объекта. Если обработчик мастер-камеры

выполняет анализ движущихся объектов, то точка наведения может выбираться так,

чтобы она попадала в область изображения лица для людей и в область изображения

номерных знаков для автомобилей. Например, если применяются алгоритмы клас-

сификации по категориям «человек», «автомобиль», «группа людей» (см. п. 1.4), то

после того, как анализ выявил принадлежность объекта к классу «человек», область

лица можно установить чуть ниже координат ((xmin + xmax)/2, ymax). Для объектов

класса «автомобиль» требуется применить какой-либо алгоритм локализации номер-

ного знака на изображении, например, подобный [142]. Алгоритмы локализации дан-

ного типа применимы только в случае, если разрешение изображения объекта доста-

точно велико. Поэтому простой выбор средней точки объекта — самый надёжный,

хоть и не самый оптимальный с точки зрения назначения поворотных устройств в

аналитических видеосистемах.

Скорость объекта, определяемую перемещением в координатах точек изображения

за секунду, будем обозначать ~v = (vx, vy), текущие угловые координаты положения

камеры, из которого начинается процесс наведения, обозначим ~τ 0 = (α0, β0) (текущие

азимут и склонение), γ0 (текущая координата увеличения), f0 (текущая координата

фокусировки). Пусть T (~τ , ~τ 0, γ, γ0, f, f0) — функция времени, необходимого для пере-

мещения поворотной камеры из координат ~τ 0, γ0, f0 в координаты ~τ , γ, f .

Обозначим ~τ = A(~r) — линейное преобразование сопряжения мастер-камеры m

и слейв-камеры s (см. п. 2.6), которое действует в окрестности точки ~r и переводит

координаты мастер-камерыm в соответствующие координаты углов ~τ слейв-камеры s,

тогда, продифференцировав обе части данного соотношения, получим ~ω = (ωα, ωβ) =

= A(~v) — угловая скорость объекта относительно точки закрепления камеры.

Для наведения на объект обработчик слейв-камеры должен выбрать координаты

на мастере ~r, в которые нужно перейти, а также нужное увеличение относительно

мастера z. Увеличение выбирается так, чтобы, по возможности, объект занимал фик-
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сированную, например, две трети, часть от изображения на поворотной камере по

высоте или ширине. При известных xmin, ymin, xmax, ymax увеличение z вычисляется

по формуле(см. [143]):

z =
2

3
min

(
w

xmax − xmin + 1
,

h

ymax − ymin + 1

)
. (3.11)

Здесь w× h — разрешение изображения видеокамер, а единица в знаменателях появ-

ляется из-за дискретности значений xmin, ymin, xmax, ymax.

Поворот в позицию с увеличением z и координатами ~r = (x, y) выполняется с

помощью команды ПЕРЕЙТИ(s,m,x,y,z), см. п. 2.6. Если в качестве ~r передать обра-

ботчик слейва использует текущие координаты положения объекта ~r1, то за время

выполнения поворота T (~τ 0, ~τ 1, γ0, γ(z), f(z) объект успеет изменить своё положение

и, скорее всего, окажется не в кадре поворотной видеокамеры. Поэтому необходимо

делать некоторое упреждение. В первом приближение скорость ~v постоянна, поэтому

координаты ~r, в которые нужно произвести наведение, удовлетворяют уравнениям

{
~r − ~r1 = ~vT (~τ , ~τ 0, γ, γ0, f, f0)

~τ = A(~r), ~τ 1 = A(~r1)
(3.12)

Применяя преобразование A к первому уравнению системы и выполнив подстановки,

получим уравнение

~τ − ~τ 1 = ~ωT (~τ , ~τ 0, γ, γ0, f, f0) (3.13)

В общем случае функция T имеет сложную зависимость от своих переменных, и

уравнение (3.13) необходимо решать численно. Поскольку численное решение урав-

нения — это минимизация невязки, то задача поиска решения ~τ для (3.13) сводится

к задаче

min
~τ

‖~τ − ~τ 1 − ~ωT (~τ , ~τ 0, γ, γ0, f, f0)‖, (3.14)

где ‖·‖ — какая-либо норма в R2, например, евклидова. Заметим, что из уравне-

ния (3.13) следует, что

~τ = ~τ 1 + ~ωt, (3.15)

где t — некоторая величина, измеряемая в секундах. Время поворота камеры TR менее

4 секунд, поэтому t 6 4с. Следовательно, подставив (3.15) в (3.14), получим одномер-

ную задачу

min
t64с

|t− T (~τ 1 + ~ωt, ~τ 0, γ, γ0, f, f0)|. (3.16)

Воспользовавшись, например, методом золотого сечения (см. [144]), эту задачу можно

решить за шесть итераций. Погрешность решения t будет менее 100 миллисекунд, что

следует из соотношения
4с

26
≈ 63мс. Обычно функция T нам не известна с бо́льшей
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точностью, и, кроме того, время синхронизации положения между слейвом и ма-

стером сопоставимо с данной величиной из-за того, что частоте обработке кадров

f = 25с−1 соответствует междукадровый интервал 40мс. Поэтому большее количе-

ство итераций не повысит действительной точности решения, даже если возможно

уменьшить невязку (3.16).

Получив решение задачи t для (3.16), мы найдем координату упреждения ~r =

A(~τ 1 + ~ωt) для команды ПЕРЕЙТИ().

В некоторых случаях можно получить аналитическое решение системы (3.13). На-

пример, если поворотное устройство последовательно изменяет координаты при пе-

реходе из позиции в позицию, то функция T можно определить линейной моделью

T (~τ , ~τ 0, γ, γ0, f, f0) = Tα|α−α0|+Tβ|β−β0|+Tγ|γ− γ0|+Tf |f − f0|+C0 = Tα|α−α0|+
+ Tβ|β − β0|+C, где Tα, Tβ, Tγ, Tf — характеристики скорости изменения координат,

C0 — постоянная, связанная с задержками передачи сообщений между диспетчером и

обработчиками, а также с задержкой передачи команды в поворотное устройство по

линии управления, и C — объединение трёх слагаемых, не связанных с изменением

угловых координат, и поэтому не влияющих на решение исходной системы. Считая

для определённости {
α > α0,

β > β0,
(3.17)

мы можем решить систему (3.13) относительно α и β:

{
α− α1 = ωα(Tα(α− α0) + Tβ(β − β0) + C),

β − β1 = ωβ(Tα(α− α0) + Tβ(β − β0) + C),

⇓




α = α1 + ωα · Tα(α1 − α0) + Tβ(β1 − β0) + C

1− ωαTα − ωβTβ
,

β = β1 + ωβ ·
Tα(α1 − α0) + Tβ(β1 − β0) + C

1− ωαTα − ωβTβ
.

(3.18)

Если решение (3.18) удовлетворяет условиям (3.17), то оно является решением

нашей исходной задачи ~r = A(~τ), где ~τ = (α, β). В противном случае необходимо

рассмотреть остальные три варианта раскрытия модулей.

Система (3.13) может не иметь решений для всех четырёх случаев раскрытия

модулей функции T . Такой результат следует интерпретировать как случай недо-

статочной скорости поворота камеры для того, чтобы успеть повернуться в сторону

объекта-цели (объект «убегает» от камеры).

Итак, прямым следствием системы (3.12) является то, что только в частном случае

при ~v = 0 (объект неподвижен) при наведении можно использовать текущее положе-

ние объекта ~r1 в качестве параметра команды ПЕРЕЙТИ(), так как при ~v = 0 получаем
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~r − ~r1 = 0. Во всех остальных случаях требуется упреждение для уменьшения по-

грешности наведения поворотных видеокамер на движущийся объект. Покажем, что

именно вычисление упреждения вносит наиболее значительный вклад в погрешность

наведения.

3.4. Теоретическая оценка погрешностей наведения, обусловленных вре-

менными параметрами управления поворотными камерами

В ряде случаев при наведении слейв может «промахиваться» мимо объекта-цели

из-за неточностей различного характера. Если погрешность наведения достаточно ве-

лика по отношению к выбранному углу зрения поворотной камеры (т.е. по отношению

к увеличению на поворотной камере), то на изображении слейв-камеры не окажется

объекта, на который производилось наведение.

Погрешность наведения обусловлена следующими факторами:

1) из-за неточных входных данных и из-за применения приближения малых углов

преобразование координат ~τ = A(~r), переводящее координаты объекта ~r = (x, y) на

мастер-камеры в азимут и склонение ~τ = (α, β) оптической оси слейва, вычислено

неточно;

2) погрешность метода решения уравнения (3.13) оказывается достаточно велика,

чтобы влиять на точность упреждения;

3) алгоритм выделения движения на изображении мастер-камеры может выдать

ошибочные данные о положении объекта на кадре, поэтому скорость объекта ~v, яв-

ляющаяся параметром уравнения упреждения (3.13), тоже вычисляется с погрешно-

стью;

4) уравнение вычисления упреждения (3.13) рассчитано на движение объекта с

постоянной скоростью и не учитывает того, что объект может ускоряться и замед-

ляться;

5) расчётное время поворота слейв-камеры T отличается от действительного в

силу случайной природы некоторых процессов управления поворотным устройством.

Оценим влияние этих факторов на точность наведения при условии, что мастер-

камера и слейв-камера закреплены в одной точке, а углы упреждения определяются

формулами (3.18), т.е. функция времени наведения определяется формулой

T (~τ , ~τ 0, γ, γ0, f, f0) = Tα|α− α0|+ Tβ|β − β0|+ C. (3.19)

Оценка погрешности преобразования координат изображения мастер-

камеры в углы наведения. Будем считать, что разрешение изображения мастера

равно w × h, w = 352, h = 288. Введём систему координат с началом в центре изоб-

ражения мастера и предположим, что для преобразования ~τ = A(~r) задана сетка
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Рисунок 3.8. Точные углы азимута и склонения для точки (x, y).

из пяти опорных точек, четыре точки располагаются в углах изображения мастера

C1(−w/2, h/2), C2(w/2, h/2), C3(w/2,−h/2), C4(−w/2,−h/2) и одна точка в центре

изображения C0 с координатами (0, 0).

Расчёт коэффициентов преобразования A(~r) производится на основании уравне-

ния (2.25) отдельно для каждого треугольника из триангуляции, произведённой на

опорных точках, см. п. 2.6. Поэтому, если погрешность исходных данных в точках Ci,

i = 0, 1, 2, 3, 4, равна, соответственно, (∆αi,∆βi), то из свойств аффинного преобра-

зования следует, что для вектора ~r = (x, y) погрешность преобразования ~τ = A(~r)

определяется формулами

∆α 6





max(∆α0,∆α1,∆α2), (x, y) ∈ ∆C0C1C2,

max(∆α0,∆α2,∆α3), (x, y) ∈ ∆C0C2C3,

max(∆α0,∆α3,∆α4), (x, y) ∈ ∆C0C3C4,

max(∆α0,∆α4,∆α1), (x, y) ∈ ∆C0C4C1,

∆β 6





max(∆β0,∆β1,∆β2), (x, y) ∈ ∆C0C1C2,

max(∆β0,∆β2,∆β3), (x, y) ∈ ∆C0C2C3,

max(∆β0,∆β3,∆β4), (x, y) ∈ ∆C0C3C4,

max(∆β0,∆β4,∆β1), (x, y) ∈ ∆C0C4C1.

(3.20)

Таким образом, точность подбора коэффициентов преобразования (2.24) напрямую

определяется погрешностью входных данных, поэтому можно оценивать погрешность

∆~τ преобразования A(~r) внутри выпуклой оболочки опорных точек как

‖∆~τ‖ 6 max
i

‖(∆αi,∆βi)‖. (3.21)

Для того, чтобы оценить погрешность линейной модели преобразования (2.24),

приведём точные формулы для ~τ = A(~r), воспользовавшись тем, что мастер и
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слейв закреплены в одной точке. Допустим, нам известны углы азимута и склоне-

ния ~τ 0 = (α0, β0) для центра изображения мастер-камеры. Найдём углы ~τ = (α, β),

соответствующие смещению-точке ~r = (x, y) на изображении мастера.

Для решения этой задачи рассмотрим рис. 3.8. На нём синим цветом схематично

отображена плоскость изображения мастер-камеры с системой координат Cxy, где

C — центр изображения, а точка D′(x, y) — точка, соответствующая вектору сме-

щения ~r = (x, y). Точки F ′ и E ′ являются проекциями точки D′ на оси Cx и Cy,

соответственно, т.е. координаты точек F ′(x, 0) и E ′(0, y). Пусть точка O является ме-

стом крепления поворотной видеокамеры и мастер-камер. Введём сферу в центре с

точкой O, которая касается плоскости CE ′D′ изображения мастера в точке C, т.е. ра-

диус сферы R = |OC|. Введём также плоскость, относительно которой отсчитывается

угол склонения поворотной камеры, т.е. такую плоскость, которая проходит через

точку О , и углы между прямыми OC, OD′ и данной плоскостью равны β0, β, соот-

ветственно. Пусть прямая, проходящая через точку O и перпендикулярная плоскости

отсчёта склонения, пересекает сферу в точке P , которую мы будем называть полисом

сферы. Угол между плоскостями OPC и OPD′ является разностью углов азимута

α0 и α, т.е. ( ̂OPC,OPD′) = α − α0 при выборе направления отсчёта против часовой

стрелки относительно вектора
−→
OP . Обозначим пересечения прямых OD′, OE ′, OF ′

с рассматриваемой сферой как, соответственно, точки D, E, F , а также пересечение

плоскостей OPD, OPE, OPF c окружностью, образованной пересечением плоско-

сти отсчёта со сферой, как, соответственно, точки Ê, D̂, Ê. Не сложно показать, что

плоскости OPC и OPE совпадают, и что ∠ÊOC = β0, ∠D̂OD = β, ∠ÊOD̂ = α − α0.

Дополнительно введём обозначения для углов ∠COF = ϕ, ∠COE = ψ, ∠EOD = ϕ′,

а также для углов, составляющих половины горизонтального и вертикального углов

зрения мастер-камеры, соответственно, ϕh и ψv.

Справедлива следующая последовательность выражений:

tgϕ =
|CF ′|
|OC| =

x

R
=

x

w/2
· w/2
R

=
x

w/2
tgϕh, аналогично, (3.22)

tgψ =
y

h/2
tgψv, (3.23)

|OD′| =
√
|OC|2 + |CE ′|2 + |CF ′|2, |OC| = R,

|CE ′| = |OC| tg∠COE ′ = R tgψ, |CF ′| = |OC| tg∠COF ′ = R tgϕ,

|OE ′| = |OC|
cos∠COF ′ =

R

cosψ
, следовательно,

sinϕ′ =
tgϕ√

1 + tg2 ϕ+ tg2 ψ
=

|D′E ′|
|OD′| , и, аналогично, (3.24)

cosϕ′ =
1

cosψ
√
1 + tg2 ϕ+ tg2 ψ

=
|OE ′|
|OD′| . (3.25)
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Рассмотрим сферический треугольник PDE. В нём известны все три стороны-

дуги
⌢
PE= 90◦ − (β0 − ψ),

⌢
DE= ϕ′,

⌢
PD= 90◦ − β, а также двугранные углы

∠EPD = ( ̂OPE,OPD) = α − α0 и ∠PED = ̂(OD′E ′, OE ′P ) = 90◦, поскольку

E ′D′‖CF ′, CF ′⊥OE ′P , следовательно, E ′D′⊥OE ′P , и из того, что E ′D′⊂OE ′D′, сле-

дует OE ′D′⊥OE ′P .

По теореме косинусов для сферического △PDE

cos
⌢
PD = cos

⌢
PE · cos

⌢
ED +sin

⌢
PE · sin

⌢
ED · cos∠PED, т.е.

sin β = sin(β0 − ψ) cosϕ′,

и по теореме синусов для сферического △PDE

sin
⌢
DE

sin∠DPE
=

sin
⌢
PD

sin∠PED
, т.е. sin(α− α0) =

sinϕ′

cos β
.

Таким образом, из соотношений для сферического треугольника следуют формулы

α = α0 + arcsin
sinϕ′

cos β
,

β = arcsin (cosϕ′ · sin(β0 − ψ)) , (3.26)

подставив в которые соотношения (3.22)–(3.25), получим окончательное решение, за-

висящее от w, h, ϕh, ψv, ~r = (x, y).

Пользуясь точной формулой (3.26) при известном азимуте α0 и склонении β0, воз-

можно вычислить углы, соответствующие углам изображения мастера C1, C2, C3, C4,

а затем для каждого из △CC1C2, △CC2C3, △CC3C4, △CC1C4 вычислить коэффи-

циенты аффинного преобразования (2.24). Максимум нормы разности преобразова-

ний (3.26) и (2.24) на множестве точек изображения мастер-камеры является оценкой

погрешности, обусловленной применением линейного приближения. При применении

аналитического подхода к поиску максимума отклонения возникает задача поиска ну-

лей производной разности функций вида (3.26) и (2.24), т.е. возникает необходимость

решения трансцендентных уравнений. При помощи современной вычислительной тех-

ники задачу поиска максимума отклонения можно решить с помощью полного перебо-

ра значений отклонения во всех точках изображения с разрешением w×h = 352×288.

Рассмотрим, например, частный случай установки мастер-камеры с горизонталь-

ном углом зрения, равным 30◦, т.е. ϕh = 15◦ и ψv = arctg(
288

352
tgϕh) ≈ 12,4◦. При этом

эффективная дальность наблюдения составляет 70м, и при высоте подвеса камеры

5м в предположении, что поверхность наблюдения является плоскостью и перпенди-

кулярна линии подвеса, угол склонения β0 оптической оси мастер-камеры примерно

равен 25◦. На рис. 3.9 изображён трёхмерный график модуль разности векторов ~τ

для значений, полученных с помощью формул (3.26) и (2.24), вычисленных для всех
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Рисунок 3.9. График зависимости нормы разности ‖~∆τ‖ точного и линейного преоб-
разований от координат изображения (x, y).
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Рисунок 3.10. Зависимость ‖∆~τ‖ от наклона оптической оси β0 в градусах.

точек изображения мастера. С помощью анализа этого графика можно оценить мак-

симальную погрешность для данных условий: ‖∆~τ‖ < 0,5◦.

На графике 3.9 прослеживается закономерность: чем больше угол β склонения оп-

тической оси слейва, тем больше погрешность линейной модели. С помощью автома-

тического анализа данных для крупного массива числовых значений нормы разности

‖∆~τ‖ во всех точках изображения для различных углов β0 наклона оптической оси

мастера, можно эмпирически установить зависимость ‖∆~τ‖ от β0 при горизонтальном

угле зрения мастер-камеры, равным 30◦, см. график на рис. 3.10.

Из анализа полученного графика следует, что погрешность линейного приближе-

ния превышает 5◦ при углах β0 > 50◦. Угол 5◦ соответствует примерным линейным

размерам 4м на расстоянии 50м от точки закрепления камер. Таким образом, для

получения изображения, например, человека, с помощью наведения слейва, при дан-

ных параметрах необходимо установить увеличение, при котором угол зрения слейв-

камеры не меньше 5◦, что сильно ограничивает разрешение изображения.

С другой стороны, погрешность линейного приближения не превышает 2◦ при

β0 < 30◦, поэтому в данном случае оно применимо.
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Рисунок 3.11. Положение объекта в центре изображения мастер-камеры.

При высоких значениях погрешности линейных формул, приближающих сопря-

жение поворотной и неподвижной видеокамер в определённой точке изображения ма-

стера, необходимо ввести для данной точки изображения дополнительную опорную

точку R (см. п. 2.6), либо, если сопрягаемые камеры расположены в одной точке,

воспользоваться точными формулами (3.26). Точный расчёт сопряжения для камер,

установленных на расстоянии, на практике не применяется из-за сложности точной

оценки параметров взаимного расположения камер.

Влияние временных параметров на погрешность наведения. Согласно

уравнению (3.13), временные параметры, определяющие управление поворотной ка-

мерой при наведении на объект — это скорость перемещения объекта по изображению

~v, измеряемая в пикселах за секунду, и время исполнения команды наведения T . Оце-

ним влияние этих параметров на погрешность вычисления азимута и склонения оси

поворотной камеры при наведении на движущийся объект.

Пусть горизонтальный угол зрения мастер-камеры равен 30◦, т.е. ϕh = 15◦,

ψv = 12,5◦, наблюдение ведётся на дистанции до L = 100м, поверхность наблюдения

плоская, высота установки камеры H = 5м. Пусть объект, на который производится

наведение — это человек, находящийся в центре изображения мастер-камеры. С помо-

щью чертежа на рис. 3.11 можно рассчитать расстояние L1/2 от объекта до основания

подвеса мастер-камеры:

L1/2 = H · tg(arctg L
H

− ψv) ≈ 20м.

Таким образом, угловой размер человека в центре изображения примерно равен

0,4м/20м = 0,02рад. Поэтому ширина изображения человека равна 352 · 0, 02
2ϕh

≈ 13

пикселам. Определение положения движущегося объекта с помощью алгоритма вы-

деления движения может быть не точным из-за свойств изображения: например, ал-

горитм может выделять только левую сторону человека или только правую. В случае

скачка в определении человека с левой стороны на правую и наоборот максимальную

погрешность вычисления горизонтальной составляющей скорости ~v можно оценить по

порядку величины как ∆vx = 10с−1 ≈ 13 пикселов/с. Отсюда возникает погрешность
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наведения по азимуту, если принять, что время позиционирования камеры равно од-

ной секунде

∆α ≈ 0,02рад ≈ 1◦,

поскольку данный угол соответствует скорости перемещения объекта по изображе-

нию ∆vx в течение одной секунды. В общем случае погрешность наведения пропор-

циональна произведению времени исполнения команды T и погрешности измерения

скорости ∆vx.

При изменении скорости в момент выполнения команды наведения погрешность

определения скорости можно оценить как ∆~v = ~aT , где ~a — ускорение изображения,

измеряемое в пикселах в секунду за секунду. Оценивая физическое ускорение объекта

как 10м/c2 (примерное ускорение бегуна в первую секунду на дистанции 100м) и пред-

полагая, что это ускорение полностью перейдет в компоненту ускорения изображения

ax (это так в случае движения перпендикулярно оси камеры), получим

ax ≈ 352

2L1/2 tgϕh

· 10м/c2 ≈ 330с−2,

т.е. за секунду ∆vx = 330с−1, что приведёт к погрешности примерно ∆α ≈ 30◦ для ази-

мута. Но на практике невозможно постоянно выдерживать такие ускорения, поэтому

погрешности данной величины обычно не достигаются, или достигаются в единствен-

ной из нескольких попыток наведения на один объект.

Расчётное время выполнения T команды наведения может отличаться от действи-

тельного в силу различных причин: задержки передачи сигналов в ЛВС, задержки

передачи сигналов в линии управления, задержки, обусловленные работой процедур

передачи сигналов низкого уровня в операционной системе, которая управляет про-

граммными модулями аналитической видеосистемы. Погрешность времени выполне-

ния может составлять до 0,2с для некоторых поворотных видеокамер. При физиче-

ской скорости рассматриваемого объекта 10м/с (быстрый бег), движущегося перпен-

дикулярно оптической оси, скорость изображения будет горизонтальна,

vx =
352

2L1/2 tgϕh

· 5м/с ≈ 330 пиксела/с,

поэтому погрешность ∆T = 0,2с обозначает погрешность определения положения

объекта 330 · 0,2 ≈ 66 пикселов, что примерно соответствует погрешности азимута

∆α = 5◦.

Вывод соотношения для общей погрешности наведения. Чтобы получить

общую формулу для погрешности, введем обозначение ~τ = A(~r) для преобразования

по формулам (2.24) и ~̂τ = Â(~r) для преобразования по формулам (3.26). Пусть T ,

~v —точные значения времени наведения и средней скорости изображения объекта за
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время наведения, соответственно, а ∆T , ∆~v — отклонения от точных значений из-за

ошибки оценки. Воспользовавшись уравнением (3.13) и линейностью преобразования

A, получим выражение для оценки отклонения ∆~τ = (∆α,∆β) действительных зна-

чений углов азимута и склонения от расчётных:

∆~τ = A(~r0 + (~v +∆~v)(T +∆T ))− Â(r0 + ~vT ) ≈
≈ ∆A(~r) + A(T∆~v) + A(~v∆T ), (3.27)

где ~r = ~r0 + ~vT — точное конечное положение объекта, ~r0 — начальное положение

изображения объекта на кадре, и ∆A = A(~r)− Â(~r).

Таким образом, погрешность наведения ‖∆~τ‖ складывается из трёх величин: по-

грешности, обусловленной неточной моделью преобразования координат мастера в

углы азимута и склонения оптической оси слейв-камеры и неточными входными дан-

ными процедуры сопряжения (первое слагаемое формулы (3.27)), погрешности, обу-

словленной неточной оценкой скорости с погрешностью ∆~v (второе слагаемое форму-

лы (3.27)), и погрешности, возникающей из-за погрешности ∆T расчётного времени

поворота (третье слагаемое формулы (3.27)).

Погрешность ввода данных при сопряжении можно не учитывать, поскольку она

соответствует небольшим значениям углов. Погрешность линейной модели преобра-

зования A можно устранить, либо применяя точные формулы расчёта углов, либо

используя опорные точки в точках изображения с максимальной погрешностью. По-

грешность, возникающая из-за погрешностей ∆~v и ∆T , обусловлена современным

состоянием теории алгоритмов, анализирующих движущиеся объекты, а также тех-

ническими характеристиками поворотных видеокамер и вычислительных машин, по-

этому в рамках данной работы она не может быть устранена. Из оценок, приведённых

выше, следует, что для человека, находящегося в центре изображения мастер-камеры,

у которой угол зрения 30◦ и дальность наблюдения L = 100м, при условии, что он

двигается с большим ускорением и скоростью, но скорость, тем не менее, определе-

на точно, погрешность наведения может складываться из величин 15◦ (движение с

ускорением) и 5◦ (∆T = 0,2с), т.е.

‖∆~τ‖ < 20◦.

При погрешности наведения поворотной камеры 20◦ и угле зрения сопряжённой

неподвижной камеры 30◦ увеличение изображений объектов более, чем в 1,5 раза,

невозможно при условии требования высокой достоверности сопоставления изобра-

жений. Либо необходимо ограничить угол зрения поворотной камеры снизу, то есть

получать изображения невысокого разрешения по сравнению с изображением масте-

ра, либо учитывать высокую долю промахов при наведении на объект с углом зрения,

в несколько раз меньшим, чем погрешность наведения.
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Данная оценка приведена для наихудших условий, и выполняется на практике ред-

ко. Кроме того, промахи наведения, обусловленные погрешностью определения ско-

рости объекта и времени наведения, можно частично компенсировать многократными

попытками наведения, поскольку погрешности ∆~v и ∆T носят случайный характер.

3.5. Определение критерия идентичности объектов на изображениях ви-

деокамер

Одной из актуальных задач видеосистем семантического сжатия является зада-

ча повторной идентификации объектов, обнаруженных на одной из видеокамер, при

появлении в поле зрения других видеокамер. Повторная идентификация позволяет

представить операторам видеосистемы важную семантическую информацию о пере-

мещении объектов в зоне контроля видеосистемы в целом. Если области обзора ви-

деокамер не пересекаются, то повторная идентификация затруднена и не может быть

выполнена с высокой достоверностью. Однако для видеокамер с пересекающимися

зонами обзора в данной работе представлен простой и достачно надёжный алгоритм

повторной идентификации на основе сопряжения и синхронизации.

Алгоритм сопоставления объектов в общей зоне зрения на изображении неподвиж-

ных видеокамер основан на том, что известна функция преобразования ~uds(~v) (фор-

мула (2.8), см. п. 2.3), которая позволяет получить для точки ~v = (x, y) мастера № s

соответствующую ей точку на мастере № d, при условии, что точка ~v = (x, y) находит-

ся в зоне пересечения на изображении. В противном случае функция не определена.

Можно было бы задать функцию ~u(~v) табличным способом, но в этом случае на-

стройка системы оказалась бы очень громоздкой. В п. 2.3 указан способ вычисления

функции ~uds(~v), если заданы её значения в небольшом количестве точек (x, y). При

этом необходимо учитывать погрешность вычисления преобразования из-за неточно-

сти данных исходной сетки преобразования и из-за несовершенства метода подбора

преобразования. На практике отклонение преобразования ~u(~v) не превышает двух

градаций координат изображения мастер-камеры.

Рассмотрим критерий сопоставления объектов, выделенных семантическими об-

работчиками мастер-камер в общей зоне обзора (см. [145]). Для этого будем обозна-

чать объекты, выделенные обработчиком неподвижной видеокамеры, в виде набора

параметров (n, xmin, ymin, xmax, ymax), где n — порядковый номер объекта за всё вре-

мя работы обработчика мастер-камеры, а [xmin, xmax] × [ymin, ymax] — минимальный

прямоугольник, ограничивающий объект № n на изображении мастер-камеры. Пусть

обработчик s обнаружил множество объектов {(ns, xsmin, y
s
min, x

s
max, y

s
max)}, а обработ-

чик d обнаружил множество объектов {(nd, xdmin, y
d
min, x

d
max, y

d
max)}. При помощи со-

общения ПЕРЕДАЧА_ОБЪЕКТОВ обработчик d может передать информацию об объектах

в обработчик s, синхронизируя таким образом информацию о положении объектов
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между обработчиками. Пусть

xs =
xsmin + xsmax

2
,

ys =
ysmin + ysmax

2
,

~vs = (xs, ys),

xd =
xdmin + xdmax

2
,

yd =
ydmin + ydmax

2
,

~vd = (xd, yd),

(3.28)

тогда для каждой пары объектов (ns, nd
db) мы проверим условие

{
~uds(~v

s) ∈ {(x, y)|xdmin 6 x 6 xdmax, y
d
min 6 y 6 ydmax},

~usd(~v
d) ∈ {(x, y)|xsmin 6 x 6 xsmax, y

s
min 6 y 6 ysmax}.

(3.29)

Если условие (3.29) выполняется, то мы считаем, что объекты ns и nd являются на

самом деле одним объектом. Таким образом мы устанавливаем соответствие ns ↔ nd.

Для того, чтобы условие (3.29) можно было применять, необходимо, чтобы за вре-

мя синхронизации данных о положении объекта не происходило сильного смещения

изображений движущихся объектов: сумма смещения объекта за время синхрони-

зации и погрешности вычисления преобразований ~usd и ~uds не должна превышать

характерных размеров объекта в координатах изображения. Покажем применимость

критерия (3.29).

Сначала оценим время синхронизации данных между обработчиками, которое вли-

яет на величину рассогласования данных о положении объектов. Пусть обработчик

мастер-камеры анализирует кадры с частотой f = 15с−1. Поскольку сообщения от

других обработчиков принимаются с промежутком времени Tf = 1/f = 1/15c (Tf —

время между обработкой последовательных кадров), то для времени синхронизации

δt справедливы неравенства

Tm < δt < Tm + Tf ,

где Tm < 30мс < Tf/2 — время пересылки сообщения от обработчика к обработчику.

Оценка 30мс для времени Tm следует из способа передачи данных между вычисли-

тельными процессами в многозадачных операционных системах с вытесняющей мно-

гозадачностью, см., например [146]. Временем передачи данных по сети ЛВС с про-

пускной способностью 100Мбит/с в данном случае можно пренебречь. Считая, что

δt — равномерно распределенная величина, получим, что в среднем

δt =
1

Tm + Tf − Tm

Tm+Tf∫

Tm

t · dt = 1

Tf

t2

2

∣∣∣∣
Tm+Tf

Tm

= Tm + Tf/2,

то есть δt ≈ 63мс, учитывая Tm = 30мс.

Зная время синхронизации δt, можно установить скорости объектов, при которых

смещение не превышает характерные размеры, однако нестрогое доказательство при-

менимости критерия (3.29) можно провести с помощью иллюстрации: на рис. 3.12
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а) начальный момент б) изображение через 40мс в) разность изображений

Рисунок 3.12. Иллюстрация величины смещения объекта за один кадр. Слева — пер-
вый кадр, посередине — второй кадр, справа — изображение с выделенной разностью
кадров.

изображены два последовательных кадра и разность между ними, причём видно, что

смещения и автомобилей и людей, подсвеченные на правом рисунке, не превышают

1–2 точек изображения.

Приведём формальное обоснование того, что критерий (3.29) можно применять,

несмотря на погрешность вычисления преобразований ~u, несмотря на задержку δt

при передаче объектов от обработчика к обработчику, а также несмотря на то, что

в качестве информации о положении объекта используются лишь координаты цен-

тра ограничивающей рамки, а сама рамка определяется с некоторой погрешностью,

связанной с вероятностным характером результата работы алгоритма выделения дви-

жения.

На практике алгоритм выделения движения не выдаёт изображения движущих-

ся объектов менее четырёх точек по ширине и длине, поскольку данное ограничение

даёт возможность отделить шумовые движения от действительных объектов. Из всех

типов объектов, а именно: транспорта, групп людей и отдельных людей, представ-

ляющих интерес с точки зрения обнаружения, только человек обладает наименьшим

размером по ширине, измеряемым точками изображения. Это обусловлено тем, что

видеокамеры всегда установлены так, чтобы люди на изображении занимали вер-

тикальное положение при ходьбе. Такие планы наиболее привычны для оператора

аналитической системы, изображение камер «под углом», наоборот, трудно воспри-

нимать.

Рассмотрим предельный случай, когда изображение человека по ширине состав-

ляет 4 точки. Поскольку физически этот размер соответствует в среднем половине

метра, мы можем оценить скорость движения человека, при которой время обмена

сообщениями между обработчиками не повлияет на выполнение условия (3.29). Усло-

вие (3.29) может не сработать, если координаты «центра» объекта ~vs = (xs, ys) на

текущем обработчике s и координаты ~vd = (xd, yd), полученные от обработчика d и
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Рисунок 3.13. Проективное преобразование физических координат в координаты изоб-
ражения.

«устаревшие» за счёт задержки передачи сообщений на время δt, будут отличать-

ся более, чем на 2 точки. Следовательно, условие (3.29) применимо, если скорость

движения изображения человека

vh
im <

2 точки

δt
. (3.30)

Чтобы оценить предельную физическую скорость vh
ph человека, которая соответ-

ствует скорости vh
im в формуле (3.30), нужно выяснить, какому минимальному физи-

ческому смещению соответствует смещение изображения на 2 точки в рассматривае-

мом случае. Для этого обратимся к рис. 3.13.

Изображение на плоскости M ′
1M

′
2M

′
3M

′
4 является центральной проекцией по-

верхности M1M2M3M4, образованной конусом с прямоугольным сечением, кото-

рый ограничивается плоскостями CM1M2, CM2M3, CM3M4, CM1M4, где C —

точка закрепления камеры. Прямые пересечения плоскостей CM1M2 ∩ CM3M4 и

CM2M3 ∩ CM1M4 перпендикулярны (введем обозначения CX = CM1M2 ∩ CM3M4

и CY = CM2M3 ∩ CM1M4), а двугранные углы между этими плоскостями связаны

соотношением

( ̂CM1M2, CM3M4) =
3

4
( ̂CM2M3, CM1M4).

Биссекторные плоскости данных углов пересекаются по прямой, которая является оп-

тической осью камеры. Все перечисленные свойства обусловлены оптической схемой

объектива и прямоугольной формой ПЗС-матрицы, стороны которой соотносятся как

3:4.

Очевидно, что физическое смещение при фиксированном смещении на изображе-

нии будет минимальным, если оно параллельно плоскости CXY . В силу уже упомя-

нутых эргономических ограничений, диктующих «естественное» положение камеры,

соответствующие нашему зрительному восприятию, смещение параллельно плоско-

сти CXY возможно лишь вдоль линий, параллельных линиям M1M2 и M3M4, если
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M1M2M3M4 — плоская поверхность. Во всех остальных случаях смещение увеличи-

вается за счёт дополнительной проекции на оптическую ось. Для рассматриваемого

нами человека, ширина изображения которого составляет 4 точки, а его профиль в

ширину примерно половина метра, минимальное смещение, соответствующее смеще-

нию на 2 точки, происходит вдоль линии M ′
3M

′
4, то есть вдоль «ширины», и поэтому

это минимальное смещение примерно соответствует 25см, и предельная физическая

скорость

vh
ph =

25см

δt
=

25

63
см/мс ≈ 4м/с ≈ 14км/ч.

Такая скорость выше средней скорости пешехода, хотя и ниже рекордной скорости

бега. В подавляющем большинстве случаев это ограничение выполняется.

Если ширина человека больше четырёх точек, то ограничение предельной скоро-

сти vh
ph остается неизменным, поскольку, несмотря на увеличение допуска смещения

изображения в точках изображения, этому допуску соответствует неизменное мини-

мальное физическое смещение в половину профиля человека — 25см.

На сопоставление групп людей погрешность задержки передачи координат влияет

даже меньше, чем на сопоставление отдельных людей, поскольку скорость перемеще-

ния групп людей редко бывает высокой, а допуск на смещение обычно выше, так как

ширина изображения двух и более идущих рядом людей по крайней мере не меньше

ширины изображения одного человека.

Для транспортных средств оценка предельной скорости vv
ph основана на том, что

мгновенная скорость машин всегда направлена вдоль кузова, а длина малогабарит-

ной машины составляет около 3 метров. Следовательно, центр может изменить своё

положение на 1,5 метра за время δt, и при этом условие (3.29) ещё останется в силе.

Отсюда

vv
ph =

1, 5м

δt
=

1, 5м

63мс
≈ 24м/с ≈ 86км/ч,

что не является максимумом для всех транспортных средств, но выполняется в боль-

шинстве случаев в тех случаях, когда применяется аналитическая видеосистема.

Осталось рассмотреть последний фактор, потенциально противоречащий приме-

нению условия (3.29) на практике — это неточное выделение «рамок» объектов, и

ограничение информации о положении объекта до уровня прямоугольника, причем со

сторонами, параллельными вертикальным и горизонтальным осям. Последнее может

привести к тому, что два разных объекта будут обладать пересекающимися рамками,

и условие (3.29) будет выполнено для пары различных объектов. И так действительно

может случиться, например, для двух крупногабаритных грузовиков, которые двига-

ются параллельным курсом под углом 45◦ к осям CX и CY на изображении. Однако

такие случаи на практике редки.
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Частично ложные сопоставления отсеиваются за счёт двусторонней направленно-

сти проверки (3.29). Неточность выделения рамок также не является препятствием.

С помощью специального метода (см. [147, 148]) можно оценить два показателя: мате-

матическое ожидания и дисперсию площади пересечения «идеального» ограничива-

ющего прямоугольника объекта с прямоугольником, который выдает алгоритм выде-

ления движения, в долях от площади идеальной рамки. Эти показатели составляют,

соответственно, 0,9 и 0,1. Из предположения, что доля площади перекрытия распре-

делена нормально, следует вывод о том, что практически всегда центр не отклоняется

от своего действительного положения более чем на половину от ширины или от дли-

ны в самом худшем случае, поскольку с вероятностью, превышающей 0,99, площадь

перекрытия прямоугольника, выданного алгоритмом, с действительным прямоуголь-

ником, превышает половину. Таким образом, условие (3.29) сработает в обе стороны

с большой вероятностью.

Все три фактора: неточность вычисления функции ~u, погрешность за счёт за-

держки δt, и неточное выделение ограничивающего прямоугольника алгоритмом вы-

деления движения могут сложиться вместе так, что простая проверка на совпадение

объектов не сработает на одном кадре. Однако подобная проверка проводится на

каждом кадре, и, хотя не все из приведенных погрешностей являются независимыми

по отношению как друг к другу, так и сами к себе на разных кадрах, всё же экс-

перимент показывает, что в течение 5 кадров, то есть за треть секунды при частоте

f = 15 кадров/с, связь между объектами обязательно будет установлена.

Для того, чтобы сохранить факт сопоставления ns ↔ nd в базе данных, обработчик

неподвижной камеры применяет специальный алгоритм. Информация об объектах

хранится в таблице, в колонках у которой записываются различные свойства объек-

та, в том числе свойство ndb —порядковый номер объекта в рамках всей совокупности

обработчиков. Данное свойство является ключевым полем таблицы объектов. Как

только обработчик мастер-камеры выдаёт объект n (по нумерации обработчика) в

первый раз, в базе создаётся новая запись с ключём ndb. Для отображения факта свя-

зи объектов существует специальное свойство c, называемое идентификатором связи,

также записанное в таблице описания объектов. Если c =< служебное значение >=<

сл. знач. >, то считается, что объект не был ни с кем связан, иначе все объекты,

которых в таблице записано значение c, на самом деле являются одним физическим

объектом, появлявшимся на разных камерах. Дополнительно вводится ограничения

c < C и ndb < C, поскольку значения чисел на ЭВМ не могут быть неограниченными.

Наиболее логично поставить ограничение 32-х разрядного слова: C = 232. Исходя из

этого определения идентификатора связи можно составить уникальный идентифика-

тор u для физических объектов, т.е. число, которое будет различно для различных
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объектов, но одинаково для изображений одного объекта с пересекающихся мастер-

камер:

u =

{
ndb + C, если c =< служебное значение >,

c в противном случае.

Алгоритм, поддерживающий подобную структуру идентификаторов, выполняет-

ся следующим образом: допустим, установлен факт соответствия ns ↔ nd, причём

объекту nd соответствует значение ключевого поля в таблице объектов nd
db, а объекту

ns соответствует значение ключевого поля ns
db. В этом случае необходимо выполнить

следующую процедуру: пусть для значения ns
db в колонке c содержится значение A, а

для ключа nd
db — значение B, тогда алгоритм распадается на четыре ветви:

A = <сл. знач.>
B 6= <сл. знач.>

A 6= <сл. знач.>
B = <сл. знач.>

A = <сл. знач.>
B = <сл. знач.>

A 6= <сл. знач.>
B 6= <сл. знач.>

Переносим в A зна-
чение из B.

Переносим в B
значение из A.

Выделяем иден-
тификатор связи
между объектами,
отличный от слу-
жебного значения
и от уже существу-
ющих связей, и
заносим его в поля
A и B.

Если A 6= B,
то пусть
C = min(A,B),
D = max(A,B).
Для любых объек-
тов в базе данных
со значением D в
поле c заменяем
это значение на C.

Таблица 3.1. Таблица алгоритма назначения идентификаторов связи.

Для корректной работы алгоритма требуется, чтобы во время выполнения каждой

из этих четырёх веток другие обработчики не могли выполнять аналогичные операции

в базе данных.

Таким образом, имея в наличии идентификатор u, возможно построить запрос к

базе данных, который выводит список физических объектов, а не список изображений

объектов. Последний список может быть значительно длиннее, чем список объектов

в поле зрения камеры, особенно в случае, когда несколько мастер-камер наблюдают

за общей зоной обзора, в которой есть оживлённое движение.

3.6. Теоретическая оценка погрешности сопряжения видеокамер на основе

достоверности сопоставления семантических элементов изображений

Для оценки погрешностей сопряжения видеокамер может быть использован ста-

тистический подход. На основе многократных повторов сопоставления изображений

на поворотной и неподвижной видеокамерах или на паре неподвижных видеокамер,

предполагая нормальное распределение отклонений фактических значений преобра-

зований сопряжения от теоретических расчётных значений, можно оценить теку-

щий уровень значимости с помощью простого подсчёта соотношения «промахов» и
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«попаданий», при этом необходимо определиться, какое именно отклонение в абсо-

лютном выражении соответствует «промаху». Общепринятое определение погрешно-

сти — это тройная дисперсия распределения отклонений фактического значения от

расчётного, поэтому, зная значение, соответствующее разделению промахов и попа-

даний, и уровень значимости, который этому значению соответствует, мы сможем

определить дисперсию, и, следовательно, погрешность.

Рассмотрим конкретные примеры определения погрешности при помощи стати-

стического подхода.

Погрешность сопряжения поворотной и неподвижной видеокамер. Пред-

положим, наведение производится на движущегося человека на расстоянии 20 метров

от объектива камеры (см. рис. 3.11). «Промахом» мы будем считать такое наведение

поворотной камеры на объект, что человек после завершения движения поворотной

камеры оказывается вне границ изображения, т.е. его не видно. Если наведение про-

изводить с таким увеличением, что изображение человека в кадре примерно во весь

рост, то вертикальный угол зрения слева равен 2/20рад ≈ 6◦, что соответствует гори-

зонтальному углу
4

3
· 6◦ = 8◦. Считая, что горизонтальный угловой размер человека

на расстоянии 20 метров равен примерно 1◦, получаем, что горизонтальному промаху

∆α (см. обозначения п. 3.4) соответствует примерное значение 8◦/2 + 1◦ = 5◦.

Пусть вертикальное наведение по углу склонения β производится без «промахов».

