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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. Задача оптимального управления 

нелинейными системами остается ключевой областью в теории управления уже 

последние несколько десятилетий. Один из перспективных методов построения 

нелинейных регуляторов основан на решении матричного алгебраического 

уравнения Риккати с зависящими от состояния коэффициентами (State-Dependent 

Riccati Equation, SDRE) (Cloutier J. R., Mracek C. P., Çimen T., Balakrishnan S. N., 

Dutka A. S., Афанасьев В. Н. и др.). Метод SDRE дает эффективные средства 

конструирования нелинейных регуляторов, устройств наблюдения и фильтров. 

Особенностью подхода является использование формальной структуры 

оптимального управления в линейно-квадратичной задаче. При этом 

получаемый регулятор зачастую оказывается достаточно близким к 

соответствующему оптимальному управлению. 

Вычислительная сложность, связанная здесь с поиском решения уравнения 

Риккати для разных значений вектора состояния, делает актуальным 

использование различных асимптотических конструкций. Теория возмущений 

активно применяется для задач управления непрерывными и дискретными 

системами
1
 (Черноусько Ф. Л., Васильева А. Б., Акуленко Л. Д., Дмитриев М. Г., 

Глизер В. Я., Курина Г. А., Данилин А. Р., Калинин А. И., Kokotovic P. V., Khalil 

H. K., Naidu D. S. и др.). При нахождении стабилизирующих регуляторов для 

классов нелинейных непрерывных и дискретных задач с коэффициентами, 

зависящими от состояния, в случае наличия малых возмущений, можно 

использовать асимптотические разложения для приближенного решения 

матричного уравнения Риккати. Такой подход для непрерывных 

слабонелинейных систем был рассмотрен в работе
2
, где анализ асимптотики 

матричного алгебраического уравнения Риккати позволил провести нелинейную 

коррекцию линейного регулятора и получить регулятор, который является 

стабилизирующим и субоптимальным.  

Для возмущенных задач управления с параметром возникают постановки 

по нахождению параметрических семейств управлений на основе 

соответствующих асимптотических разложений. В теории дифференциальных 

уравнений для этих целей, в частности, используются Паде аппроксимации 

(Гончар А. А., Рахманов Е. А., Суетин С. П., Андрианов И. В., Baker G. A., 

Graves-Morris P., Nuttal J. и др.). Для систем с зависящими от состояния 

коэффициентами и с параметром в правой части, который может принимать не 

только малые, но и большие положительные значения, можно построить два 

локальных асимптотических приближения к решению уравнения Риккати с 

зависящими от состояния коэффициентами в соответствующих областях 

                                                           
1
 Kurina G.A., Dmitriev M.G., Naidu D.S. Discrete singularly perturbed control problems (A survey) // 

Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms. 2017. V. 24. № 5. Pp. 

335–370. 
2
 Дмитриев М.Г., Макаров Д.А. Гладкий нелинейный регулятор в нелинейной системе управления с 

коэффициентами, зависящими от состояния // Труды ИСА РАН. 2014. Т. 64. №4. С. 53—58. 



 

 

изменения параметра. После этого их, в некоторых случаях, можно объединить в 

общую конструкцию с помощью построения двухточечной Паде аппроксимации 

или, так называемого, Паде-моста, и тем самым расширить область применения 

приближенного решения на бо́льшую область изменения значений параметра.  

В настоящей работе рассматриваются слабонелинейные дискретные 

системы, а также непрерывные нелинейные системы с параметром, который 

может принимать как малые, так и большие положительные значения.  

Использование асимптотических методов для нелинейных систем 

управления с параметром позволяет в ряде случаев снизить вычислительную 

сложность нахождения решения матричного алгебраического уравнения Риккати 

с зависящими от состояния коэффициентами. Предлагаемые в работе численно-

аналитические регуляторы, основанные на приближенном решении уравнения 

Риккати, являются промежуточным вариантом между линейным регулятором и 

регулятором SDRE, при этом, по качеству регулирования (показателю 

перерегулирования, значению функционала) они превосходят линейные, а по 

вычислительной сложности — регулятор SDRE. Кроме того, получение 

представления решения матричного уравнения Риккати в виде ряда по степеням 

параметра позволяет получить утверждение о робастности соответствующей 

замкнутой системы при малых значениях параметра на основе анализа нулевого 

приближения с использованием техники линейных матричных неравенств 

(Поляк Б. Т, Хлебников М. В., Щербаков П.С., Oliveira M. C. De, Bernussou J., 

Geromel J. G., Ramos D. C. W., Peres P. L. D. и др.). С помощью рассматриваемых  

в работе классов нелинейных систем с коэффициентами, зависящими от 

состояния, и с параметром в правой части может быть описан широкий спектр 

реальных задач управления, таким образом, развитие методов решения 

нелинейных непрерывных и дискретных задач управления на основе техники 

SDRE представляется актуальным. 
 

Предмет исследования – задачи стабилизации слабонелинейных непрерывных 

и дискретных систем управления. 

Целью исследования является разработка численно-аналитических алгоритмов 

построения стабилизирующих регуляторов для слабонелинейных непрерывных 

и дискретных систем управления. 

Задачи исследования: 

1) Построение приближенного решения матричного алгебраического уравнения 

Риккати с зависящими от состояния коэффициентами и получение на его основе 

стабилизирующего регулятора для квазилинейной дискретной системы 

управления с параметром и с коэффициентами, зависящими от состояния.  

2) Исследование робастности построенных регуляторов относительно 

параметрических неопределенностей в линейной части системы. 

3) Приближенное решение дискретных задач оптимального управления с малым 

шагом на основе прямой схемы построения асимптотики. 



 

 

4) Построение параметрического семейства стабилизирующих регуляторов на 

основе приближенного решения матричного алгебраического уравнения Риккати 

для непрерывной нелинейной системы управления с параметром и с 

коэффициентами, зависящими от состояния с использованием метода Паде 

аппроксимации. 

Методы исследования. Используются методы построения стабилизирующих 

регуляторов для непрерывных и дискретных систем управления, методы 

приближенных решений нелинейных уравнений и алгоритмы Паде 

аппроксимации, а также техника линейных матричных неравенств и теории 

возмущений. 

