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ВВЕДЕНИЕ 

 

Актуальность темы исследования. Ключевыми позициями программы 

«Энергетическая стратегия России – 2030» являются обеспечение надёжности, 

промышленной и экологической безопасности, экономической эффективности 

транспортировки газа [48]. Управление трубопроводными газотранспортными 

системами (ГТС), относящимися к технологически опасным объектам, 

осуществляется в рамках автоматизированных систем диспетчерского управления 

(АСДУ). Целью АСДУ является осуществление «бесперебойной и безопасной 

работы объектов систем газоснабжения» и «надёжное обеспечение газом 

потребителей различных категорий» (Федеральный закон № 69-ФЗ (ред. от 

26.07.2017) «О газоснабжении в Российской Федерации», ст. №17 и ст. №32). За 

последние десятилетия АСДУ стали магистральным направлением развития АСУ 

технологическим процессом [34], в их развитии проявилась необходимость 

перехода на малолюдные технологии при управлении локальными объектами, 

усиливающаяся также тем, что многие газотранспортные объекты ПАО «Газпром», 

которой принадлежит ЕСГ России – крупнейшая в мире ГТС,  функционируют в 

трудных климатических условиях Крайнего Севера и Западной Сибири.  

Безопасность и качество функционирования ГТС определяется, главным 

образом, надёжностью функционирования трубопроводной части и надёжностью 

работы газоперекачивающих агрегатов (ГПА) – технологически активных 

элементов магистральных газопроводов. ГПА относятся к установкам 

долговременного использования, однако отдельные элементы агрегатов могут 

иметь ограниченный ресурс. Эффективность функционирования ЕСГ РФ 

напрямую зависит от надёжности, особенностей условий эксплуатации и 

технического обслуживания парка ГПА. Процедуры поддержания ГПА в 

технически исправном состоянии включают наблюдение, проверку технического 

состояния, а также устранение технических неисправностей. При эксплуатации 

ГПА повышение надёжности достигается рациональной организацией системы 

технического обслуживания и ремонта, позволяющей сократить число аварийных 
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отказов и убытков из-за их возникновения, продлить межремонтный период, 

уменьшить издержки на каждый плановый ремонт, оптимизировать длительность 

простоев и затраты на замену оборудования.  

В этой связи возникает проблема оценки показателей надёжности и 

мониторинга состояния технологического оборудования для управления 

техническим состоянием и целостностью ГТС. За последние годы объём 

доступной статистической информацией об отказах существенно снизился, а цена 

последствий отказов (техногенные катастрофы) значительно возросла. Имеются 

трудности с определением также и того, какой параметр следует оценивать: 

интенсивность отказов, как показатель надёжности неремонтопригодных 

(невосстанавливаемых) элементов, или параметр потока отказов, 

характеризующий функционирование ремонтопригодных (восстанавливаемых) 

элементов. В новых реалиях сложные объекты исследований трудно причислить 

только к одному или другому типу. В частности, для случая ГПА и САУ ГПА 

объекты с точки зрения аварийных остановов (которые, несомненно, являются 

отказами) можно рассматривать с двоякой позиции: как восстанавливаемые, так и 

невосстанавливаемые. 

Степень разработанности темы исследования. В ходе работы был изучен 

и проанализирован вклад отечественных и зарубежных учёных в научных 

дисциплинах, связанных с темой диссертационного исследования.  

По классической теории надёжности: Гнеденко Б.В., Беляев Ю.К., 

Соловьев А.Д., Кордонский Х.Б., Герцбах И.Б., Половко А.М., Ушаков И.А., 

Шеннон К., Barlow, R., Proschan F. и др.; по современным методам надёжности: 

Антонов А.В., Викторова В.С., Каштанов В.А., Медведев А.И., Никулин М.С., 

Острейковский В.А., Рыков В.В., Сотсков Б.С., Степанянц А.С., Сухарев М.Г., 

Elsayed E.A. и др.; по распределению Гнеденко-Вейбулла и теории 

восстановления: Гнеденко Б.В., Золотухина Л.А., Weibull W., Cox D.R., Smith 

W.L., Constantine A.G., Robinson N.I., Dubey S.D., Leadbetter M.R., Beichelt F., 

Franken P., Cui L., Xie M., Hadji E.M. и др.; по статистическим методам и 

моделированию управляемых стохастических систем: С.В. Емельянов, В.С. 
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Пугачев, И.Н. Синицын и др.; по АСДУ трубопроводным транспортом газа и 

мониторингу надёжности: Берман Р.Я., Григорьев Л.И., Дейнеко С.В., 

Костогрызов А.И., Панкратов В.С., Сарданашвили С.А., Ставровский Е.Р., 

Степанян А.А., Стёпин Ю.П., Сухарев М.Г., Трахтенгерц Э.А., Харионовский В.В., 

Macdonald D. и др.     