Тогда, если общая доля промахов среди всех попыток наведения есть p, то, обозначив

функцию ошибок как F−1(p), где

F (t) =
1√
2π

t∫

−∞

e−
1
2
x2

dx — функция распределения N(0, 1),

получим с учётом F (t) = F (−t) и F (+∞) = 1, что

p = P (|∆α| > 5◦) = P (∆α < −5◦) + P (∆α > 5◦) =

=
1√
2π

−5◦/σ∫

−∞

e−
1
2
x2

dx+
1√
2π

+∞∫

5◦/σ

e−
1
2
x2

dx = 2
1√
2π

+∞∫

5◦/σ

e−
1
2
x2

dx = 2− 2F (
5◦

σ
),

где σ — дисперсия отклонений ∆α. Отсюда получаем, что

σ =
5◦

F−1(1− p/2)
,

т.е. оценкой погрешности является величина тройной дисперсии

|∆α| = 3 · 5◦

F−1(1− p/2)
. (3.31)
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Чтобы воспользоваться формулой (3.31), требуется провести значительный объём

испытаний, чтобы набрать статистику «промахов» p.

Погрешность сопряжения неподвижных видеокамер. Проведя такую же

последовательность рассуждений, как и для случая статистической оценки погреш-

ности сопряжения поворотных и неподвижных видеокамер, получим формулу оценки

погрешности горизонтальной координаты при преобразовании сопряжения:

|∆x| = 3 · ∆

F−1(1− p/2)
, (3.32)

где ∆ — количество пикселей, которые соответствуют «промаху», а p — доля

«промахов» от общего числа сравнений объектов при сопоставлении изображения

одного и того же объекта на разных камерах, наблюдающих частично общую зону

обзора.

Если объекты — это люди на расстоянии 20 метров от камеры, дальний план на-

блюдения которой находится на расстоянии 100 метров от камеры, а высота закреп-

ления камеры над поверхностью 5 метров (см. рис. 3.11), то для обычного человека

можно оценить «ширину» его изображения как

0,4

20
·
(
30◦ · π

180◦

)−1

· 352 ≈ 15 пиксел,

где горизонтальный угловой размер человека
0,4

20
поделен на горизонтальный угол

зрения камеры 30◦, и умножен на ширину изображения в пикселах 352. Исходя из

ширины изображения объекта положим ∆ = 15/2 ≈ 8. Количество «промахов» p,

выраженное в долях от общего количества сопоставлений изображений, строго говоря,

должно определяться по количеству попыток сопоставления на каждом кадре потока

изображений. Однако для оценки погрешности по порядку величины можно взять

просто долю таких объектов в общей зоне наблюдения, изображения которых не были

сопоставлены системой друг другу по критерию (3.29).

Достоверность сопоставления изображений 1− p является одной из наиболее важ-

ных характеристик аналитических видеосистем, которые могут быть объявлены про-

изводителями системы, хотя автор и не встречал систем с подобными характеристи-

ками. Поэтому формулы для вычисления погрешностей сопряжения (3.31) и (3.32)

позволяют оценить погрешность на основе известных технических характеристик,

без проведения сложных измерений углов наведения и отклонений преобразований

изображений.

3.7. Адаптация алгоритмов семантической обработки изображений для си-

стем и приборов видеонаблюдения

Классификация и определение семантических признаков выделенных объектов —

основная отличительная особенность аналитических видеосистем, которая позволяет
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выполнять операции семантического сжатия. В работе реализованы следующие типы

классификации:

1) классификация выделенного движущегося объекта по цвету и типам: человек,

транспортное средство, группа людей;

2) классификация выделенного объекта по категориям: остановившийся, остав-

ленный, обычный;

3) сопоставление изображений с разных камер одного и того же объекта (изоб-

ражение объекта с одной камеры классифицируется как похожее или отличное от

изображения объектов с другой камеры);

4) классификация крупного снимка с поворотной камеры по категориям: снимок

содержит интересующий нас объект, объект на снимке отсутствует из-за промаха при

наведении;

5) классификация типа кресла в кинозале (пустое, занятое человеком, занятое ве-

щами) для специальной аналитической видеосистемы, применяющейся для контроля

зрителей в кинотеатре.

Рассмотрим опробованные в диссертационной работе методы распознавания и ре-

зультаты классификации, достигнутые на данный момент.

Триангуляция[149]. Триангуляция — это метод распознавания категорий изоб-

ражений объектов, введённый в данной диссертационной работе для случая, когда

размерность пространства признаков равна двум. Для описания данного метода клас-

сификации применяется терминология, введённая в п. 1.4. На этапе обучения прово-

дится триангуляция Делоне для точек в признаковом пространстве, соответствую-

щих обучающему множеству L. На этапе распознавания алгоритм A(I0, I(S)) нахо-

дит треугольник триангуляции, в который попадает точка I(S), и если все вершины

найденного треугольника принадлежат классу Ki, то алгоритм выдает вектор, соот-

ветствующий истинности утверждения S ∈ Ki (αA
j (S) = δij для всех j ∈ 1, c), иначе

A(I0, I(S)) = (∆, ...,∆).

Простые методы триангуляции и поиска треугольника в триангуляции требуют

выполнения O(l2) операций на этапе обучения и O(l) операций при распознавании.

Для ускорения этих процедур, во-первых, при триангуляции использовался алгоритм

построения диаграммы Вороного, выполняемый за O(l log2 l) операций (см. описание

алгоритма в [138]), во-вторых, при поиске использовался алгоритм, подобный алго-

ритму поиска ближайшего соседа при помощи kD-дерева. В среднем реализованный

алгоритм поиска требует O(log2 l) операций.

Реализация поиска состоит из двух этапов. При обучении строится бинарное дере-

во, вершинами которого являются подмножества треугольников триангуляции. При
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построении сначала в корень дерева заносятся все треугольники триангуляции. За-

тем в правую ветвь переносятся треугольники, у которых хоть одна вершина по ко-

ординате x больше медианы всех координат x точек триангуляции, в левую ветвь

записываются треугольники, у которых хотя бы одна вершина по координате x мень-

ше медианы. Множества треугольников, находящихся на одном уровне дерева, таким

образом, могут пересекаться. На следующем шаге вершины дерева разделяются по

такому же принципу, только используются координаты y, а не x. Далее треугольники

рекурсивно разделяются до тех пор, пока либо останется только один треугольник в

вершине, либо разность множеств одного из наследников и родителя является пустым

множеством, т.е. разделения не произошло. При поиске треугольника, в который по-

падает исходная точка, координаты точки соотносятся с медианами, которые делили

треугольники дерева при переходе от родителей к наследникам. За O(log2 l) проис-

ходит спуск к «листу», в котором вершины треугольников расположены также по

отношению к медианам, как и у исходной точке. Далее происходит проверка, при-

надлежит ли точка одному из треугольников «листа». Если да, то поиск завершён,

если нет, то необходимо подняться на уровень выше и продолжить поиск. В редких

случаях возможна ситуация, когда придётся вернуться к корню дерева.

В целом алгоритм классификации при помощи триангуляции аналогичен алго-

ритму классификации по правилу k ближайших соседей. Тем не менее, результаты

получаются разные, и иногда триангуляция срабатывает надёжнее. Применение три-

ангуляции обосновано тем, что для неё легко спрогнозировать результаты классифи-

кации, опираясь только на визуальное представление векторов-признаков на плос-

кости. В случае применения нейросетевого подхода или любого другого метода рас-

познавания, описанного в п. 1.4, конечный результат можно получить только после

эксперимента. Однако ограничение 2, накладываемое на размерность пространства

признаков, существенно ограничивает возможность использования триангуляции как

подхода к распознаванию объектов.

Наборы признаков и способы их перебора. Перечислим сначала признаки

объектов, которые выделяются на мастер-камерах. Каждый такой объект представ-

ляет ограниченное множество точек Ω на изображении с целочисленными координа-

тами (x, y). Введём обозначения

xmin = argmin
x∈Ω

x,

ymin = argmin
y∈Ω

y,

xmax = argmax
x∈Ω

x,

ymax = argmax
y∈Ω

y,
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тогда можно ввести «ширину» объекта w = xmax − xmin + 1 и «высоту» объекта

h = ymax − ymin + 1.

Пусть ω(x, y) — характеристическая функция множества Ω, т.е.

ω(x, y) =

{
1, (x, y) ∈ Ω,

0, (x, y) 6∈ Ω.

Эту функцию для каждого объекта находят алгоритмы выделения движения, упо-

мянутые в пункте 1.3. Носитель функции ω(x, y) (множество точек с отличными от

нуля значениями) содержится во множестве [xmin, xmax]× [ymin, ymax] (декартово про-

изведение двух отрезков), что используется в перечисленных ниже формулах.

В качестве признаков выделенных на мастер-камерах объектов используются:

1) отношение
h

w
;

2) отношение площади объекта S =
xmax∑

x=xmin

ymax∑
y=ymin

ω(x, y) к площади прямоугольни-

ка [xmin, xmax]× [ymin, ymax], равное
S

hw
;

3) центр масс (Mx,My), вычисляемый по формулам

Mx =
1

wS

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)x,

My =
1

hS

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)y;

4) вторые моменты

Mx2 =
1

w2S

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)(x− wMx)2,

My2 =
1

h2S

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)(y − hMy)2,

Mxy =
1

hwS

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)(x− wMx)(y − hMy);

5) третьи моменты

Mx3 =
1

w3S

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)|x− wMx|3,

My3 =
1

h3S

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)|y − hMy|3,

Mz3 =
1

S5/2

xmax∑

x=xmin

ymax∑

y=ymin

ω(x, y)((x− wMx)2 + (y − hMy)2)3/2;
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6) несколько функций от определённых выше величин:
Mx

My
,
(wMx)2

S
,
(hMy)2

S
;

7) отношение H разности максимума и минимума функции H(x) =
ymax∑

y=ymin

ω(x, y)

на отрезке [xmin, xmax] к высоте объекта h;

8) время ts, в течение которого объект не двигался к текущему моменту;

9) флаг разделения объектов fs, равный единице, если во время появления объ-

екта рядом с ним находился другой объект, в противном случае равный нулю;

10) матрица-шаблон силуэта размерности N × N , элементы Tnm которой рассчи-

тываются по формуле

Tnm =
1

whN2

(n+1)w−1∑

i=nw

(m+1)h−1∑

j=mh

ω(xmin +

⌊
i

N

⌋
, ymin +

⌊
j

N

⌋
).

Если пользоваться последней формулой буквально, то сложность вычисления

матрицы-шаблона будет O(whN2), однако в данной работе используется алгоритм

со сложностью O((w+N)(h+N)). Суть алгоритма в том, что суммирование ведется

не по каждой точке прямоугольника [0, wN − 1] × [0, hN − 1], а только по клеткам

неравномерной сетки этого прямоугольника, узлами которой служат точки, верти-

кальные координаты которых кратны h или N , а горизонтальные координаты кратны

w или N . Внутри каждой клетки такой сетки функция ω(xmin + ⌊i/N⌋ , ymin + ⌊j/N⌋)
тождественно равна либо, нулю либо единице, так что в цикле по клеткам сетки к

соответствующему элементу прибавляется либо 0, либо площадь клетки.

В работе системы контроля зрителей [206] для каждого кресла ведётся подсчёт

двух признаков:

1) корреляция r1 между текущим изображением кресла и изображением пустого

кресла, заготовленным заранее;

2) корреляция r2 между текущим изображением кресла и изображением крес-

ла, сглаженного в течении нескольких десятков секунд (параметр оценивает

«подвижность» изображения внутри кресла).

Чтобы распознать тип снимка со слейв-камеры, используются следующие призна-

ки:

1) координаты x′min, x
′
max, y

′
min, y

′
max, преобразованные из соответствующих ко-

ординат объекта на мастере в координаты слейва (доступны только в случае, когда

после поворота слейва объект ещё не потерян на мастере);

2) отношение Λ длин контура картинки, «почти параллельных» другим линиям

контура, к общей длине контура на картинке.
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Для выбора наилучшего набора параметров при распознавании изображений объ-

ектов, выделенных на мастере, был произведён перебор методов распознавания и на-

боров параметров. После первых шагов выяснилось, что нейросетевой алгоритм при

фиксированном наборе параметров в большинстве случаев даёт наибольшую долю

верных ответов. Однако обучение нейросети слишком долгий процесс, чтобы мож-

но было провести полный перебор наборов параметров. В дальнейшем планируется

применить генетический алгоритм для этой задачи, однако на данный момент про-

изведён перебор только «наиболее перспективных» наборов параметров, перспектив-

ность определялась, либо с помощью метода линейного дискриминантного анализа,

либо умозрительно. Тем не менее, опробовано несколько сотен наборов, что не так уж

и мало для того, чтобы надеяться на близость полученного результата к оптималь-

ному.

Выводы

1. Проведён анализ различных схем синхронизации программных модулей семан-

тической обработки сигналов от видеоприборов. При помощи анализа сложности ал-

горитмов и численных методов оптимизации автором предложен наиболее эффектив-

ный из рассмотренных алгоритмов синхронизации, основанный на обработке в цикле

приёма сообщений от модулей поворотных и неподвижных камер.

2. Выведены соотношения для параметров управления поворотными видеокаме-

рами при наведении на движущиеся объекты для различных моделей управления

поворотными видеокамерами.

3. Исследованы составляющие погрешности при наведении на движущийся объ-

ект. Получены численные оценки погрешности, которые в рассмотренных условиях

наблюдения составляют 0,5◦ при наведении на неподвижный объект и 20◦ при на-

ведении на движущийся объект для наихудшей оценки предсказанного положения

объекта.

4. Установлено, что при погрешности наведения поворотной камеры 20◦ и при уг-

ле зрения сопряжённой неподвижной камеры 30◦ увеличение изображений объектов

более, чем в 1,5 раза невозможно, если требуется высокая достоверность сопоставле-

ния изображений.

5. Разработан критерий-условие идентичности объектов (формула (3.29)), если

изображения объектов получены несколькими видеокамерами с общей зоной обзора.

Предложен алгоритм объединения записей, соответствующих одному физическому

объекту, в базе данных.

6. С помощью модели физических перемещений объектов проанализированы

ограничения для применения критерия идентичности: для надёжного сопоставления
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скорость человека должна быть по модулю менее 15км/ч, скорость автомобиля не

должна превышать по модулю 90км/ч при любых направлениях движения объектов

по отношению к оптической оси камеры. В других условиях критерий применим, но

верное сопоставление менее вероятно.

7. Разработан способ оценки погрешностей сопряжения на основе статистики со-

поставления изображений во время работы системы. Установлена связь достоверности

сопряжения и погрешности сопряжения.

8. Исследованы способы применения алгоритмов семантической классификации

изображений по различным категориям в аналитических видеосистемах. Впервые

предложено использовать триангуляцию при классификации объектов по двум при-

знакам.
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4. Разработка, исследование и анализ методик сравнения алго-

ритмов семантического сжатия видеоинформации

Проблема проверки эффективности алгоритмов семантического сжатия относится

к области тестирования программного обеспечения, которое призвано обрабатывать

большие массивы видеоинформации. В области компьютерного зрения прослеживает-

ся определённая тенденция: чем больший объём видеоинформации задействован при

тестировании программных компонент аналитической видеосистемы и чем качествен-

нее автоматизирован процесс проверки, тем более эффективно работают конечные

программные модули.

В данной главе сначала будет приведён обзор текущих методов оценки качества

семантической обработки, а потом будут представлены новые методики оценки каче-

ства алгоритмов семантического сжатия, которые позволяют существенно улучшить

достоверность выделения событий методами компьютерного зрения.

4.1. Сравнение алгоритмов семантической сегментации изображений

Основная задача семантической сегментации изображения заключается в выде-

лении отдельных элементов на изображении и классификация данных элементов по

категориям (см. рис. 1.5). Отдельным элементами изображения могут быть автомоби-

ли, люди, стационарные объекты на сцене и изображения других категорий объектов.

Выделить изображение объекта семантически — значит определить множество точек

A изображения, из которых состоит изображение объекта в обрабатываемом кадре.

Типичным подходом к оценки качества алгоритма сегментации является сравне-

ние результата с шаблонной сегментацией [122], которая определяется либо вручную

оператором, либо с помощью другого точного алгоритма. Будем обозначать множе-

ство точек шаблонной сегментации объекта как T . Обозначим |M| мощность (количе-

ство элементов) множества M. Распространённым показателем качества сегментации

изображения является отношение

̺(A, T ) =
|A ∩ T |
|A ∪ T | . (4.1)

Графическая иллюстрация к вычислению меры ̺(A, T ) представлены на рис. 4.1.

Очевидно, что

∀A, T : ̺(A, T ) 6 1,

а также

∀A, T : ̺(A, T ) = 1 равносильно A = T,

то есть чем больше результат A повторяет форму шаблона T , тем ближе значение ̺

к единице.
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|A ∩ T | ≈ 20300 |A ∪ T | ≈ 28100

̺(A, T ) ≈ 20300

28100
≈ 0,722

Рисунок 4.1. Иллюстрация к вычислению меры качества сегментации ̺(A, T ).

A. Шаблон B. Неравномерные ошибки

первого рода (̺ ≈ 0, 5)

C. Равномерные ошибки

перового рода (̺ ≈ 0, 5)

D. Неравномерные ошибки

второго рода(̺ ≈ 0, 9)

E. Равномерные ошибки

второго рода(̺ ≈ 0, 9)

Рисунок 4.2. Примеры некорректной оценки качества выделения шаблона с помощью
меры ̺(A, T )

В работе [150] выявлены недостатки приведённой выше оценки качества алгорит-

ма семантической сегментации. Проиллюстрируем данные недостатки примерами на

рисунке 4.2.

На рисунке 4.2.A представлен пример множества точек T , соответствующих шаб-

лонному выделению изображения кольца. Рисунок 4.2.B представляет собой пример

множества точек AB, которое является результатом работы алгоритма, выделившего

лишь половину кольца T , а на рисунке 4.2.C изображено множество точек AC как

результат работы алгоритма, выделившего не все точки кольца, а только, допустим,

половину точек, случайно и равномерно распределённых по площади множества T . На

рисунках 4.2.D и 4.2.E представлены результаты работы алгоритмов как множества

точек AD и AE, соответственно. В данных множествах выделены все точки кольца

T , однако дополнительно в конечный результат ошибочно включены некоторые ар-

тефакты в случае множества AD и шумовые точки вдоль границ кольца в случае
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множества AE, причём мы будем считать, что площадь артефактов на рисунке 4.2.D

соответствует числу шумовых точек на рисунке 4.2.E и равна примерно девятой части

площади кольца T .

С точки зрения меры качества ̺ результат AB эквивалентен результату AC , по-

скольку мы ранее определили, что AB∪T = T , AB∩T = AB, AC∪T = T , AC∩T = AC

и |AB| ≈ |AC | ≈ 0, 5|T |. Следовательно, ̺(AB, T ) ≈ ̺(AC , T ) ≈ 0, 5 по формуле (4.1).

Аналогично, результат AD обладает одинаковой характеристикой качества совпа-

дения ̺ с результатом AE, поскольку по нашему определению AD∩T = T , AE∩T = T ,

|AD ∪ T | ≈ |T |+1/9|T |= 10/9|T | и |AD ∪ T | ≈ 10/9|T |. Подставив эти значения в фор-

мулу (4.1), получим ̺(AD, T ) ≈ ̺(AE, T ) ≈ 0, 9.

Несмотря на одинаковую меру совпадения, визуально множества AC и AE лучше

повторяют форму множества T , чем, соответственно, множества AB и AD. Более то-

го, результаты AC и AE предпочтительней с точки зрения устойчивости алгоритмов,

которые используют полученные множества A• как входные данные. Например, алго-

ритмы поиска окружностей на изображении, построенные на основе преобразования

Хафа (один из таких алгоритмов описан в [151]) во многих случаях неустойчивы к

неоднородным ошибкам первого и второго рода при отделении объектов переднего

плана от фона.

В источнике [150] представлены идеи, как ввести меру совпадения ̺∗ шаблонного

множества T и результирующего множества A таким образом, чтобы она лучше дис-

криминировала алгоритмы семантической сегментации. Т.е. для примеров, представ-

ленных на рис. 4.2 должно выполняться ̺∗(AB, T ) < ̺(AC , T ) и ̺(AD, T ) < ̺(AE, T ).

Далее будет описан способ вычисления меры ̺∗, несколько обобщённый по сравнению

со способом из упомянутой работы, с привлечением теории нечётких множеств [152].

Детерминированному множеству T мы поставим в соответствие нечёткое множе-

ство T ′, являющегося парами из точек изображения p и числовой меры принадлежно-

сти точки множеству в диапазоне [0, 1]. В качестве меры принадлежности к нечёткому

множеству шаблонных точек T ′ мы введём бинарную функцию

µT ′

(p) =

{
1, если p ∈ T ,

0 в противном случае.

Таким образом подчёркивается, что принадлежность точек к шаблону определена

точно. Для множества A, выдаваемого в результате алгоритма сегментации, мы опре-

делим соответсвующее нечёткое множество A′, мера принадлежности каждой точки



157

изображения будет определяться на основании функции µT ′

:

µA′

(p) =





1, если µT ′

(p) = 1 и p ∈ A,

g(p), если µT ′

(p) = 1 и p /∈ A,

b(p), если µT ′

(p) = 0 и p ∈ A,

0, если µT ′

(p) = 0 и p /∈ A.

Функция g(p) определяется как функция сглаживания с весами распределения

Гаусса:

g(p) =
∑

q∈A

µT ′

(q)√
2πσ2

e−
(p−q)2

2σ2 ,

где под (p − q)2 обозначено скалярное произведения вектора из разности координат

точек самого на себя. Благодаря сглаживанию в A′ с некоторым весом входят даже

те точки, которые не вошли в результат алгоритма A, причём вес определяется ве-

личиной окрестности суммирования σ2 и количеством точек из пересечения A ∩ T ,

которые находятся близко к точке p — чем больше таких точек, тем выше вес. При-

нято использовать небольшие окрестности, например, σ2 = 5.

Функция b(p) определяет вес точек A′, находящихся вне T , в зависимости от того,

насколько они удалены от множества T , например, следующим образом:

b(p) =
2− eαd(T,p)

2
,

где α — отрицательная константа, а d(T, p) — расстояние от точки p до множества T ,

определяемое как

d(T, p) = min
q∈T

‖p− q‖.

Вместо экспоненциальной функции можно использовать любую монотонно возраста-

ющую функцию f(x) с областью значений [0, 1] для того, чтобы определить функцию

b(p) как f(d(T, p)), однако экспоненциальная функция f(x) = 2−eαx

2
удобна тем, что

достаточно быстро возрастает до 1, и зону пониженного вклада в ошибку первого

рода можно задать показателем α.

После того, как нечёткие множества T ′ и A′ определены, меру совпадения исход-

ных множеств T и A можно определить как

̺∗(A, T ) =
|A′ ∩ T ′|
|A′ ∪ T ′| , (4.2)

где объединение, пересечение, и мощность множеств определяются в рамках теории

нечётких множеств, т.е.

µA′∩T ′

(x) = min (µA′

(x), µT ′

(x)),

µA′∪T ′

(x) = max (µA′

(x), µT ′

(x)),

|M | =
∑

x∈M
µM(x) для M = A′ ∩ T ′ и M = A′ ∪ T ′.
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Ввиду того, что принадлежность точек множеству A′ задана более приближенно

к шаблону T в тех случаях, когда это не мешает субъективному восприятию резуль-

тата A, мера совпадения ̺∗ более устойчива к небольшим шумовым искажениям в

результатах алгоритма сегментации. Например, за счёт функции сглаживания g(p)

мера совпадения ̺∗(AC , T ) значительно меньше ̺∗(AB, T ), а за счёт уменьшенного ве-

са b(p) точек возле границ шаблона T мера совпадения ̺∗(AE, T ) значительно больше

меры ̺∗(AD) (см. рис. 4.2).

Как показывает практика (см. [150]), предложенная мера качества сегмента-

ции (4.2) не только лучше упорядочивает результаты в соотвествии с субъективным

представлением по сравнению с мерой (4.1), но и по объективным критериям оце-

нивать качество с помощью меры ̺∗ предпочтительней, например, потому, что ис-

пользование результатов сегментацией с более высокой мерой ̺∗ для последующих

алгоритмов семантического анализа обычно приводит к более точным конечным ре-

зультатам. Мера ̺ подобным свойством не обладает.

4.2. Сравнение алгоритмов выделения движущихся объектов

Выделение движущихся объектов — широко распространённый приём семанти-

ческого сжатия видеопотока. Особенно часто анализ движущихся объектов произво-

дится в различных системах охранного видеонаблюдения, поскольку обычно при экс-

плуатации подобных систем интерес представляет не весь объём видеоинформации,

а только изображения с существенными изменениями на наблюдаемой сцене. Суще-

ствуют методики оценки эффективности работы алгоритмов семантического сжатия,

выделяющих движение объектов[147, 148, 153], которые мы рассмотрим в данном па-

раграфе.

Вычитание фона — это категория алгоритмов обработки изображений, предна-

значенных для классификации объектов на последовательности изображений как по-

движные и неподвижные. Чаще всего вычитание фона используется в детекторах

движения на основе видеокамер в системах видеонаблюдения. Существует множество

методов вычитания фона, данной проблеме посвящены тысячи публикаций, среди ко-

торых особо можно выделить работы [77, 154, 155, 156, 157], описывающие основные

методы. Алгоритмы вычитания фона отличаются как по вычислительной сложно-

сти, так и по точности идентификации, поэтому возникает потребность в сравнении

данных методов. В работе [123] предложено сравнивать методы вычитания фона с

помощью тестов на фиксированных последовательностях изображений разного вида

с заранее отмеченными точками движения в форме маски для каждого кадра после-

довательности. В качестве метрики сравнения используются различные показатели

совпадения результатов обработки алгоритмов, классифицирующих точки кадра как

движущиеся или неподвижные, с заранее введёнными шаблонами, считающимися эта-
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Рисунок 4.3. Примеры изображений тестовой выборки changedetection.net (сверху) с
результатом обработки одним из распространённых методов вычитания фона (снизу).
Слева направо примеры изображений из категорий: основной набор, динамический
фон, тряска камеры, тени объектов, перемещение элементов фона, тепловизионные
изображения.

лонами.

Изображения тестовой выборки changedetection.org состоят из нескольких десят-

ков видеороликов, в которых содержится в общей сложности более 100 тысяч кадров

изображений. Видеоролики разделены на различные категории, среди которых: ба-

зовый тестовый набор, изображения с динамически изменяющимся фоном (водоёмы,

ветви кустарника и деревьев на ветре и т.п.), изображения с не закреплённых жёстко

трясущихся камер, изображения с тенями, тесты на обработку изменений фона бла-

годаря перемещаемым на изображениях предметам и изображения тепловизионных

камер. Примеры изображений из разных категорий приведены на рис. 4.3 (рисунок

заимствован из работы [123]).

Рисунок 4.4. Пример разметки кадров из тестового набора.
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В каждой точке все изображения тестового набора размечаются, то есть каждая

точка может принадлежать одному из пяти классов: подвижная точка, неподвижная

точка, состояние точки неопределено, точка находится вне области интереса, и точ-

ка неподвижна, но находится в тени от движущегося объекта. Если обозначить эти

состояния, соответственно, как C = {m, s, u, o, h}, то разметкой является характери-

стическая функция χT (x, y), которая каждой точке изображения (x, y) сопоставляет

её класс C. Пример разметки, заимствованный из [1] приведён на рис. 4.3. Состояние

o (вне области интереса) введено для того, чтобы лучше разграничить категории те-

стовых наборов изображений. Состояние u (не определено) введено для устранения

неоднозначности разметки в граничных точках изображений движущихся объектов: в

граничных точках любому оператору, который проводит разметку, сложно однознач-

но отнести точку к классу движущаяся(m) или неподвижная(s). Наконец, состояние h

(тень подвижного объекта) специально введено для отдельной метрики, позволяющей

оценить возможность метода вычитания фона классифицировать именно такие точки

как неподвижные точки фона. Тестируемые алгоритмы вычитания фона выдают ре-

зультат в форме индикаторной функции χA(x, y) для каждой точки каждого кадра, в

отличие от функции χT , данная функция может принимать только два значения: m

(точка движения) или s (неподвижная точка). Примеры данной функции для одного

из наиболее простых алгоритмов вычитания фона приведены на рис. 4.3.

TP = {(x, y)|χT (x, y) = m при условии, что χA (x, y) = m} .

Точки, корректно определённые алгоритмом, как неподвижные, обозначаются

TN = {(x, y)|χT (x, y) = s или χT (x, y) = h при условии, что χA(x, y) = s} .

Множество точек, в которых алгоритм допустил ошибку первого рода, обозначается

как

FP = {(x, y)|χT (x, y) = s или χT (x, y) = h при условии, что χA(x, y) = m} .

Наконец, множество точек с ошибкой второго рода в результатах обозначается

FN = {(x, y)|χT (x, y) = m при условии, что χA(x, y) = s} .

Далее для краткости под TP , TN , FP , FN подразумевается мощность одно-

имённых множеств. В рамках changedetection.net предлагается использовать следую-

щие метрики для одной видеопоследовательности кадров в каждой из категорий.

1. Re = TP/(TP + FN) — доля точек движения в шаблоне разметки, корректно

определённых алгоритмом как движущиеся.
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2. Sp = TN/(TN +FP ) — доля точек фона в шаблоне разметки, корректно опре-

делённых алгоритмом как неподвижные.

3. FPR = FP/(FP + TN) — доля точек движения по результатам алгоритмов,

ошибочно определённых движущимися точками.

4. FNR = FN/(TN + FP ) — доля точек фона по результатам алгоритмов, оши-

бочно определённых как неподвижные точки.

5. PWC = (FN + FP )/(TP + FN + FP + TN) — доля ошибок классификации

состояния движения точек в ответах алгоритмов вычитания фона.

6. Pr = TP/(TP + FP ) — доля точек движения по результатам алгоритмов,

правильно определённых подвижными.

7. Fm = 2 Pr·Re
Pr+Re

— среднее гармоническое показателей Re и Pr.

Значения Re, Sp, FNR характеризуют ошибки первого рода, показатели FPR, Pr

характеризуют ошибки второго рода, и показатели PWC и Fmeasure тем или иным

способом оценивают среднюю ошибку.

Для усреднения этих метрик по всем видеороликам используются следующие пра-

вила. Обозначим значение одной из 7 метрик, приведённых выше, в категории c для

видеоролика v как M v
c,i (расчёт данного показателя ведётся на основе величин TP ,

TN , FP , FN , на всех кадрах видеоролика, i — индекс метрики), а количество видео-

роликов в категории c как Nc. Значение метрик в рамках одной категории рассчиты-

вается как среднее значение метрики по видеороликам:

Mc,i =
1

Nc

∑

v

M v
c,i.

Значение показателя по всем категориям видеороликов вычисляется с помощью

ещё одного усреднения

Mi =
1

6

∑

c

Mc,i. (4.3)

С помощью операции ранжирования вводится два различных обобщённых пока-

зателя качества работы сравниваемых алгоритмов вычитания фона. Операция ран-

жирования — это операция расстановки по порядку методов по одной из введённых

ранее метрик в порядке убывания качества, рангом метода называется порядковый

номер метода в данной расстановке. Если метрики у двух и более методов совпадают,

то при ранжировании им всем назначается среднее арифметическое разделённых ме-

тодами позиций. Если в сравнении участвует Ω методов, то для каждого m-го метода

из числа Ω можно определить его ранг по метрике Mc,i в каждой категории после-

довательности изображений как rankMc,i
(m). Усреднённая позиция методов в каждой
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категории с учётом всех метрик рассчитывается по формуле

RMc,m =
1

7

∑

i

rankMc,i
(m) ,

Альтернативной обобщённой метрикой сравнения методов вычитания фона служит

средний ранг при упорядочивании методов по средним метрикам, рассчитанным по

формуле (4.3):

Rm =
1

7

∑

i

rankMi
(m).

В таблице 4.2 приведены выборочные результаты сравнения 16 различных мето-

дов, приведённых в работе [123]. Данные методы соответствуют, во-первых, наиболее

известным методам вычитания фона, а во-вторых, наилучшим методам по результа-

там, указанным в рассматриваемой работе.

Метод RC R Re Sp FPR FNR PWC Fm Pr

PBAS[156] 3,00 3,29 0,79 0,990 0,010 0,009 1,77 0,75 0,82

ViBe+[154] 4,83 5,00 0,69 0,993 0,007 0,017 2,18 0,72 0,83

GMM[77] 11,50 10,14 0,71 0,986 0,014 0,027 3,68 0,52 0,72

Euclidean distance 16,67 14,00 0,70 0,969 0,031 0,017 4,35 0,61 0,62

Таблица 4.2. Результаты сравнения методов вычитания фона, приведённые в рабо-
те [123].

Из таблицы 4.2 следуют следующие выводы. Во-первых, наиболее простые методы

вычитания фона, основанные на сравнении средней интенсивности в точке с текущей

интенсивностью, обладают наименьшей устойчивостью к ошибкам первого и второго

рода. Во-вторых, наиболее известный метод вычитания фона, основанный на ана-

лизе распределения интенсивности в точке в предположении, что это распределение

является суммой распределений нормальных величин (подробнее см. в работе [77]),

занимает средние позиции в сравнении с остальными методами, рассмотренными в ра-

боте [123]. Также следует отметить тенденцию, что в целом методы вычитания фона,

использующие непараметрический подход для оценки распределения интенсивности

точек переднего и заднего плана, т.е. движения и фона, показывают лучшие резуль-

таты по сравнению с методами, которые используют параметрический подход для

оценки аналогичных распределений интенсивности.

Информация о том, что в кадре есть движение, и что оно происходит в конкрет-

ных точках изображения, является слишком большой по объёму, чтобы представлять

интерес с точки зрения систем так называемого семантического сжатия, или семан-

тической обработки изображений. Обычно, эту информацию подвергают дальнейшей
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обработке, выделяя из полученных областей движения отдельные движущиеся объек-

ты, одновременно происходит восстановление траектории движения объектов в кадре.

Информация о масках движения на каждом кадре по объёму составляет сотни ты-

сяч байт, информация о траекториях объектов составляет уже порядка тысячи байт,

причём не на одном кадре, а на сотнях кадров. В описание траектории объекта мо-

жет входить либо координаты ограничивающей изображение объекта прямоугольной

рамки, либо координаты ограничивающего объект многоугольника на всех кадрах

последовательности, на которых объект присутствовал.

Наиболее известный алгоритм выделения траекторий объектов на основе метода

вычитания фона представлен в статье [38], а также в параграфе 1.3, рисунок 1.9. В

результате работы данного алгоритма мы получаем траектории объектов движения.

Возможны различные ошибки в работе данного алгоритма: могут определяться лож-

ные движущиеся объекты в тех местах, где движения нет, могут быть пропущены объ-

екты движения, возможны ошибки в решении задачи о назначении, когда траектория

одного объекта переходит в результатах алгоритма на траекторию другого объекта.

В зависимости от того, какой метод вычитания фона применяется на первом этапе,

данные ошибки будут различаться. Поскольку в данной работе мы оцениваем влия-

ние вычитания фона на конечный результат в виде описания траекторий объектов,

необходимо ввести определения, позволяющие вычислять метрики, характеризующие

качество полученного результата.

Алгоритмы выделения движущихся объектов принято проверять с помощью за-

писанного видеоматериала, у которого есть так называемая аннотация или разметка.

Аннотация заключается в том, что перед проверкой работы алгоритмов на некоторой

видеопоследовательности каждый кадр вручную размечается. Разметка может со-

держать области движения, и их связь с областями движения на предыдущем кадре.

Область движения обычно размечается с помощью минимального ограничивающего

прямоугольника со сторонами, параллельными границам кадра, поскольку ввести та-

кой прямоугольник достаточно просто с помощью современных устройств ввода. Раз

есть связь с областями движения на предыдущих кадрах, с помощью разметки всех

кадров можно восстановить траектории движения объектов во времени. Обладая по-

добной аннотацией для конкретной видеопоследовательности, можно сопоставить её

с аннотацией, которые выдают различные алгоритмы при обработке этой видеопосле-

довательности. Разметка, или аннотация, сделанная вручную, является эталоном для

работы алгоритмов. Поэтому мы будем называть её иногда «идеальной разметкой»

или «идеальной аннотацией», имея в виду, что ожидается совпадение результатов

работы алгоритмов с идеальной разметкой. Существуют системы аннотации видео в

сети Интернет [158], ими можно свободно пользоваться в качестве web-приложений.
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Рассмотрим основные показатели качества работы алгоритмов выделения движу-

щихся объектов и их траекторий. Для этого введём обозначения:

– V n = {V n
i } для последовательности кадров видео, где i — номер кадра, n —

номер видеопоследовательности в тестовой базе;

– {Inl } для объектов идеальной разметки, где l — номер идеального объекта, n —

номер видеопоследовательности, на которой данный объект отмечен;

– {Aan
m } для объектов автоматической разметки, где m — номер объекта, n —

номер видеопоследовательности, a — номер тестируемого алгоритма;

– P n
il = P (V n

i , I
n
l ) и P an

im = P (V n
i , A

an
m ) — функции, возвращающие положение

объектов Inl и Aan
m на кадре V n

i , где положение P n
il и P an

im — это множество точек

объектов в кадре, которое, в связи с трудоёмкостью поточечной разметки изоб-

ражений объектов, обычно представляется в виде прямоугольника наименьшего

размера с параллельными границам кадра сторонами и содержащего все точки

изображения объекта;

– ρ (P1, P2) — мера совпадения двух областей кадра P1 и P2, далее мы будем ис-

пользовать ρ (P1, P2) = |P1∩P2|
|P1∪P2| (отношение мощности пересечения множеств к

мощности объединения, которое изменяется в пределах от 0 для непересекаю-

щихся множеств до 1 для совпадающих множеств);

– ρ (P n
il , P

an
im ) = ρ (P an

im , P
n
il ) = ρianlm — мера совпадения положений автоматического

объекта Aan
m и идеального объекта Inl на кадре i последовательности V n;

– µ (ω) — это число элементов в конечном множестве ω, т.е. мощность;

– µ (Aan
m ) = µ({i|P an

im 6= ∅}) — число кадров, на которых есть объект Aan
m ;

– µ (Inl ) = µ({i|P n
il 6= ∅}) — число кадров, на которых есть объект Inl ;

– χ (Aan
m ), χ (Inl ) — функция, результат которой — некоторое свойство объектов

Aan
m и Inl , например, категория объекта (человек, машина, группа людей).

Для сокращения обозначений далее будем рассматривать фиксированный алго-

ритм обработки и фиксированную видеопоследовательность, что позволит нам опу-

стить индексы алгоритма a и видеопоследовательности n.

На основе введённых обозначений можно рассчитать следующие метрики работы

алгоритмов.
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Число ошибок первого рода можно рассчитать по формуле

F αβ
P = µ(

{
Am

∣∣∣∣∀l :
µ ({i|ρilm < α})

µ (Am)
> β

}
), (4.4)

где α ∈ (0, 1] — порог меры совпадения автоматического и идеального объекта на

одном кадре для того, чтобы иметь основания эти объекты сопоставлять на данном

кадре, а β ∈ [0, 1] — порог на долю кадров автоматических объектов, на которых

идеальный объект должен быть сопоставлен автоматическому для того, чтобы авто-

матический объект не считался ложным срабатыванием. Чем ближе пороги α и β к

единице, тем строже критерий для отбора объектов, не являющихся ложными, чем

ближе эти пороги к 0, тем критерий мягче. Например, при β = 0 и достаточно малых

α, например, α = αm = 1
2
ρilm, автоматический объект будет считаться ложным толь-

ко тогда, когда он ни разу не пересекался по положению ни с каким из идеальных

объектов.

Число ошибок второго рода можно рассчитать по формуле, подобной (4.4):

F αβ
N = µ(

{
Il

∣∣∣∣∀m :
µ ({i|ρilm < α})

µ (Il)
> β

}
), (4.5)

т.е. идеальный объект считается пропущенным, если не нашлось ни одного автомати-

ческого объекта, который совпадал бы по положению лучше, чем на α, на более, чем

на (1− β)µ (Il) кадрах. При β = 0 и α = αm идеальный объект считается обнаружен-

ным, если хотя бы на одном кадре его положение пересекается с положением одного

из автоматических объектов.

Качество сопровождения объекта можно оценить с помощью показателей

Qα
T =

∑

l

Qα
T l, где Qα

T l = µ(
{
i
∣∣∃m : ρilm > α

}
), (4.6)

Eα
T =

∑

m

Eα
Tm, где Eα

Tm = µ(
{
Il
∣∣∃i : ρilm > α

}
), (4.7)

где величина Qα
T l характеризует, насколько постоянно идеальный объект Il сопро-

вождается автоматическими объектами, а величина Eα
Tm показывает, сколько раз

автоматический объект Am ошибочно меняет сопровождаемые идеальные объекты.

Для оценки качества выделения траекторий интересны интегральные соотношения

Qα =
Qα

T∑
l µ(Il)

, Eα =
Eα

T

µ({Am}) , которые, соответственно, показывают долю кадров, на

которых идеальные объекты сопровождались автоматическими объектами, и число

ошибок смены траектории по отношению к общему числу автоматических объектов.

На сайте www.changedetection.net, кроме видеопоследовательностей, доступны все

результаты обработки всех изображений методами вычитания фона, упомянутыми

в работе [123], в форме маски. Эти результаты можно использовать для эмуляции
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работы алгоритма вычитания фона на первом этапе алгоритма выделения траекто-

рий движущихся объектов, что позволит для всех методов вычитания фона получить

автоматическую аннотацию, а затем метрики качества для всех категорий видеоизоб-

ражений в виде

1. Fp = F αβ
P при α = 0.5 i β = 0.3.

2. Fn = F αβ
P при α = 0.5 i β = 0.3.

3. Q = Qα при α = 0.5.

4. E = Eα при α = 0.5.

Данные метрики могут быть вычислены с помощью специального программного

обеспечения, которое сопоставляет идеальную разметку с автоматической, получен-

ной на основе алгоритмов сопровождения движущихся объектов. Используя эти мет-

рики, можно рассчитать обобщённые показатели качества, применив тот же подход

ранжирования, который производился при расчёте метрик RCm и Rm для методов

вычитания фона. Изменится только состав и количество исходных метрик. Вычислен-

ные ранги методов конечного алгоритма слежения за движущимися объектами обо-

значим RTCm и RTm, соответственно. Итоговые результаты сравнения алгоритмов

сопровождения движущихся объектов, в основе которых лежат разные алгоритмы

вычитания фона, приведены в таблице 4.4. В таблице представлены все методы, рас-

смотренные в работе [123], в порядке убывания результатов по метрике RTC. Кроме

того, отдельной строкой «Baseline» представлены модельные результаты, полученные

для случая, когда в алгоритм сопровождения движущихся объектов подставляются

шаблонные точки движения, полученные в результате ручной разметки видеоданных.

Качество алгоритмов вычитания фона напрямую влияет на конечное качество со-

провождения отдельных объектов: это видно из того, что работа алгоритмов сопро-

вождения на основе введённых вручную точек движения получила наивысшую оценку

качества в таблице 4.4.

С другой стороны, отсутствует прямая корреляция между результатами по сравне-

нию алгоритмов вычитания фона и результатами работы алгоритмов выделения тра-

екторий объектов на их основе. Если не учитывать шаблонную разметку, то с точки

зрения метрики RTC лучше всего работает алгоритм, являющийся средним по метри-

ке R, поэтому за счёт дополнительной обработки можно получить хороший результат

по алгоритму отслеживания объектов, используя быстрые методы вычитания фона.

Возможно, отсутствие корреляции связано в том числе с недостатками вычисления

меры совпадения множеств точек при оценке качества сегментации, расмотренные в

предыдущем параграфе.
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Метод RTC RT RC R Fp Fn Q E

Baseline 6,1875 4,25 - - 11 80 0,35 0,31

GMM KaewTraKulPong 7,29 7,75 9,5 9,43 363 94 0, 40 0,35

ViBe+ 7,48 6 4,83 5 309 91 0,40 0,39

ViBe 7,58 7,75 9,33 10,17 296 102 0,39 0,35

SOBS-SC 8,5 6,5 6 6,14 246 98 0,31 0,26

Bayesian Back 8,77 5,625 11 12,57 268 109 0,40 0,27

KDE Nonaka 8,875 8,25 9,17 8,43 422 102 0,35 0,27

SOBS 9,15 7,75 8,17 8,57 295 108 0,32 0,261

KDE Elgamal 9,67 10,875 9,67 11,43 295 107 0,32 0,36

GMM Stauffer Grimson 9,99 9,5 11,5 10,14 341 110 0,36 0,29

PBAS 10,04 9,75 3 3,29 287 102 0,31 0,34

GMM Zivkovic 10,19 9,875 13,67 10,86 320 108 0,34 0,34

KDE Yoshinaga 10,94 9,75 10,67 9,29 417 113 0,39 0,28

Euclidian distance 11,06 13,125 16,67 14 351 109 0,34 0,42

PSP-MRF 11,17 12,25 4,83 5 189 122 0,30 0,35

GMM RECTGAUSS-Tex 12 13,75 13,67 13 125 165 0,20 0,44

Mahalonobis distance 12,13 15 15,5 13,43 483 116 0,33 0,36

Chebyshev probability 12,83 14,25 6,67 5,86 186 143 0,18 0,48

Local Self-similarity 16,19 18 14,67 13,14 427 191 0,10 0,42

Таблица 4.4. Характеристики алгоритмов сопровождения движения на основе раз-
личных методов вычитания фона.

