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ОБОЗНАЧЕНИЯ 

Введем следующие обозначения: 

0A    матрица A  симметричная и положительно определенная; 

R  – множество действительных чисел; 

кронекерово произведение матриц; 

множество целых чисел; 

■окончание доказательства теоремы; 
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ВВЕДЕНИЕ 

Состояние проблемы и актуальность темы исследований 

Задача оптимального управления нелинейными системами остается 

ключевой областью в теории управления уже последние несколько 

десятилетий. Один из перспективных методов построения нелинейных 

регуляторов [79] основан на решении матричного алгебраического уравнения 

Риккати с зависящими от состояния коэффициентами (State-Dependent Riccati 

Equation, SDRE) (Cloutier J. R., Mracek C. P., Çimen T., Balakrishnan S. N., 

Dutka A. S., Афанасьев В. Н. и др.). Метод SDRE дает эффективные средства 

конструирования нелинейных регуляторов, устройств наблюдения и 

фильтров. Особенностью подхода является использование формальной 

структуры оптимального управления в линейно-квадратичной задаче. При 

этом получаемый регулятор зачастую оказывается достаточно близким к 

соответствующему оптимальному управлению. 

Вычислительная сложность, связанная здесь с поиском решения 

уравнения Риккати для разных значений вектора состояния, делает 

актуальным использование различных асимптотических конструкций. 

Теория возмущений активно применяется для задач управления 

непрерывными и дискретными системами (Черноусько Ф. Л., Васильева А. 

Б., Акуленко Л. Д., Дмитриев М. Г., Глизер В. Я., Курина Г. А., Данилин А. 

Р., Калинин А. И., Kokotovic P. V., Khalil H. K., Naidu D. S. и др.) [62]. При 

нахождении стабилизирующих регуляторов для классов нелинейных 

непрерывных и дискретных задач с коэффициентами, зависящими от 

состояния, в случае наличия малых возмущений, можно использовать 

асимптотические разложения для приближенного решения матричного 

уравнения Риккати. Такой подход для непрерывных слабонелинейных систем 

был рассмотрен в работе [27], где анализ асимптотики матричного 

алгебраического уравнения Риккати позволил провести нелинейную 
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коррекцию линейного регулятора и получить регулятор, который является 

стабилизирующим и субоптимальным.  

Для возмущенных задач управления с параметром возникают 

постановки по нахождению параметрических семейств управлений на основе 

соответствующих асимптотических разложений. В теории 

дифференциальных уравнений для этих целей, в частности, используются 

Паде аппроксимации (Гончар А. А., Рахманов Е. А., Суетин С. П., Андрианов 

И. В., Baker G. A., Graves-Morris P., Nuttal J. и др.). Для систем с зависящими 

от состояния коэффициентами и с параметром в правой части, который 

может принимать не только малые, но и большие положительные значения, 

можно построить два локальных асимптотических приближения к решению 

уравнения Риккати с зависящими от состояния коэффициентами в 

соответствующих областях изменения параметра. После этого их, в 

некоторых случаях, можно объединить в общую конструкцию с помощью 

построения двухточечной Паде аппроксимации или, так называемого, Паде-

моста, и тем самым расширить область применения приближенного решения 

на бо́льшую область изменения значений параметра.  

В настоящей работе рассматриваются слабонелинейные дискретные 

системы, а также непрерывные нелинейные системы с параметром, который 

может принимать как малые, так и большие положительные значения.  

Использование асимптотических методов для нелинейных систем 

управления с параметром позволяет в ряде случаев снизить вычислительную 

сложность нахождения решения матричного алгебраического уравнения 

Риккати с зависящими от состояния коэффициентами. Предлагаемые в 

работе численно-аналитические регуляторы, основанные на приближенном 

решении уравнения Риккати, являются промежуточным вариантом между 

линейным регулятором и регулятором SDRE, при этом, по качеству 

регулирования (показателю перерегулирования, значению функционала) они 
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превосходят линейные, а по вычислительной сложности — регулятор SDRE. 

Кроме того, получение представления решения матричного уравнения 

Риккати в виде ряда по степеням параметра позволяет получить утверждение 

о робастности соответствующей замкнутой системы при малых значениях 

параметра на основе анализа нулевого приближения с использованием 

техники линейных матричных неравенств (Поляк Б. Т, Хлебников М. В., 

Щербаков П.С., Oliveira M. C. De, Bernussou J., Geromel J. G., Ramos D. C. W., 

Peres P. L. D. и др.). С помощью рассматриваемых в работе классов 

нелинейных систем с коэффициентами, зависящими от состояния, и с 

параметром в правой части может быть описан широкий спектр реальных 

задач управления, таким образом, развитие методов решения нелинейных 

непрерывных и дискретных задач управления на основе техники SDRE 

представляется актуальным.  

Предмет исследования  

Задачи стабилизации слабонелинейных непрерывных и дискретных 

систем управления. 

Цель исследования 

Разработка численно-аналитических алгоритмов построения 

стабилизирующих регуляторов для слабонелинейных непрерывных и 

дискретных систем управления. 

Задачи исследования 

1) Построение приближенного решения матричного алгебраического 

уравнения Риккати с зависящими от состояния коэффициентами и получение 

на его основе стабилизирующего регулятора для квазилинейной дискретной 

системы управления с параметром и с коэффициентами, зависящими от 

состояния.  
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2) Исследование робастности построенных регуляторов относительно 

параметрических неопределенностей в линейной части системы. 

3) Приближенное решение дискретных задач оптимального управления 

с малым шагом на основе прямой схемы построения асимптотики. 

4) Построение параметрического семейства стабилизирующих 

регуляторов на основе приближенного решения матричного алгебраического 

уравнения Риккати для непрерывной нелинейной системы управления с 

параметром и с коэффициентами, зависящими от состояния с 

использованием метода Паде аппроксимации. 

Научная новизна и значимость 

Основные результаты работы: 

 Разработаны алгоритмы конструирования стабилизирующих 

регуляторов для дискретной слабонелинейной системы с 

коэффициентами, зависящими от состояния на основе 

асимптотики при малых значениях параметра.  

 Построены матричные одноточечная и двухточечная Паде 

аппроксимации для решения матричного алгебраического 

уравнения Риккати с коэффициентами, зависящими от состояния, 

в непрерывном случае.  

 Получено параметрическое семейство Паде-регуляторов для 

непрерывных систем с параметром, принимающим как малые, 

так и большие положительные значения.  

Практическая ценность работы 

Результаты могут быть использованы для слабонелинейных 

дискретных систем и широкого класса непрерывных нелинейных систем с 

параметром.  
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Достоверность результатов 

Достоверность полученных в работе результатов подтверждается 

строгими математическими рассуждениями и численными экспериментами.  

Личный вклад автора 

Основные результаты, выносимые на защиту, получены лично автором. 

Разработка методов исследования, алгоритмов численных расчетов и 

интерпретация результатов также осуществлены автором диссертации.  

Методы исследования 

Используются методы построения стабилизирующих регуляторов для 

непрерывных и дискретных систем управления, методы приближенных 

решений нелинейных уравнений и алгоритмы Паде аппроксимации, а также 

техника линейных матричных неравенств и теории возмущений.  

Апробация работы 

Основные результаты работы докладывались и обсуждались на 

следующих научных конференциях: International Siberian Conference on 

Control and Communications (SIBCON–2016), Москва; IV Всероссийская 

научная конференция молодых ученых с международным участием 

«Информатика, управление и системный анализ» (ИУСА-2016), Тверь; Third 

International Conference on Analysis and Applied Mathematics (ICAAM 2016), 

Алма-Ата, Казахстан; VIII Moscow International Conference on Operations 

Research (ORM 2016), Москва; XIII Международная научная конференция 

студентов, магистрантов и молодых ученых «Ломоносов—2017», Москва; 

21st International Conference on System Theory, Control and Computing, 

(ICSTCC-2017), Синая, Румыния; 14th International Conference on Dynamical 

Systems: Theory and Applications (DSTA 2017), Лодзь, Польша; IV 

Всероссийская молодежная научно-техническая конференция 

Интеллектуальные системы, управление и мехатроника - 2018 (ИСУМ-2018), 
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Севастополь; 17th IFAC Workshop on Control Applications of Optimization 

(CAO-2018), Екатеринбург. 

Публикации 

Основные результаты, полученные по теме диссертационной работы, 

опубликованы в 17 печатных работах (в том числе 3 публикации в ведущих 

рецензируемых научных изданиях, рекомендованных Высшей 

аттестационной комиссией при Министерстве образования и науки 

Российской Федерации и 14 публикаций в трудах научных конференций). 

Положения, выносимые на защиту 

1) Разработаны и обоснованы алгоритмы построения 

стабилизирующих регуляторов на основе асимптотических 

приближений для дискретной слабонелинейной системы с 

коэффициентами, зависящими от состояния. 

2) Установлены условия робастности нелинейной системы  по 

отношению к параметрическим возмущениям в ее линейной части. 

3) Построены одноточечная и двухточечная матричные Паде 

аппроксимации для решения матричного алгебраического уравнения 

Риккати с коэффициентами, зависящими от состояния, в 

непрерывном случае и установлены их свойства. 

4) Построено семейство стабилизирующих регуляторов для одного 

класса непрерывных линейных управляемых систем на основе Паде-

моста, заключающее в себе стабилизирующие регуляторы для 

слабоуправляемых систем и систем с большим коэффициентом 

усиления. 

5) Выполнены численные эксперименты, демонстрирующие 

сравнительную эффективность построенных регуляторов. 
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Структура и содержание работы 

Диссертация состоит из введения, четырех глав, заключения и списка 

использованной литературы.  

Во Введении освещен круг вопросов, охваченных диссертацией, 

охарактеризованы актуальность и новизна работы, изложено ее краткое 

содержание.  

В первой главе приведен обзор работ по методам построения 

стабилизирующих регуляторов для непрерывных и дискретных систем 

управления, а также указаны дополнительные сведения, в частности, 

касающиеся линейных матричных неравенств, асимптотических 

приближений, методов приближенных решений нелинейных уравнений и 

техники Паде аппроксимации. 

Во второй главе представлены результаты, связанные с построением 

синтезирующих управлений (в частности стабилизирующих) для 

слабонелинейных дискретных задач управления с коэффициентами, 

зависящими от состояния.  

В третьей главе для непрерывных задачах управления с параметром 

решается задача нахождения параметрического семейства управлений с 

использованием Паде аппроксимации.  

В четвертой главе представлены результаты численных экспериментов.  
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ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ  

 

1.1 Подход к конструированию управлений, основанный на решении 

уравнения Риккати с зависящими от состояния коэффициентами. 

Подход к конструированию управлений для нелинейных систем на 

основе решения уравнения Риккати с зависящими от состояния 

коэффициентами впервые был рассмотрен в работах [52, 72, 73, 82]. Он 

используется как для конструирования нелинейных регуляторов, так и 

наблюдателей и фильтров. Особенностью подхода является применение 

схемы, аналогичной той, что используется в стационарных линейно-

квадратичных задачах оптимального управления на полуоси. В частности, он 

требует приведения системы к так называемой SDC форме (State-dependent 

coefficients form) – квазилинейной форме с коэффициентами, зависящими от 

состояния. Для аффинной системы ( ( )) ( ( ))x f x t B x t u  , 

0, , (0)n rx R u R x x   , при выполнении предположений 1) (0) 0f   и 2) 

функция ( )f x  имеет непрерывные частные производные первого порядка в 

nR ,  всегда существует непрерывная нелинейная матричная функция ( ( )),A x t

такая что ( ( )) ( ( )) ( )f x t A x t x t , где ( ( )) : n n nA x t R R  . Это представление 

неединственно при 1n   [50]. 

В подходе SDRE используется нелинейный функционал качества 

управления на полуоси с квадратичной структурой и весовыми матрицами, 

зависящими от состояния  

 0 0

0

1
( ) ( ) ( ( )) ( ) ( ) ( ) , ( ) ,

2

T T n n r rJ u x t Q x t x t u t R u t dt Q x R R R



     ,   

где 0( ) 0, 0.Q x R   

Простота и гибкость алгоритма делает его применимым в таких 

практических приложениях, как управление робототехническими системами, 



13 

 

авиа- и космическими системами, использование в медицине и т.д. За 

последние годы можно отметить следующие работы по данной теме [39, 65, 

80]. 

В основе подхода лежит использование уравнения Риккати, 

вытекающего из необходимых условий оптимальности в форме уравнения 

Гамильтона–Якоби–Беллмана [69]  

0

0

1 1
( , , , ) ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( )),

2 2

0 ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ),

1 [ ( ) ( ) ( )] [ ( ) ( )] [ ( ) ( )]
( ) ( ) ( ),

2

T T T

T

T

H x u t x t Q x x t u t R u t t A x x t B x u t

H
R u t B x t

u

H
x t A x x t B x u t

H x t Q x x t A x x t B x u t
t t t

x x x x

 





  

   


   




  



   
    

   

  

где ( )t сопряженная переменная. 

При этом используется как алгебраическое, так и дифференциальное 

уравнение Риккати с зависящими от состояния коэффициентами.  

Существует ряд работ, посвященных исследованию проблемы синтеза 

стабилизирующих регуляторов для нелинейных дискретных систем с 

зависящими от состояния коэффициентами на основе решения матричного 

дискретного алгебраического уравнений Риккати с зависящими от состояния 

коэффициентами - D-SDRE (Discrete-Time State Dependent Riccati Equation) 

[48, 66, 97,].  Это дискретный аналог подхода SDRE. В работе [48] 

рассмотрен алгоритм конструирования гладкого стабилизирующего 

нелинейного регулятора для нелинейной дискретной системы с 

квадратичным критерием качества на полуоси на основе решения D-SDRE. 

Сначала система приводится к SDC форме, после чего D-SDRE используется 

для построения стабилизирующего управления типа обратной связи. В статье 

также рассматривается подход D-SDRE в случае наличия ограничений на 
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состояние и управление. Оптимальность D-SDRE регулятора исследуется в 

[66], где предлагаются два новых алгоритма на основе D-SDRE: D-SDRE с 

предсказанной траекторией и оптимизированное D-SDRE с 

корректирующими тензорами, а также представлены результаты 

моделирования, демонстрирующие разницу между указанными алгоритмами 

и обычным методом D-SDRE. В работе [97] исследуется композитное 

управление для класса нелинейных сингулярно возмущенных систем с 

дискретным временем. Сначала, система разделяется на медленные и 

быстрые (погранслойные) подсистемы меньшей размерности, затем с 

помощью D-SDRE разрабатывается композитный регулятор, состоящий из 

двух управлений для медленных и быстрых подсистем, соответственно. 

Доказывается, что положение равновесия замкнутой системы с композитным 

регулятором локально асимптотически устойчиво. 

Необходимые условия оптимальности для системы 

0( 1) ( ) ( ) ( ) ( ), (0) , ( ) , ( ) , 0,1,2...n rx t A x x t B x u t x x x t X R u t R t        с 

критерием качества 
0

0

1
( ) ( ( ) ( ( )) ( ) ( ) ( )) min,

2

T T

t

I u x t Q x t x t u t R u t




    где  

0( ) ,n n r rQ x R R R   , ( ) 0Q x  , a 0 0R 
 – постоянная матрица, имеют вид  

2

2

0

1
( , , , ) ( )[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( ) ( )]

2

( ( ), ( ), ( 1), ) [ ( ) ( )] [ ( ) ( )]
( ) { } ( 1)

1 [ ( ) ( ) ( )]

2 ( )

( )
( ) ( ) (

T T T

T

T

T T

n n nn n
n n

H x u t t A x x t B x u t x t Q x x t u t R u t

H x t u t t t A x x t B x u t
t t

x x x

x t Q x x t

x t

A x
x E A x u E

x

 


 




   

   
    

  


 



 
      
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
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где   обозначает кронекерово произведение. 

Помимо этого, в литературе рассмотрены такие аспекты, связанные с 

подходом SDRE, как стабилизация, оптимальность, робастность, а также 

влияние выбора SDC представления на свойства регулятора [50, 51, 52].  

Особенностью алгоритма является необходимость решения в реальном 

времени алгебраического уравнения Риккати с зависящими от состояния 

коэффициентами поточечно для каждого конкретного значения пространства 

состояния. В ряде случаев данный аспект может привести к большим 

вычислительным затратам на реализацию алгоритма и делает актуальным 

использование различных методов поиска приближенного решения данного 

уравнения. Асимптотические методы позволяют упростить решаемую задачу 

и получить близкое решение с меньшими вычислительными затратами. 

Для непрерывных слабонелинейных систем, техника, основанная на 

выделении в системе малого параметра в правых частях уравнения динамики 

исходной системы и приближенном решении уравнения Риккати с 

коэффициентами, зависящими от состояния была предложена в работе  [27]. 

Подход требует подбора матриц критерия в процессе построения управления. 

В [64] представлен алгоритм конструирования нелинейного гладкого 

стабилизирующего регулятора в численно-аналитической форме, который 

является субоптимальным по строящемуся критерию качества управления. 

При этом рассматривается приближение первого порядка к решению 

уравнения Риккати и разложение весовой матрицы при векторе состояния в 

критерии качества до четвертой степени, а также получены условия 

локальной и глобальной асимптотической устойчивости положения 

равновесия соответствующей замкнутой системы.  

В работе [4] отмечаются такие особенности метода проектирования 

нелинейных регуляторов, основанного на применении уравнения Риккати с 

коэффициентами, зависящими от состояния объекта, как неоднозначность 
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представления нелинейной системы в виде системы линейной структуры, 

отсутствие достаточно универсальных алгоритмов решения SDRE, 

порождение множества возможных субоптимальных решений. Отмечается, 

что суть метода состоит в переходе от уравнения Гамильтона–Якоби–

Беллмана к уравнению SDRE при синтезе управления. Также в этой работе 

предлагается метод синтеза гарантированного управления для нелинейного 

объекта с параметрами, зависящими от его состояния, подвергающемуся 

воздействию неконтролируемых возмущений, на основе представления 

задачи в виде дифференциальной игры.  

Статья [39] направлена на решение основной проблемы реализации 

оптимального управления, связанной с проблемой поиска решения уравнения 

Риккати в реальном времени. В статье предложен алгоритмический метод 

параметрической оптимизации регулятора, основанный на использовании 

необходимых условий оптимальности. Построенные алгоритмы могут 

использоваться как для оптимизации самих нестационарных объектов, если 

для этой цели выделены соответствующие параметры, так и для оптимизации 

всей управляемой системы с помощью соответствующей параметрической 

настройки регуляторов.  

1.2 Подход SDRE и обратные задачи оптимального управления. 

В виду того, что подход обеспечивает получение только 

субоптимального регулятора [50, 63] по заданному критерию качества, 

можно рассмотреть обратную задачу оптимального управления, т.е., в 

частности, установить, является ли полученная нелинейная обратная связь 

приближением к оптимальному управлению для некоторого критерия 

качества, т.е. критерий определяется апостериори. Обратные задачи 

оптимального управления для непрерывных постановок рассматривались в 

[74, 81], а для  дискретных задач оптимального управления в [87, 91, 96]. 
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Например, сначала разрабатывается стабилизирующий закон 

управления типа обратной связи, основанный на априорном знании функции 

Ляпунова, гарантирующей асимптотическую устойчивость замкнутой 

системы (control Lyapunov function, CLF), а затем устанавливается, что этот 

закон управления оптимизирует некоторый функционал качества. Тем не 

менее не существует системных методов поиска CLF, однако этот подход 

был успешно применен к некоторым классам систем. 

1.3 Устойчивость непрерывных и дискретных динамических систем. 

Рассмотрим устойчивость [7, 8] систем 

( , ( ))x f t x t  , 
0

0, ( )nx R x t x  , ( ,0) 0f t  , (1.1) 

( 1) ( , ( ))x t f t x t  ,
0

0, ( ) ,nx R x t x  ( ,0) 0f t  .  (1.2) 

Здесь предполагается существование, единственность и 

ограниченность решений (1.1) и (1.2). Под   будем понимать евклидову 

норму в пространстве nR . 

Определение 1. Тривиальное решение ( ) 0x t   уравнения (1.1) или (1.2) 

называется устойчивым по Ляпунову, если для любого 0   найдется 

0( , ) 0t    такое, что неравенство 
0

0( , , )x t t x   выполнено при всех 0t t , 

как только 
0

0( , )x t  . 

Определение 2 [3]. Тривиальное решение ( ) 0x t   уравнения (1.1) или (1.2) 

называется асимптотически устойчивым, если 

1. Оно устойчиво по Ляпунову 

2. Для всякого 0 {0 }t t     существует 0( ) 0t     такое, что 

0

0( , , ) 0,x t t x t   при 
0

0( )x t  . 
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Определение 3 [38]. Решение ( ) 0x t   системы  (1.1) или (1.2) называется 

эквиасимптотически устойчивым или асимптотически устойчивым, 

равномерно по 0x  если 

1. Оно устойчиво, т.е. для любого 0   и любого 0 0t   существует 

0( , ) 0t    такое, что если 
0

0( , )x t  , то 
0

0( , , )x t t x   для всех 

0;t t  

3. Для любого 0 0t   существует число 0( ) 0t  , такое, что если 

0

0( )x t  , то 
0

0( , , ) 0,x t t x t   равномерно относительно 

0

0( )x t  , т.е. для любого 0   найдется 0( , ) 0T T t  , такое что для 

всех  0 0( , )t t T t   и для всех 
0

0( , )x t   будет выполняться 

неравенство 
0

0( , , )x t t x  . 

Определение 4 [38]. Решение ( ) 0x t   системы (1.1) или (1.2) называется 

устойчивым равномерно относительно 0t  или просто равномерно 

устойчивым, если для любого 0   и любого 0 0t   можно указать ( )   не 

зависящее от 0t  такое, что любое решение 
0

0( , , )x t t x , 
0 0

0 0( , , )x t t x x  системы 

(1.1)  будет удовлетворять неравенству 
0

0( , , )x t t x  , 0t t , если  
0 ( ).x    

Вещественную непрерывно дифференцируемую скалярную функцию 

( , ),V t x  где 0 t   , а x  принадлежит шару (0, ) { : }S h x x h   с радиусом 

h  и с центром в начале координат в евклидовом пространстве nR , 

удовлетворяющую условию ( ,0) 0V t  , называют функцией Ляпунова. 

Обозначим через ( ) ( 0, 0,1,...)i s s i    скалярные непрерывные 

неубывающие функции такие, что (0) 0i  , ( ) 0i s   при 0s  , а через ( )i s   
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непрерывные строго возрастающие положительные функции, (0) 0i  , 

( ) 0, 0i s s    , 2 1 2 1( ) ( ),i is s s s   ).   

Утверждение 1 (первая теорема Ляпунова) [3]. Пусть  существует 

функция Ляпунова ( , )V t x  такая, что 1( ) ( , ), 0.
dV

x V t x
dt

    Тогда 

тривиальное решение уравнения (1.1) устойчиво по Ляпунову. 

Утверждение 2 (вторая теорема Ляпунова) [3]. Пусть  существует 

функция Ляпунова ( , )V t x  такая, что 1 2 3( ) ( , ) ( ), ( ).
dV

x V t x x x
dt

       

Тогда тривиальное решение уравнения (1.1) равномерно асимптотически 

устойчиво. 

То есть, функция Ляпунова определенно-положительная, а производная 

знакоотрицательная. 

Утверждение 3 [38].  Пусть  существует непрерывно дифференцируемая 

функция ( , )V t x , определенная в области 0,t x h   и удовлетворяющая 

следующим условиям: ( ,0) 0V t  , 1 1( ) ( , ) ( ),x V t x x    0.
dV

dt
  Тогда 

тривиальное решение уравнения (1.1) равномерно устойчиво. Другими 

словами,  если существует непрерывно дифференцируемая определенно 

положительная в области 0,t x h   функция, допускающая бесконечно 

малый высший предел, производная которой в силу (1.1) есть отрицательная 

знакопостоянная или тождественно равная нулю функция, то решение 

( ) 0x t   системы (1.1) равномерно устойчиво. 

Утверждение 4 (Н.Г. Четаев) [38]. Пусть существует непрерывно 

дифференцируемая в области 0,t x h   функция ( , )V t x , удовлетворяющая 

следующим условиям: 

1. ( ,0) 0V t  , 
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2. 1( , ) ( ) ( ),V t x q t x  где ( )q t  непрерывная монотонно возрастающая 

функция такая, что (0) 1q  , ( ) , ;q t t   

3. 0
dV

dt
 . 

Тогда решение ( ) 0x t   системы (1.1) эквиасимптотически устойчиво. 

Утверждение 5 [38].  Пусть существует непрерывно дифференцируемая 

функция ( , )V t x , определенная в области 0,t x h   и удовлетворяющая 

следующим условиям: 

4. ( ,0) 0V t  , 

5. 1( ) ( , )x V t x  , 

6. 3( )
dV

x
dt

  ,  

7. ( ) 0x t   равномерно устойчиво. Тогда решение ( ) 0x t   системы (1.1) 

эквиасимптотически устойчиво. 

Утверждение 6 [38].  Пусть существует непрерывно дифференцируемая в 

области 0,t x h   функция ( , )V t x , удовлетворяющая следующим условиям: 

1. ( ,0) 0V t  , 

2. 1 1( ) ( , ) ( )x V t x x   , 

3. 3( )
dV

x
dt

  . 

Тогда решение ( ) 0x t   системы (1.1) равномерно асимптотически 

устойчиво. 

Другими словами, если существует непрерывно дифференцируемая 

положительно определенная функция ( , )V t x , допускающая бесконечно 

малый высший предел, производная которой в силу системы (1.1) есть 
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функция отрицательно определенная, то решение ( ) 0x t   системы (1.1) 

равномерно асимптотически устойчиво. 

Перейдем к рассмотрению теорем об устойчивости дискретных систем. 

Утверждение 7 [3]. Пусть существует функция ,( )V t x , такая что  

1 2 3( ) ( , ) ( ), ( 1, ( , )) ( , ( ) ( )x V t x x V t f t x V t x t x        . Тогда решение 

( ) 0x t   системы (1.2) равномерно асимптотически устойчиво. 

1.4 Техника линейных матричных неравенств в оценке робастности 

регуляторов. 

Важным аспектом качества регулятора является свойство робастности. 

Определение 5. Робастность регулятора – это его способность обеспечивать 

стабилизацию замкнутой системы, в том случае, когда реальная система 

отличается от расчетной.  

В робастной постановке задачи, т.е. задаче управления в условиях 

системных неопределенностей, матрицы динамической системы 

параметрически возмущаются. Могут быть выделены такие модели 

неопределенностей, как политопическая, интервальная, эллипсоидная [71]. 

В [36] рассмотрены робастные модификации задач синтеза управления 

для систем, подверженных действию ограниченных внешних возмущений, 

действующих постоянно во времени. Описываемая методология синтеза 

робастного регулятора основана на использовании инвариантных 

эллипсоидов, и линейных матричных неравенств. Инвариантный эллипсоид 

аппроксимирует множество достижимости системы, подверженной действию 

возмущений,  а критерий инвариантности эллипсоида формируется в виде 

линейных матричных неравенств. 

В литературе есть значительное число работ, посвященных оценке 

свойств робастности линейных стационарных непрерывных и дискретных 
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линейных систем, основанных на представлении области неопределенности 

для матрицы замкнутой системы в виде выпуклых политопов [84, 85, 86]. В 

этих работах предлагаются различные наборы матричных неравенств, 

выполнение которых позволяет установить асимптотическую устойчивость 

для всей совокупности получаемых замкнутых систем, с указанием 

соответствующей функции Ляпунова. 