Научная новизна. 1) Разработаны алгоритмы конструирования 

стабилизирующих регуляторов для дискретной слабонелинейной системы с 

коэффициентами, зависящими от состояния на основе асимптотики при малых 

значениях параметра. 2) Построены матричные одноточечная и двухточечная 

Паде аппроксимации для решения матричного алгебраического уравнения 

Риккати с коэффициентами, зависящими от состояния, в непрерывном случае. 3) 

Получено параметрическое семейство Паде-регуляторов для непрерывных 

систем с параметром, принимающим как малые, так и большие положительные 

значения.  

Практическая значимость. Результаты могут быть использованы для 

слабонелинейных дискретных систем и широкого класса непрерывных 

нелинейных систем с параметром. 

Достоверность результатов подтверждается строгими математическими 

рассуждениями и численными экспериментами. 

Апробация результатов исследования. Основные результаты работы 

докладывались и обсуждались на следующих научных конференциях: 

International Siberian Conference on Control and Communications (SIBCON–2016), 

Москва; IV Всероссийская научная конференция молодых ученых с 

международным участием «Информатика, управление и системный анализ» 

(ИУСА-2016), Тверь; Third International Conference on Analysis and Applied 

Mathematics (ICAAM 2016), Алма-Ата, Казахстан; VIII Moscow International 

Conference on Operations Research (ORM 2016), Москва; XIII Международная 

научная конференция студентов, магистрантов и молодых ученых «Ломоносов—

2017», Москва; 21st International Conference on System Theory, Control and 

Computing, (ICSTCC-2017), Синая, Румыния; 14th International Conference on 

Dynamical Systems: Theory and Applications (DSTA 2017), Лодзь, Польша; IV 

Всероссийская молодежная научно-техническая конференция Интеллектуальные 



 

 

системы, управление и мехатроника - 2018 (ИСУМ-2018), Севастополь; 17th 

IFAC Workshop on Control Applications of Optimization (CAO-2018), 

Екатеринбург. 

Публикации. Основные результаты, полученные по теме диссертационной 

работы, опубликованы в 17 печатных работах (в том числе 3 публикации в 

ведущих рецензируемых научных изданиях, рекомендованных Высшей 

аттестационной комиссией при Министерстве образования и науки Российской 

Федерации, 14 публикаций в трудах научных конференций, 6 входят в РИНЦ, 5 ‒ 

в базу цитирования Scopus, 4 ‒ в WOS). 

Структура и объем работы. Диссертация состоит из введения, четырех глав, 

заключения и списка использованной литературы. Общий объем диссертации – 

138 страниц, 14 рисунков, 11 таблиц, список литературы содержит 97 

наименований. 

  



 

 

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении охарактеризована актуальность и новизна работы, изложено ее 

краткое содержание.  

В первой главе приведен обзор работ по методам построения стабилизирующих 

регуляторов для непрерывных и дискретных систем управления, а также указаны 

дополнительные сведения, в частности, касающиеся линейных матричных 

неравенств, асимптотических приближений,  методов приближенных решений 

нелинейных уравнений и техники Паде аппроксимации. 

Во второй главе представлены результаты, связанные с построением 

синтезирующих управлений (в частности стабилизирующих) для дискретных 

систем управления, которые активно изучались в литературе российскими и 

зарубежными авторами (Емельянов С. В., Коровин С. К., Гурман В.И., Расина И. 

В., Dutka A. S., Ordys A. W., Grimble M. J., Naidu D. S., Chang I., Bentsman J. и 

др.). Рассматриваются аффинные системы, описываемые разностными 

уравнениями 

  
0( 1) ( ( )) ( ( )) ( ), (0) , , ,n rx t f x t g x t u t x x x R u R         (1) 

где  t=0,1,2,…, ( ( )) : , ( ( )) :n n n n rf x t R R g x t R R   – некоторые функции. 

Будем считать, что система (1) может быть преобразована в систему с 

коэффициентами, зависящими от состояния (state dependent coefficients, SDC) и 

некоторого положительного параметра   вида 
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     (2) 

где 0  – некоторое заданное число ( – формальный малый положительный 

параметр 00    ), 0 0,n n n rA R B R    – постоянные матрицы, 

1 1( ) , ( ) ,n n n rA x R B x R X     заданное ограниченное множество пространства 

состояний, такое, что для любого допустимого управления траектории 

замкнутой системы (2) существуют в X и единственны для 0,1,2,...t   При 

малых 0   система (2) является регулярно возмущенной, близкой к линейной. 

Требуется найти такое управление ( , )u x   для некоторой области 

0, 0x X     , чтобы положение равновесия в замкнутой системе, 

отвечающей (2), было локально асимптотически устойчиво по Ляпунову 



 

 

равномерно по 0(0, ]  , и сконструировать при этом критерий, по которому 

построенное управление обладает некоторой субоптимальностью.  

Для построения управлений используется вспомогательный критерий, 

матрицы которого подбираются в процессе конструирования регулятора 

0

0

0 1 0 0 1
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      (3) 

Представление исходной системы в виде (2) позволят для генерации закона 

управления с обратной связью воспользоваться эвристической конструкцией, 

применяемой в большинстве задач для систем с коэффициентами, зависящими 

от состояния. Используется уравнение, которое по форме совпадает с 

матричным алгебраическим уравнением Риккати для дискретной стационарной 

линейно-квадратичной задачи на полуоси, но матрицы, входящие в него, при 

этом зависят от вектора состояния.  

Предлагаемый для системы (2) нелинейный регулятор имеет вид 

нелинейной обратной связи по состоянию, совпадающий по структуре с 

оптимальным законом управления в линейно квадратичной задаче Калмана-

Летова 

1

0( , ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ).T Tu x R B x t P x t B x t B x t P x t A x t x t      


      

Введем дискретное алгебраическое матричное уравнение Риккати с 

зависящими от состояния коэффициентами (D-SDRE) 

1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0,T T TA x PA x P A x PB x S x B x PA x Q x            

где 0( , ) ( ( , ) ( , ))TS x R B x PB x    . 