Проведённый анализ показал, что для решения задачи, состоящей в 

разработке вероятностных моделей и методов статистических оценок и 

мониторинга надёжности технологически активных элементов ГТС, в качестве 

отправной точки в моделировании распределения времени между отказами 

целесообразно воспользоваться распределением Гнеденко-Вейбулла (см. [88]), в 

зарубежной литературе используемое под названием распределения Вейбулла 

[143, 150]. Оно позволяет достаточно гибко моделировать все этапы жизненного 

цикла функционирования объектов в терминах интенсивности отказов (как 

основного и наглядного показателя надёжности «в моменте» [75, 78]), а также 

удобно описывать процессы деградации, старения технологического 

оборудования. Указанные рекомендации отражены в ГОСТ Р 27.606 − 2013 

«Надёжность в технике. Управление надёжностью. Техническое 

обслуживание, ориентированное на безотказность»: «Планово - 

профилактические ремонты или замены полезны в случаях, когда отказы одной или 

нескольких ключевых составных частей изделия имеют чётко выраженный 

износовый и/или усталостный характер, что соответствует описанию вероятности 

подобных отказов двухпараметрическим распределением Вейбулла. Зная 

параметры формы и масштаба этого распределения, можно установить 

рациональные значения периодичности профилактического обслуживания или 

замен этих составных частей» [30]. Применимость распределения Вейбулла также 

прописана в ГОСТ Р 27.301-2011 «Надежность в технике. Управление 

надежностью. Техника анализа безотказности. Основные положения». 

В диссертационной работе ставится проблема разработки методов и моделей 

статистического анализа для оценки различных показателей надёжности на основе 

распределения Гнеденко-Вейбулла с целью их мониторинга и прогнозирования 
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возникновения отказа (аварийного останова в случае ГПА) в будущем. Указанная 

разработка должна быть осуществлена не только с позиций теории надёжности, 

которая является инженерной дисциплиной, изучающей объект на основании его 

«истории болезни», но и с точки зрения системного подхода к анализу, 

управлению и обработке информации.  

Инженерный подход подразумевает простоту и оперативность обработки 

эксплуатационных данных, ясного понимания сути процессов в условиях 

современного этапа научно-технической революции, характеризующегося 

ускоренным развитием информационных технологий, быстрым обновлением 

производства, возникновением и массовым распространением новых технических 

устройств. В условиях, когда перед инженером ежедневно встают сложные 

производственные проблемы, требующие оперативных решений, необходимы 

простые модели и методы, которые бы позволяли на основе как большого, так и 

малого количества статистической информации делать оценки, проводить 

текущий контроль надёжности функционирования систем и аргументировано 

утверждать, когда необходимо менять то или иное оборудование, которое со 

временем естественным образом устаревает.  

Системный метод исследований и анализа представляет собой интенсивно 

развивающуюся область научной деятельности, в которой весьма результативно 

проявляются интегративные тенденции в науке и реализуется современная форма 

синтеза научных знаний [2]. Одним из теоретических фундаментов, на который 

опирается системный анализ, является теория надёжности. 

Целью диссертационной работы является разработка вероятностно-

статистических моделей для оценки показателей надёжности ГПА, 

прогнозирования начала деградационных процессов и комплексной методики 

анализа эксплуатационной текущей информации в рамках функционирования 

АСДУ транспортом природного газа. Формирование инженерных оценок 

показателей надёжности осуществляется на основе компьютерных методов 

обработки ретроспективной и текущей эксплуатационной информации в формате 

управления целостностью и техническим состоянием системы транспорта газа. 
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Для решения поставленной проблемы необходимо рассмотреть следующие 

взаимосвязанные между собой задачи: 

➢ теоретическое исследование фундаментальных числовых характеристик 

распределения Гнеденко-Вейбулла на предмет получения моделей 

(эффективных расчётных процедур для их вычисления); 

➢ аналитическое представление средней остаточной наработки и её дисперсии 

для модели Гнеденко-Вейбулла распределения отказов ГПА и САУ ГПА; 

➢ разработка аналитического и дискретного методов решения интегрального 

уравнения восстановления для рекуррентного потока отказов в модели 

Гнеденко-Вейбулла; 

➢ формирование методики обработки статистических данных об отказах 

технологически активных элементов (приведших к аварийному останову) для 

реализации мониторинга показателей надёжности. 

Основным объектом диссертации являются ГПА, являющиеся 

фундаментальными элементами ГТС, а также САУ ГПА, которые можно считать 

неотъемлемой частью ГПА.    

В качестве теоретического аппарата для исследования применяются: 

методы математической теории надёжности и теории вероятностей; 

асимптотические методы анализа и теории рядов; методы операционного 

исчисления; методы теории интегральных уравнений Вольтерра второго рода с 

разностным ядром типа свёртки; методы численного анализа и компьютерного 

моделирования. 

Соответствие диссертации паспорту научной специальности. 

Диссертационное исследование соответствует паспорту специальности ВАК РФ 

05.13.01 – «Системный анализ, управление и обработка информации информации 

(информационно-вычислительное обеспечение)» в области исследований: 

П.3. Разработка критериев и моделей описания и оценки эффективности 

решения задач системного анализа, оптимизации, управления, принятия решений 

и обработки информации.  



9 

 

П.5. Разработка специального математического и алгоритмического 

обеспечения систем анализа, оптимизации, управления, принятия решений и 

обработки информации.                      

П.11. Методы и алгоритмы прогнозирования и оценки эффективности, 

качества и надёжности сложных систем. 

Научная новизна полученных результатов состоит в следующем. Для 

случая рекуррентного потока отказов при мгновенном восстановлении с 

законом распределения Гнеденко-Вейбулла времени работы между отказами: 

1. Получено аналитическое разложение в ряд типа Грама–Шарлье параметра 

потока отказов и ведущей функции потока отказов в терминах вероятностных 

моментов при значениях параметра формы, характерных для заключительного 

этапа жизненного цикла эксплуатации объектов ГТС. В связи с чем рассмотрена 

проблема моментов Чебышёва-Маркова-Стилтьеса для распределения 

Гнеденко-Вейбулла.   