Анализ таблицы 4.4 также показывает, что даже для «идеальной» разметки то-

чек движения предложенный алгоритм трекинга объектов совершает довольно много

ошибок.

Таким образом, необходимо комплексно подходить к проблеме автоматического

выделения событий на изображении видеокамер. Недостаточно получить хороший

результат только для одной из вычислительных подсистем при идентификации со-

бытий в системах компьютерного зрения, поскольку существует взаимное влияние

подсистем друг на друга при формировании конечного результата.

4.3. Анализ методик оценки точности алгоритмов классификации

При оценке точности алгоритмов семантической классификации изображений

необходимо сравнить категорию, к которой отнёс изображение объекта тот или иной

алгоритм семантической обработки, с действительной категорией объектов. Метрика

качества подобных алгоритмов строится на основе доли ошибок классификации по
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отношению ко всем попыткам автоматического распознавания класса, и вычисление

подобных осуществляется с использованием функции категории объекта χ, введённой

в предыдущем параграфе. Качество классификации событий можно оценить с помо-

щью метрики

F αβ
S = µ

({
Il

∣∣∣∣∃m :
µ ({i|ρilm < α})

µ (Il)
< β ∨ χ (Il) 6= χ (Am)

})
/µ({Il}), (4.8)

где F αβ
S – доля неправильно классифицированных идеальных объектов. В знаменате-

ле выражения (4.8) вычисляется количество таких идеальных объектов, для которых

не выполнен предикат из формулы (4.5), т.е. для них существуют некие автоматиче-

ские объекты, которые хорошо пересекаются по положению на большом количестве

кадров, но при этом их свойства χ не совпадают. Аналогично можно построить мат-

рицу из показателей по каждому из значений χ: насколько часто алгоритмы выдают,

например, объекты типа «группа людей» для объектов, которые на самом деле авто-

мобили.

Проблемой при анализе точности алгоритмов классификации является оценка до-

стоверности полученных по формуле (4.8) ошибок. Рассмотрим методику оценки до-

стоверности классификации на примере классификатора символов в модуле распо-

знавания автомобильных номеров транспортных средств [159].

На текущий момент существует много систем, которые выполняют автоматиче-

скую компьютерную обработку видеоизображений потока транспорта с целью вы-

деления и идентификации государственных регистрационных знаков транспортных

средств. Подобная обработка может быть как в составе мониторинговых систем до-

рожного движения, предназначенных для оценки транспортного спроса в ключевых

узлах дорожной сети, так и в системах контроля безопасности дорожного движения.

Очевидно, что эффективность алгоритма распознавания номерных знаков является

критичной для таких систем, поскольку ошибки распознавания приводят к погрешно-

стям измеряемых статистических характеристик транспортного потока и к неприме-

нимости системы в целом из-за экономической нецелесообразности её использования.

Считается, что порог применимости отдельно взятого алгоритма идентификации но-

меров примерно равен 95% по числу номеров, идентифицируемых алгоритмом без

ошибок.

Несмотря на то, что многие системы идентификации номеров преодолели порог

применимости, разработка новых или усовершенствование существующих алгорит-

мов является актуальной проблемой по двум основным причинам. Во-первых, лю-

бой существующий алгоритм совершает ошибки, которые необходимо устранять. Во-

вторых, очень часто с целью удешевления вычислительных приборов, которые ис-

полняют алгоритм, приходится модифицировать или полностью перерабатывать уже
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существующий алгоритм, чтобы он мог исполняться менее мощным вычислителем,

не сильно теряя при этом в качестве распознавания.

Существуют два основных подхода при построении алгоритмов идентификации

изображений регистрационных знаков транспортных средств. Первый подход заклю-

чается в том, что на основе государственного стандарта строятся модели изображений

номера, и потом каждая из этих моделей сопоставляется с изображением номерного

знака на входе алгоритма, результат выводится по наилучшему совпадению моделей.

Второй, более распространённый подход заключается в том, что для построения

модели номерного знака используется не государственный стандарт, а значительная

выборка изображений автомобильных номеров, которые предварительно подвергают-

ся разметке: каждое изображение сопоставляется с набором ожидаемых результатов

распознавания номерного знака, включающим строку с символами знака и их поло-

жение на изображении. Для построения модели на основе большой выборки изоб-

ражений используется либо нейросетевой подход, либо приёмы, подобные методам

построения нейросетей, включающие в себя построение признаковых пространств и

решающих правил [25, 160, 161, 162]. Широкое распространение данного подхода с

использованием машинного обучения объясняется тем, что, во-первых, государствен-

ные стандарты время от времени подвергаются пересмотру, и во-вторых, существуют

страны, которые не чётко регламентируют внешний вид и структуру номерных зна-

ков. К таким странам относится, например, США. Наконец, даже при использовании

модели, основанной на стандартах, невозможно создать качественный алгоритм иден-

тификации номерного знака без системы верификации этого алгоритма, а на текущий

момент единственным достоверным способом верификации является проверка алго-

ритмов на большой выборке изображений.

Таким образом, при построении любого алгоритма распознавания автомобильных

номеров требуется выборка изображений большого объёма. Далее приведена оценка

количества изображений номеров, необходимых для построения эффективного алго-

ритма идентификации номерных знаков.

Для примера рассмотрим номера, соответствующие ГОСТ Р 50577-93[163]. Наи-

более распространённые на данный момент номера соответствуют шаблону выше-

указанного ГОСТ, в котором буква предшествует 3 цифрам, потом следуют ещё две

буквы, и в конце расположены две или три цифры, относящиеся к коду региона. Для

простоты ограничим нашу задачу только распознаванием знаков номера, ошибки ло-

кализации изображений номеров внутри кадра мы рассматривать не будем. Таким

образом, проверять будем ту часть алгоритма идентификации номеров, на вход ко-

торой поступает изображение с локализованными элементами номерного знака, а на

выходе алгоритма строка символов, соответствующая знакам номера.
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Введём следующие обозначения: N — число символов в номере (N = 8 для но-

меров с двумя цифрами в коде региона и N = 9 для номеров с тремя цифрами в

коде региона); S — множество символов, используемых в номерах (S = L ∪D, где

L = {A,B,E,K,M,H,O, P, C, T, Y,X} — буквы, а D = 0..9 — цифры); Es
l — веро-

ятностное событие, заключающееся в неверном распознавании символа s ∈ S, на-

ходящегося в позиции l относительно первого символа номера; Hs
l — вероятностное

событие возникновения символа s ∈ S, находящегося в позиции l относительно перво-

го символа, в произвольно взятом номере. В предположении независимости ошибок

Es
l вероятность правильного распознавания номера можно представить как

P =
N∏

l=1

(1− P (Es
l )) =

N∏

l=1

(1−
∑

s∈S
P (Es

l |Hs
l )P (H

s
l )). (4.9)

Введём упрощение в модель распределения ошибок, сделав предположение, заклю-

чающееся в том, что ошибка P (Es
l ) зависит только от s, и не зависит от положения

символа в номере l, более того,

P (Es
l ) =

{
pL, если s ∈ L,

pD, если s ∈ D.
(4.10)

Ограничимся рассмотрением номеров с двумя цифрами в коде региона, т.е. номе-

рами с 8 символами, так как для номеров с 9 символами рассуждения аналогичны.

Тогда, считая, что в коде региона могут быть все цифры1, мы получим в рамках

упрощённой модели

P = (1− pD)
5 · (1− pL)

3 , (4.11)

где показатели степеней соответствуют вероятности не сделать ошибки ни в одной из

5 цифр и ни в одной из 3 букв номерного знака.

Введём обозначение p̃ = max(1− pD, 1− pL). Тогда из формулы (4.11) следует

P ≤ p̃8. (4.12)

Для того чтобы оценить уровень распознавания P с погрешностью ±3σ, необ-

ходимо оценить уровень распознавания отдельного символа p̃ с погрешностью ±3σ̃,

причём согласно приближению формул ряда Тейлора из формулы (4.12) следует

σ̃ ≈ σ/8. (4.13)

1На данный момент это не так: из 100 возможных сочетаний двух цифр несколько пар в кодах

регионов не применяются. Пренебрежение этим фактом несущественно смещает оценку количества

примеров в сторону увеличения
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Разумно ограничить неопределённость оценки уровня распознавания минималь-

ным уровнем

3σ = (1− P )/2. (4.14)

В этом случае при P = 0, 95 неопределённость результата будет примерно в пределах

от 0, 93 до 0, 97. На основании (4.13) и (4.14) получаем

σ̃ = (1− P )/48. (4.15)

Согласно [164], p̃, σ̃, и количество необходимых примеров M изображения кон-

кретного символа связаны формулой

σ̃ =

√
p̃(1− p̃)√
M

. (4.16)

Таким образом, на основании (4.12), (4.15) и (4.16), имея ввиду убывание функции

p̃ (1− p̃) при p̃ ≥ 0, 5, получаем количество примеров

M ≥
2304 8

√
P
(
1− 8

√
P
)

(1− P )2
, M ≥ 5853 при P = 0, 95. (4.17)

Итак, для того, чтобы достоверно верифицировать факт работы алгоритма распо-

знавания номеров с уровнем ошибок 95%, требуется, чтобы в примерах изображений,

на которых происходит верификация, было M ≥ 5853 каждого из символов множе-

ства S. При этом изображений номеров требуется несколько меньше, поскольку на

одном номере может быть несколько одинаковых символов.

Обозначим количество номеров, которые содержат M конкретных символов α ∈ S,

как N , и будем исходить из того, что наша выборка номеров объёма N случайна,

причём вероятность попадания каждого из существующих номеров в нашу выбор-

ку одинакова. Введём вероятность P (α, n, k) для события, заключающегося в том,

что n-значный номер из нашей выборки содержит ровно k символов α ∈ S. Тогда

справедливо следующее соотношение:

M =
n∑

k=1

k · P (α, n, k) ·N. (4.18)

Вероятность P (α, n, k) можно рассчитать комбинаторными методами. Понятно,

что в номерах, соответствующих ГОСТ Р 50577-93, P (α, n, k) = 0 для цифр α ∈ D

при n > 5 и для букв α ∈ L при n > 3, так как стандарт не подразумевает наличие

такого количества цифр и букв в номере. Для остальных троек (α, n, k) расчёт ведётся

отдельно для букв и цифр.
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Пусть nα — количество мест, отведённых в номере под символы типа α, mα —

мощность множества символов типа α, т.е.

nα =

{
3, α ∈ L,

5, α ∈ D,
mα =

{
|L| = 12, α ∈ L,

|S| = 10, α ∈ D.
(4.19)

Количество слов K длины n, составляемых из m символов, в которых символ α

встречается ровно k раз, определяется формулой

K = Ck
n · (m− 1)n−k . (4.20)

Рассуждения, доказывающие эту формулу, следующие. Если k позиций заняты

символом α, то остальные n− k позиций заняты остальными символами, количество

которыхm−1. Т.е. всего есть (m− 1)n−k вариантов расстановки оставшихся символов.

Число расстановок оставшихся k символов в n позиций соответствует Ck
n. Отсюда

следует формула (4.20).

Всего слов длины n, составляемых из m символов, как известно, равно mn, откуда

на основании формул (4.19) и (4.20) следует, что

P (α, n, k) =
K

mα
nα

=
Ck

nα
· (mα − 1)nα−k

mα
nα

. (4.21)

Пользуясь (4.17), (4.18) и (4.21), получаем итоговую оценку необходимого количе-

ства изображений номеров для верификации достоверности алгоритмов P :

N ≥
mα

nα · 2304 8
√
P
(
1− 8

√
P
)

[∑nα

k=1 k · Ck
nα

· (mα − 1)nα−k
]
· (1− P )2

. (4.22)

Подставляя в эту формулу значения для цифр, получаем требуемое количество

номеров N > 11704. Для букв требуемое количество номеров N > 23409, соответ-

ственно. Окончательно именно последнее ограничение определяет требуемое количе-

ство номеров для подтверждения достоверности распознавания алгоритмов на уровне

0, 95.

Может показаться парадоксом тот факт, что всего трёхбуквенных комбинаций

в номерах, соответствующих ГОСТу РФ, равно 123 = 1728, а примеров требуется

более 20 тысяч. Однако на основании формулы (4.20) мы можем получить, что в этих

трёхбуквенных комбинациях содержится только 498 символов A, например, поэтому

для набора требуемого количества примеров (около 6 тысяч) придётся использовать

повторы комбинаций.

На практике к основным источникам ошибок алгоритмов можно отнести шумовые

явления (шум видеосигнала, загрязнение номеров из-за погодных условий), изменения
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условий освещения в течение суток (смена дня и ночи, смена режимов уличного осве-

щения), изменение условий в течение года при смене сезонов, смена погодных условий

(переменная облачность, туман, дождь), изменение углов съёмки видеоизображений

номеров, различная скорость транспортных средств (влияет на чёткость изображения

номера из-за экспозиции камеры). Для того чтобы выборка, на которой верифициру-

ется алгоритм, была репрезентативной, желательно для каждого типа условий иметь

более-менее равное количество примеров.

Сбор необходимой выборки изображений в этих условиях представляется сложной

задачей. Можно упростить этап разработки алгоритмов, введя синтез изображений

номеров. Практически любой фактор можно промоделировать с помощью фильтров,

преобразующих изображение. Например, смену освещённости можно промоделиро-

вать на основе данных о свойстве материалов и красок, из которых производятся

автомобильные номера, и на основании коэффициентов отражения типичных номе-

ров из одного реального примера с известной освещённостью синтезировать некото-

рое количество искусственных примеров, применив фильтры преобразования уровней

яркости. Смена угла съёмки эмулируется применением проективного преобразования

картинки, параметры которого задаются исходя из параметров съёмки исходной кар-

тинки (угол зрения камеры и угол оптической оси к плоскости таблицы номера).

Влияние экспозиции на потерю чёткости движущегося номера можно эмулировать с

помощью изображения номера, полученного от неподвижной машины с дальнейшим

сложением последовательных изображений номеров, полученных моделированием пе-

ремещения с определённой скоростью. Сами изображения номеров тоже можно син-

тезировать на основе правил ГОСТ.

Теоретически, набрать необходимый объём тестовых примеров можно вообще без

реальных съёмок, используя исключительно синтезируемые примеры. К сожалению,

синтезированные примеры могут лишь помочь разработке алгоритмов. Верификация

же алгоритмов всё равно останется под вопросом: вряд ли модели, по которым по-

лучались синтезированные изображения, можно считать полностью эквивалентными

реальным изображениям. Это значит, что для полноценной верификации требуется

несколько десятков тысяч реальных, а не синтезированных примеров.

Методику оценки точности классификации с помощью алгоритмов семантическо-

го сжатия и расчёт объёмов тестовой выборки изображений, которые легли в основу

приведенных выше материалов, можно применять не только для алгоритмов распо-

знавания символов, но и для оценки достоверности семантической обработки других

типов изображений.
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Рисунок 4.5. Архитектура базы данных информационной системы хранения видеома-
териала

4.4. Разработка программного обеспечения для автоматизированной оцен-

ки достоверности алгоритмов обработки видеоизображений

Разработка любого алгоритма распознавания и идентификации в компьютерном

зрении начинается с создания набора изображений или видео, на котором можно бу-

дет протестировать разрабатываемый алгоритм. Для обеспечения проверки качества

работы требуется большой набор видеоматериала, см. [159, 164]. Практически каж-

дая проблема требует для решения около 1000 примеров как минимум. Поскольку

алгоритмы компьютерного зрения обычно являются составной частью целых ком-

плексов систем видеонаблюдения, то для поддержания процессов разработки и тести-

рования данных комплексов требуется система хранения видеоинформации с особой

архитектурой, отличающейся от древовидной файловой структуры, поддерживаемых

большинством современных операционных систем [165]. Система файловых каталогов

отражает связь один ко многим, но в случае тестовых видеоданных информационные

связи более сложные: одна видеозапись может применяться и для тестирования де-

тектора оставленных предметов, и для оценки детектора движущихся объектов. В

данной статье рассматриваются требования к архитектуре хранения видеоданных,

предназначенных для разработки алгоритмов компьютерного зрения.

Система хранения видеоданных должна поддерживать возможность отнести изоб-

ражения и видео сразу к нескольким категориям: по категории решаемой задачи

(например, идентификация автомобильных номеров, детектирование возгорания на

изображении, детектирование исчезновения и появления предметов, детектирование

лиц, распознавание жестов руками, и т.д.), по категории условий места (помещение,

улица), по категории географического положения локации, в которой получен матери-

ал, по категории погодных условий и условий освещения (постоянное или переменное

освещение, ночное или дневное время, солнечная или пасмурная погода и т.д.), по

категории насыщенности сцены событиями (разреженная частота событий от 1 в ми-

нуту, средняя частота от 1 в 10 секунд, плотная частота событий менее 1 в секунду).

Видеохранилище должно поддерживать возможность расширять как состав катего-
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рий, так и состав элементов внутри категорий, см. рис 4.5. Должна быть возмож-

ность строить иерархии внутри каждой категории, например, категория «переменное

освещение» может подразделяться на «переменное естественное освещение» (из-за

переменной облачности, например) и «переменное искусственное освещение» (из-за

нестабильной работы осветительных приборов).

Кроме набора категорий, с каждым набором видео и изображений может быть

связано покадровое описание присутствующих на них объектов (см. [166, 167]), так

называемая разметка или аннотация видеоматериалов. С помощью данной разметки,

в том числе, можно оценивать плотность событий на каждом видеоролике или наборе

изображений.

Материал, собранный для разработки интеллектуальных подсистем видеонаблю-

дения, и подвергнутый обработке для получения разметки, обладает большой стои-

мостью. Поэтому система хранения этого материала должна предусматривать резер-

вирование и отказоустойчивость. С учётом того, что практически каждая из совре-

менных проблем в компьютерном зрении требует около 100 гигабайт аннотированных

видеоданных для своего решения, а также с учётом того, что перед компаниями, за-

нимающимися компьютерным зрением, стоит более 100 таких проблем, совокупный

объём видеоданных в таких системах составляет десятки терабайт. Резервирование

с полным дублированием данных в таком случае является крайне дорогостоящим,

поэтому применяются системы частичного резервирования наподобие RAID-5 или

RAID-6. Для повышения отказоустойчивости системы хранения данных всё же дуб-

лируются.

Информационная система хранения данных должна легко строить ответы на во-

просы: сколько есть в системе видеороликов, которые предназначены для тестирова-

ния систем контроля проникновения в запрещённую зону, которые записаны при этом

в ночное время суток и на которых присутствуют помехи в виде засветки от нестаци-

онарных искусственных источников освещения. Система должна обладать возможно-

стью детализировать ответ на данный запрос: она должна предоставить информацию,

какова длительность данных видеозаписей по времени, и сколько объектов интереса

присутствует в аннотации к данным записям. В частности, для изображений с авто-

мобильными номерами система должна обладать возможностью ответить на запросы

следующего типа: сколько автомобильных номеров, заканчивающихся на цифры 777,

присутствует в хранилище данных, сколько из них сняты днём, а сколько ночью, и

т.п.

Информационная система хранения видеоданных — это самый важный ресурс

компаний, выпускающих продукцию в области компьютерного зрения. Чем эффек-

тивнее она устроена, чем быстрее с её помощью можно получить ответ о составе ви-
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деоданных, которые система хранит, тем быстрее и эффективнее будет проводиться

разработка функциональных программных подсистем интеллектуальных анализато-

ров видеоизображения, повышающих эффективность и достоверность автоматиче-

ских детекторов событий на изображении.

Оценка качества систем распознавания в компьютерном зрении может быть ос-

нована на проведении натурных испытаний: необходимо установить сравниваемые

системы, например, систему подсчёта с помощью одной камеры и систему подсчёта с

помощью стереокамер, в одном и том же месте, затем одновременно запустить эти си-

стемы и провести натурные испытания: например, записать в журнале, сколько чело-

век прошло на самом деле, и каковы были результаты работы обоих систем. Несмотря

на концептуальную простоту, у подобных натурных испытаний есть серьёзные недо-

статки. Во-первых, в качестве выходных параметров видеосистем при испытаниях

мы должны получить не только вероятностную точность работы системы распозна-

вания, например, в виде достоверности, но и получить доверительный интервал для

этого показателя. Доверительный интервал должен быть достаточно узким для того,

чтобы можно было достоверно сравнить показатели различных систем. Если резуль-

тат для одной системы 87%±5%, а результат другой системы 91%±5%, то однозначно

судить о том, какая система лучше, нельзя. Существует вероятность, что лучше имен-

но та система, у которой результат 87%, а не та, у которой результат 91%, поскольку

важное значение приобретает пересечение доверительных интервалов у данных пока-

зателей. Но для того, чтобы сузить доверительные интервалы, в нашем примере это

[87%-5%, 87%+5%]=[82%, 92%] и [91%-5%, 91%+5%]=[86%, 96%], необходимо прове-

сти испытания с очень большой выборкой. Как показано в работе автора [164], чтобы

ширина полуинтервала была 2%, необходимо провести порядка 1000 испытаний, а для

ширины полуинтервала 0,5% требуются уже десятки тысяч испытаний. И посколь-

ку число испытаний столь велико, невозможно обеспечить ручной контроль точности

тех показателей, с которыми мы должны сравнивать результаты работы систем после

проведения испытаний. Практика показывает, что записи в журналах, например, о

проходах людей через турникеты будут содержать ошибки, обусловленные человече-

ским фактором, если требуется записать в журнал факты о 1000 или о 10000 таких

событий. Второй существенный недостаток натурных испытаний заключается в том,

что их невозможно повторить в точности заново: тысяча событий не произойдёт перед

камерами во второй раз совершенно так же, как это произошло в первом испытании,

к тому же освещённость наблюдаемой сцены, скорее всего, тоже будет изменяться

во времени. Поэтому сравнение различных систем с помощью натурных испытаний

надо проводить одновременно, т.е. невозможно сначала провести испытание одной си-

стемы, а потом другой. Из-за этого процесс проведения испытаний превращается в
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Рисунок 4.6. Схема базы данных для хранения разметки видео и результатов тестов (FK — внешний ключ, PK — индекс таблицы)
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ресурсоёмкую по трудовым затратам задачу.

Учитывая вышесказанное, испытание алгоритмов семантической обработки ви-

деоинформации проводят на основе собранных данных в информационной системе

хранения видеоинформации. Каждый алгоритм семантической обработки тестиру-

ется: после запуска на изображениях в составе отдельных файлов и файлов с ви-

деопотоком формируют автоматическую разметку видеоматериала (см. определение

термина автоматическая разметка в параграфе 4.2), а затем сравнивают её с идеаль-

ной разметкой, хранящейся в информационной системе хранения видеоматериалов,

используя для этого формулы (4.4)–(4.7) и (4.8). В результате система хранения видео

становится частью системы базы данных, предназначенных для информации, описы-

вающей тестирования алгоритмов семантической обработки, см. рис. 4.6. База дан-

ных включает в себя как видеоматериалы и аннотацию (идеальную разметку), так и

результаты работы различных версий алгоритмов семантической обработки (автома-

тическую разметку) совместно с рассчитанными результатами сравнения идеальной

и автоматической разметки.

Запуск тестирования различных алгоритмов на большом объёме видеоданных яв-

ляется требовательной к вычислительным ресурсам операцией. Например, в про-

цессе разработки автором алгоритмов для систем ВАРШ.00002-01, ВАРШ.00003-01,

ЛЦКБ.464412.002 и подобных им необходимо было обрабатывать видеофайлы длин-

ной несколько суток (при средней частоте кадров 25к/с) алгоритмами семантической

обработки, например, выделение движущихся объектов, отслеживание транспортных

средств с рапознаванием автомобильных номеров, детектирование оставленных пред-

метов, детектирование огня и др., с разными входными параметрами, определяющими

различный уровень чувствительности алгоритмов (баланс ошибок первого и второ-

го рода). По мере роста объёма видеоданных в тестовой информационной системе,

однопоточная обработка с помощью одного ядра современного компьютера с много-

ядерной структуры стала длиться около сотни часов, т.е. около 4 суток.

Поскольку скорость тестирования очень важна при активной разработке с внесе-

нием изменений в программный код реализации алгоритмов семантической обработ-

ки, были внедрены параллельные вычисления в несколько потоков на каждом ядре

многоядерной вычислительной системы с разделяемой памятью: видеофайлы допус-

кают обработку алгоритмами с одним из вариантов входных параметров (настроек),

поскольку такая обработка не использует общих ресурсов в информационной тестовой

системе. Каждый запуск формирует данные для отдельных строк в системе БД, изоб-

ражённой на рис. 4.6. На уровне физических ресурсов общим является жёсткий диск

с файлами видеохранилища, однако разграничения доступа к нему осуществляется на

уровне операционных систем, установленном на тестовом компьютере. В результате
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использования многопоточных вычислений время тестирования с сотни часов сокра-

тилось до 15 на ЭВМ с процессором, обладающем 8-ью ядрами, что также довольно

долго.

На текущий момент существует много способов выполнить распределённые вы-

числения, разделив вычислительную нагрузку на некоторое количество ЭВМ. По

большей части технологии распределённых вычислений базируются на обмене дан-

ных с помощью передачи сообщений между различными вычислительными уз-

лами. Наиболее распространён способ, основанный на библиотеке MPI (Message

passing interface) [168]. Можно также использовать для организации параллельных

вычислений распределённые системы непрерывной интеграции, например, систе-

му [169]. В рамках данной работы была использована система облачных вычисле-

ний HTCondor [170]. Данная система позволяет сравнительно просто организовать

вычислительное облако на рабочих местах сотрудников современных предприятий.

Системой предоставляются простые механизмы для управлением запуском и оста-

новкой вычислительных потоков на узлах облака, при этом поддерживается динами-

ческое состояние вычислительных узлов: отдельные ЭВМ облака могут выключаться

и включаться в процессе расчётов, все невыполненные задачи при выключении узла

будут назначены на активные ЭВМ. В результате применения системы [170] время

тестирования в облаке из 7 ЭВМ на базе 8-ядерных процессоров сократилось с 15 до

3,5 часов, т.е. в итоге со 100 до 3,5 часов. Ожидаемое сокращение времени тестирова-

ния в 7 · 8 = 56 раз, т.е. до менее, чем 2 часа, не происходит в соответствии с законом

Амдала [171] о доле последовательных вычислений.

Таким образом, неотъемлемыми частями современных систем тестирования алго-

ритмов семантической обработки изображений являются приложения по аннотации

видеоматериала, система хранения данных с видеоинформацией и её аннотацией, сов-

мещённая с системой хранения результатов семантической обработки, а также меха-

низмы облачных распределённых вычислений.

Выводы

1. Установлено, что современные методики тестирования не всегда точно уста-

навливают достоверность результатов семантической обработки.

2. На основе математического аппарата теории нечётких множеств предложен

способ оценки качества семантической сегментации, устойчивый к случайным поме-

хам.

3. Представлена новая теория тестирования алгоритмов семантической обработки

и выведены формулы для новых характеристик оценки качества детекторов движу-

щихся объектов в поле зрения камеры. Показано, что существующие системы оценки
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качества сравнивают различные детекторы не вполне в соответствии с функциональ-

ными требованиями к алгоритмам семантической обработки данного класса.

4. Разработаны методики оценки объёма видеоматериала, необходимого для раз-

работки новых алгоритмов семантической идентификации изображений.

5. Приведено описание системы тестирования алгоритмов семантической обра-

ботки, лежащей в основе ряда полученных в диссертации новых результатов.
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5. Исследование эффективности алгоритмов семантической об-

работки видеоинформации при анализе стереоизображений

Стереосистемы всё более широко применяются в современных системах комьпю-

терного зрения. В рамках данной главы будет рассомтрен ряд новых подходов к об-

работке стереоизображений. Суть данных подходов заключается в комбинировании

результатов обработки изображения от одной камеры с картой глубины, вычисленной

по синхронным изображениям двух видеокамер. Вначале главы будет проведён ана-

лиз эффективности обработки изображений без использования стереоэффекта. Затем

будет проведено исследование способов повысить достоверность результатов за счёт

комбинированной обработки изображений с двух камер стереосистемы с применением

автоматически вычисленной оценки расстояний до изображённых объектов сцены.

5.1. Основы теории построения и анализа алгоритмов калибровки стерео-

изображений и восстановления глубины

В современных системах технического зрения всё чаще применяется стереоэф-

фект для получения дополнительной информации о сценах, наблюдаемых в поле зре-

ния камеры. Типичная видеосистема на основе стереокамер состоит вычислительного

устройства и подключенных к нему пары камер, направленных в одну сторону и рас-

положенных на небольшом расстоянии друг от друга. Расстояние между камерой

называется базой стереосистемы.

Предположим, что параметры камер со значением базы b в стереосистеме одина-

ковы, т.е. у камер совпадают фокусное расстояние у камер f , ширина чувствительных

матриц w′, высота h′ и разрешение W × H. Также совпадают фокальные плоскости

двух оптических систем, в которых расположены чувствительные матрицы, из чего

следует, что оптические оси двух камер сонаправлены, и горизонтальные стороны

соответствующих прямоугольных элементов чувствительной матрицы находятся на

одной прямой. Если выполнены все вышеперечисленные ограничения на параметры

камер в стереосистемы, то мы назовём эти камеры канонической стереопарой, а саму

систему — канонической стереосистемой. Схема канонической стереосистемы изобра-

жена на рис. 5.1.

Представленная схема иллюстрирует, что объект T , находящийся на расстоянии

L от стереопары камер с оптическими центрами O1 и O2, проектируется в точки I1

и I2 фокальных плоскостей, принадлежащих камерам, которые мы будем условно

называть левой и правой, соответственно. Если мы проведём из точки O1 прямую,

параллельную отрезку O2I2, то она пересечёт фокальную плоскость в точке I ′2. Эта

точка соответствует точке, в которую переходит точка I2 при параллельном перено-

се, накладывающим изображение правой камеры на изображение левой камеры. Обо-
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Рисунок 5.1. Схема видеосистемы на основе стерео

значим расстояние d′ = |I1I ′2|, тогда из подобия треугольников △TO1O2 и △O1I1I
′
2

следует соотношение
d′

b
=
f

L
. (5.1)

Если Fr(x, y) —кадр с изображением правой камеры, Fl(x, y) — кадр с изображением

левой камеры, и объект T изображён в точке (xlT , y
l
T ) левой камеры, то с помощью

методов компьютерного зрения можно найти на кадре Fr точку (xrT , y
r
T ), в которой

изображение соответствует изображению окрестности точки (xlT , y
l
T ) на кадре Fl. При

этом можно воспользоваться, например, одним из методов сопоставления изображе-

ний, описанным в параграфе 1.3. По построению нашей системы, вертикальные коор-

динаты объекта T на правом изображении будут совпадать с координатами на левом

изображении, т.е. yrT = ylT , так что при поиске окрестности изображения достаточ-

но двигаться вдоль горизонтальной координаты. Обозначим d = ∆x = |xrT − xlT | —

разность горизонтальной координаты изображения точки T на левой и правой каме-

ре. Эту величину будем называть диспаратностью. Поскольку измеряемая в метрах

величина d′ связана с пиксельной разностью d пропорцией d/W = d′/w′, то завер-

шив поиск диспаратности, можно восстановить расстояние от объекта до камер на

основании формулы (5.1):

L =
fbW

dw′ =
f ′b

d
, (5.2)

где f ′ = fW/w′ — коэффициент, измеряемый в пикселах изображения, характеризу-

ющий угол зрения и разрешение камеры. Таким образом, восстановив по цифровым

изображениям диспаратность в точке объекта, при известных параметрах стереопары

камер возможно оценить расстояние от точки наблюдения до этой точки. Т.е. по изоб-

ражениям Fl(x, y) и Fr(x, y) можно восстановить расстояния до изображаемых точек



183

L(x, y). Функцию L(x, y) называют картой глубины, а соответствующую ей функцию

d(x, y) — картой диспаратностей. Данные функции широко используются в системах

технического зрения.

Проблема построения карты диспаратностей d(x, y) на основе двух изображений

Fl(x, y) и Fr(x, y) состоит из двух частей. Во-первых, предположения, в которых вы-

ведена формула (5.1), о расположении камер в пространстве и о совпадении их пара-

метров, на практике обычно не выполняются. Поэтому изображения левой и правой

камеры сначала подвергают так называемой ректификации, являющейся преобразо-

ванием, которое подбирают в процессе калибровки стереопары таким образом, что

получившиеся в результате преобразования кадры F ′
r(x, y) и F ′

l (x, y) соответствуют

изображениям некоторой канонической стереопары с известными параметрами. Во-

вторых, необходимо либо выбрать существующий метод вычисления d(x, y), посколь-

ку на данный момент исследователями предложено множество методов расчёта дис-

паратности по двум ректифицированным изображениям со своими достоинствами и

недостатками, либо разработать новый метод, если ни один из существующих методов

не подходит.

Для калибровки стереопары применяется множество различных методов [100]. Ча-

ще всего для построения преобразования ректификации изображений применяется

метод, предложенный в работе [101], поскольку идеи, изложенные в этой статье, реа-

лизованы в общедоступных программных кодах, а именно в библиотеке OpenCV [102],

и в среде Matlab [103].

Для видеокамеры, модель объектива которой соответствует идеальной тонкой лин-

зе, трёхмерные координаты объектов сцены в системе координат OXY Z, которую мы

будем называть мировой, связаны с координатами изображения объектов в системе

Ouv посредством следующих матричных формул:

α



u

v

1


 =M · [R|P ] ·




X

Y

Z

1



, где M =



fx 0 cx

0 fy cy

0 0 1


 — матрица параметров камеры,

(5.3)

а именно: фокусные расстояния fx и fy для, соответственно, горизонтального и вер-

тикального угла зрения, измеренные в единицах пикселей изображения, и центр про-

ективного преобразования (cx, cy) в координатах изображения камеры; [R|P ] — со-

ставная матрица размером 3 × 4 из матрицы 3 × 3 поворота камеры R и столбца

P = [px py pz]
T , определяющего позицию камеры. Матрица M определяет внут-

ренние параметры видеокамеры, зависящие только от свойств оптической системы

и чувствительной матрицы, и не зависящие от положения видеокамеры в простран-
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стве, матрицы R и P определяют внешние параметры, связанные с ориентацией и

положением камеры в пространстве.

Уравнение (5.3) применимо для камер, в которых отсутствуют оптические аберра-

ции. Часто в оптических системах присутствуют радиальная и тангенциальная дис-

торсия, и матричные формулы (5.3) необходимо дополнить моделью дисторсии, пред-

ставленной в [104, 105, 106]. Согласно этой модели, координаты (x′, y′), полученные

после преобразования для идеальной линзы


x

y

z


 = R ·



X

Y

Z


+ P,

x′ = x/z,

y′ = y/z,

u = fx · x′ + cx

v = fy · y′ + cy

должны быть подвергнуты преобразованию, обратному к преобразованию устранения

радиальной и тангенциальной дисторсии(см. [106]):

x′ = x′′(1 +K1r
2 +K2r

4 + · · · ) + (T2(r
2 + 2x′′2) + 2T1x

′′y′′)(1 + T3r
2 + T4r

4 · · · ),
y′ = y′′(1 +K1r

2 +K2r
4 + · · · ) + (T1(r

2 + 2y′′2) + 2T2x
′′y′′)(1 + T3r

2 + T4r
4 · · · ),

(5.4)

где r2 = x′′2 + y′′2, Ki — коэффициенты радиальной дисторсии, Ti — коэффициенты

тангенциальной дисторсии. Коэффициентами высоких порядков, обычно, пренебрега-

ют. Если учитывать только коэффициенты первого порядка T1 и T2 для тангенциаль-

ной дисторсии, и первые шесть коэффициентов K1, K2, ..., K6 для радиальной дистор-

сии, то проведя расчёты, аналогичные расчётам в [107], получим, что приближённо

обратное преобразование к преобразованию, представленному в формулах (5.4), мож-

но записать в виде

x′′ = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2t1x

′y′ + t2(r
2 + 2x′2),

y′′ = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ t1(r

2 + 2y′2) + 2t2x
′y′,

(5.5)

где r2 = x′2 + y′2, k1, k2, ..., k6 и t1, t2 — коэффициенты обратного преобразования от

неискажённых дисторсией координат к искажённым. После преобразования (x′, y′) →
(x′′, y′′) необходимо использовать преобразование с коэффициентами матрицы камеры

M из соотношения (5.3):

u = fx · x′′ + cx,

v = fy · y′′ + cy.



185

Рисунок 5.2. Пример изображения шаблона в виде шахматной сетки для калибровки
внутренних параметров камер.

В процессе калибровки используют шаблон в форме шахматной клетки с извест-

ным количеством строк m и рядов n, а также с заранее измеренным размером клетки

δ. Пример шаблона см. на рис. 5.2. Выбор сетки в виде шахматной клетки обусловлен

тем, что существуют алгоритмы автоматического поиска внутренних узлов данной

сетки, которые работают достаточно устойчиво. В результате работы такого детекто-

ра угловые точки клеток внутри шаблона автоматически выделяются на изображении

в точках Sij, i = 1,m, j = 1, n. Если мировую систему координат ориентировать так,

что плоскость Oxy совпадает с плоскостью доски, причём оси параллельны сторонам

доски, а точка O совмещена с самой левой и самой нижней внутренней угловой точ-

кой шаблона. Тогда соответствующие точкам изображения Sij координаты исходных

точек Ŝij в ведённой мировой системе координат можно вычислить как (l · i, l · j, 0),
поскольку свойства калибровочного шаблона нам известны. С другой стороны, коор-

динаты исходных точек и проективные координаты на изображении связаны преоб-

разованиями (5.3) и (5.5), т.е.

Sij = T (Ŝij,M,R, P,D), (5.6)

где T — рассмотренное ранее преобразование мировых координат сцены в коорди-

наты изображения, зависящее от матриц внутренних параметров камеры M , мат-

рицы поворота R, позиции камеры P и вектора коэффициентов дисторсии D =

(k1, k2, ..., k6, t1, t2). Если вектор D состоит из нулевых значений, то, как следует из

уравнения (5.5), преобразование T приобретает форму (5.3).

Для калибровки стереопары выбранный шаблон помещают в поле зрения обоих

стереокамер, варьируя угол плоскости шаблона по отношению к осям камер стерео-

пары, и расстояние от шаблона до камеры. В результате обработки K синхронных

изображений левой и правой камеры автоматически выделяются угловые точки шаб-

лона на изображении {Srk
ij }k=K

k=1 и {Slk
ij }k=K

k=1 , где индексы i и j соответствуют гори-

зонтальным и вертикальным индексам углов шаблона, индекс k определяет номер

синхронной пары изображений, на которых выделен шаблон шахматной доски с уг-
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ловыми точками, и индексы l и r определяют, какой камере, соответственно левой

или правой, принадлежит изображение, на котором выделены угловые точки шаб-

лона. Поскольку координаты Ŝij привязаны к системе координат, в которой шаблон

неподвижен, то для обоих камер стереопары справедливо

S•k
ij = T (Ŝij,M

•, R•
k, P

•
k , D

•),

где вместо знака • подразумевается индекс l или r. В данной формуле зафиксировано,

что Ŝij не зависит от положения шаблона по отношению к камере в системе координат,

связанной с шаблоном, что внутренние параметры левой камеры M l и Dl и правой

камеры M r и Dr также не зависят от положения шаблона по отношению к камере, и

что матрицы ориентации оптической оси и положение камер Rl
k, R

r
k, P

l
k, P

r
k зависят

от положения шаблона в силу выбора мировой системы координат.

Поскольку взаимное расположение камер в стереопаре фиксировано, то существу-

ет такая матрица поворота C и такой вектор ~b, что при смещении на вектор ~b пра-

вой камеры её оптический центр совпадёт с центром левой камеры, и при примене-

нии поворотов C относительно оптического центра правой камеры оптическая ось

правой камеры станет параллельна оптической оси левой камеры. Это означает, что

P l
k = P r

k +~b и Rl
k = CRr

k. В процессе калибровки стереопары для построения преоб-

разования ректификации требуется найти элементы матриц и векторов M l, M r, Dl,

Dr, C, ~b. Одним из способов найти решение данной задачи является поиск значений,

в которых достигается

min
Rl

k = CRr
k

P l
k = P r

k +~b

∑

l,r

∑

k

∑

i,j

‖S•k
ij − T (Ŝij,M

•, R•
k, P

•
k , D

•)‖. (5.7)

Поиск минимума в задаче (5.7) производится методом Левенберга-

Марквардта [108, 109, 110], поскольку целевая функция является суммой квадратов

нелинейных непрерывно дифференцируемых функций с совпадающими аргумен-

тами. В основе метода Левенберга-Марквардта лежит регуляризированный метод

Ньютона, поэтому для сходимости метода важно выбрать достаточно близкое к

глобальному минимуму приближение. Конкретный способ выбора начального при-

ближения зависит от реализации калибровки стереопары. В частности, существует

подход, при котором сначала отдельно оцениваются матрицы камер M l и M r,

используя построение проективного преобразования между изображением шаблона

и самим шаблоном, при этом полагается Dl = Dr = 0 (см. [101]). Затем при фик-

сированных параметрах M l и M r и найденых матрицах Rl
k, R

r
k, P

l
k, P

r
k с помощью

метода Левенберга-Марквардта оцениваются параметры Dl и Dr. После этого при

фиксированных Dl и Dr вновь уточняются параметры M l и M r. Далее запускается
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Рисунок 5.3. Поворот оптических осей камер для ректификации

поиск решения задачи (5.7), где в качестве начального приближения используются

найденные ранее параметры M l, M r, Dl, Dr, Rr
k, P

r
k , а начальные матрицу C и вектор

~b вычисляют на основе метода наименьших квадратов и набора равенств из условия

исходной задачи.

Получив внутренние параметры камер M l, M r, Dl, Dr, а также параметры вза-

имного расположения C и ~b, можно построить преобразование ректификации. Рек-

тификация состоит из устранения дисторсии с помощью коэффициентов Dl и Dr,

выравнивания разности масштабов в коэффициентах матриц M l и M r, и в цифро-

вом преобразовании изображений, соответствующем повороту камер так, чтобы их

оптические оси стали перпендикулярны вектору ~b и параллельны друг другу, а оси

системы координат на обоих изображениях были сонаправлены. Такие преобразо-

вания поворота для обоих камер определяется на основе взаимного расположения,

задаваемого параметрами C и ~b. Для этого определяют преобразования поворота R1

и R2, которые поворачивают оптические оси обоих камер стереопары. Сначала пово-

рот производится для плоскостей, проходящих через оси и через точки закрепления

камер O1 и O2 (~b =
−−−→
O1O2), в сторону бисекторной плоскости на угол α/2, если угол

между плоскостями α (см. рис. 5.3). Затем оптические оси уже не являются скрещен-

ными прямыми, и если между ними ненулевой угол β, необходимо развернуть их в

вышеупомянутой бисекторной плоскости на угол β/2 друг от друга. Восстановлением

перпендикулярности к вектору ~b обычно пренебрегают, имея ввиду малость углов α

и β. Для ректификации можно было бы поворачивать только одну камеру, но тогда

на одной из камер пришлось бы наблюдать много таких точек изображения, кото-

рые невозможно установить после виртуального поворота, поскольку точки, которые

должны быть отображены в этих областях, находятся вне поля зрения камеры. Под-

вергая преобразованию поворота обе камеры, можно более оптимально распределить

невидимые зоны между левой и правой камерами стереопары.
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Таким образом, применяя формулы (5.3) и (5.4) с найденными матрицами и коэф-

фициентами для левой и правой камеры, получаем из исходных изображений Fr(x, y)

и Fl(x, y) ректифицированные F ′
r(x, y) и F ′

l (x, y). Далее для простоты мы не будем

применять штрихи в обозначении кадров, считая, что исходные изображения ректи-

фицированы.

Существует множество способов найти функцию диспаратности d(x, y), определе-

ние которой дано ранее. Базовые методы осуществляют для каждой ε-окрестности

U r
ε (xr, y) на правом изображении F r самую похожую ε-окрестность U l

ε(xl, y) на изоб-

ражении F l (координата y окрестностей совпадает, т.к. изображения ректифицирова-

ны). Для оптимальной работы вычислительных систем ε-окрестности формируются

в пространстве c нормой L0, т.е.