Теория возмущений активно применяется для задач управления 

непрерывными и дискретными системами и может использоваться при 

нахождении стабилизирующих регуляторов для классов нелинейных 

непрерывных и дискретных задач в случае наличия слабой нелинейности. Здесь 

приближенное решение матричного уравнения Риккати ищется в виде 

формального ряда по степеням параметра µ. Ограничимся первым 

приближением 0 1( , ) ( )P x P P x   , где 0 1, ( )P P x  – нулевой и первый члены 

формального асимптотического разложения решения алгебраического уравнения 

Риккати с зависящими от состояния коэффициентами, соответственно. 

Вычисление точного решения требует больших вычислительных затрат и 

зачастую невозможно в реальном времени. Подставляя представление 

0 1( , ) ( )P x P P x    в уравнение Риккати и приравнивая члены при одинаковых 



 

 

степенях параметра, получаем уравнения для определения членов 0 1, ( )P P x . 

Теперь уравнение Риккати может быть записано в виде 

0 0 0 0 0 0 0 0 0 0 ,0 1 ,0 1

1

0 0

2

0 0 0 0 0

[ ] [ ( )] 0,( )

( ) .

T T T

cl cl

T T

A P A P A P S P A Q A PA P C x О

S B R B P B B

 



  

 

    
 

Для регулятора используется следующее формальное представление 

0 1( , ) ( , ) ( ( )) ,u x K x x K K x x      являющееся формальным приближением 

первого порядка к точному управлению. Матрицы коэффициентов усиления 0K  

и 1( )K x  находятся по следующим формулам 
1 1 1

0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0, ( ) [ ( ) ( ) ( ) ]T T T T TK R B P A K x R B P x B B P B x B x P B R B P A         
1

0 0 0 1 1 0 0 0 1 0 0 0 0 0 0[ ( ) ( ) ( ) ],T T T TR B P A x B x P A B P x A R R B P B      и зависят от 

существования решений 0P  дискретного алгебраического уравнения Риккати 
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) 0T T T TA P A P A P B R B P B B P A Q      и решения 1( )P x дискретного 

уравнения Ляпунова ,0 1 ,0 1( ) ( ) ( ),T

cl clA P x A P x C x    где 
1 1

,0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0, ( ) ( ) ( ) ( )T T T T T

clA A B R B P A C x A P A x A x P A A P B x R B P A      

1 1 1

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1( ) ( ) ( )T T T T T TA P B R B x P A A x P B R B P A A P B R B P A x     
1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1( ) ( ) ( ).T T T T T TA P B R B P B x R B P A A P B R B x P B R B P A Q x       

Матрица 1( )K x  формирует аддитивную нелинейную коррекцию линейного 

регулятора с учетом нелинейностей 1 1( ), ( )A x B x системы (2). Отметим, что 

приведенный нелинейный регулятор строится на основе конструирования 

нелинейного критерия (3), квадратичного по управлению.  

В работе введены условия I-III, при которых можно предложить численно-

аналитический алгоритм построения регулятора  

I. Тройка матриц 
1

2
0 0 0( , , )A B Q  управляема и наблюдаема. 

II. Коэффициенты матриц 1 1 1( ), ( ), ( ), 1,2,...,A x B x Q x j k  – непрерывно 

дифференцируемые функции на Х и параметр   принимает значения из 

некоторого ограниченного интервала 0(0, ] . 

III. Существует 1( ) 0,Q x   такая, что ( )C x  – положительно 

определенная матрица x X  . 

Введем матрицу ( ( ), ) ( ( ), ) ( , ) ( ( 1), ) ( , )T

cl clD x t P x t A x P x t A x       , где 

( , )clA x   – матрица замкнутой системы, т.е. 

 
1

0

0

( 1) ( , ) ( ) [ ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )] ( ), (0) .

T

cl

T

x t A x x t A x B x R B x P x B x

B x P x A x x t x x

     

  



     

 

 



 

 

Имеют место  

Теорема 1. Пусть наряду с условиями I-III выполняется условие  

IV. Найдутся окрестность положения равновесия замкнутой системы 

G X , постоянная положительно определенная матрица 0D  , константы 

0 0   и 0 0t  , такие, что ( , )D x D  для любого 0 0, (0, ],x G t t    . 

Тогда существуют окрестность положения равновесия 1G G , 1{0} G  и 

1 00  µ µ  , такие, что положение равновесия ( ) 0x t   замкнутой системы 

является локально асимптотически устойчивым по Ляпунову для всех 

1 1, (0, ]x G     на отрезке 0[ , )t  , т.е. регулятор является стабилизирующим в 

системе (2). 

Теорема 2. Пусть выполняются условия I-III, тогда существует окрестность 

положения равновесия ,G X  и достаточно малое 1 00  µ µ  , такие, что 

положение равновесия ( ) 0x t   замкнутой системы является локально 

асимптотически устойчивым по Ляпунову для всех 1, (0, ]x G    , т.е. 

регулятор является стабилизирующим в системе (2). 

Теперь можно предложить 

Алгоритм построения стабилизирующего регулятора для системы (1),(3). 

1. Система (1) преобразуется к виду (2), где 0 0 0, ,A B Q  удовлетворяют 

условию I. 

2. Находится 0P  как решение уравнения Риккати 
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) 0T T T TA P A P A P B R B P B B P A Q     . 

3. Подбирается 1( ) 0Q x  , так, что ( )C x – положительно определенная 

матрица для любого x X . 

4. При условии III 1( )P x  определяется как решение дискретного 

уравнения Ляпунова по известной формуле 

1 ,0 ,0

0

( ) ( ) ( )( )T i i

cl cl

i

P x A C x A




 3
.  

5. ( , )P x   определяется по формуле 0 1( , ) ( )P x P P x   . 

6. Находится искомый стабилизирующий регулятор ( , )u x   по формуле 
1

0( , ) ( ( ), ) ( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) ( ( ), ) ( ).