2. Предложен аналитический метод получения асимптотического решения 

уравнения восстановления (интегральное уравнение Вольтерра второго рода 

типа свёртки с разностным ядром) для произвольного распределения при 

выполнении определенного набора условий. 

3. Найдено обобщённое степенное разложение (с указанием оценки погрешности 

для приближенных вычислений) и асимптотическое представление средней 

остаточной наработки до отказа, а также её дисперсии и коэффициента 

вариации. 

4. Получена формула, позволяющая прогнозировать момент наступления 

очередного будущего отказа, что означает вхождение в зону деградационных 

процессов.  

5. Проведён асимптотический анализ математического ожидания, дисперсии и 

коэффициента вариации. Рассмотрена нормальная аппроксимация 

распределения Гнеденко-Вейбулла, позволяющая установить границы 

применимости рассматриваемого распределения на практике. 
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Личный вклад. Все пункты, перечисленные в разделе о научной новизне 

диссертационной работы, были получены лично автором.   

Основные положения, выносимые на защиту: 

1. Формула для нахождения прогнозного момента времени начала 

деградационных процессов при эксплуатировании активных элементов 

газотранспортных систем, в частности ГПА и САУ ГПА, в предположении, что 

распределение времени между отказами подчиняется двухпараметрическому 

распределению Гнеденко-Вейбулла. 

2. Комплексная методика по статистической обработке эксплуатационных 

данных об отказах технологически активных элементов ГТС, приведших к 

аварийному останову, для реализации системного мониторинга показателей 

надёжности. 

3. Аналитическое представление параметра потока отказов и функции 

восстановления в предположении, что время безотказной работы объектов 

системы в процессе деградации описывается с помощью двухпараметрического 

закона распределения Гнеденко-Вейбулла. 

4. Алгоритмически реализованные рекуррентные формулы для быстрых и 

высокоэффективных численных расчётов в случае приближенного решения 

уравнения восстановления для потока Гнеденко-Вейбулла с помощью метода 

конечных элементов. 

5. Аналитические разложения функции математического ожидания и дисперсии 

остаточной наработки до отказа для модели Гнеденко-Вейбулла 

распределения отказов.   

Практическая значимость работы. Рассматриваемые модели процесса 

потока отказов, параметры которого изменяются во времени, доведены до уровня 

алгоритмов и программ в мощной по своей функциональности (по 

вычислительным и графическим возможностям) компьютерной системе Wolfram 

Mathematica [149], что позволило визуализировать свойства моделей, дополнить 

содержательный анализ процессов и получить новую информацию о них. 

По материалам исследований диссертации было издано учебно-
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методическое пособие: «Стохастическое моделирование (Специальные главы 

теории вероятностей)» [87], на базе которого читается бакалаврский курс «Теория 

вероятностей (дополнительные главы)» по профилю «Информационно-

измерительная техника и технологии» на факультете автоматики и 

вычислительной техники РГУ нефти и газа (НИУ) имени И.М. Губкина. 

Теоретические результаты диссертационной работы используются в 

учебном процессе кафедры «Автоматизированные системы управления» 

факультета автоматики и вычислительной техники Российского государственного 

университета нефти и газа (НИУ) имени И.М. Губкина в рамках курсов 

«Мониторинг надёжности АСДУ», а также в процессе дипломного 

проектирования и подготовки работ по магистерской программе 

«Автоматизированные системы диспетчерского управления в нефтегазовом 

комплексе» по указанной кафедре. 

Также получен акт о внедрении результатов диссертации (Приложение А) в 

ООО «Шлангенз» (г. Великий Новгород) при прогнозировании 

работоспособности как отдельных элементов, так и остаточного ресурса 

технических систем в целом (на примере компрессорных установок).. 

Апробация работы. Основные результаты работы докладывались на 

следующих конференциях: 

➢ IX Международная научная конференция «Стандартизация, сертификация, 

обеспечение эффективности, качества и безопасности информационных 

технологий» (ИТ-Стандарт 2019), Москва, 2019; 

➢ Международная конференция «Современные методы и проблемы теории 

операторов и гармонического анализа, и их приложения – VIII», Ростов-на-

Дону, 2018; 

➢ 12-ая Всероссийская научно-техническая конференция «Актуальные 

проблемы развития нефтегазового комплекса России», Москва, 2018; 

➢ Международная конференция «Современные методы и проблемы теории 

операторов и гармонического анализа, и их приложения – VII», Ростов-на-

Дону, 2017; 
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➢ Международная конференция «Аналитические и вычислительные методы в 

теории вероятностей и её приложениях — АВМТВ 2017», Москва, 2017; 

➢ 11-ая Всероссийская научно-техническая конференция «Актуальные 

проблемы развития нефтегазового комплекса России», Москва, 2016; 

➢ Международная конференция «Современные методы и проблемы теории 

операторов и гармонического анализа, и их приложения – VI», Ростов-на-

Дону, 2016; 

➢ Международная конференция «Современные методы и проблемы теории 

операторов и гармонического анализа, и их приложения – V», Ростов-на-

Дону, 2015; 

➢ 10-ая Всероссийская научно-техническая конференция «Актуальные 

проблемы развития нефтегазового комплекса России», Москва, 2014;   

➢ 10-ая Всероссийская конференция молодых учёных, специалистов и 

студентов «Новые технологии в газовой промышленности (газ, нефть, 

энергетика», Москва, 2013; 

➢ 9-ая Всероссийская научно-техническая конференция «Актуальные 

проблемы развития нефтегазового комплекса России», Москва, 2012; 

➢ 16-ая Международная научно-техническая конференция молодых учёных и 

специалистов «Системные проблемы надёжности, качества, информационно-

телекоммуникационных и электронных технологий в инновационных 

проектах (Инноватика – 2011)», Сочи, 2011; 

➢ 8-ая Всероссийская научно-техническая конференция, посвящённой 80-

летию РГУ нефти и газа имени И.М. Губкина, «Актуальные проблемы 

развития нефтегазового комплекса России», Москва, 2010. 