Определение 6. Матричный политоп – множество матриц, порождаемое 

выпуклой линейной комбинацией конечного числа матриц-вершин Ai, i = 1, 2, 

…, N, где N=2
p 
, p – число параметров неопределенности  

1 1

( ) : ( ) , 1, 0
N N

i i i i

i i

A A A    
 

 
     

 
   (1.3) 

Вершины политопа – матрицы, отвечающие различным комбинациям 

крайних значений параметров неопределенности, неопределенная постоянная 

матрица может быть записана как выпуклая комбинация матриц-вершин. 

Известно, что замкнутый выпуклый политоп, определенный конечным 

числом матриц-вершин, 1,..., NA A , является их выпуклой оболочкой [83]. 

Одной из первых работ, в которой были получены условия робастной 

устойчивости дискретных систем на основе решения линейных матричных 

неравенствах является работа [84]. В этой статье переносится на дискретный 

случай ряд условий робастной устойчивости, полученных для систем с 

непрерывным временем. В работе [83] предложено условие робастной 

устойчивости для неопределенной дискретной системы с выпуклой 

многогранной (политопической) неопределенностью вида 

( 1) ( ) ( )x t A x t  , (1.4) 

где динамическая матрица ( )A   имеет структурированную неопределенность 

и принадлежит выпуклому многогранному множеству, состоящему из N 

вершин и определенному в (1.3), а также для системы вида 
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( 1) ( )( ) ) ( )( ,x t A x t B u t     где ( ), ( )A B  выпуклые политопические 

множества. 

Определение 7. Система (1.4) является робастно устойчивой в области 

неопределенности (1.3), если собственные числа матрицы ( )A   лежат внутри 

единичного круга.  

Условия устойчивости формулируются как конечный набор линейных 

матричных неравенств, приводящих к поиску зависящих от параметра 

функций Ляпунова ( ) ( )TV x P x   с матрицей 

1 1

( ) , 1, 0
N N

i i i i

i i

P P   
 

    , 0, 1,...,T

i iP P i N   . (1.5) 

Приведем достаточные условия робастности [90]  

Утверждение 8. Если найдутся положительно определенные матрицы iP , 

1,...,i N , такие,  что выполняется следующая система неравенств  

2

2

, 1,..., ,

1
2 , 1,..., , , 1,..., ,

( 1)

6
2( ) ,

( 1)

1,..., 2, 1,..., , 1,..., ,

T

i i i i

T T T

i i j j i i i j i i j

T T T T T

j i k k i j i j k k j i j k i i j k

A PA P E i N

A PA A PA A P A P P E i N j i j N
N

A PA A PA A P A A P A A P A P P P E
N

i N j i N k j N

   

       


       


     

где E  – единичная матрица, тогда для любой ( )A   , ( )P  , заданная 

следующим образом
1 1

( ) , 1, 0
N N

i i i i

i i

P P   
 

    , является положительно 

определенной функцией Ляпунова, зависящей от параметра  , такой что 

( ) ( ) ( ) ( ) 0TA P A P     .  

В [86] получены необходимые и достаточные условия существования 

зависящей от параметра функция Ляпунова, обеспечивающей устойчивость 

матричного политопа как в непрерывном, так и в дискретном случаях. 
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Предложена процедура построения набора линейных матричных неравенств, 

формирующих достаточные условия существования функции Ляпунова с 

возрастающей точностью. По мере увеличения количества линейных 

матричных неравенств достаточные условия для существования такой 

функции становятся также необходимыми.  

С условиями дискретной робастности сопоставимы алгебраические 

критерии устойчивости, основанные на анализе характеристических чисел 

(собственных значений) квадратных матриц. Характеристический многочлен 

квадратной матрицы A  есть полином, получающийся при вычислении 

определителя матрицы A E . Корни этого полинома и есть собственные 

числа. Область изменения коэффициентов дискретного полинома 

представляется в виде прямоугольника, наклоненного на 45°, с угловыми 

точками 1 2 3 4, , ,i i i iA A A A  в плоскостях, определяемых различными парами 

коэффициентов характеристического полинома ,i n ia a   для всех 0,...,i n  [24, 

35, 78]. Известно, что устойчивость полиномов, определяемых угловыми 

точками (угловыми многочленами), является необходимым и достаточным 

для устойчивости всех многочленов, определенных любой точкой из 

допустимой области.  

1.5 Асимптотические методы. Паде аппроксимации. 

Большую роль в приближенном расчете оптимальных программных и 

синтезирующих законов управления могут играть асимптотические методы 

[25, 26, 43, 49, 62, 77, 93]. На основе выделения в моделях управляемых 

объектов малых параметров в правых частях дифференциальных 

ограничений (регулярно возмущенные задачи) или при части производных 

(сингулярно возмущенные) могут быть получены асимптотические 

разложения для приближенного поиска экстремалей при рассмотрении 

краевых задач принципа максимума Понтрягина или для приближенного 

решения задач оптимального управления. При этом постулируемые 
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асимптотические разложения решений непосредственно подставляются в 

условия вариационной задачи и строится серия задач для поиска членов 

асимптотических рядов. 

Рассмотрим применение метода пограничных функций при изучении 

экстремалей на примере сингулярно возмущенной задачи оптимального 

управления 

0

0

1

0

2

( ) ( ( ), ( )) ( , , , ) min,

( , , , ), (0) ,

( , , , ), (0) ,

T

I u x T y T F x y u t dt

dx
g x y u t x x

dt

dy
g x y u t y y

dt

 



  

 

 



 (1.6) 

где    – сильно выпуклая функция. Здесь приближение к решению ищется с 

помощью метода пограничных функций [26] в виде суммы трех рядов 

0 1( , ) ( , ) ( , ) ( , ), ( , , )T T T Tz t z t Пz Qz z x y u          , (1.7) 

         0 1, , , , , , , ,x t x t Пx Qx x y z u          где 

0 1( , ) ( ) ( ) ... ( )k

kz t z t z t z t        регулярный ряд; 

0 0 1 0 0( , ) ( ) ( ) ... ( )k

kПz Пz П z П z            левый пограничный ряд, 

существенный в начале временного интервала, с коэффициентами, 

зависящими от 0 0/ , 0,1,2...t    ; 1 1 1 1 1( , ) ( ) ( ) ... ( )k

kQz Qz Q z Q z           

- правый пограничный ряд, существенный в конце временного интервала, с 

коэффициентами, зависящими от 1 1( ) / , 0, 1, 2,...t T        

Задачи для нахождения членов асимптотического разложения решения 

нулевого порядка имеют вид 
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*

0 0 0 0 0 0 0

0

00
1 0 0 0 0

*

2 0 0 0 0 0

0 0 0 0

0

0

0 0 2 0 0 0 0

0

0 0

0

: ( ( ), ) ( , , , ) min,

( , , , ), (0) ,

0 ( , , , ), arg min ( ( ), ),

: ( ( ) (0)) min,

/ ( , (0) , (0) ,0),

(0) (0),

T

y

P I x T y F x y u t dt

dx
g x y u t x x

dt

g x y u t y x T y

П P П I H H d

dП y d g x y П y u П u

П y y y

Q P





 





  

 

 

   

  

 





0 1 1

0

0 1 2 0 0 0 0 0

*

0 0 0

: ( ( ) ( )) min,

/ ( ( ), ( ) , ( ) , ),

(0) ( ),

Q I H H T d

dQ y d g x T y T Q y u T Q u T

Q y y y T

 





   

  

 



 

где ( , , , )H z t    гамильтониан для исходной возмущенной задачи, 

0 0 0 0 0 0 1 0 0 1 0 0( ) ( (0) ( ), (0), (0),0), ( ) ( ( ) ( ), ( ), ( ), ),H H z П z H H z T Q z T T T          

0 0( ), ( )t t   сопряженные переменные, а ( )H t   гамильтониан для задачи 0.P  

Одним из подходов к построению асимптотического приближения к 

решению задач оптимального управления является прямая схема метода 

пограничных функций. В работе [43] описано ее использование для 

непрерывных систем с разнотемповыми движениями. Переложение прямой 

схемы на случай линейно-квадратичной дискретной задачи оптимального 

управления с малым шагом и смешанным критерием качества представлена в 

[14]. Там приводится обоснование формализма прямой схемы для 

дискретного случая, а также рассмотрен случай построения асимптотики 

решения при наличии фазового терминального ограничения. Суть прямой 

схемы состоит в прямой подстановке разложения (1.7) в условия задачи (1.6), 

последующим разложением условий в асимптотический ряд по степеням   и 

решением получающихся при этом вариационных задач. При этом 

предполагается, что имеются экспоненциальные оценки для членов 
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пограничных рядов 0

0 0( )
a

iП x U e
 

 , 1

1 1( ) a

iQ x U e   , где 

0 10, 0, 0U U a   , 0 10,1,2,..., 0, 1, 2,..., 0,1,2,...i       

Перейдем к рассмотрению метода Паде аппроксимации [1, 9, 40, 41, 

42]. Паде аппроксимация представляет собой один из асимптотических 

подходов, который заключается в представлении функции в виде отношения 

двух полиномов степени v   в числителе и степени w  в знаменателе 

, ( ) ( ) / ( ),v w v wPA x x x   

где 0 1( ) ... ,v

v Lx p p x p x     11 ... w

w wq x q x      и описывает поведение 

функции ( )F x  вплоть до порядка 1v w  . Т.е.  

1

, ( ) ( ) ( ).v w

v wPA x F x O x     

Коэффициенты этих полиномов определяются коэффициентами 

разложения функции в ряд Тейлора 
2

0 1 2( ) ...F x a a z a z    . Для построения 

Паде аппроксимации требуется решить систему линейных алгебраических 

уравнений   2

0 1 0 1 2 1... ... 1 ...v w

v wp p x p x a a x a x q x q x          . Если 

известно разложение функции в ряд для некоторого конечного числа точек, 

может быть построена n-точечная Паде аппроксимация. Система уравнений 

для нахождения коэффициентов полиномов  ( ), ( )v wx x   в этом случае 

имеет вид  

1 2

, 1 , 2( ) ( ) ( ), ( ) ( ) ( ),...,j j

v w v wPA x f x O x PA x f x O x    , ( ) ( ) ( ),nj

v w nPA x f x O x   

где 
1

1,
n

i

i

j v w


    
0

( ) ( )k

i ik i

k

f x a x x




    разложения функции в 

окрестности точек , {1,..., }ix i n . Полученная аппроксимация описывает 

поведение функции ( )F x  в окрестности каждой из точек , {1,..., }ix i n  с 

точностью до порядка ij . 
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Одним из возможных приложений этой техники является решение 

задач управления, а именно аппроксимация оптимального закона управления, 

например, в работах [70, 88] построена Паде аппроксимация передаточной 

функции замкнутой системы. В статье [46] продемонстрирован алгоритм 

конструирования параметрического Пада-моста для решения задачи 

оптимального управления со свободным правым концом и двумя группами 

движений. Скалярная Паде аппроксимация содержит три ряда (с 

коэффициентами, зависящими от t, быстрого и медленного времени, 

соответственно) для каждой компоненты вектора решения, как в методе 

пограничных функций Васильевой [11]. Приведена система уравнений для 

коэффициентов Паде аппроксимации и доказана теорема о ее разрешимости.  

1.6 Матричные уравнения Ляпунова и Риккати. 

Рассмотрим матричное уравнение Ляпунова 

0,T TA X XA C C    (1.8) 

где , ,n n n mA X R C R   , тогда имеет место  

Лемма Ляпунова [6]. 

1. Если A  гурвицева, то уравнение имеет единственное решение-

симметричную и неотрицательно определенную матрицу 0TX X   и

0

TA t T AtX e C Ce dt



  . 

2. Если в дополнение к условию 1 пара ( , )A C  наблюдаема (ранг матрицы 

2 1[ ... ]n TC CA CA CA 
 равен n ), то решение  уравнения (1.8) является 

положительно определенным 0TX X    (для всех ненулевых 

, 0n Tz R z Xz  ). 

3. Если пара ( , )A C  детектируема и уравнение имеет симметричная и 

неотрицательно определенное решение, то матрица A гурвицева. [6] (пара 
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( , )A C  детектируема, если пара ( , )T TA C   стабилизируема, то есть, когда 

m nR  , такая что A C   устойчива (все собственные числа лежат в левой 

полуплоскости)). 

Рассмотрим матричное дискретное уравнение Ляпунова  

0T TA XA X C C   . (1.9) 

 

Лемма Ляпунова (дискретный вариант) 

1. Если A  имеет все собственные значения внутри единичного круга 

комплексной плоскости, то уравнение (1.9)  имеет единственное решение-

симметричное и неотрицательно определенную матрицу 0TX X   и

0

( )t T T t

t

X A C CA




 . 

2. Если дополнительно пара ( , )A C  наблюдаема, то решение  (1.9) 

положительно определенное 0TX X  . 

3. Если пара ( , )A C  детектируема и уравнение имеет симметричное и 

неотрицательно определенное решение, то матрица A  имеет все собственные 

значения внутри единичного круга комплексной плоскости. 

Алгебраические матричные уравнения Риккати. Под таким 

уравнением в непрерывном случае будем понимать уравнение 

1 0T TA P PA PBR B P Q     ,  а в дискретном ‒    

1( ) 0T T T TA PA P A PB E B PB B PA Q     . 

Уравнение Риккати имеет единственное положительно определенное 

решение в том случае, если тройка матриц 
1

2( , , )A B Q  управляема и 

наблюдаема [32, 75]. 
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1.7 Приближенное решение нелинейных уравнений.  

В настоящей работе рассматривается матричное алгебраическое 

уравнение Риккати и его приближенное решение.  Оценка близости 

полученного асимптотического приближения к точному решению требует 

оценки нормы невязки решения. Уравнение для невязки можно 

рассматривать в качестве нелинейного операторного уравнения. 

Доказательство существования единственного и ограниченного решения 

непрерывного алгебраического уравнения Риккати может быть проведено с 

использованием теоремы о неявной функции [67] при выполнении условий 

на управляемость и наблюдаемость.  К существующим численным 

алгоритмам поиска приближенного решение уравнения Риккати относятся 

алгоритмы на основе метода последовательных приближений и метода 

Ньютона [67, 92]. 

Отображение ,) ,( n nf f x x R f R     называется сжимающим, если

, 1( ) ( )f x f y L x y L   . Рассмотрим уравнение 

0Fx  , (1.10) 

где F дифференцируемый по Фреше нелинейный оператор, действующий 

из некоторого множества M  банахова пространства 1E  в банахово 

пространство 2E . Здесь M , например, можно считать некоторым шаром [33].  

Определение 8. Пусть 1M  и 2M  — линейные пространства над полем  . 

Отображение 1 2:A M M  называется линейным оператором, если 

1 2 1, ,  :x x M               1 2 1 2 1 1,A x x A x A x A x A x       . 

Отображение – соответствие между элементами двух множеств, 

установленное по такому правилу, что каждому элементу одного множества 

ставится в соответствие некоторый элемент из другого множества. 

Определение 9. Линейный оператор называется ограниченным, если он 

переводит ограниченные множества в ограниченные. В частности, в 



31 

 

нормированных пространствах множество ограничено, если норма любого 

его элемента ограничена, следовательно, в этом случае оператор называется 

ограниченным, если существует число m , такое что 
2 1

1, M M
x M Ax xm   . 

Определение 10. Оператор F  называется дифференцируемым по Фреше в 

точке 0x M , если найдется такой линейный ограниченный оператор B , что  

0 0

0

( )
lim 0
h

F x h Fx h

h

  
 . 

Оператор   называется производной оператора F  в точке 0x  и 

обозначается как 0( )F x . 

Для решения уравнения (1.10) может быть использован метод 

Ньютона-Канторовича для построения последовательных приближений nx  к 

решению 
*x , основанный на последовательной линеаризации уравнения 

(1.10). Если приближение nx  найдено, то для отыскания последующего 

приближения 1nx   уравнение (1.10) заменяют линеаризованным в точке nx  

уравнением ( )( ) 0n n nFx F x x x   . Если определен действующий из 2E  в 1E  

линейный оператор 
1[ ( )]nF x  , то приходим к следующему выражению для

1nx  , где  1

1 [ ( )] 0,1,2, .n n n nx x F x Fx n

    Заметим, что для того чтобы 

избежать расчета оператора ( )nF x  на каждом шаге решения используется 

уравнение 

 1

1 0[ ( )] 0,1,2, .n n nx x F x Fx n

     (1.11) 

Введем в рассмотрение оператор 
1

0[ ( )] ,Ax x F x Fx   где 0x - 

начальное приближение для последовательности (1.11) и метод Ньютона – 

Канторовича можно рассматривать как обычный итерационный метод 

 1   0,1,2... n nx Ax n   приближенного решения уравнения  x Ax . 



32 

 

Будем считать, что оператор F  определен и дифференцируем по 

Фреше на шаре 0 0( , ) { : }S x x x x     и что его производная ( )F x  

удовлетворяет на этом шаре условию Липшица ( ) ( )F x F y L x y    . 

Далее пусть существует 
1

0 0[ ( )]Г F x  , и пусть 0 0 0 0 0,Г b Г Fx   . Нам 

понадобятся следующие четыре утверждения из [33], касающихся метода 

Ньютона-Канторовича. 

Утверждение 9.  Пусть 0 0,Г b
0 0 0 0 0

1
,

2
Г Fx h b L  

0

0 0

0

1 1 2
,

h
r

h
 

 
   тогда последовательность приближений (1.11) 

сходится к решению 
*

0 0( , )x S x r  уравнения 0Fx  . 

Утверждение 10. Пусть 
*x решение уравнения (1.10). Пусть линейный 

оператор 
*(x )F имеет ограниченный обратный, причем выполнено условие 

*

*

0

lim ( ) ( ) 0
x x

F x F x
 

   . Тогда последовательность приближений 

1

1 [ ( )]n n n nx x F x Fx


  сходится к 

*x , если начальное приближение 0x

достаточно близко к 
*x .  

Утверждение 11. Пусть дополнительно к условиям Утверждения 10 

0 0

0 0 0

0 0

1 1 2 1 1 2h h
r

h h
  

   
   , тогда уравнение (1.10) имеет в шаре 

0( , )S x   единственное решение. 

Рассмотрим также модифицированный метод Ньютона-Канторовича с 

возмущениями. Введем уравнение  

1 ,x Ax A x   (1.12) 

где A оператор 0 ,Ax x Г Fx   а 1A произвольный нелинейный оператор, 

определенный на шаре 0 0( , ),S x r    и удовлетворяющий условиям 
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1 0 0 1 1 0 0, ( , ), , , ( , ),A x a x S x A x A y q x y x y S x        где 00 1q  , 

если 0 0,a q  достаточно малы, то уравнение (1.12) близко к уравнению x Ax . 

Утверждение 12. Пусть числа 0 0,a q  такие, что 
2

0 0 0 0 02 1 2b La q b L    и   

** 0 0 0

0

1 1 2 ( )b L a
r

b L




  
  , тогда (1.12) имеет решение 

**x  в шаре 

**

0( , ),S x r  которое можно получить как предел последовательности 

приближений  

1 1 ( 0,1,2,...)n n nx Ax A x n     (1.13) 

и при этом приближение (1.13) сходится как геометрическая прогрессия со 

знаменателем 
**

0 0q q b Lr  . 

В [37, 44, 45] предложена модифицированная теорема Ньютона-

Канторовича для функционального уравнения ( ) 0Ax f x   в банаховом 

пространстве 1E , где A линейный оператор, а f нелинейный оператор. 

Заметим, что здесь не делается предположение об ограниченности линейного 

оператора. 

1.8 Выводы к главе 1. 

Рассмотрены необходимые теоретические сведения, используемые в 

работе, а именно, подход к конструированию управлений на основе решения 

уравнения Риккати с зависящими от состояния коэффициентами, подход 

SDRE, некоторые понятия устойчивости непрерывных и дискретных систем, 

техника линейных матричных неравенств в оценке робастности регуляторов, 

асимптотические методы в теории управления, Паде аппроксимации, 

матричные уравнения Ляпунова и Риккати, приближенное решение 

нелинейных уравнений. Описанные результаты используются в качестве 

теоретической базы для разработки новых методов построения 

стабилизирующих регуляторов.   
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ГЛАВА 2. ПОСТРОЕНИЕ СТАБИЛИЗИРУЮЩИХ РЕГУЛЯТОРОВ 

ДЛЯ СЛАБОНЕЛИНЕЙНЫХ ДИСКРЕТНЫХ УПРАВЛЯЕМЫХ 

СИСТЕМ  

2.1 Задача стабилизации дискретной слабонелинейной управляемой 

системы. 

Задача построения стабилизирующего управления в нелинейных 

системах продолжает оставаться актуальной в теории управления (cм. [5, 

29]). Большое внимание уделяется развитию методов управления для 

нелинейных систем с дискретным временем, которые активно изучались в 

литературе российскими и зарубежными авторами (Емельянов С. В., 

Коровин С. К., Гурман В.И., Расина И. В., Dutka A. S., Ordys A. W., Grimble 

M. J., Naidu D. S., Chang I., Bentsman J. и др.) [48, 66, 91, 94, 97]. В этой главе 

будет рассматриваться класс слабонелинейных аффинных дискретных 

систем управления с использованием техники D-SDRE (Discrete-Time State 

Dependent Riccati Equation) – дискретного уравнения Риккати с 

коэффициентами, зависящими от состояния. Техника D-SDRE была 

изначально успешно применена для конструирования стабилизирующих 

регуляторов для нелинейных систем управления с непрерывным временем 

[50], а позже перенесена и на дискретный случай. В основе подхода лежит 

использование для нелинейных задач управления с нелинейным 

квадратичным критерием на бесконечном интервале формальной структуры 

оптимального стабилизирующего регулятора в стационарных линейно-

квадратичных задачах оптимального управления, полученного путем 

решения алгебраического уравнения Риккати (ARE, DARE). В 

многочисленных работах по управлению дискретными системами 

представлены различные модификации этого алгоритма, например, [66] 

алгоритм D-SDRE с прогнозированием (Predictive D-SDRE, P-DSDRE), 

использующий технику расширяющегося горизонта для решения 

субоптимального рекурсивного уравнения Риккати, оптимизированный D-
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SDRE метод с прогнозированием (Predictive Optimized D-SDRE, PO-DSDRE), 

использующий рекурсивное уравнение Риккати с корректирующими 

тензорами и т.д. Также, в нелинейных задачах путем линеаризации матриц 

модели и критерия качества может быть построен линейно-квадратичный 

регулятор (Linear quadratic regulator, LQR). 

В качестве параметров для сравнения перечисленных алгоритмов 

рассмотрим: число нелинейных задач Коши, число матричных уравнений 

Ляпунова, число матричных уравнений Риккати, решаемых в ходе 

использования того или иного алгоритма, а также получающееся при этом 

значение нелинейного квадратичного критерия качества вдоль 

соответствующих регуляторов. Отметим, что вычислительная сложность 

решения уравнения Риккати по отношению к решению уравнению Ляпунова 

выше, а рост числа решаемых задач Коши приводит к увеличению времени 

работы алгоритма. Дополнительные вычислительные и временные затраты 

требуются для расчета матричных тензоров и кроме того, алгоритмы с 

прогнозированием требуют хранения в памяти предсказанных траекторий, а 

в некоторых случаях и управлений (см. Таблицу 1). Здесь l – горизонт 

планирования. 

Таблица 1. Сравнение алгоритмов управления. 

Критерий сравнения 

Алгоритмы управления 

L

LQR 

A

D-

SDR

E 

P

P-

DSD

RE 

C

PO-

DSD

RE 

Число нелинейных задач Коши   l+1 l+1 

Число решенных уравнений Ляпунова     

Число решенных уравнений Риккати 1 l 2 2 

Расчет матричных тензоров    +* 

Хранение коэффициентов усиления регулятора   + + 

Хранение в памяти предсказанных траекторий   + + 

Хранение в памяти предсказанных управлений    + 

*) знак + обозначает, что в алгоритме присутствует рассматриваемая операция 
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Увеличение качества управления при использовании алгоритмов P-

DSDRE, PO-DSDRE сопровождается значительным возрастанием 

вычислительной сложности и, поэтому, выбор конкретного алгоритма 

управления зависит от вида системы и требований к управлению этим 

объектом.  

Наиболее простым подходом к конструированию регулятора в 

нелинейных системах является построение линейного регулятора (LQR) для 

соответствующей, полученной после линеаризации, стационарной системы с 

квадратичным критерием качества, который в нелинейных системах уже не 

является оптимальным и не всегда обеспечивает стабилизацию.  

Здесь будем строить стабилизирующий регулятор для одного класса 

нелинейных задач с дискретным временем с помощью выделения 

формального малого параметра, дальнейшего преобразования динамической 

системы, описывающей поведение объекта управления, к квазилинейному 

виду и конструирования интегрального квадратичного критерия с 

коэффициентами, зависящими от состояния. Предлагаемый приближенный 

численно-аналитический алгоритм конструирования стабилизирующих 

регуляторов значительно снижает вычислительную сложность и 

дополнительно обеспечивает определенную субоптимальность полученного 

регулятора относительно построенного критерия. В пределе, при 

устремлении параметра к нулю нелинейность в модели исчезает. 

Итак, пусть имеется нелинейная дискретная управляемая система  

0( 1) ( ( )) ( ( )) , (0) , 0,1,2,.....x t f x t g x t u x x t     , (2.1) 

где 
nx R – вектор состояния, 

ru R  – вектор управления, ( ( )) : ,n nf x t R R  

( ( )) : n n rg x t R R  - некоторые функции. 
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Система (2.1) может быть неединственным образом преобразована в 

систему, линейную по состоянию и управлению, с коэффициентами, 

нелинейными по состоянию и зависящими от некоторого положительного 

параметра    

0 1 0 1 0

0

( 1) ( ( ), ) ( ) ( ( ), ) ( )

( ( ( ))) ( ) ( ( ( ))) ( ), (0) ,

( ) , ( ) , 0,1,2... , 0 ,n r

x t A x t x t B x t u t

A A x t x t B B x t u t x x

x t X R u t R t

 

 

 

   

    

     

 (2.2) 

где 0  – некоторое заданное число, 0A , 0B  – некоторые постоянные матрицы, 

0 1 0 1, ( ) , , ( )n n n rA A x R B B x R   , nX R  – некоторое заданное ограниченное 

замкнутое множество пространства состояний и при этом траектории 

замкнутой системы (2.2) существуют и единственны в X  при любых 

допустимых управлениях для 0,1,2...t   

Лемма 1 [89]. Рассмотрим нелинейную дискретную систему 

( 1) ( , ( ))x t f t x t  . Пусть функция ( , ( ))f t x t   непрерывна по x  для каждого 

t . Пусть , 0nM R M    компактное положительно инвариантное 

множество системы ( 1) ( , ( ))x t f t x t  . Тогда существует решение ( )x t , 

определенное на  и удовлетворяющее  для всех t .  

Множество nM R  называется положительно инвариантным [31] для 

системы (2.2), если для любой точки 
0x M  положительная полутраектория 

(для 0t  ), начинающаяся в точке 
0x   целиком содержится в M  0t  .  

Лемма 1 определяет существование решения ( )x t , ограниченного на 

и при этом ( )x t M  для всех t   и sup( ( ) )
t

x t 


 , если  :M x x   . 