T

T

u x R B x t P x t B x t

B x t P x t A x t x t

   

  



     



 

Также в главе 2 демонстрируется робастность построенного регулятора по 

отношению к статической интервальной параметрической неопределенности   в 
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матрицах линейной части системы 0 0,A B . Параметры неопределенности в 

матрицах системы принимают значения из замкнутых ограниченных интервалов 

{ : , 1,..., }i i i i p        . Матрицы регулятора фиксируются при 

средних значениях вектора неопределенности, поэтому назовем этот регулятор 

срединным 

0 1( , ) ( ) ( ) ( , ) ,
2

ср ср ср i i
iu x K x t K x x

 
    


   ,    (4) 

где 
1

0 0 0 0 0 0 0 0( ) ( ( ) ( ) ( )) ( ) ( ) ( ),ср T ср ср ср T ср ср срK R B P B B P A          

1

1 0 0 1 0 0 0 1

1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0

( , ) ( ){[ ( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )] ( ) ( ) ( ) ( ) [ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( , ) ( )]}.

ср ср T ср ср ср T ср ср

T ср ср ср T ср ср ср T ср ср

T ср ср T ср ср ср

K x R B P x B B P B x

B x P B R B P A B P A x

B x P A B P x A

      

       

    





  

   

 

 

Предполагаем, что 
,0 0 1 1 2 2( ) ... ,cl p pA A A A A       

, 0,1,..., ,n n

kA R k p   
,0( 1) ( , , ) ( ) ( ( ) ( , , )) ( )cl clx t A x x t A W x x t         , где 

,0 0 0 0( ) ( ) ( ) ( )ср

clA A B K      – линейная часть, 

1 0 1 1 0 1 1( , , ) ( ( )) ( ) ( ( ), ) ( ( )) ( ) ( ( )) ( ( ), )ср ср срW x A x t B K x t B x t K B x t K x t           – 

нелинейная часть замкнутой системы. 

Наличие только слабой нелинейности в системе позволяет исследовать 

робастность исходной системы на основе робастности соответствующей 

стационарной линейной системы, для которой могут быть использованы условия 

в виде линейных матричных неравенств. При введенных предположениях при 

всех значениях параметров неопределенности из заданных интервалов линейная 

часть матрицы замкнутой системы принадлежит выпуклому матричному 

политопическому множеству ‒ политопу Acl,0(α)
4
, где политоп – множество 

матриц, порождаемое выпуклой линейной комбинацией конечного числа 

матриц-вершин ,  1,  2, ,  iA i N  , где N=2
p 

, p – число параметров 

неопределенности  

,0

1 1

( ) , , : 1: 0 , 2
N N

N p

cl i i N N i i

i i

A A R N     
 

 
        

 
  . 

Теперь достаточные условия устойчивости неопределенной дискретной 

системы формулируются в виде линейных матричных неравенств (LMI), 

приведенных ниже в условии V.  

V. Найдутся положительно определенные матрицы Pi, i=1,…,N, такие, 

что выполняется следующая система неравенств 
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2

2

, 1,..., ,

1
2 , 1,..., , , 1,..., ,

( 1)

6
2( ) ,

( 1)

1,..., 2, 1,..., , 1,..., .

T

i i i i

T T T

i i j j i i i j i i j

T T T T T

j i k k i j i j k k j i j k i i j k

A PA P E i N

A PA A PA A P A P P E i N j i j N
N

A PA A PA A P A A P A A P A P P P E
N

i N j i N k j N

   

       


       


     

 

Если это условие выполнено, при каждом  N   матрица 
,0( )clA   

определяет асимптотически устойчивую дискретную систему. Робастная 

устойчивость системы с описанными параметрическими неопределенностями 

проверяется с помощью зависящей от параметра квадратичной функции 

Ляпунова ( ) ( )TV x x P x , где ( )P   находится из решения матричных 

неравенств в условии V. 

Дополнительно введем условия II’ ,III’.  

II’. Тройка матриц 
1

2
0 0 0( ( ), ( ), )ср срA B Q   управляема и наблюдаема. 

III’. Существует 1( ) 0Q x  , такая, что 1( , )срC x  , соответствующая 

0 0( ), ( )ср срA B  , является положительно определенной матрицей для любого 

x X . 

Введем матрицы  

1 ,0 ,0
( , , , ) ( , , ) ( ) ( ) ( ) ( ) ( , , )

T T

cl cl
D x W x P A A P W x              

( , , ) ( ) ( , , )
T

W x P W x      , 
1 0 1( , , ) ( ( )) ( ) ( ( ), )срW x A x t B K x t     

1 0 1 1( ( )) ( ) ( ( )) ( ( ), ),ср срB x t K B x t K x t     
0, 0 , ,n

Nx X R          . 

При малых 0   имеет место  

Теорема 3. При выполнении условий I, II’ ,III’, V существует достаточно малое 

0 0µ  , такое,  что для любых 00 µ µ   замкнутая система (2),(3) со 

“срединным” нелинейным регулятором (4) робастна по отношению к 

параметрическим неопределенностям θ ∈ Ω в матрицах 0 0,A B . 

Также во второй главе рассматривается приближенный метод решения 

дискретных задач оптимального управления с большим количеством шагов на 

заданном интервале при наличии ограничений на состояние и управление. Эти 

задачи относятся к классу сингулярно возмущенных задач управления
56

. Их 
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характерной чертой является наличие погранслойных эффектов и свойство их 

решений на основной части интервала находиться в малой окрестности, так 

называемых, магистральных участков, которые есть решения или комбинации 

частей решений предельных задач. Здесь предлагается подход к учету 

ограничений и использованию решений, полученных при малом числе шагов в 

качестве начальных приближений для решения задач с большим числом шагов. 