В полном объёме диссертационная работа была представлена и обсуждена на 

научных семинарах кафедр Автоматизированных систем управления и Высшей 

математики Российского государственного университета нефти и газа (НИУ) 

имени И.М. Губкина. 

Публикации. По результатам научных исследований выполнено 24 

публикации, в том числе 8 работ в рецензируемых научных изданиях, 
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рекомендованных ВАК РФ [35, 37, 40, 82, 83, 84, 85, 86]. Две статьи опубликованы 

без соавторов [82, 83]. Две статьи вышли в зарубежных рецензируемых научно-

технических журналах [136, 144]. 

Структура, объём и обзор диссертации. Работа состоит из введения, трёх 

глав и заключения, изложена на 140 страницах основного текста и 40 страниц 

приложений; содержит 4 таблицы, 29 рисунков, список литературы из 153 

наименований и 6 приложений. 

В первой главе приводится анализ структуры ГТС, являющейся 

основообразующим компонентом ЕСГ РФ, и дается общая характеристика АСДУ 

ЕСГ с техническим обзором объектов диссертационного исследования; проведён 

обзор и анализ имеющейся классической и современной литературы по тематике 

диссертации; рассмотрены этапы развития теории надёжности как науки; 

представлен анализ мониторинговых систем надёжности АСДУ транспортом 

природного газа. Приводится обоснование целесообразности использования 

модели отказов Гнеденко-Вейбулла для получения оценок надёжности на 

основании стандартов, в условиях современной статистической обработки 

фрагментарных данных малого объёма.  

Во второй главе изложены основные научные положения, а именно: 

осуществлено теоретическое изучение распределения Гнеденко-Вейбулла с 

помощью асимптотических и вероятностно-статистических методов, и теории 

рядов, а также компьютерного моделирования (в среде Wolfram Mathematica); 

изучена нормальная аппроксимация данного распределения; приведено простое 

доказательство существования и единственности решения системы уравнений 

правдоподобия для выборки из распределения Гнеденко-Вейбулла.  

В третьей главе проведено исследование параметра потока отказов и 

ведущей функции потока отказов (функции восстановления) в транспорте газа 

для рекуррентного потока отказов Гнеденко-Вейбулла при мгновенном 

восстановлении, которое сводилось к получению решения интегрального 

уравнения Вольтерра второго рода типа свёртки с разностным ядром (уравнение 

восстановления). Указанное решение было получено как аналитическими (с 
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помощью методов теории рядов и производящей функции моментов), так и 

численными методами. Для обоснования аналитического метода была исследована 

проблема моментов Чебышёва-Маркова-Стилтьеса об однозначном 

восстановлении вероятностного распределения рядом своих моментов для 

распределения Гнеденко-Вейбулла. Разработанный аналитический подход при 

решении уравнения восстановления был обобщен и на произвольные 

распределения (при определенных условиях). В случае приближённого решения 

уравнения восстановления относительно параметра потока отказов используется 

модификация метода Ритца дискретизации интегрального уравнения. Получены 

три типа рекуррентных формул: по методу правых узлов, по методу средних 

(одноточечный метод Гаусса), по методу линейных сплайнов. Предложена 

комплексная методика получения статистических оценок параметров 

распределения Гнеденко-Вейбулла и получение прогнозного критического 

значения времени наступления следующего отказа элементов газоперекачивающих 

агрегатов (ГПА) с указанием вероятной зоны начала деградационных процессов в 

системе ГПА. Представлены рекомендации по интеграции разработанных моделей 

и методов в общую структуру управления целостностью (в АСДУ): блок 

«Мониторинг функционирования и технического состояния ГПА», т.е. 

подготовлена система рекомендаций для практического применения 

разработанных положений: комплексная методика, схема взаимосвязи с 

подсистемой верхнего уровня ТОИР, проект предложения по НИР для реализации 

системы управления целостностью (в аспекте ГПА). 

Предложенная методика была продемонстрирована на базе реальных 

статистических данных по отказам технологического оборудования ГТС, 

представленных в ИАС «Оценка и мониторинг надёжности для АСДУ 

трубопроводным транспортом газа» (Седых, 2011) [95], которая содержит 

солидный материал по отказам (порядка 10 000 позиций) ГПА и САУ ГПА на 

различных магистральных газопроводах, что позволило использовать её для 

проверки теоретических исследований диссертационной работы.   
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ГЛАВА 1. АКТУАЛЬНОСТЬ ОРГАНИЗАЦИИ МОНИТОРИНГА 

ПОКАЗАТЕЛЕЙ НАДЁЖНОСТИ ТЕХНОЛОГИЧЕСКИ 

 АКТИВНЫХ ЭЛЕМЕНТОВ В ДИСПЕТЧЕРСКОМ УПРАВЛЕНИИ 

ТРАНСПОРТОМ ГАЗА 

 

 