U•
ε (x•, y) = {(x′, y) | max (|x′ − x•|, |y′ − y|) < ε} —

квадратная окрестность с центром в точке (x•, y). Обозначим вектор из значений ин-

тенсивности изображений F• в окрестностях U•
ε (x, y) как v•ε(x, y), компоненты вектора

упорядочены по строкам и столбцам изображений. Тогда функция диспаратностей

рассчитывается по формуле

d(x, y) = argmin
x′

‖vrε(x′, y)− vlε(x, y)‖ − x. (5.8)

Методы, основанные на формуле (5.8), описаны в работах [111, 112, 113]. Преиму-

щество данных методов в небольшой вычислительной сложности: если количество

точек на изображениях N , а максимальная диспаратность на изображениях D, то

сложность поиска минимума (5.8) определяется как O(NDε2). Для некоторых типов

норм сравнения векторов vrε и vlε сложность алгоритма не зависит от размера окрест-

ности и равна O(ND). Однако данные методы не работают в точках разрыва функции

d(x, y) на границах объектов ближнего плана, так как в сопоставляемую окрестность

попадают и ближние, и дальние точки сцены, более того, точки, видимые одной ка-

мерой, могут быть невидимы другой камерой стереопары.

Методы, основанные не на локальном сопоставлении изображений, а на глобаль-

ном поиске, более успешно решают проблему перекрытия и разрывов, но они явля-

ются более вычислительно сложными. Согласно [120], глобальный поиск, ускоренный

с помощью метода динамического программирования [114, 115, 116], обладает вы-

числительной сложностью O(ND2) или, при некоторых допущениях, O(ND logD).

Сопоставим по вычислительной сложности метод, основанный на распространении

вероятности в марковской сети [119]. Более сложный метод поиска минимального

разреза в специальном потоковом графе, вершины которого соответствуют описанию

функции d(x, y) и соединены с источником, стоком и между собой определённым спо-
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собом [117, 118], в среднем обладает сложностью O(N1,2D1,3), в наихудшем случае их

сложность O(N2D2 log(ND)).

Для практической оценки эффективности того или иного метода восстановления

глубины можно пользоваться источником [121]. Данный источник предоставляет на-

бор пар изображений с заранее сформированной эталонной диспаратностью. Различ-

ные методы могут сравниваться на этом наборе . В критерии сравнения входит по-

грешность определения значений функции d(x, y), полнота восстановления глубины

и время обработки кадров. Данный источник показывает, что на данный момент в

системах реального времени могут использоваться лишь алгоритмы локального со-

поставления блоков, основанные на уравнении (5.8), поскольку остальные алгоритмы

обрабатывают кадры за время от одной секунды и более.

5.2. Исследование эффективности алгоритмов выделения движущихся

объектов на основе изображений одной видеокамеры

В рамках данной работы уже приводилось описание алгоритмов, которые часто

применяются для идентификации и сопровождения подвижных объектов, см. п. 1.3

и п. 2.1. Данные алгоритмы являются достаточно эффективными, если применяются

для сцен с невысокой плотностью движения объектов в тех случаях, когда важно не

пропустить сам факт наличия движущихся объектов на сцене.

В случае плотного движения на сцене в поле зрения видеокамер (см. пример на

рис. 5.4) рассмотренные ранее алгоритмы сопровождения объектов на основе моде-

лирования фонового изображения сцены недостаточно эффективны, поскольку фон

постоянно закрыт подвижными объектами и затруднительно построить модель изоб-

ражения неподвижной части сцены. Тем не менее, область применения систем видео-

наблюдения не ограничивается только сферой обеспечения безопасности, часто ви-

деонаблюдение используется для сбора статистики, необходимой для хозяйственной

деятельности организаций. Для оценки статистики не столько важна достоверность

определения событий, сколько важно с некоторой точностью определить плотность

движения и направление потоков движения на видеокамере. Иными словами, в систе-

мах сбора статистики показатели Qα и Eα, которые оценивают точность сопровож-

дения движущихся объектов и рассчитываются по формулам (4.7) параграфа 4.2,

важны более, чем количество пропусков и ложных срабатываний F αβ
N и F αβ

P , рассчи-

тываемых по формулам (4.4) и (4.5), соотвественно.

К примеру, на рис. 5.4 в области наблюдения видеокамеры находится вход в кино-

зал, и для организации контроля продажи билетов важно, сколько людей проходит в

зал во время начала сеанса, и сколько людей выходит из зала во время конца сеанса.

В рамках диссертационной работы был внедрён метод оценки плотности движения

объектов, который позволяет дать оценку количества перемещающихся объектов при
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Рисунок 5.4. Пример плотного движения в поле зрения видеокамеры.

помощи одной камеры даже тогда, когда точную модель фона оценить не удаётся.

Правда в условиях плотного движения, относительная погрешность оценки количе-

ства людей довольно велика, и составляет около 20%, тем не менее, в некоторых

случаях при оценке посещаемости достаточно такой точности.

Рассмотрим алгоритм оценки плотности движения с помощью одной видеокамеры.

Перед описанием алгоритма условимся считать, что для видеокамер, на которых

мы отслеживаем движущиеся объекты, проведена процедура калибровки, описанная в

работе автора [172], т.е. в каждой точке изображения (x, y) нам известен характерный

размер объекта H(x, y). Данная функция является входом всех нижеперечисленных

алгоритмов.

Систему координат на изображении кадра мы введём таким образом, чтобы едини-

цы координат соответствовали пикселам изображения, координата (0,0) соответствует

левому верхнему углу, ось y направлена вниз, ось x — вправо.

Пусть {Fi(x, y)} — последовательность изображений, а значениями функций Fi яв-

ляются интенсивности изображения в точках (x, y). Данная последовательность, как

и функция H (x, y), относится к входным данным для алгоритма отслеживания дви-

жения. К выходным данным алгоритма относится множество объектов A = {Am}, где

для каждого объекта Am определено его множество положений {P a
im} на i-ом кадре

видеопоследовательности, индекс a показывает, что положение объекта определено
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автоматически. Само положение объекта определяется координатами минимально-

го по площади прямоугольника со сторонами, параллельными координатным осям.

Примером алгоритма обработки видеопоследовательности изображений, достаточно

достоверно выделяющего движущиеся объекты в поле зрения одной камеры, при этом

обладая невысокой вычислительной сложностью, является следующая последователь-

ность шагов.

1. Осуществим подбор проективного преобразования координат

(x′, y′) = h (x, y) = (hx (x, y) , hy (x, y)) ,

такого, что на кадрах F p
i (x, y) = Fi (hx (x, y) , hy (x, y)) характерный размер изобра-

жения объектов в каждой точке примерно равен фиксированному значению nh = 16.

Преобразование h (x, y) представляет собой две дробно-линейные функции

x′ = hx (x, y) =
Ax+By + C

Gx+ Fy + 1
,

y′ = hy (x, y) =
Dx+ Ey + F

Gx+ Fy + 1
,

где коэффициенты A, B, C, D, E, F, G, H необходимо подобрать таким образом,

чтобы в любой точке кадра выполнялось условие

hy (x, y −H(x, y))− hy (x, y) ≈ nh.

При этом коэффициенты проективного преобразования могут быть заданы заранее с

помощью графической утилиты подбора преобразования кадра, либо их можно вы-

числить, решив следующую задачу

min
A,B,C,D,E,F,G,H

∑

(x,y)

(hy (x, y −H(x, y))− hy (x, y)− nh)
2,

например, методом градиентного спуска. Начальное приближение можно получить с

помощью решения несколько упрощённой задачи

min
A,B,C,D,E,F,G,H

∑

(x,y)

(hy (x, y −H(x, y))− hy (x, y)− nh)
2 · (Gx+ Fy + 1)2 ,

например, методом наименьших квадратов, поскольку в данном случае целевая функ-

ция состоит из слагаемых, являющимися квадратами линейных функций относитель-

но пространства, в котором ведётся поиск оптимальных значений.

2. Введём множество объектов Ti, отслеживаемых на кадре i. Элементами мно-

жеств Ti будем считать точки t, характеризующие положение объектов. Индекс на-

чального кадра видеопоследовательности мы будем считать единичным, и положим

T0 = T1 = ∅. Множество результирующих объектов в начале работы алгоритма по-

ложим A = ∅.
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3. Следующие шаги алгоритма повторяются по порядку для каждого кадра по-

следовательности {Fi(x, y)}.
4. Кадр Fi(x, y) преобразуется в кадр F p

i (x, y) с помощью преобразования, полу-

ченного на шаге 1.

5. Кадр F p
i (x, y) подвергается операции Гауссова размытия путём свёртки с функ-

цией g (x, y) = 1
2πσ2 · ex2+y2

2σ2 , где σ = nh

3
. В результате получается кадр F pg

i (x, y) =

g (x, y) ∗ F p
i (x, y) .

6. Для кадра F pg
i (x, y) производится поиск точек локальных нестрогих экстре-

мумов, положение которых запоминается с помощью характеристических функций-

таблиц χmin(x, y) и χmax (x, y):

χmin (x, y) =





1, если

∀x′ ∈
[
x− nh

2
; x+ nh

2

]
∀y′ ∈

[
y − nh

2
; y + nh

2

]
:

F pg
i (x′, y′) > F pg

i (x, y) ,

0 в противном случае,

χmax (x, y) =





1, если

∀x′ ∈
[
x− nh

2
; x+ nh

2

]
∀y′ ∈

[
y − nh

2
; y + nh

2

]
:

F pg
i (x′, y′) 6 F pg

i (x, y) ,

0 в противном случае.

7. С помощью алгоритма волновой раскраски выделяются множества соседних

точек, помеченные 1 в области значений функций χmin (x, y) и χmax (x, y). Множества

центров масс выделенных областей обозначим как R′
i =

{(
crx, c

r
y

)}n′

r

r=1
= {cr}n′

r
r=1.

8. Из множества точек R′
i выделяются точки Ri с наиболее различимой текстурой.

Это производится с помощью критерия, введённого в работе [173]: в каждой точке

оцениваются градиенты ∇F p
i =

(
∂F p

i

∂x
,
∂F p

i

∂y

)
функции F p

i (x, y), из них составляется

матрица (∇F p
i )

T · ∇F p
i размером 2 × 2. Для устранения шума в градиентах данная

матрица в каждой точке (x, y) усредняется по окрестности
[
x− nh

2
; x+

nh

2

]
×
[
y − nh

2
; y +

nh

2

]
,

а затем для усреднённой матрицы рассчитывается минимальное собственное значе-

ние. Если это собственное значение больше некоторой величины, значит найденный

центр масс точек нестрогого экстремума на изображении F p
i (x, y) является достаточ-

но существенным, и поэтому легко идентифицируемым на предыдущих и последую-

щих кадрах. Именно эти точки из множества R′
i отбираются во множество Ri.

9. Из элементов множества Ti−1 = {to} и элементов множества Ri = {cr} строится

соответствующий двудольный граф, каждому ребру (to, cr) сопоставляется вес wr
o =
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α ‖to − cr‖+βε(to, cr), где α и β — положительные весовые коэффициенты, ‖to − cr‖ —

расстояние между соответствующими точками, ε(to, cr) — разность изображений по

норме L2 в окрестности точки
(
tox, t

o
y

)
на предыдущем кадре F p

i−1 и в окрестности

точки
(
crx, c

r
y

)
на текущем кадре F p

i . С помощью метода, описанного в работе [174],

решается задача об оптимальном паросочетании

min
∑

(r,o)

(C − wr
0),

где C — константа, превышающая все веса wr
o, а E = {(r, o)} — множество пар ин-

дексов, однозначно определяющих рёбра построенного двудольного графа, входящие

в оптимальные паросочетания, это подразумевает что каждый индекс вершин r и o

может входить в найденное множество E только один раз. Используя найденное мно-

жество E, строится множество новых положений объектов на Ti текущем кадре: если

(r, o) ∈ E, то включаем во множество Ti элемент to из множества Ti−1, при этом его

положение обновляем новым положением cr. Если существуют элементы Ri, которые

не входят в рёбра, задаваемые множеством E, то в множество Ti включаются новые

объекты, соответствующие положению областей Ri без пары. Все объекты t ∈ Ti−1,

которые не обладают парой среди Ri, переносятся в Ti, при условии, что

∃n < nt : (на кадре Ti−n−1 у объекта t была пара в Ri−n ) .

Значение nt является постоянным параметром, определяющим время сохранения в

памяти информации об объекте, измеряемое в количестве кадров видеопоследова-

тельности.

10. Обновляются выходные данные A = {Am}. Информация о вновь появившихся

объектах t множества Ti переносится в качестве элементов Am при условии, что

∃n0∀n < nb : (на кадре Ti−n0−n−1 у объекта t была пара в Ri−n0−n) ,

где nb — постоянный параметр, определяющий длину отрезка последовательности

изображений, на каждом кадре которого рассматриваемый объект должен сопо-

ставляться с какой-либо точкой экстремума, чтобы попасть в конечный резуль-

тат работы алгоритма. Положения объектов отмечаются прямоугольными рамка-

ми, получить которые можно с помощью построенного преобразования h (x, y): для

каждого объекта Am на кадре i известно его текущее положение tm = (tmx , t
m
y ).

Окрестность положения объекта в координатах кадра F p
i (x, y) можно определить как

P ′′a
im=

[
tmx − nh

2
; tmx + nh

2

]
×
[
tmy − nh

2
; tmy + nh

2

]
. Прообраз данного множества при преобра-

зовании h (x, y) является оценочным положением объекта на исходном кадре Fi (x, y),

т.е. P ′a
im = h

−1(P ′′a
im) определяет четырёхугольник, приближающий положение объек-

та. В качестве конечного результата, используя координаты вершин P ′a
im, строится
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P a
im — минимальный по площади прямоугольник со сторонами, параллельными осям

координат исходного кадра.

Таким образом, получается результат A = {Am}. В системах видеонаблюдения

поток обрабатывается непрерывно, поэтому формально представленный метод обра-

ботки изображений не удовлетворяет требованию для алгоритмов, по которому любой

алгоритм должен состоять из конечной последовательности действий. Однако, если

рассматривать конечные подпоследовательности кадров от начала работы до текуще-

го момента, то количество действий также будет конечным, поэтому термин алгоритм

применять в данном случае корректно. Представленный алгоритм работает в реаль-

ном времени, после обработки каждого кадра у него на выходе есть текущий результат

с траекториями объектов. Для краткости дальнейших ссылок на данный алгоритм,

обозначим его Amono.

Алгоритм Amono с высокой достоверностью сопровождает объекты при малой

плотности движения не более одного объекта в течение 10 секунд в поле зрения каме-

ры. В этом случае показатели F αβ
N и F αβ

P (см. параграф 4.2) не выше 5% по отношению

к общему числу объектов в кадре. Однако данные ошибки значительно возрастают до

20% при увеличении потока движения до нескольких объектов в секунду (подобный

случай изображён на рис. 5.4). В рамках данной работы установлено, что использова-

ние стереоэффекта позволяет существенно повысить достоверность детектирования

подвижных объектов. Далее будет приведён анализ разработки систем выделения

движущихся объектов в стереосистемах.

5.3. Разработка алгоритмов синхронизации кадров стереокамер на основе

теории графов

В настоящее время стереосистемы, т.е. системы, состоящие из двух видеокамер,

которые расположены на известном расстоянии друг от друга, находят всё боль-

ше применений. Например, весьма перспективные автоматизированные системы под-

счёта количества людей, вошедших и вышедших из помещения, аналогичные [175],

основаны на алгоритмах восстановления глубины по стереоизображению, например,

см. [111, 112, 113, 114, 115, 116, 117, 118, 119, 120]. Прежде, чем рассмотреть алго-

ритм отслеживания движущихся изображений с помощью стереокамер, рассмотрим

решение одной из проблем применения алгоритмов восстановления глубины, а имен-

но: обеспечение синхронности изображений, полученных видеокамерами, см. статью

автора [176].

С одной стороны, нет большой технической проблемы в том, чтобы синхронизиро-

вать захват изображения на ПЗС матрицах, если обе видеокамеры специально спро-

ектированы и сконструированы с возможностью подобной синхронизации. С другой

стороны, в настоящее время существует немного таких устройств, и все они в десятки
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раз дороже, чем пара обычных видеокамер. И если цель производителя заключается

в сборе недорогой стереосистемы (особенно в рамках проведения предварительных

экспериментов), необходимо использовать стереосистемы с несинхронным захватом

изображений в видеокамерах. Даже если частота захвата кадров на двух камерах сте-

реосистемы одинакова, всё равно возможна некоторая рассинхронизация, как из-за

разности во времени старта захвата видеопотока, так и из-за погрешности генериру-

ющего частоту захвата кварца.

В рамках данной работы проведено модельное тестирование влияния рассинхро-

низации на достоверность алгоритма подсчёта посетителей на основе стереоизобра-

жений. Для этого искусственно в снятые изображения перед обработкой вводилось

отставание кадров видеопотоков, на 1 и на 2 кадра. Если точность детектирования

движущихся объектов при синхронной обработке была на уровне 95%, то при сдвиге

на кадр (что соответствует 40мс при частоте 25к/с) результат был 87%, при сдвиге

на 2 кадра (80мс) – 72%.

Данный тест показывает необходимость устранять, насколько это возможно, за-

держку синхронизации, обусловленную как аппаратными причинами, так и несовер-

шенством программного обеспечения для захвата видеоданных в операционных систе-

мах. Для обеспечения синхронности в дальнейших исследованиях обработка стерео

потоков видео построена в виде трёх асинхронных процессов. Первые два процесса

асинхронно формируют две очереди из кадров
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где F •
s — кадры левой или правой камеры, а t•s — соответствующее данному кадру

время захвата. Имеет смысл поддерживать такую длину очереди, чтобы время между

первым и последним кадром было раза в два выше, чем возможная задержка времени

поступления кадра между моментом захвата матрицы и моментом записи в очередь.

В современных системах, основанных на сетевых камерах, это время может быть

достаточно большим, порядка одной секунды.

Третий процесс заключается выборе наиболее подходящих пар кадров из очере-

дей, формируемых остальными процессами, и отсылке их на обработку алгоритма

анализа изображений на основе восстановления глубины. Для выбора оптимальной

пары построим двудольный граф G = {V,E} , V = V r ∪ V l, см. рис. 5.5, в котором

вершинам соответствуют кадры из сформированной очереди, и рёбрами соединены

только кадры от левой камеры V r и правой камеры V l, причем такие, что разность

времени захвата между ними не более определённого порога, например, Tmax =50мс.

Также мы определим вес для каждого ребра e = (F l
p, F

r
s ) ∈ E как We = Tmax−

∣∣tlp − trs
∣∣,
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Рисунок 5.5. Двудольный граф из асинхронных кадров, веса рёбер равны W1 =

= Tmax−
∣∣tln−i+1 − trm−j+1

∣∣, W2 = Tmax−
∣∣tln−i+1 − trm−j+1

∣∣, W3 = Tmax−
∣∣tln−i+2 − trm−j+2

∣∣,
W2 = Tmax −

∣∣tln − trm
∣∣.

т.е. чем ближе кадры по времени, тем больше вес. Далее необходимо решить задачу о

максимальном парасочетании, т.е. надо найти подмножество E ′ ⊆ E, которое решает

задачу

min
∑

e∈E′

We. (5.9)

Для задачи (5.9) известно эффективное решение с помощью метода Эд-

мондса [177]. На данный момент известен алгоритм решения задачи (5.9), по-

лученный как развитие метода «цветков», асимптотическая сложность которого

O (|V | (|E|+ ln |V |)). Это позволяет выполнять поиск оптимальных паросочетаний в

реальном времени. Получив решение E ′ для задачи (5.9), процесс отбора пар должен

послать на обработку ту пару картинок, которая соответствует паре из E ′ с наимень-

шим временем захвата одного из кадров среди всех кадров в парах E ′. После отбора

пары по этому условию и обработки кадров из этой пары в алгоритме, процесс выбора

пар должен удалить данные кадры из очередей.

Таким образом достигается синхронизация кадров, что существенно влияет на ка-

чество обработки изображений в стереосистемах. Если нет аппаратной поддержки

синхронизации, можно получить некоторое приближение к синхронной обработке с

помощью алгоритма, предложенного автором. Алгоритм позволяет обеспечить раз-

ность во времени захвата обрабатываемых пар кадров не выше, чем половина интер-

вала времени между захватом изображений в двух камерах, что позволяет сохранить

уровень достоверности конечного результата, основанного на вычислении глубины.

5.4. Разработка и анализ алгоритмов выделения движущихся объектов с

помощью стереосистем

Алгоритм отслеживания движущихся объектов с помощью стереоизображений

можно построить аналогично Amono (см. п. 5.2). На входе алгоритма, кроме функ-

ции характерных размеров объектов H (x, y), полученных так, как описано в [172],

также задаётся высота подвеса L для пары камер, угол наклона оптических осей к
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наблюдаемой сцене γ, и калибровочные параметры стереопары, полученные, напри-

мер, способом, описанным в [101]. К калибровочным параметрам относятся: смещение
−→
b от одной камеры к другой, матрица поворота R, позволяющая привести положе-

ние оптической оси одной камеры к такому положению, при котором она параллельна

положению второй камеры, векторы коэффициентов устранения радиальной дистор-

сии D1 и D2 объективов стереопары, матрицы M1 и M2, состоящие из внутренних

параметров камер, характеризующие фокусное расстояние и разрешение изображе-

ний. Кроме последовательности кадров {Fi(x, y)} с левой камеры на вход алгоритмов

поступает последовательность соответсвующих кадров с {F ′
i (x, y)} с правой камеры.

Отслеживание движущихся объектов с помощью стереоизображений состоит из

следующих шагов.

1. Повторяется шаг 1 алгоритма Amono, и находится преобразование h(x, y), при-

водящее все изображения объектов к изображению с характерным размером nh = 16.

2. Проводится предварительная инициализация множеств Ti и A аналогично ша-

гу 2 алгоритма Amono.

3. Дальнейшие шаги повторяются для каждой пары кадров последовательностей

{Fi (x, y)} и {F ′
i (x, y)}. В некоторых случаях требуется выбор синхронных пар кадров,

как это описано в работе [176] и в п. 5.3.

4. На основании параметров
−→
b , R, D1, D2, M1, M2 проводим преобразование

ректификации изображений, т.е. преобразуем Fi (x, y) и F ′
i (x, y) в, соответственно,

ректифицированные F r
i (x, y) и F ′r

i (x, y). Далее либо с помощью метода [112], либо с

помощью более качественного, но и более вычислительно сложноного метода [116] на

основе F r
i (x, y) и F ′r

i (x, y) производится расчёт диспаратностей F d
i (x, y), т.е. расчёт

смещений в каждой точке левого изображения к соответствующей точке правого изоб-

ражения. Поскольку известны параметры сцены L и γ, то на основании F d
i (x, y) про-

изводится расчёт высот F h
i (x, y) наблюдаемых объектов на основе трёхмерной рекон-

струкции сцены. Наконец, с помощью преобразования, полученного на шаге 1, по-

лучаем из изображения F h
i (x, y) изображение F p

i (x, y) с компенсацией проективных

искажений размеров объектов.

5. Далее повторяются шаги 5–10 алгоритма Amono, за исключением шага 8, по-

скольку для карты высот дополнительной фильтрации максимумов проводить не тре-

буется.

Приведённый алгоритм будем обозначать Astereo. На основе алгоритмов Amono и

Astereo возможно создать комбинированный алгоритм Acomb, приведённый ниже.

1. На последовательности кадров {Fi (x, y)} запускается Amono. В результате по-

лучается набор объектов A
mono.
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F αβ
P (ложные) F αβ

N (пропуски) Qα (доля кадров с

сопровождением)

Eα (смена тра-

ектории)

Amono 117 из 1080 150 из 1039 75% 187

Astereo 40 из 1020 35 из 1039 87% 63

Acomb 35 из 1021 23 из 1039 90% 67

Таблица 5.1. Сравнение результатов работы алгоритмов. Результаты приведены для
значений α = 0,3 и β = 0,5.

2. На последовательности кадров {Fi (x, y)} и {F ′
i (x, y)} запускается Astereo. В

результате получается набор объектов A
stereo.

3. Конечный результат A формируется на основе A
mono и A

stereo по следующему

принципу: в множество A попадают те объекты из Amono и A
stereo, которые достаточно

долго, на протяжении nI кадров подряд, были близки по положению. Если на текущем

кадре существует два почти одинаковых по положению объекта из A
mono и A

stereo,

то в конечный результат включается только положение одного объекта из A
stereo.

Приоритет отдан алгоритму Astereo, поскольку, как показано далее, он работает более

достоверно.

Для сравнения эффективности алгоритмов Amono, Astereo и Acomb необходимо про-

вести анализ их работы на одинаковых последовательностях изображений, и срав-

нить результаты с помощью специальных методик, аналогичных приведённым в ра-

ботах [166, 167, 178] и в параграфе 4.2. Результаты для данных трёх алгоритмов, при-

ведённых выше, представлены в таблице 5.1. Видно, что по качеству сопровождения

и достоверности Astereo значительно опережает Amono, а Acomb показывает несколько

лучшие результаты по сравнению с Astereo, за исключением показателя Eα.

Таким образом, дополнительный признак изображений, а именно — глубина, полу-

чаемая с помощью стереокамер, позволяет существенно улучшить результаты сопро-

вождения движущихся объектов. Тривиальная комбинация подходов к сопровожде-

нию объектов с помощью стерео- и обычных изображений позволяет дополнительно

улучшить приведённые показатели.

5.5. Исследование способов построения алгоритмов выделения движущих-

ся объектов одиночными видеокамерами и стереосистемами

Алгоритмы Amono, Astereo и Acomb, рассмотренные в предыдущих параграфах, при-

менимы для камер, ракурс наблюдения которых достаточно специфичен: наиболее

эффективно алгоритмы подсчёта движущихся объектов работают тогда, когда каме-

ры расположены непосредственно над потоком движения. При наблюдении за движу-

щимися объектами со стороны эффективность всех трёх представленных алгоритмов

снижается. Далее проводится исследование и анализ возможных способов применения
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стереосистем для детектирования движущихся объектов со стороны.

Проблема слежения за движущимися объектами с помощью видеокамер изучается

уже давно. Как правило, слежение за объектами в системах реального времени по-

строено на одном из методов поиска положения объекта на текущем кадре на основе

известного положения этого объекта на предыдущем кадре. Среди наиболее исполь-

зуемых можно отметить следующие методы поиска:

1) по наибольшему совпадению изображений текущего и предыдущего кадра по

норме L2 [75], в частности, поиск нового положения по методу «mean shift» [180];

2) выделение контуров с последующим применением метода активных конту-

ров [181];

3) фиксация изменяющихся положений особых точек изображения [182];

4) сравнение похожих сегментированных областей [183], в том числе, полученных

с помощью вычитания фона.

Для каждого из приведённых выше методов существует много модификаций, свя-

занных с оптимизацией вычислительной сложности или применением различных ал-

горитмов, например, алгоритма вычисления оптического потока по методу Лукаса-

Канаде. Более того, существуют разработки, объединяющие несколько методов поис-

ка и слежения, позволяющие получить более точное сопровождение объектов. Среди

подобных работ наиболее интересна, на наш взгляд, статья [179], в которой предложе-

но на основе обучения на большой выборке видеоданных выбирать метод вычисления

следующего положения объекта, исходя из априорной оценки точности, полученной

в процессе обучения для того или иного метода.

С одной стороны, приведённые выше наработки показывают хорошую достовер-

ность при идентификации и сопровождении движущихся объектов, однако они об-

ладают существенным недостатком: сложность данных алгоритмов не всегда позво-

ляет обрабатывать изображения в реальном времени с помощью современных вы-

числительных средств. Хорошие результаты достигаются при обработке записанных

видеопоследовательностей, причём частота обработки кадров существенно ниже ча-

стоты выдачи кадров камерами. Поэтому в рамках данной работы для выделения

движущихся объектов используется алгоритм вычитания фона, рассмотренный в рам-

ках обзора в п. 1.3. Простота данного метода позволяет реализовать его с помощью

вычислительно-эффективных инструкций и микропрограмм современных ЭВМ. До-

полнительные фильтры позволяют снизить число ошибок первого и второго рода

до приемлемых уровней (одно ложное срабатывание в неделю на одной камере при

детектировании 99,5% объектов, удовлетворяющих определённым паспортным требо-

ваниям). Однако и этого уровня в некоторых случаях бывает недостаточно с точки

зрения требований к системе в конкретных условиях эксплуатации. В таких случаях
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Рисунок 5.6. Схема расчёта диспаратности в стереосистемах.

возможно достигнуть качественного улучшения показателей достоверности за счёт

использования стереосистем вместо моновидеокамер.

Рассмотрим границы применимости стереосистем при детектировании движущих-

ся объектов, для определённости людей. Схема стереосистемы в горизонтальном раз-

резе представлена на рис. 5.6.

Рассматриваемая стереосистема состоит из двух одинаковых камер с сов-

мещёнными фокальными плоскостями, причём стороны ПЗС-матриц камер парал-

лельны друг другу. Таким образом, оптические оси камер параллельны. Введём по-

яснения к обозначениям на рисунке, а также некоторые новые обозначения:

– O1 и O2 — оптические центры, соответственно, левой и правой камеры,

– b = |O1O2| — «база» стереосистемы,

– T — положение наблюдаемого в камеры стереосистемы объекта,

– L — расстояние от стереопары до наблюдаемого объекта,

– I1 и I2 — изображение объекта T на левой и правой камерах, соответственно,



201

– I ′2 – положение точки I2 после параллельного переноса точки O2 к точке O1 так,

чтобы оптические оси камер совпали,

– обозначим = |I1I ′2| – диспаратность для изображений объекта T ,

– S — ближайшая к стереопаре точка, находящаяся на расстоянии Lminот стерео-

пары и попадающая в поле зрения обоих камер,

– M и N — края ПЗС-матрицы правой камеры, т.е. W = |PQ| — ширина ПЗС-

матрицы

– P и Q — края поля зрения правой камеры на расстоянии L, то есть r = |PQ| –

ширина зоны обзора камеры на расстоянии L,

– f — фокусное расстояние стереокамер, которое вместе с шириной матрицы опре-

деляет угол обзора камеры 2 arctg f
2W

.

– ω — горизонтальное разрешение ПЗС-матриц, и, соответственно, кадров стерео-

камер.

Основная формула для восстановления глубины следует из подобия треугольников

I1I
′
2O1 и O1O2T :

∆

f
=
b

L
=⇒ L =

bf

∆
.

Величина диспаратности измеряется в метрических единицах. Чтобы перейти к

диспаратности d, измеряемой в точках кадра, необходимо воспользоваться соотноше-

нием ∆
W

= d
ω
, то есть

L =
ωbf

dW
, (5.10)

данную формулу будем называть основной.

Практически в каждой задаче имеет значение ширина зоны обзора стереосистемы.

Из подобия треугольников MNO2 и PQO2 следует

f

W
=
L

r
⇒ r =

LW

f
, (5.11)

данную формулу будем называть формулой ширины зоны обзора. При оценке ширины

обзора стереопары следует учитывать, что зона обзора стерео находится в пересечении

зон обзора левой и правой камеры, поэтому из ширины зоны обзора одной камеры

необходимо вычесть базу b, однако в большинстве случаев этим можно пренебречь.

Кроме ширины зоны обзора, решающее значение в задачах, основанных на вос-

становлении глубины с последующей 3d-реконструкцией, имеет точность измерений.
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При фиксированных параметрах ω, b, f , W из основной формулы следует Ld = const,

т.е. L∂d = −d∂L, и значит

|∂L| = L |∂d|
d

=
L2W |∂d|
ωbf

, (5.12)

данную формулу будем называть формулой погрешности восстановления глубины.

Из подобия треугольников O1O2S и MNO2 следует, что Lmin = bf
W

. Однако боль-

шинство алгоритмов расчёта диспаратности обладают ограничением на максималь-

ную диспаратность dmax (например, довольно часто диспаратность ограничивается

значением dmax = 256), поэтому минимальное расстояние, на котором стереосистема

может оценивать глубину, определяется с помощью основной формулы 5.10:

L′
min =

ωbf

dmaxW
, (5.13)

данную формулу будем называть формулой расчёта ближнего края рабочей зоны.

Заметим, что при dmax = ω, т.е. при фактическом отсутствии ограничения на макси-

мальную диспаратность, L′
min = Lmin.

Рассмотрим доступные диапазоны параметров стереопары.

Разрешение ПЗС-матрицы ω может быть одним из следующих значений: 160, 320,

352, 640, 704, 720, 1280, 1920. Более высокие значения пока не поддерживаются совре-

менными вычислительными средствами расчёта диспаратности реального времени. C

одной стороны, чем меньше данное разрешение, тем ближе к стереопаре рабочая зона

согласно формуле расчёта для L′
min. С другой стороны, чем разрешение больше, тем

выше погрешность оценки расстояния |∂L| согласно формуле (5.12) восстановления

погрешности глубины.

Фокусное расстояние f > 2,8мм (при меньших фокусных расстояниях возникают

большие оптические искажения), а размер матрицы W определяется согласно табли-

це 5.2.

Наиболее распространены на данный момент матрицы 1/3" и 1/4", т.е. фактиче-

ски выбор ширины матрицы ограничен между двумя значениями — 4,8мм и 3,6мм.

Отношение W
f

входит и в формулу расчёта ширины зоны обзора, и формулу расчёта

погрешности, и в формулу расчёта ближнего края рабочей зоны. Чем больше отно-

шение, тем ближе край рабочей зоны, тем шире зона обзора, но, с другой стороны,

тем выше погрешность восстановления глубины.

Переходя к задаче распознавания движущихся людей на расстоянии порядка де-

сятка и менее метров от стереокамеры, приходим к необходимости выбирать пара-

метры так, чтобы отношение W
f

было как можно больше: ограничения на ширину

зоны обзора на расстоянии нескольких метров от камеры получаются более строгие,

чем на погрешность, тем более погрешность можно «отрегулировать» разрешением
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Диагональ в видиконовых дюймах Размер в мм

13/8" (плёнка типа 135 ) 36 × 24

APS-H 28,1 × 18,7

APS-C 23,7 × 15,6

4/3" 17,3 × 13,0

1" 12,8 × 9,6

2/3" 8,8 × 6,6

1/1,8" 7,2 × 5,3

1/2" 6,4 × 4,8

1/2,3" 6,16 × 4,62

1/2,33" 6,08 × 4,56

1/2,5" 5,8 × 4,3

1/2,7" 5,4 × 4,0

1/3" 4,8 × 3,6

1/3,2" 4,54 × 3,42

1/3,6" 4 × 3

1/4" 3,6 × 2,7

1/6" 2,4 × 1,8

Таблица 5.2. Таблица соответствия ПЗС-матриц различных стандартов их геометри-
ческим размерам.

камер и стереобазой. Чтобы отношение было максимальным, необходимо выбирать

минимальное фокусное расстояние f ≈ 3мм, и наибольшую по ширине ПЗС-матрицу

из доступных, а именно 1/4", W = 4, 8мм. Получим ωW
f

= 1, 6, и r = 1, 6L по форму-

ле (5.11).

Произведение разрешения и стереобазы ωb участвует и в формуле погрешно-

сти (5.12), и в формуле расчёта ближнего края (5.13). Поэтому при выборе разреше-

ния и стереобазы возможны некоторые вариации в пределах заданного ограничения

b < 30см. Поскольку dmax = 256, то при максимальном ω = 1920 из формулы расчёта

ближнего края получаем L′
min = 1920

256·1,6b ≈ 4,7b. С другой стороны, для лучших методов

расчёта диспаратности |∂d| ≈ 2÷ 3 пиксела (см. [121]). Поэтому из формулы расчёта

погрешности восстановления глубины следует, что на предельном по дальности в рам-

ках поставленной задачи расстоянии L = 10м |∂L| = 100м2·3
1920·1,6b ≈ 1000см2

b
. Для того, чтобы

фиксировать приближение человека, необходимо |∂L| < 33см, т.е. несколько меньше

характерной ширины человека. Отсюда b = 30см. Тогда L′
min ≈ 1,5м — ближайшее

расстояние для рабочей зоны. Для фиксации приближения человека с «квантом»

чувствительности 1,5м достаточно b = 6см, и тогда L′
min ≈ 30см, т.е. ограничения
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Рисунок 5.7. Пример изображения широкоугольной камеры кругового обзора.

почти нет. Однако необходимо помнить ещё про то, что ширина зоны наблюдения

на ближнем плане r = 1, 6L′
min ≈ 50см будет при этом неприемлемо маленькой, и в

действительности рабочая зона с шириной 3–4м начнётся с расстояния 2–3м.

Таким образом, при разрешении 1920 нужна стереобаза 30см, при 1280 — 45см,

при 1024 — 60см, при 720 — 80см.

Заметим, что для устранения ограничения (5.11) следует использовать сфериче-

ские ПЗС-сенсоры, чтобы, с одной стороны, изображение камер было примерно таким,

как изображени на рис. 5.7, но, с другой стороны, не было бы потери оптического раз-

решения на краях ( в случае плоских сенсоров такие потери неизбежно будут). После

вырезания нужных участков изображений, устранения дисторсии и ректификации,

фактически получаются изображения с нескольких стереопар сразу, и ограничения

по ширине рабочей зоны будут сняты за счёт того, что сцена будет закрыта несколь-

кими стереопарами.

Алгоритм детектирования движущихся объектов с повышенной достоверностью

при соблюдении приведённых выше ограничений на область наблюдения строится

следующим образом: любая движущаяся область считается объектом только тогда,

когда изменяется глубина точек объекта на величину, превышающую погрешность

определения расстояния от объекта до камеры, см. формулу (5.12). Данный алго-

ритм более достоверно детектирует движущиеся объекты, чем исходный алгоритм

сопровождения движущихся объектов с помощью вычитания фона, однако вычис-

лительная сложность алгоритма расчёта глубины велика, и для работы в реальном
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времени необходимы специальные аппаратные ускорители расчёта карты глубины,

которые на данный момент не являются широко доступными. Поэтому есть необ-

ходимость в разработке новых более быстрых алгоритмов расчёта глубины для для

детектирования подвижных объектов.

5.6. Исследование способов повышения быстродействия алгоритмов обра-

ботки стереоизображений за счёт семантического сжатия

Для оценки расстояния до объектов наиболее часто используются алгоритмы вос-

становления глубины [114, 115, 116], работающие с одной стороны достаточно быстро,

а с другой стороны обладающие приемлемой погрешностью расчёта диспаратности.

Данные алгоритмы базируются на принципе динамического программирования при

расчёте минимума целевой функции E(x, y):

min
d(x,y)

E(x, y) = min
∑

(x,y)

(C(x, y, d(x, y))+

+
∑

(u,v)∈U(x,y)

P1T (|d(x, y)− d(u, v)| = 1)+

+
∑

(u,v)∈U(x,y)

P2T (|d(x, y)− d(u, v)| > 1)) , (5.14)

где d(x, y) — диспаратность, или величина смещения от точки (x, y) на левом изоб-

ражении F l(x, y) до соответствующей ей точки F r(x, y) на левом изображении (т.е.

F l(x, y) ≈ F r(x+d(x, y), y)), C(x, y, d(x, y)) — функция штрафа в точке (x, y) за несов-

падение изображений F l(x, y) и F l(x, y) в окрестностях (x, y) и (x+d(x, y), y), соответс-

венно, функция T (·) является функцией над предикатами, и равна 1, если условие-

предикат в аргументе функции T выполняется, и 0, если предикат не верен, U(x, y) —

некоторая окрестность (обычно квадратная) точки (x, y), а P1 и P2 — постоянные

коэффициенты, регулирующие вклад в штраф за невыполнение условий плавного из-

менения функции d(x, y) в окрестности U(x, y).

Стоимость несовпадения C(x, y, d(x, y)) в целевой функции (5.14) определяется

разными способами. В одной из популярных библиотек обработки изображений [102]

используется функция штрафа следующего вида:

F+
r (x, y) =

1

2
(Fr(x, y) + Fr(x+ 1, y)) , F−

r (x, y) =
1

2
(Fr(x, y) + Fr(x− 1, y)) ,

Fmin(x, y) = min
{
F+
r (x, y), F−

r (x, y), Fr(x, y)
}
,

Fmax(x, y) = max
{
F+
r (x, y), F−

r (x, y), Fr(x, y)
}
,

C(x, y, d(x, y)) = max {0, Fl(x− d(x, y))− Fmax(x, y), Fmin(x, y)− Fl(x− d(x, y), y)} .

Обоснование для выбора именно такой меры несовпадения см. в содержании ста-

тьи [184].
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В общем виде задача (5.14) является NP -полной, и в настоящее время для таких

задач не известны решения полиномиальной сложности, т.е. задачу (5.14) приходится

решать полным перебором допустимых значений d(x, y) во всех точках изображения,

что является неприемлемым для систем реального времени, поскольку вычислитель-

ная сложность такого решения экспоненциальна:

O(eWH ln dmax),

где W ×H — ширина и высота кадров Fl и Fr, а dmax — максимальная диспаратность

при поиске. Однако можно использовать приближённое решение задачи (5.14), при

котором мы считаем, что приближённо минимум штрафной функции можно рассчи-

тать вдоль одного или нескольких прямых путей на изображении, тем самым сужая

окрестность U(x, y) в исходной целевой функции до некоторого интервала. В резуль-

тате, если мы минимизируем функцию E(x, y) только вдоль прямой с направляющим

вектором r = (rx, ry), компоненты которого целые и не превосходят по модулю еди-

ницу, функция E(x, y) трансформируется в функцию Er(x, y), и для неё справедливы

следующие реккурентные соотношения, которые позволяют применить схему дина-

мического программирования:

Er(x, y) =C(x, y, d(x, y))+

+min {Er(x− rx, y − ry, d(x, y)),

Er(x− rx, y − ry, d(x, y)− 1) + P1,

Er(x− rx, y − ry, d(x, y) + 1) + P1,

min
i∈[0,dmax]

Er(x− rx, y − ry, i) + P2 } .

Чтобы устранить постоянный рост штрафов вдоль вектора r, вместо функции

Er(x, y) используют функцию

E ′
r
(x, y) = Er(x, y)− min

k∈[0,dmax]
Er(x− rx, y − ry, k),

которая формирует такое же решение d(x, y), при этом позволяет избежать использо-

вания арифметики с высокой разрядностью. Для устранения шума на краях объектов

конечная функция штрафов рассчитывается по формуле

Ẽ(x, y) =
∑

r∈R
E ′

r
(x, y), (5.15)

где R — набор лучей, вдоль которых рассчитывается штраф в каждой точке. Слож-

ность расчёта диспаратности при минимизации функции Ẽ(x, y) равна

O(WHdmax|R|),
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где |R| — количество направлений, участвующих в расчёте штрафов. Эта сложность

полиномиальна относительно точек изображения, но коэффициент dmax|R| может

быть достаточно велик, и современные вычислительные устройства, как правило, не

могут вести расчёт диспаратности в реальном времени с помощью данного алгоритма.

Однако возможно применить принцип семантического сжатия для ускорения подсчёта

диспаратностей.

Для этого и на правом, и на левом изображении мы можем выделить подвижные

точки движения и фоновые изображения Br(x, y) иBl(x, y) для правой и левой камеры

с помощью алгоритмов выделения движения, описанных в п. 1.3.

Для фоновых изображений с некоторой периодичностью, например, раз в 5 се-

кунд, необходимо расчитывать диспаратность dB(x, y). Для расчёта диспаратно-

сти текущего кадра используется следующий принцип: если точка неподвижна, то

d(x, y) = dB(x, y). Если в точке есть движение, то расчёт диспаратности ведётся

по основному алгоритму с вычислением функции стоимости (5.15), но при этом в

процессе динамического программирования используются промежуточные таблицы,

задействованные при расчёте диспаратности на фоновых изображениях. Таким обра-

зом, вычисления будут выполнятся только в точках с движением, и поскольку, как

правило, доля точек движения в кадре невелика, то и вычислительная нагрузка при

расчёте диспаратности d(x, y) существенно снизится, и сможет быть выполнена в ре-

альном времени.

Выводы

1. Проведённое исследование видеосистем показывает, что на данный момент воз-

можности восстановления глубины с помощью стерео видеокамер практически не ис-

пользуются, поскольку большинству вычислителей не хватает производительности

для расчёта диспаратности с приемлемым качеством.

2. Разработаны алгоритмы сопровождения движущихся объектов Amono, Astereo и

Acomb на основе семантического анализа изображения одной камеры, семантической

обработки изображений стереокамер и комбинированный алгоритм, соответственно.

3. Проведён анализ эффективности разработанных алгоритмов, который показал

полезность применения карты глубины для решения задач семантической обработки

изображений: достоверность детектирования объектов возрастает с 75% до 90% в

условиях плотного движения в кадре.

4. Разработан алгоритм выбора синхронных изображений для стереосистем с ка-

мерами с асинхронным режимом выдачи изображений. Данный алгоритм существен-

но улучшает достоверность детектирования объектов с помощью стереоизображений

полученных от видеокамер без синхронизации.
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5. Разработан алгоритм достоверного детектирования объектов, переходящих до-

пустимые границы, основанный на автоматической оценке расстояния до объекта с

помощью стереосистем. Исследованы пределы применимости данного алгоритма, свя-

занные с оптическими характеристиками приборов видеонаблюдения.