1
2 2

1

0

0

1 1

( ) ( ( ) ) ( ( ) ) ( ( ) ( )) min,

( ) ( ) ( ) ( ), (0) , , , ,

( ) ( ), ( ) 0, ( ) 0,

l
T

зад зад
u

k

n n r

I u x T x F x T x x k u k

x t Ax t Bu t f t x x x R f R u R

du t x t u t x t

  







     

       

  



 

где  : , 0,1,..., 1 [0, ],t T t t k k l T l       целое число, 
1

0
l

    – малый 

шаг, 0  некоторое положительное число, x – вектор состояния, задx  – 

желаемое состояние объекта в конечный момент времени t T , u  – вектор 

управления, ( )I u  – критерий качества управления, 1 0F   – положительно 

определенная матрица, , ,n n n r n rA R B R d R     – постоянные матрицы, 1( )f t  – 

векторная функция. На основе прямой схемы получим соотношения для 

формального нулевого равномерного асимптотического приближения
7
 к 

решению приведенной вариационной задачи. Имеем 

   0 0 0 0 1 0 0 0 0 1( ) ( ) ( ) , ( ) ( ) ( )x t x t x Q x u t u t u Q u         , где 0 0( ), ( )x t u t  – 

члены регулярных рядов для траектории и управления, 0 0 0 0( ), ( )x u   – 

нулевые члены левых пограничных рядов, зависящие от 0 0/ , 0,1,2...t     и 

существенные в начале временного интервала,    0 1 0 1,Q x Q u   – нулевые члены 

правых пограничных рядов с коэффициентами, зависящими от 

1 1( ) / , 0, 1, 2,...t T       , существенные в конце временного интервала. Эти 

представления подставляются во все условия и в целевую функцию, после чего 

все соотношения раскладываются в соответствующие ряды. Ряды для 

0 0 0 0 1( ), ( ), ( )u t П u Q u   приближенно ищутся в виде 

0 0

0 0 1 0 0 0 0 0 0 0( ) ... , ( ) , / 2, ( ) 0, / 2,
ak

ku t b b t b t П u U e l П u l
   

       

1 1

0 1 1 1 0 1 1( ) , / 2, ( ) 0, / 2,aQ u U e l Q u l          где 0 ( )u t  представлено в виде 

полиномиальной функции, 0 1, ,..., r

kb b b R   коэффициенты полинома, k   

некоторое положительное целое число, 0 1, rU U R , 0 1, 0a a  неизвестные 

константы. Получаемая задача есть задача нелинейного программирования с 

ограничениями типа равенств и неравенств, оптимум в которой ищется по 

вектору параметров 0 0 0 1 1( ,..., , , , , )kv b b U a U a . В результате решения этой задачи 
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при фиксированном числе шагов можно получить хорошее качественное 

приближение к управлению, а затем на его основе строить уточняющие 

процедуры для поиска управления при гораздо большем числе шагов 

(соответствующем меньшему значению  ). 

В третьей главе для непрерывных задач управления с параметром решается 

задача нахождения параметрического семейства управлений с использованием 

Паде аппроксимации.  Рассматривается задача оптимального управления для 

слабонелинейных систем  

0 1 0 1 0( , ) ( , ) ( ( )) ( ( )) , (0) ,x A x x B x u A A x x B B x u x x                   (5)

 0

0

( , ) inf ,T T

u
x Q x x u R u dt



                           (6) 

где  ( ) , ( ) , 0,n rx t X R u t R t     , nX R  – некоторая заданная ограниченная 

область пространства состояния, 0 1 0 1, ( ) , , ( )n n n rA A x R B B x R   , 0 0,A B  – 

постоянные матрицы, ( , ) 0,Q x   0 0R  , а  0,   . При этом 

2

0 1 2( , ) ( ) ( )Q x Q Q x Q x     , 0 0Q   – постоянная матрица. Отметим также, что 

матрицы критерия 0 1 2, ( ), ( )Q Q x Q x  могут варьироваться, что позволяет 

обеспечить дополнительные свойства стабилизирующего регулятора.  

Для задачи (5), (6) могут быть построены приближенные решения на 

основе двух предельных асимптотик, при малых и больших значениях параметра 
 . Требуется найти параметрическое семейство регуляторов для всех значений 

параметра   из заданной области, включая и «средние» значения, чтобы каждый 

регулятор семейства для соответствующей замкнутой системы обеспечивал те 

же свойства, что и обратные связи, построенные на основе асимптотических 

приближений в специфических областях изменения параметра. 

Управление в виде синтеза ищется по схеме решения линейно-

квадратичной задачи оптимального управления на полуоси, т.е. в виде 

 1

0 ( , ) ( , ) , , 0, ,Tu R B x P x x x X        где ( , )P x   – есть решение для 

каждого x  матричного алгебраического уравнения Риккати с коэффициентами, 

зависящими от состояния 

1

0( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0.T TA x P x P x A x P x B x R B x P x Q x                (7) 

Сначала построим формальное асимптотическое приближение второго 

порядка для решения уравнения Риккати при малых значениях параметра 0  , 

представляя при этом матрицу ( , )P x   в виде 

 
2

2 0 1 2( , ) ( ) ( ).P x P P x P x          (8) 



 

 

Подставляя (8) в (7) и приравнивая члены при одинаковых степенях 

параметра, получаем 

0 0 0 0 0 0 0 0 0

1

0 0, T TP A A P BP R PB Q         (9)

1 0 0 0 0 0 0 0 0 1

0 1 1 0 0 1 1 0 0

1 1

0 0

1 1

0 0 0 1

( )( ) ( ) ( )

( ( ) ( ) )

 

( ( ) ( ) ( ) 0,)

T T T

T T T

P A B B P A B B P P

P A B B A B B

x R R x

x x R P x x R P xP Q

 

 

 

 







  
  (10)

0 0 0 0 0 0 0 0

1 1 1 0 0 1 1 0 0 1

1 0 0 1 1

1 1

2 0 0 2

1 1

0 0

1

0 20 0 1

( ) ( ) ( )

( )( ( ) ( ) ) ( ( ) ( ) ) ( )

( ( ) ( )) ( ( ) ( )) ( )

( )  

0.