Если M компактное инвариантное множество для ( , )f t x  и ( , )f t x

локально липшицева в ,0nM R M  , существует единственное решение 
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( )x t  для всех 0t   если (0)x M  [47] , 1 2 1 2| ( ) ( ) | | 0 1, |,,f x t f x t x LL x     

для всех 1 2,  ,x x M t  . 

Приведем также разностный (сеточный) аналог леммы Гронуолла–

Беллмана об ограниченности функции [2]. Если 

1

1

1

, 2,3..., ,
i

i j

j

x c m x i x c




     где ,c m   неотрицательные постоянные,  то 

1(1 ) , 1,2,...i

ix c m i    

Здесь требуется найти такое управление ( , )u x   для некоторой области 

изменения 00    , чтобы нулевое положение равновесия в замкнутой 

системе, отвечающей (2.2) было локально асимптотически устойчиво по 

Ляпунову,  т.е. в частности, ( ) 0x t   при t , равномерно по 0(0, ]  . 

При этом предполагаем, что правые части соответствующей замкнутой 

системы, получающейся при подстановке управления ( , )u x  , непрерывны, 

ограниченны и однозначны в выпуклой области nX R , что обеспечивает 

существование и единственность решения этой замкнутой системы [30]. 

Будем строить управление ( , )u x  , используя критерий  

0

0

1
( ) ( ( , ) ) min,

2

T T

t

I u x Q x x u R u




    (2.3) 

где 0( , ) ,n n r rQ x R R R    , ( , ) 0Q x   , a 0 0R 
 – постоянная матрица. 

Матрицы критерия (2.3) выбираются так, чтобы итоговый регулятор был 

стабилизирующим в (2.2). 

2.2 Алгоритм конструирования регулятора [15, 17, 21, 28, 60]. 

Будем искать управление в виде нелинейной обратной связи по 

состоянию, которая подсказывается формой оптимального синтеза  в 
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линейно квадратичной задаче Калмана-Летова, получающейся из (2.2), (2.3) 

при 0   

1

0( , ) ( ( ), ) ( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) ( ( ), ) ( ).

T

T

u x R B x t P x t B x t

B x t P x t A x t x t

   

  



     



 
(2.4) 

Замкнутая система для (2.2) вдоль нелинейного управления ( , )u x   

(2.4) имеет следующий вид 

 

 

1

0

1

0

( 1) ( ( ), ) ( )

( ( ), ) ( ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) ( ( ), ) ( )

[ ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) ( ( ), )]

cl

T

T

T

T

x t A x t x t

A x t x t B x t R B x t P x t B x t

B x t P x t A x t x t

A x t B x t R B x t P x t B x t

B x t P x t A x t



    

  

    

  





  

   

 

   

 0( ), (0) .x t x x

 

(2.5) 

Предлагаемый алгоритм построения нелинейных стабилизирующих 

регуляторов для (2.2), (2.3) основан на решении дискретного матричного 

уравнения Риккати 

1( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) 0,

T T

T

A x PA x P A x PB x R x

B x PA x Q x

    

  

  

  
 (2.6) 

где 0( , ) ( ( , ) ( , ))TR x R B x PB x    , и использует схему, предложенную для 

непрерывного случая в [27]. Заметим, что (2.6) справедливо, если матрица 

( , )R x    обратима при всех ,x  . 

Уравнение (2.6) связано с условиями оптимальности в стационарной 

линейно квадратичной задаче оптимального управления, но здесь мы его 

используем как базовую эвристическую конструкцию. Очевидно, что теперь 

решение уравнения Риккати (2.6) зависит от состояния x  и будем искать P  в 
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виде формального степенного ряда по параметру  , то есть 

0 1( , ) ( ) ... ( ) ... ( ) ...j k

j kP x P P x P x P x               

Далее будем использовать вместо ( , )P x   формальное 

асимптотическое приближение k го порядка. 

0 1( , ) ( ) ... ( ) ... ( )k j k

j kP x P P x P x P x        , (2.7) 

При этом матрица ( , )Q x   подбирается в виде

0 1( , ) ( ) ... ( )k k

kQ x Q Q x Q x      , где 0 0Q    постоянная матрица. 

Соответствующий регулятор k  го порядка имеет вид 

1

0( , ) ( ( ), ) ( , ) ( ( ), )

( ( ), ) ( , ) ( ( ), ) ( ).

k T k

T k

u x R B x t P x B x t

B x t P x A x t x t

   

  



     



, (2.8) 

Подставляя (2.7) в (2.6) и формально считая параметр   малым, 

раскладываем левую часть получающегося уравнения в ряд для каждого х, а 

затем, приравнивая в полученном разложении члены при одинаковых 

степенях  , получаем систему матричных уравнений для определения 

членов представления (2.7) 

0 1 0 1

1

0 1 0 1

0 1

( , )( ( ) ...) ( , ) ( ( ) ...)

( , )( ( ) ...) ( , ) ( , ) ( , )( ( ) ...) ( , )

( , )( ( ) ...) ( , ) ( , ) 0

T

T T

T

A x P P x A x P P x

A x P P x B x R x B x P P x B x

B x P P x A x Q x

   

      

   



     

        

      

или 
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1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0

1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0

1

0 0 0 0 0 0 0 0

[ ( ) ]

[ ( ) [ ]

[ ] [ ] [ ]

[ ] [

T T T T

T T T T T T

T T T T T T T

T T T

A P A P A P B R B P B B P A Q

A P A A P A A PA P x A P B A P B A PB

R B P B B P A A P B R B P B B P A B P A B PA

A P B R B P B B





 



    

       

      

  1

0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

2 1

1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0

1

0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

1

0 0 0 0 0 0 1 1 0 0 0

][ ]

] ( [ ]

[2 ][ ] [ ]

[ ] [

T T T T

T T T T T

T T T T T T T

T T T T

P B B P B B PB R B P B B P A

Q A PA A P A A PA A P B R B P B

B PB B PB R B P B B P A A P B A PB A P B

R B P B B P B B P B B P











   

      

      

    1

1 0 0 0 0 0 0 0 0

1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

1

1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0

1

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

][ ]

[ ] [ ][ ]

[ ] [ ][ ]

[ ] [

T T

T T T T T T

T T T T T T T

T T T T T

B R B P B B P A

A P B R B P B B P B B P B B PB R B P B

B P A B PA B P A A PB A P B A PB R B P B

B P A A P B R B P B B PA B P



 





 

     

       

     1 0 1 1

1

1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

]

[ ][ ] [ ]) ... 0.

T

T T T T T T T

A B PA

A P B A PB A P B R B P B B P A B PA B P A

 

       
 

Отметим, что для разложения матрицы обратной к 

0 1 0 0 1( , ) ( , ) ( , )( ( ) ...) ( , ) ( ( ))T TR x R x B x P P x B x R B B x              

0 1 0 1( ( ) ...)( ( ))P P x B B x      в ряд по  , параметр   должен быть 

достаточно мал, чтобы обеспечить сходимость соответствующего 

матричного ряда. Сначала, приводим матрицу ( , )R x   к виду 

0 0 0 0( ( , ))( )TE H x R B P B  , вынося справа матрицу 0 0 0 0( )TR B P B , где 





2

0 0 1 0 1 0 1 0 0 0 1 1

2 2 2 3

1 0 1 1 1 0 0 2 0 1 1 1

3 3 4 1

0 2 1 1 2 0 1 2 1 0 0 0 0

( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

T T T T

T T T T

T T T T

H x B P B x B P x B B x P B B P x B x

B x P B x B x P x B B P x B B x P x B x

B P x B x B x P x B B x P x B x R B P B

    

   

   

     

    

   

 

Если матрица 0 0 0 0( )TR B P B  имеет обратную, получаем

 
1

1 1 1

0 0 0 0 0 0 0 0( , ) ( ( , ))( ) ( ) ( ( , ))T TR x E H x R B P B R B P B E H x  


         и 

матрицу 
1( ( , ))E H x    можно представить в виде суммы бесконечного 

матричного степенного ряда 
2( , ) ( , ) ... ( , ) ...kE H x H x H x        

(считаем, что спектр матрицы ( , )H x   находится внутри единичного круга), 
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то есть имеем 
1 1 1

0 0 0 0( , ) ( ) ( ( , ))TR x R B P B E H x      

1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

2

0 0 1 0 1 0 1 0 0 0 1 1

2 2 2 3

1 0 1 1 1 0 0 2 0 1 1 1

3 3

0 2 1 1

( ) ( ( , ) ...) ( ) ( )

[ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T T T

T T T T

T T T T

T

R B P B E H x R B P B R B P B

B P B x B P x B B x P B B P x B x

B x P B x B x P x B B P x B B x P x B x

B P x B x B



   

   

 

          

    

    

  4 1

2 0 1 2 1 0 0 0 0( ) ( ) ( ) ( ) ( )]( ) ...T T Tx P x B B x P x B x R B P B   

 

При этом в разложении обратной матрицы, зависящей от  , будем 

удерживать члены до k-ой степени включительно. Собирая отдельно члены в 

уравнении Риккати (2.6) при 
0 1 2, , ,...    получаем соответствующие 

алгебраические матричные уравнения для 0 1, ( ),...P P x . Для нахождения 0P  

получаем уравнение Риккати 

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) 0.T T T TA P A P A P B R B P B B P A Q      (2.9) 

Для членов разложения при 1  имеем уравнение 

0 0 1 1 0 0 0 1 0 1

1

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0

1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

1

( )

[ ][ ]

[ ] [ ]

[ ] [ ][ ]

0

T T T

T T T T T

T T T T T

T T T T T T T

A P A A P A A PA P x

A P B A P B A PB R B P B B P A

A P B R B P B B P A B P A B PA

A P B R B P B B P B B P B B PB R B P B B P A

Q





 

   

    

    

     

  .

 

Введем матрицу 0 0 0 0 0

TR R B P B  , раскрываем скобки и собираем 

отдельно члены с 1( )P x  в левой части уравнения 

1 1 1

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

1 1

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

1 1 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0

( )

[ ]

[ ] [ ]

T T T T T T T

T T T T T T

T T T T T T

A PA P x A PB R B P A A P B R B PA A P B R B PB

R B P A A P A A P A A P B A P B R B P A

A P B R B P A B P A A P B R B P B B P B R

  

 

  

    

      

    0 0 0 1.
TB P A Q

 

В итоге получаем дискретное уравнение Ляпунова

1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1 1{ } { } ( )T T T TA A P B R B P A B R B P A P C x        или 

,0 1 ,0 1 1( ) ( ) ( ),T

cl clA P x A P x C x    (2.10) 
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 где 
1

,0 0 0 0 0 0 0

T

clA A B R B P A  , 

1 1

1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ).

T T T T T T

T T T T

T T T T T T

C x A P A x A x P A A P B x R B P A A P B R B x P A

A x P B R B P A A P B R B P A x

A P B R B P B x R B P A A P B R B x P B R B P A Q x

 

 

   

    

  

  

 

Аналогично, можно получить соотношения для нахождения 

следующих членов разложения, в частности, для 2 ( )P x  получаем также 

уравнение Ляпунова 

1

0 2 0 2 0 0 0 0 0 0 0 0 2 0

1

0 2 0 0 0 0 0 0 0 0

1 1

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) 0

T T T T

T T T

T T T T T

A P x A P A P B R B P B B P x A

A P x B R B P B B P A

A P B R B P B B P x B R B P B B P A C x





 

   

  

    

 

или ,0 2 ,0 2 2( ) ( ) ( )T

cl clA P x A P x C x   , где

2 0 1 1 1 0 1 1 1 0

1

0 0 0 0 0 1 1 1 0 1 1 1 0

1

0 0 0 0 0 1 1 1 0 1 1 1 0

0 0 1 0 1 0 1 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ]

[

T T T

T T T T

T T T T

T T T

C x A P x A x A x P A x A x P x A

A P B R B P x A x B x P A x B x P x A

A P B R B P x B x B x P B x B x P x B

B P B x B P x B B x P B

B





   

   

   

   

 1 1

0 0 1 0 1 0 1 0 0 0 0 0 0 0

1

0 1 1 1 0 1 1 1 0 0 0 0 0

1 1

0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1

0 1 0 1 0 0 0

( ) ( ) ( ) ] ]

[ ( ) ( ) ( ) ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ] [ ( )

( ) ( ) ] [

T T T T

T T T T

T T T T T

T T T

P B x B P x B B x P B R R B P A

A P x B x A x P B x A x P x B R B P A

A P B R B P B x B P x B B x P B R B P A x

B P x A B x P A A

 



 

  

   

   

   1

0 1 0 1 0 1 0 0 0

0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0

1 1

0 0 0 1 0 1 0 1 0 0 0 0 0 0 2

( ) ( ) ( ) ]

[ ( ) ( ) ( ) ] [ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ] ( ).

T T

T T T T T T

T T T T

P B x A P x B A x P B R

B P A x B P x A B x P A A P B x A P x B A x P B

R B P B x B P x B B x P B R B P A Q x



 

  

      

   

  

Замечание 1. Уравнения для членов первого, второго, третьего, а также 

высших порядков jP  имеют аналогичную форму 

,0 ,0( ) ( ) ( )T

cl j cl j jA P x A P x C x   , где ( )jC x  зависят от известных матриц и 

предыдущих членов приближения ( ), 0,1,..., 1iP x i j  . 
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Нетрудно видеть, что ( ), 1,2jC x j    симметричные матрицы, если 

1 2( ), ( )Q x Q x  симметричны. 

Введем условия 

I. Тройка матриц 
1

2
0 0 0( , , )A B Q  управляема и наблюдаема. 

II. Коэффициенты матриц 1 1 1( ), ( ), ( ),..., ( ), 1,2,...,jA x B x Q x Q x j k  – 

непрерывно дифференцируемые функции на Х, (0, ) 0    

( ( ( ), ) ( )),clA x t x t   и параметр   принимает значения из некоторого 

ограниченного интервала 0(0, ] . 

III. Пусть существуют ( ) 0,jQ x   такие, что ( ),jC x 1,2,...,j k  – 

положительно определенные матрицы x X  . 

Лемма 2. Если выполнены условия I-III, тогда формальный регулятор 

( , )ku x   (2.8) существует 0, (0, ]x X      и при этом 

0 1( , ) ( ( )) ... ( ( )) 0k k

kP x P P x t P x t       . 

Доказательство. В силу условия I и 0 0R   дискретное алгебраическое 

уравнение Риккати (2.9) имеет единственное положительно определенное 

решение 0 0P  ,  
1

,0 0 0 0 0 0 0

T

clA A B R B P A     матрица замкнутой линейной 

системы вдоль оптимального регулятора 
1

0 0 0 0( ) Tu t R B P A    имеет 

собственные числа внутри единичного круга [61]. 

Для разрешимости дискретного уравнения Ляпунова уравнения (2.10) и 

существования единственного симметричного и неотрицательно 

определенного решения 1 1( ) ( ) 0TP x P x  , достаточно, чтобы матрица ,0clA  

имела все собственные значения внутри единичного круга комплексной 
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плоскости, а матрица 1( )C x  была ограниченной и положительно 

определенной (условия II, III). [6]. В этом случае решение уравнения (2.10) 

находится в виде суммы сходящегося ряда 
1 ,0 1 ,0

0

( ) ( )T i T i

cl cl

i

P x A C x A




 . 

Аналогично, все ( ), 1,...,jP x j k  - симметричные и неотрицательно 

определенные матрицы (и ограниченные по x X  в силу условия II). Отсюда 

следует, что матрица 0 1( , ) ( ( )) ... ( ( ))k k

kP x P P x t P x t       при x X ,

0(0, ]   положительно определенная. ■ 

Замечание 2. Отметим, что в лемме идет речь о формальном регуляторе, так 

как он может быть построен и в том случае, когда параметр принимает 

произвольные значения в виду того, что используется формальное 

асимптотическое приближение.  

Замечание 3. Матрицы ( )jQ x  в критерии качества выбираются таким 

образом, чтобы условие III выполнялось. То есть, вид критерия определяется 

апостериори   введение матриц ( )jQ x  при определении ( )jP x  корректирует 

обратную связь и одновременно изменяет матрицу критерия ( , )Q x  . 

Определим матрицу 

( ( ), ) ( ( ), ) ( , ) ( ( 1), ) ( , )k T k

cl clD x t P x t A x P x t A x       . Будем рассматривать 

формальное асимптотическое разложение решения уравнения Риккати k-ого 

порядка. Имеет место 

Теорема 1. Пусть наряду с условиями I-III выполняется условие  

 IV. Найдутся окрестность положения равновесия замкнутой системы 

(2.2),(2.8) ,G X  постоянная положительно определенная матрица 0D  , 

константы 0 0   и 0 0t   такие, что ( , )D x D  для любых 

0 0, (0, ],x G t t    . 
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Тогда существуют окрестность положения равновесия 1G G , 1{0} G  и 

1 00  µ µ  , такие, что положение равновесия ( ) 0x t   системы (2.2),(2.8) 

является локально асимптотически устойчивым по Ляпунову для всех 

1 1, (0, ]x G     на отрезке 0[ , )t  , т.е. регулятор (2.8) с 

0 1( , ) ( ) ... ( ),k

kP x P P x P x       является стабилизирующим в системе 

(2.2). 

 Доказательство. Стабилизирующие свойства управления для нелинейных 

систем можно проверить с помощью анализа получающихся в процессе 

решения дискретных матричных уравнений Ляпунова [23]. Исследуем 

устойчивость замкнутой системы (2.2),(2.8) вторым методом Ляпунова. 

Введем функцию Ляпунова  

0 1( ) ( , ) ( ( ( )) ... ( ( ))) .T k T k

kV x x P x x x P P x t P x t x        (2.11) 

В силу условия I дискретное алгебраическое уравнение Риккати (2.9) 

имеет единственное положительно определенное решение 0P . Для 

разрешимости уравнения (2.10) и существования единственного 

положительно определенного решения достаточно, чтобы матрица 1( )C x  

была положительно определенной симметричной матрицей (единственным 

образом представимой в виде 1( ) ( ) ( )TC x C x C x ). Далее известно, что, если  

1

2
,0 1[ , ( ) ]clA C x – полностью наблюдаемая пара, то существует положительно 

определенное решение 1( )P x  дискретного уравнения Ляпунова (2.10), т.е. 

ранг матрицы
1 1 1 1

2 12 2 2 2
1 1 0 1 0 1 0( ) ( ) ( ) ( )

T

nC x C x A C x A C x A  
 
 

равен n [10]. 

Таким образом, в силу условия III уравнение (2.10) разрешимо единственным 
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образом и 1( )P x  является положительно определенной матрицей при любых 

x X . В этом случае решение уравнения (2.10) находится в виде суммы 

сходящегося ряда 
1 ,0 1 ,0

0

( ) ( ) 0T i T i

cl cl

i

P x A C x A




  . Аналогично, из III следует, что 

все ( ), 2,...,jP x j k  также положительно определенные матрицы, 

следовательно ( , ) 0kP x   . 

Теперь покажем, что для функции Ляпунова (2.11) существуют 

скалярные непрерывные неубывающие функции 1 2( ), ( )s s  , 

(0) 0, ( ) 0, 0, 1,2i i s s i     , для которых выполняются следующие 

неравенства 1 0 1 2( ) ( )( ( ( )) ... ( ( ))) ( ) ( )T k

kx x t P P x t P x t x t x         для 

любых x  из некоторой окрестности 1G  начала координат 1{0} G G   и 

любого 0(0, ]   из некоторой окрестности нуля на числовой оси. Введем 

0P P  , тогда очевидно, что 0 ( , )kP P x    для всех 0(0, ],   т.е. 

можно определить функцию 
2

1 min 0( ) ( )s P s  , что  для всех 0(0, ]   имеем 

2

1 min 0 0 0 1( ( ) ) ( ) ( ) ( ) ( ) ( )( ( ( )) ... ( ( ))) ( ).T T k

kx t P x t x t P x t x t P P x t P x t x t        
 

Так как коэффициенты положительно определенной матрицы ( , )kP x   

в силу условия II равномерно ограничены по x X , 0(0, ]  , можно 

определить постоянную положительно определенную матрицу P  такую, что 

( , )kP x P   для 1 0, (0, ]x G    . Например, определим P  следующим 

образом. Для всех элементов { }k

ijp  матрицы ( , ) { }, , 1,k k

ijP x p i j n    
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находим сначала соответствующие мажоранты 
k

ij ijp y  и строим 

симметричную матрицу { } , 1,ijY y i j n    с  положительными 

коэффициентами. Теперь, введем матрицу 1Y , в которой диагональные 

элементы будут больше суммы всех остальных элементов своей строки, т.е. ‒ 

1Y  симметричная матрица с доминирующей диагональю [34]. Матрица 1Y  

имеет норму больше, чем матрица Y , если в качестве нормы взять 
1

max
n

ij
i

j

y


 , 

с одной стороны, а с другой – просматривая последовательно диагональные 

миноры матрицы 1Y , видим, что они все положительны по свойству матриц с 

доминирующей диагональю [34], т.е. матрица 1Y  является положительно 

определенной. Теперь нетрудно подобрать матрицу 2Y  с доминирующей 

диагональю такую, что в смысле положительно определенных матриц 

2 1Y Y  и 2 1( , ) 0,kY P x x G    . Далее, очевидно, существует постоянная 

положительно определенная матрица 2P Y  , 1 00     что ( , )kP x P   для 

1( )x t G , 1(0, ]  . Теперь в качестве 2 ( )s  можно взять функцию 
2

max ( )P s 
 

и имеет место цепочка неравенств 

2

max 2( ) ( , ) ( ) ( )( ) ( ) ( ) ( ) ( ( ) ).T k Tx t P x x t x t P x t P x t x t       

Таким образом, получаем, что 1 2( ( ) ) ( , ) ( ( ) )T kx t x P x x x t     для 

1( )x t G , 1(0, ]  , 1 00    . Далее имеем 
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( ( 1)) ( ( )) ( 1) ( ( 1), ) ( 1) ( ) ( , ) ( )

( ) [ ( , ) ( ( 1), ) ( , ) ( , )] ( ) ( ) ( , ) ( ).

T k k

T T k k T

cl cl

V x t V x t x t P x t x t x t P x x t

x t A x P x t A x P x x t x t D x x t

 

    

       

    
 

По условию IV теоремы, существуют постоянная положительно 

определенная матрица 0D   и 0 0t   такие, что для 

1 1 1 0, (0, ], 0x G G         , 0[ , )t t   выполняется ( , )D x D  , т.е. 

найдется  скалярная непрерывная неубывающая функция 3( )s , такая что 

3( ) ( ( ), ) ( ) ( ( ) )Tx t D x t x t x t    , где 
2

3 min( ( ) ) ( ) ( )x t D x t   . Таким 

образом, согласно [3] регулятор (2.8) является стабилизирующим в системе 

(2.2), т.е. (2.8) обеспечивает локальную асимптотическую устойчивость 

замкнутой системы (для 1x G X  ) (2.2),(2.8), для каждого 1(0, ]   на 

отрезке 0[ , )t  , что и требовалось доказать. ■ 

Теорема 2. Пусть выполняются условия I-III, тогда существует 

окрестность положения равновесия ,G X  и достаточно малое 

1 0 ,0  µ µ   такие, что положение равновесия ( ) 0x t   системы (2.2),(2.8) 

является локально асимптотически устойчивым по Ляпунову для всех 

1, (0, ],x G     т.е. регулятор (2.8) является стабилизирующим в системе 

(2.2). 

Доказательство. Покажем, на примере регулятора первого порядка, что для 

любого формального регулятора k-ого порядка ( , )ku x   можно подобрать 

достаточно малое 1 , что, ( ( 1)) ( ( )) 0V x t V x t   поточечно для любых 

1, 0x X     . Для регулятора 
1( , )u x   разложение разности 
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( ( 1)) ( ( ))V x t V x t   в ряд по степеням параметра имеет вид  

,0 0 ,0 0

,0 0 ,1 ,1 0 ,0 ,0 1 ,0 1

2 2 2

,1 0 ,1 ,0 1 ,1 ,1 1 ,0

3

,1 1

( ( 1)) ( ( ))

( ( ) ( ) ( ( 1)) ( ( )))

( ) ( ) ( ( 1)) ( ) ( ) ( ( 1))

( ) ( (

T

cl cl

T T T

cl cl cl cl cl cl

T T T

cl cl cl cl cl cl

T

cl

V x t V x t A P A P

A P A x A x P A A P x t A P x t

A x P A x A P x t A x A x P x t A

A x P x t



  



    

     

     

  ,11)) ( ) ...,clA x 

 

где 
2

,0 ,1 ,2( , ) ( ) ( ) ...cl cl cl clA x A A x A x      , 
1

,0 0 0 0 0 0 0

T

clA A B R B P A  , 

1 1 1

,1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0( ) ( ) ( ) [ ( ) ]T T T

clA x A x B x R B P A B R B P x B R B P A      

1 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

1 1

0 0 1 0 0 0 0 0 1 0

1 1

,2 1 0 0 1 0 0 0 0 0

1 1

1 0 0 0 1 0 0 0 0

[ ( )] [ ( ) ] ( )

( ) ( )

( ) ( ) [ ( ) ]

( ) [ ( )]

T T T T T

T T

T T

cl

T T

B R B P B x R B P A B R B x P B R B P A B R B P A x

B R B x P A B R B P x A

A x B x R B P x B R B P A

B x R B P B x R B P A B

    

 

 

 

   

 

 

  1 1

1 0 1 0 0 0 0 0 0

1 1 1

1 0 0 0 1 1 0 1 0 0 1 0 0 1 0

( ) [ ( ) ]

( ) ( ) ( ) ( ) ( ) ( ) .

T T

T T T

x R B x P B R B P A

B x R B P A x B x R B x P A B x R B P x A

 

  



  
 

В силу условия I дискретное алгебраическое уравнение Риккати (2.9) 

имеет единственное положительно определенное решение 0P , а в силу 

условия III уравнение для 1( )P x  разрешимо единственным образом и 1( )P x  

является положительно определенной матрицей при любых x X . 

Непрерывность функции Ляпунова по x  сводится к оценке непрерывности 

суммы ряда. Известно, что в нулевом приближении ,0 0 ,0 0 0T

cl clA P A P   (
,0clA  

имеет собственные числа внутри единичного круга).  Из непрерывности 

матриц 1 1 1( ) ( ( )),A x B x Q x  по x X  (условие II) следует ограниченность 

матриц 
,1 ,2( ), ( ),...cl clA x A x , а так как   мало, то при 10    , подбор матриц 

0 1,Q Q  позволяет обеспечить ( ( 1)) ( ( )) 0V x t V x t   . Таким образом, можно 
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утверждать, что положение равновесия 0x   в системе локально 

асимптотически устойчиво по Ляпунову при всех 1, (0, ]x G    .■ 

Алгоритм построения стабилизирующего регулятора ( , )ku x   для системы 

(2.1) состоит в следующем. 

1. Система (2.1) преобразуется к виду (2.2), где 0 0 0, ,A B Q  удовлетворяют 

условию I. 

2. Находится 0P  как решение уравнения (2.9). 

3. Подбирается 1( ) 0Q x  , так что ( )C x – положительно определенная 

матрица для любого x X . 

4. Матрица 1( )P x  определяется как решение дискретного уравнения 

Ляпунова (2.10) по известной формуле 
1 ,0 1 ,0

0

( ) ( ) ( )( )T i i

cl cl

i

P x A C x A




  

[23, 34].  

5. Подбираются ( ) 0, 2,3,...jQ x j k  , так что ( )jC x – положительно 

определенные матрицы для любого x X . 