6. Разработан способ ускорения вычислений карты глубины при анализе потока

изображения видеокамер с высоким разрешением на основе принципа семантического

сжатия.
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6. Исследование алгоритмов обработки панорамных изображе-

ний, получаемых автоматически управляемыми поворотны-

ми видеокамерами в режиме постоянного сканирования зоны

обзора

Обычно управляемые поворотные видеокамеры используются в системах видео-

наблюдения как неподвижные камеры, несмотря на то, что многие из них обладают

режимом сканирования по определённой, задаваемой программно, траектории. Обу-

словлено это сложностью восприятия информации постоянно движущегося изобра-

жения: как правило, лица, эксплуатирующие видеосистемы с поворотными камерами

в составе, делают выбор в пользу какой-либо фиксированной сцены в поле зрения

камеры, и лишь во время специальных мероприятий управляют видеокамерами на

поворотных устройствах, сопровождая какой-нибудь объект наблюдения в ручном

режиме.

Идея использовать непрерывное сканирование сцены с помощью горизонтально-

го вращения поворотной видеокамеры, отображая при этом панорамное изображе-

ние, лежит на поверхности. Панорамное изображение позволяет избежать неудобств,

связанных с наблюдением за происходящими на сцене событиями, поскольку сама

панорама в процессе движения камеры отображает неподвижную сцену, изменения

наблюдаются только в области, которые соответствуют текущему положению камеры,

причём изменения связаны только с изменениями сцены, а не с движением камеры.

Однако построение панорамы из последовательности изображений — вычисли-

тельно сложная задача. Известная библиотека обработки изображений OpenCV со-

держит модуль построения панорамы [185], но для построения панорамы из 10 кадров

программе из этой библиотеки требуется порядка 10 секунд, что неприемлемо для си-

стем реального времени. В рамках данной главы приведено описание исследований

и разработок, которые позволили на два порядка ускорить построение панорамно-

го изображения для видеокамер в режиме сканирования. Это позволяет применять

алгоритм построения панорамы в реальном времени для видеопотоков с частотой 25

кадров в секунду, т.е. обработка одного кадра выполняется менее, чем за 1/25с = 40мс.

6.1. Современные алгоритмы построения панорамных изображений из на-

бора цифровых снимков, сделанных из одной точки в различных на-

правлениях

Построение панорамных изображений необходимо тогда, когда из разрозненного

набора изображений, содержащих одну и ту же сцену в разных ракурсах, требуется

построить единственное изображение, которое агрегирует информацию с исходного

набора изображений.
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На данный момент существуют программные библиотеки, которые способны стро-

ить панорамные изображения [185]. Обычно программный код построения панорам-

ных изображений строится на идеях и методах, изложенных в работе [187]. Алгоритм

построения панорамы, описанный в данной работе, принимает на вход изображения

F1, F2, ..., Fn, а на выходе у него панорамное изображение FP . При построении пано-

рамы выполняются следующие шаги.

1. Для каждого изображения Fi выделяются характерные точки {Sik} и векторы

∆ij описания изображения в точке, инвариантного к масштабированию и повороту.

Такой вектор называется дескриптором или информационным вектором, вычисление

координат особых точек и их инвариантов проводится согласно способу, описанному

в работе [186].

2. Для каждой пары изображений Fi и Fj производится сопоставление харак-

терных точек {Sik} и {Sjl} на основе инвариантного описания ∆ik и ∆jl по методу,

описанному в работе [188].

3. Для каждой пары изображений, у которых на предыдущем шаге выделено до-

статочное количество соответствующих друг другу характерных точек, оценивается

матрица поворота оптической оси камеры от положения, при котором снималось од-

но из изображений в паре, в положение, при котором снималось другое изображение.

Также оценивается матрица камеры. Метод оценки внутренних и внешних параметров

камер повторяют методы оценки параметров камеры при калибровке стереопары (см.

предыдущую главу), отличие в том, что выбор пар на предыдущем шаге осуществля-

ется приближённым способом, поэтому требуется обеспечить фильтрацию шумовых

пар. Для этого используется метод RANSAC [189].

4. В наборе изображений {Fi} выделяются связанные компоненты в виде остов-

ного дерева из тех пар, для которых удалось достаточно точно оценить внутренние и

внешние параметры камер.

5. Каждое изображение отображается в координатах сферической проекции. При

этом ценой небольших искажений исходных изображений достигается одинаковое раз-

решение и в центре панорамного изображения, и на краях. Для устранения искрив-

лений панорамного изображения в сферических координатах среди всех оптических

осей выбирается главное направление, которое будет соответствовать средней широте

сферической проекции.

6. Каждое изображение {Fi} приводится к одной яркости и контрастности, чтобы

переходы между границами исходных изображений на панораме были менее заметны.

7. Производится «сшивка» изображений методом наложения пирамид исходных

изображений друг на друга для того, чтобы погрешность совмещения отдельных пар
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изображений не влияло на качество визуализации панорамы.

Практика показывает, что программный модуль [185] достаточно надёжно обраба-

тывает изображения панорамной съёмки, однако он не пригоден для использования

в системах реального времени, потому что, во-первых, десяток кадров обрабатывает-

ся десятки секунд, а во-вторых, сложность работы данного алгоритма равна O(n2),

где n — количество кадров, поданных на вход алгоритма построения панорамы. Это

значит, что чем больше кадров в режиме обработки видеопотока будет поступать

на вход данного алгоритма, тем линейно меньше будет скорость работы устройства,

реализующего данный алгоритм.

6.2. Исследование влияния выбора информации, описывающей характер-

ные точки изображений, на точность и вычислительную сложность

алгоритмов построения панорамы

Процесс построения панорамного изображения в конечном итоге сводится к зада-

че сопоставления двух кадров F1(x, y) и F2(x, y), полученных видеокамерой из одной

точки, но с разным направлением оптической оси, и, возможно, разными настройками

увеличения объектива, при этом часть видимой сцены на кадрах F1 и F2 совпадает.

Под сопоставлением изображения имеется ввиду поиск преобразования сопряжения

(см. п. 2.3), что, фактически, совпадает с задачей поиска внутренних параметров

камеры при съёмке изображений F1 и F2 и внешних параметров поворота камеры

из положения, в котором производилась съёмка кадра F2 в положение, при котором

производилась съёмка кадра F1: из данных матриц формируется проективное пре-

образование, переводящее координаты изображения общей сцены с одного кадра, на

другой. Для поиска данных матриц и преобразований, как уже отмечалось ранее,

необходимо найти как минимум 4 точки соответствия на общей части сцены кадра,

причём это нужно сделать в полностью автоматическом режиме.

В библиотеке построения панорамных изображений [185] используется метод поис-

ка характерных точек SIFT (scale-invariant feature transform) [186], который основан

на анализе локальных экстремумов функции

L(x, y, σ) = D(x, y, kσ)−D(x, y, σ), (6.1)

где k — некоторый параметр, близкий по значению к единице, но не равный ей, а

D(x, y, σ) = g(x, y, σ) ∗ F•(x, y) — свёртка с ядром Гаусса g(x, y, σ) = 1√
2πσ

e−
x2+y2

2σ2 .

Выбор семейства функций с параметром σ (6.1) обусловлен рядом свойств, рас-

смотренных в работах [190, 191, 192, 193].

Во-первых, показно, что семейство функций (6.1) являются результатом решения

дифференциального уравнения тепловпроводности, то есть ∂L
∂σ
(x, y, σ) = σ△L(x, y, σ)

при условии, что сделана замена временного параметра t = σ2/2 (в классической
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форме уравнение тепловпроводности записываеться как ∂L
∂t

= △L). Это позволяет

при анализе экстремумов функции (6.1) перейти к приближённой функции при ап-

проксимации производной отношением приращений функции L(x, y, σ) по параметру

σ:

D(x, y, kσ)−D(x, y, σ)

kσ − σ
≈ ∂L

∂σ
= σ△L(x, y, σ) ⇒ L(x, y, σ) = (k − 1)σ2 △L, (6.2)

то есть с точностью до константы k − 1 и нормировочного коэффициента σ2 раз-

ность (6.1) представляет собой результат действия оператора Лапласа ∂2

∂x2 +
∂2

∂y2
. А в

работе [193] показано, что экстремумы Лапласиана изображения эффективнее выде-

ляют характерные точки, чем, например, детектор Хариса [173], в том смысле, что

результат работы детектора характерных точек более устойчив к шуму и аффинным

преобразованиям.

Во-вторых, в указанных выше работах показано, что точки локальных экстрему-

мов (xi, yi, σi) функции (6.1) соответствуют некоторым характерным областям изоб-

ражения, причём масштаб областей соответсвует значению σi в точке локального экс-

тремума.

Для поиска локальных экстремумов функции (6.1) в работе [187] предложено ис-

пользовать следующий алгоритм.

1. Значение функций L(x, y, σ) для изображения F (x, y) рассчитывается на сетке

{(xl, ym, σn)}, где {(xl, ym)} — равномерная сетка с целочисленными координатами на

изображении F , а {σn} =
{
2

n
s

}
— сетка значений с экспоненциальным шагом при

условии, что коэффициент k = 2
1
s для функции (6.1), s — некоторое натуральное

число не менее 2. Эксперименты показывают, что значение s = 3 формирует доста-

точную мелкость разбиения сетки для работы алгоритма. Следует отметить, что при

переходе через узлы сетки n = j · s можно для сокращения числа вычислительных

операций перейти к уменьшенному вдвое разрешению при расчёте значений функции

L(x, y, σ), пользуясь соотношениями L(x, y, σ) ≈ L̃(x/2, y/2, σ/2) и L(x/2, y/2, σ/2) =

= 1
4
(L(x, y, σ) + L(x + 1, y, σ) + L(x, y + 1, σ) + L(x + 1, y + 1, σ)), где L̃ — функция,

рассчитанная на сетке уменьшенного разрешения. Подобный подход принято назы-

вать работой с пирамидой изображений, см. п. 1.3.

2. В первом приближении экстремум функции L(x, y, σ) — это такая точка сетки

{(xl, ym, σn)}, для которой все соседние значения функции в окрестности 3×3×3 либо

не больше, либо не меньше значения в центре окрестности. Список характерных точек

{(x̂j, ŷj, σ̂j)}Qi=1 формируется после прохода всех внутренних точек сетки, введённой на

предыдущем шаге, обозначим количество найденных экстремумов как Q. Подобный

подход вполне устойчив к шуму изображения в данном случае, поскольку исходное

изображение сглажено Гауссовой фильтрацией.
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3. Положение локальных экстремумов, найденных приближённо на первом шаге,

можно уточнить, используя аппроксимацию второго порядка с помощью разложения

в ряд Тейлора:

L(r) ≈ L(r̂) +
∂L

∂r

T

∆r +
1

2
∆rT

∂2L

∂r2
∆r, (6.3)

где r и r̂ — трёхмерные вектор-столбцы, компоненты которых соответствуют трём

аргументам функции L(x, y, σ), ∆r = r − r̂, ∂L
∂r

— столбец, соответствующий вектору

градиента функции L в точке r̂, ∂2L
∂r2

— матрица Гессе размера 3×3 вторых производных

в точке . Дифференцируя разложение Тейлора по ∆r, и приравнивая производную к

0, получим

∆r = −∂
2L

∂r2

−1

· ∂L
∂r
,

что позволяет уточнить положение экстремума r = r̂ + ∆r, а также уточнить после

подстановки в (6.3) значение самого экстремума

L(r̂) = L(r) +
1

2

∂L

∂r

T

· ∂
2L

∂r2

−1

· ∂L
∂r
. (6.4)

Таким образом, положение экстремумов {x̂j, ŷj, σ̂j}Qi=1 уточняется, и в конце данного

шага получается список характерных точек и их радиусов {(xj, yj, σj)}Qi=1.

4. Для каждой точки проводится дополнительная фильтрация: если в процессе

расчётов по формуле (6.4) выясняется, что значение |L(r) − L(r̂)|/L(r) слишком ма-

ло (например, менее 0,01), то окрестность точек r и r̂ признаётся окрестностью с

изображением слишком низкого контраста для того, чтобы выделить устойчивый ло-

кальный экстремум. Затем в каждом экстремуме производится оценка устойчивости

по критерию Хариса [173]
(trH)2

detH
<

(ξmax + 1)2

ξmax

,

где H — элементы матрицы Гессе ∂2L
∂r2

, соответствующие производным по x и по y, а

ξmax — максимально допустимое отношение ξ = λmax/λmin максимального собственно-

го значения матрицыH к минимальному собственному значению. Данное неравенство

следует из того, что trH = λmin+λmax, detH = λmin ·λmax и функция (ξ+1)2

ξ
при ξ > 1

монотонно возрастает. ξmax является параметром алгоритма, который, как правило,

выбирают из диапазона от 10 до 20. В результате данного шага из Q экстремумов

отбирается Q′ характерных точек {(xj, yj, σj)}Q
′

i=1.

5. В каждой характерной области {(xj, yj, σj)}Q
′

i=1 необходимо вычислить инфор-

мационный вектор ∆j, который бы не зависел от масштаба и поворота характер-

ного элемента изображения, соответствующего выделенным на предыдущих этапах

алгоритма характерным точкам. Для этого в работе [186] предложено посчитать
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в два этапа гистограмму распределения норм градиентов по их направлениям в

окрестности Uε(x, y) точки (x, y). При первом проходе радиус окрестности считает-

ся равным ε = 4,5σj по норме в пространстве L1, в каждой точке для градиента

∇ = (L(xj + 1, yj, σj) − L(xj − 1, yj, σj), L(xj, yj + 1, σj) − L(xj, yj − 1, σj)) формиру-

ется гистограмма распределения нормы |∇| =
√
∇2

x +∇2
y от угла θ = arctg ∇x

∇y
, углы

от 0◦ до 360◦ разбиваются при этом на 36 отрезков, 10◦ каждый. На полученной ги-

стограмме |∇|(θ) находится максимум, а также все значения, которые не меньше,

чем 80% от максимума. Из указанных значений формируются уже чётверки чисел

{(xj, yj, σj, θj)}Q
′′

i=1 в количестве Q′′, т.е. у каждой характерной области помимо радиу-

са появляется главное направление, причём для одной точки исходного набора может

быть добавлено несколько точек с одним и тем же положением и радиусом, но раз-

ными направлениями в том случае, если максимум на гистограмме |∇|(θ) не сильно

выделяется среди остальных значений. На втором этапе производится расчёт компо-

нентов вектора ∆j. Для этого используется окрестность Uε(xj, yj) при ε = 8 точек

изображения L′(x, y, σj), которое получается после поворота изображения L(x, y, σj)

вокруг точки (xj, yj) на угол θj, причём радиус окрестности в данном случае учи-

тывается по манхэттенской норме L1. Получившийся квадрат 16× 16 разбивается на

квадраты меньшего размера 4×4, т.е. на 4×4 = 16 клеток. В каждой клетке строится

гистограмма распределения нормы градиентов функции L′(x, y, σj) в 16 точках по 8

направлениям угла (то есть 360◦ разбивается на интервалы направлений по 45◦, четы-

ре направления вправо, вверх, влево, вниз, и четыре промежуточных направления).

При этом вклад в ячейку гистограммы домножается на вес e−d2/32, где d — расстояние

по норме L2 до центра окрестности Uε(xj, yj). Для сглаживания эффекта искажения

информации в гистограмме из-за случайного шума, который может приводить к попа-

данию значения градиента в соседние ячейки, гистограмма сглаживается за счёт до-

бавки в соседние ячейки некоторой доли от нормы градиента, причём добавка линейно

зависит от циклического расстояния между ячейками (т.е. расстояние между 0-й и

7-й ячейкой гистограммы — единица вследствие поворота на соответствующих этим

ячейкам градиентов на углы порядка 360◦). Элементы гистограммы нормируются на

единицу, а затем, чтобы устранить влияние переполнения динамического диапазона

чувствительности сенсоров камеры при засветках, все значения выше определённого

значения устанавливаются равными этому значению, для сглаживания выбросов при

резкой смене освещения. В конце концов производится новая нормировка на единицу,

и из кортежей-гистограмм c восемью значениями для каждого из 16 квадратов 4× 4

составляется посредством конкатенации информационный вектор ∆j, значения кото-

рого обладают некоторой устойчивостью по отношению к поворотам изображений, к

случайному шуму, к изменению освещённости в определённых пределах и к неболь-
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шим перспективным искажениям, т.е. является инвариантным описанием небольшой

области (xj, yj, σj) по отношению к небольшому изменению ракурса и условий съёмки.

Изложение данного известного алгоритма сделано для того, чтобы провести по-

дробный анализ вычислительной сложности операций, задействованных в нём. В до-

ступных автору источниках информация о сложности алгоритма не приводится, тем

не менее, она является важной для оценки применимости алгоритма в системах ре-

ального времени.

Сложность шага 1 соответствует сложности вычисления sN свёрток изображения

F (x, y) с ядром g(x, y, σn) при условии, что N — это количество уровней пирамиды

изображений L(x, y, σn) (на каждом уровне в рассматриваемом алгоритме было вве-

дено s изображений, отличающихся по масштабу сглаживания не более, чем в 2 раза).

Свёртка может быть вычислена с помощью преобразования Фурье, асимптотика ал-

горитмов быстрого преобразования Фурье равна O(WH log2WH), где W ×H — раз-

решение изображения F (x, y). Однако существует алгоритм приближённого вычис-

ления свёртки с гауссовым ядром, асимптотика которого O(WH), см. [194, 195, 196].

Таким образом, сложность выполнения одной свёртки примерно равна C1HW , где

C1 — константа, характеризующая количество сложений и умножений при расчёте

отклика конечной импульсной характеристики, приближающей фильтр сглаживания

(примерно по 20 сложений и по 20 умножений, т.е. 40 операций с вещественными

числами на одну точку). С учётом того, что на каждом уровне пирамиды разреше-

ние обрабатываемых изображений снижается вдвое по ширине и высоте, то в целом

сложность вычисления семейства сглаженных функций L(x, y, σn) равна

N∑

t=1

sC1
W

2t−1

H

2t−1
= sC1HW

N∑

t=1

1

4t−1
6

4

3
sC1HW,

поскольку частичная сумма геометрической прогрессии может быть оценена как

N∑

t=1

1

4t−1
6

∞∑

t=1

1

4t−1
=

1

1− 1/4
=

4

3
.

Таким образом, асимптотика построения сглаженных разностей изображений равна

O(sWH) и с точностью до константы-параметра алгоритма s соответствует асимпто-

тике линейной фильтрации, приближающей Гауссово размытие. При s = 3 на каждую

точку изображения F (x, y) приходится около 160 вещественных операций сложения

и умножения.

На шаге 2 циклически в каждой точке пирамиды изображений {L(x, y, σn)} тре-

буется сделать 3 × 3 × 3 − 1 = 26 сравнений значения функций в текущей точке

со значениями в соседних точках сетки. Следовательно, повторяя рассуждения при
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оценке сложности предыдущего шага, сложность данной операции равна

26Ccomp
4

3
WH,

где Ccomp — сложность одной операции сравнения интенсивности в двух разных точ-

ках. То есть сложность операции поиска экстремумов O(HW ), на каждую точку изоб-

ражения приходится около 35 операций сравнения вещественных чисел.

Алгоритмическая сложность шагов 3 и 4 определяется количеством характерных

точек Q, для которых необходимо рассчитать матрицу Гёссе (на каждый из 9 эле-

ментов матрицы одно умножение и два сложения), градиент (6 сложений), вычис-

лить обратную матрицу (примерно 45 операций сложения и умножения) и получить

уточнённое значение экстремума ( 12 умножений, 9 сложений) и уточнённое поло-

жение (3 сложения). После фильтрации по контрастности в окрестности экстрему-

ма (одна операция сравнения) необходимо в каждой точке провести дополнительную

фильтрацию по критерию Хариса (примерно 20 операций с вещественными числа-

ми). В итоге получается порядка 120 вещественных операций на каждую из Q точек,

в целом сложность данной процедуры O(Q).

Шаг 5 по вычислению 128-компонентного вектора ∆j состоит из двух этапов по

оценке направления (сложность O(Q′)) и расчёта компонентов вектора (сложность

O(Q′′)). Для оценки направления необходимо произвести расчёт градиентов в квад-

ратной окрестности не более, чем 18 × 18 = 324 точек, потому что радиус ε = 4,5σj

на уровне пирамиды ⌊j/N⌋ охватывает от 4,5 до 9 точек изображения по принципу

построения пирамиды, а сама окрестность в два раза шире. Сложность построения ги-

стограммы градиентов из 36 ячеек и поиска максимума определяется, таким образом,

сложностью следующих операций:

– операция вычисления нормы и ориентации градиентов: 3 сложения, два умно-

жения, одно вычисление квадратного корня, одно вычисление функции arctg) —

всего 7 · 324 вещественных операций;

– операция взвешивания: 2 умножения и одно сложение для расчёта нормы L2 до

центра окрестности, одно взятие экспоненты, одно умножение на полученный

вес — всего 5 · 324 вещественных операций;

– операция по формированию гистограммы: сложение каждого нового элемента с

текущим значением в существующей ячейке гистограммы и одно сравнение для

вычисления максимума — всего 2 · 324 вещественных операции;

– 36 операций сравнения по выбору всех элементов гистограммы, значение кото-

рых превышает 80% от максимального значения.
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В целом, для расчёта направления в каждой характерной точке требуется

324 · (7 + 5 + 2) + 36 ≈ 4600 вещественных операций. Аналогичную оценку числа

вещественных операций можно сделать для вычисления информационного вектора

∆j, имея ввиду размер окрестности 16 × 16 = 256, для которой считается информа-

ционный вектор:

– для расчёта нормы градиента и его ориентации требуется 7 операций в каж-

дой точке окрестности (см. выше), для учёта поворота на угол θj требуется 4

умножения и 3 сложения в каждой точке окрестности, то есть всего для расчёта

градиентов требуется 14 · 256 операций;

– для взвешивания элементов гистограмм требуется 5 · 256 операций (см. выше);

– добавление значения в гистограмму по сравнению с предыдущим этапом допол-

няется сглаживанием за счёт внесение в соседние ячейки уменьшенных домно-

жением на определённый вес значений, что требует дополнительно для каждо-

го элемента 8 действий сложения и умножения для внесения поправок в каж-

дую из 8 ячеек гистограммы блоков 4 × 4, то есть сложность данного шага

(2 + 8 + 8) · 256 = 18 · 256 вещественных операций;

– нормировка, фильтрация больших значений, и вновь нормировка для каждой

из 16 гистограмм с восемью ячейками обладает сложностью 8 · 2 операций сло-

жения и 8 · 2 операций умножения для нормировки и 8 операций сравнения для

фильтрации, всего (8 · 2 · 2 + 8) · 16 = 5 · 256 вещественных операций.

Таким образом, расчёт информационного вектора соответствует сложности

(14 + 5 + 18 + 5) · 256 ≈ 10800 элементарных вещественных операций.

Как правило, числа Q, Q′ и Q′′ являются числами одного порядка, поэтому слож-

ность последних трёх шагов можно обозначить как O(Q′′), причём константа пропор-

циональности ассимптотики примерно соответствует сложности 120 + 4600 + 10800 ≈
≈ 15500 вещественных операций.

Конечная характеристика вычислительной сложности приведённого выше алго-

ритма выглядит следующим образом: 160 вещественных операций на каждую точку

изображения, и 15,5 тысяч вещественных операций на каждую характерную точку.

Например, для изображения с разрешением 640 × 480, на котором найдено 500 ха-

рактерных точек1, обрабатывается с помощью 640 · 480 · 160 + 500 · 15500 ≈ 57 · 106
вещественных операций, что при частоте обработки 25 кадров в секунду потребует

более одного гигафлопа в секунду. Современные вычислительные приборы обладают

1На типичном изображении средней текстурированности находится примерно столько характер-

ных точек.
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производительностью, которая по порядку величины соответствует данному показа-

телю, поэтому при использовании данного алгоритма практически все ресурсы будут

отданы на его исполнение, что не приемлемо, поскольку, например, для алгоритма

построения панорамы требуется выполнять и другие операции. Поэтому необходимо

использовать более быстрые способы поиска характерных точек. Таким способом яв-

ляется алгоритм, описанный в работе [197]. Этот алгоритм называется ORB (Oriented

BRIEF [199]), рассмотрим шаги данного алгоритма и их вычислительную сложность.

1. На основе кадра F (x, y) строится пирамида изображений {Fl(x, y)} с мульти-

пликативным шагом увеличения 1,2. Операция изменения изображения с разрешени-

ем W ×H записывается как

F0(x, y) = F (x, y),

Fl+1(x, y) = (1− α)(1− β)Fl(x̃, ỹ) + α(1− β)Fl(x̃+ 1, ỹ)+

+ (1− α)βFl(x̃, ỹ + 1) + αβFl(x̃+ 1, ỹ + 1),

где x̂ =
x

1,2
, ŷ =

y

1,2
, x̃ = ⌊x̂⌋, ỹ = ⌊ŷ⌋, α = x̂− x̃, β = ŷ − ỹ.

Как следует из данных формул, операция изменения разрешения обладает сложно-

стью C ′
1 · W ′H ′, где C ′

1 соответствует выполнению в каждой точке изображения с

новым разрешением W ′×H ′ 14 умножений и 5 сложений для билинейной интерполя-

ции. уммарно для всех N уровней пирамиды количество операций

N∑

t=1

C ′
1

WH

1,2t · 1,2t 6 C ′
1WH

∞∑

t=1

(
1

1,44

)t

= C ′
1WH(

1

1− 1/1,44
− 1) ≈ 2,3C ′

1WH,

поэтому для построения пирамиды на каждую точку приходится 2,3 · (14 + 5) ≈ 39

вещественных операций.

2. В каждой точке изображений пирамиды {Fl} производится проверка на то,

является ли она характерной, согласно алгоритму, описанному в работе [198]: точка

считается характерной, если существует последовательность из 9 соседних пикселей

в окрестности-кольце из 16 точек, пересекаемых окружностью радиуса 3 с центром в

проверяемой точке (см. рис. 6.1), в которых интенсивность изображения либо всегда

больше некоторого порога δ, либо всегда меньше этого порога. В худшем случае для

осуществления этой операции необходимо сделать 16 последовательных сравнений,

однако в указанной работе предложен способ сократить это число до 2–4 за счёт то-

го, что сразу отбрасываются точки, в которых заведомо не выполняется указанное

условие. Таким образом, при поиске характерных точек в каждой точке выполняет-

ся примерно 3 вещественные операции, остальные операции, а именно: сравнение с

порогом δ, рассчёт смещения точек на окружности радиуса 3 — выполняются зара-

нее, их результат доступен в форме таблиц во время выполнения алгоритма. Таким
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Рисунок 6.1. Схема проверки характерной точки FAST: точки с 1 по 16 находятся
примерно на расстоянии 3 от тестируемой точки, точка является характерной, ес-
ли на окружности есть непрерывная дуга из как минимум 9 точек, интенсивность
которых либо больше интенсивности центральной точки на порог δ, либо меньше ин-
тенсивности центральной точки на этот порога (на рисунке точки с 7 по 16 меньше
центральной точки).

образом, в целом в каждой точке изображений {Fl} выполняется 4 вещественных опе-

рации, и на каждую точку исходного изображения F приходится 2,3 · 4 ≈ 9 операций,

в результате формируется список из Q точек {(xj, yj, rj)}Qj=1, в которых радиус rj

определяется уровнем пирамиды изображений, на котором выполнилось приведённое

выше условие для характерной точки.

3. Для повышения устойчивости каждая точка из числа {(xj, yj, rj)}Qj=1 оценива-

ется с помощью критерия Харриса, что, как показано для предыдущего алгоритма

SIFT, требует около 20 вещественных операций в каждой точке. Список точек сор-

тируется по отклику Хариса с помощью Q log2Q операций сравнений и перестановок

быстрой сортировки для того, чтобы отобрать фиксированное количество точек Q′ с

наилучшим показателем устойчивости.

4. В каждой из точек {(xj, yj, rj)}Qj=1 производится оценка ориентации характер-

ной области. Для этого в окрестности U15(xj, yj) (радиус указан по норме L2) рас-

считывается значение первых моментов Fmx, Fmy интенсивности и сумму интесивно-

стей Fm на соответствующем точке уровне пирамиды Fl(x, y). Направление вектора

(Fmx/Fm − xj, Fmx/Fm − yj) считается равным

θj = arctg
Fmx − Fmxj
Fmy − Fmyj

.

Неопределённость вида 0/0 в данном соотношении возникает редко ввиду заранее

заданного перепада интенсивностей по условию поиска характерной точки. Окрест-

ность U15 состоит из π152 ≈ 700 точек, и для расчёта координат центроида необходимо
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сделать в каждой точки окрестности 2 умножения и 4 сложения, т.е. 6 вещественных

операций. Общая сложность вычисления θj в таком случае 700·6 = 4200 вещественных

операций на каждую из Q′ точек.

5. Информационный вектор ∆j для точки (xj, yj) в данном алгоритме состоит

из 256 значений, которые равны либо 0, либо 1. Для расчёта ∆j вводится квадрат-

ная окрестность 31 × 31, повёрнутая относительно точки (xj, yj) на угол θj. Каждая

s-ая компонента вектора ∆j соответсвует паре точек (x′sj, y
′
sj) и (x′′sj, y

′′
sj), принадлежа-

щей указанной окрестности и обладающей псевдослучайными координатами, которые

указываются в повёрнутой на θj системе координат с началом в точке (xj, yj), расчёт

значения ∆sj производится следующим образом:

x̂′js = xj + cos θjx
′
js − sin θjy

′
js,

ŷ′js = yj + sin θjx
′
js + cos θjy

′
js,

x̂′′js = xj + cos θjx
′′
js − sin θjy

′′
js,

ŷ′′js = yj + sin θjx
′′
js + cos θjy

′′
js,

∆sj =

{
1, если Fl(x̂

′
js, ŷ

′
js) < Fl(x̂

′′
js, ŷ

′′
js),

0 в противном случае.

Набор из 256 пар точек (x′sj, y
′
sj) и (x′′sj, y

′′
sj) известен заранее до выполнения алгорит-

ма, координаты подбираются методом машинного обучения на большом числе (де-

сятки тысяч) изображений размера 31 × 31, таким образом, чтобы с одной стороны

все значения ∆sj принимали с равной вероятностью как значение 1, так и значение

0, а с другой стороны, взаимная корреляция различных компонент вектора была ми-

нимальной. Эти критерии позволяют по возможности исключить информационную

избыточность в компонентах векторов ∆j. На каждое сравнение по приведённым вы-

ше формул приходится по 8 умножений, 8 сложений и одному сравнению, т.е. для

всего дескриптора это составляет (8 + 8 + 1) · 256 = 4350 вещественных операций.

Чтобы шум не влиял на результат сравнения каждое изображение пирамиды {Fl}
предварительно сглаживается фильтром Гаусса, для этого нужно выполнить 40 ве-

щественных операций для точек пирамиды изображений (см. выше оценку сложности

фильтра сглаживания).

Итак, для работы быстрого алгоритма выделения характерных точек с их описа-

нием требуется 80 вещественных операций в каждой точке W ×H, и примерно 8600

операций для каждой найденной точки. Это примерно в два раза меньше, чем нужно

в алгоритме SIFT, приведённом ранее. На практике выигрыш расчёта характерных

точек ORB получается больше, за счёт того, что во время выполнения операций совер-

шается значительно меньше обращений к внешней памяти при исполнении програм-

мы на процессорах современных архитектур, в каждой из которых предусмотрена
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Рисунок 6.2. Примеры поиска характерных точек и их пар для SIFT (сверху) и
ORB (снизу): светлым соединены правильно определённые пары характерных точек,
тёмным соединены ошибочно определённые пары точек.

быстрая внутренняя память достаточно большого объёма, так называемый кэш.

Примеры ошибочных и правильных сопоставлений с помощью сравнения инфор-

мационных векторов по методу жадного алгоритма паросочетаний для SIFT и ORB

см. на рис. 6.2.

Согласно тестам на нескольких десятках тысяч изображений в работе [197], с помо-

щью информационного вектора SIFT можно точнее, чем с помощью ORB, идентифи-

цировать фрагменты изображений, которые получены при съёмке с другого ракурса.

Данные тесты подразумевают либо наличие размеченных вручную пар изображений,

на которых пользователь указывает положение одних и тех же точек сцены, либо

автоматическую генерацию парных изображений: на исходное изображение добав-

ляется гауссов шум, изображение подвергается поворотам, изменениям масштаба и

проективным искажениям, после этого выясняется, какая часть характерных точек

исходного изображения может быть найдена по методу поиска ближайших соседей в

пространстве информационных векторов на изменённом изображении. Тесты повто-
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ряются для большого набора случайных изображений, например, из сети Интернет.

Согласно этим тестам метод ORB более устойчив, чем SIFT, по отношению к шуму, но

менее устойчив к геометрическим изменениям области изображения вокруг характер-

ных точек. Тем не менее, проигрыш не столь существенный, и для решения конечной

задачи подбора преобразования, которое переводит одно изображение в другое, как

показывает практика, дополнительные ошибки ORB не имеют значения, поскольку

они компенсируются на этапе фильтрации ошибочного поиска пар точек, например,

методом RANSAC.

Несмотря на меньшую точность идентификации с помощью ORB, гораздо боль-

шее значение для построения панорамных изображений в реальном времени имеет

кратное превышение скорости работы этого алгоритма над скоростью работы более

часто применяемого алгоритма SIFT.

6.3. Анализ влияния предварительной юстировки поворотного устройства

на эффективность алгоритмов обработки панорамных изображений

Выделение характерных точек на паре изображений в автоматическом режиме,

рассмотренное в предыдущем параграфе, необходимо для того, чтобы вычислить пре-

образование координат с одного изображения на другое, чтобы впоследствии произве-

сти операцию наложения изображений для построения панорамы. Операция наложе-

ния изображений с общими элементами сцены уже рассматривалась в параграфе 2.3

для случая, когда точки соответствия изображений устанавливаются при настрой-

ке операторами. При построении панорамы подобная операция должна производится

полностью автоматически, причём алгоритмы построения проективного преобразова-

ния должны учитывать то, что существенная часть пар точек, найденных автомати-

чески, сопоставлена ошибочно, что иллюстрирует рис. 6.2. Один из способов фильтра-

ции неверных пар точек заключается в применении метода RANSAC. Второй подход

основан на использовании калибровочных параметров видеокамеры и поворотного

устройства, и будет рассмотрен в данном параграфе.

Используя модель видеокамеры, введённую в параграфе 5.1, проективное преоб-

разование мировых координат в обобщенные координаты изображения можно пред-

ставить в виде суперпозиции двух преобразований: проективного преобразования и

преобразования поворота, то есть если x, y — координаты на кадре F (x, y), а X, Y, Z —

трёхмерные координаты в системе отсчёта, связанной с наблюдаемой сценой, то ко-

ординаты объектов сцены и однородные координаты их изображений связаны как

α



x

y

1


 =M · [R|P ] ·




X

Y

Z

1



, (6.5)
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где М — матрица параметров камеры, R — матрица поворота, которая переводит

координаты из системы, связанной со сценой в систему, связанную с камерой, а P —

вектор-столбец, равный смещению между началами отсчёта двух систем координат.

Рассмотрим видеокамеру, установленную на поворотном устройстве. Как правило,

поворотные устройства для видеокамер обладают двумя степенями свободы при дви-

жении: вращение вокруг горизонтальной оси и вращение по отношению к горизонту,

см. п. 3.3. Будем считать, что две эти оси пересекаются в одной точке, назовём её

центром вращения. Пусть начало отсчёта системы координат, связанной с наблюда-

емой сценой, находится в центре вращения камеры, ось Y совпадает с вертикальной

осью вращения, а ось Z совпадает с направлением оптической оси видеокамеры при

нулевом угле наклона в одном из положений поворотной платформы, см. рис. 6.3.

Горизонтальный угол поворота платформы в этом положении также примем равным

нулевым. При таком выборе точки отсчёта координат X, Y, Z вектор P = 0 при лю-

бых значениях углов поворота и наклона, которые далее обозначаются как ϕ и θ,

соответственно. Если на изображении выбрать систему координат для x, y, начало

которой (0, 0) расположено в центре изображения, то для видеокамер с объективом

без астигматизма M = diag(f, f, 1), где f — это фокусное расстояние оптической си-

стемы, измеренное в единицах, равных по размеру одному элементу чувствительного

сенсора камеры, а матрица поворота R является произведением двух матриц Rθ, Rϕ,

соответствующих преобразованиям поворота на угол наклона θ (вокруг оси OX) и

угол вращения ϕ (вокруг оси OZ), то есть R = RθRϕ, где

Rθ =



1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 , Rϕ =



− sinϕ 0 cosϕ

0 1 0

cosϕ 0 sinϕ


 .

Как правило, в процессе сканирования угол наклона θ не меняется, а угол поворота ϕ

изменяется с некоторой постоянной по модулю скоростью (направление сканирования

может меняться с заданным периодом).

Метод, предложенный в работе [187], предполагает оценку параметров f , θ, ϕ

посредством сопоставления характерных точек. Для этого на двух изображениях

F1(x, y) и F2(x, y) производится поиск характерных пар точек с помощью алгорит-

мов, описанных в предыдущем параграфе. Обозначим пары точек как {ui, vi}Qi=1, где

ui = [xi1 yi1 1]T , vi = [xi2 yi2 1]T — вектор-столбцы обобщённых координат, нижние

индексы при x и y соответствуют индексам изображений F1 и F2. Выберем началь-

ное положение координат таким, что ось Z совпадает с оптической осью камеры в

положении, соответствующем изображению F1, и обозначим H1 = M1 и H2 = M2R,

где нижние индексы матриц означают их принадлежность к описанию положения ка-

мер, в которых получены изображения F1 и F2, соответственно, а матрица R является
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Исходное изображение

(θ = 39◦, ϕ = 196◦)

Изображение после смещения

(θ = 39◦, ϕ = 225◦)

X

Y

Z

ϕ θ

Изометрическая проекция двух плоскостей проектирования изображений

Рисунок 6.3. Схема сканирования наблюдаемой сцены видеокамерой с углом зрения
54,1◦ на поворотном устройстве. Тёмные прямые линии соответствуют исходному по-
ложению камеры, светлые прямые линии соответствуют положению камеры после
сдвига. На сфере точками, соответственно, тёмного и светлого пунктира показаны
области определения преобразования сферического проектирования прямоугольных
изображений, а также показана область-полоса на сфере, соответствующая панорам-
ному изображению при непрерывном изменении угла ϕ.

матрицей поворота, переводящей систему координат второй камеры в систему коор-

динат первой камеры. Поскольку H−1
1 ui ∼= H−1

2 vi, то мы можем определить матрицу

H = H1H
−1
2 проективного преобразования из координат изображения F2 к координа-

там изображения F1, сначала минимизируя невязку в системе линейных уравнений

относительно элементов матрицы H

αiui = Hvi, i ∈ [1, Q],

а затем с помощью методов оптимизации минизимировать уже саму невязку∑Q
i=1‖ui−Hvi‖. Одно из решений данной задачи предложено автором работы в п. 2.3,

а также в [201]. Как показывает рис. 6.2, многие пары сопоставляются ошибочно. Для
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устранения влияния ошибочных паросочетаний используют метод RANSAC [189] по-

следовательного случайного отбора подмножества пар из исходного множества, и для

разных случайных подвыборок многократно осуществляется поиск матрицы H, из

всех решений выбирается матрица H с наименьшей итоговой невязкой.

После того, как найдена матрица H, можно найти фокусное расстояние и матрицу

поворота, действуя так, как это описано в работе [200]: используя свойство ортогональ-

ности введённой ранее матрицы поворота, а также результат умножения матричных

равенств

αHМ2 = H1H
−1
2 М2 =M−1

1 R−1, αМ T
2 H

T = R(M−1
1 )T ,

получаем в силу симметрии диагональных матриц M1 и M2

α2HM2M
T
2 H

T = α2HM2
2H

T =M−1
1 RRT (M−1

1 )T = (M−1
1 )2. (6.6)

Обозначая М1 = diag(f1, f1, 1), M2 = diag(f2, f2, 1) и элементы матрицы H как hij,

получим, что выражение (6.6) представляет собой серию следующих 6 уравнений (с

учётом симметрии матриц 3 из 9 уравнений полностью дублируются):

α2
(
f 2
2 (h11h21 + h12h22) + h13h23

)
= 0, (6.7)

α2
(
f 2
2 (h11h31 + h12h32) + h13h33

)
= 0,

α2
(
f 2
2 (h11h31 + h12h32) + h13h33

)
= 0,

α2
(
f 2
2 (h

2
11 + h212) + h213

)
=

1

f 2
1

, (6.8)

α2
(
f 2
2 (h

2
12 + h222) + h223

)
=

1

f 2
1

, (6.9)

α2
(
f 2
2 (h

2
31 + h232) + h233

)
= 1,

где первые три уравнения соответствуют недиагональным элементам симметричного

матричного равенства, а последние три уравнения соответствуют диагональным эле-

ментам. Данная система уравнений накладывает избыточное количество ограничений

относительно переменных α, f1 и f2, и из-за приближённого вычисления элементов

матрицы H она может быть не совместной. Поэтому используют несколько решений,

например, следствием из уравнения (6.7) является

f1 =

√
− h13h23
h11h21 + h12h22

,

а из разности уравнений (6.8) и (6.9) следует

f1 =

√
h223 − h213

h211 + h212 − h231 − h232
.
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Рисунок 6.4. Пример панорамного изображения в сферической проекции (сверху) и в
плоской проекции(снизу).

Из нескольких решений выбирают наилучшее с точки зрения вычислительной устой-

чивости к погрешности, обусловленной погрешностью оценки элементов матрицы H.

Аналогичным способом можно вычислить коэффициент f2 матрицы M2. Матри-

цу поворота R после этого можно вычислить как R = M−1
2 H−1M1. Предложенный

способ применим для любых пар изображений, однако в случае сканирования при

постоянном угле θ и неизменном угле зрения (см. рис. 6.3) f1 = f2 = const, при этом

удобно представлять матрицы H1 и H2 в виде H1 =MRθ, H2 =MRθRϕ. В этом случае

можно представить панорамное изображение в сферической проекции в виде ограни-

ченной полосы с откладыванием широты по горизонтали и долготы по вертикали, см.

рис. 6.4. Формулы перехода от точки сферы с широтой η и долготой ξ, начало отсчёта

которых совпадает с началом отчётом углов наклона θ и поворота ϕ, к координатам



227

изображения x, y записываются как



αx

αy

α


 =MR−1

θ R−1
ϕ ·



cos η sin ξ

sin η

cos η cos ξ


 =

=



f cos (η + θ) sin (ξ + ϕ)

f sin (η + θ)

cos (η + θ) cos (ξ + ϕ)


⇒

x = f tg (ξ + ϕ),

y = f
tg (η + θ)

cos (ξ + ϕ)
.

(6.10)

Для того, чтобы высота изображения панорамы примерно соответствовала высо-

те изображения камеры, необходимо установить коэффициент τ = f/2 для ко-

ординат изображения панорамы ξ′, η′, то есть ξ′ = fξ, η′ = fη при изображе-

нии панорамы в виде сферической проекции Φ(ξ′, η′). Как видно из рис. 6.4, сфе-

рическая проекция по сравнению с плоской обладает двумя преимуществами: во-

первых, степень искажения изображения сферической проекции в целом постоян-

но, и не зависит от угла ϕ, во-вторых, область значений преобразования сфериче-

ской проекции для изображения с шириной W пикселей ограничена полосой сферы

[−πf/2, πf/2] × [fθ − f arctg W
2f
, fθ + f arctg W

2f
], область значений проективного пре-

образования на плоскость уходит в бесконечность при близких к числу π значениях

модуля угла ϕ.

Для перехода от матрицы поворота R между системами координат, связанных с

двумя изображениями F1 и F2, к матрицам Rθ и Rϕ, которые задают поворот в системе

координат, связанной с поворотной платформой, заметим, что при постоянном угле

θ = const ось X, связанная с горизонтальным направлением изображения камеры,

вращается в горизонтальной плоскости вращения поворотной платформы. Если ex и

ey — единичные орты, соответственно, осей X и Y , тогда Rex — вектор единичного

орта, соответсвующий новому положению оси X для системы координат, связанной

с новым положением камеры. Следовательно, направляющий вектор оси вращения

можно определить как векторное произведение r = [ex ×Rex], угол поворота выража-

ется через скалярное произведение единичных векторов как

ϕ = (R̂ex, ex) = arccos(Rex, ex),

а угол наклона выражается через смешанное произведение векторов как

θ = (r̂, ez) = arccos
(r, ez)

|r| = arccos
(ex, Rex, ez)

| sinϕ| .