ПАО «Газпром» (http://www.gazprom.ru) располагает крупнейшей в мире 

газотранспортной системой (см. Рисунок 1). Её основная часть входит в состав ЕСГ 

России, которая представляет собой уникальный технологический комплекс, 

включающий в себя объекты добычи, переработки, транспортировки, хранения и 

распределения газа в европейской части России и Западной Сибири и 

обеспечивающий непрерывный цикл поставки газа от скважины до конечного 

потребителя. Благодаря централизованному управлению, большой 

разветвленности и наличию параллельных маршрутов транспортировки, ЕСГ 

обладает существенным запасом надёжности и способна обеспечивать 

бесперебойные поставки газа даже при пиковых сезонных нагрузках. Общая 

протяжённость газотранспортной системы на территории России составляет 172,1 

тыс. км. В транспортировке газа используются 254 компрессорных станций с 

общей мощностью ГПА 46,7 тыс. МВт. Парк ГПА составляет около 4600 единиц, 

из которых больше половины на 2017 г. уже выработали установленный ресурс. 

 

Рисунок 1. Схема газотранспортной системы ПАО «Газпром» в составе ЕСГ 
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Особую роль в управлении транспортом газа играют автоматизированные 

системы диспетчерского управления (АСДУ), которые обеспечивает диспетчера 

информацией, необходимой для выработки управляющего воздействия, оставляя 

за ним функции принятия решений. «АСДУ – это неоднородная (человеко-

машинная или гетерогенная) система управления технологическим процессом, 

интегрирующая на автоматизированном рабочем месте диспетчера 

профессиональные знания диспетчера с информационно-управляющей 

системой, обеспечивающей автоматический сбор, передачу и отображение 

информации, а также автоматизирующей все требуемые расчётные процедуры и 

выполнение управляющих воздействий для достижения поставленной цели в 

соответствии с заданными критериями» [34]. Развитие интеграционных функций – 

основа становления АСДУ, которое хорошо удовлетворяет особенностям 

управления непрерывными технологическими процессами, среди которых следует 

выделить технологические процессы нефтегазового комплекса. 

Следует отметить, что в отличие от сегодняшнего дня, раньше большая часть 

задач, связанных с наличием человека в технических системах, могла быть решена 

либо методом проб и ошибок, либо просто на основе здравого смысла [122].  

Начиная примерно с 1960 гг. происходило формирование (с постепенным 

расширением) критериев для достижения поставленных целей в русле 

многофакторного подхода с временным интервалом примерно 10 лет. В своем 

развитии они прошли от экономических и экологических оценок, с развитием 

проблем надёжности и качества, до вопросов безопасности, катастрофически 

обострившихся в XXI веке. Эволюция критериев, всесторонне характеризующих 

функционирование АСДУ ЕСГ, приведена на Рисунке 2.  

Возникновению АСДУ ЕСГ как системы предшествовал ряд этапов развития, 

непосредственно связанных с развитием информационных технологий. В 

настоящее время, в связи с введением политических санкций в отношении России, 

необходимо уделять особое внимание созданию современного отечественного 

программного комплекса моделирования на основе научных исследований. 
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Следовательно, можно с полной уверенностью говорить об инновационном 

характере развития АСДУ.  

 

Рисунок 2. АСДУ: проблемы, критерии, анализ информации  

 

 

1.1. Общая характеристика АСДУ Единой системой газоснабжения и 

показатели надёжности ГТС 

 

В 2017 году ПАО «Газпром» было добыто 471,0 млрд кубометров 

природного и попутного газа [http://www.gazprom.ru/about/production/extraction/]. 

Российская Федерация является не только одним из мировых лидеров добычи газа, 

но лидером в экспорте трубного (сетевого) газа.  

В соответствии с Федеральным законом от 18 июля 2006 года № 117-ФЗ «Об 

экспорте газа» ПАО «Газпром» предоставлено исключительное право на экспорт 
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газа по газопроводам. Закон позволяет проводить скоординированную 

производственную и маркетинговую политику и является дополнительной 

юридической гарантией надежности экспорта российского газа. 

В 2017 году Группа «Газпром» реализовала в страны дальнего зарубежья 

242,0 млрд куб. м газа (включает как экспорт газа из Российской Федерации, так и 

продажу объемов газа, приобретенных Группой за пределами РФ) 

[http://www.gazprom.ru/about/marketing/europe/]. 

Учитывая текущие условия и ценовую политику на мировом рынке 

углеводородов, особенно актуальной становится технологическая и экономическая 

эффективность ГТС.  

Основной проблемой ГТС РФ является физическая изношенность системы. 

Более 15% газопроводов выработали свой ресурс и требуют замены 

инфраструктуры. Вторая проблема – низкий КПД и старение технологического 

оборудования. Эти проблемы приводят к значительным потерям газа и 

завышенному расходу газа на собственные нужды. 

Для поддержания надлежащего давления в трубопроводах используются 

компрессорные станции (КС). В состав газотранспортной системы России входят 

254 КС с общей мощностью газоперекачивающих агрегатов 46,7 тыс. МВт 

[http://www.gazprom.ru/about/production/transportation/]. КС являются составной 

частью магистрального газопровода и предназначены для увеличения его 

производительности за счет повышения давления газа на выходе станции путем его 

сжатия с помощью газоперекачивающих агрегатов (ГПА).  