6. Матрицы ( ), 2,3,...jP x j k  определяются как решения дискретных 

уравнений Ляпунова по формуле
,0 ,0

0

( ) ( ) ( )( )T i i

j cl j cl

i

P x A C x A




 . 

7. Приближение k   ого порядка ( , )kP x   к решению равнения Риккати 

(2.6) определяется по формуле (2.7). 

8. Находится искомый стабилизирующий регулятор ( , )ku x   по 

формуле (2.8).  

Замечание 4. В пункте 5 алгоритма матрицы ( ) 0, 2,3,...jQ x j k   могут быть 

взяты равными нулю, если матрица ( , )Q x   остается положительно 

определенной. 
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Замечание 5. Так как свойство локальной асимптотической устойчивости 

замкнутой системы вдоль построенного регулятора в условиях Теоремы 1 

сохраняется при любых возмущениях параметра   в пределах области 

0(0, ]  здесь можно говорить о том, что регулятор (2.4) является 

стабилизирующим  для системы (2.2) и одновременно робастным 

относительно возмущений параметра   в пределах 0(0, ] . 

Замечание 6. Использование старших степеней разложения решения ( , )P x 

позволяет повысить качество приближения при малых значениях параметра 

 . Но учет высших приближений дает зачастую незначительный эффект и 

поэтому в практических расчетах зачастую можно ограничиваться 

разложением первого порядка
1( , )P x  . 

2.3 Исследование робастности срединного регулятора [18, 22, 53, 54, 60].  

Теперь перейдем к оценке робастности замкнутой слабонелинейной 

дискретной системы (2.2) вдоль построенного нелинейного регулятора (2.8) 

относительно одного класса параметрических возмущений. То есть будем 

исследовать способность замкнутой системы сохранять свойство 

устойчивости при наличии неопределенностей в параметрах модели.  Для 

этого воспользуемся методами оценки робастности для линейных 

дискретных стационарных управляемых систем. Здесь анализ замкнутой 

дискретной системы ведется вдоль так называемого «срединного» 

регулятора, который будет описан ниже.  

В качестве параметров неопределенности будем рассматривать 

интервальные возмущения в коэффициентах замкнутой системы при 0  , 

т.е. в матрицах 0 0( ), ( )A B  , где параметры неопределенности входят 

линейно. Параметры неопределенности 
1( ,..., ) p

p R     фиксированы и 

принимают значения из заданных ограниченных замкнутых интервалов 

{ : , 1,..., }i i i i p         . Пусть вектор 
ср  с координатами 
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, 1...
2

ср i i
i i p

 



   есть вектор средних значений параметров 

неопределенности. Введем условие 

II
1
. Тройка матриц 

1

2
0 0 0( ( ), ( ), )ср срA B Q   управляема и наблюдаема. 

Определение 11. «Срединным» линейным регулятором будем называть 

регулятор вида 

0( ) ( )ср

linu x K x , (2.12) 

который получается из (2.8) при 0  , где 

1

0 0 0 0 0 0 0 0( ) ( ( ) ( ) ( )) ( ) ( ) ( )ср T ср ср ср T ср ср срK R B P B B P A          есть матричная 

функция вектора параметров 
ср .  

Отметим, что выбор «срединного» регулятора из всех возможных 

регуляторов объясняется лишь его простотой.  

Линейная невозмущенная дискретная система (при 0  ) с 

параметрическими неопределенностями в матрицах 0 0,A B , полученной со 

«срединным» линейным регулятором имеет вид 

,0 0 0 0( 1) ( ) ( ) ( ( ) ( ) ( )) ( ).ср

clx t A x t A B K x t        (2.13) 

Так как параметры неопределенности входят в матрицы 0 0,A B  

линейно, то матрица 
,0clA  может быть представлена в форме  

,0 ,0 0 1 1 2 2( ) ...cl cl p pA A A A A A         , (2.14) 

где ,n n

kA R  0,1,...,k p  - постоянные матрицы. Такая зависимость 
,0clA  от 

компонентов вектора параметрических возмущений позволяет разделить 

параметры неопределенности в коэффициентах и учитывать интервалы их 
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изменения. Выполнение этого предположения позволяет построить 

политопическую область неопределенности и анализировать робастность 

замкнутой стационарной системы с применением линейных матричных 

неравенств, решение которых легко найти с использованием математических 

пакетов, например, Matlab.  

Если условие II
1 

выполняется, то решение уравнения Риккати (2.9) для 

средних значений вектора параметров неопределенности, 0( )срP  , является 

положительно определенной матрицей и соответствующее управление (2.12) 

с матрицей 0( )срP  является оптимальным и стабилизирующим в задаче  (2.2), 

(2.3) при 0  , 
ср  . Т.е. в  случае выполнения условия II

1 
линейный 

регулятор (2.12) существует и обеспечивает асимптотическую устойчивость 

замкнутой линейной системы ,0( 1) ( ) ( )ср

clx t A x t  , т.е. собственные 

значения матрицы ,0( )ср

clA   находятся внутри единичного круга. 

В рассматриваемом случае, если имеет место линейная зависимость 

матриц 0 0( ), ( )A B   от компонентов вектора параметров неопределенности, 

матрица линейной замкнутой системы 
,0( )clA   при всех реализация вектора 

параметров неопределенности принадлежит выпуклому политопическому 

множеству (политопу [83]) 

,0 ,0

1 1

( ) : ( ) , , : 1: 0 ,
N N

N

cl cl i i N N i i

i i

A A A R      
 

   
           

   
 

описываемому 2 pN   вершинами iA , которые вычисляются по формуле 

,0 0 0 0( ) ( ) ( ) ( )ср

clA A B K      для разных комбинаций крайних, 

максимальных 
j  и минимальных j , значений параметров 

неопределенности { [ , ], 1,...,i i i i p       [68]. Как следствие (2.14) для 

любого   найдется  , такое что 
0 0 0

1

( ) ( )
N

i i

i

A B K A  


   или
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0 1 1 2 2 1 1 2 2... ...p p N NA A A A A A A             . Любому заданному 

интервалу   соответствуют   из множества N , действительно, для случая 

одного параметра 5.882, =33.333   и неопределенной матрицы 

1.00 0.05  0             0
( ) ,

4.90 1-0.03 -7.88    -0.56
A 



   
    
   

вершины политопа равны 

1 2

1 0,050 1 0,050
,

-2,981 0,288 -2,981 -0,398
A A

   
    
   

. Для =19.608,  получаем 

1 20.5, 0.5   . 
1 1 2 2

1 0.05
( )

-2,981 -0,055
A A A  

 
    

 
. 

Таким образом, для любой реализации неопределенности   в матрице 

,0( )clA   найдется вектор 1[ ,... ]T

N   , соответствующий матрице 
1

N

i i

i

A


  из 

политопического множества  , такой что 
,0 ,0( ) ( )cl clA A  . Для заданного 

множества   необходимо показать, что каждый элемент этого множества 

определяет асимптотически устойчивую дискретную систему  

,0( 1) ( ) ( )clx t A x t  . (2.15) 

Согласно [83] система (2.15) робастно устойчива в области 

неопределенности   тогда и только тогда, когда существует зависящая от 

параметра   матрица Ляпунова ( ) ( ) 0TP P   , такая что 

,0 ,0( ) ( ) ( ) ( ) 0T

cl clA P A P      для всех  , таких что
,0( )clA   , где

1 1

( ) , 1, 0
N N

i i i i

i i

P P   
 

     и , 1,...,iP i N  - положительно определенное 

решение системы линейных матричных неравенств. Сравнение различных 

вариантов условий робастности дискретных систем управления с 

неопределенностями в форме линейных матричных неравенств представлены 

в работе [76]. Здесь воспользуемся для поиска , 1,...,iP i N
 достаточными 
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условиями робастной устойчивости системы (2.15) в виде линейных 

матричных неравенств (LMI), представленными в [90]. 

Введем условие 

V. Найдутся положительно определенные матрицы iP , 1,...,i N , 

такие, что выполняется следующая система неравенств  

2

2

, 1,..., ,

1
2 , 1,..., , , 1,..., ,

( 1)

6
2( ) ,

( 1)

1,..., 2, 1,..., , 1,..., .

T

i i i i

T T T

i i j j i i i j i i j

T T T T T

j i k k i j i j k k j i j k i i j k

A PA P E i N

A PA A PA A P A P P E i N j i j N
N

A PA A PA A P A A P A A P A P P P E
N

i N j i N k j N

   

       


       


     

 

Отметим, что согласно  [90], если условие V выполнено, тогда для 

любой 
,0( )clA   положительно определенная квадратичная форма вида  

( ( ), ) ( ) ( ) ( )TV x t x t P x t   (2.16) 

является функцией Ляпунова, зависящей от параметра  , такой что 

,0 ,0( ( 1), ) ( ( ), ) ( ) ( ) ( ) ( ) 0T

cl clV x t V x t A P A P          ,  где

1

( ) ,
N

i i N

i

P P  


   и собственные числа матрицы 
,0( )clA   лежат внутри 

единичного круга [83]. То есть, система 
,0( 1) ( ) ( )clx t A x t   робастна 

устойчива в области неопределенности  . 

Теперь перейдем к достаточным условиям робастности нелинейной 

замкнутой системы с параметрическими неопределенностями    в 

матрицах 0 0,A B   для 0,0nx X R       и  достаточно малого 0 . 

Введем условие  
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III
1
. Существует 1( ) 0Q x   такая,  что 1( , )срC x   из (2.10), 

соответствующая 0 0( ), ( )ср срA B  , является положительно определенной 

матрицей для любого x X . 

Когда условие III
1 

выполняется, очевидно, что решение уравнения 

(2.10) существует и является положительно определенной матрицей. 

Определение 12. «Срединным» нелинейным регулятором будем называть 

регулятор вида 

0 1( ) ( ) ( ) ( , ) ,ср ср

nonlinu x K x t K x x     (2.17) 

где 
1

1 0 0 1 0 0 0 1( , ) ( ){[ ( ) ( , ) ( ) ( ) ( ) ( )ср ср T ср ср ср T ср срK x R B P x B B P B x        

1

1 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0

( ) ( ) ( )] ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )]}.

T ср ср ср T ср ср ср

T ср ср T ср ср T ср ср ср

B x P B R B P A

B P A x B x P A B P x A

     

      

 

  
 

Матрица нелинейной замкнутой системы в присутствии 

параметрических неопределенностей    с нелинейным «срединным» 

регулятором (2.17) представима в следующем виде 

,0( , , ) ( ) ( , , )cl clA x A W x       , (2.18) 

где ,0 0 0 0 1( ) ( ) ( ) ( ), ( , , ) ( ( ))ср

clA A B K W x A x t        

0 1 1 0 1 1( ) ( ( ), ) ( ( )) ( ) ( ( )) ( ( ), )ср ср срB K x t B x t K B x t K x t       . 

Регулятор (2.17) представляет собой приближение первого порядка к 

регулятору (2.8) при k=1. Очевидно, что, если выполнены условия II
1
, III

1
 , 

регулятор существует для любых 0  . 

Робастность, соответственно, будет зависеть от параметра   и свойств 

матрицы ( , , )W x   . Как указано выше матрице 
,0( )clA  , где каждому 
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{ [ , ], 1,...,i i i i p       соответствует 
1

: 1: 0
N

N

i i

i

R  


   , и элемент 

политопического множества
,0( )clA  , т.е. можно переписать (2.18) в виде 

,0( , , , ) ( ) ( , , )cl clA x A W x        . (2.19) 

При малых 0   имеет место 

Теорема 3. При выполнении условий  I, II
1
 ,III

1
 ,V существует достаточно 

малое 0 0   такое, что для любых 00     замкнутая система (2.18) со 

«срединным» нелинейным регулятором (2.17) робастна по отношению к 

параметрическим неопределенностям    в матрицах 0 0,A B . 

Доказательство. Воспользуемся формализмом Ляпунова и функцией (2.16). 

Покажем, что существуют положительные неубывающие скалярные функции 

( ), 0, (0) 0, 1,2,3i is s i     [3] такие, что выполняются следующие 

неравенства для функции ( ( ), )V x t    

1 2

3

( ( ) ) ( ( ), ) ( ( ) ),

( ( 1), ) ( ( ), ) ( ( ) ), 0.

x t V x t x t

V x t V x t x t x

  

  

 

     
 (2.20) 

Первые два неравенства выполняются благодаря свойствам 

ограниченного оператора ( )P  , определенного на множестве 

1

: 1: 0
N

N

N i i

i

R  


 
     

 
 . Для того, чтобы убедиться в этом, введем 

матрицы inf inf ( )
N

P P





 , sup sup ( )
N

P P





 . Так как ограниченный оператор 

( )P   является линейным и 
N

N R  , 
1

: 1: 0
N

N

N i i

i

R  


 
      

 


замкнутое и ограниченное множество, эти матрицы существуют и им 

соответствуют ненулевые значения 1 2, N   , и по определению ( )P 
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матрицы inf sup,P P   положительно определенные постоянные матрицы. Итак, 

имеем inf sup( )P P P  , т.е. 
2

1 min inf inf( ( ) ) ( ) ( ) ( )T Tx t P x t x P x x P x       

2

sup max sup 2( ) ( ) ( ( ) ).Tx P x P x t x t     

Третье неравенство в (2.20) ( ( 1), ) ( ( ), )V x t V x t   

,0 ,0( )[ ( , , , ) ( ) ( , , , ) ( )] ( ) ( )( ( ) ( ) ( )T T T T

cl cl cl clx t A x P A x P x t x t A P A             

1( ) ( , , , )) ( ),P D x x t       где 1 ,0( , , , ) ( , , ) ( ) ( )T

clD x W x P A       

,0( ) ( ) ( , , ) ( , , ) ( ) ( , , )T T

clA P W x W x P W x           , можно переписать в 

виде 1( ( 1)) ( ( )) ( ) ( , , , )T TV x t V x t x Q x x D x x          и при этом  

,0 ,0( ) ( ) ( ) ( ) ( )T

cl clQ P A P A        положительно определенная матрица 

N  . Так как 
,0( )clA     непрерывный линейный оператор на 

множестве N  и ( )Q   непрерывна на N  можно заключить, что ( )Q   – 

равномерно ограничена на множестве N . Теперь покажем, что матрица 

1( , , , )D x     равномерно ограничена на множестве 

0{( , , , ) : , 0 , , }n

Nx x X R              . Во-первых, по 

свойствам матриц 0 ( )B  ,   1 1( ( )), ( ( ))A x t B x t , 0( )срK  , 1( ( ), )срK x t   матрица 

( , , )W x    равномерно ограничена на , ,x    ( 0, 0x X     , 

{ : , 1,..., }i i i i p        ). Во-вторых, так как ( )P   равномерно 

ограничена на 
1

: 1: 0
N

N

N i i

i

R   


 
     

 
 , а 

N

N R    замкнутое и 

ограниченное множество, и по определению матричного политопа  

,0( )clA   , тогда существуют постоянные 00, 0h   , для которых 

неравенство 1( , , , )D x h     выполняется для любых 00    , если 0  

достаточно мало. Учитывая, что матрица 1( , , , )D x     равномерно 

ограничена на множестве  , существует достаточно малое 0 0   такое, что 
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для всех 00     матрица 
2( ( ) )Q h    отрицательно определенная и 

существует матрица 1 ( ) 0Q Q   , такая что 
2

1 ( )Q Q h     , N  , 

т.е.
2

1( ( 1)) ( ( )) ( ( ) )T TV x t V x t x Q h x x Q x         и положение равновесия 

замкнутой системы (2.19) является асимптотически устойчивым по Ляпунову 

для любых 00    , где 0 0   достаточно мало, что и требовалось 

доказать. ■ 

Замечание 7. Теорема 3 может быть обобщена на случай присутствия 

возмущений в матрицах 1 1( ), ( )A x B x  при условии малости параметра . 

Таким образом, если условия Теоремы 3 выполняются, существует 

достаточно малое 0 0  , такое что для всех 00     замкнутая нелинейная 

системы (2.19) со «срединным» нелинейным регулятором (2.17) робастна по 

отношению к параметрическим неопределенностям    в матрицах 0 0,A B . 

Конечно, для произвольного 0   изложенный выше подход является 

эвристическим. 

Теорема 3 дает только достаточные условия робастности замкнутой 

системы вдоль нелинейного регулятора (2.17). 

2.4 Сравнение численных алгоритмов управления для дискретных 

систем управления с зависящими от состояния коэффициентами 

[16, 55].  

В данном параграфе проводится сравнение приведенного алгоритма 

конструирования стабилизирующего нелинейного регулятора (2.8) с 

альтернативными регуляторами. Обозначим регулятор первого порядка 

1( , )u x   как алгоритм NC (nonlinear control). Проведем сравнение алгоритма 

NC с другими стабилизирующими алгоритмами управления дискретными 

системами, также основанными на решении дискретного уравнения Риккати 

и которые были упомянуты в параграфе 2.1 (D-SDRE, P-DSDRE, PO-DSDRE, 
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LQR). В качестве критериев для сравнения алгоритмов используются: число 

нелинейных задач Коши, число уравнений Ляпунова, число уравнений 

Риккати, решенных в ходе использования алгоритма, а также значение 

нелинейного квадратичного критерия качества. Кроме этого, учитывается 

необходимость расчета матричных тензоров и хранения в оперативной 

памяти результатов промежуточных вычислений.  

Далее для простоты опустим символ   в матрицах системы (2.2) и 

критерия (2.3), т.е. будем использовать следующие обозначения, 

0,( ( )), ( ( )) ( ( )),A x t B x t Q x t R вместо ( ( ), ), ( ( ), )A x t B x t  , 0,( ( ) ), .Q x t R  

Рассматриваются следующие алгоритмы: 

1) Классический D-SDRE алгоритм, предполагающий точное решение 

дискретного алгебраического уравнения Риккати (DARE) с зависящими от 

состояния коэффициентами для каждого x [66],  

1

0

( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ))

( ( ( )) ( ) ( ( ))) ( ( )) ( ) ( ( )) ( ( )) 0,

T T

T T

A x t P x A x t P x A x t P x B x t

R B x t P x B x t B x t P x A x t Q x t

  

     

управление для которого имеет вид 

1

0( ( )) [ ( ( )) ( ( )) ( ( ))] ( ( )) ( ( )) ( ( )) ( ).T Tu x t R B x t P x t B x t B x t P x t A x t x t  
 

2) D-SDRE алгоритм с прогнозированием (P-DSDRE), использующий 

технику расширяющегося горизонта для решения субоптимального 

рекурсивного уравнения Риккати [66], 

1

0

( ( )) ( 1) ( ( )) ( ) ( ( )) ( ( )) ( 1) ( ( ))

( ( ( )) ( 1) ( ( ))) ( ( )) ( 1) ( ( )) 0,

T T

T T

A x t P t A x t P t Q x t A x t P t B x t

R B x t P t B x t B x t P t A x t

     

    
 

где ( ) ( ( ), ( 1),..., ( )), ( ) ( ( )), ( ) 0P t P x t x t x t l P t l P x t l x t l        , l   

горизонт прогнозирования, а управление имеет вид 

1

0( ( )) [ ( ( )) ( 1) ( ( ))] ( ( )) ( 1) ( ( )) ( ).T Tu x t R B x t P t B x t B x t P t A x t x t    
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3) Оптимизированный D-SDRE метод с прогнозированием (PO-

DSDRE), использующий рекурсивное уравнение Риккати с 

корректирующими тензорами [66],  

1

0

( ( )) ( ( ))
( ) ( ) ( ( )) ( ) ( 1)

( ) ( )

{ ( ( )) ( ( ))[ ( ( )) ( 1) ( ( ))]

1 ( ( ))
( ( )) ( 1) ( ( ))} ( ( )) ( ) ,

2

T

T

T T

A x t B x t
P t x t A x t u t P t

x t x t

A x t B x t R B x t P t B x t

Q x t
B x t P t A x t Q x t x t

x



     
        

     

    

 
      

 

которое может быть переписано как

1 1

0

( ( )) ( ( ))
( ) ( ) ( ( )) ( ) ( 1)

( )

1 ( ( ))
{ ( ( )) ( ( )) ( 1)} ( ( )) ( ( )) ( ) ,

2 ( )

T

T T

A x t B x t
P t x t A x t u t P t

x t x

Q x t
E B x t R B x t P t A x t Q x t x t

x t

 

    
            

 
      

 

 

где   n nE R    единичная матрица, а управление имеет вид 

1

0( ( )) [ ( ( )) ( 1) ( ( ))] ( ( )) ( 1) ( ( )) ( ).T Tu x t R B x t P t B x t B x t P t A x t x t    
 

4) Линейный регулятор (алгоритм LQR), основанный на линеаризации 

матриц системы и критерия использует уравнение 

1

0( ) 0,T T T T

lin lin lin lin lin lin lin lin lin lin lin lin lin linA P A P A P B R B P B B P A Q      

где (0), (0), (0).lin lin linA A B B Q Q    

Управление в этом случае имеет вид 

1

0( ( )) ( ) [ ] ( ).T T

lin lin lin lin lin lin linu x t K x t R B P B B P A x t     

Уравнения D-SDRE и P-DSDRE не обеспечивают поиск оптимального 

решения задачи и могут быть использованы только для построения 

субоптимальных регуляторов. При этом качество приближения к 
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оптимальному решению при использовании PO-DSDRE, конечно, зависит от 

выбора параметризации (2.2) [66]. 

Алгоритм D-SDRE требует решения l  матричных алгебраических 

уравнений Риккати в режиме реального времени, что делает его 

неприемлемым для некоторых приложений. Стратегия расширяющегося 

горизонта, используемая в алгоритме P-DSDRE, требует хранения в памяти 

предсказания будущей траектории (моделирование замкнутой системы, 

начиная с текущего состояния x  с использованием коэффициентов обратной 

связи, вычисленных для конечного горизонта l  на предыдущей итерации). 

Алгоритм P-DSDRE дает улучшение производительности по сравнению с 

алгоритмом D-SDRE, но для этого требуется сделать начальное предсказание 

всей траектории, используя какой-либо другой метод управления, например 

алгоритм D-SDRE, и, кроме того, необходимо решить одно уравнение 

Риккати с матрицами, рассчитанными для положения равновесия 0x   и 

итерировать уравнения системы в пределах конечного горизонта на каждом 

временном шаге. Алгоритм PO-DSDRE в дополнение к операциям, 

упомянутым для алгоритма P-DSDRE, также требует хранения предсказания 

для управления и вычисления тензоров (производных 

( ( )) ( ( )) ( ( ))
, ,

( ) ( ) ( )

A x t B x t Q x t

x t x t x t

  


   
 вдоль предсказанной траектории. Результаты 

сравнения представлены в Таблице 2. 

Таблица 2. Сравнение вычислительной сложности регуляторов  

Критерий сравнения 

Алгоритмы управления 

LQR NC 

D-

SD

RE 

P-

DSD

RE 

PO-

DSDR

E 

Число нелинейных задач Коши    1l   1l   

Число решенных уравнений Ляпунова  l     

Число решенных уравнений Риккати 1 1 l  2 2 

Расчет матричных тензоров - - - - + 

Хранение в паняти предсказанных траекторий - - - + + 

Хранение в паняти предсказанных управлений - - - - + 
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Сравнение показывает, что алгоритм NC не требует решения уравнения 

Риккати на каждом шаге, как алгоритм D-SDRE, и не требует решения задач 

Коши, как алгоритмы P-DSDRE и PO-DSDRE. 

2.5 Один итерационный метод решения дискретных задач 

оптимального управления с малым шагом [20, 57, 59]. 

Задачи оптимального управления дискретными системами на большом 

временном интервале или задачи с большим количеством шагов на заданном 

интервале можно привести к сингулярно возмущенным задачам управления 

[12, 26]. Их характерной чертой является наличие погранслойных эффектов и 

нахождение их решений на основной части интервала в малой окрестности, 

так называемых, магистральных участков, которые есть решения или 

комбинации частей решений предельных задач.  

  Если магистраль непрерывна, то оптимальную траекторию можно 

аппроксимировать траекторией, состоящей из трех участков: участка выхода 

на магистраль, участка, расположенного в окрестности этой магистрали, и 

участка перехода от магистрали в окрестность конечной точки. Такая 

структура решений типична для сингулярно возмущенных задач 

оптимального управления [26] в классической постановке, т.е. в задачах без 

ограничений на управление и состояние. Для нахождения приближенного 

решения сингулярно возмущенных задач оптимального управления может 

быть использован метод прямой схемы [25]. Суть метода заключается в 

непосредственной подстановке постулируемого асимптотического 

разложения решения в функционал и условия задачи и последующем 

решении задач для нахождения членов асимптотики. Асимптотическое 

разложение ищется в виде суммы трех рядов по целым степеням малого 

параметра (малого шага) – регулярного ряда, с коэффициентами, зависящими 

от t , левого и правого пограничных рядов. До сих пор в литературе [26] при 

использовании прямой схемы изучались задачи, где для всех элементов 
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асимптотических приближений получались задачи оптимального управления 

и оптимизации, имеющие единственное решение.  

Здесь предлагается приближенный метод решения дискретных задач 

оптимального управления с большим количеством шагов на заданном 

интервале при наличии ограничений на состояние и управление, основанный 

на использовании решений, полученных при малом числе шагов в качестве 

начальных приближений для решения задач с большим числом шагов. 

Имеем следующую задачу  

1

0

( ) ( ( )) ( ( ), ( )) min
l

u
k

I u x T F x k u k   




   , (2.21) 

0( ) ( , , ), (0) , , , ,n rx t t x u x x x R u R        (2.22) 

( ( ), ( )) 0,x t u t   (2.23) 

где  : , 0,1,..., 1 [0, ],t T t t k k l T        T фиксированное 

положительное целое число, 0
T

l
    – малый шаг, 0  малый параметр,

x  – вектор состояния, u  – вектор управления, ( )I u  – критерий качества 

управления, ( , , )t x u , ( ( ), ( )) mx t u t R   – векторные функции, m число 

ограничений.  

Задача (2.21)-(2.23) – сингулярно возмущенная, т.к. при 0   

происходит потеря дополнительных условий на границах временного 

интервала, необходимых для однозначного определения траекторий 

исходной задачи. Для компенсации этой потери в решении имеются зоны 

быстрого изменения – пограничные слои. На основе прямой схемы  получим 

соотношения для формального нулевого равномерного асимптотического 

приближения [25] к решению приведенной вариационной задачи. Имеем  

   0 0 0 0 1 0 0 0 0 1( ) ( ) ( ) , ( ) ( ) ( ) ,x t x t x Q x u t u t u Q u          (2.24) 
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где 0 0( ), ( )x t u t  – члены регулярных рядов для траектории и управления, 

0 0 0 0( ), ( )x u   – нулевые члены левых пограничных рядов, зависящие от 

0 0/ , 0,1,2...t     и существенные в начале временного интервала, 

   0 1 0 1,Q x Q u   – нулевые члены правых пограничных рядов с 

коэффициентами, зависящими от 1 1( ) / , 0, 1, 2,...t T       , существенные 

в конце временного интервала. Эти представления подставляются во все 

условия и в целевую функцию, после чего все соотношения (2.21)-(2.23) 

раскладываются в соответствующие ряды. 