T T T

T T T

T

P A B B P A B B P P

P A B B P A B B P

B

x R R x

x x x R x x R P x

P x x R P x xP B P B Q xB

 

 





   

   

   

 (11) 

Аналогично строится асимптотика по большому значению параметра, но 

предварительно выполняется замена , 1 / , 0       

  2

2 0 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( ).P x P x P x P x         (12)  

После подстановки (12) в (7) получаем следующую систему 

1

0 1 1 0 2
ˆ ˆ( ) ( ) ( ) ( ) ( ) 0,TP x B x R B x P x Q x       (13)

1 1

1 1 1 0 0 1 1 1

1 1

1 0 0 1 0 0 1 1 0 0 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ( ) ( ) ( )) ( ) ( )( ( ) ( ) ( )) ( ) 0,

T T

T T T

P x B x R B x P x P x B x R B x P x

A x P x B R B x P x P x A x B x R B P x Q x

 

 

  

     
 (14)

1 1

2 1 1 0 0 1 1 2

1 1

0 1 1 0 0 0 0 0 1 1

1 1

1 0 1 0 1 1 1 0 1 0

1

1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ( ) ( ) ) ( ) ( )( ( ) ( ))

ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ) ( ) ( )( ( ) ( ) ( ))

ˆ ( ) ( ) (

T T

T T T

T T T

T

P x B x R B x P x P x B x R B x P x

A P x B x R B P x P x A B R B x P x

A x P x B x R B P x P x A x B R B x P x

P x B x R B

 

 

 



  

    

    

 1

1 0 0 0 0 0
ˆ ˆ ˆ) ( ) ( ) ( ) 0,Tx P x P x B R B P x Q  

  (15) 

где первое уравнение является уравнением Риккати, а два других – матричными 

уравнениями Ляпунова. Условия разрешимости представлены в следующих двух 

утверждениях  

Теорема 4. Пусть матрицы 0 1 0 1, ( ), , ( )A A x B B x  и 0 1 20, ( ) 0, ( ) 0Q Q x Q x    при 

каждом x X удовлетворяют условиям 

1) 
1

0 0 0 0 0[ , , , ] ,nrank B A B A B n 
1 1 1

12 2 2
0 0 0 0 0[ , , , ] ;nrank Q A Q A Q n   

2) 
1 1

00 1 1 0 0 1 1 0 0 00 1( ( ) ( ) ) ( ( ) ( ) ) ( ) 0T T Tx x R P xP A B B A B B P Qx R P x      ; 

3) 1 1

1 1

01 0 00 1 1 0 0 1( )( ( ) ( ) ) ( ( ) ( ) ) ( )T T Tx x x R x x R PP A B B P A B B P x      

1 0 0 1

1

1 0 20 10( ( ) ( )) ( ( ) ( )) ( ) 0TP x x R PB P B Bx xP xB Q     , 

 тогда при всех , 0x X    



 

 

a) существует матрица 0P   положительно определенное решение уравнения 

(9); 

b) существуют матрицы 1 2( ), ( )P x P x   единственные положительно 

определенные решения уравнений (10) и (11), соответственно. 

 

Теорема 5. Пусть матрицы 0 1 0 1, ( ), , ( )A A x B B x  и 0 1 20, ( ) 0, ( ) 0Q Q x Q x    при 

каждом x X удовлетворяют условиям  

1) 1( )rank B x n ,
1

2
2( )rankQ x n ; 

2) 1

0 1 0 1
ˆRe { ( ) ( ) ( ) } 0TP x B x R B x   ; 

3) 1 1

1 0 0 0 1 0 0 1 1 0 0 0 1
ˆ ˆ ˆ ˆ( ( ) ( ) ( )) ( ) ( )( ( ) ( ) ( )) ( ) 0;T T TA x P x B R B x P x P x A x B x R B P x Q x           

4) 1 1

0 1 1 0 0 0 0 0 0 0 1 1
ˆ ˆ ˆ ˆ( ( ) ( ) ) ( ) ( )( ( ) ( ))T T TA P x B x R B P x P x A B R B x P x    

1 1

1 0 1 0 0 1 1 1 0 0 1 0
ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ) ( ) ( )( ( ) ( ) ( ))T T TA x P x B x R B P x P x A x B R B x P x     

1 1

1 1 0 1 1 0 0 0 0 0 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 0T TP x B x R B x P x P x B R B P x Q     , 

тогда при всех , 0x X    

a) существует матрица 0
ˆ ( )P x  ‒ положительно определенное решение уравнения 

(13); 

 b) существуют матрицы 1 2
ˆ ˆ( ), ( )P x P x  ‒ единственные положительно 

определенные решения уравнений Ляпунова (14) и (15), соответственно.  

Также сформулированы теоремы 6 и 7 об оценках близости построенных 

приближений к точному решению уравнения Риккати (7). 

Здесь предлагается прием по улучшению качества асимптотического 

приближения путем использования Паде аппроксимации. В скалярном случае 

аппроксимация Паде представляет собой функцию в виде отношения двух 

полиномов (порядка [ / ]v w ). Коэффициенты этих полиномов определяются 

коэффициентами разложения функции в ряд Тейлора. Сначала строится 

одноточечная матричная Паде аппроксимация для решения матричного 

уравнения Риккати на основе только одной из асимптотик (при малых значениях 

параметра). Помимо одноточечной Паде аппроксимации может быть 

сконструирована двухточечная Паде аппроксимация. Такая аппроксимация 

выступает в качестве «моста»
8
 между асимптотическими разложениями при 

больших и малых значениях параметра и при этом может обеспечивать хорошее 
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приближение на всем интервале изменения значений параметра, включая 

средние. Для конструирования моста искомое представление приравнивается 

одновременно к двум асимптотическим разложениям и коэффициенты 

полиномов находятся из полученной системы матричных уравнений. Очевидно, 

можно строить различные Паде аппроксимации, но здесь ограничимся 

построением только двухточечной правой Паде аппроксимации порядка [2/2] 

(степени полиномов числителя и знаменателя равны 2) 

    
1

2 2

[2/2] 0 1 2 1 2, ( ) ( ) ( ) ( ) ( ) ,PA x x x x E x x    


           (16) 

где E  – единичная n n  матрица. 

Итак, учитывая (8) и (12) имеем

   [2/2] 2 [2/2] 2

1ˆ, ( , ), , , .PA x P x PA x P x  


 
   

 
 Умножая оба равенства справа на 

 
1

2

1 2( ) ( )E x x 


     и приравнивая члены при одинаковых степенях 

параметра, получаем переопределенную систему матричных уравнений для 

определения членов представления (16), где неизвестных матриц пять. Для 

определенности рассматривается следующая система уравнений 

00

0
11

1 2 2 0

10 1

2
0

0 0 0 0 ( )

0 0 0 ( )( )
ˆ ˆ0 0 ( ) ( ) ˆ .( ) ( )

ˆ ˆ ( )0 0 ( ) ( ) 0

( )ˆ 00 0 0 ( )

E Px

E P P xx

E P x P x x P x

xE P x P x

xE P x

    
         
       
    

    
          

    (17) 

В задаче (5)-(6) можно ввести следующее условие существования Паде-

моста или двухточечной Паде аппроксимации порядка [2/2]  для решения 

уравнения Риккати, который обозначим через 

 
    [2/2] [2/2][2/2]

, ,
,

2

T

мост

PA x PA x
K x

 



 . 