На компрессорных станциях выполняются следующие технологические 

процессы: очистка газа от жидких и механических примесей, сжатие газа, 

охлаждение газа после сжатия, измерение, контроль технологических параметров, 

управление режимом газопровода (выполняется за счет изменений количества и 

режимов работы ГПА) и т.д. Компрессорная станция – это сложный комплекс 

технологических объектов. Основным элементом КС является 

газоперекачивающий агрегат, повышающий давление газа путем его сжатия.  
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Классификация ГПА и характеристики их САУ 

 

Газоперекачивающие агрегаты являются технологически активными 

элементами ГТС, играют важную роль в надежном и эффективном 

функционировании ГТС и предназначены для компримирования природного газа 

на компрессорных станциях газопроводов и подземных хранилищ. ГПА состоят из 

следующих основных элементов, показанных на Рисунке 3: двигателя, 

компрессора, системы автоматического управления, системы электроснабжения, 

блока маслообеспечения, системы подвода топливного газа, воздухо- 

очистительного устройства (ВОУ), аппарата воздушного охлаждения масла 

(АВОМ) топливовоздушных и масляных коммуникаций, вспомогательного 

технологического оборудования.  

ГПА различаются по многим признакам: по единичной мощности, по типу 

двигателя (газотурбинные, электроприводные, авиаприводные, 

газомотокомпрессорные), по производительности и т.д. 

Как правило, единичной мощности ГПА недостаточно для обеспечения 

нужной степени сжатия и объемной производительности, поэтому в составе 

компрессорных цехов (КЦ) работают сразу несколько ГПА. КЦ состоит из 

нескольких газоперекачивающих агрегатов, которые расположены в общих или 

индивидуальных блоках, а также систем и сооружений, которые обеспечивают его 

функционирование (устройство подготовки газа, узел подключения, режимные 

краны, агрегаты воздушного охлаждения газа, система пожаротушения и т.д.).  

В зависимости от типа привода, компрессора, типа компоновки и назначения 

поставки (реконструкция или новое строительство), агрегат может исполняться в 

различных модификациях основных составляющих элементов. Парк ГПА ПАО 

«Газпром» насчитывает более четырех тысяч агрегатов. Функционирование ЕСГ 

РФ непосредственно зависит от надежности, качества и условий эксплуатации 

активных элементов. Основная часть газоперекачивающего оборудования (около 

90% мощностей) сосредоточена на линейных КС магистральных газопроводов, 
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9,2% — на промысловых дожимных КС и 1,6% — на КС станций подземного 

хранения газа. 

 

 

Рисунок 3. Общий вид газоперекачивающего агрегата. 
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В структуре парка ГПА основным является газотурбинный привод — 87,2%, 

электрический привод составляет 12,3%, газопоршневой привод ограниченно 

используется на станциях подземного хранения газа (0,5%). 

Газотурбинные ГПА насчитывают более 60 типов различных 

производителей, значительная часть агрегатов эксплуатируется более 20 лет и 

нуждается в реконструкции или замене (см. [http://www.turbinist.ru/12878-nauchno-

tehnicheskaya-politika-oao-gazprom-v-oblasti-gazoperekachivayuschey-tehniki.html]). 

ГПА относятся к установкам долговременного использования, общий ресурс 

наработки которых должен достигать 100 тыс. часов и более. Однако отдельные 

элементы агрегата могут иметь ограниченный ресурс, например двигатель, лопатки 

турбины. Ресурс между текущими ремонтами агрегатов, как правило, составляет 

12 тыс. ч., между капитальными ремонтами 20-30 тыс. ч. При эксплуатации ГПА 

должен выполняться ряд экологических требований и стандартов безопасности, 

таких как: пожаробезопасность, ограничение тепловыделений и температур 

поверхностей, снижение шума, ограничение вредных выбросов. 

Основными производителями ГПА, включенных в состав ЕСГ РФ являются: 

«Сатурн - Газовые турбины»; НПО «Искра», «Искра-Турбогаз», «Искра-Авигаз»; 

«Казанское МПО»; «Самара-Авиагаз»; «Уфа-Авиагаз»; «Siemens AG»; «Solar 

Turbines, Inc.»; «General Electric». 

Работа ГПА обеспечивается системой автоматического управления 

газоперекачивающим агрегатом (САУ ГПА), представляющей собой аппаратно-

программный автономно функционирующий комплекс, который обеспечивает 

выполнение всех необходимых функций по контролю, управлению и 

регулированию отдельного ГПА:  

− выполнение и контроль предпусковых операций, пуск;  

− нормальный и аварийный останов; 

− регулирование и контроль параметров; 

− защиту агрегата на всех режимах работы; 

− связь с общецеховой САУ; 
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− взаимодействие с системой диспетчерского управления.  

САУ ГПА предназначены для работы без какого-либо контроля со стороны 

человека, полностью автономны и применяются для автоматизации ГПА с 

различными типами двигателей. 

Обычно САУ ГПА состоит из следующих компонентов: 

− комплекс технических средств контроля и управления (КСПА) для 

каждого ГПА; 

− АРМ оператора на базе ПЭВМ (типовой вариант несколько шт. на 

компрессорный цех); 

− пульт местного управления для каждого ГПА (ПУ). 

На Рисунке 4 представлена типовая структурная схема САУ ГПА. 

Основными производителями САУ ГПА, включенных в состав ЕСГ РФ 

являются: НПФ «Система-Сервис»; «Вега-ГАЗ»; «Калининградгазприбор -

автоматика»; «General Electric»; «Compressor Controls Corporation». 