Метод приближенного решения задачи (2.21), (2.22) без наличия 

ограничений был рассмотрен в [14]. Линейный случай задачи с 

терминальным критерием управления приведен в [20, 57, 59]. Здесь 

предлагается подход к учету ограничений и использованию решений, 

полученных при малом числе шагов в качестве приближений для решения 

задач с большим числом шагов. Подход демонстрируется на частном случае 

задачи (2.21)-(2.23) 

1
2 2

1

0

( ) ( ( ) ) ( ( ) ) ( ( ) ( )) min
l

T

зад зад
u

k

I u x T x F x T x x k u k  




      , (2.25) 

0

1 1( ) ( ) ( ) ( ), (0) , , , ,n n rx t Ax t Bu t f t x x x R f R u R          (2.26) 

( ) ( ), ( ) 0, ( ) 0,du t x t u t x t     (2.27) 

где  : , 0,1,..., 1 [0, ],t T t t k k l l       l   положительное целое число, 

0
T

l
    – малый шаг, 0  некоторое положительное число, x – вектор 

состояния, задx  – желаемое состояние объекта в конечный момент времени 

t T , u  – вектор управления, ( )I u  – критерий качества управления,  1 0F   – 

положительно определенная матрица, , ,n n n r n rA R B R d R     – постоянные 

матрицы, 1( )f t  – векторная функция. 
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Траектория системы вдоль допустимого управления ( )u t  имеет вид 

 
1

1 1

* *

0

( ) (0) ( ) ( )( ) ( ) .
k

k k s k s

s

x k A x A d s A E B B A u s  


   



      

Сначала (2.24) подставляется в условия (2.26), (2.27) и в целевую 

функцию (2.25), после чего выражения (2.25)-(2.27) раскладываются в 

соответствующие ряды.  

Ряды для 0 0 0 0 1( ), ( ), ( )u t П u Q u   приближенно ищутся в виде 

0 0

1 1

0 0 1

0 0 0 0 0 0 0

0 1 1 1 0 1 1

( ) ... ,

( ) , / 2, ( ) 0, / 2,

( ) , / 2, ( ) 0, / 2,

k

k

a

a

u t b b t b t

П u U e l П u l

Q u U e l Q u l





   

   



   

   

     

 (2.28) 

где 0 ( )u t  представлено в виде полиномиальной функции, 0 1, ,..., r

kb b b R 

коэффициенты полинома, k   некоторое положительное целое число, 

0 1, rU U R , 0 1, 0a a  неизвестные константы. Тогда получаем управление  

0 0 0 1 1 0 0 0 0 0 0 1 1 1( , , , , , ) ( , ) ( , , ) ( , , )u b U a U a t u b t П u U a Q u U a    . (2.29) 

Рассмотрим 1( ) ( ) ( ),T

зад задx x x F x x     0xx  , так как 1 0F  , поэтому 

функция ( )x  имеет единственную точку минимума arg min ( ) задz x x  . 

Для поиска (2.29) получаем задачу  

  

 

    

0 0 1 1

0 0 0 1 1

0 0 0 1 1

1
2 2

0 0 0 1 1 0 0 0 1 1

0

, , , ,

( , , , , , ),

( ( , , , , , ), )

( ( , , , , , ), ) ( , , , , , )

min ,

T

зад

зад

l

k

b U a U a

I x u b U a U a T T x F

x u b U a U a T T x

x u b U a U a k k u v U a U a k   




  

  

  




 (2.30) 
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0 0 0 1

0

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 1 0 0

( ) ( ) ( , ) ( ),

( 1) ( ) ( , , ), (0) (0),

( 1) ( ) ( , , ), (0) ( ),

x t Ax t Bu p t f t

П x AП x BП u U a П x x x

Q x AQ x BQ u U a Q x z x T

  

  

  

    

    

 (2.31) 

0 0 0 0 0 0 1 1 1 0 0 0 0 1

0 0 0 0 0 0 1 1 1

0 0 0 0 1

( ( , ) ( , , ) ( , , )) ( ) ( ) ( ),

( , ) ( , , ) ( , , ) 0,

( ) ( ) ( ) 0.

d u b t П u U a Q u U a x t П x Q x

u b t П u U a Q u U a

x t П x Q x

   

 

 

    

  

  

 (2.32) 

Введем условие  

VI. Существует матрица 
1( )E A  . 

При условии VI имеем 
1 1

0 0 1( ) ( ) ( , ) ( ) ( )x t E A Bu p t E A f t     . 

Задача (2.30)-(2.32) есть задача нелинейного программирования с 

ограничениями типа равенств и неравенств, оптимум которой ищется по 

вектору параметров 0 0 0 1 1( ,..., , , , , )kb b U a U a  . В результате решения этой 

задачи при фиксированном числе шагов можно получить хорошее 

качественное приближение к управлению, на основе которого можно строить 

уточняющие процедуры для поиска управления с гораздо большим числом 

шагов, которое отвечает меньшему значению  . 

Задача с терминальным критерием. Рассмотрим также следующую задачу 

с терминальным критерием 

1( ) ( (1) ) ( (1) ) minT

зад зад
u

I u x x F x x    , (2.33) 

0

1 1( ) ( ) ( ) ( ), (0) , , , ,n n rx t Ax t Bu t f t x x x R f R u R         (2.34) 

( ) ( ), ( ) 0, ( ) 0,du t x t u t x t    (2.35) 

где  : , 0,1,..., 1 [0,1],t T t t k k l l       положительное целое число, 

1
0

l
    – малый шаг, x – вектор состояния, задx  – желаемое состояние 

объекта в конечный момент времени 1t  , u  –  вектор управления, ( )I u  – 
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критерий качества управления,  1 0F   – положительно определенная 

матрица, , ,n n n r n rA R B R d R     – постоянные матрицы, 1( )f t  – векторная 

функция. 

Управление ищется в виде 

     0 0 0 0 0 1 0 1( , ) , 0,1,2,..., 0, 1, 2,...u t u t П u Q u            (2.36) 

Получаем следующую задачу для членов асимптотических рядов 

(задачи 0P  – нахождения магистральной части оптимального решения, задачи 

0П P  – перехода из начального состояния на магистраль, задачи 0Q P – 

перехода с магистрали в заданное конечное состояние) 

 

  
0 0 0

0 1 0

1
2

0 0 0 0 1

0

2

0 0 0 0 1
, ,

( ( (1, ),1) ) ( ( (1, ),1) )

( ) ( ) ( )

( ) ( ) ( ) min ,

T

зад зад

l

k

u П u Q u

I x u x F x u x

x k П x Q x

u k П u Q u

 

   

  





   

   

   

  

0 0 0 1( ) ( ) ( ) ( )x t Ax t Bu t f t   , 

0 0 0 0 0 0( 1) ( ) ( )П x AП x BП u     , 
0

0 0(0) (0)x П x x  , 

0 1 0 1 0 1( 1) ( ) ( )Q x AQ x BQ u     , 0 0(0) (1),задQ x x x   

0 0 0 0 1 0 0 0 0 1( ( ) ( ) ( )) ( ) ( ) ( )d u t П u Q u x t П x Q x        , 

0 0 0 0 1( ) ( ) ( ) 0u t П u Q u    , 0 0 0 0 1( ) ( ) ( ) 0x t П x Q x    , 

(2.37) 

где    коэффициент при дополнительном регуляризующем члене. 

Введем следующее условие 

VII. Существуют множества допустимых непрерывных управлений 

0 0 0 1( ), ( ),П u Q u   удовлетворяющих при всех 0 10,1,2,..., 0, 1, 2,...      

ограничениям (2.37) и постоянные 0 1 0 10, 0, 0, 0U U a a     , такие, что для 

всех допустимых пар 0 0 0 0( ), ( )П х П u   и 0 1 0 1( ), ( )Q х Q u   имеют место оценки 
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0 0

0 0 0 0 0 0( ( ) , ( ) ) , 0,1,2,...
a

П х П u U e
  

  ,

1 1

0 1 0 1 1 1( ( ) , ( ) ) , 0, 1, 2,...aQ х Q u U e        
(2.38) 

и при этом программное управление (2.36) является допустимым в задаче 

(2.33)-(2.35) при достаточно малых 0  . 

В результате решения этой задачи при меньшем числе шагов можно 

получить хорошее качественное приближение к управлению при заданном 

числе шагов. При выполнении условия VII с увеличением числа шагов 

невязки в условиях задачи (2.33)-(2.35) вдоль последовательности 

управлений не возрастают. 

2.6 Выводы к главе 2. 

Построено приближенное решение матричного алгебраического 

уравнения Риккати и на его основе получен стабилизирующий регулятор для 

слабонелинейной дискретной системы управления с параметром и с 

коэффициентами, зависящими от состояния. Показано, что при выполнении 

ряда условий построенный регулятор обладает свойством робастности 

относительно параметрических неопределенностей в линейных частях 

системы.  

Построено приближенное решение дискретных задач оптимального 

управления с малым шагом на основе прямой схемы метода пограничных 

функций. 
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ГЛАВА 3. КОНСТРУИРОВАНИЕ ПАДЕ-РЕГУЛЯТОРОВ ДЛЯ 

НЕЛИНЕЙНЫХ НЕПРЕРЫВНЫХ СИСТЕМ УПРАВЛЕНИЯ  

 

3.1 Асимптотические разложения решений алгебраического уравнения 

Риккати по малому и большому значениям параметра [19, 56]. 

Здесь показывается возможность построения параметрического 

семейства регуляторов для нелинейных управляемых систем с параметром на 

основе матричной Паде аппроксимации, при этом коэффициенты усиления в 

контуре обратной связи ищутся с использованием техники SDRE. Строятся 

два асимптотических приближения к решению матричного уравнения 

Риккати с зависящими от состояния коэффициентами: в окрестности малых и 

больших значений параметра, соответственно, и после этого эти разложения 

объединяются с использованием матричной Паде аппроксимации. 

Рассмотрим регулярно возмущенную задачу оптимального управления 

для нелинейных систем с параметром и непрерывным временем 

0

0 1 0 1

( , ) ( , )

( ( )) ( ( )) , (0) ,

x A x x B x u

A A x x B B x u x x

 

 

  

    
 (3.1) 

 0

0

( , ) inf ,T T

u
x Q x x u R u dt



   (3.2) 

где  ( ) , ( ) , 0,n rx t X R u t R t     , nX R  – некоторая заданная 

ограниченная область пространства состояния, 

0 1 0 1, ( ) , , ( )n n n rA A x R B B x R   , 0 0,A B  – постоянные матрицы, 

0( , ) , ,n n r rQ x R R R     ( , ) 0Q x   , 0 0,R    0,    – параметр, который 

может принимать как большие, так и малые значения.  

Управление в виде синтеза ищется по схеме решения линейно-

квадратичной задачи оптимального управления на полуоси, т.е. в виде 
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1

0 ( , ) ( , )Tu R B x P x x   , (3.3) 

где ( , )P x   – есть решение для каждого ,x   матричного алгебраического 

уравнения Риккати с коэффициентами, зависящими от состояния 

1

0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) 0,

T

T

A x P x P x A x

P x B x R B x P x Q x

   

    

  

  
 

(3.4) 

где 
2

0 1 2( , ) ( ) ( )Q x Q Q x Q x      и 0 0Q   – постоянная матрица.  

Сначала строится формальное асимптотическое приближение второго 

порядка для решения уравнения Риккати ( , )P x   при малых значениях   

2

2 0 1 2( , ) ( ) ( )P x P P x P x     . (3.5) 

Подставляя (3.5) в (3.4), а затем, приравнивая члены при одинаковых 

степенях  , получаем следующие соотношения  

   

   

   

1

0

1 1

0 0

1

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1

0 1 1 0 0 1 1 0 0 0 1

0 0 0

1

0 0

1 1

2 0 0 0 0 0

1

0 0

1

2

0,

( ) ( )

( ) ( ) ( ) ( ) ( ) 0,

( ) ( )

 

 

( ) ( )

 

T T

T
T T

T
T T

T
T T

P R P

x R R x

x x R P x x R P x

x

P A A P B B Q

P A B B P A B B P P

P A B B A B B P Q

P A B B PR A B B P P

P A

R x

x x



 

 

 





 

   

  

  

 



 

    

   

1 0 0 1 1 0 0 1

1 0 0 1 1 0

1 1

0 0

1

0 20 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0,

T
T T

T

B B Px R x x R P x

P x x R P

A B B P

B P B B P Bx x xQ

 



  

  



 

 (3.6) 

первое из которых является непрерывное алгебраическое уравнение Риккати, 

а два других – матричными уравнениями Ляпунова.  

Перейдем к построению формального асимптотического приближения 

второго порядка к решению уравнения (3.4) в случае, когда параметр   
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принимает большие значения. Сделаем замену 
1




  и тогда решение (3.4) 

будем искать в виде  

  2

2 0 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( ).P x P x P x P x      (3.7) 

После приравнивания членов при одинаковых степенях   получаем 

следующую систему для членов представления (3.5) 

   

1

0 1 0 1 0 2

1 1

1 1 0 1 0 0 1 0 1 1

1 1

1 0 0 0 1 0 0 1 1 0 0 0

1

1

2 1 0 1 0 0

ˆ ˆ( ) ( ) ( ) ( ) ( ) 0,

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 0,

ˆ ˆ ˆ( ) ( ) ( ) ( ) (

T

T T

T T T

T

P x B x R B x P x Q x

P x B x R B x P x P x B x R B x P x

A x P x B R B x P x P x A x B x R B P x

Q x

P x B x R B x P x P x



 

 



 

  

    

 

 

   

   

1

1 0 1 2

1 1

0 1 1 0 0 0 0 0 0 0 1 1

1 1

1 0 1 0 0 1 1 1 0 0 1 0

1 1

1 1 0 1 1 0 0 0 0 0 0

ˆ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 0

T

T T T

T T T

T T

B x R B x P x

A P x B x R B P x P x A B R B x P x

A x P x B x R B P x P x A x B R B x P x

P x B x R B x P x P x B R B P x Q



 

 

 



    

    

    ,

 (3.8) 

где первое уравнение является непрерывным алгебраическим уравнением 

Риккати, а два других – матричными уравнениями Ляпунова.  

Из леммы Ляпунова (см. §1.6) вытекают следующие два утверждения 

Теорема 4. Пусть матрицы 0 1 0 1, ( ), , ( )A A x B B x  и 0 1 20, ( ) 0, ( ) 0Q Q x Q x    

при каждом x X удовлетворяют условиям 

1) 
1

0 0 0 0 0, , , ,nrank B A B A B n   

1 1 1

12 2 2
0 0 0 0 0, , , ;nrank Q A Q A Q n 

 
 

 

2)    0 1 1 0 0 1 1 0 0 0

1

0 0 1

1( ) ( ) ( ) ( ) ( ) 0
T

T TP A Bx x R P x x R PB A B xB P Q      ; 

3)    1 1 1 0 0 1 1 0 0

1 1

0 0 1( ) ( ) ( ) ( ) ( ) ( )
T

T TP A B B P Ax x x R x x R PB xB P     

   1 0 0 1 1 00 0 21

1( ) ( ) ( ) ( ) ( ) 0
T

P x x R P xB P B B P B Qx x     , 



74 

 

тогда при всех , 0x X   : 

a) уравнение Риккати в (3.6) имеет положительно определенное решение 0P ; 

b) уравнения Ляпунова в (3.6) имеют единственные положительно 

определенные решения 1 2( ), ( )P x P x .  

Доказательство. Уравнение 0 0 0 0 0 0 0 0 0

1

0  0T TP RP A A P B B P Q     в (3.6) 

является уравнением Риккати и при условии 1 теоремы имеет положительно 

определенное решение 0P . Из условия 1 также следует, что  

0

1

00 0 0) 0Re ( TRA B B P   . Уравнения Ляпунова в (3.6) относительно 1( )P x  и 

2( )P x  имеют для каждого х положительно определенные решения при 

выполнении условий 2 и 3. Кроме того, так как 10 2, ( ), ( ) 0P PP x x   при всех 

x X ,  то, очевидно,
2

2 0 1 2( , ) ( ) ( ) 0P x P P x P x      , что и требовалось 

доказать. ■ 

Теорема 5. Пусть матрицы 0 1 0 1, ( ), , ( )A A x B B x  и 0 1 20, ( ) 0, ( ) 0Q Q x Q x    

при каждом x X удовлетворяют условиям  

1) 1( )rank B x n ,
1

2
2( )rankQ x n ; 

2)
1

0 1 0 1
ˆRe { ( ) ( ) ( ) } 0TP x B x R B x   ; 

3)   1 1

1 0 0 0 1 0 0 1 1 0 0 0 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0;T T TA x P x B R B x P x P x A x B x R B P x Q x           

4)    1 1

0 1 1 0 0 0 0 0 0 0 1 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )T T TA P x B x R B P x P x A B R B x P x    

   1 1

1 0 1 0 0 1 1 1 0 0 1 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TA x P x B x R B P x P x A x B R B x P x     

1 1

1 1 0 1 1 0 0 0 0 0 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 0T TP x B x R B x P x P x B R B P x Q     , 

тогда при всех , 0x X   : 
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a) уравнение Риккати в (3.8) имеет положительно определенное решение

0
ˆ ( )P x ; 

b) уравнения Ляпунова в (3.8) имеют единственные положительно 

определенные решения 1 2
ˆ ˆ( ), ( )P x P x .  

Доказательство. Матричное уравнение 0 0 2
ˆ ˆ( ) ( ) ( ) ( ) 0P x S x P x Q x   в (3.8) 

представляет собой частный случай уравнения Риккати

1

0 0 0 1 0 1 0 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TG P x P x G P x B x R B x P x Q x     , где 0G  . Условием 

разрешимости и положительной определенности решения этого уравнения 

является условие 
1

1 1 1( ), ( ), , ( ) ,nrank B x GB x G B x n x X       т.е. 1rank B n  

и размерность вектора управления и вектора состояния совпадают, а также 

условие 
1 1 1

12 2 2
2 2 2( ) , ( ) , , ( ) ,nrank Q x GQ x G Q x n x X 

   
 

 т.е. 
1

2
2( )rankQ x n

(условие 1 теоремы). Решения 1
ˆ ( )P x   и  2

ˆ ( )P x  уравнений Ляпунова в (3.8)  

имеют для каждого х положительно определенные решения, когда 

выполняются условия 2, 3 и 4. Кроме того, так как 0 1 2
ˆ ˆ ˆ( ), ( ), ( ) 0P x P x P x   при 

всех x X , то, очевидно,   2

2 0 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( ), 1/P x P x P x P x        , что и 

требовалось доказать. ■ 

После определения условий существования членов представлений (3.5) 

и (3.7) устанавливаются оценки близости полученных асимптотических 

приближений к точному решению уравнения Риккати (3.4). Это уравнение 

имеет положительно определенное решение ( , )P x  , если тройка матриц 

1

2( ( , ), ( , ), ( , ) )A x B x Q x    поточечно управляема и наблюдаема для всех 

, (0, )x X    .  

Перейдем к оценке 2( , ) ( , )P x P x  , где 
2

2 0 1 2( , ) ( ) ( )P x P P x P x     . 

Невязку решения уравнения Риккати обозначим через Z , т.е. 
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   

   

2 2

0 1 2 0 1 2

2 2

0 1 2 0 1 2

( ) ( ) ( , ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( ) ( , ) 0,

TP P x P x Z A x A x P P x P x Z

P P x P x Z R x P P x P x Z Q x

     

     

        

        
 

(3.9) 

где 
1 1 1 1

0 0 0 0 1 0 0 0 0 1( , ) ( , ) ( , ) ( ) ( )T T T TR x B x R B x B R B B x R B B R B x             

2 1

1 0 1( ) ( ) ,TB x R B x  0 1 0 1( , ) ( ), ( , ) ( )A x A A x B x B B x       . 

Для оценки невязки Z  будем использовать теорему Ньютона-

Канторовича (§1.7). Группируем в (3.9) слагаемые при одинаковых степенях 

параметра   и отдельно выделяем члены, содержащие невязку Z. Члены при 

нулевой, первой и второй степени параметра не содержащие Z сокращаются 

по построению матриц 210, ( ), ( )x xP P P , в итоге получаем уравнение 

3( , , ) ( , ,ε ε ε ( ,ε) 0)Z xx Z x    , (3.10) 

где 
1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0( , , ) )ε ( ( )T T T TZ x Z A B R B P A P B R B Z ZB R B Z         

1 1 1

1 1 1 0 0 0 0 0 1 0 0 1 0 0

1 1 1 1

0 0 0 1 1 0 0 0 0 1 0 0 0 1

1 2 1 1

1 0 0 0 1 0 1 0 0 1 0 1

1

( ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ) ( ( ) ( ) ( ) ( )

T T T T

T T T T

T T T

ZA x A x Z ZB x R B P ZB R B x P P B x R B Z

P B R B x Z ZB x R B Z ZB R B x Z ZB R B P x

P x B R B Z ZB x R B x P P B x R B x Z

ZB





  

   

  

     

    

   

 1 1 1 1

0 1 1 0 0 1 0 0 1 1 1 1 0 0

1 1 1

1 0 0 1 2 0 0 0 0 0 0 2

3 1 1 1

1 0 1 1 1 1 0 1 2 1 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T

T T T

T T T

x R B x Z ZB x R B P x ZB R B x P x P x B x R B Z

P x B R B x Z P x B R B Z ZB R B v x

ZB x R B x P x P x B x R B x Z P x B x R B Z

   

  

  

   

   

   

1 1 1

2 0 0 1 1 0 0 2 0 0 1 2

4 1 1

2 1 0 1 1 0 1 2

( ) ( ) ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ( ) ( )),

T T T

T T

P x B R B x Z ZB x R B P x ZB R B x P x

P x B x R B x Z ZB x R B x P x

  

 

   

 
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   1 1

0 0

1 1 1

1 0 1 0 0 1 0 0 0 0 0 0 1 2

1 1 1

1 1 1 0 0 1 1 0 0 1 1

2 1 1 0 0 0 0 0 1 0 0 0 1

1

0

1( , ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) ) ( )

( )( ( ) ( ) ( ) ( )))

ε)=(

ε   (

T T T T

T T

T

T

TP x R P x P P x P R P x

A x P B x R B P x B R B P B R B x P x

P x A x B x R B P B R B x P B R B P

x B B B B B B

x

P

 

  

  

 

    



  

 







1 1

0 0 1 0 1

1 1 1

1 1 0 0 1 0 0 1 2 2 1 0 1 0

1 1 1

1 0 0

1 1 1

1 0 0 1 1 2 0 0 0 2

2 1

2 1 0

( ) ( ) ( ) ( ) ( ( ) ( )

( ) ( ) ( ) ( ) ) ( ) ( )( ( ) ( )

( ) ( ) ( ) ( )) ( ) ( ))

( ( ) ( )

T

T T T

T

T T T

x x R x P x P B x R B x

P x B x R B P x B R B x P x P x B x R B x P

B x R B P x B R B x P x P x B R B P x

P x B x R

B B

B

 

  

  



 

   

   

 1 1

0 2 2 0 0 1 2 2 1 0 1 1

1 3 1

1 1 0 1 2 2 1 0 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( )).

T T T

T T

P x P x B R B x P x P x B x R B x P x

P x B x R B x P x P x B x R B x P x

 

 

  

 
 

Далее переходим к нелинейному операторному уравнению (3.10)  и 

проводим его линеаризацию. Введем вектор 

 11 12 21 22 1 2n nz Z Z Z Z Z Z  и, соответственно, 

преобразуем уравнение (3.10)  переходя к нелинейному операторному 

уравнению  

( , ) 0F z   , (3.11) 

где ( , )F z    оператор, дифференцируемый по Фреше ,z  , действующий 

,z   из некоторого шара 
2

0 0( , ) { : }nS z z R z z     M  евклидова 

пространства 1E  векторов размерности 
2n  в евклидово пространство 1E . 

Докажем, что этот оператор является сжимающим на шаре M  из 1E , что 

позволит установить существование и единственность  решения Z  в шаре 

M  с использованием метода Ньютона-Канторовича, описанного в §1.7. 

Согласно (1.11), если приближение nz  найдено, то для отыскания 

последующего приближения 1nz   уравнение (3.11) заменяют 

линеаризованным в точке nz  уравнением 0( , ) ( , )( ) 0n nF z F z z z    . 

Если определен линейный оператор 
1

0[ ( , )]F z   , то приходим к 

следующему уравнению для 1nz   
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 1

1 0[ ( , )] 0,1,2 .( ) ,,n n nz z F z F z n 

     (3.12) 

Воспользуемся модификацией метода Ньютона-Канторовича с 

возмущениями (1.12). Введем в рассмотрение оператор 

0( , ) ( ) ( , )J z z Г F z    , где 
1

0 0( ) [ ( , )]Г F z   , где в качестве начального 

условия возьмем 0 0z  . Тогда можно свести поиск решения (3.12) к 

уравнению ( , )z J z   или 0 ( ) ( , )z z Г F z   . Запишем последнее уравнение 

в виде 

0 1( , )z J z J z   , (3.13) 

где 0 0 (0) ( ,0);J z z Г F z   1 0 0( , ) ( ) ( , ) (0) ( ,0)J z Г F z Г F z     . 

При малых   можем представить 
1

0 0( ) [ ( , )]Г F z    в виде 

2 3

0 0,1 0,2 0,3(0) ...Г Г Г Г      , где  1

0 0 0 0 0 0(0) ( )T

n nГ E A B R B P

    


1

1

0 0 0 0 0( )T T

n nA P B R B E




   , 
0,1 0,3,...,Г Г   соответствующие члены 

разложения. Аналогично представим ( , )F z   в виде 

1 6( , ) ( ,0) ( ) ... ( )F z F z F z F z      ,  1

0 0 0 0 0( ,0) ( )TF z vec Z A B R B P   

1 1

0 0 0 0 0 0 0 0( )T T TA P B R B Z ZB R B Z    , где 1 6( ),..., ( )F z F z   соответствующие 

члены разложения и ()vec  обозначает операцию преобразования матрицы в 

вектор по строкам. 

Теперь будем рассматривать уравнение (3.13) с возмущением 1( , )J z    

[33] и проверим условия утверждения 12 из §1.7 для доказательства 

существования решения уравнения (3.11) в некотором шаре M  с 

использованием метода Ньютона-Канторовича.  

Для начала рассмотрим свойства оператора 0J z . Оператор ( ,0)F z имеет 

вид 
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 

11 21 12 22

11 21 12 22

11 2

,0 ,0 0 ,0 ,0 0

11 0 11 12 0 11 11 0 21 12 0 21

11 0 12 12 0 12 11 0 22 12 0 22

,0 ,0

21 0 11 22 0

( ,0) ( ) ( )

( ) ( )

T
T T T

cl cl n n cl cl n n

T T

n n cl cl n n

F z ZA A Z ZS Z z E A A E z ZS Z

Z S Z Z S Z Z S Z Z S Z

Z S Z Z S Z Z S Z Z S Z
E A z A E z

Z S Z Z S

 

 

          

  

  
     


1 12 22

11 21 12 22

11 21 0 21 22 0 21

21 0 12 22 0 12 21 0 22 22 0 22

,
Z Z S Z Z S Z

Z S Z Z S Z Z S Z Z S Z

 
 
 
  
 
    

 

где 
1 1

,0 0 0 0 0 0 0 0,T T

clA A B R B K S B R B    . 

Производная оператора ( ,0)F z  равна

,0 0 ,0 0( ,0) ( ) ( )T

n n cl cl n nF z E A S Z A ZS E 
         и удовлетворяет на шаре 

M  условию Липшица. Выпишем выражение для разности 1 2( ,0) ( ,0)F z F z    

для произвольных векторов 1z  и 2z .