Данная формула является вычислительно неустойчивой при небольших углах поворо-

та ϕ, поэтому при построении панорамы во время движения следует некоторое время
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перед стартом построения собирать статистику, которая позволяет определить угол

θ более точно как за счёт увеличения числа отсчётов измеряемых параметров видео-

камеры, так и за счёт увеличения разности углов ϕ между соседними положениями

видеокамеры.

Таким образом, и внешние параметры ϕ, θ, и внутренний параметр f могут быть

автоматически вычислены в процессе сканирования сцены за счёт выделения харак-

терных точек изображения. Однако панорамное изображение может быть построено

также и в том случае, когда информация приборных датчиков углов поворота плат-

формы и текущей настройки фокусного расстояния видеокамеры может быть получе-

на внешними системами, причём данная информация должна быть синхронизирова-

на с видеопотоком изображений камеры. В этом случае для построения панорамного

изображения достаточно показания датчиков подставить в формулы сферического

проектирования (6.10). При этом достаточно высоки требования к точности показа-

ний датчиков: для того, чтобы наложение соседних изображений друг на друга не

превышало смещение в одну точку, необходимо, чтобы выполнялись следующие со-

отношения:

|∆x| ≈
∣∣∣∣
∂x

∂θ

∣∣∣∣ |∆θ| = 0 при варьировании θ,

|∆x| ≈
∣∣∣∣
∂x

∂ϕ

∣∣∣∣ |∆ϕ| < 1 ⇒ |∆ϕ| < cos2(ξ + ϕ)

f
при варьировании ϕ,

|∆x| ≈
∣∣∣∣
∂x

∂f

∣∣∣∣ |∆f | < 1 ⇒ |∆f | < | ctg(ξ + ϕ)| при варьировании f,

|∆y| ≈
∣∣∣∣
∂y

∂θ

∣∣∣∣ |∆θ| < 1 ⇒ |∆θ| < cos2(η + θ)| cos(ξ + ϕ)|
f

при варьировании θ,

|∆y| ≈
∣∣∣∣
∂y

∂ϕ

∣∣∣∣ |∆ϕ| < 1 ⇒ |∆ϕ| < cos2(ξ + ϕ)| ctg(η + θ)|
f sin(ξ + ϕ)

при варьировании ϕ,

|∆y| ≈
∣∣∣∣
∂y

∂f

∣∣∣∣ |∆f | < 1 ⇒ |∆f | < | cos(ξ + ϕ)|| ctg(η + θ)| при варьировании f.

Далее мы будем рассматривать класс оптических приборов, у которых и горизон-

тальный, и вертикальный углы зрения объективов менее 90◦. Если у камер больший

угол зрения, то такие камеры сами по себе является панорамными, задача построе-

ния панорамы для них не столь актуальна, и должна решаться отдельно. Ограничение

угла зрения величиной 90◦ фактически означает, что

−π
4
6 ξ + ϕ 6

π

4
, −π

4
6 η + θ 6

π

4
,

поэтому обозначив Dφ
ξ = {ξ| − π

4
− ϕ 6 ξ 6 π

4
− ϕ} и Dθ

η = {η| − π
4
− θ 6 η 6 π

4
− θ},
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можно вычислить, что

inf
Dϕ

ξ

| cos(ξ + ϕ)| = 1√
2
, inf

Dϕ
ξ

| ctg(ξ + ϕ)| = 1, inf
Dϕ

ξ

cos2(ξ + ϕ) =
1

2
,

inf
Dϕ

ξ

1

sin(ξ + ϕ)
=

√
2, inf

Dθ
η

cos2(η + θ) =
1

2
, inf

Dθ
η

| ctg(η + θ)| = 1.

Выбирая данные максимально сильные ограничения в областях Dϕ
ξ и Dθ

η для получен-

ных ранее неравенств, определяющих требуемую точность датчиков, путём замены

функций на их нижние грани области значений на введённых областях определения,

получим

|∆ϕ| < 1

2f
, |∆θ| < 1

2
√
2f
, |∆f | < 1√

2
.

Как правило, углы зрения меньше, чем 90◦, поэтому с точностью до порядка мож-

но считать, что погрешность датчика углов поворота не должна быть больше, чем 1/f ,

а погрешность датчика, позволяющего определить параметр f , не может быть более

одной градации, то есть одного пиксела, так как именно в точках изображения изме-

ряется данный параметр. Значение f привязано к разрешению изображения W ×H,

фокусное расстояние оптической системы видеокамеры определяется по формуле

f ′ =
fω

W
,

где ω — горизонтальный размер чувствительной матрицы, см. таблицу 5.2. Самые

распространённые на данный момент форматы чувствительных матриц обладают

шириной ω =5 мм. Это значит, что при разрешении 640 × 480 одна градация па-

раметра f соответствует изменению f ′ на ω/480 ≈ 10−2мм, и поскольку минимальное

фокусное расстояние большинства объективов превышает 3 мм, то для обеспечения

точности в одну градацию для параметра f датчик фокусного расстояния должен

обеспечивать, чтобы относительная погрешность измерения была не более 0,003 для

короткофокусных объективов, причём чем больше фокусное расстояние у оптической

системы, тем обратно пропорционально ниже значение допустимой относительной

погрешности. Допустимую погрешность измерения углов можно оценить по порядку

величины, если принять, что наиболее частый сценарий использования видеокамер

на поворотной платформе предполагает, что f и ширина изображения W — это ве-

личины одного порядка, поэтому f ≈ 640 для изображения 640 × 480 и допустимая

абсолютная погрешность датчика угла должна быть менее 1/f ≈ 0, 002 рад ≈ 0,1◦.

Погрешность датчиков поворота 0,1◦ и относительная погрешность 0,003 для из-

мерения фокусного расстояния является предельными для поворотных видеокамер,

известных автору данной работы. При увеличении разрешения обрабатываемого изоб-

ражения, например, до распространённого на данный момент формата 1920 × 1080,

а также при увеличении фокусного расстояния требуется, чтобы погрешность была
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обратно пропорционально меньше, и такие требования уже не могут быть выполне-

ны современными поворотными видеокамерами. Более того, показания датчиков уг-

лов и фокусного расстояния должны быть синхронизированы с видеопотоком, однако

современное состояние таково, что для большинства распространённых поворотных

устройств с датчиками поворота расхождение в синхронизации информации, посту-

пающей от датчиков, и видеопотока достигает 0,3 сек. При скорости сканирования в

30◦сек−1 в течении 0,3 cек будет пройдено примерно 10◦, что будет носить существен-

ный вклад в погрешность определения текущего угла ϕ на кадре. Поэтому время

синхронизации не должна превышать 0,01 сек, только в этом случае погрешность

определения угла, обусловленная сопоставлением показаний датчика угла поворота с

кадрами видеопотока по времени получения показаний и времени захвата изображе-

ния на чувствительной матрицы, будет сопоставима по порядку величины с 0,1◦.

Таким образом, современные датчики в поворотных видеокамерах не настолько

хорошо откалиброваны и синхронизированы с видеопотоком, чтобы можно было от-

казаться от анализа характерных точек изображения в процессе автоматического по-

строения панорамы при сканировании наблюдаемой сцены. Тем не менее, показания

датчиков поворота могут быть использованы для повышения эффективности работы

алгоритма поиска преобразования сопряжения двух изображений с общей зоной об-

зора, рассмотренного ранее в данном параграфе. Представим, что в каждый момент

известны значения ϕ, θ и f с погрешностью, соответственно, ∆ϕ, ∆θ и ∆f .

Во-первых, это позволит на начальном этапе построения панорамы, на котором

требуется определить текущие угол θ и параметр фокусировки f , отбросить заведомо

неверные оценки данных параметров, которые вполне могут получится в результа-

те псевдослучайного алгоритма RANSAC, используемого при оценке внутренних и

внешних параметров видеокамеры.

Во-вторых, знание текущего положения ϕ и θ с точностью до ∆ϕ и ∆θ позволя-

ет отбрасывать заведомо неправильные пары по пространственному положению. Чем

меньше погрешность определения углов, обусловленная погрешностью синхронизации

и погрешностью датчиков поворота, тем пропорционально меньше точек приходится

сопоставлять друг с другом на паре изображений, что влияет и на скорость работы

алгоритма поиска преобразования сопряжения, и на его точность, поскольку при до-

полнительных ограничениях вероятность возникновения ошибочных паросочетаний

характерных точек уменьшается.

В-третьих, погрешность показания датчиков углов поворота может быть уменьше-

на с помощью программной калибровки. Будем считать, что сканирование местности

при помощи видеокамеры на поворотной платформе осуществляется при постоянном

увеличении f = const и при постоянном угле наклона θ = const, а угол ϕ изменяет-
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ся с постоянной по модулю скоростью вращения |ϕ̇| = const между углами ϕ
н

и ϕ
к
,

соответсвующие начальному и конечному положению видеокамеры в секторе скани-

рования. Если измерить скорость ϕ̇, и время t
н

начала смещения из точки ϕ
н
, то при

известном текущем времени t можно достаточно точно оценить угол по формуле

ϕ(t) = tн + ϕ̇t. (6.11)

Чтобы стало возможным использовать эту формулу, в рамках данной работы со-

здана специальная процедура калибровки, позволяющая автоматически определять

скорость движения камеры |ϕ̇| и состоящая из следующих шагов.

1. С помощью команд поворотной видеокамеры, рассмотренных в параграфе 2.6,

а именно: ПОВЕРНУТЬ(), УВЕЛИЧЕНИЕ(), ОСТАНОВИТЬ() — оператор системы выбирает

начальное положение камеры θ, ϕн , f . Углы и фокусное расстояние считываются

с датчиков видеокамеры с помощью команды ЧТЕНИЕ_КООРДИНАТ(ϕн ,θ,γ,f), где γ —

параметр фокусировки.

2. С помощью выбранной для сканирования скорости оператор смещает камеру с

помощью команды ПОВЕРНУТЬ(влево, vϕ, 0) (направление и индекс скорости vϕ выбра-

ны для определённости) до положения ϕк , которое считывается с помощью команды

ЧТЕНИЕ_КООРДИНАТ(ϕ
к
,θ,γ,f). Во время движения автоматически строится панорамное

изображение путём наложения в сферической проекции последовательных кадров ви-

деопотока. Это позволяет предварительно определить, достаточно ли на сканируемой

сцене текстурных элементов для определения преобразования сферической проекции

в автоматическом режиме с помощью характерных точек, а также зафиксировать

изображения в окрестности точек ϕ
н

и ϕ
к

для дальнейшего анализа.

3. Дальнейшая процедура выполняется без участия оператора, при этом много-

кратно выполняются следующие действия в цикле с индексом i:

– выполняется команда ВЫЗОВ_КООРДИНАТ(ϕ
н
,θ,γ,f);

– запускается автоматическое сканирование с помощью команды

ПОВЕРНУТЬ(влево,vϕ,0);

– после отсылки команды при помощи анализа изменений изображения фиксиру-

ется время фактического начала движения изображения ti
н
, которое не совпадает

с временем подачи команды из-за задержек синхронизации;

– во время сканирования постоянно выполняется построение панорамного изоб-

ражения совместно с проверкой, не является ли текущее изображение похожим

на те, которые были получены на шаге 2 в окрестности, соответствующем углу

поворота ϕ
к
;
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– если проверка достижения конца сектора прошла отрицательно, движение про-

должается;

– в случае, если предыдущая проверка прошла положительно, вызывается коман-

да ОСТАНОВИТЬ(), затем изображение анализируется до тех пор, пока в после-

довательности кадров не прекращаются изменения, связанные с перемещением

видеокамеры, после этого фиксируется время остановки ti
к

и фактический угол

ϕi
к
, который будет отличаться от ϕ

к
из-за задержек синхронизации видеопото-

ка и процесса управления повортным устройством, но который при этом можно

вычислить, вычисляя описанным ранее способом преобразование сопряжения с

кадрами, полученными во время ручного сканирования в окрестности ϕ
к
.

4. Если цикл на предыдущем шаге выполнялсяN раз, то мы получим ровно столь-

ко оценок для скорости

ϕ̇i =
ϕi

к
− ϕ

н

ti
к
− ti

н

,

поэтому можно уменьшить вклад случайной погрешности, обусловленной погрешно-

стью синхронизации, в
√
N раз, вычислив выборочное среднее

ϕ̇ =
1

N

N∑

i=1

ϕ̇i. (6.12)

Таким образом, калибровка, проведённая по описанному выше алгоритму, позво-

ляет в целом устранить погрешность оценки текущего угла поворота ϕ за счёт доста-

точно точного вычисления скорости движения. За счёт многократности измерений в

том числе возможно несколько повысить чувствительность процесса измерения при

помощи датчиков угла поворота.

Благодаря более точной оценке угла примерно в 3–10 раз сокращается время ра-

боты алгоритма по поиску пар точек на соседних изображениях по методу поиска

паросочетаний с помощью жадного алгоритма с применением хэширования при поис-

ке ближайшего соседа, так как сложность алгоритма O(Q logQ) почти линейно зави-

сит от числа возможных пар Q. Кроме того, в несколько раз снижается вероятность

ошибочного поиска преобразования с применением алгоритма RANSAC, поскольку

из возможных пар исключаются те пары, которые не лежат в пределах погрешности

вычисления угла поворота ∆ϕ в сферической проекции. Ускорение процесса постро-

ения панорамы с помощью данных, полученных при калибровке скорости, возможно

также за счёт того, что уточнение текущего положения ϕ можно делать не для всех

кадров видеопотока, а только для каждого второго, или каждого третьего, а для

промежуточных кадров оценивать угол поворота по формуле (6.11).
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Изображение видеокамер может зависеть от времени суток и от погодных условий.

Если по каким-то причинам снижается контрастность изображения в силу внешних

условий, то поиск преобразования с помощью характерных точек становится невозмо-

жен, и единственным способом оценить текущее положения камеры является оценка

по скорости, полученной по формуле (6.12). Поэтому предварительная калибровка по-

воротных устройств, разработанная в рамках данной работы, имеет большое значение

для эффективности, быстродействия и качества алгоритма построения панорамного

изображения в процессе сканирования видеокамерой, установленной на поворотной

платформе.

6.4. Разработка и исследование алгоритмов семантического выделения по-

движных объектов на панорамных изображениях

Предыдущие параграфы описывали процесс построения панорамного изображе-

ния, при этом показан ряд приёмов, повышающих быстродействие и качество наложе-

ния изображений на панораму во время сканирования наблюдаемой сцены с помощью

поворотной видеокамеры. Применяя совместно алгоритмы семантического выделения

подвижных объектов, рассмотренные в п. 1.3 и в п. 2.1, и алгоритмы построения па-

норамных изображений, можно выделить подвижные объекты на наблюдаемой сцене.

Поскольку изображение сцены на панораме не смещается по мере движения поворот-

ной платформы видеокамеры, вполне применим подход, заключающийся в накопле-

нии панорамного фона с последующим вычитанием из фона текущего изображения

и сегментацией областей с высокой нормой разности текущего изображения и фона.

При таком подходе возникают две основные проблемы.

Во-первых, алгоритм построения панорамы является вычислительно ёмким, а для

корректной обработки изображения с помощью алгоритма вычитания фона требует-

ся высокая частота обработки кадров, как правило 25 к/с. То есть построение па-

норамы необходимо выполнять не более, чем за 1/25 сек = 40 мсек, причём следует

учесть, что вычислительные ресурсы нужны не только для алгоритма построения

панорамы, но и для алгоритма выделения подвижных объектов. Для изображения

640 × 480 описанные ранее алгоритмы выделения движения выполнятся примерно

5–10 мсек для одного кадра видеопоследовательности, поэтому построение панорамы

должно укладываться в 20–30 мсек. Устранив за счёт известной траектории движе-

ния камеры квадратичную зависимость вычислительной сложности алгоритма [187]

от числа изображений, участвующих при построении панорамы, заменив алгоритм

поиска характерных точек на более быстрый (см. п. 6.2), и воспользовавшись при

формировании пар характерных точек уточнённой оценкой углов поворота за счёт

предварительной калибровки (см. п. 6.3), возможно получить алгоритм построения

панорамы, который обрабатывает одно изображение за 90–120 мсек вместо исходных
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10 сек. Тем не менее, для реализации сопровождения подвижных объектов на па-

норамных изображениях, необходим способ, который примерно в 3–4 раза сократит

время обработки одного кадра панорамного изображения с последующим выделением

движущихся объектов.

Во-вторых, при наложении изображения на текущее панорамное изображение не

всегда удаётся добиться полного совмещения изображения с точностью до одного

пиксела. Как показывает практика, погрешность наложения может составлять 1–2

пиксела. При формировании визуального отображения панорамы в работе [187] пред-

лагается использовать алгоритмы формирования плавного перехода от одного изоб-

ражения к другому, однако отсутствие визуальных недостатков на панораме ещё не

означает, что алгоритм вычитания фона корректно обработает изображения при сме-

щении фона и текущего изображения на 1–2 пиксела. Практика показывает, что из-за

ошибок наложения кадров значительно возрастает число ошибок первого и второго

рода при идентификации движущихся на сцене наблюдения объектов, поэтому тре-

буется доработка подхода, основанного на сопоставлении текущего кадра и накоплен-

ного фонового изображения.

Для решения проблемы быстродействия алгоритмов семантической обработки па-

норамных изображений в рамках данной работы используется параллелизм совре-

менных вычислительных устройств и приборов. Рассмотрим граф-программу, или

граф управления с элементами информационного графа в терминах труда [202] для

алгоритма семантического анализа изображений сцены во время сканирования, см.

рис. 6.5. На рисунке граф состоит из вершин с сокращёнными названиями процедур:

ПХТ — поиск характерных точек, ПП — поиск пар точек, ПС — поиск преобразования

сопряжения, ВИП — вложение изображения в панораму, ВФ — выделение и вычита-

ние фона, ПТР — поиск траекторий движущихся объектов. В качестве входных пара-

метров перечисленных выше процедур на рисунке указаны последовательные кадры

видео Fi−1(x, y), Fi(x, y), характерные точки {um} и {vn} на изображениях Fi−1(x, y)

и Fi(x, y), соответственно, отобранные пары точек {(uk, vk)}, параметры камеры: фо-

кусное расстояние f , угол наклона θ и угол поворота ϕi для текущего кадра Fi(x, y),

панорамное изображение для текущего кадра Φi(ξ, η
′), множество областей движения

Ri = {cri} и описание траекторий объектов Ti = {toi} для i-го кадра. Обозначения

для процедуры построения панорамы заимствованы из параграфа 6.3, а обозначения

для множеств областей движения и траекторий уже использовались ранее в парагра-

фе 5.2 (следует отметить, что в данном случае области cri состоят из множества точек

изображений, а не только из точки центра масс).

Заметим, что при обработке кадров Fi−1 и Fi процедуры ПХТ, ПП и ПС не требуют

информации, полученной в ходе выполнения остальных процедур, в том числе им не
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Рисунок 6.5. Граф-программа построения панорамного изображения и выделения на
нём движущихся объектов (ПХТ — поиск характерных точек, ПП — поиск пар точек,
ПС — поиск преобразования сопряжения,ВИП — вложение изображения в панораму,
ВФ — выделение и вычитание фона, ПТР — поиск траекторий движущихся объектов).

нужна информация о характерных точках и преобразовании поворота, полученная

для предшествовавших кадров видеопотока. Это позволяет применить параллельно-

конвейерный подход к ускорению обработки панорамных изображений.

Измерение времени выполнения программы построения панорамы на одном ядре

современного компьютера архитектуры Intel Core i7 показывает результаты, отоб-

ражённые в таблице 6.1. Таблица показывает, что суммарно процедуры ПХТ, ПП и

ПС, для которых отмечена независимость результата работы от любой информации,

кроме изображений Fi и Fi−1 при обработке i-го кадра, выполняются на одном яд-

ре 80–110мс, а остальные процедуры ВИП, ВФ и ПТР, результаты работы которых

зависят как от результата работы процедур выделения и обработки характерных то-

чек, так и от последовательности поступающих кадров, суммарно выполняются за

15–20мс, в 3–5 раз быстрее, чем независимые процедуры.

Исходя из соотношения времени выполнения процедур, является целесообразным
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Название процедуры Аббревиатура Время, мсек

Поиск характерных точек ПХТ 20

Поиск пар точек ПП 20–30

Поиск сопряжения ПС 40–60

Вложение в панораму ВИП 5

Вычитание фона ВФ 5

Построение траекторий ПТР 5–10

Таблица 6.1. Времена обработки данных отдельными процедурами анализа панорам-
ных изображений при выполнении с использованием одного ядра процессора Intel
Core i7.

построить вычислительный процесс обработки панорамных изображений на основе

четырёх конвейеров, три из которых должны принимать на вход кадры Fi(x, y), вы-

полнять последовательно процедуры ПХТ, ПП, ПС и выдавать оценку угла ϕi, а один

конвейер должен принимать на вход изображение Φi(ξ
′, η′), кадр Fi и соответсвую-

щий ему угол ϕi и выполнять для этих данных процедуры ВИП, ВФ, ПТР. На выходе

данного конвейера формируется конечный результат в виде траекторий объектов Ti.

Обозначим алгоритм выполняемых последовательно процедур ПХТ, ПП и ПС сим-

волом P , а алгоритм выполняемых последовательно процедур ВИП, ВФ, ПТР сим-

волом T . Если трактовать алгоритм как функцию, которую можно вычислить над

входными данными за конечное число шагов, то имеет место

(ϕi, {ui}, {vi}) = P(Fi−1, Fi, {vi−1}), {ui} = {vi−1},
(Φi, Ti, Si) = T (ϕi, Fi,Φi−1, Ti−1, Si−1),

где Si — некоторое внутреннее состояние алгоритма P , связанное, в частности,

с данными о накопленном фоновом изображении. Стадией конвейера будем счи-

тать трёхкратное вычисление приведённых выше функций для данных с индексами

i = 3s+p, где s — номер стадии, а p — целочисленный индекс операции внутри стадии

от 0 до 2. Таким образом, за время одной стадии три конвейера параллельно выполнят

алгоритм P , и один конвейер последовательно выполнит три операции T .

Для того, чтобы все конвейеры, выполняющие алгоритмы P и T , были постоянно

загружены, необходимо ввести отставание обработки данных конвейером, выполняю-

щим T , на одну стадию по сравнению с тремя конвейерами, выполняющими алгоритм

P . Тогда данные ϕ3(s−1)+p с предыдущей стадии конвейеров, выполняющих P , посту-

пят на вход текущей стадии конвейера, выполняющего операцию T , и одновременно

с этим три конвейера, выполняющие P , начнут готовить данные ϕ3s+p для работы

следующей стадии. Графическая схема описанной работы конвейера представлена на

рис. 6.6. Отметим, что результат с траекториями выделенных движущихся объек-
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Рисунок 6.6. Схема параллельно-конвейерного построения и семантической обработки
панорамных изображений.

тов Ti будет выдан конвейером с отставанием по сравнению с поступлением кадров

с изображением объектов, так как для загрузки конвейера следует ввести очередь

ожидания обработки кадров с длиной как минимум 3. В тот момент, когда новый

кадр поступает в данную очередь, результат обработки будет готов только для кадра

с меньшим на 3 индексом. При частоте поступления кадров 25 к/сек задержка соста-

вит около 160 мсек, что сопоставимо со средним временем самой быстрой моторной

реакции у людей в ответ на какие-либо нервные раздражители, и, следовательно, та-

кая задержка не должна создавать ощутимого дискомфорта для работы операторов

систем видеонаблюдения.

Конвейер, схема которого представлена на рис. 6.6, за одну стадию обрабатывает 3

кадра одновременно. При этом конвейер, последовательно выполняющий 3 операции

T , будет действовать 45–80 мсек в течение одной стадии, а каждый из трёх конвейе-

ров, выполняющих операцию P , будет действовать 80–110 мсек в течение одной ста-

дии, то есть конвейер T будет, как правило, недозагружен. При этом каждая стадия

обрабатывает 3 кадра подряд, поэтому среднее время обработки одного кадра пред-
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ставленным конвейером будет 30–40 мсек, что почти соответствует заявленной цели

достигнуть 20–30 мсек по времени обработки одного кадра. По крайней мере, с таким

временем работы система сможет обрабатывать все кадры видеопоследовательности

с частотой 25 кадров в секунду.

Отметим, что большинство современных операционных систем для самых распро-

странённых вычислительных устройств в целом и комплексы видеосистем в частности

не являются системами реального времени в том смысле, что существует довольно

большая неопределённость во времени исполнения вычислительных процедур и про-

цедур ввода-вывода. Например, современные сетевые видеокамеры могут для опти-

мизации скорости передачи видеопотока по локальной вычислительной сети форми-

ровать пакеты из нескольких кадров подряд, задерживая таким образом передачу

кадров на величину объёма буфера. В таких условиях более целесообразно рассмат-

ривать конвейерный процесс обработки как набор асинхронных процессов. Синхро-

низация между ними будет осуществляться на уровне очереди из входных данных:

кадров Fi для процессов P и углов ϕi для процессов T : если очередь из входных дан-

ных на одном из конвейеров сильно выросла, значит, пора пропустить кадры в очереди

на обработку, чтобы сократить разность скорости выдачи выходных данных по срав-

нению со скоростью входных данных. Если конвейеры, выполняющие операцию P ,

являются узким местом, то вместо тяжёлой обработки изображения для оценки угла

ϕi можно использовать элементарную формулу (6.11), при условии, что для каме-

ры проведена калибровка и время кадра ti известно достаточно точно. Это позволит

исключить кадр Fi из обработки довольно длительной операцией P , при этом, тем

не менее, получить оценку угла поворота на основе интерполяции. Переход от пол-

ной синхронизации стадий к асинхронной схеме обработки позволяет гарантировано

обработать изображения камер, установленных на поворотной платформе, во время

сканирования с частотой обработки кадров 25 кадров в секунду, что соответствует

типичной частоте генерации кадров для большинства современных видеокамер.

Проблема погрешности наложения изображений камеры на панорамное изображе-

ние, отмеченная в начале данного параграфа, приводит к тому, что появляется мно-

жество шумовых областей движения, особенно на границах неподвижных объектов

сцены, поскольку смещение на 1–2 пиксела при наложении приводит к наибольшим

отличиям от фона в областях с высоким градиентов функций Fi(x, y), так как грани-

цы смещаются друг относительно друга. Для решения этой проблемы предлагается

два программных фильтра.

Один фильтр заключается в том, что кроме отслеживания движущихся областей

можно производить отслеживание движущихся особых точек. И если в окрестности

области движения сri нет подвижных характерных точек, значит эту область не сле-
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дует рассматривать как кандидата на формирование позиции одного из объектов во

множестве Ti. Для отслеживания движения характерных точек можно использовать

результаты работы процедур P .

Второй фильтр основан на семантическом анализе формы областей {cri} и на том

факте, что как правило, области движения, образованные из-за смещения границ,

представляют собой тонкие, длинные, и почти прямые линии. Поэтому, если взять

произвольную не очень большую окрестность Uε(x, y) (например, ε = 16) для любой

точки (x, y) ∈ cri , то для тонких областей собственные значения матрицы вторых мо-

ментов, посчитанных для точек cri ∩ Uε(x, y), будут значительно отличаться друг от

друга, причём наименьшее значение будет достаточно маленьким и соответствовать

квадрату ширины тонкой линии. Если почти все точки области cir движения удовле-

творяют таким соотношениям для собственных чисел вторых моментов, рассчитан-

ных в некоторой окрестности, значит эту область также не следует рассматривать

как кандидата для продолжения объектов во множестве Ti.

Предложенные фильтры позволили на два порядка сократить количество ошибок

первого рода F αβ
N (см. определение в п. 4.2) на два порядка. Однако частота ложных

срабатываний для приведённого метода пока достаточно велика и составляет единицы

в несколько минут. Доля ошибок второго рода F αβ
P по отношению ко всем объектам

составляет примерно 0,9. Таким образом, разработанный параллельно-конвейерный

алгоритм позволяет проводить семантическую обработку панорамных изображений

в реальном времени. Системы, построенные с использованием данного алгоритма,

могут использоваться как вспомогательные детекторы движущихся объектов. Од-

нако для использования сканирующих видеокамер в качестве основного детектора

на данный момент требуется дальнейшая проработка теории обработки панорамных

изображений.

6.5. Анализ алгоритмов сопряжения панорамного изображения с планом

местности

Эффективность современных систем видеонаблюдения определяется тем, насколь-

ко просто и удобно они позволяют операторам контролировать события, происходя-

щие в поле зрения видеокамер. Многие видеосистемы упрощают ситуационный кон-

троль в поле зрения видеокамер за счёт автоматической обработки изображений и

распознавания в видеосигнале событий интереса. В подобных системах любое собы-

тие, определённое с помощью автоматического анализа видеосигнала, отображается

в виде сообщения оператору. Для повышения информативности такого сообщения ав-

тор данной статьи предложил отображать место события на плане местности, проведя

предварительно процедуру калибровки, устанавливающую связь между координата-

ми изображения камер с координатами плана местности, см. [129] и п. 2.4. В дан-
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ных работах предполагалось, что изображение, которое требуется привязать к плану

местности, получено с помощью обычных видеокамер с прямоугольными матрицами

чувствительных элементов и объективами, которые можно с хорошим приближением

считать тонкими линзами. Для систем, в которых для контроля области наблюде-

ния используются поворотные видеокамеры в режиме непрерывного сканирования,

не подходит модель видеокамеры с тонкой линзой, поскольку с их помощью фор-

мируется панорамное изображение наблюдаемой территории, которое для удобства

представления отображается с помощью сферической проекции. Поэтому механиз-

мы, применяемые для построения преобразования координат изображения в коорди-

наты плана местности, необходимо модифицировать с учётом отклонения от модели

плоской линзы и плоской матрицы ПЗС.

Для построения панорамы используется исходная декартова система координат

OXY Z, центр которой совпадает с центром сферической проекции, ось Z направлена

вдоль оптической оси камеры в положении, когда угол наклона камеры к плоскости

вращения равен 0, и находится в стартовом положении панорамы, т.е. нулевом угле

поворота относительно оси вращения. Если матрица камеры

K =



f 0 W/2

0 f H/2

0 0 1


 ,

где W ×H – разрешение камеры иf — характеристика угла обзора, если угол накло-

на оптической оси камеры к плоскости, перпендикулярной оси вращения, равен θ, а

угол поворота камеры вокруг оси вращения равен ϕ, то для координаты изображения

(x, y) (при условии проектирования в плоскость на расстоянии f от центра вращения)

переводятся в исходную систему координат OXY Z по формуле


X

Y

Z


 = RK−1



x

y

1


 , где R = R−ϕR−θ —матрица поворота,

R−θ =



1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 , R−ϕ =



cosϕ 0 − sinϕ

0 1 0

sinϕ 0 cosϕ


 .

Панорамное изображение мы получаем в пространстве сферических координат

(u, v) = S(X, Y, Z):

u = f · arctg X
Z
,

v = f ·
(
π − arccos

Y√
X2 + Y 2 + Z2

)
.
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Обратное преобразование (X, Y, Z) = S−1 (u, v) описывается формулами

X = sin

(
π − v

f

)
sin

u

f
,

Y = cos

(
π − v

f

)
,

Z = sin

(
π − v

f

)
cos

u

f
.

Способ связи изображения с планом местности, описанный в работах [129, 130] и

в параграфе 2.4, можно применить с модификацией: опорные точки, которые пользо-

ватель задаёт на панорамном изображении, необходимо с помощью преобразования

K ·S−1 (u, v) привести к исходным декартовым координатам изображения, и уже для

данных координат найти проективные соотношения с координатами плана местности.

Таким образом, для преобразования между изображением панорамы и плана местно-

сти, заданного на сетке (ui, ui) ↔ (xim, y
i
m), мы найдём сетку (xi, yi) ↔ (xim, y

i
m), имея

ввиду (xi, yi) ∼= К−1 · S(xi, yi), и пользуясь описанными ранее методами, найдём пре-

образование координат (x, y) ↔ (xm, ym). Если H(x, y) – найденное преобразование из

координат изображения в систему координат карты (xm, ym), то искомое преобразо-

вание из координат изображения панорамы на карту будет иметь вид

(xm, ym) ∼= H
(
K · S−1 (u, v)

)
,

а преобразование из точки (xm, ym) карты на изображение панорамы будет

(u, v) = S
(
K−1 · [αH−1(xm, ym) |α]T

)
,

где столбец [αH−1(xm, ym) |α]T = [αx αy α]T составлен из двумерных однородных

координат, соответствующих результату преобразования

(x, y) = H−1(xm, ym).

Поскольку функция S(X, Y, Z) является однородной, то есть S(αX, αY, αZ) не зависит

от α, то при вычислениях по приведённой выше формулы можно считать α = 1, так

как результат не зависит от конкретного значения этого параметра.

Из полученных соотношений следует, что для связи панорамы и плана местности

без существенных неровностей рельефа достаточно задать четыре точки, связываю-

щие изображение панорамы с изображением плана. Для учёта неровностей рельефа

целесообразно использовать кусочно-линейную интерполяцию.

Таким образом, для построения преобразования с панорамного изображения на

план местности необходимы данные о матрице внутренних параметров камеры и

внешних параметров в форме углов поворота. Эти данные позволяют устранить нели-

нейность при поиске проективного преобразования.
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Выводы

1. Анализ открытых реализаций программных библиотек построения панорам-

ных изображений показал, что данные библиотеки не могут быть использованы в

системах реального времени, поскольку они в среднем обрабатывают одно изображе-

ние более 1 сек.

2. Предложен новый способ для сопряжения панорамных изображений с изоб-

ражениями топографических карт для эффективной визуализации сопровождаемых

объектов в сканирующих видеосистемах.

3. В процессе теоретического исследования вычислительной сложности и эффек-

тивности алгоритмов сопоставления характерных областей изображений показано,

что быстрые алгоритмы типа ORB можно использовать в системах обработки па-

норамных изображений в реальном времени, так как незначительный проигрыш в

достоверности сопоставления по сравнению с более общеупотребительными алгорит-

мами SIFT компенсируется методами дополнительной обработки информации о ха-

рактерных точках, а выигрыш в производительности у быстрых алгоритмов более

чем двукратный.

4. Предложен новый алгоритм автоматической калибровки поворотных видео-

камер, проведён анализ влияния точности предложенного метода оценки скорости

вращения поворотного устройства на эффективность и быстродействие алгоритмов

построения панорамного изображения.

5. Создан новый параллельно-конвейерный алгоритм семантической обработки

изображений, полученных от установленных на поворотных платформах видеокамер

в режиме сканирования. Алгоритм в реальном времени проводит идентификацию по-

движных объектов на сцене, используя современные методы построения панорам и

семантический анализ изображений и обрабатывая один кадр изображения с разре-

шением 640× 480 за 50 мс, что в 20 раз меньше времени обработки для аналогичных

алгоритмов в открытых источниках.
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7. Экспериментальная оценка эффективности разработанных

алгоритмов сопряжения, синхронизации, управления и се-

мантического сжатия изображений. Результаты внедрения

7.1. Внедрение результатов и апробация

К основным результатам диссертационной работы относятся способы синхрони-

зации изображений неподвижных и поворотных видеокамер, алгоритмы сопряжения

изображений с планом местности, алгоритмы обработки подвижных стереоизображе-

ний и панорамных изображений, способы семантической обработки изображений. Эти

результаты легли в основу таких программно-аппаратных комплексов, как система

контроля безопасности объектов на основе приборов технического зрения «Orwell2k»,

системы контроля соблюдения правил дорожного движения «Travio» и система под-

счёта плотности потока движущихся объектов «Statistics-3d». Перечисленные ком-

плексы созданы на предприятии ГУП НПЦ «ЭЛВИС» и его правоприемнике АО

«ЭЛВИС-Неотек» при непосредственном участии автора в качестве руководителя и

архитектора по разработке математического программного обеспечения. Проведём

анализ основных достоинств данных программно-аппаратных систем, непосредствен-

но связанных с вкладом автора, достигнутом по результатами диссертационной рабо-

ты.

1. Обработка стереоизображений позволила существенно повысить точность ре-

зультата в устройствах подсчёта посетителей «Statistics-3d» с 90% до 98% (протокол

испытаний данных устройств в аэропорту «Шереметьево» представлен в приложе-

нии 2).

2. Использование быстродействующих алгоритмов построения панорамных изоб-

ражений позволяет полноценно использовать видеокамеры на поворотных платфор-

мах в режиме непрерывного сканирования с автоматическим выделением событий в

области контроля видеокамер, обрабатывая поток кадров с частотой выше 15 кадров в

секунду на ЭВМ стандартной конфигурации; данный результат для систем реального

времени достигнут впервые.

3. Система автоматизированной оценки достоверности алгоритмов семантическо-

го сжатия позволила эффективно выработать дополнительные способы и алгоритмы

для снижения на 1–2 порядка частоты ошибок первого и второго рода при анализе

событий с помощью обработки изображений от видеокамер. Более высокая досто-

верность фиксации событий позволяет уменьшить количество операторов в 5-10 раз

при контроле обстановки в поле зрения видеокамер системы, что показано в работах

автора [204, 205].

4. Сопряжение видеокамер с планом местности позволяет в несколько раз умень-
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шить необходимое количество операторов системы для контроля больших периметров

наблюдения за счёт повышения эргономических характеристик терминального моду-

ля.

5. Сопряжение неподвижных видеокамер с общей зоной обзора между собой поз-

воляет с достоверностью более 99% сопоставлять изображения одного и того же объ-

екта на разных камерах, что снижает общее количество сигналов об объектах на

наблюдаемой территории и позволяет уменьшить количество операторов системы,

контролирующих обстановку на территории. Кроме того, настроенные преобразова-

ния сопряжения применяются при работе аналитических видеосистем в различных

модулях семантической обработки изображений в реальном времени.

6. Алгоритмы сопряжения поворотных и неподвижных видеокамер, а также алго-

ритмы синхронизации и наведения с упреждением на движущиеся объекты позволяют

с вероятностью более 99% получать изображения повышенного разрешения для всех

объектов в зоне наблюдения неподвижных видеокамер, которые сопряжены с пово-

ротными. Разрешение изображения повышается в 5–10 раз, а применение поворотных

видеокамер вместо неподвижных позволяет сократить общее количество видеокамер

системы.

7. Алгоритмы сопряжения и синхронизации, разработанные в данной диссерта-

ции, применимы также для сопоставления отметок транспортных средств, выделен-

ных специальными многоцелевыми радарами, и изображений транспортных средств

на видеокамере, что позволяет использовать скорость, полученную радаром с помо-

щью эффекта Доплера, для контроля скоростного режима. Используя сопряжение

и синхронизацию показаний радара совместно с алгоритмом автоматического выде-

ления государственных номерных знаков, система «Travio» формирует без участия

оператора штрафные квитанции за превышение скорости для владельцев транспорт-

ных средств с распознанным номерным знаком.

8. Использование алгоритмов семантической обработки изображений позволяет

расширить область применения аналитических видеосистем. Например, с помощью

алгоритмов классификации могут быть решены следующие задачи: наблюдение за

автостоянками с целью предотвращения угона, оценка соответствия количества про-

данных билетов в кинозалы и реального количества зрителей, выделение оставленных

вещей в местах скопления людей.

Программное обеспечение для семейства программно-аппаратных комплексов

«Orwell2k», «Travio» зарегистрировано в реестре программ для ЭВМ, см. приложе-

ние 1. В ходе разработки этих программных комплексов автором созданы специфи-

кации для программ юстировки сопряжения видеокамер между собой и планом мест-
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ности, спецификации для программ сопряжения неподвижных и поворотных видео-

камер, создана программа обучения и тестирования систем распознавания и семан-

тической обработки изображений.

Апробация комплексов «Orwell2k» (см. [209]) и «Travio» проведена не только на

конференциях, но и на различных выставках современных технологий в области си-

стем охранного наблюдения, см. приложение 5. На многих из этих выставок система

получила высокую оценку специалистов, в том числе благодаря результатам данной

работы, внедрённым в систему. Например, предприятие ГУП НПЦ «ЭЛВИС» в 2005

году за разработку «Orwell2k» было удостоено национальной отраслевой премии по

безопасности «За укрепление безопасности России» («ЗУБР-2005»). Кроме того, ин-

формация о системах «Orwell2k» и «Travio» представлена, например, на интернет-

странице http://www.elvees.ru.

Благодаря перечисленным достоинствам система нашла своё применение у мно-

гих потребителей, что подтверждается документами приложений 3 и 2. Среди этих

документов представлены акты внедрения, которые подтверждают применение си-

стем, в которых внедрены результаты данной диссертационной работы, для контроля

безопасности стратегически важных инфраструктурных объектов.

Технологии, реализованные в программно-аппаратном комплексе «Orwell2k», за-

щищены патентами [212, 213, 214, 215] и другими (см. перечень в приложении 4).

7.2. Описание схемы видеосистем с приборами и блоками семантической

обработки изображений

Результаты диссертационной работы внедрены при создании семейства

программно-аппаратных комплексов «Orwell2k», разработанных при непосред-

ственном участии автора. Благодаря техническим характеристикам комплексов

«Orwell2k», полученным в том числе благодаря применению сопряжения, синхрони-

зации, алгоритмов управления поворотными камерами и алгоритмам семантического

сжатия (см. п. 1.1), данные программно-аппаратные комплексы применяются для

обеспечения охранных мероприятий на значимых инфраструктурных объектах,

среди которых можно выделить, например, аэропорты Домодедово и Шереметьево,

железную дорогу между городом Сочи и посёлком Красная поляна (охранную

систему «Orwell2k» начали использовать на ней во время проведения зимних

олимпийских игр 2014 года), ряд гидроэлектростанций, нефтеперерабатывающий

завод Оренбургской области (договор №09.08.07(1)/Д между ГУП НПЦ «ЭЛВИС»

и организацией «Ритар-Юг»), а также обширные общественные территории городов

(например, в Нижнем Новгороде, Геленджике, Саранске).

Типичным примером применения результатов диссертационной работы являет-

ся система промышленного видеонаблюдения на объектах воздушного транспорта
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Появление

объекта

5мс

Автоматическое

выделение

<0,1мс

Автоматическая

идентификация

5мс

Запись

видео

0мс

Вывод сигнала об

объектах в запрещённой зоне

<1мс

Сохранение класса

и времени появления в БД

<1мс

Автоматическая локализация на плане

места появления объекта

≈0,5с

Автоматическое наведение

и переход в режим АС

Автоматическое

сопровождение объекта

Рисунок 7.1. Схема выполнения функций в системе «СПВ ОВТ».

РАЯЖ 46652.001-ОС.ПЗ, сокращённо «СПВ ОВТ» (МАД — Московский аэропорт

Домодедово). Система была разработана на предприятии ГУП НПЦ «ЭЛВИС» для

выполнения государственного контракта №2037735016845, зарегистрированного 24

июля 2003 года.

«СПВ ОВТ» является комплексом программно-аппаратных

средств,предназначенных выполнять ряд задач, а именно:

1) контроль проезда транспорта через пропускные пункты;

2) наблюдение за обстановкой в залах ожидания;

3) видеоконтроль за зонами авиационной деятельности;

4) контроль ограждений аэропорта с целью предотвращения проникновения, осу-

ществляемый средствами оптического наблюдения и вспомогательными индукцион-

ными датчиками, детектирующими прикосновение к ограждению;

5) видеонаблюдение в ангарных помещениях с целью автоматического выявления

нештатных ситуаций (например, возгорание).

Особенности данной аналитической видеосистемы описаны в источниках [208, 207,

209, 210]. На рис. 7.1 отображена схема выполнения функций системой «СПВ ОВТ»

при появлении объектов в поле зрения стационарных камер. Из этой схемы следует,

что время реакции на появление объектов примерно равно 0,5с, что в 20 раз мень-

ше, чем аналогичное время для обычных аналитических систем без автоматической
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Рисунок 7.2. Мачта телевизионного наблюдения.

локализации на плане местности и без автоматического наведения поворотных камер

(см. рис. 1.7).

Основными приборами и оборудованием в «СПВ ОВТ» являются:

1) неподвижные и поворотные видеокамеры, тип которых определяется типом

внешнего освещения и требуемым углом наблюдения;

2) ЭВМ, именуемые серверами системы и предназначенные для анализа видео-

сигнала и управления поворотными видеокамерами;

3) коммутационное оборудования, предназначенное для передачи видеосигналов,

сигналов управления и передачи электропитания приборам системы;

4) терминалы системы видеонаблюдения;

5) мачты для крепления телевизионных камер, устойчивые к вибрациям, обуслов-

ленным сильными ветрами (см. рис. 7.2).

Структура системы соответствует приведённой на рис. 1.1 (с. 22). Можно выделить

четыре группы видеокамер в зонах наблюдения ангар (четыре неподвижные видео-

камеры и две поворотные купольные видеокамеры), зона авиационной деятельности

(двенадцать неподвижных видеокамер и две видеокамеры на поворотном устройстве),

зал ожидания (две неподвижные видеокамеры) и контрольно-пропускной пункт (две

неподвижные видеокамеры). Видеосигнал от данных видеокамер обрабатывают пять

ЭВМ-серверов. Терминалы системы расположены в двух местах: на рабочем месте

оператора службы охраны, и у начальника службы безопасности охраняемого участ-

ка аэропорта.