VI. Для всех , 0x X    матрицы 0 1 0 1 2
ˆ ˆ ˆ, ( ), ( ), ( ), ( )P P x P x P x P x  существуют и 

система уравнений  (17) для матриц 0 1 2 1 2( ), ( ), ( ), ( ), ( )x x x x x      имеет 

единственное решение, матрица 
2

1 2( ) ( )E x x      невырожденная и 

 [2/2] , 0мостK x    при , 0x X    . 

Отметим, что, несмотря на громоздкость этого условия, имеются примеры 

его выполнения. Паде-мост является интерполяционной поверхностью, 

приближенно восстанавливающей поверхность ( , )P x   по ее приближениям в 

окрестностях малых и больших значений  . 



 

 

Теперь, очевидно, при всех , 0x X    можно ввести регулятор  

 1 [2,2]

0( , ) ( , ) , .T

мостu x R B x K x х         (18) 

Анализ результатов численных экспериментов показал, что при 

выполнении условия VI для полученного управления (18) существует область 

изменения параметра       1 2 30, , , ,..., ,k      , в которой (18) является 

стабилизирующим регулятором. Точки 0, 1,..., 1i i k      характеризуют 

возможное существование областей изменения значений параметра, в которых 

Паде аппроксимации не приводят к устойчивости замкнутой системы.  

Теорема 8. Пусть выполняются условие VI, условие 1) теоремы 4 и условие 1) 

теоремы 5, тогда при 0   Паде аппроксимация  [2/2] ,PA x  стремится к 0P , а 

при    к 0
ˆ ( )P x , x X  . 

В третьей главе также рассматривается задача оптимального управления 

для непрерывных нелинейных систем с параметром и квадратичным критерием 

качества  

  
0( ) ( ) , (0) ,x A x x B x u x x        (19) 

   0

0

( , ) inf ,T T

u
x Q x x u R u dt



      (20) 

где  ( ) , ( ) , 0,n rx t X R u t R t     , nX R   некоторая ограниченная область 

пространства состояния, ( ) , ( ) , ( ) , ,n n n rA x R B x R rank B x r x X      ( , ) 0Q x   , 

0 0R  , все матрицы достаточно гладкие,  0,    – параметр при управлении, 

который может принимать как большие, так и малые значения, т.е. в первом 

случае имеем систему с большим коэффициентом усиления, а во втором – так 

называемую слабоуправляемую систему.  

Соответствующее нелинейное управление имеет вид

 1

0 ( ) ( , ) , , 0, ,Tu R B x P x x x X         где ( , )P x   – решение уравнения  

2 1

0( ) ( , ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( , ) 0.T TA x P x P x A x P x B x R B x P x Q x              (21) 

Асимптотики решения уравнения Риккати по малому и большому 

параметру строятся аналогичным образом. Уравнения для определения членов 

представления 2( , )P x   имеют вид 

0 0 0 1 1 1

1

2 2 0 0 0 2

( ) ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

T T

T T

A x P x P x A x Q x A x P x P x A x Q x

A x P x P x A x P x B x R B x P x Q x

       

    
 



 

 

а для членов представления 2
ˆ ( , )P x   

1 1

0 0 0 2 0 0 1

1

1 0 0 1

1

0 0 0 0 2

1 1

2 0 0 1 0 1 0
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В диссертации приводится утверждение о разрешимости соответствующих 

уравнений для нахождения членов асимптотических приближений 

2 2
ˆ( , ), ( , )P x P x  . Используя метод последовательных приближений Ньютона-

Канторовича, доказывается 

Теорема 10. При известных 2 2
ˆ( , ), ( , )P x P x   и при условии существования и 

единственности решений соответствующих уравнений для невязок 

 2 2
ˆ( , ) ( , ), ( , ) ,1/P x P x P x P x     , найдется достаточно малое 0   , такое, 

что при всех x X  и 0      уравнение (21) имеет положительно 

определенное решение ( , )P x   и при этом справедливы оценки  

3 *

2

2 3 *

( , ) ( , ) ( ), 0 ,

1 1 1ˆ( , ) , , , .

P x P x O x

P x P x O

X

x X

    

 
  

    

   
      

   

 

Вводится следующее условие существования Паде моста  [2,2] ,мостK x  для 

всех значений параметра  0,    в задаче (19)–(20). 

VII. Для всех , 0x X    матрицы 0 1 0 1 2
ˆ ˆ ˆ, ( ), ( ), ( ), ( )P P x P x P x P x  существуют, 

система для определения коэффициентов Паде аппроксимации  [2/2] ,PA x   

однозначно разрешима, матрица 
2

1 2( ) ( )E x x      невырожденная и 

 [2,2] , 0мостK x    при , 0x X    . 

Теперь можно предложить регулятор для нелинейных систем (19)-(20) в 

виде  

  1 [2,2]

0( , ) ( ) , .T

мостu x R B x K x х         (22) 

В работе приводятся численные эксперименты, демонстрирующие 

стабилизацию нелинейных систем вида (19)-(20) с помощью (22). Обоснование 

установлено только для случая, когда матрицы  A  и B  постоянные.  



 

 

Теорема 11. Если все матрицы в (19), (20) постоянны, тогда при выполнении 

условия VII регулятор (22) стабилизирует систему (19), (20) для каждого 

(0, )   . 

Получаемое параметрическое семейство регуляторов имеет вид 
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Построенное семейство регуляторов является приближенным символьным 

описанием параметрического набора стабилизирующих управлений. 

Преимуществом предложенного подхода является то, что при изменении 

значения параметра   не требуется пересчитывать решение уравнения Риккати.  