1 2 ,0 0 1 ,0 1 0

,0 0 2 ,0 2 0 0 1 1 0

0 2 2 0 0 1 2 1 2 0

1 2 0

( ,0) ( ,0) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ))( )

T

n n cl cl n n

T

n n cl cl n n n n n n

n n n n n n n n

n n n n

F z F z E A S Z A Z S E

E A S Z A Z S E E S Z Z S E

E S Z Z S E E S Z Z Z Z S E

E Z Z E S

 

   

   

 

         

           

           

     1 2 0(( ) )( ).n n n nZ Z E S E    

 

Покажем,  что в силу линейности ( ,0)F z  по z  и ограниченности 

нормы матрицы 0S  существует L>0, такая, что на шаре M  имеет место 

1 2 1 2( ,0) ( ,0)F z F z L z z    , где 0L с S , с некоторая положительная 

константа. Здесь используется норма *

2
( )A AA , где 

1
( ) max i

i n
A 

 
 

спектральный радиус матрицы A, i  собственные числа матрицы A.  Если 

*

2
, ( )A A A A  .  Заметим, что в этой норме 1n nE   . 

Действительно,  
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1 2 1 2 0

1 2 0 1 2 0

1 2 0 1 2 0

1 2 0

( ,0) ( ,0) ( ( ))( )

(( ) )( ) ( ( ))( )

(( ) )( ) ( ( ))( )

(( ) )( ) ,

так как

n n n n

n n n n n n n n

n n n n n n n n

n n n n

F z F z E Z Z E S

Z Z E S E E Z Z E S

Z Z E S E E Z Z E S

Z Z E S E

 

   

   

 

       

         

         

   

 

 

1 2 0 1 1 2 0

1 1 2 0

1 2 0 2 1 2 0

1 2 1 1 2 0

2 1 2 0 1 1 2 0 2 1 2 0

1 2 1

( ( ))( ) ( ( )) ( )

( ) ,

(( ) )( ) ( ) ,

получаем

( ,0) ( ,0) ( )

( )

n n n n n n n n

n n

n n n n n n

n n

n n

E Z Z E S с E Z Z E S

с Z Z E S

Z Z E S E с Z Z S E

F z F z с Z Z E S

с Z Z S E с Z Z S с Z Z S

с с Z Z

   



  





       

  

     

     

       

  

     

2 0

3 1 2 1 2 4 1 2

1 2 3 1 2 0 1 2 1 2 0 1 2 4 1 2 0

.

Также имеем

,

отсюда

.

S

с z z Z Z с z z

с с с z z S с с Z Z S с с с z z S

    

       

 

Таким образом, получаем  1 2 1 2 1 2 0( ,0) ( ,0)F z F z с с Z Z S     

   1 2 4 1 2 0 1 2 4 0, т.е. .с с с z z S L с с с S      

Далее рассмотрим оператор 
1

0 0(0) [ ( 0,0)]Г F z   

 
1

1 1

0 0 0 0 0 0 0 0 0 0( ) ( )T T T

n n n nE A B R B P A P B R B E


 

        , в силу 

ограниченности матриц, входящих в 0 (0)Г
 существует такое 0b , что

0 0(0) ,Г b  и, наконец, 
1

0 0 0 0 0 0 0( ,0) ( )TF z Z A B R B P   

1 1

0 0 0 0 0 0 0 0 0 0 0( )T T TA P B R B Z Z B R B Z    . Так как 0 0z  , очевидно, что при этом 

(0,0) 0F   и тогда произведение 
1

0 0 0 0 0 0(0) (0,0) ( ( )T

n nГ F E A B R B P

      

1 1

0 0 0 0 0( ) ) 0 0T T

n nA P B R B E 

      равно нулю и поэтому, всегда можно 
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подобрать такую достаточно малую константу 0 , что 0 0 0(0) ( 0,0)Г F z    

и имеют место неравенства 0

0 0 0 0 0

0

1 1 21
,

2

h
h b L r

h
  

 
    . 

Перейдем к рассмотрению свойств нелинейного оператора 1( , )J z . 

Пусть он определен на шаре 0( , )S z  , 0r  . Пусть нелинейный оператор 

1( , )J z  удовлетворяет условиям 1 0( , ) ( ),J z a   1 00 , ( , )z S z     , 

1 1 0 0( , ) ( , ) ( ) , , ( , ),J x J y q x y x y S z        где 00 ( ) 1q   .  

Введем условие 

I. Найдутся числа 0 ( ),a  00 ( ) 1q   , 10     такие, что 

выполняется неравенство  
2

0 0 0 0 02 ( ) ( ) 1 2b La q b L      и 

0 0 0

1

0

1 1 2 ( ( ))
( ) .

b L a
r

b L

 
 

  
   

Итак, если все условия Теоремы 4 и условие I выполняются, тогда 

согласно утверждению 12 из §1.7 для модифицированного метода Ньютона 

Канторовича решение 
* *

2( ) ( ( , ) ( , ))z vec Z vec P x P x     лежит в шаре 

0 1( 0, ( ))S z r  , 
*

1( )z r  . Учитывая, что норма матрицы невязки  
*

1( ),Z r   

справедлива оценка 

2 1 1( , ) ( , ) ( ), 0 ,P x P x r        x X . (3.14) 

Теорема 6. Пусть выполняются все условия Теоремы 4 и условие I, тогда 

найдется достаточно малое 0 10    , такое, что при всех x X и 

00    ,  уравнение (3.4) имеет положительно определенное решение 

( , )P x   и при этом справедлива оценка  

3

2 0( , ) ( , ) ( ), 0 ,P x P x O        x X . (3.15) 

Доказательство.  Введем операторное уравнение 
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( , , ) 0ε TZ x ZA A Z ZSZ      , (3.16) 

где 
1 1 1 1

0 0 0 1 0 0 0 0 1 1 0 1( ( ) ( ) ( ) ( ) )T T T TS B R B B x R B B R B x B x R B x       ,

1 1 1 1

0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

2 1 1 1 1

1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 2

3 1 1 1

1 0 1 1 1 0 0 2 0 0 1

( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ) ( ) (

T T T T

T T T T

T T

A A B R B P A x B x R B P B R B x P B R B P x

B x R B x P B x R B P x B R B x P x B R B P x

B x R B x P x B x R B P x B R B x







   

   

  

     

     

    2

4 1

1 0 1 2

) ( ))

( ( ) ( ) ( )).

T

T

P x

B x R B x P x 



 
 

Обозначим решения уравнений ( , ,ε) 0Z x  , ( , ,ε) 0Z x  , 

соответственно, 
*,Z Z . Рассматривая уравнение ( , ,ε) 0Z x  , учитывая, что 

оператор ( , )F z    сжимающий и переводит шар радиуса   в шар радиуса 

1( )r  , который можно сделать достаточно малым за счет выбора достаточно 

малого 0 10    , можно утверждать, что *Z  существует и единственно в 

шаре 1( )r  , 00    .  Затем рассмотрим уравнение ( , ,ε) 0Z x  . Очевидно, 

его решение 0Z   тоже существует и единственно в шаре ( )r   для 0  . 

Нетрудно показать, учитывая ограниченность решений 0 21, ( ), ( )P P x P x  и 

равномерную ограниченность матриц 11( ) ( )BA x x , входящих в ( ,ε)x  для 

x X  и 00 ,    что норма разности 

* 3 * 3 * 3( ), 0 ( ),( ,ε) ( )Z Z O Zx O Z O         равномерно по x X  

и 00    , что и требовалось доказать. ■ 

Теперь для задачи (3.1), (3.2) введем невязку  2
ˆ( , ) ,1/Z P x P x   . В 

уравнении, получаемом для невязки Z , члены при 2,  1   и 0 ‒ой степенях 

параметра, не содержащие Z, сокращаются по построению асимптотического 

разложения  2
ˆ ,1/P x  . В итоге остаются только члены 1 2 3 4, , ,     и члены 

с Z со степенями 0 1 2

2

1 1
, , , ,  

 
. Умножая уравнение на 2 , получаем 
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3( , , ) ( , , ( , ) 0)Z x x xZ       , (3.17) 

где ( , , ) ,TZ x ZA A Z ZSZ      

1 1 1

1 0 1 0 1 1 0 0 0 0 0 1 0

1 2 1 1

1 0 1 1 0 0 0 0 0 1 0 0 1

1 3 1 1

0 0 1 1 0 0 0 1 1 0 0 2

0

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )) ( ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ( ) ( ) ( )

T T T

T T T

T T T

A B x R B x P x A x B x R B P x B R B x P x

B x R B x P x A B R B P x B x R B P x

B R B x P x B R B P x B x R B P x

B







  

  

  

      

     

   

 1 1 4 1

0 1 2 1 0 1 2 0 0 0 2

1 1 1 2 1

1 0 1 1 0 0 0 0 1 0 0 0

ˆ ˆ ˆ( ) ( )) ( ) ( ) ( )) ( ( )),

( ) ( ) ( ( ) ( ) ) ( ),

T T T

T T T T

R B x P x B x R B x P x B R B P x

S B x R B x B x R B B R B x B R B



 

  

   

 

   

 

1

0 1 1 2 1 0 2 1 0 0 0 0 1

1 1 1

0 1 0 0 2 0 0 0 1 2 1 0 0 0 0

1 1

1 1 0 0 1 1 0 0 1 1 1 1 0

ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) T T T

T T T

T T

A P x A x P x P x A P x A x P B R B P x

P B x R B P x P B R B x P x P x B R B P

P x B x R B P x P x B R B x P x

x

P x B x R

 

  

 

     

   

  

 

1

1 2

1 1 1

2 1 0 0 0 2 0 0 1 0 2 1 0 1 1

1 1

0 2 2 0 0 0 0 0 2 2 0 0 0 0

1 1

2 1 0 1 2 2 1 0 0 1

ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

T

T T T

T T T

T T

B x P x

P x B x R B P P x B R B x P P x B x R B x P x

A P x P x A P B R B P x P x B R B P

P x B x R B x P x P x B x R B P





  

 

 



   

     

  1

1 1 0 0 2

1 1 1

2 0 0 1 1 1 0 0 1 2 1 0 0 0 1

2 1 1 1

1 0 0 0 2 2 0 0 0 1 2 1 0 0 2

1

2 0 0 1 2

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) (

T

T T T

T T T

T

x P x B x R B P x

P x B R B x P x P x B R B x P x P x B R B P x

P x B R B P x P x B R B P x P x B x R B P x

P x B R B x P x





  

  



 

   

   

 3 1

2 0 0 0 2
ˆ ˆ)) ( ) ( ).TP x B R B P x 

 

Замечание 8. Здесь и ниже для простоты рассуждений опускается 

зависимость  от x  выражений 0 (0)Г , ( ,0)F z , т.е. предполагается, что 

соответствующие константы ( L , 0b  и т.д.) являются мажорантами для всех 

x X . 

Аналогично схеме, приведенной для доказательства оценки невязки 

при малых значениях параметра, имеем

1 1

1 0 1 0 1 0 1

1 1

0 1 0 1 1 0 1

ˆ( ,0) ( ( ) ( ) ( ) ( ) ( ) )

ˆ( ( ) ( ) ( ) ( ) ( )) .

T T

n n

T T

n n

F z E B x R B x P x B x R B x Z

P x B x R B x ZB x R B x E

 



 



    

  
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Выпишем выражение для разности 1 2( ,0) ( ,0)F z F z   для 

произвольных векторов 1z  и 2z

1 1

1 2 1 0 1 0 1 0 1 1

1 1

0 1 0 1 1 1 0 1

1

1 2 1 0 1

1

1 2 1 0 1

ˆ( ,0) ( ,0) ( ( ) ( ) ( ) ( ) ( ) )

ˆ( ( ) ( ) ( ) ( ) ( ))

( ( ))( ( ) ( ))

(( ) )( ( ) ( ) ).

T T

n n

T T

n n

T

n n n n

T

n n n n

F z F z E B x R B x P x B x R B x Z

P x B x R B x Z B x R B x E

E Z Z E B x R B x

Z Z E B x R B x E

 



 





 



 

     

   

    

   

 

Для нормы этого выражения имеем 

1

1 2 1 2 1 0 1

1

1 2 1 0 1

1

1 2 1 0 1 1 2

1

1 0 1

( ,0) ( ,0) ( ( ))( ( ) ( ))

(( ) )( ( ) ( ) )

( ( ))( ( ) ( )) (( ) )

( ( ) ( ) ) ,

так как

T

n n n n

T

n n n n

T

n n n n n n

T

n n

F z F z E Z Z E B x R B x

Z Z E B x R B x E

E Z Z E B x R B x Z Z E

B x R B x E



 



 



  





      

    

       

 

1

1 2 1 0 1 1 1 2

1 1

1 0 1 1 1 2 1 0 1

1

1 2 1 0 1 2 1 2

1

1 0 1

( ( ))( ( ) ( )) ( ( ))

( ( ) ( )) ( ( ) ( )) ,

(( ) )( ( ) ( ) )

( ( ) ( ) ) ,

получаем

T

n n n n n n

T T

n n n n

T

n n n n

T

n n

E Z Z E B x R B x c E Z Z

E B x R B x c Z Z E B x R B x

Z Z E B x R B x E c Z Z

B x R B x E



  

 

 



 





      

    

     

 

 

1

1 2 1 1 2 1 0 1

1

2 1 2 1 0 1

1 1

1 1 2 1 0 1 2 1 2 1 0 1

1

1 2 1 2 1 0 1

( ,0) ( ,0) ( ( ) ( ))

( ( ) ( ) )

( ) ( ) ( ) ( )

( ) ( ) .

T

n n

T

n n

T T

T

F z F z c Z Z E B x R B x

c Z Z B x R B x E

c Z Z B x R B x c Z Z B x R B x

c c Z Z B x R B x









 



     

   

    

  

 

   

 

3 1 2 1 2 4 1 2

1 1

1 2 3 1 2 1 0 1 1 2 1 2 1 0 1

1

1 2 4 1 2 1 0 1

Также имеем , отсюда

( ) ( ) ( ) ( )

( ) ( ) .

T T

T

c z z Z Z c z z

c c c z z B x R B x c c Z Z B x R B x

c c c z z B x R B x

 



    

     

  

 

Введем условия 
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II. Производная оператора ( ,0)F z  удовлетворяет условию Липшица, для 

любого x X  с константой Липшица  1

1 0 1sup ( ) ( )T

x X

L c B x R B x



 , где c 

некоторая положительная константа.  

III. Существует обратный оператор 
1 1

0 0 0(0) [ ( ,0)] [ ( 0,0)]Г F z F z     , 

 
1

1 1

0 1 0 1 0 0 1 0 1
ˆ ˆ(0) ( ) ( ) ( ) ( ) ( ) ( )T T

n n n nГ E B x R B x P x P x B x R B x E


 

      для любого 

x X .  

IV. Пусть 0 0(0)Г b  для любого x X .  

Кроме того, 0( 0,0) 0F z    и произведение 0 0(0) ( 0,0)Г F z   также 

равно нулю, поэтому найдется достаточно малая константа 0 , что 

0 0 0(0) ( 0,0)Г F z    поточечно для любого x X  и имеют место 

неравенства 0

0 0 0 0 0

0

1 1 21
,

2

h
h b L r

h
  

 
    .  

Рассмотрим свойства оператора 1( , )J z  , определенного на шаре 

0 0( , ),S z r r  .  Запишем уравнение в виде (3.13) 0 1( , )z J z J z   , где 

0 0 (0) ( ,0);J z z Г F z   1 0 0( , ) ( ) ( , ) (0) ( ,0)J z Г F z Г F z     , 

 1 1 1

0 1 0 1 1 0 1 0 1 0 1
ˆ ˆ( ,0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .F z vec P x B x R B x Z ZB x R B x P x ZB x R B x Z      

Введем условие 

V. Найдутся числа 0 ( ),a   00 ( ) 1q    такие, что нелинейный оператор 

1( , )J z   удовлетворяет неравенствам 1 0( , ) ( ),J z a  0( , )z S z  , 

1 1 0 0( , ) ( , ) ( ) , , ( , ),J z J z q x y x y S z        и при этом выполняется 

2

0 0 0 0 02 ( ) ( ) 1 2b La q b L      и 0 0 0

2

0

1 1 2 ( ( ))
( )

b L a
r

b L

 
 

  
  , 

2

1
,  


  .  
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При условиях теоремы 5 и условиях II-V для всех x X и 2  ,  

уравнение (3.4) имеет положительно определенное решение ( , )P x   и при 

этом справедлива оценка  

 2 2 2
ˆ( , ) ,1/ (1/ ) ., ,P x P x r x X         (3.18) 

 

Невязка 
** **

2
ˆ( ) ( ( , ) ( ,1 / ))z vec Z vec P x P x      лежит в шаре 

0 2( 0, ( ))S z r  , 
**

2( )z r  . Так как норма матрицы **Z  меньше нормы 

вектора **z , получаем 
**

2( )Z r  . Очевидно, что выбирая 2   достаточно 

большим можно обеспечить малость 0 0(1 / ), (1 / )a q   и, следовательно, 

полностью обеспечить выполнение условий модифицированной теоремы 

Ньютона-Канторовича (существование соответствующего радиуса). 

Теорема 7. Пусть выполняются все условия теоремы 5 и условия II-V, тогда 

найдется достаточно большое 3 2  , такое, что при всех x X и 3  ,  

уравнение (3.4) имеет положительно определенное решение ( , )P x   и при 

этом справедлива оценка  

  3

2 3
ˆ( , ) ,1/ (1/ ), ,P x P x O x X        . (3.19) 

Доказательство. Рассмотрим операторное уравнение 

( , , ) 0TZ x ZA A Z ZSZ      . Обозначим решения уравнений 

( , , ) 0Z x   , ( , , ) 0Z x   , соответственно, 
**,Z Z . Рассматривая уравнение 

( , , ) 0Z x   , учитывая, что оператор ( , )F z    сжимающий и переводит шар 

радиуса   в шар радиуса 2 ( )r  , который можно сделать достаточно малым за 

счет выбора достаточно большого 3 , можно утверждать, что **Z  существует 

и единственно в шаре 2 ( )r  .  

Затем рассмотрим уравнение ( , , ) 0Z x   . Очевидно, его решение 

0Z   тоже существует и единственно в шаре ( )r   для 3  . Нетрудно 
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показать, учитывая ограниченность решений 10 2
ˆ ˆ ˆ( ), ( ), ( )P x P x P x  и 

равномерную ограниченность матриц 11( ) ( )BA x x , входящих в ( , )x   для 

x X  и 3,   что норма разности 

** 3 ** 3 ** 3( ), 0 ( )) ,( , ( )Z Z O Z Ox Z O          равномерно по 

x X  и  1/  , где 3  , что и требовалось доказать. ■ 

3.2 Одноточечная Паде аппроксимация. 

Сначала, рассмотрим правую матричную Паде аппроксимацию 

(обратная матрица стоит справа) порядка [1/2] на основе асимптотического 

разложения уравнения Риккати по малому параметру в следующей форме 

    
1

2

[1/2] 0 1 1 2, ( ) ( ) ( ) ( ) ,PA x x x E x x   


         (3.20) 

где E   единичная матрица, из уравнения 

 [1/2] 2, ( , )PA x P x  . 
(3.21) 

Получаемая система уравнений переопределена, поэтому из всего набора 

уравнений эвристически были выбраны следующие уравнения для 

нахождения матриц 0 1 1 2( ), ( ), ( ), ( )x x x x      

0

0 0

1

1 0 1 1

2

0 2 1 1 2

3

1 2 2 1

: ,

: ( ) ( ) ( ),

: 0 ( ) ( ) ( ) ( ),

: 0 ( ) ( ) ( ) ( )

P

x P x P x

P x P x x P x

P x x P x x









 

   

    

   

 (3.22) 

или 

0 0

0 1 1

1 0 1 2

2 1 2

0 0 0

0 0 ( ) ( )

0 0 ( ) ( ) ( )

0 0 ( ) ( ) ( ) 0

E P

E P x P x

P x P x P x

P x P x x

    
   

      
     
         

. 



88 

 

Введем следующее условие существования одноточечной Паде 

аппроксимации порядка [1/2]  для решения уравнения Риккати, которую 

обозначим 

 
    [1/2] [1/2]

[1/2]

, ,
, .

2

TPA x PA x
K x

 



  (3.23) 

VI. Для всех , 0x X    матрицы 0 1 2, ( ), ( )P P x P x  существуют и система 

уравнений (3.22) для матриц 0 1 1 2( ), ( ), ( ), ( )x x x x     имеет единственное 

решение, матрица 
2

1 2( ) ( )E x x      невырожденная и  [1/2] , 0K x    при 

, 0x X    . 

Замечание 9. Примеры показывают, что условие VI может быть выполнено 

за счет подбора матриц 0 1 2( ), ( ), ( )Q x Q x Q x .  

Получаем следующий параметрический набор регуляторов  

 1

0 [1/2]( , ) ( , ) ,Tu x R B x K x х    . 
(3.24) 

3.3 Двухточечная Паде аппроксимация. 

Для решения задачи (3.1), (3.2) строится двухточечная матричная 

правая Паде аппроксимация порядка [2/2] (степени полиномов числителя и 

знаменателя равны двум) 

    
1

2 2

[2/2] 0 1 2 1 2, ( ) ( ) ( ) ( ) ( )PA x x x x I x x    


          , (3.25) 

где ( E единичная n n  матрица). Итак, учитывая (3.5) и (3.7), имеем  

  

  

1
2 2 2

0 1 2 1 2 0 1 2

1
2 2

0 1 2 1 2 0 1 22

( ) ( ) ( ) ( ) ( ) ( ) ( ),

1 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

x x x E x x P P x P x

x x x E x x P x P x P x

     

   
 





           

           
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Умножая здесь оба равенства справа на  
1

2

1 2( ) ( )E x x 


     и 

приравнивая члены при одинаковых степенях параметра   получаем 

переопределенную систему матричных уравнений для определения членов 

представления (3.25), где неизвестных матриц пять. 

 

2 1

2 1 2 1

0

0 0 0 0 1 1 2 2

1

1 0 1 1 1 0 1 1 2

2

2 1 1 2 0 2 2 0 2

3

2

ˆ ˆ ˆ: 0 ( ), : 0 ( ) ( ) ( ),

ˆ ˆ ˆ: ( ) ; ( ) ( ) ( ) ( ) ( ),

ˆ ˆ: ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ),

ˆ: ( ) ( ) ( ) ( ) ( ), ( ) ( ),

: 0 (

P x P x P x x

x P x P P x x P x x

x P x P x x P x P x x

x P x x P x P x x P x

P

 









    

       

         

        

 4

1 1 2 2 2) ( ) ( ) ( ), : 0 ( ) ( ).x x P x x P x x    

 

Для определенности далее рассматривается система уравнений 

0

0 0 0 0 1 1 2 2

1

1 0 1 1 1 0 1 1 2

2

2 0 2

ˆ ˆ ˆ: ( ) , ( ) ( ) ( ) ( ) ( ) ( ),

ˆ ˆ: ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( ),

ˆ:

x P x P x P x x P x x

x P x P x x P x x P x x

P







       

         

  
 

или 

00

0
11

1 2 2 0

10 1

2
0

0 0 0 0 ( )

0 0 0 ( )( )
ˆ ˆ0 0 ( ) ( ) ˆ( ) ( )

ˆ ˆ ( )0 0 ( ) ( ) 0

( )ˆ 00 0 0 ( )

E Px

E P P xx

E P x P x x P x

xE P x P x

xE P x

    
         
       
    

    
          

. (3.26) 

Решение системы (3.26) имеет вид 

   
0 0 1 0 1 1 2 0 2

1
1 1

1 1 2 1 0 0 0 0 2 1 1

1 1

2 2 0 0 2 1 1

ˆ( ) , ( ) ( ) ( ), ( ) ( ),

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ,

ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ) ( ).

x P x P x P x x P x

x P x P x P x P P x P P x P x P x P x

x P x P P x P x P x x


 

 

        

     

    

  

Выбор именно этих уравнений определяется требованием 

существования членов Паде аппроксимации (3.25). В задаче (3.1)-(3.2) можно 
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ввести следующее условие существования Паде-моста или двухточечной 

Паде аппроксимации порядка [2/2]  для решения уравнения Риккати (3.4) 

 
    [2/2] [2/2][2/2]

, ,
,

2

T

мост

PA x PA x
K x

 



 .

 (3.27) 

VII. Для всех , 0x X    матрицы 0 1 0 1 2
ˆ ˆ ˆ, ( ), ( ), ( ), ( )P P x P x P x P x  существуют, 

система (3.26) однозначно разрешима, матрица 
2

1 2( ) ( )E x x      

невырожденная и  [2/2] , 0мостK x    при , 0x X    . 

Отметим, что, несмотря на громоздкость этого условия, имеются 

примеры его выполнения.  

Паде-мост  [2/2] ,мостK x   для решения уравнения Риккати является 

интерполяционной поверхностью, приближенно восстанавливающей 

поверхность ( , )P x   по ее приближениям в окрестностях малых и больших  

значений  . 

Теперь при всех , 0x X    можно ввести регулятор  

 1 [2/2]

0( , ) ( , ) ,T

мостu x R B x K x х    . (3.28) 

Анализ результатов численных экспериментов показал, что при 

выполнении условия VII для полученного управления (3.28), (3.27) 

существует область изменения параметра       1 2 30, , , ,..., ,k      , в 

которой (3.28) является стабилизирующим регулятором. Точки 

0, 1,..., 1i i k     характеризуют возможное существование областей 

изменения значений параметра, в которых Паде аппроксимации не приводят 

к устойчивости замкнутой системы.  
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Замечание 10. В случае, когда нарушается положительная определенность 

Паде-моста, может быть построен кубический сплайн для устранения этой 

особенности.  

Разложение  [2/2] ,PA x   при малых значениях параметра имеет вид

  2 2

[2/2] 0 1 0 1 2 0 2

2 3 3 4

1 1 1 2 2 1 2 2

, ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...,

PA x x x x x x x x

x x x x x x x x

    

   

           

            
 

а при больших 

  1 1 1 1

[2/2] 2 2 1 2 2 2 1 2

1 1 1 1 1

0 2 2 2 2 1 2 1 22 2 2

1 1 1 1

1 2 2 0 2 1 23 3

1

0 24

1 1
, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) (

PA x x x x x x x x x

x x x x x x x x x

x x x x x x x

x


 

  

 



   

    

   



          

            

         

   1

2) ( ).x x

 

Учитывая вид  [2/2] ,PA x   и тот факт, что 0 0( )x P  , 2 0 2
ˆ( ) ( )x P x    

и 
1

2 2 0
ˆ( ) ( )x x P    следует утверждение 

Теорема 8. Пусть выполняются условие VII, условие 1) теоремы 4 и условие 

1) теоремы 5, тогда  при 0   Паде аппроксимация  [2/2] ,PA x  стремится 

к 0P , а при    к 0
ˆ ( )P x , x X  .  

3.4 Конструирование Паде регулятора для класса непрерывных 

нелинейных систем, включающего задачи с большим 

коэффициентом усиления или слабоуправляемые системы 

[56, 58]. 

Рассмотрим другой класс задач оптимального управления для 

непрерывных нелинейных систем с параметром и квадратичным критерием 

качества 
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0( ) ( ) , (0) ,x A x x B x u x x    (3.29) 

 0

0

( , ) inf ,T T

u
x Q x x u R u dt



   (3.30) 

где  ( ) , ( ) , 0,n rx t X R u t R t     , nX R    некоторая ограниченная 

область пространства состояния,

( ) , ( ) , ( ) , ,n n n rA x R B x R rank B x r x X      ( , ) 0Q x   , 0 0R  ,  0,   

параметр, который может принимать как большие, так и малые значения, т.е. 