В результате применения разработанных в диссертации алгоритмов и способов, ко-

торые приведены в таблице 7.1, в системе «СПВ ОВТ» полностью автоматизировано

управление поворотными видеокамерами с целью получения изображений высокого

разрешения для объектов, присутствующих в зоне наблюдения неподвижных камер, а

также прикоснувшихся к ограждению зоны авиационной деятельности, производится

автоматическое сопоставление синхронных изображений объектов на неподвижных
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Алгоритмы Способы

− наведения поворотных камер с адап-

тивным упреждением (патент №36912 от

23.06.2003, №2265531 от 07.08.2003);

− составного перемещения поворотных

камер;

− сопоставления изображений объек-

тов в общей зоне видимости нескольких

неподвижных камер;

− синхронизации в цикле обработки ин-

формационных сообщений мастеров;

− синхронизации в циклах обработки

информационных сообщений мастеров и

слейвов (свидетельство о регистрации

программы №2003612604);

− синхронизации в цикле обработки ин-

формационных сообщений слейвов;

− идентификации и классификации

изображений с двумя признаками на ос-

нове быстрой триангуляции.

− сопряжения неподвижных камер меж-

ду собой и планом местности с помо-

щью проективных преобразований (па-

тент №2268497 от 23.06.2003);

− юстировки камер по отношению к

плану местности с помощью измерения

дальности до ориентиров;

− моделирования неровностей поверхно-

сти земли;

− сопряжения мастеров и слейвов с фик-

сированными позициями;

− сопряжения мастеров и слейвов с ко-

ординатным управлением углами пово-

рота;

− автоматического определения коорди-

нат увеличения и фокусировки слейвов

при наведении на объекты в зависимо-

сти от его размеров и дальности.

Таблица 7.1. Алгоритмы и способы, разработанные в диссертационной работе

видеокамерах с частично общей зоной обзора, а также автоматическая классифика-

ция, идентификация на основе семантической обработки изображений и определе-

ние положения объектов на плане местности, что позволило значительно улучшить

качество визуализации объектов и повысить за счёт автоматизации эффективность

мероприятий, связанных с обеспечением безопасности аэропорта.

7.3. Сравнение эффективности систем технического зрения с различными

принципами действия

Кроме систем автоматизированного контроля проникновения на территорию, по-

добных РАЯЖ 46652.001-ОС.ПЗ, существуют альтернативные способы выделения со-

бытий, требующих реакции оператора охранного комплекса приборов. Методика срав-

нения эффективности систем, построенных на датчиках различного действия, может

быть построена следующим образом.

Во-первых, во время сравнительных испытаний все системы должны фиксиро-

вать события в одни и те же моменты времени, то есть область действия датчиков

сравниваемых систем должна совпадать и в пространстве, и во времени.
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Во-вторых, должны быть введены показатели, по которым будет сравниваться

система: например, количество ошибок первого рода, и количество ошибок второго

рода.

В-третьих, должен быть выработан критерий, по которому из разных показателей

будет дана одна оценка, характеризующая качество системы в целом. Далее приведена

методика сравнения систем по разным показателям.

Пусть N — количество сравниваемых систем технического зрения, возможно, от

разных производителей. Для удобства в дальнейшем будем считать, что каждая срав-

ниваемая система пронумерована, т.е. у каждой есть свой индекс от 1 до N .

Предположим, в процессе испытания мы получили для каждой из систем некие

показатели качества её работы x1, x2, ..., xN . Рангом i-ой системы по показателю x

мы будем обозначать величину rg(i, x), равную порядковому номеру показателя си-

стемы i в последовательности, отсортированной по возрастанию показателя качества

x. Например, если x1 = 1, x2 = 3, x3 = 1,5 для трёх испытываемых систем, и уве-

личение показателя обозначает ухудшение качества, то rg(1, x) = 3, rg(2, x) = 1,

rg(3, x) = 2. Аналогия ранга — это место на соревнованиях, присуждаемое «по оч-

кам» x, только, в отличие от соревнований, чем больше номер места, тем лучше.

Если после упорядочивания показателей несколько значений равны друг другу, то

ранг присваивается всем соседям одинаковый, равный среднему значению индексов

позиций с одинаковыми значениями показателя. Т.е., если x1 = 2, x2 = 2, x3 = 2,

то rg(1, x) = rg(2, x) = rg(3, x) = 2, а если x1 = 1, x2 = 2, x3 = 2, то rg(1, x) = 1,

rg(2, x) = rg(3, x) = 2,5.

Для каждого элемента функционала, заявленного производителем системы тех-

нического зрения, проводятся испытания, которые дают некоторую оценку качества

данного функционала. В рамках каждого испытания мы получаем оценку Qi
k (i —

индекс системы, k — пункт программы испытаний) для каждой системы в виде ранга

по целому ряду показателей, определённых в процессе испытания конкретного функ-

ционала систем. Если система не поддерживает функционал, то её оценка в данном

испытании — 0. Оценка переносится в таблицу показателей эффективности систем

технического зрения. Общий показатель эффективности для каждой из систем рас-

считывается как среднее взвешенное показателей, перечисленных в этой таблице. Ве-

са для среднего взвешенного выбираются таким образом, чтобы важные показатели

давали больший вклад в конечную оценку.

В данном параграфе приводится результат сравнительных испытаний для четырёх

разных систем, которые автоматически определяют движущиеся объекты, находящи-

еся в пределах от 50 до 200 метров от заданной точки в угловом секторе около 90◦.

Местоположение испытательного полигона схематически изображено на рис. 7.3, оно
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Рисунок 7.3. Схематичное указание положения полигона испытаний

находится на территориях, прилегающих к предприятию АО «ЭЛВИС Неотек» в

г. Зеленоград.

В проведённых автором сравнительных испытаниях участвовали четыре различ-

ные системы технического зрения.

Первая система аналогична системе РАЯЖ 46652.001-ОС.ПЗ и состоит из трёх

стационарных видеокамер с углом зрения примерно 30◦, которые «веером» закрывают

показанный на рис. 7.3 сектор.

Вторая система ЛЦКБ.464412.002 состоит из радара ЛЦКБ.685631.001, купольной

камеры Apix-36ZDome/D1 EXT и ЭВМ для семантической обработки сигналов. Сек-

тор обзора радара настроен таким образом, чтобы соответствовать указанной ранее

области, в которой проводятся сравнительные испытания.

Третья система ВАРШ.00003-01 состоит из тепловизионного локатора кругового

обзора «Филин» ВАРШ.201219.003, установленного на поворотной платформе BIC

PTR-500 и ЭВМ для семантической обработки тепловизионных изображений. Угол

обзора тепловизионной камеры примерно равен 30◦, контроль показанного на рис. 7.3

производится с помощью шагового перехода положения камеры последовательно по

трём положениям, которые примерно соответствуют положению видеокамер первой

системы. Между переходами для фиксации событий тепловизионная камера остаётся

неподвижной примерно на 7 секунд в каждой точке.
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Рисунок 7.4. Поля зрения камер: сверху для неподвижных в первой системе, в центре
для панорамной камеры (в виде панорамы), снизу для тепловизионной камеры в трёх
положениях шагового режима.

Четвёртая система ВАРШ.00001-01 состоит из поворотной купольной камеры

Bosch AutoDome 800HD и из сервера семантической обработки изображений, пред-

назначенного для построения и анализа панорамы. Панорамное изображение настра-

ивается таким образом, чтобы в него попадала область, соответствующая сектору, в

котором испытываются сравниваемые системы.

Для иллюстрации области действия всех систем на рис. 7.4 показаны изображения,

которые анализируются системами без радара. Пользовательский интерфейс радар-

ной системы представлен на рис. 7.5.

Перечисленные четыре системы сравнивались по следующим показателям:

1) количество ложно идентифицированных объектов в светлое время суток за пе-

риод проведения испытаний, соответствует ранговому показателю Q1
•, где • — индекс

системы;

2) количество ложно идентифицированных объектов в тёмное время суток за пе-

риод проведения испытаний, соответствует ранговому показателю Q2
•;

3) количество пропущенных системой объектов в светлое время суток за период
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Рисунок 7.5. Внешний вид пользовательского интерфейса радарной системы техни-
ческого зрения: поворотная камера наведена на один из автомобилей, идентифициро-
ванного радаром как движущаяся цель.

Показатель Видеокамеры Радар Тепловизор Панорама

Дневные ложные

срабатывания

0 1 0 3

Ночные ложные

срабатывания

1 0 0 0

Дневные пропус-

ки

0 8 11 9

Ночные пропуски 1 1 11 30

Объекты без

визуального

подтверждения

0 1 16 0

Таблица 7.2. Таблица показателей работы систем технического зрения

проведения испытаний, соответствует ранговому показателю Q3
•;

4) количество пропущенных системой объектов в тёмное время суток за период

проведения испытаний, соответствует ранговому показателю Q4
•;

5) количество объектов, которые не попали в поле зрения видеокамер системы,

соответствует ранговому показателю Q5
•.

Период испытаний был выбран таким образом, чтобы в поле зрения всех систем

побывало примерно 50 объектов в дневное время, и примерно 50 объектов в ночное

время. Соответсвующие показатели сведены в таблицу 7.2.

Соответствующие ранговые показатели систем Qk
i , методика расчёта которых бы-
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Показатель ранга Видеокамеры Радар Тепловизор Панорама

Q1
• 1,5 3 1,5 4

Q2
• 4 2 2 2

Q3
• 1 2 4 3

Q4
• 1,5 1,5 3 4

Q5
• 1,5 3 4 1,5

Таблица 7.3. Ранговая таблица показателей эффективности систем технического зре-
ния

ла приведена ранее в этом параграфе, сведены в таблицу 7.3. Если при формировании

итоговой оценки использовать среднее по показателям Qk
i , а именно:

Qi =
1

5

5∑

k=1

Qk
i ,

то получим следующие итоговые оценки: для системы на основе трёх видеокамер 1,9,

для радара 2,3, для тепловизора и панорамной камеры одинаковое значение 2,9.

Более подробный анализ приведённых выше таблиц показывает, что панорамный

детектор объектов хуже всего приспособлен для охраны объектов, поскольку в ноч-

ных условиях он пропускает более половины событий, происходящих в поле зрения

камеры. С другой стороны, плохая работа детектора обусловлена повышенными тре-

бованиями к чувствительности камеры: из-за того, что в ночное время сильно повы-

шается экспозиция, изображения объектов становятся смазанными и не отличимыми

от фона. Поэтому при соответствующем оборудовании панорамная система будет ра-

ботать лучше тепловизионного шагового локатора, поскольку данный локатор про-

пускает очень много объектов из-за того, что они не попадают в область обзора или

находятся в ней очень недолго.

Также более подробный анализ пропусков радарной системы показывает, что си-

стема из неподвижных видеокамер и радарная система сравнимы друг с другом по

достоверности детектирования объектов, если видеосистема используется в прием-

лемых для неё условиях наблюдения (не далее 300м от видеокамеры). 8 пропусков,

указанных в таблице 7.2 для радарной системы, обусловлены либо несовершенством

алгоритма генерации нового события в условиях плотного движения, когда несколь-

ко объектов формируют только одну радарную отметку на одном проходе луча, ли-

бо узким вертикальным углом диаграммы направленности радара, что приводит к

пропускам на склоне непосредственно возле радара, поэтому в рамках паспортных

ограничений у системы с видеокамерами нет больших преимуществ перед радарны-

ми детекторами.

Тем не менее, проведённый эксперимент показывает, что на расстояниях, при ко-
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торых атмосферные явления не вызывают помех в поле зрения видеокамер, системы

детектирования объектов на основе семантической обработки видеоизображений яв-

ляются надёжным средством автоматической фиксации событий в поле зрения ви-

деокамер.

7.4. Методика оценки точности сопровождения движущихся объектов

Для оценки точности наведения поворотных видеокамер на движущиеся объек-

ты, прежде всего необходимо развернуть аналитическую систему типа «СПВ ОВТ»,

описанную в п. 7.2. Минимальный набор оборудования, необходимый для оценки точ-

ности наведения — это пара видеокамер, неподвижная и поворотная, и ЭВМ, которая

одновременно будет выполнять и программы сервера для обработки видеосигнала, и

программы терминала для визуализации результатов анализа и наведения, и необхо-

димую для измерения программу настройки сопряжения — см. рис. 2.1, с. 77.

После установки программного обеспечения для сервера и терминала настраива-

ется сопряжение неподвижной и поворотной видеокамер так, как это описано в п. 2.6.

Оценку точности сопряжения можно произвести двумя способами: с помощью про-

граммы настройки сопряжения и с помощью сбора статистики наведения на движу-

щиеся объекты (п. 3.6).

Оценка точности наведения при помощи программы настройки сопря-

жения. Для оценки точности наведения в данном случае требуется провести ряд

действий, направленных на измерение, суть которых описана ниже.

1. В программе настройки выбрать сопряжённую пару видеокамер мастер и

слейв.

2. Выбрать на изображении неподвижной камеры точку, которая хорошо разли-

чима.

3. Посредством программы настройки навести в выбранную точку мастер-камеры

слейв-камеру при помощи настроенного преобразования сопряжения. Записать значе-

ния координат углов азимута αn и склонения βn, отображаемых в программе настрой-

ки в таблицу вида 7.5 (см. с. 261). В данном случае номер измерения обозначается

как n.

4. С помощью ручного управления программы настройки сопряжения произвести

точное наведение в необходимую точку: выбранная точка должна находиться в центре

изображения слейв-камеры. Считать угловые координаты αn
0 и βn

0 , соответствующие

точному наведению на точку, и записать эти координаты в ту же строчку таблицы 7.5,

в которую производилась запись в предыдущем пункте.

5. Вычислить отклонения действительных значений от расчётных,

∆αn = αn − αn
0 , ∆β

n = βn − βn
0 ,
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записать эти значения в таблицу 7.5 для измерения n.

6. Провести N различных измерений, где N > 20.

7. Итоговая погрешность наведения по азимуту ∆α равна

∆α = 3σα = 3

√√√√ 1

N − 1

N∑

n=1

(∆αn)2,

погрешность по склонению ∆β равна

∆β = 3σβ =

√√√√ 1

N − 1

N∑

n=1

(∆βn)2.

Общую норму отклонения обоих углов при наведении можно оценить как ‖∆~τ‖ =

= 3
√

(σ2
α + σ2

β)/2, где ~τ = (α, β) — вектор углов наведения. Конкретные числовые

значения для данных погрешностей вычислены в п. 7.5.

Описанная методика позволяет оценить точность наведения на неподвижные объ-

екты. Для оценки точности наведения на подвижные объекты целесообразно исполь-

зовать статистический подход.

Статистическая оценка погрешности наведения на движущиеся объек-

ты. Для того, чтобы оценить погрешность наведения статистическим способом так,

как это описано в п. 3.6, необходимо выполнить следующие шаги.

1. После настройки сопряжения пары мастер и слейв, запустить сервер систе-

мы. Необходимо при этом установить такие параметры сервера, чтобы слейв-камера

наводилась с одним и тем же углом зрения на все объекты, иначе формула (3.31)

неприменима для оценки погрешности.

2. Оставить сервер в режиме автоматического наведения на любые движущиеся

объекты, которые выделяют алгоритмы обработки видеопотока от мастер-камеры.

Необходимо, чтобы слейв-камера совершила S попыток наведения на движущиеся

объекты, причём для адекватного сбора статистики необходимо S > 103.

3. Запустить терминал системы и войти в режим вывода списков объектов, кото-

рые система выделила на мастер-камере, и у которых есть снимки слейв-камеры.

4. Среди S изображений объектов от поворотной камеры, полученных в резуль-

тате наведения, выделить Sα изображений, в которые объект не попал из-за слишком

большой погрешности наведения по азимуту, и Sβ изображений, в которые объект не

попал из-за слишком большой погрешности наведения по склонению.

5. Оценить горизонтальный угол зрения α слейв камеры, при котором она наво-

дилась на объекты. Поскольку координата увеличения слейв-камеры в данном экспе-

рименте зафиксирована, и известна, то для получения угла зрения необходимо либо
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воспользоваться техническим паспортом камеры, в котором указана зависимость угла

зрения от координаты увеличения объектива камеры, либо необходимо оценить эту

зависимость с помощью лабораторных измерений.

6. Вычислить вертикальный угол зрения слейв-камеры β, который удовлетворяет

соотношению

β = 2 arctg(
3

4
tg
α

2
)

в силу геометрических свойств ПЗС-матриц современных видеокамер. При α < 30◦,

т.е. в приближении малых углов, β ≈ 3

4
α.

7. Пользуясь формулой (3.31), вычислить оценку погрешности по азимуту и скло-

нению как, соответственно,

∆α = 3 · α/2

F−1(1− Sα/2S)
и ∆β = 3 · β/2

F−1(1− Sβ/2S)
,

где F−1 функция ошибок, обратная к функции стандартного нормального одномер-

ного распределения.

Данная методика, в отличие от предыдущей, позволяет оценить погрешность на-

ведения, обусловленную всеми факторами сразу: погрешность сопряжения, задержки

синхронизации данных о положении объектов, неточное выделение объектов алгорит-

мами выделения движения и другие.

7.5. Экспериментальная оценка точности управления поворотными видео-

камерами

Программно-аппаратное обеспечение экспериментальных измерений.

Оборудование, которое в данной работе задействовано в измерении точности наве-

дения поворотных камер, состоит из ЭВМ, поворотной и неподвижной видеокаме-

ры, устройств управления оператора (клавиатура и «мышь») и монитора в качестве

устройства вывода.

В качестве ЭВМ используется компьютер универсального назначения с высокими

показателями производительности: центральный процессор Intel Core-i7 с тактовой

частотой 3ГГц, системная плата с эффективной частотой шины данных 1,6ГГц. ЭВМ,

таким образом, обладает эталонной производительностью (см. определение 2.5).

В эксперименте используются неподвижная и поворотная видеокамеры, предна-

значенные для внешнего наблюдения. Неподвижная видеокамера представляет из се-

бя прибор, включающий в себя объектив от производителя «COMPUTAR» с фокус-

ным расстоянием 6-12мм и автоматическим управлением диафрагмой, прибор-камера

с ПЗС-матрицей 1/2" производителя «WATEC» с паспортной чувствительностью

0.01Лк и гермокожух, предохраняющий от влаги и перепадов внешних температур
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камеру и объектив, а также преобразователь питания ∼220В/–9В для камеры и блока

управления диафрагмой объектива. В качестве поворотной видеокамеры использует-

ся купольная видеокамера «WV-CS860» производителя «Panasonic» с управляемым

фокусным расстоянием, которое может изменяться от 8мм до 80мм.

В эксперименте неподвижная и поворотная камера располагаются на небольшом,

порядка 50см, расстоянии друг от друга, см. фотографию на рис. 7.6. На этом же

рисунке представлен мастер. Передача видеосигнала от видеокамер к ЭВМ осуществ-

ляется в формате «PAL» по коаксиальным проводам, и поступает в ЭВМ с помощью

специальных аналого-цифровых плат-преобразователей.

Резюмируя описание приборов, задействованных в эксперименте, приведём табли-

цу 7.4, описывающую основные технические характеристики данных приборов.

Тактовая частота ЦП ЭВМ 3ГГц

Частота обмена с памятью 400МГц

Фокусное расстояние объектива мастера 12мм

Тип ПЗС-матрицы камеры 1/2"(1/2 дюйма)

Горизонтальный угол обзора мастер-камеры 30◦

Дистанция до дальнего края зоны обзора мастера 100м

Высота подвеса мастера и слейва 5м

Максимальная скорость вращения слейва 300◦с−1

Угол зрения слейва при эксперименте 5◦

Фокусное расстояние объектива слейва 55мм

Увеличение слейва относительно мастера 6×

Таблица 7.4. Технические характеристики приборов измерения точности управления
поворотной камерой.

Для подготовки экспериментальных измерений необходимо настроить сопряжение

неподвижной и поворотной видеокамеры (см. п. 2.6). В ходе измерений используется

как приложение настройки сопряжения, так и терминальное приложение. Для того,

чтобы выполнить шаги измерений, необходимо ознакомиться с руководством эксплу-

атации данного программного обеспечения.

Результаты измерения точности наведения на неподвижный объект. Вы-

берем набор точек на изображении видеокамеры, в которых будет производится оцен-

ка точности наведения. Точки измерения обозначены на рис. 7.7.

Рассмотрим, например, измерение точности наведения для точки 1. Выберем уве-

личение относительно мастера 1,5–2 и выполним наведение на основе преобразова-

ния сопряжения, нажимая правую кнопку «мыши» по изображению мастер-камеры

и удерживая при этом клавишу клавиатуры «CTRL». В результате в программе со-
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Слейв-камера

Мастер-камеры

Рисунок 7.6. Справа — внешний вид установки оптических приборов для измерения точности управления поворотными
видеокамерами, слева — изображение неподвижной камеры.
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Рисунок 7.7. Точки измерения погрешности наведения. Номер точки соответствует
номеру измерения. Для первой точки отображены координаты (120,121) на изобра-
жении мастера.

Рисунок 7.8. Смещение изображений слейва и мастера из-за погрешности наведения
(изображение шлагбаума в центре левого изображения раздвоено).

пряжения увидим небольшое смещение изображений мастера и слейва, см. рис. 7.8.

С помощью команды ЧТЕНИЕ_КООРДИНАТ(), отправленной из приложения настройки

сопряжения по кнопке «Установка» интерфейса управления программой, мы можем

считать координаты α и β, и записать их в первую строчку таблицы 7.5. Как видно

из рисунка 7.8, цифровые угловые координаты азимута и склонения равны, соответ-

ственно, 2767 и 1695. Для купольной поворотной камеры, используемой в эксперимен-

те, эти координаты соответствуют углам α = 276,7◦ = 2767/10 и β = 84,75◦ = 1695/20.

С помощью кнопки « l↔րւցտ» интерфейса программы настройки или соответствующих

клавиш клавиатуры необходимо вручную установить наиболее точное возможное сов-
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Рисунок 7.9. Совмещённые вручную изображения слейва и мастера (в центре левого
изображения совмещены клумба и шлагбаум).

мещение изображений мастера и слейва, как показано на рис. 7.9. Затем необходимо

повторно считать угловые координаты, которые соответствуют координатам точного

наведения α0 и β0, и занести их в таблицу 7.5. Цифровым координатам 2764 и 1696 уг-

лов азимута и склонения, изображённых на рис. 7.9, соответствуют углы α0 = 276,4◦

и β0 = 84,8◦.

После проведения 22 серий испытаний, заполнения таблицы 7.5 и выполнения

расчёта по методике, описанной в предыдущем параграфе, получим следующий ре-

зультат: погрешность наведения по азимуту равна

∆α = 3 ·

√√√√ 1

21

22∑

n=1

(∆αn)2 = 0,45◦,

погрешность наведения по склонению равна

∆β = 3 ·

√√√√ 1

21

22∑

n=1

(∆βn)2 = 0,55◦,

совокупная погрешность наведения равна

‖∆~τ‖ =
√

∆2
α +∆2

β =
√

(0,452 + 0,552)/2 = 0,5◦.

Данный экспериментальный результат совпадает с теоретическим значением, полу-

ченным в п. 3.4.

Определение погрешности наведения на движущиеся объекты на основе

статистических экспериментальных данных. Для сбора статистики программ-

ное обеспечение сервера запускается в специальном режиме, при котором горизон-

тальный угол зрения слейва постоянен, и соответствует координате увеличения 180
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n α β α0 β0 ∆α ∆β

1 276,8 84,8 276,9 84,75 -0,1 0,05

2 269,6 72,15 269,6 72,25 0,0 -0,1

3 293,0 80,1 293,0 80,2 0,0 -0,1

4 295,7 71,4 295,7 71,45 0,0 -0,05

5 284,5 86,75 284,2 86,55 0,3 0,2

6 287,8 86,4 287,5 86,35 0,3 0,05

7 293,6 87,4 293,6 87,15 0,0 0,25

8 270,2 87,25 270,4 87,25 -0,2 0,0

9 278,8 89,0 278,9 88,95 -0,1 0,05

10 292,6 91,4 292,5 91,15 0,1 0,25

11 279,7 93,15 279,6 92,95 0,1 0,2

12 272,5 93,65 272,6 93,55 -0,1 0,1

13 292,9 84,6 292,8 84,7 0,1 -0,1

14 272,9 81,8 273,1 81,9 -0,2 -0,1

15 292,6 94,25 292,4 94,0 0,2 0,25

16 288,0 73,6 288,1 74,05 -0,1 -0,45

17 267,8 88,85 268,0 88,75 -0,2 0,1

18 275,1 88,7 275,2 88,6 -0,1 0,1

19 284,4 90,2 284,3 89,85 0,1 0,35

20 288,0 93,25 287,9 92,95 0,1 0,3

21 270,9 90,7 271,1 90,55 -0,2 0,15

22 287,4 74,85 287,4 75,15 0,0 -0,3

Таблица 7.5. Значения измеренных углов при оценке точности наведения. n — поряд-
ковый номер измерения, α и β — экспериментальное значение азимута и склонения,
α0 и β0 — точное значение азимута и склонения, ∆α и ∆β — отклонение по азимуту
и по склонению. Значения углов приведены в градусах.

для камеры «Panasonic WV-CS860». Кроме того, для оценки эффективности алгорит-

ма наведения, введённого в п. 2.6, мы проведём три серии испытаний.

В первой серии сервер управляет поворотной камерой без учёта упреждения, т.е.

поворотная камера наводится в угловые координаты α1, β1, в которых объект нахо-

дится в начале движения поворотной камеры. Назовём такой способ наведения алго-

ритмом наведения без упреждения.

Вторая серия испытаний проводится с упреждением на фиксированный отрезок

времени, без решения уравнения упреждения (3.13). Таким образом, наведение про-

изводится в угловые координаты α1 + ωαt, β1 + ωβt, где ωα, ωβ — угловые скорости

изменения координат азимута и склонения объекта, которые оценивает алгоритм вы-
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деления движущихся объектов из потока видеосигнала неподвижной камеры, а t —

фиксированное время наведения. Наиболее логичный выбор времени t — это среднее

время перехода видеокамеры из одной позиции в другую. Для поворотной видеокаме-

ры «Panasonic WV-CS860» в данном эксперименте время t равно 1,4с. Назовём такой

способ наведения алгоритмом наведения с линейным упреждением.

Третья серия измерений проводится на основе результатов, полученных в п. 3.3,

т.е. наведение производится с упреждением в координаты α1 + ωαt, β1 + ωβt, как и во

второй серии испытаний, но время t вычисляется на основе уравнения (3.13). Посколь-

ку время перехода камеры «Panasonic WV-CS860» из координат α0, β0 в координаты

α, β определяется функцией T (~τ , ~τ 0) = Tα|α − α0| + Tβ|β − β0| + C, где Tα = 0,008с,

Tβ = 0,008с, C = 0,8с, то значение t определяется соотношениями вида (3.18), а имен-

но:

если α > α0, β > β0,︸ ︷︷ ︸ то t =
Tα(α1 − α0) + Tβ(β1 − β0) + C

1− ωαTα − ωβTβ

,

если α 6 α0, β > β0,︸ ︷︷ ︸ то t =
Tα(α0 − α1) + Tβ(β1 − β0) + C

1 + ωαTα − ωβTβ

,

если α 6 α0, β 6 β0,︸ ︷︷ ︸ то t =
Tα(α0 − α1) + Tβ(β0 − β1) + C

1 + ωαTα + ωβTβ

,

если α > α0, β 6 β0,︸ ︷︷ ︸ то t =
Tα(α1 − α0) + Tβ(β0 − β1) + C

1− ωαTα + ωβTβ

.

Такой способ наведения будем называть алгоритмом наведения с адаптивным упре-

ждением.

Для набора 1000 изображений слейва при наведении на объекты в каждой серии

измерений требовалось порядка 1 часа в тех условиях наблюдения, при которых про-

водился эксперимент. Полученные изображения извлекаются из базы данных системы

с помощью терминального приложения, и затем вручную ведётся подсчёт количества

«промахов» мимо объекта. Для этого изображения со слейва и соответствующие им

синхронные изображения с мастера сводятся в таблицу вида 7.6.

С помощью приведённой таблицы можно посчитать для каждой из трёх серий об-

щее количество снимков, а также количество «промахов» вверх, вниз, влево и впра-

во. Общее количество изображений во всех трёх сериях для простоты расчётов равно

1000. Количество промахов отображено на гистограммах на рис. 7.10. На этих ги-

стограммах считается известным угол зрения слейва. Координата увеличения 180

соответствует углу зрения 5◦ и шестикратному (30◦/5◦ = 6) увеличению изображе-

ния слейва относительно изображения неподвижной камеры. Получить значение уг-

ла зрения слейва можно, непосредственно рассмотрев зону наблюдения слейва на

мастере: размеры этой зоны по отношению к размерам изображения мастера задаёт

соотношение углов, а угол зрения мастер-камеры известен из условий измерения (см.
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Изображение слейва Изображение мастера Комментарий

изображение объекта в кадре

изображение объекта в кадре

промах: вверх

промах: вправо

изображение объекта в кадре

изображение объекта в кадре

изображение объекта в кадре

промах: вправо

Таблица 7.6. Таблица изображений слейва при наведении на движущиеся объекты.

« » — объект наведения, — зона слейва.
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таблицу 7.4).

С помощью формулы

3σ =
3∆

F−1(1− p/2)
,

приведённой в методике измерения погрешности (см. п. 7.4, ∆ — половина угла зре-

ния слейва, горизонтального для азимута и вертикального для склонения, p — доля

промахов, и F−1 — функция, обратная к функции стандартного нормального распре-

деления) на основе собранной статистики получим результаты, которые сведены в

таблицу 7.7, см. ниже.

Наведение доля промахов

по азимуту

погрешность

по азимуту

доля промахов

по склонению

погрешность

по склонению

без упрежде-

ния

0,252 7◦ 0,096 3◦

линейное 0,047 4◦ 0,053 3◦

адаптивное 0,008 3◦ 0,002 2◦

Таблица 7.7. Результаты измерения погрешности наведения. 1-я серия измерений про-
изводилась без упреждения, 2-я серия измерений производилась с фиксированным
временем упреждения (алгоритм линейного упреждения), 3-я серия измерений про-
изводилась с наведением по алгоритму, описанному в п. 3.3 (адаптивное упреждение).

Из анализа таблицы результатов 7.7 следует три вывода вывода. Во-первых, экспе-

риментальная оценка погрешности 3◦ в несколько раз меньше теоретической оценки

погрешности 20◦, полученной в п. 3.4, что обусловлено тем, что при её получении

предполагались наихудшие условия наведения, которые редко встречаются на прак-

тике. Во-вторых, применение алгоритмов наведения, разработанных в диссертацион-

ной работе, позволяет уменьшить погрешность наведения в два раза по сравнению

с погрешностью, которая получается при использовании самых простых алгоритмов

управления поворотной видеокамерой. При этом доля промахов уменьшается на по-

рядок в условиях проведения измерений: для первой серии при наведении без упре-

ждения она примерно равна 3,0 ·10−1, а в третьей серии при наведении по алгоритму,

разработанному в данной диссертации, доля промахов 1,0 · 10−2. В-третьих, погреш-

ность наведения 3◦ при угле наблюдения сопряжённого мастера 30◦ позволяет полу-

чать изображения объекта на слейва с разрешением в 10 раз выше, чем изображение

объекта на неподвижной камеры при высокой достоверности наведения на объект.
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А) статистика наведения без упреждения.

748

113 139

−2,5 2,5

S

α

904

50 46

−1,8 1,8

S

β

«Промахи» по азимуту, «Промахи» по склонению,

252 из 1000 96 из 1000

Б) статистика наведения с линейным упреждением.

953

20 27

−2,5 2,5

S

α

947

43 10

−1,8 1,8

S

β

«Промахи» по азимуту, «Промахи» по склонению,

47 из 1000 53 из 1000

В) статистика наведения с адаптивным упреждением.

992

2 6

−2,5 2,5

S

α

998

1 1

−1,8 1,8

S

β

«Промахи» по азимуту, «Промахи» по склонению,

8 из 1000 2 из 1000

Рисунок 7.10. Статистика «промахов» при наведении на объекты (светлые столбики —
«попадания», тёмные столбики — «промахи», пунктирная линия — график плотности
распределения).
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7.6. Методика оценки достоверности сопоставления изображений объектов

на сопряжённых видеокамерах

Методика измерения точности сопряжения двух неподвижных видеокамер во мно-

гом совпадает с методикой оценки точности сопряжения поворотных и неподвижных

видеокамер, описанной в п. 7.4. Для измерения погрешности сопряжения неподвиж-

ных камер также, как и для оценки погрешности наведения, необходимо развернуть

систему, аналогичную системе «СПВ ОВТ», см. п. 7.2, которая должна включать в се-

бя минимум две неподвижные видеокамеры с пересекающимися зонами наблюдения,

которые будут сопряжены. Для оценки времени синхронизации данных с помощью се-

тевых взаимодействий вместо одной ЭВМ требуется минимум две ЭВМ для запуска

программного обеспечения серверов на каждой из них. Для оценки влияния сете-

вой задержки синхронизации данных ЭВМ системы должны быть объединены ЛВС.

Помимо программного обеспечения серверов на одной из ЭВМ должны выполняться

программа терминала и программа настройки сопряжения неподвижных видеокамер,

см. рис. 2.7, с. 91. Данные программы используются при измерениях как средство по-

лучения экспериментальных данных и статистики. Таким образом, по крайней мере

одна из ЭВМ должна быть рабочим местом оператора, то есть быть подключена к

монитору, клавиатуре и манипулятору «мышь».

После установки программного обеспечения для серверов и терминала настраива-

ется сопряжение между неподвижными видеокамерами так, как это описано в п. 2.3

и в документации программного обеспечения. Оценку точности сопряжения можно

произвести двумя способами: с помощью программы настройки сопряжения и с помо-

щью сбора статистики сопоставления изображений объектов в общей зоне наблюдения

сопряжённых мастеров (п. 3.6).

Оценка погрешности сопряжения при помощи программы настройки.

Перечислим шаги измерения погрешности сопряжения неподвижных камер по по-

рядку.

1. В программе настройки необходимо выбрать пару сопряжённых неподвижных

камер и вывести окна с их изображением при включённом режиме отображения пре-

образования координат с одной камеры на другую.

2. Выбрать камеру, с которой производится преобразование. Для определённости

будем называть эту камеру первой. Затем выбрать в зоне общего обзора камер на

изображении первой камеры точку, которая хорошо различима.

3. Навести курсор «мыши» на выбранную точку первой камеры.

4. Визуально определить координаты точки преобразования (xn, yn), которые

отображаются в строке состояния программы настройки сопряжения. Записать полу-
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ченные значения для измерения с порядковым номером n в таблицу вида 7.9.

5. Определить действительное положение точки преобразования (xn0 , y
n
0 ) посред-

ством наведения курсора в программе настройки сопряжения, в которой координаты

курсора на изображении камеры также отображаются в строке состояния.

6. Вычислить отклонения экспериментально-расчётных значений от действитель-

ных,

∆xn = xn − xn0 , ∆y = yn − yn0 ,

записать эти значения в таблицу 7.9.

7. Провести N измерений, где N > 20.

8. Вычислить оценку дисперсии евклидовой нормы векторов (∆xn,∆yn) как

σ =

√√√√ 1

N − 1

N∑

n=1

((∆xn)2 + (∆yn)2).

Итоговая погрешность сопряжения, обозначенная как ∆r, равна 3σ:

∆r = 3 ·

√√√√ 1

N − 1

N∑

n=1

((∆xn)2 + (∆yn)2),

конкретное значение погрешности приведено далее в п. 7.7.

Данная методика оценивает статическую погрешность сопряжения изображений.

Для оценки сопряжения движущихся изображений используется статистический под-

ход.

Статистическая оценка погрешности сопряжения при сопоставлении по-

движных изображений мастер-камер. Чтобы оценить погрешность сопряжения

с помощью статистики по результатам работы алгоритма сопоставления объектов так,

как это описано в п. 3.6, необходимо выполнить нижеперечисленные действия.

1. После настройки сопряжения двух мастеров с пересекающимися зонами обзора

следует запустить серверы системы, выполняющие анализ и сопоставление изображе-

ний.

2. Для упрощённого поиска объектов в зоне пересечения областей зрения со-

пряжённых мастеров в терминальном модуле следует создать так называемые тре-

вожные датчики, которые срабатывают при условии, что объект попал в выделенную

зону.

3. Программное обеспечение серверов должно работать в режиме автоматическо-

го выделения движущихся объектов. На сопряжённых камерах автоматически про-

изводится сопоставление движущихся объектов в общей зоне обзора. Для набора ста-

тистики нужно, чтобы было сопоставлено между собой S пар изображений одних и
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тех же объектов в зоне пересечения областей наблюдения сопряжённых мастеров.

Необходимое число сопоставлений S > 1000.

4. Запустить терминальный модуль и войти в режим вывода списков объектов,

для которых сработали тревожные датчики, введённые в пункте 2. Поскольку данные

объекты находятся в зоне пересечения областей обзора сопряжённых мастеров, то для

них обязательно хотя бы раз должна была производиться процедура сопоставления

изображений.

5. Среди S пар изображений объектов выделить Sx пар, которые ошибочно не

были сопоставлены между собой.

6. Рассчитать количество пикселей ∆, которые соответствуют горизонтальному

«промаху» при ошибочном сопоставлении объектов.

7. Вычислить погрешность ∆x по формуле

∆x = 3
∆

F−1(1− Sx/2S)
,

которая следует из соотношения (3.32)) для погрешности сопряжения подвижных

объектов в общей зоне обзора.

Данная методика, в отличие от предыдущей, позволяет учесть вклад задержек

синхронизации в погрешность сопряжения изображений объектов сопряжённых ма-

стеров.

7.7. Экспериментальные результаты сопоставления синхронных изображе-

ний объектов

Описание аппаратных и программных средств эксперимента. Оборудо-

вание, задействованное в измерении погрешности сопряжения неподвижных видео-

камер, в целом такое же по составу, как в экспериментах измерения погрешности

наведения поворотных камер. Состав приборов включает в себя одну или две ЭВМ,

две неподвижные видеокамеры, устройства ввода и вывода для взаимодействия с опе-

ратором при измерениях и приборы, соединяющие ЭВМ в ЛВС.

В качестве ЭВМ используется такой же компьютер универсального назначения,

как и в п. 7.5. Данный компьютер обладает эталонной производительностью (см. опре-

деление 2.5).

Обе неподвижные видеокамеры предназначены для наружного видеонаблюдения.

Неподвижная видеокамера, как и в п. 7.5 — это система приборов, состоящая из, во-

первых, объектива от производителя «COMPUTAR» с фокусным расстоянием 6-12мм

и автоматическим управлением диафрагмой, во-вторых, камеры с ПЗС-матрицей

1/2" производителя «WATEC» (чувствительность 0.01Лк) и, в-третьих, гермокожу-
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Рисунок 7.11. Изображение сопряжённых неподвижных видеокамер с общей зоной
обзора. Многоугольниками обозначена зона пересечения.

ха, предохраняющего от влаги и перепадов внешних температур камеру, объектив, и

преобразователь питания ∼220В/–9В.

В эксперименте неподвижные камеры располагаются на небольшом расстоянии

друг от друга, см. фотографию на рис. 7.6, c. 258. Изображение сопряжённых видео-

камер представлены на рис. 7.11. Передача видеосигнала к ЭВМ осуществляется в

формате «PAL» по коаксиальным проводам, и поступает в ЭВМ с помощью специ-

альных аналого-цифровых плат-преобразователей.

Если в системе задействовано два сервера, то их необходимо соединить ЛВС. В

качестве приборов, обеспечивающих данное соединение, в данном случае достаточно

подключить к ЭВМ два сетевых адаптера типа «Ethernet» с пропускной способностью

100Мбит/с, широко распространённых в настоящее время, и соединить их кабелем

витой пары с разведением контактов «крест на крест». Если ЭВМ в сети более двух,

то необходима более сложная приборная конфигурация сети.

В таблице 7.8 приведены основные технические характеристики приборов экспе-

римента.

В ходе подготовки экспериментальных измерений настраивается сопряжение вы-

бранной пары неподвижных видеокамер с пересечением зон обзора (см. п. 2.3). При

измерениях используется как приложение настройки сопряжения, так и терминальное

приложение.

Измерение погрешности сопряжения изображений объектов неподвиж-

ных камер без учёта движения. На рис. 7.12 обозначены точки, в которых изме-

ряется погрешность сопряжения. Назовём условно камеры левой и правой, согласно

рис. 7.12. Поскольку преобразование сопряжения определено как с левой камеры на

правую, так и с правой камеры на левую, для измерения 22 отклонений достаточно

выбрать 11 пар точек: для каждой пары возможно определить отклонение преобра-
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Тактовая частота ЦП ЭВМ 3ГГц

Частота обмена с памятью 400МГц

Фокусное расстояние объектива мастера 12мм

Тип ПЗС-матрицы камеры 1/2"(1/2 дюйма)

Горизонтальный угол обзора мастер-камеры 30◦

Дистанция до дальнего края зоны обзора мастера 100м

Высота подвеса мастеров 5м

Пропускная способность ЛВС, соединяющей ЭВМ 100Мбит/с

Таблица 7.8. Технические характеристики приборов измерения погрешности сопря-
жения мастер-камер.
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Рисунок 7.12. Точки измерения погрешности сопряжения неподвижных камер. Спра-
ва — изображения исходного мастера, слева — изображение, на которое производится
преобразование.

зования с левой камеры на правую, и с правой на левую.

Пусть измерения пронумерованы таким образом, что точкам с номером 1 на левой

и правой камерах соответствуют измерения 1 (преобразование с изображения левой

камеры на изображение правой) и 2 (преобразование с изображения правой камеры

на изображение левой), точкам с номером 2 — измерения 3 и 4, точкам с номером

3 — измерения 5 и 6, и далее аналогично. Рассмотрим, например, измерение номер 13

(точки с номером 7 на левой и правой камерах, преобразование слева направо).

Для оценки отклонения преобразования от точного значения необходимо в про-

грамме сопряжения подвести курсор «мыши» в точку 7 изображения левой камеры,

при этом курсор будет формы «+», см. рис. 7.13. Программа настройки сопряжения

неподвижных видеокамер автоматически покажет на изображении правой камеры

точку преобразования, отметив её курсором вида «×», отобразив при этом коорди-

наты (116, 133) данной точки. Действительные значения координат точки преобра-
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Исходная точка

Точка преобразования
(116,133)

Действительное значение
преобразования (117,132)

Рисунок 7.13. Измерение погрешности сопряжения в одной из точек (точка 7,
рис. 7.12).

зования (117, 132) можно узнать, подведя курсор «мыши» к данной точке уже на

изображении правой камеры. Для того, чтобы настолько небольшие смещения были

различимы, следует использовать возможность увеличения масштаба изображения,

предусмотренную в программе настройки сопряжения.

Значения (x13, y13) = (116, 133), (x13
0 , y

13
0 ) = (117, 132), а также отклонения

(∆x13,∆y13) = (−1, 1) заносятся в таблицу 7.9. В эту же таблицу заносятся резуль-

таты остальных серий измерений.

В конечном итоге получим погрешность сопряжения ∆r, равную

∆r = 3 ·

√√√√ 1

21

22∑

n=1

((∆xn)2 + (∆yn)2) ≈ 4 пиксела,

согласно формуле, указанной в методике, см. п. 7.6.

Определение погрешности сопряжения изображений движущихся объ-

ектов на основе статистических измерений. Проведём две серии испытаний для

оценки влияния времени синхронизации данных на погрешность сопряжения дви-

жущихся изображений в зоне пересечения областей наблюдения двух неподвижных

камер.

В первой серии обработчики сопряжённых мастеров запускаются на одной ЭВМ,

и, соответственно, на время синхронизации не влияют задержки передачи данных по

ЛВС.

Во второй серии измерений обработчики сопряжённых мастеров запускаются на

различных ЭВМ, соединённых ЛВС, что вносит дополнительную погрешность при

сопряжении движущихся изображений с помощью условия (3.29), см. с. 140, п. 3.5.
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n x y x0 y0 ∆x ∆y

1 80 256 81 256 -1 0

2 260 249 260 248 0 1

3 4 182 4 180 0 2

4 182 158 181 157 1 1

5 64 167 65 166 -1 1

6 247 142 247 142 0 0

7 60 139 59 139 1 0

8 243 109 243 111 0 -2

9 22 143 22 143 0 0

10 201 114 200 115 1 -1

11 42 121 41 120 1 1

12 225 86 224 85 1 1

13 116 133 117 132 -1 1

14 307 103 307 103 0 0

15 36 83 35 84 1 -1

16 221 44 223 44 -2 0

17 60 90 59 89 1 1

18 245 51 245 52 0 -1

19 107 109 108 108 -1 1

20 299 70 299 70 0 0

21 89 70 88 71 1 -1

22 282 28 283 26 -1 2

Таблица 7.9. Таблицы измерения погрешности сопряжения, n — порядковый номер
измерения, (x, y) — расчётные координаты точки преобразования, (x0, y0) — действи-
тельные координаты точки преобразования значение склонения, (∆x,∆y) — отклоне-
ния экспериментальных значений от координат реперных точек.