Число современных микропроцессорных САУ ГПА, эксплуатируемых на 

предприятиях ПАО «Газпром», составляет более 35%. Технические условия 

современных микропроцессорных САУ ГПА определяют назначенный срок 

службы системы не менее 15 лет, что несколько меньше назначенного срока 

службы ГПА. 

По типу отказов ГПА различают механические, электрические отказы, а 

также отказы системы автоматики.  

Для ГПА одним из основных показателем надёжности является его 

безотказная работа в течение установленного периода времени во всем диапазоне 

режимов работы. 

Отказы в работе агрегата на КС возникают по разным причинам:  

1) недостатки в конструкции узла или агрегата - конструктивные отказы;  

2) нарушения правил технологии изготовления или монтажа агрегата на 

станции - технологические отказы,  

3) эксплуатационные отказы - нарушение правил эксплуатации агрегатов на 

станции. 
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Рисунок 4. Структурная схема САУ ГПА. 

Наибольшую опасность для ГПА представляют внезапные отказы, в 

результате которых разрушается механическая часть агрегата и теряется его 

работоспособность. Возникает потребность аварийной остановки ГПА для 

уменьшения последствий разрушений и безопасности эксплуатирующего 

персонала КС.  
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Возникновение отказов, как правило, связано с первичной неисправностью 

конструктивного или эксплуатационного характера и постепенным накоплением 

повреждений, ухудшающих работоспособность агрегата.  

Правильная организация планово-предупредительного ремонта в 

значительной мере способствует снижению числа отказов в период нормальной 

эксплуатации. Внезапные отказы отдельных деталей агрегата, как правило, между 

собой независимы. 

При исследовании механического состояния деталей агрегата и анализе 

причин возникновения аварийных ситуаций агрегаты отказы подразделяют на 

механическую часть и систему автоматики.  

Следует отметить, что основными причинами отказов агрегатов являются: 

1) нарушения в электроснабжении; 

2) функциональные неисправности. К ним относятся дефекты лопаточного 

аппарата и ротора газовой турбины (40-50%), камеры сгорания (25%), 

подшипников (6%) и оставшихся вспомогательных устройств; 

3) нарушения работы систем автоматики КИПиА. 

 

Показатели надёжности технологического оборудования ГТС 

 Надёжность является сложным и многозначным понятием, тем более для 

такой крупномасштабной системы как ЕСГ, и выбор показателей надёжности 

зависит от целей исследования и объектов исследования. Надёжность может 

объединять несколько единичных свойств, являющихся характеристиками 

объекта. Поэтому среди совокупности показателей надёжности существуют такие, 

которые предназначены для оценки единичных свойств, но, в тоже время, ряд 

показателей имеет комплексный характер и содержит информацию сразу о 

нескольких единичных свойствах. На языке математики функционирование ЕСГ и 

ее объектов описывается случайными процессами [4, 10, 89, 116], важнейшие 

особенности которых могут быть представлены аппаратом случайных величин. 

Поэтому показатели надёжности являются числовыми характеристиками 

соответствующих процессов и величин.  
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Наибольшее применение в общетехнических системах нашли следующие 

показатели надёжности: 

➢ вероятность безотказной работы (время жизни функционирования или 

наработка объекта); 

➢ среднее время безотказной работы (наработка до отказа) – 

математическое ожидание предыдущей случайной величины; 

➢ среднее время восстановления; 

➢ интенсивность отказов (плотность вероятности отказов в 

произвольном моменте при условии, что до этого момента отказа не было) – 

важнейшая характеристика работы невосстанавливаемого объекта; 

➢ параметр потока отказов (плотность вероятностей возникновения 

отказа восстанавливаемого элемента, определяемая для любого момента времени), 

именно этот показатель чаще других применяется для характеристики линейной 

части газопроводов, а также ЕСГ в целом; по нему можно судить о надёжности 

технологической системы в целом по отрасли или газотранспортному предприятию 

[81]; 

И ряд более специфических характеристик надёжности оборудования:  

➢ коэффициент готовности (вероятность того, что технологическое 

оборудование находится в работоспособном состоянии в произвольный момент 

времени); 

➢ стационарный коэффициент готовности (выражается через средние 

времена наработки и восстановления); 

➢ коэффициент технического использования; 

➢ коэффициент оперативной готовности. 

В дальнейших исследованиях мы будем обращаться к первому блоку 

перечисленных выше показателей надёжности. 

  

Структура ГТС и основные задачи диспетчерского управления 

В соответствии с СТО Газпром 2-3.5-454-2010 «Правила эксплуатации 

магистральных газопроводов» [103] диспетчерское управление ЕСГ Российской 
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Федерации осуществляет департамент 310 ПАО «Газпром» (ранее центральный  

производственно-диспетчерский департамент, ЦПДД) через четырёхуровневую 

систему управления [103, п. 14.1] (см. Рисунок 5): 

I – департамент 310 ПАО «Газпром» – высший орган диспетчерского 

управления ЕСГ Российской̆ Федерации. 

II – Диспетчерские управления или производственно-диспетчерские 

управления эксплуатирующих организаций ПАО «Газпром», оперативно-

диспетчерские службы региональных компаний по реализации газа, диспетчерские 

центры независимых организаций. 

III – Диспетчерские службы филиалов эксплуатирующих организаций. 

IV – Персонал филиалов эксплуатирующих организаций, осуществляющих 

непосредственное управление режимом работы оборудования. 

В положениях о диспетчерско-технологической службе ПАО «Газпром» 

сформулированы задачи бесперебойного снабжения потребителей газа, и 

обеспечения надёжности газопоставок. 