в первом случае имеем систему (3.29) с большим коэффициентом усиления, а 

во втором – так называемую слабоуправляемую систему, все матрицы 

достаточно гладкие.  

Для поиска управления в виде обратной связи здесь также будем 

использовать схему подхода SDRE [50]  

1

0 ( ) ( , )Tu R B x P x x    , (3.31) 

где ( , )P x   ‒ есть решение для каждого вектора x  матричного 

алгебраического уравнения Риккати 

2 1

0

( ) ( , ) ( , ) ( )

( , ) ( ) ( ) ( , ) ( , ) 0.

T

T

A x P x P x A x

P x B x R B x P x Q x

 

   

  

  
 (3.32) 

Сначала построим формальное асимптотическое приближение второго 

порядка для ( , )P x   при малых значениях   

2

2 0 1 2( , ) ( ) ( ) ( )P x P x P x P x     , (3.33) 

представляя при этом матрицу ( )Q x  в виде 
2

0 1 2( , ) ( ) ( ) ( )Q x Q х Q x Q x     . 

Подставляя (3.33) в (3.32), а затем приравнивания члены при 

одинаковых степенях  , получаем следующие соотношения  

0 0 0 1 1 1

1

2 2 0 0 0 2

( ) ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

T T

T T

A x P x P x A x Q x A x P x P x A x Q x

A x P x P x A x P x B x R B x P x Q x

       

    
(3.34) 
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являющиеся матричными уравнениями Ляпунова. Перейдем к построению 

формального асимптотического приближения второго порядка решения 

уравнения (3.32) в случае, когда параметр   принимает большие значения.  

Сделаем замену 
1




   и тогда решение (3.32) будем искать в виде  

  2

2 0 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( ),P x P x P x P x      (3.35) 

то есть имеем 

 

2 2

0 1 2 0 1 2 0 1

1

2 0 0 1 2 0 1 22

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ( ) ( )) ( ( ) ( )) ( ) ( )

1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

T

T

A x P P x P x P P x P x A x P P x

P x B x R B x P P x P x Q x Q x Q x

   


 
  




        



 
       

 
 

После приравнивания членов при одинаковых степенях   получаем 

следующую систему для членов представления (3.35) 

1

0 0 2 0 0 1

1

1 0 0 1 0 0

1 1

0 0 2 2 0 0

1

1 0 1 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) 0.

T

T T

T T

T

P x S x P x Q x P x B x R B x P x

P x B x R B x P x Q x A x P x P x A x

P x B x R B x P x P x B x R B x P x

P x B x R B x P x Q x





 



  

     

  

  

 (3.36) 

  

Из леммы Ляпунова вытекает 

Теорема 9. Пусть матрицы ( ), ( )A x В х  и 0 1 2( ) 0, ( ) 0, ( ) 0Q x Q x Q x    при 

каждом x X   удовлетворяют условиям  

1) Re ( ( )) 0,A x   

2) 
1

2 0 0 0( ) ( ) ( ) ( ) ( ) 0,TQ x P x B x R B x P x   

3) 
1

2
2( ) , ( ) ,rank B x n rankQ x n    

4) 0
ˆRe ( ( ) ( )) 0,S x P x   



94 

 

5) 0 0 0 1 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,TQ x A x P x P x A x P x S x P x     

тогда при всех , 0x X    

a) уравнение Риккати в (3.36) имеет положительно определенное решение 

0
ˆ ( )P x ; 

b) уравнения Ляпунова в (3.34) и (3.36) имеют единственные положительно 

определенные решения 0( ),P x  1( )P x , 2( )P x , 1
ˆ ( )P x 2

ˆ ( )P x . 

Доказательство. Уравнение 0 0 0( ) ( ) ( ) ( ) ( ) 0TA x P x P x A x Q x     в (3.34) 

имеет для каждого х положительно определенное решение 0( )P x  [6], когда 

Re ( ( )) 0,A x x X     (условие 1 теоремы) и 0 ( ) 0,Q x x X    (по условию 

теоремы матрицы 0 1 2( ), ( ), ( )Q x Q x Q x  положительно определенные). 

Уравнение 1 1 1( ) ( ) ( ) ( ) ( ) 0TA x P x P x A x Q x     имеет для каждого х 

положительно определенное решение 1( )P x , когда Re ( ( )) 0,A x x X     и 

1( ) 0,Q x x X   . Уравнение 2 2( ) ( ) ( ) ( )TA x P x P x A x    

1

0 0 0 2( ) ( ) ( ) ( ) ( ) 0TP x B x R B x P x Q x    имеет решение 2( ) 0P x  , когда 

Re ( ( )) 0, .A x x X     
1

2 0 0 0( ) ( ) ( ) ( ) ( ) 0,TQ x P x B x R B x P x Xx     (условие 

2).   Матричное уравнение 0 0 2
ˆ ˆ( ) ( ) ( ) ( ) 0,P x S x P x Q x   представляет собой 

частный случай уравнения Риккати 

1

0 0 0 0 0 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TG P x P x G P x B x R B x P x Q x     , где 0G  . Условиями 

разрешимости и положительной определенности решения этого уравнения 

являются: 
1( ), ( ), , ( )nrank B x GB x G B x n x X       или rank B n , т.е. 

совпадение размерности вектора управления и вектора состояния, а также 

1 1 1

12 2 2
2 2 2( ) , ( ) , , ( ) ,nrank Q x GQ x G Q x n x X 

   
 

т.е. 
1

2
2( )rankQ x n  (условие 

3). Два других соотношения  в  (3.36) представляют собой уравнения типа 

Ляпунова. Для разрешимости 0 1 1 0 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0P x S x P x P x S x P x Q x    
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требуется выполнение условий 0
ˆRe ( ( ) ( )) 0,S x P x x X     (условие 4) и 

1( ) 0,Q x x X   , а для разрешимости последнего уравнения в  (3.36) 

условий 4 и 5. Что и требовалось доказать. ■ 

По теореме 9 асимптотические приближения  2 2
ˆ( , ), ,P x P x   из (3.33) 

и (3.35) являются положительно определенными матрицами. 

После определения членов представлений (3.33) и (3.35)  

устанавливается существование положительно определенного решения 

( , )P x   уравнения (3.32), а также доказываются асимптотические оценки 

близости полученных асимптотических приближений к ( , )P x  . 

Если тройка матриц 
1

2( ( ), ( ), ( , ) )A x B x Q x   управляема и наблюдаема 

поточечно для любых , (0, )x X    , тогда равнение Риккати (3.32) имеет 

положительно определенное решение ( , )P x  . 

Соответствующие оценки близости построенных асимптотических 

приближений к точному решению ( , )P x   определяются для любого 

фиксированного x X  и некоторых интервалов изменения значений 

параметра  . Используя метод последовательных приближений Ньютона-

Канторовича, доказывается 

Теорема 10. При известных 2 2
ˆ( , ), ( , )P x P x   и при условии существования и 

единственности решений соответствующих уравнений для невязок 

 2 2
ˆ( , ) ( , ), ( , ) ,1/P x P x P x P x     , найдется достаточно малое 0   , 

такое, что при всех x X и 0      уравнение (3.32) имеет положительно 

определенное решение ( , )P x   и при этом справедливы оценки  
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3 *

2

2 3 *

( , ) ( , ) ( ), 0 ,

1 1 1ˆ( , ) , , ,

,

.

P x P x O x

P x x O x XP

X    

 
  

    

   
      

   

 (3.37) 

Доказательство. Отметим, что для асимптотики по малому и большому 

значению параметра  получаем соответственно

 
1

1

0 0(0) [ ( 0,0)] ( ) ( )T

n n n nГ F z E A x A x E




 
        и 

 
1

1 1

0 0 0 0 0
ˆ ˆ(0) ( ) ( ) ( ) ( ) ( ) ( )T T

n n n nГ E B x R B x P x P x B x R B x E


 

     . Для 

асимптотики по малому значению имеем 

3( , , ) ( , , ) ( , ) 0Z x Z x x       , 

где ( , , ) ( , ) ( , ) ( ) ,TZ x ZA x A x Z ZS x Z      

 

 

2 1 3 1

0 0 0 1

4 1 1

0 2 0

1 1

1 0 2 2 0 1

1

2 0 2

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

( , )

T T

T T

T T

T

A x A x B x R B x P x B x R B x P x

B x R B x P x S x B x R B x

P x B x R B x P x P x B x R B x P x

P x B x R B x

x

P x



  





 

 

 



   

 

 




 

Для асимптотики по большому значению параметра получаем 

3( , , ) ( , , ( , ) 0)Z x x xZ       , 

где ( , , ) ,TZ x ZA A Z ZSZ    

 1 2 2 1

0 0 1 2 0

1

1 1 2 0 1

1 1

1 2 2 2 2 0 2

ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ),

ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )

( )

(

,

T T

T T

T T T

A x B x R B x P P x P x A x S x B x R B x

A x P x P x A x P x B x R B x P x

P x B x R B x P x A x P P x A x P x B B

x

x R x P x

 



 



 



 

    

   

    

 

 ) .

  

Доказательство теоремы ведется по аналогии с Теоремами 6 и 7. ■ 

Теперь на основе построенных асимптотических разложений (3.33) и 

(3.35) строится приближенное решение (3.32) для всего интервала изменения 
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параметра   путем конструирования двухточечной Паде аппроксимации. 

Здесь ограничимся построением только правой Паде аппроксимации порядка 

[1/2] (см. [58]) и порядка [2/2]. 

Паде аппроксимация порядка [1/2]  ищется  в виде  

    
1

2

[1/2] 0 1 1 2, ( ) ( ) ( ) ( ) ,PA x x x E x x   


         (3.38) 

где ( E -единичная n n  матрица). 

Итак, учитывая (3.33) и (3.35) имеем 

  

  

1
2 2

0 1 1 2 0 1 2

1
2

0 1 1 2 0 1 22

( ) ( ) ( ) ( ) ( ) ( ) ( ),

1 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ).

x x E x x P x P x P x

x x E x x P x P x P x

    

  
 





         

         

 

Умножая оба равенства справа на  2

1 2( ) ( )E x x      и 

приравнивая члены при одинаковых степенях параметра  , получаем 

системы для определения матриц в (3.38) 

0

0 0 0 0 1 1 2 2

1

1 0 1 1 1 0 1 1 2

ˆ ˆ ˆ: ( ) ( ), ( ) ( ) ( ) ( ) ( ) ( ),

ˆ ˆ: ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( )

x P x x P x P x x P x x

x P x x P x x P x x P x x





       

           
 

или  

00

1 2 1 0

0 1 1

20 1

0 0 0 ( )( )

ˆ ˆ ˆ0 ( ) ( ) ( ) ( )

0 ( ) 0 ( ) ( )

ˆ ˆ ( ) 00 ( ) ( )

E P xx

E P x P x x P x

E P x x P x

xE P x P x

    
    

       
     
              

. (3.39) 

Введем в задаче (3.29)-(3.30) следующее условие существования Паде-

моста или двухточечной Паде аппроксимации порядка [1/2]  для решения 

уравнения Риккати (3.4), который обозначим  
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 
    [1/2] [1/2][1/2]

, ,
,

2

T

мост

PA x PA x
K x

 



 .

 (3.40) 

VIII. Для всех , 0x X    матрицы 0 1 0 1 2
ˆ ˆ ˆ, ( ), ( ), ( ), ( )P P x P x P x P x  существуют, 

система (3.39) однозначно разрешима, матрица 
2

1 2( ) ( )E x x      

невырожденная и  [1/2] , 0мостK x    при , 0x X    . 

Отметим, что выполнение условия 2 Теоремы 9 здесь не требуется, так 

как 2( )P x  не используется для построения Паде-моста (3.39).  

Замечание 11. Достаточные условия в теоремах могут быть ослаблены или 

для некоторых специальных систем вида (3.29) заменены другими, так чтобы 

выполнялось условие  [1/2] , 0мостK x   . 

Рассмотрим Паде аппроксимации более высокого порядка, например, 

    
1

2 2

[2/2] 0 1 2 1 2, ( ) ( ) ( ) ( ) .PA x x x E x x    


           (3.41) 

Получаем следующий набор уравнений для определения членов 

представления (3.41) 

2

2

1

1 2 1

0

0 0 0 0 1 1 2 2

1

1 0 1 1 1 0 1 1 2

2

2 1 1 2 0 2 2 0 2

3

2 1 1 2

4

2 2

ˆ: 0 ( );

ˆ ˆ: 0 ( ) ( ) ;

ˆ ˆ ˆ: ; ( ) ( ) ;

ˆ ˆ: ( ) 0, ( ) ;

ˆ: ( ) ( ) , ;

: 0 ( ) ( ) ;

: 0 ( ) .

P x

P x P x

P P P x P x

P P x P P x

P x P x P P

P x P x

P x





















  

       

         

        

   

 

 

Для конструирования Паде аппроксимации порядка [2/2] 

воспользуемся дополнительно к уравнениям для Паде аппроксимации 



99 

 

порядка [1/2] (3.38) уравнением 2 0 2P̂    для степени параметра 
2 , то есть 

получаем систему уравнений 

0

0 0 0 0 1 1 2 2

1

1 0 1 1 1 0 1 1 2

ˆ ˆ ˆ: ( ) ( ), ( ) ( ) ( ) ( ) ( ) ( ),

ˆ ˆ: ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( )

x P x x P x P x x P x x

x P x x P x x P x x P x x





       

         
 

или 

1

00

1 21 0

02 1

1 0 1

2
0

0 0 0 0 ( )( )
ˆ ˆ0 0 ( ) ( ) ˆ( ) ( )

0 0 ( ) 0 .( ) ( )

ˆ ˆ( ) 0 0 ( ) ( ) 0

( ) ˆ 00 0 0

E P xx

E P x P xx P x

E P xx P x

x E P x P x

x E P



    
           
     
    

      
          

 (3.42) 

Член  2 0 2P̂    улучшает качество Паде аппроксимации при больших 

значениях   по сравнению с рассмотренной выше аппроксимацией [1/2]. 

Вводится следующее условие существования Паде моста  [2,2] ,мостK x 

для всех значений параметра  0,    в задаче (3.29), (3.30) 

 
    [2/2] [2/2][2/2]

, ,
,

2

T

bridge

PA x PA x
K x

 



 .

 (3.43) 

IX. Для всех , 0x X    матрицы 0 1 0 1 2
ˆ ˆ ˆ, ( ), ( ), ( ), ( )P P x P x P x P x  существуют, 

система (3.39) однозначно разрешима, матрица 
2

1 2( ) ( )E x x      

невырожденная и  [2,2] , 0мостK x      при , 0x X    . 

Теперь можно предложить регулятор для нелинейных систем (3.29), 

(3.30) в виде  

 1 [2/2]

0( , ) ( ) ,T

мостu x R B x K x х     (3.44) 

для всех , 0x X   . Таким образом, получаем возможный 

стабилизирующий регулятор для системы (3.29), (3.30). 
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Рассмотрим задачу (3.29), (3.30) в стационарном случае, когда все 

матрицы не зависят от времени. Введем функцию Ляпунова  

 ( , ) TV x x K x  . Полная производная по времени  вдоль траектории 

замкнутой системы (3.29), (3.44) имеет вид 

          

     

       

       

        

2 1 2 1

0 0

2 1

0

2 1

0

2 1 1

0 0

( , )

[ ]

.

TT T T

T
T T T

PA PA

T T T T T

T T T T

T T T

dV x
x K x x K x Ax Bu K x x K Ax Bu

dt

Ax BR B K x P x x P Ax BR B K x

x A K x x K Ax x K BR B K x

x K BR B K x x A K K A x

x K BR B K K BR B K x


     

   

    

    

    

 





 

      

    

   

   

 

  

По лемме Ляпунова [6], матрицы     1 0TD A K K A     , 

   1

2 02 0TD K BR B K    и  
2

1 2

( , )
0, 0, 0.T TdV x

x D x x D x x
dt


           

В главе 4 приводятся численные эксперименты, демонстрирующие 

стабилизацию нелинейных систем вида (3.29), (3.30) с помощью (3.44). 

Обоснование установлено только для случая, когда матрицы  системы 

постоянные.   

Итак, имеет место  

Теорема 11. Если все матрицы в (3.29), (3.30)  постоянны, тогда при 

выполнении условия IX регулятор (3.44)  стабилизирует систему (3.29) для 

всех (0, )   . 

Замечание 12. Примеры показывают, что благодаря положительной 

определенности членов асимптотических разложений (3.33), (3.35) и 

определенного  выбора 0 1 2( ), ( ), ( )Q x Q x Q x  условие IX может быть выполнено. 

Получаемое параметрическое семейство регуляторов имеет вид 



101 

 

 1 [2,2]

0 ( ) ( ) , , 0, ,T

мостu R B x K x x X         

где  [2,2]

[2/2] [2/2]( ( ) ( )) / 2,T

мостK PA PA        2

[2/2] 0 1 2PA         

 
1

2

1 2 .E  


      

Очевидно, что в стационарном случае при условии IX 

стабилизирующий регулятор (3.44) для (3.29) обладает свойством 

робастности по ε, так как асимптотическая устойчивость замкнутой системы 

вдоль этого регулятора сохраняется для любых допустимых областей 

изменения параметра ε. 

Построенное семейство регуляторов является приближенным 

символьным описанием параметрического набора стабилизирующих 

управлений. Преимуществом подхода является то, что при изменении 

значения параметра   не требуется пересчитывать решение уравнения 

Риккати.  

3.5 Оценка вычислительной сложности Паде. 

В Таблицах 3 и 4 представлены результаты сравнения вычислительной 

сложности конструирования регуляторов для задач (3.1), (3.2) и (3.29), (3.30). 

Сложность оценивается по количеству операций в каждый из моментов 

времени t . Одноточечные Паде аппроксимации не требуют решения 

нелинейного матричного уравнения Риккати, как SDRE алгоритм. Расчет 

двухточечной Паде аппроксимации на каждом шаге алгоритма по сравнению 

с SDRE алгоритмом требует, помимо нахождения решения уравнения 

Риккати, решения линейных матричных уравнений и выполнения ряда 

других операций. Описанные дополнительные операции не требуют больших 

вычислительных затрат, а получение Паде аппроксимации позволяет 

разделить зависимость от состояния и параметра.  
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Таблица 3. Сравнение вычислительной сложности конструирования 

регуляторов для задачи (3.1), (3.2).  

Критерий сравнения 

(число задач в каждый 

момент времени t) 

Алгоритмы управления 

Паде 

одноточечная 

Паде 

двухточечная 
LQR SDRE 

Число решенных 

уравнений Ляпунова 
2 3 0 0 

Число решенных 

уравнений Риккати 
0 1 0 1 

Решение линейного 

матричного уравнения 

1 
1 0 0 

Транспонирование 

матрицы 

1 
1 0 0 

 

Таблица 4. Сравнение вычислительной сложности конструирования 

регуляторов для задачи (3.29), (3.30) 

Критерий сравнения 

(число операций в 

каждый момент t) 

Алгоритмы управления 

Паде 

одноточечная 

Паде 

двухточечная 
LQR  SDRE 

Число решенных 

уравнений Ляпунова 
2 4 0 0 

Число решенных 

уравнений Риккати 
0 1 0 1 

Решение линейного 

матричного уравнения. 

1 
1 0 0 

Транспонирование 

матрицы 

1 
1 0 0 
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3.6 Выводы к главе 3. 

Рассматриваются два класса нелинейных систем с параметром, один из 

которых представляет собой квазилинейные регулярно возмущенные 

системы, где параметр стоит при нелинейности. Во втором классе систем 

параметр стоит при управлении, таким образом, при малых значениях 

параметра имеем случай слабоуправляемой системы, а при больших – случай 

систем с большим коэффициентом усиления. Построены одноточечная и 

двухточечная матричные Паде аппроксимации для решения матричного 

алгебраического уравнения Риккати с коэффициентами, зависящими от 

состояния, в непрерывном случае и установлены их свойства, в частности, 

проведен анализ асимптотической устойчивости замкнутой системы вдоль 

построенного Паде регулятора. Матричная двухточечная Паде 

аппроксимация используется в качестве «моста» между асимптотическими 

разложениями уравнения Риккати при больших и малых значениях 

параметра для обеспечения лучших приближений на всем интервале 

изменения значений параметра, включая средние значения, чем каждая из 

асимптотик в отдельности. Для конструирования моста искомое 

представление  приравнивается одновременно к двум асимптотическим 

разложениям и коэффициенты полиномов находятся из полученной системы 

матричных уравнений.  
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ГЛАВА 4. ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ 

 

4.1 Стабилизация перевернутого маятника. 

Пример 1. Работа алгоритмов, рассмотренных в главе 2 была оценена 

на примере модели перевернутого маятника на тележке [95]. Модель имеет 

вид 

( 1) ( ( )) ( ) ( ( )) ( ),x t A x t x t B x t u t   (0) (1 0 0.8 0),x   (4.1) 

где  

2
22 23 24

22 2 2

3

42 43 44

3 3
23 2 2

3 3 3

2

4 3
24

1 0 0

0 ( )
( ( )) , 1 ,

0 0 1 ( )( ) ( cos( ( )))

0

sin( ( )) cos( ( ))
,

( )( ) ( ) ( cos( ( ))) ( )

( )sin( ( ))( )

s

s

s

s

s

T

a a a T b I mL
A x t a

T M m I mL mL x t

a a a

T mgL x t mL x t
a

M m I mL x t mL x t x t

T mLx t x t I mL
a

 
 

   
     
 
 



   

 


2 2

3

3
42 2 2

3

3
43 2 2

3 3 3

4 3 3
44 2

3

,
( )( ) ( cos( ( )))

cos( ( ))
,

( cos( ( ))) ( )( )

sin( ( ))( )
,

( cos( ( ))) ( ) ( )( ) ( )

( )sin( ( )) cos( ( ))
1

( cos( ( ))) (

s

s

s

M m I mL mL x t

T bmL x t
a

mL x t I mL M m

T mgL x t M m
a

mL x t x t I mL M m x t

T mLx t x t mL x t
a

mL x t

   


   

 

   


 

  2

2

2

3 3

3

2 2 2 2

3

,
)( )

0

( )

( )( ) cos( ( )) cos( ( ))
( ( )) ,

0

cos( ( ))

cos ( ( )) ( )( )

s

s

I mL M m

T I mL

M m I mL mL x t mL x t
B x t

T mL x t

m L x t I mL M m

 

 
 

  
    

  
 
 
 

    
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2

0 2 2 2 2 2

( )
0 0 ,

( )( ) ( ) ( )( )

T

s sT I mL T mL
B

M m I mL mL m L I mL M m

   
  

        

2

2 2 2 2

0

2 2 2 2

1 0 1 0

1 0 0

( )
0 1 0

( )( ) ( ) ( )( ) ( )
,

0 0 1

( )
0 1

( ) ( )( ) ( ) ( )( )

1 1
( ( )) ( ( ( )) ), ( ( )) ( ( ( )) ),

s

s s

s

s s

T

T b I mL T mgLmL

M m I mL mL M m I mL mL
A

T

T bmL T mgL M m

mL I mL M m mL I mL M m

A x t A x t A B x t B x t B
 

 
 

  
        

  
 
  
 

        

   

 

 

где 1( )x t   положение тележки, 2 ( )x t   скорость тележки, 3( )x t  угол 

отклонения стержня, 4 ( )x t угловая скорость, 0.5M кг  – масса тележки,

0.5m кг  – масса маятника, 0.3L м  – длина стержня, 0.1 /b Нс м   

коэффициент затухания, 
20.06I кгм момент инерции, 0.01sT с  – 

параметр дискретизации, 0.05,   l=400 (4 сек) – число шагов. 

Матрицы критерия выбраны следующим образом 

2

1

2

2

1 0 4 4 02

3

2

4

300 ( ) 10 0 0

10 200 ( ) 0 0
( ( )) , , 1.

0 0 1300 ( ) 0

0 0 0 ( )

x t

x t
Q x t Q E R

x t

x t



 
 

   
 
 
 

Строится регулятор (2.8) первого порядка, здесь 

5

1 ,0 1 ,0

0

( ( )) ( ) ( ( ))( ) .T i i

cl cl

i

P x t A C x t A


   

Сравнение предлагаемого нелинейного регулятора (NC) с линейно-

квадратичным регулятором LQR и регуляторами D-SDRE, P-DSDRE 

(Predictive DSDRE), PO-DSDRE (Predictive Optimized DSDRE) [66] по 

критерию (2.3) приведено в Таблице 5. Алгоритм NC является 

приближенным, но тем не менее он близок к алгоритму D-SDRE, которой 

основан на точном решении того же уравнения Риккати. Стратегии 
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управления, использующие технику расширяющегося горизонта (алгоритмы 

P-DSDRE и PO-DSDRE) более эффективны по значениям критерия, но 

алгоритм NC значительно уменьшает сложность и время вычисления 

регулятора при заданном достаточно большом количестве шагов. Результат 

сравнения с линейным регулятором по значению построенного критерия 

качества показывает, что предложенный алгоритм NC превосходит линейный 

регулятор на 17% ((1 ( ) / ( )) 100%)LQR NCI u I u  . 

Таблица 5. Сравнение регуляторов по критерию (2.3). 

Критерий 

сравнения 

Регуляторы 

LQR  NC D-SDRE 
P-

DSDRE 

PO-

DSDRE 

Значения критерия 

качества 

управления ( )I u  
2702 2317 2200 1104 1216 

 

Траектории системы вдоль линейного LQR и построенного 

нелинейного регуляторов (NC), а также графики управляющих сигналов 

приведены на Рисунках 1 и 2, соответственно. По оси абсцисс откладывается 

номер шага моделирования. 

Полученные результаты сравнения позволяют сделать вывод о том, что 

предлагаемый регулятор обладает лучшей производительностью по 

сравнению с линейным методом и является более простым в вычислительном 

плане и требует меньшее время счета, чем другие обсуждаемые подходы, так 

как позволяет получить асимптотическое приближение к решению уравнения 

Риккати в аналитической форме. Особенно это преимущество проявляется в 

случае большого числа шагов.  
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Рисунок 1. Траектории системы. 

 

Рисунок 2. Управления. 

—D-SDRE  — P-DSDRE  — PO-DSDRE  — NC  — LQR 

 

Пример 2. Теперь рассмотрим задачу стабилизации дискретной модели 

перевернутого маятника [66] 

1

1

1
0

( 1) ( ) ( )sin( )
1 1

T

x t x t u tTg x T

Lx ML



 
         

  

, (4.2) 

где переменная 1( )x t  соответствует углу отклонения стержня, 2 ( )x t  – угловой 

скорости, ( )u t  – скалярное управление. Параметры модели: 0.1L м длина 

маятника, 0.1M кг масса шара, 0.05sT с  время дискретизации, 

/ ²9.8 мg с  ускорение свободного падения, 0.05 /Нс м   коэффициент 

затухания ( / /Нс м кг с ). В данном случае в качестве естественного 

малого параметра используем шаг дискретизации sT , т.е.  = 0.05sT  . 

Выбран следующий вариант факторизации матриц системы 
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 
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  
 
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. Матрицы 
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критерия качества 0 1 0, ( ),Q Q x R  определены следующим образом 
0

1 0

0 1
Q

 
  
 

, 

2

1

1 2

2

1500 0.1 0
( )

0 30 0.1

x
Q x

x

 
  

 
, 0 1R  . 

Здесь рассматривается регулятор (2.8) первого порядка, основанный на 

приближении первого порядка к решению уравнения Риккати (2.6) и 

проводится детальное сравнение линейного LQR и нелинейного (NC) 

регуляторов при разных начальных условиях по нелинейному критерию 

качеству (2.3) и стандартному квадратичному критерию качества, 

получающемуся из (2.3) при 0  , т.е. 