В четвертой главе представлены результаты численных экспериментов.  

Пример 1. В качестве примера в задаче (2)-(4) используется модель 

управляемого перевернутого маятника 

0 1 0 1 ,( 1) ( ( ) ( )) ( ( ) ( ))x t A A x x B B x u          (0) 2.8 0.1
T

x   , где ( )u t  – 

скалярное управление. Параметры модели:

0.05, 0.1, 0.1, 9.8, 0.05,sT M L g       L – длина маятника, M – масса шара, 

sT – время дискретизации, g   ускорение свободного падения,  параметр 

затухания. В систему входит параметр неопределенности 

1 2 1 2 1

1
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M
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Итак, в этом случае имеем систему, политопическая область 

неопределенности которой задается с помощью четырех вершин 

1 ,0 1 2 2 ,0 1 2( , ), ( , ),cl clA A A A     3 ,0 1 2 4 ,0 1 2( , ), ( , )cl clA A A A      при значениях   

равных [20;0.8], [20;1.2], [6.7;0.8] [6.7;1.2], соответственно. Требуется найти 

четыре положительно определенные матрицы Pi для получения зависящей от 

параметра α функции Ляпунова V(x)=x
T
P(α)x.  



 

 

Здесь проведено двадцать пять экспериментов с разными значениями 

параметров неопределенности. Среднее значение критерия качества управления 

для линейного «срединного» регулятора равно 7451.752, а для предлагаемого 

нелинейного «срединного» регулятора равно 3670.031, что в 2.03 раза лучше. 

Также проведено сравнение нелинейного регулятора с линейным регулятором 

при разных начальных условиях. В начальный момент времени фиксируется 

угловая скорость 2 0.1x    и варьируется угол отклонения маятника x1[0.2; 2.8]. 

На Рисунке 1 видно, как меняется отношение значения критерия вдоль 

нелинейного регулятора к линейному при различных начальных условиях. С 

ростом начальных условий эффективность нелинейного регулятора по 

сравнению с линейным регулятором растет. 

 

Рисунок 1. Сравнение значений нелинейного критерия для линейного linu  и 

нелинейного nonlinu  «срединных» регуляторов. 

Пример 2. Рассмотрим стационарную систему управления с векторным 

управлением и квадратичным критерием качества из постановки задачи (19)-

(20), где 0 1
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регулятора, а также алгоритмов управления, использующих асимптотики к 

решению уравнения Риккати при больших или малых значениях параметра. 

Результаты сравнения алгоритмов по нелинейному критерию качества 

представлены на Рисунке 2. 

При этом заметим, что для всех рассмотренных значений   из интервала 

(0, )  Паде-регулятор практически совпадает с точным решением. Таким 

образом, численные эксперименты показывают, что регуляторы, использующие 

двухточечные Паде аппроксимации, основанные на двух асимптотических 

приближениях, могут быть более эффективными, чем регуляторы, основанные 

на локальных асимптотических разложениях. Стабилизирующий Паде- 

регулятор обладает свойством робастности по отношению к параметру   в 

стационарном случае, так как асимптотическая устойчивость замкнутой системы 

вдоль этого регулятора сохраняется при любых возмущениях параметра в 

допустимой области его изменения. 

 

 

Рисунок 2. Сравнение алгоритмов управления по критерию качества. 

В заключении приводятся основные результаты, полученные в диссертации. В 

диссертации решены задачи стабилизации слабонелинейных непрерывных и 

дискретных систем управления с использованием асимптотических методов. Для 

квазилинейной дискретной системы управления с параметром и с 

коэффициентами, зависящими от состояния, на основе формального 

асимптотического разложения построено приближенное решение матричного 

алгебраического уравнения Риккати и получен стабилизирующий нелинейный 

регулятор, обладающий свойством робастности относительно параметрических 

неопределенностей в линейной части системы. 

Для непрерывной системы управления с параметром и с коэффициентами, 

зависящими от состояния, построено параметрическое семейство 

стабилизирующих регуляторов на основе Паде аппроксимации решения 

матричного алгебраического уравнения Риккати. Полученное семейство 

регуляторов включает в себе стабилизирующие регуляторы для 

( )I u

1,25·104 





 

 

слабоуправляемых систем и систем с большим коэффициентом усиления. 

Построены одноточечная и двухточечная матричные Паде аппроксимации 

(Паде-мост), основанные на двух локальных асимптотических приближениях, и 

установлены их свойства. Анализ асимптотической устойчивости замкнутой 

системы вдоль построенного Паде-регулятора показал, что построенное на 

основе Паде-моста семейство регуляторов является стабилизирующим для 

стационарных непрерывных линейных управляемых систем.  

Получено приближенное решение дискретных задач оптимального 

управления с малым шагом на основе прямой схемы построения асимптотики.  

На примерах показано, что разработанные численно-аналитические 

алгоритмы построения стабилизирующих регуляторов позволяют снизить 

вычислительную сложность при достижении одинакового качества 

регулирования.  



 

 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ 

1. Разработаны и обоснованы алгоритмы построения стабилизирующих 

регуляторов на основе асимптотических приближений для дискретной 

слабонелинейной системы с коэффициентами, зависящими от состояния.  

2. Установлены условия робастности слабонелинейной системы по 

отношению к параметрическим возмущениям в ее линейной части. 

3. Построены одноточечная и двухточечная матричные Паде 

аппроксимации для решения матричного алгебраического уравнения 

Риккати с коэффициентами, зависящими от состояния, в непрерывном 

случае и установлены их свойства. 

4. Построено семейство стабилизирующих регуляторов для одного класса 

непрерывных линейных управляемых систем на основе Паде-моста, 

заключающее в себе стабилизирующие регуляторы для 

слабоуправляемых систем и систем с большим коэффициентом усиления. 

5. Выполнены численные эксперименты, демонстрирующие эффективность 

построенных регуляторов. 
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ЛИЧНЫЙ ВКЛАД АВТОРА  

Основные результаты, выносимые на защиту, получены лично автором. 

Разработка методов исследования, алгоритмов численных расчетов и 

интерпретация результатов также осуществлены автором диссертации.  

 