Во обоих случаях необходимо в терминальном приложении настроить зоны тре-

воги, совпадающими с зонами пересечения областей зрения на изображениях мастер-

камер (см. рис. 7.11). Это упростит поиск объектов, которые побывали в зоне пересе-

чения областей зрения неподвижных видеокамер.

После запуска программного обеспечения серверов необходимо получить не ме-

нее 1000 изображений объектов из зоны пересечения областей зрения мастер-камер,

причём это должны быть изображения людей, поскольку другие изображения в ходе

эксперимента не рассматриваются. Изображения данных объектов возможно вывести

в терминальном модуле, задав в условиях поиска то, что объект побывал в зоне тре-

воги, и классифицирован как человек. Информация о том, что данное изображение
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Левый мастер Правый мастер Левый мастер Правый мастер

×

×

Таблица 7.10. Статистика сопоставления объектов на сопряжённых мастерах. Обозна-

чение указывает на успешное сопоставление, обозначение × применяется
для объектов, которые не были сопоставлены с помощью алгоритма сопряжения.

было сопоставлено с изображением на сопряжённой мастер-камере, будет присутство-

вать в записях об объектах, которые выводит терминальный модуль.

Для подсчёта статистики представим изображения объектов вместе с информаци-

ей о их сопоставлении в таблице 7.10. В итоге для первой серии измерений получим

Sx = 10 промахов из S = 1000, для второй серии — Sx = 107 промахов из S = 1000.

Чтобы воспользоваться формулой (3.32), которая оценивает погрешность ∆x при

помощи функции ошибок F−1 как

∆x =
3∆

F−1(1− Sx/2S)
,

необходимо оценить значение ∆, которое соответствует промаху при сопоставлении

изображений людей. Поскольку в условиях эксперимента сопоставляемые изображе-
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ния людей находятся на расстоянии 20 метров от точки закрепления камер, и у обоих

мастер-камер угол зрения 30◦, то, считая видимую ширину человека примерно 0,4 мет-

ра, а ширину изображения мастеров 352 пиксела, получим ∆ ≈ 0,4

20
· 180

3,14 · 30◦ ·352 ≈ 10

пикселей.

С помощью формулы, приведённой выше, становится возможным получить окон-

чательный результат, который приводится в таблице 7.11, см. ниже.

доля промахов погрешность

1-ая серия 0,010 6 пикселей

2-ая серия 0,107 10 пикселей

Таблица 7.11. Результаты оценки погрешности сопряжения движущихся изображений
в зоне пересечения областей зрения неподвижных камер.

Из анализа таблицы 7.11 следует, что в первой серии измерений задержки син-

хронизации не внесли существенного дополнительного вклада в погрешность сопря-

жения, поскольку погрешность 6 пикселей сопоставима с погрешностью 4 пиксела,

полученной для неподвижных изображений. Во второй же серии измерений, при син-

хронизации данных посредством ЛВС, задержки синхронизации примерно в два раза

увеличивают погрешность сопряжения, что существенно влияет на долю промахов,

то есть на количество неверно сопоставленных объектов.

7.8. Экспериментальная оценка эффективности автоматизированной си-

стемы тестирования алгоритмов семантической обработки изображе-

ний

В рамках данной диссертационной работы автором был построена программ-

ная система для автоматического тестирования алгоритмов семантической обработ-

ки изображений на основе теоретических результатов, полученных в главе 4. Данная

система для анализа эффективности алгоритмов обработки изображений получила

название «Супервизор». Главное назначение данной системы заключается в возмож-

ности тестировать алгоритмы семантической обработки, обрабатывая потоки изоб-

ражений, записанные в видеофайлы. Основные возможности системы тестирования

«Супервизор» заключаются в:

1) предоставлении пользовательского интерфейса для сбора видеофайлов, объ-

единения их в группы по различным категориям классификацию с последующим

групповым анализом характеристик обработки алгоритмами семантического сжатия;

2) визуальном представлении математического описания V n = {V n
i }, {Inl }, {Aan

m }
автоматической и идеальной разметки видеороликов, которое введено в п. 4.2 (V n —

видеокадры, Inl — объекты ручной разметки, Aan
m — объекты идеальной разметки);
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3) вычислении и демонстрации введённых в п. 4.2 показателей эффективности

алгоритмов семантической обработки F αβ
P (число ошибок первого рода), F αβ

N (число

ошибок второго рода), Qα (доля времени автоматического сопровождения), Eα (ча-

стота ошибочной смены объекта сопровождения).

К важной особенности системы «Супервизор» следует отнести возможность рас-

пределённой обработки видеоматериала V n при вычислении характеристик F αβ
P и

F αβ
N . В текущем исполнении системы «Супервизор», имеющемся в распоряжении ав-

тора, благодаря параллельной обработке видеороликов с использованием нескольких

ЭВМ удаётся сократить суточный цикл тестовой обработки до 3–4 часов.

Рассмотрим конкретные практические примеры использования системы тестиро-

вания алгоритмов семантической обработки. В распоряжении автора имеются цифро-

вые записи с видеокамер, установленных на периметре охраняемых объектов, общей

длительностью около 2 часов, что составляет примерно 180 тысяч кадров. Данные

видеопоследовательности подвергнуты ручной разметке, получено 150 объектов Inl .

Видеоролики содержат проблемные фрагменты с точки зрения алгоритмов семанти-

ческого сжатия, на них зафиксированы различные помехи, как правило, приводящие

к ошибкам первого и второго рода: изменение освещённости сцены из-за переменной

облачности днём и из-за световых искусственных помех ночью (например, свет фар

автомобилей вне области наблюдения), движение травы и листвы деревьев от ветра,

а также их теней на отражающих поверхностях сцены, и многие другие помехи.

В таблицу 7.12 сведены результаты оценки качества различных алгоритмов семан-

тической обработки, которые формировались по мере разработки и совершенствова-

ния комплексов технического зрения «Orwell2k». Алгоритмы в данной таблицы обо-

значены годами, в которые они появлялись, далее приведены комментарии, описы-

вающие нововведения более новых версий алгоритмов семантической обработки по

сравнению с предыдущими.

Алгоритм, используемый для выделения движущихся объектов в 2002 году в си-

стеме «Orwell2k», основан на статье [15] и представляет собой вычитание фона с одно-

модальной моделью статистики фонового изображения, с последующей сегментацией

движущихся областей и применением алгоритмов построения траектории движущих-

ся объектов на основе поиска оптимальных паросочетаний в двудольном графе уже

найденных объектов и вновь полученных областей движения. Данный подход явля-

ется базовым для всех остальных алгоритмов, перечисленных далее.

В 2003 году базовый алгоритм был дополнен этапом билатеральной нормализации

изображений, преобразующий изображение перед обработкой таким образом, что на

него почти не оказывает влияние изменение интенсивности из-за переменной облач-

ности и внешней засветки, если это изменение в пределах динамического диапазона
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чувствительности камеры.

В 2008 году были внедрены фильтры выделенных объектов, основанные на дви-

жении особых точек (см. [17, 18, 173], а также п. 6.2) и, дополнительно, на приме-

нении схемы вычитания статистического фона в пространстве норм и углов гради-

ентов функции интенсивности кадров изображения видеокамеры. Для того, чтобы

движущиеся объекты были зафиксированы системой, дополнительно накладываются

условия согласованного движения особых точек в окрестности объектов и наличие

существенных изменений по направлению и норме градиентов по сравнению с фоно-

выми.

В 2012 фильтры особых точек и градиентный фильтр были доработаны таким

образом, чтобы положение объекта определяло чувствительность фильтров: объекты

на дальнем плане с маленьким размером изображения подвергаются фильтрации с

более низким порогом, чем объекты на ближнем плане с большим размером изоб-

ражения. Дополнительно для фильтрации объектов засветки был применён фильтр

плотного оптического потока, т.е. расчёт поля смещений не только в особых точках,

но и во всех точках окрестности движущегося объекта. Этот расчёт производится с

целью установить согласованность смещений точек объекта с физической моделью

движения.

Алгоритмы F αβ
P F αβ

N Qα Время обработки

кадра, мс

2002 >10000 20 60% 80

2003 ≈500 15 60% 40

2008 50 10 55% 50

2012 20 10 50% 50

2012 с фильтром оп-

тического потока

10 12 47% 55

Таблица 7.12. Улучшение показателей алгоритмов семантической обработки по мере
совершенствования комплексов «Orwell2k».

Анализ таблицы 7.12 показывает, что количество ошибок первого и второго ро-

да, которые допускают алгоритмы семантической обработки системы «Orwell2k», в

целом, уменьшалось, правда, ценой некоторого уменьшения доли времени сопровож-

дения объектов в течение его присутствия в поле зрения камер, а также ценой увели-

чения требований к производительности ЭВМ, выполняющих обработку.

Система «Супервизор» действует с 2005 года, и именно благодаря ей удалось вы-

полнить столь существенную оптимизацию — на порядок сократить число ошибок

первого рода, при этом несколько уменьшив количество ошибок второго рода, по-
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скольку тестирование с помощью данной системы позволило выделить, классифици-

ровать и затем исправить конкретные ошибки алгоритмов семантической обработки.

Несмотря на то, что ошибки устранены не полностью, текущий уровень качества

системы обнаружения подвижных объектов системы «Orwell2k» признаётся лучшим

в мире. Подробный анализ ошибок показывает, что пропущенные объекты обладают

малой контрастностью, находятся на дальнем плане, и не совершают достаточных

(согласно паспортным характеристикам системы) угловых смещений по отношению к

камерам, в поле зрения которых они попадают, а ложные объекты появляются вслед-

ствие помех, которые затрудняются классифицировать даже операторы системы. Ряд

протоколов приложения 2 подтверждают данный тезис.

Другой пример эффективности предложенной системы тестирования алгоритмов

семантической разработки — это процесс отладки алгоритмов, описанных в главе 5 и

внедрённых в устройство подсчёта посетителей «Statistics-3d». Прежде, чем устрой-

ство достигло показателей точности подсчёта 97%, что зафиксировано в протоколе

испытаний в аэропорту «Шереметьево» (см. приложение 2), последовательность при-

менения фильтров алгоритма, описанного в 5.4, все пороговые параметры данного

алгоритма подбирались с помощью тестовых запусков на больших выборках разме-

ченного видеоматериала.

В заключении по данному параграфу хотелось бы отметить общую тенденцию в

разработке систем технического зрения: арсенал методов семантической обработки

в настоящее время довольно богат, но для решения конкретной задачи с его помо-

щью необходимо подбирать последовательность применения конкретных алгоритмов

семантической обработки, а также параметры работы этих алгоритмов. В чём-то этот

процесс схож с процессом машинного обучения, например, с процессом поиска коэф-

фициентов свёрточной нейронной сети. Порой наличие большого объёма видеоматери-

ала с качественной разметкой имеет большее значение для создания алгоритма семан-

тической обработки, чем сам процесс создания алгоритмов. В этих условиях средства

тестирования, аналогичные предложенной системе «Супервизор», имеют критическое

влияние на разработку систем технического зрения с элементами искусственного ин-

теллекта.

7.9. Результаты применения алгоритмов семантического сжатия изображе-

ний. Оценка достоверности

В данном параграфе будут использоваться обозначения и определения, введённые

в п. 1.4, такие как тестовое множество T и обучающее множество L, алгоритм распо-

знавания A и другие. Также будет использоваться введённый в п. 3.7 ряд обозначений

для параметров-признаков, рассчитываемых на основе силуэта, выделенного алгорит-

мами анализа движения на последовательностях изображений от мастеров.
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Строчки —

множество

объектов

обучения

Столбцы —

свойства

объектов:

изображение,

силуэт, класс,

параметры-

признаки

Рисунок 7.14. Внешний вид программы тестирования алгоритмов классификации.

Для того, чтобы исследовать поведение алгоритмов распознавания, требуется спе-

циальное программное обеспечение, в котором можно выполнять следующие дей-

ствия:

1) отображать список объектов, выделенных алгоритмами анализа изображений,

вместе с различными их свойствами: изображение объекта и его силуэт, значения

параметров-признаков, предполагаемый класс объекта и действительный класс объ-

екта;

2) для каждого объекта предоставлять возможность изменять вручную действи-

тельный класс объекта с целью формирования тестовых и обучающих множеств;

3) предоставлять возможность выделения отдельных множеств объектов;

4) запускать процедуры этапа обучения алгоритмов распознавания различных ти-

пов, подавая на вход подмножества параметров, и множество объектов обучения;

5) выводить результаты применения обученных алгоритмов к тестовым множе-

ствам объектов;

6) запускать процесс обучения с перебором типов алгоритмов и наборов

параметров-признаков для фиксированной пары тестового и обучающего множеств с

целью выбора наилучшего алгоритма по показателям достоверности распознавания,

причём при сравнении двух алгоритмов распознавания можно пользоваться теорети-

ческими результатами, описанными в [211].

В ходе диссертационной работы для выполнения данных задач была разработа-

на специальная программа, представленная на рис. 7.14. С её помощью получены

показатели достоверности для алгоритмов классификации, использующихся в систе-

мах, аналогичных «СПВ ОВТ». Все функции, необходимые для подбора оптималь-

ного алгоритма распознавания и для подбора оптимального набора типов признаков
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при классификации, в данной программе заложены, однако прежде, чем запускать

процедуру перебора, необходимо выяснить, какой объём тестовой выборки множе-

ства объектов необходим, чтобы полученная достоверность распознавания обладала

приемлемой погрешностью. Если этого не сделать, то сравнение двух различных по-

казателей достоверности для различных тестовых выборок не имеют смысла из-за

неизвестного доверительного интервала обоих показателей.

Оценка объёма тестовой выборки[164]. Обозначим мощность тестового мно-

жества T как n. Воспользуемся известными фактами из математической статистики

для получения нужной нам оценки.

Представим работу алгоритма A при распознавании объектов множества T в

виде процесса Бернулли. Будем поочередно посылать на вход алгоритма объекты,

и сопоставим на i-ом опыте xi = 1, если алгоритм верно классифицировал объ-

ект, и xi = 0, если неверно. Алгоритм работает с некоторой точностью. Пусть p —

вероятность верного распознавания текущего объекта алгоритмом, соответственно

(1 − p) — вероятность ошибки. В качестве несмещенной оценки вероятности p возь-

мем p̃ = x = (
∑n

i=1 xi)/n, где n — количество опытов, совпадающее в данном случае с

мощностью тестового множества. Дисперсия оценки

Dp̃ = (
n∑

i=1

Dxi)/n
2 = n ·Dxi/n2 = p(1− p)/n

в предположении независимости опытов (так можно считать, если тестовая выборка

достаточно репрезентативна). Среднеквадратичное отклонение равно

σ =
√
Dp̃ =

√
p(1− p)√

n
(7.1)

Долю правильных ответов мы можем рассматривать как несмещенную оценку в при-

веденном процессе Бернулли, тогда потребуется замена в формуле (7.1) n на n − 1,

что при большом количестве примеров несущественно. По центральной предельной

теореме мы можем считать оценку p̃ распределенной нормально, поэтому значение

3σ характеризует отклонение оценки от истинного значения в 97,4% случаев. Для

того, чтобы считать оценку достоверной, необходимо убедиться, что знечение 3σ не

превосходит допустимого для нас отклонения оценки.

Например, если мы получаем в результате работы алгоритма долю правильных

ответов p̃ = 0,9, то приемлемым интервалом можно считать 3σ = ±0,06. Тогда из

формулы (7.1) получаем

σ =

√
0,09√
n

=
0,3√
n
< 0,02,

то есть для обеспечения необходимой точности требуется n > (0,3/0,02)2 = 225 при-

меров.
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Если мы хотим получить подтверждение, что наша оценка p̃ = 0,99 достоверна,

то, взяв 3σ = ±0,006, получаем

√
0,0099√
n

≈ 0,1√
n
< 0,002,

откуда n > (0,1/0,002)2 = 2500. Аналогичные расчеты легко произвести и для других

значений оценки p и отклонения 3σ. Если p > 0,99, то принимая p ≈ 1 и σ = (1−p)/5,
получаем

n >
25

1− p
.

В нашем случае интересна оценка количества примеров для p = 0,95 при 3σ = 0,02.

Необходимо не менее 1000 объектов, чтобы обеспечить такую точность.

Распознавание объектов, полученных с мастер-камер. При распознавании

движущихся объектов по классам «Человек», «Машина», «Группа людей» наилуч-

ший результат был достигнут после обучения нейросети по параметрам: Mx2, My2,
h

w
,
S

wh
,
Mx

My
, H. Нейросеть состояла из 10 нейронов на первом и втором уровне, и

обязательных трёх нейронах на последнем, третьем уровне. Полученные результаты

для тестового множества из 1231 объекта отображены в кросс-таблице 7.13.

Человек Машина Группа людей Отказы Всего

Человек 445 2 4 1 452

Машина 5 438 15 12 470

Группа людей 3 12 291 3 309

Статистика 98% 97% 94% 2% 95%

Таблица 7.13. Результаты распознавания «Человек», «Машина», «Группа людей».

Показатели в реальной работе системы несколько ниже, чем на тестовом множе-

стве, поскольку в реальной системе не всегда удаётся отфильтровать шумовые объ-

екты, не входящие в тестовое множество.

Распознавание объектов по типам «Обычный», «Оставленный»,

«Остановившийся» построено на основе параметров ts и fs и эвристике, анало-

гичной описанной в пункте 1.4. Доля правильно классифицированных объектов по

этой системе классификации составляет около 90%.

Распознавание кресла в кинотеатре как пустого, занятого человеком, либо заня-

того вещью, проходит по параметрам r1 и r2 согласно эвристическому подходу, опи-

санному в п. 1.4: вначале проверяется, отличается ли текущее изображение кресла от

пустого по параметру r1, и, если отличается, то по параметру r2 устанавливается, бы-

ло ли движение в кресле (т.е. в кресле находится человек), либо его нет (т.е. в кресле

находятся вещи). Доля правильных ответов примерно равна 95%.
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Распознавание с привлечением слейв-камер. Из-за частых промахов при на-

ведении некоторых поворотных камер на транспортные средства возникла необходи-

мость отнести полученные снимки к одной из двух категорий: на снимке присутствует

транспортное средство, и транспортного средства на снимке нет. Причём параметры

x′min, x
′
max, y

′
min, y

′
max не всегда доступны для изображения на поворотной камере,

поскольку за время поворота слейва объект на мастере может покинуть поле зре-

ния камеры. Оказывается, проверка на превышение параметра Λ некоторого порога

позволяет провести такую классификацию с точностью 90%.

Достигнутые показатели классификации объектов позволяют расширить область

применения аналитических видеосистем для решения ряда практических задач, та-

ких, как наблюдение за городскими территориями с целью фиксации происшествий

в базе данных, для наблюдения в кинозалах и для других приложений.

Выводы

1. Проведён функциональный анализ приборно-блочной схемы обобщённой систе-

мы технического зрения на примере системы «СПВ ОВТ», РАЯЖ 46652.001-ОС.ПЗ,

разработанной с участием автора диссертации. Показано, что данная система за счёт

автоматизации функциональных блоков и семантической обработки изображений в

20 раз быстрее выполняет действия, аналогичные действиям систем, рассмотренных

в главе 1. Проведено экспериментальное сравнение подобных систем с другими систе-

мами технического зрения, которое показало, что в рамках предложенной методики

сравнения система «СПВ ОВТ» обладает наилучшими характеристиками достовер-

ности идентификации событий в поле действия датчиков системы.

2. Сравнительные испытания по методике, предложенной автором, показали, что

анализ панорамных изображений требует доработки как технических, так и про-

граммных средств, тем не менее, являясь при этом перспективным способом, позволя-

ющим снизить в 3–10 раз количество используемых видеокамер в охранных системах

технического зрения.

3. Разработаны новые методики измерения погрешности наведения поворотных

видеокамер и погрешности сопряжения изображений неподвижных видеокамер с пе-

ресечением зон наблюдения. Измерена погрешность наведения поворотных видеока-

мер на неподвижные объекты при использовании методов сопряжения, описанных в

диссертационной работе. Погрешность составила 0, 5◦, что совпадает с теоретической

оценкой, полученной ранее.

4. Экспериментально обоснована эффективность алгоритма наведения с адаптив-

ным упреждением, разработанного в диссертационной работе: измеренная погреш-

ность наведения составляет 3◦, что более чем в два раза меньше погрешности при
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применении простейшего алгоритма наведения без упреждения. Наведение с линей-

ным упреждением вместо наведения с адаптивным упреждением приводит к увели-

чению количества промахов более, чем в 10 раз.

5. Разработанный в диссертации алгоритм наведения с адаптивным упреждением

позволяет автоматически получать изображения объектов с разрешением в 10 раз

большим, чем разрешение изображения того же объекта на неподвижной камере, при

этом не требуется увеличение количества видеокамер в сотни раз.

6. В результате обработки массива экспериментальных данных вычислена по-

грешность сопряжения неподвижных изображений для мастер-камер с общей зоной

обзора, которая составила 4 пиксела. В то же время для подвижных изображений в

условиях локальной синхронизации данных погрешность сопряжения 6 пикселей, а

при сетевой синхронизации — 10 пикселей. Увеличение погрешности сопряжения в

2 раза привело к увеличению количества ошибок сопоставления более, чем в 10 раз,

что подтверждает целесообразность обработки изображений сопряжённых мастеров

на одной ЭВМ.

7. Измерена доля ошибок при сопоставлении изображений объектов, выделенных

обработчиками мастер-камер, запущенных на одной и той же ЭВМ. По результатам

измерений доля промахов составила 1%.

8. Экспериментально доказана эффективность предложенной в работе системы

тестирования алгоритмов семантической обработки изображений: показано, что при-

менение данной тестовой системы позволило разработать алгоритмы идентификации

объектов в поле зрения камер и стереосистем со сниженной на 2 порядка частотой

ошибок первого рода по сравнению с общеизвестными алгоритмами семантической

обработки.

9. Проведён синтез наборов признаков классификации изображений, для которых

измерена достоверность классификации при применении алгоритмов распознавания.

Достоверность классификации достигает уровня 90%–95%.

10. Применение видеосистем «Orwell2k», в которой внедрены результаты диссер-

тационной работы, позволяет реализовать принципиально новые подходы при обес-

печении мер безопасности и повысить производительность труда операторов анали-

тических видеосистем. С помощью систем технического зрения «Orwell2k» охраня-

ются стратегически важные объекты: аэропорты («Шереметьево», «Домодедово»,

«Пулково», «Череповец»), крупные промышленные предприятия (Бурейская ГЭС,

Курская АЭС, нефтеперерабатывающий завод Оренбургской области), общественные

территории городов (Нижний Новгород, Саранск, Сочи), объекты транспортной ин-

фраструктуры и другие.
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Заключение

При выполнении диссертационной работы в рамках решения поставленной науч-

ной проблемы по повышению эффективности приборных комплексов технического

зрения на основе алгоритмов семантического сжатия, синхронизации и сопряжения

семантических обработчиков и автоматического управления видеоприборами достиг-

нуты следующие результаты.

1. Впервые разработана теория и выведены уравнения автоматизации начальной

установки и последующего параллельного сопряжённого функционирования прибо-

ров семантической обработки изображений в комплексах технического зрения.

2. Выведены математические соотношения для сопряжения приборов техническо-

го зрения и разработаны новые алгоритмы сопоставления изображений в общей зоне

контроля приборов и управления поворотными камерами с адаптивным упреждени-

ем, которые обеспечивают достоверность сопоставления изображений 99,0%, малые

погрешности наведения для неподвижных (0,5◦) и движущихся (3◦) объектов, а также

повышение разрешения в 10 раз при значительном уменьшении количества приборов

в комплексах технического зрения с обширными областями контроля, причём время

автоматического наведения в 20 раз меньше времени ручного наведения.

3. Разработана теория тестирования и контроля алгоритмов семантического сжа-

тия с применением формальной логики и теории множеств, и на основе этой теории

построен прототип системы тестирования.

4. Создан и внедрён новый комбинированный алгоритм обработки моно- и стерео-

изображений для оценки плотности движения наблюдаемых объектов с погрешностью

3%.

5. Созданы новые алгоритмы семантического анализа панорамных изображений,

позволяющие уменьшить в 3–10 раз количество видеоприборов в приборных комплек-

сах технического зрения за счёт поворотных устройств.

6. Разработанные в диссертации алгоритмы и способы позволили создать прибор-

ные комплексы технического зрения нового поколения с параметрами выше мирово-

го уровня, обеспечивающие автоматическое обнаружение, наведение и сопровожде-

ние объектов, значительное улучшение качества их визуализации, классификации и

идентификации и автоматическое формирование сигналов управления устройствами

предупреждения и заграждения.

7. Результаты диссертационной работы применены в программно-аппаратных

комплексах «Orwell2k», разработанных при непосредственном участии автора, что

подтверждается рядом свидетельств о регистрации программ и патентами на по-

лезные модели и изобретения, и используются для эффективного решения задач
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обеспечения безопасности, например, в аэропортах «Шереметьево», «Домодедово»,

«Пулково», «Череповец», на крупных промышленных предприятиях и объектах стра-

тегического значения, например, Бурейской ГЭС, Курской АЭС, нефтеперерабаты-

вающем заводе Оренбургской области, в городах Нижний Новгород, Саранск, Сочи

при контроле общественных территорий, на железной дороге Сочи – Красная поляна

(со времени проведения зимних Олимпийских игр 2014 года) и на других важных

объектах государственной инфраструктуры.

Таким образом, представленная диссертация является законченной научно-

квалификационной работой, в которой в рамках приоритетных направлений разви-

тия науки, технологий и техники, утверждённых указом Президента РФ от 7 июля

2011 г. №899, автором разработаны теоретические положения и научно обоснованные

технические решения, а также созданы высокоэффективные алгоритмы, программ-

ные средства и приборные комплексы технического зрения, внедрение которых вносит

значительный вклад в развитие экономики страны и в повышение её обороноспособ-

ности.
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block matching based on the fast Fourier transform. IEEE ICIP, I, 2002, pp. 669–672.

75. Lucas B.D. et al. An iterative image registration technique with an application to

stereo vision. IJCAI, 1981, Т. 81, pp. 674–679.

76. Солдатов С.А., Стрельников К.Н., Ватолин Д.С. Быстрое и надежное опреде-

ление глобального движения в видеопоследовательностях. 16-я Международная

конференция по компьютерной графике и ее приложениям, Институт вычисли-

тельной математики и математической геофизики СО РАН, 2006, с. 430–437.

77. Stauffer C., Grimson W. E. L. Learning patterns of activity using real-time tracking.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, Т. 22, №. 8,

pp. 747–757.

78. Matsushita Y. et al. Illumination normalization with time-dependent intrinsic images

for video surveillance. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 2004, Т. 26, №. 10, pp. 1336–1347.

79. Prati A. et al. Shadow detection algorithms for traffic flow analysis: a comparative

study. Intelligent Transportation Systems, Proceedings, IEEE, 2001, pp. 340–345.

80. Stander J., Mech R., Ostermann J. Detection of moving cast shadows for object

segmentation. Multimedia, IEEE Transactions on, 1999, Т. 1, №. 1, pp. 65–76.



290

81. Horprasert T., Harwood D., Davis L. A statistical approach for real time robust

background subtraction and shadow detection. IEEE Frame Rate Workshop, 1999.

82. Tian Y. L., Hampapur A. Robust salient motion detection with complex

background for real-time video surveillance. Application of Computer Vision, 2005.

WACV/MOTIONS’05 Volume 1. Seventh IEEE Workshops on, 2005, Т. 2, pp. 30–35.

83. Adelson E.H.,Bergen J.R. The plenoptic function and the elements of early vision

in Landy M.S., Movshon J.A. Computational Models of Visual Processing. —

Cambridge, Massachusetts: MIT Press, 1991, pp. 3–20.

84. Bradshaw K. J., Reid I. D., Murray D. W. The active recovery of 3d motion

trajectories and their use in prediction. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 1997, Т. 19, №. 3, pp. 219-234.

85. Collins R.,Tsin Y.,Miller J.R., Lipton A. Using a DEM to determine geospatial object

trajectories. in Proc. DARPA Image Understanding Workshop, Monterey, CA, Nov.

1998, pp. 115–122.

86. Stein G.,Romano R., Lee L. Monitoring activities from multiple video streams -

establishing a common coordinate frame. IEEE Trans. PAMI, vol. 22, Aug. 2000,

pp. 758–767.

87. Khan S.,Shah M. Consistent labeling of tracked objects in multiple cameras with

overlapping fields of view. IEEE PAMI, 25(10), 2003, pp. 1355–1360.

88. Ng K. C. et al. An integrated surveillance system—human tracking and view synthesis

using multiple omni-directional vision sensors. Image and Vision Computing, july

2004, vol. 22, issue 7, pp. 551–561.

89. Trivedi M., Huang K., Mikic L. Intelligent environments and active camera networks.

Systems, Man, and Cybernetics, 2000 IEEE International Conference on. – IEEE,

Oct. 2000, vol. 2, pp. 804–809.

90. Huang K.S.,Trivedi M.M. Video arrays for real-time tracking of persons, head, and

face in an intelligent room. Machine Vision Applications, 2003, vol. 14, №2, pp. 103–

111.

91. Hutchinson S.A., Hager G.D., Corke P.I. A tutorial on visual servo control. IEEE

Trans. Robotics and Automation, Oct. 1996, vol. 12, №5, pp. 651–670.

92. Collins R. T., Amidi O., Kanade T. An active camera system for acquiring multi-view

video. Carnegy Mellone Univ, IEEE ICEP 2002.

93. Айзерман М.А., Броверман Э.М., Розоноэр Л.И. Метод потенциальных функций

в теории обучения машин. —М.: «Наука», 1970.



291
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в Международном аэропорту «Шереметьево»
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Протокол испытания системы технического зрения «Orwell2k-IP» в Меж-

дународном аэропорту «Шереметьево»
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Приложение 3. Акты внедрения алгоритмов семантической об-

работки видеоизображений и управления приборными комплек-

сами технического зрения в серийном производстве, разработке

и эксплуатации
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AKT
o BHeApeHrrI4 pesyJrr,TaToB AoKTopcKo ilt gvcceptar{r4oHEtofi pa6oTbr

Xauyxzua Anaronzg Bna4zrrzpoBr4r{a
<<Bltcor<os$$er<rrannble aJlfoplrTMbr ceMaHTr4rrecKorz o6pa6orxz nz4eozso6pa>xenuia vt

yrlp aB JreH vx npv6opHblMl4 KoMTIJIeKc aMV TexHr4rrecKof o 3p eHrrs >>

rlo crleqfiaJlbHocrlI 05.13.01 - <<Czcrelrrrlrft aHaJrr43, yrrpaBJreHrze u o6pa6orr<a un@opMarlr4r4
(nnsopnraquroHHo-Bbrrrr4cJrr4TeJrbHoe o6ecleverure) r>

Kortrccvtz B cocraBe: rlpeAceAareJrb KoMr4ccLrr - ArrpeKTop AenapraMeHTa rexHz-recxofi
roAAepxlKu Coloxrzn A.A., coBerHI4K feHepa^rrbHofo Ar4peKTopa, A.T.H. -flnar<ona E.C., 4ra-
peKTop AerrapraMeHTa paspaSorxz [porpaMMnoro o6ecrrerreHr4fl Mralnep C.IO., cocraBr4Jrr4
I{acroqrl,I4ft axr o roM, r{To pesyJlbrarbr, [oJryr{eHHsre XavyxtrrHbrM y''..B. ur r43Jro)KeuHbre B eto
Al4ccepre[qronnoft pa6ore, I4clroJlb3ylorcs rrpr4 ceprafiuonr [por43BoAcrBe eJreKTpoHHbrx rrpr4-
6opuux KoMrIJreKcoB TexHr4rrecKoro 3peHr4s Ha rrpeArpvrflTkrvr AO <OJIBtr4C Heorex>>. K ra-
Kr4M pe3J0rbTaTaM oTHOCflTCS:

1) rr,rrlrenaarl4rrecKr4e coorHorrre:nzrs. AJrfl. pacvtjra lapaMerpoB colpsx<eHr4s HerroABr4x(Hbrx
KaMep NIex<Ay co6ofi I4 c [JraHoM MecrHocrvr) a raK)Ke HeloABrDKHb]x r4 rroBoporHbrx Br4Aeo-
KaMep, Iro3BoJr-sloql4x peaJrz3oBarb e$$exrranHbre a'TroprrrMbr aBToMarr4rrecKofo corrpoBo)K-
,qeukrtr oei b e xr oe rroB op orHbr Mr4 B r4Ae oKaMep aM Lr ;

2) Hostre aJrropI4TMbI cllHxpoHm3a\wAaHHbrx Mex(Ay conpa>riinrrbrMkr paclpeAeJrijHntruu
.MoAyJIqM:I4 o6pa6orrcn uso6pa>xeulrft or rroBoporHbrx r4 HerroABr4x(Hb.rx Br4AeoKaMep;

3) cnoco6u aBToMarl43ar\ur4 uacrpoftxn [apaMerpoB colps)Kenr4fl MoAyneft o6pa6orxz
.aso6pax<eHrzft, vro cylrfecrBeHrro cnrr3r4Jro rpy4o6nrKocrb nacrpoftrur cr4c.r'eM;

4) co:l4anne aJIropI4TMoB ceMaHrz-{ecKort o6pa6orxz zusoprraauvrvr) vrcrroJrbsyroqr4x Mo-

FJswt o6trra6orxz zao6parenvfi ;

5) cos4aHve aJrfopr4TMoB [ocrpoenr4s rranopaMbr;
6) par"tpa6orKa croco6on nepz$uxat4tv. r'r recrr4poBaHrrfl s$$ercrznHocrr4 aJrropr4TMoB

KoMrrbroT'epHof o 3peHr4g.

Ha ocnone Bblrlreleperrl4cJlenHbrx pe3yJrbraroB co3AaHEr v [por43]loAgrcx cepvrftno qennrfi
llflA pa3pra6orannrrx Ha IIpeAIIp vrtrrkrkr npz6opnux KoMrrJreKcoB :

- <<Cncreua Br4AeoHa6lro4euza c KoMrrr,rorepHbrM 3peHr4eM Orwell 2k> BAPIII.00001-01;
- <flporpaulrrrrrft KoMrrJIeKc <<Tennonzsvonusrft noKarop KpyloBoro o6sopa @vnurn>>

BAPIII.OOOO3-01;

- pa,D,apHblfi. rrpv6opnr,Ift r<ounnexc <<Orwell-R>> JIIIKB.464412.002 c rroBoporHbrMr{ Br4-

AeoKaMepaMrr;

- ctrrcreMa KoHTporIs Aopo>KHofo ABrDKeHzs BAPII.466452.002 <llepexpecroK>>;

- c\IcTeMa KoHTpoJIs co6.nro4entrtr rrpaBnrr rapKoBKr4 BAPIII.46(i452.0U <<Ilapxtr4HcrreK-
:fop>>;

KTOp

u.A.
2016r.



Bne4penne pe3yJlbraroB, paspa6oraHHbrx Xanayxr,rnsrnr A.B., fro,3BoJrr4Jro:

- yMeHbIrrI4Tb B cpeAHeM n 5 pas Korrzr{ecrBo Br4AeoKaurep, ueo6xo4r4MErx [pr4 rrcrroJrb3o-
Banvrvr ntporpaMMHo-a[laparrrbrx KoMrrJreKcoB, paspa6orannr,rx B x:oMrraHzv AO <pJIBI4C-
Heoter>' , Arfl o6ecue-reHva rpe6yeMbrx pasperuenrzft vso6pax<enyrfr. za cver npzrureHenr4fl rro-
BOpOTH.E,TX Br4AeOKaMep ;

- rroBblclzrb AocroBepHocrb aBToMarr4rrecr<oft z4eurzSvKar{rrr4 olpe4entjnHbrx rzrroB zgo6-
pax<enraft, yMeHrIITIZB Beposrrrocrb Jro)KHoft z4eurz$vrKa\w n 10-20 pa3 [pr4 nezsx4eHgor}
BepoflTlloctz olrrz6xli BTopofo poAa, sa c-r6r [pr,rMeHeHws cnoco6crB Tecrr4poBaHr4fl 14 Bepr4-

Szxaqun aJrropr4TMoB ceManTz-recxofi cerMeHTarrr4r4;

- yMeHblrrrrrb rlprrMepHo B 10 pas rpyAo3arparbr cleqlraJrr4croB rro KoHTponro o6cranoBKr4
B rroJle 3peHl4s BIdAeoKaMep B ycJroBr4sx, KorAa ceMaHTr4rrecKas o6pa6orxa raao6pax<envftrrpw-
MeHVMa, sa c'{dr upLIMeHeHr{fl corlpfl)KeHrd.s, aBToMarr43ar{zv. Lr KJraccvr$urcaqmn nusopnraqvn
KaK OCTI,OBbI AJrfl yryqllleHl4s SproHoMr4rrecKrrx xapaKTepr4crur< pa6,orrr4x Mecr orreparopoB 14

yllpoqe:ilI4fl pa6orrr uo na6nxt4eHlrro sa o6cranoexofi B [oJre 3peHr4s Br4AeoKaMep;

- yMeHbrlrzrr, rpe6oBauurfl K cJlo)KHocrrr oJreMeHrtrofi eEI-rlicJrr,rreJlbHoft 6a:;,l [eper{r4creH-
HbIX Bbllrre npz6opon kI KoMrIJreKcoB 3a cvirr npzrureueH\rfl 6rrcrpo4erftcrByrolrlr4x aJrfoprrrMoB
ylpaBJIeHI4q BI4AeoKaMepaMI4 r4 ceMaHTz.recxor? o6pa6orrcu uso6pul<eHraft.

fanrrrre HoBbIe rexHzr{ecKrre pelreHrrfl. :naltrv cnou orparenr4e B rrareHTax <.Czc:reua
o6ecnert,:nzg 6esouacHocrr,r 14 MoHr4Topznra uo6raJrbHbrx o6.lexroer> (nareur PO Nq2265531),
<<Czcrerrna n cnoco6 aBToMarl{BrrpoBanHoro Br4AeoHa6nro4enzq z par:lo3HaBaHl4g o6texroe z
uzrya;!'vtit>> (narenr P(D Ns2268497), <,VcrpoftcrBo aBToMarr43r4poBaHHofo KoHTpoJrfl o6cra-
HoBKI4 r,3pI4TeJIbHbIX 3aJraxr> (nareur PO Ns2296434), <<CwcreMa o6ecne-reHrs 6esonacHocrz
14 MoHI4lropI4Hra ruro6ranrnsrx o6rer<ronr> (narerru P@ Ha rroJre3Hyro MoAeJrr Ns36315), <,Cno-
co6 v crzcreMa onpeAeJreHl4s cKopocrr4 TpaHcroprHErx cpeAcrB>> (na,renr PO Ns2015I02323),
<<Cnoco6 14 cl4creMa ra,ruI6ponxr4 KoMlJreKca r43MepeHrzs cKopocrrz TpaucrroprHF,rx cpeAcrB>>
(nareul PO Ns2015102320).

Pesynsrarbl, orII4caHHEIe B Ar4cceprarltrvr Xavyxzna A.B., Jrex{a,T B ocHoBe BbrrrreyrroMs-
Hyrr'IX praspa6oraHlrblx s Ha[refi opfaHI43aIII4r4 oJreKTpogHbrx npn6opntrx KoMrrJreKcax rexHr4-
rrecKofc) BpeHI4-s, KoropEJe rroJrb3yrorcfl clpocolr n Poccttftcxoit (De4epaqvn yr 3a py6ex<orvr,
rIocKoJIbKy xapaKTepl4crr4Km AaHHbrx KoMfrJreKCoB HaXoAflTCs Ha ypOBHe Mr4poBr,rx aHaJroroB,
a B r{acll4 AocroBepHocrl4 AereKTr4poBaHns. co6strvfi c novorqbro ceMauruqecxort o6pa6orxz
zso6paNce:avrilt grv KoMfIJreKcbI [peBocxoAsr l"rzponoft ypoBeHb. 3a c-{ijr roHZ)KeHHErx rpe-
6osaHlail K BblrrllcJlntennuofi 3JIeMeHTHoft 6ase cror4MocrE, r4x BHeApeHmfl c r4cfloJrb3oBaHr4eM
aJIfopI4TMon Xavyxnna A.B. Hrrx{e, rreM cror4Mocrb BHeApeHrrfl anaJrorr4rlHbrx cr4creM Apyrr4x
lpol,I3Bo,4l4re.neft, rrro cloco6crnyer [poBeAeHr4ro rroJrr{Tr4Kr4 r4Mlopro3aMerqeHr4s B o6nacrz
lpofpaMMuoro o6ecnerreHl4s, IrpeAHa3narreHHoro 4na o6pa6orr<lr zso6pax<enzrt r4 ylpaBJreHr4s
Br4AeOKaMepaMr4.

il lr EAC E, TAT E Jr b KOMVTC Cr4r4 :

A u rpeKTop AelapraMeHTa rexHra-recr<oft rroAAepx<Krr

q.[EHbI KOMI4CCI4tr4:

coBeTHr4K reHepaJ'IbHoro AI4peKTOpa, A.T.H.

Conoxun A.A.

fnar<ona E.C.

A.zrpeKTop AerrapraMeHTa paspa6orxz

[prorpaMMHof o ooec[erreHr4s MIznnep C.IO.
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Приложение 4. Перечень патентов, относящихся к системам

синхронной семантической обработки изображений

1. «Система обеспечения безопасности и мониторинга мобильных объектов» (па-

тент РФ №2265531)

2. «Система и способ автоматизированного видеонаблюдения и распознавания

объектов и ситуаций» (патент РФ №2268497)

3. «Устройство и способ автоматизированного контроля обстановки в зрительных

залах» (патент РФ №2296434)

4. «Система и способ определения государственного регистрационного номера

транспортного средства» (патент РФ №2014104763)

5. «Способ и система определения скорости транспортных средств» (патент РФ

№2015102323)

6. «Способ и система калибровки комплекса измерения скорости транспортных

средств» (патент РФ №2015102320)

7. «Система и способ автоматической фиксации несанкционированного прохода

через зону контроля» (патент РФ №2014152194)

8. «Система обеспечения безопасности и мониторинга мобильных объектов» (па-

тент РФ на полезную модель №36315)

9. «Система и способ автоматизированного видеонаблюдения и распознавания

объектов и ситуаций» (патент РФ на полезную модель №36912)

10. «Устройство автоматизированного контроля обстановки в зрительных залах»

(патент РФ на полезную модель №47546)

11. «Система определения государственного регистрационного номера транспорт-

ного средства» (патент РФ на полезную модель №2014104762)

12. «Система определения скорости транспортных средств» (патент РФ на полез-

ную модель №2015102309)

13. «Система калибровки комплекса измерения скорости транспортных средств»

(Патент РФ на полезную модель №2015102315)



44

Приложение 5. Участие в выставках приборов, систем и техно-

логий безопасности

1. IX Московская Международная выставка «Охрана, безопасность и противопо-

жарная защита» 2003, 2013, 2014.

Сертификат участника IX Международной выставки «Охрана, безопасность и

противопожарная защита» mips2003,

Диплом за высокое качество и технический уровень аппаратно-программного

комплекса «Orwell2k».

2. Международная выставка систем безопасности «Security Israel», Тель-Авив,

Израиль (2003, 2005, 2013).

3. Выставка «Наука Москвы - вчера, сегодня, завтра» (03–06 октября 2003).

4. Выставка «Security Israel 2004» (Тель-Авив, 22–24 июня 2004).

5. II Международная выставка полицейской техники и вооружений «Чайна

Полис-2004» в Пекине (23–26 июня 2004).

6. Выставка «Москва - город науки» (16–19 ноября 2004).

7. Международная выставка «Высокие технологии ХХI века» — «ВТ XXI-2004».

8. VII Международный Авиационно-Космический Салон (МАКС-2005) (09 октяб-

ря 2005).

9. Международная выставка «Высокие технологии ХХI века» — «ВТ XXI-2005»

(18–22 апреля 2005).

10. Международный военно-морской салон (29 июня–03 июля 2005), Санкт-

Петербург.

11. Международная выставка «Высокие технологии ХХI века» — «ВТ XXI-2006»

(24–27 апреля 2006).

12. День инноваций Минобороны РФ 2013, 2014, 2015

13. Международная выставка «All-over-IP» 2011, 2012, 2013

14. Interpolitex 2012, 2013, 2014

15. Безопасность на дорогах ради безопасности жизни 2014

16. Армия 2015