0 0

0

1
( ) ( ) min

2

T T

t

I u x Q x u R u




   . (4.3) 

Результаты экспериментов для различных начальных условий вдоль 

нелинейного (NC) и линейного регуляторов (LQR) представлены в Таблице 

6. При начальном условии (0) (2.8 ; 1)x   построенный регулятор 

эффективнее линейного на 73,3% по нелинейному критерию и на 109,4% по 

стандартному квадратичному критерию. Согласно Таблице 6 различие по 

критерию качества между регуляторами нивелируется, если начальное 

условие находится вблизи положения равновесия 0x  . С ростом же 

начальных условий, естественно, нелинейный регулятор демонстрирует 

лучшие результаты.  

Таблица 6. Значения критериев для дискретной модели маятника (4.2). 

Критерий Начальное условие (0) (2.8 ; 1)x   

Линейный регулятор 
Нелинейный 

регулятор 

Нелинейный критерий 33.19 10  
31.84 10  

Стандартный 

квадратичный критерий 
774.18  369.66  
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 Начальное условие (0) (0.2 ; 0.1)x   

Нелинейный критерий 12.00  11.87  

Стандартный 

квадратичный критерий 
4.16  5.04  

 Начальное условие (0) (1 ; 1)x   

Нелинейный критерий 290.88  298.84  

Стандартный 

квадратичный критерий 
99.39  116.76  

 

Кроме приведенных критериев, работоспособность реальных 

физических систем управления оценивается и с помощью ряда других 

качественных показателей регулирования, популярных в теории 

регулирования [13]. А именно: 

1. Время регулирования pt (  – заданная точность). 

2. Время достижения первого максимума maxt . 

3. Максимальное отклонение управляемой величины max  от 

установившегося значения (кроме начального отклонения), соответствующее 

времени maxt .  

4. Перерегулирование ( ) .  

5. Статическое отклонение регулируемой величины 

(установившееся отклонение) ст . 

6. Квадратичная ошибка регулирования J, которая определяется как 

0

( ) ( )
N

T

t

J e t e t


 , где ( ) ( ) устe t h t h  , ( ( )h t  – координата системы, устh  – 

установившееся значение). 

Сравнение линейного и построенного нелинейного регуляторов по 

другим показателям качества управления приведены в Таблице 7.  
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Таблица 7. Показатели качества для дискретной модели маятника (4.2). 

Показатель 

качества 

Угол отклонения 

маятника,  

1-ая координата 

Скорость колебания 

маятника,  

2-ая координата 

 Линейный Нелинейный Линейный Нелинейный 

pt   при 0.1   6 12 12 17 

maxt  1 1 2 1 

max  2.85 2.85 21.17 10.82 

  0 0 21.17 10.82 

ст  41.06 10  
62.31 10  

43.81 10  
51.45 10  

 Линейный регулятор Нелинейный регулятор 

J 983.58 429.82 

 

Сравнивая основные интегральные характеристики, наблюдаем 

очевидное превосходство нелинейного регулятора. Очевидно, что из-за 

линейности регулятор LQR хуже учитывает специфику исходной нелинейной 

системы, что может приводить к отсутствию асимптотической устойчивости 

нулевого положения равновесия замкнутой системы.  Также отметим, что 

расчеты на этой модели показывают чувствительность эффективности 

нелинейного регулятора к изменению параметра  , особенно, вблизи нуля, 

т.к. при малых   различия между регуляторами исчезают.  

Пример 3. Изменение выбора матриц 0 1 0 1, , ,A A B B , 0 1 0, ( ),Q Q x R , 

естественно, может сказаться на характеристиках регуляторов LQR и NC. 

Пусть для модели маятника (4.2) имеем следующие матрицы 

0

1

0 1

s

s

T

A T

ML



 
 
 
 

, 1 1

1

0 0

( ) sin( )
0

A x g x

Lx

 
 
 
  

, 
2

1

1 2

2

250 0.1 0
( )

0 30 0.1

x
Q x

x

 
  

 
, а 

значения всех остальных матриц и параметров остаются прежними, т.е. по 

сравнению с примером 2, имеем другое представление 0 1,A A  и сильное 

изменение матрицы 1( )Q x . При числе шагов 80l   и (0) (2.8; 1)x   

нелинейный регулятор превосходит линейный на 368.39% по нелинейному 



111 

 

критерию и на 14.43% по стандартному квадратичному критерию (см. 

Таблицу 8). В этом примере вдоль линейного регулятора теряется 

асимптотическая устойчивость нулевого положения равновесия замкнутой 

системы, одна координата системы вдоль линейного регулятора стремится к 

ненулевому значению. Для поддержания маятника в таком положении 

требуется постоянное ненулевое управляющее воздействие. При 

использовании нелинейного регулятора замкнутая система является 

асимптотически устойчивой.  

Таблица 8. Значения критериев для дискретной модели маятника. 

 Линейный регулятор Нелинейный 

регулятор 

Нелинейный критерий 34.35 10  926.67  

Стандартный 

квадратичный критерий 
440.36  384.85  

 

Отметим, что здесь потребовалось изменить 1Q , т.к. при прежнем 

значении 1Q  нелинейный регулятор теряет свою эффективность. 

Значительное уменьшение первого элемента главной диагонали матрицы 1Q

позволяет получить регулятор, большинство характеристик которого лучше 

соответствующего линейного регулятора, а последнее объясняется 

недопустимостью линейного регулятора в данном примере, т.к. происходит 

потеря асимптотической устойчивости нелинейной замкнутой системы вдоль 

линейного регулятора. Таким образом, нелинейный регулятор при 

определенном выборе параметров обеспечивает лучшее значение 

предлагаемого нелинейного критерия и стандартного квадратичного 

критерия по сравнению со значениями этих критериев вдоль линейного 

регулятора, а также имеет значительно меньшую квадратичную ошибку 

регулирования J.  
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4.2 Оценка робастности. 

Пример 4. Здесь рассматриваются свойства устойчивости алгоритмов 

управления NC и LQR на модели перевернутого маятника (4.2).  Здесь 

0

1

1

s

s s

T

A T g T

L ML



 
 
 
 

, 1 1

1

0 0

( ( )) sin( )
0s s

A x t T g x T g

Lx L

 
 
 
  

, 
0 1

0 0
, ,

1 0
B B

   
    
   

0 2 2Q E  , 

2
1

2
2

(0.01 ( )) 2

1 2

1
(0.01 ( ))2

1 2

2 0.001( ( ) ( ))
( ( ))

0.001( ( ) ( )) 2

x t

x t

e x t x t
Q x t

x t x t e

 
  
  

, 0 1R  , 
2.8

(0) ,
1

x
 

  
 

1  . Пусть матрица ( ( ))A x t  отличается от модельной следующим 

аддитивным членом 
1

1

1

( ( )) sin( ( ))
1

( )

s

n ns s

T

A x t ET g x t T

Lx t ML

 

 
  
 
  

 с 

неопределенным параметром 0.15 0.15   . Выберем 

2

1

1 2

2

1500 0.1 ( ) 0
( ( ))

0 30 0.1 ( )

x t
Q x t

x t

 
  

 
, 1  . При изменении параметра 

неопределенности   в заданном интервале нелинейный регулятор (NC) 

является робастным. Среднее значение критерия для алгоритма NC для 30 

случайных значений параметра равно 
4( ( ( ), ) 8.1 1) 5 0I u x t   , а для линейного 

регулятора (LQR) –
3

0

7( ( ( ))) 1.01 10I u x t   , т. е. линейный регулятор не может 

стабилизировать систему при изменении параметра неопределенности в 

интервале 0.15 0.15   . Траектории системы для алгоритмов NC и LQR 

представлены на Рисунке 3. Значения критерия равны 5,2
410  и 1,34

2710  

соответственно.  
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Регулятор NC 

         

        Регулятор LQR 

— 1x      — 2x  

 

Рисунок 3. Траектории системы для различных управлений в случае 

наличия неопределенного параметра.  

Пример 5. Рассмотрим модель (4.2), 
2.8

(0)
0.1

x
 

  
 

, в случае наличия 

интервальных параметрических неопределенностей 1 2( , )    в матрицах 

0 ( )A  , 0 ( )B   (см. §2.3). Матрицы системы имеют вид: 

0 1 1 0 2 1 1

2

1

0 01 0 0
0 1

( ) , ( ) , ( ) ,sin( )
01 0

s

s ss s

T

A B A x T g x T gT g T
c

Lx LL L

  


    
                 

      

 

1

0
( )

0
B x

 
  
 

, 
1

, 0.05c const 


   , l   число шагов. Параметры 

неопределенности принимают значения из следующих ограниченных 

замкнутых интервалов 
1

1
,

M
  [0.05;0.15]M , 1 [6.7;20]  , 2 [0.8;1.2]  . 

Весовые матрицы критерия (2.3) выбраны следующим образом 

2

1

0 1 02

2

1 0 1500 0.1 0
, ( ) , 1.

0 1 0 30 0.1

x
Q Q x R

x

  
    

   
 

В этом случае имеем систему,  политопическая область 

неопределенности которой задается с помощью 4 матриц-вершин, 

описывающих худшие случаи реализации значений параметров, а именно 

-20

-15

-10

-5

0

5

1 4 7 10 13 16 19 22 25 28 31 34 37 40

-10000000

-5000000

0

5000000

10000000

1 4 7 1013161922252831343740
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  [20;0.8], [20;1.2], [6.7;0.8], [6.7;1.2]:  1 ,0 1 2 2 ,0 1 2( , ), ( , ),cl clA A A A    

3 ,0 1 2 4 ,0 1 2( , ), ( , )cl clA A A A     .   Таким образом, требуется найти четыре 

положительные матрицы iP  для получения зависящей от параметра α 

функции Ляпунова ( ) ( )TV x x P x . 

Была проведена серия из 25 экспериментов для случайных значений 

параметров. Сравнение с линейным срединным регулятором (для 4 «худших» 

комбинаций значений параметров неопределенности) представлено на 

Рисунке 4. В среднем по значению критерия нелинейный срединный 

регулятор лучше линейного срединного регулятора в 2.8 раза. 

l 

Рисунок 4. Траектории системы вдоль срединного линейного и 

нелинейного регуляторов. 

Также было проведено сравнение значений критерия для линейного 

LQR и нелинейного NC срединных регуляторов при разных начальных 

условиях 1 2(0) ( ; )x x x . Зафиксируем угловую скорость ( 2 0.1x   ) в 

начальный момент времени и будем менять угол отклонения маятника (x1) в 

диапазоне 1 [0.2; 2.8]x  . Были рассмотрены следующие случаи 

     (0) 0.2 ; 0.1 , (0) 0.6 ; 0.1 , (0) 1; 0.1 ,x x x       (0) 2; 0.1 ,x  

 (0) 2.8 ; 0.1x   . На Рисунке 5 по оси ординат представлено отношение 

--- Линейный срединный регулятор 

— Нелинейный срединный регулятор 
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значения критерия качества для нелинейного регулятора к значению 

критерия для линейного регулятора. При росте  1 0x  это отношение убывает, 

что свидетельствует о преимуществе нелинейного регулятора. 

  

Рисунок 5.Отношение значения критерия качества для нелинейного 

регулятора к значению критерия для линейного регулятора. 

Пример 6. В 1( )A x  вводятся детерминированные статические 

возмущения (ошибки) 
1 1

1 1

1 1

1

0 0
1

( ) sin( )
0s s

x x
A x T g x T g

x xc
Lx L

 
        

  

,

 (0) 2.4; 0.1x   . В среднем нелинейный регулятор в 7 раз лучше 

линейного. 

Также было проведено сравнение значений критерия для линейного  и 

нелинейного срединных регуляторов при разных начальных условиях 

1 2(0) ( ; )x x x   при наличии возмущений в матрице 1( )A x . Были рассмотрены 

следующие случаи      (0) 0.2 ; 0.1 , (0) 0.6 ; 0.1 , (0) 1; 0.1 ,x x x       

 (0) 2; 0.1 ,x    (0) 2.4 ; 0.1x   . График отношения значения критерия 

качества для нелинейного регулятора к значению критерия для линейного 

регулятора представлен на Рисунке 6. При росте  1 0x  это отношение 

убывает, что свидетельствует о преимуществе нелинейного регулятора. 
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Рисунок 6. Отношение значения критерия качества для нелинейного 

регулятора к значению критерия для линейного регулятора при 

наличии возмущений в матрице 1( )A x . 

4.3 Конструирование Паде-регуляторов. 

Пример 7. Рассмотрим задачу (3.1), (3.2) со следующими параметрами

2 2

1 1

2 2

2 2

2

1

0 0 1 2

2

2

1

2 2

2

1 0.1 0.5 0.2 0.2 0.2 0.4 0.1
( , ) , ( , ) ,

0.7 0.1 0.2 0.1 0.5 0.1 0.1 0.2

1 0 5 1 45 0.1 35
, , ( ) ,

0 1 1 5 35 47 0.1

2 0.1 1
( )

1 2 0.1

A B

x
R Q Q x

x

x
Q

x
x x

x x

x

x

x

   
 

   

          
    

          

    
       

     

 
 


   0 -1 1 ,, 0,10 .

T
tx







 

Здесь строятся регуляторы, основанные на одноточечной Паде 

аппроксимация порядка [1/2],   [1/2] ,K x   (3.23), построенной по асимптотике 

по малому параметру и на двухточечной Паде аппроксимации порядка [2/2] 

 [2/2] ,мостK x   (3.27). Сравнение ведется с SDRE регулятором и регуляторами, 

основанными на локальных асимптотических разложениях, при малых и 

больших значениях параметра, соответственно. В Таблице 9. и на Рисунке 7.  

приведены результаты рассмотрения 10 экспериментов, отличающихся 

значением параметра  . Паде регулятор, основанный на одноточечной Паде 

аппроксимации имеет более широкую область действия по сравнению с 
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регулятором, основанным на асимптотике по малому значению параметра. 

Также отметим, что двухточечная Паде аппроксимация превосходит 

одноточечную по качеству приближения и соответствующий регулятор по 

критерию качества близок к SDRE регулятору на всей рассматриваемой 

области значений параметра, включая и большие значения.   

Таблица 9. Значения критерия качества для рассматриваемых 

регуляторов при разных значениях  . 

ε 

SDRE 

регулятор 

(SDRE) 

Паде 

регулятор 

(PA) 

одноточечн

ый [1/2] 

Паде 

регулятор 

(PA) 

двухточечн

ый [2/2] 

Асимптоти

ка по 

большому 

параметру  

ε 

Асимптоти

ка по 

малому 

параметру ε 

0,01 14,853 14,853 14,853 2,96·10
10

 14,853 

0,1 17,009 17,018 17,010 2,929·10
8
 17,019 

0,3 21,758 22,439 21,780 4,594·10
7
 22,975 

0,6 30,161 37,388 30,472 1,069·10
7
 77,637 

0,8 37,327 53,569 38,458 4,016·10
5
 319,950 

1 46,483 73,361 49,474 5,244·10
6
 1790,890 

3 94,340 154,077 104,722 8,234·10
5
 - 

6 34,657 139,127 35,141 1,19·10
4
 - 

10 24,945 145,541 24,976 24,948 - 

15 21,027 165,103 21,033 21,031 - 
 

 

Рисунок 7. Сравнение алгоритмов управления по значению критерия 

при разных значениях  . 
 

I(u) 

  
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Пример 8. Рассмотрим двумерную нелинейную систему управления 

(3.1) с критерием качества (3.2), где 

2 2
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  
   Здесь матрицы 

0 1 0 1 2 0
ˆ ˆ ˆ, , , , ,P P P P P   симметричные, 

0

11.40 0.88
0

0.88 4.99

 
   

 
, а матрицы 

1 1 2( ), ( ), ( )x x x    не являются положительно определенными. Значения 

критерия качества управления для сравниваемых регуляторов представлены 

в Таблице 10 и на Рисунке 8, а траектории соответствующих замкнутых 

систем представлены на Рисунке 9. 

Таблица 10. Значения критерия качества при разных значениях  . 

ε 

SDRE 

регулятор 

(SDRE) 

Паде 

регулятор (PA) 

двухточечный 

[2/2] 

Асимптотика 

по большому 

параметру  ε 

Асимптотика 

по малому 

параметру ε 

0,01 14.86 14.86 - 14.86 

0,1 17.08 17.09 - 17.09 

0,3 21.99 22.02 - 23.27 

0,6 30.71 31.01 - 82.6 

0,8 38.18 39.16 - 382.86 

1 47.75 50.31 - 1.8·10
11

 

3 105.48 115.74 - 2.1·10
12

 

6 38.05 38.34 4.9·10
3
 5.4·10

12
 

10 27.86 27.87 27.86 1.1·10
14

 

15 23.81 23.81 23.82 - 
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— SDRE   — Паде   — Асим. по малому парам.   — Асим. по большому парам.    

 

Рисунок 8. Значения критерия качества для рассматриваемых 

регуляторов при разных значениях ε.  

 

 

Рисунок 9. Траектории замкнутой системы вдоль Pade и SDRE 

регуляторов при разных значениях  ε.  

 

Пример 9. Рассмотрим стационарную систему управления с векторным 

управлением и квадратичным критерием качества (3.29), (3.30), где 

0 1 2

2 0.5 2 0.4 5 0.5 1 0 1 0
, , , , ,

1 0.7 0.5 1.4 0.5 5 0 1 0 1
A B Q Q Q

          
             

          

0

1 0
,

0 1
R

 
  
 

 0 1 1 .
T

x    Построим для этой системы стабилизирующий 

регулятор с положительным параметром  0,   , который основан на 

матричной Паде аппроксимации порядка [2/2] (3.41). Приближение Паде 

строится на основе двух асимптотических приближений к зависящему от 

––– SDRE 

----- Паде 

ε=0.01 

ε=0.1 

ε=0.3 

ε=0.6 

ε=0.8 

ε=1 

ε=3 

ε=6 

ε=10 

ε=15 

I(u) 

ε 

  
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состояния решению матричного уравнения Риккати. Очевидно, что матрицы 

0 1 0 1 2 0
ˆ ˆ ˆ, , , , ,P P P P P   симметричны и положительно определены, 

0

2.315 -2.130
,

-2.130 5.093

 
   

 
 матрицы 1 2 1 2, , ,     имеют положительные 

собственные числа, но не являются симметричными 

1 2 1

0.602 -0.635 1,137 -1,184 0.070 -0.086
, , ,

-0.509 1.130 -1,032 2,262 0.024 -0.022

     
          

     
 

2

1.786 -1.317
.

-0.936 2.656

 
   

 
 Проведена серия экспериментов для разных значений 

ε для Паде-регулятора (3.44) и SDRE регулятора (3.31). Результаты сравнения 

этих двух управлений, а также алгоритмов управления, использующих 

асимптотики по большому и малому параметру к решению уравнения 

Риккати по критерию качества (3.30) представлены в Таблице 11 и на 

Рисунке 10. Из Таблицы 11 видно, что регулятор Паде демонстрирует 

хорошую производительность для всех рассмотренных значений ɛ из 

интервала (0, )  и практически совпадает с точным решением. Построенное 

семейство стабилизирующих регуляторов является приближенным 

символьным описанием параметрического набора стабилизирующих 

управлений. 

Таблица 11. Значения критерия качества для рассматриваемых 

регуляторов при разных значениях  . 

 ε 0,01 0,3 1 6 15 

I

I(u) 

SDRE регулятор (SDRE) 9,109 7,385 3,697 1,870 1,728 

Паде регулятор (PA) 9,109 7,652 3,769 1,870 1,728 

Асимптотика по 

большому параметру ε  
1,253·10

4 
17,702 3,947 1,870 1,728 

Асимптотика по малому 

параметру ε  
9,109 8,180 7,425 13,433 24,700 
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Таким образом, численные эксперименты показывают, что 

двухточечные регуляторы Паде с использованием двух асимптотических 

аппроксимаций могут быть более эффективными, чем регуляторы, 

основанные на индивидуальных асимптотических разложениях. 

Стабилизирующий регулятор Паде устойчив по параметру в стационарном 

случае, так как асимптотическая устойчивость замкнутой системы вдоль 

этого регулятора сохраняется при любых возмущениях параметра в 

допустимой области его изменения. 

 

Рисунок 10. Сравнения алгоритмов управления по критерию качества 

4.4 Дискретные задачи оптимального управления с малым шагом. 

Пример 10. Рассмотрим задачу (2.25)-(2.27), где 

0,56 0,33

0,37 0,45
A

 
  
 

,
1.12 0.13 0.6 0.2 0.3 0.55 165

0.1 1.11 0.1 0.7 0.4 0.220
B

      
        
      

0.223 -0.305

-0.321 0.439

 
  
 

, 
0.4 0.1

0.16 0.2
d

 
  
 

, 
0

0.9

1
x

 
  
 

, 
10

9
задx

 
  
 

, 
1

0,3
( ) ,

0,3
f t t 

 
  
 

1.005, 0.167   шаг по времени, 6l  число шагов , [0,1], 0.01t   

параметр при интегральном члене. Траектории и управления представлены 

на Рисунке 11 и Рисунке 12, соответственно. Значения критерия для точного 

решения равно 5.809, а для асимптотического приближения 6.103.  

 

I(u) 
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1x  2x  

 
t  

t 

— Точная траектория (расчет на 6 шагах) 

--- Субоптимальная траектория (расчет на 6 шагах) 
 

 

Рисунок 11. Траектории системы 

1u  2u  

 
t 

 
t 

— Точное управление (расчет на 6 шагах) 

--- Субоптимальное управление (расчет на 6 шагах) 
 
 

Рисунок 12. Управления 

Параметры равны 
0 1 2

1,599 8,866 0,773

1,869 8,701 72,4
, ,

96
,b b b

     
       
   



 

3

0,132

92,608
b

 
  
 

, 
0 1 0 1

2 2,253
3, 3, ,

2 2,661
a a U U

   
      

   
. 
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Пример 11. Пусть в задаче (2.33)-(2.35) имеем 
0,56 0,33

0,37 0,45
A

 
  
 

,

1.12 0.13 0.6 0.2 0.3 0.5 0.223 -0.3055 165
,

0.1 1.11 0.1 0.7 0.4 0.2 -0.321 0.43920
B

        
          
        

0.4 0.1

0.16 0.2
d

 
  
 

, 
0

0,5

0,4
x

 
  
 

, 
0,8

1
задx

 
  
 

, 
1

0,12
( ) ,

0,1
f t t 

 
  
 

1.005,  12l  

число шагов , [0,1], 0.01.t    

В общем случае пара 0 0( ), ( )x t u t  выбирается из условий (2.36). В 

частном случае, когда квадратная матрица B вырождена, можно взять 

0 ( ) ( ) , ( )Au t c t u c t  - скалярная функция, а из (2.36) получаем 

1

0 1( ) ( ) ( )x t E A f t  , которая напоминает траекторию выпуска в балансовой 

модели Леонтьева, в случае, когда матрица входа-выхода A продуктивна и  

1( )f t  представляет собой вектор конечного потребления. Получаем 

следующее представление функции управления  

0 0 0 0 1 0 0 0

1
( , , ( ), ( ), ( )) ( , ( ))

t t
u t c t П u Q u u t c t П u Q u  

 

   
     

   
 (4.4) 

Находя структуру нулевого приближения (4.4) для увеличивающегося 

числа шагов   7;  8;  9l   получаем последовательность допустимых 

управлений, которая оказывается минимизирующей (см. Рисунок 13). Первая 

координата управления нулевая и не меняется при увеличении числа шагов, а 

вторая координата представлена на Рисунке 13. Этот подход обеспечивает 

последовательное улучшение полученного приближения к управлению. 

Субоптимальные траектории (см. Рисунок 14) приближаются к точным в 

процессе равномерной коррекции нулевого приближения к управлению, а 

сумма квадратов отклонения между точной траекторией и результирующими 

субоптимальными траекториями вдоль трех приближений к оптимальному 

управлению последовательно принимает значения 1.388,0.468,0.188 , а 

соответствующие значения критерия 0.194,0.092,0.035 . 
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--- Первое субоптимальное управление (расчет на 7 шагах) 

— Второе субоптимальное управление (расчет на 8 шагах) 

— Третье субоптимальное управление (расчет на 9 шагах)  

— Точное управление (расчет на 12 шагах) 

 
 

Рисунок 13. Управление (координата 2u ) 
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--- Первая субоптимальная траектория (расчет на 7 шагах) 

— Вторая субоптимальная траектория (расчет на 8 шагах) 

— Третья субоптимальная траектория (расчет на 9 шагах)  

— Точная траектория (расчет на 12 шагах) 
 

 

 

Рисунок 14. Траектории для различных стратегий управления 
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4.5 Выводы к главе 4. 

Построенный в работе дискретный нелинейный регулятор имеет более 

широкую область применения по сравнению с линейным регулятором.  

Дискретный нелинейный регулятор при определенном выборе 

параметров обеспечивает лучшее значение предлагаемого нелинейного 

критерия по сравнению с линейным регулятором в дискретной 

слабонелинейной системе.  В приведенных примерах построенный регулятор 

сохраняет устойчивость замкнутой системы в более широкой области 

изменения параметров неопределенности, чем линейный регулятор. 

Особенно это преимущество проявляется в случае больших начальных 

возмущений.  

Регулятор Паде демонстрирует хорошую производительность для всех 

значений ɛ из рассматриваемого интервала и близок к управлению SDRE. 

Примеры показывают, что он превосходит регуляторы, основанные на 

асимптотических разложениях вблизи границ интервала изменения 

параметра. 

Предлагаемый подход для дискретных задач управления с малым 

шагом на основе асимптотики метода пограничных функций для сингулярно 

возмущенных задач позволяет получить качественное начальное 

приближение к оптимальному управлению даже в условии наличия 

ограничений на траекторию и управления. 
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ЗАКЛЮЧЕНИЕ 
 

Диссертация посвящена решению задач стабилизации 

слабонелинейных непрерывных и дискретных систем управления с 

использованием асимптотических методов.  

Для квазилинейной дискретной системы управления с параметром и с 

коэффициентами, зависящими от состояния, на основе формального 

асимптотического разложения построено приближенное решение матричного 

алгебраического уравнения Риккати и получен стабилизирующий 

нелинейный регулятор, обладающий свойством робастности относительно 

параметрических неопределенностей в линейной части системы. 

Для непрерывной системы управления с параметром и с 

коэффициентами, зависящими от состояния, построено параметрическое 

семейство стабилизирующих регуляторов на основе Паде аппроксимации 

решения матричного алгебраического уравнения Риккати. Полученное 

семейство регуляторов включает в себе стабилизирующие регуляторы для 

слабоуправляемых систем и систем с большим коэффициентом усиления. 

Построены одноточечная и двухточечная матричные Паде аппроксимации 

(Паде-мост), основанные на двух локальных асимптотических 

приближениях, и установлены их свойства. Анализ асимптотической 

устойчивости замкнутой системы вдоль построенного Паде регулятора 

показал, что построенное на основе Паде-моста семейство регуляторов 

является стабилизирующим для стационарных непрерывных линейных 

управляемых систем. 

Получено приближенное решение дискретных задач оптимального 

управления с малым шагом на основе прямой схемы построения 

асимптотики.  
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На примерах показано, что разработанные численно-аналитические 

алгоритмы построения стабилизирующих регуляторов позволяют снизить 

вычислительную сложность при достижении одинакового качества 

регулирования.  
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