Надёжность функционирования газотранспортной системы «Газпрома» 

обеспечивается благодаря внедрению прогрессивных методов диагностики, 

своевременному проведению капитального ремонта и планово-

предупредительных работ. 

В компании «Газпром» используется современная система планирования 

капитальных ремонтов на основе методологии управления техническим 

состоянием и целостностью ГТС. После проведения анализа рисков и оценки 

системной значимости приоритет отдается тем объектам, ремонт которых даст 

максимальный эффект. Такой подход позволяет одновременно повышать уровень 

технической надежности производственных объектов, оптимизировать объем 

выполняемых работ и эффективно расходовать финансовые ресурсы. 

АСДУ классифицируются как организационно–технические системы и 

определяются как звено АСУ ТП, на которое возлагаются функции сбора, 

обработки отображения информации, а также решения ряда режимно-

технологических задач. 
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Рисунок 5. Иерархическая структура диспетчерского управления 

 

При этом АСДУ обеспечивает диспетчера информацией, необходимой для 

выработки управляющего воздействия, оставляя за ним функции принятия 

решений.  

Под функциями АСДУ понимают организацию мультисистемой работы 

технических средств и решений комплекса задач в человеко–машинном контуре 

оперативного управления, так что АСДУ – это система управления 

технологическим процессом, интегрирующая на автоматизированном рабочем 

месте диспетчера профессиональные знания диспетчера с информационно-

управляющей системой, обеспечивающей автоматический сбор, передачу и 

отображение информации, а также автоматизирующей все требуемые расчетные 

процедуры и выполнение управляющих воздействий для достижения поставленной 

цели в соответствии с заданными критериями. 
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Основное назначение такой системы – совершенствование управления 

дальним транспортом газа за счет повышения оперативности контроля 

диспетчерской информации и моделирования режимов работы магистральных 

газопроводов на базе применения математических методов, автоматических систем 

сбора информации и компьютерных программных комплексов.  

Принципиальное отличие АСДУ газотранспортной организацией от других 

систем передачи и обработки данных заключается в том, что ее основные функции 

выполняются в масштабе реального времени, что обуславливает основные 

требования к быстродействию и надежности системы и определяет выбор 

технических средств и принципов передачи информации.  

В настоящее время диспетчерское управление в системе ПАО «ГАЗПРОМ» 

становится главным, приоритетным направлением развития АСДУ. Это связано, 

прежде всего, с повышением сложности объектов управления и требований к 

надежности газоснабжения, к безопасности транспорта газа, с внедрением новых 

информационно-вычислительных и программных систем.  

 В рамках этого направления создается и развивается отраслевая система 

оперативно-диспетчерского управления ЕСГ на базе взаимосвязанного 

иерархического комплекса автоматизированных систем управления, 

охватывающего все уровни управления ЕСГ и построенного на принципах 

системного единства и совместимости математического, информационного и 

технического обеспечения. Создание такой системы предполагает функциональное 

сопряжение АСДУ различных уровней на основе строгого распределения задач 

управления по уровням иерархии и создание информационных систем управления, 

работающих в реальном масштабе времени.    

Выделяют три исторических этапа в технологии диспетчерского управления 

газоснабжающими системами:  

• использование телефонной связи для сбора данных визуального контроля; 

• использование средств вычислительной техники и телемеханики, 

компьютерных программ оптимизации в информационном режиме; 



29 

 

• создание диспетчерских комплексов реального времени на базе средств 

компьютерной автоматизации, систем передачи данных, программ 

моделирования и прогнозирования динамических процессов транспорта 

газа. 

Таким образом, благодаря научно-техническому прогрессу и эволюции 

объекта управления, развитие диспетчерского управления прошло путь от 

телефона, как основного технического средства управления, до современной 

высокоавтоматизированной диспетчерской, с внедрением АСДУ. 

 

1.2. Анализ состояния работ по оценке надёжности и их применения в 

газовой отрасли  

 

Поскольку отказы носят случайный характер, то научно обоснованные 

характеристики надёжности можно получить только средствами теории 

вероятности, точнее её раздела – теории надёжности.  Поэтому, актуальной задачей 

является разработка проблема оценки показателей надёжности и мониторинга 

состояния технологического оборудования по эксплуатационным данным, 

основанной как на классических, так и на современных методах теории 

надёжности. При этом расчёты показателей надёжности оборудования требуют 

формулировки основных идей, связанных с причинами снижения его надёжности, 

т.е. главной гипотезы ситуации, которая сложилась, или моделей, по которым мы 

будем дальше обрабатывать реальную статистику наблюдений. К тому же 

существует еще проблема исходных данных, ввиду того что в действующих 

газотранспортных системах оборудование вводилось в эксплуатацию в разное 

время, и информация об отказах была фрагментарной, включая и нежелание 

диспетчерских служб показывать в отчётности невыгодную статистику по 

авариям.  

Исходя из вышеизложенного, ниже представлены признаки, по которым 

можно классифицировать исследования в области надёжности:  

• систематические основы математической теории надёжности;  
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• процессы восстановления и уравнение восстановления;  

• статистические модели и методы анализа технических систем; 

• другие различные аналитические методы оценки надёжности систем 

(логико-вероятностный и марковский подход); 

• управление техническим состоянием магистральных газопроводов с 

применением методов оценки целостности, надёжности и 

безопасности;  

• автоматизация диспетчерского управления транспортом газа для 

обеспечения эффективной работы технологического оборудования; 

• мониторинг показателей надёжности газотранспортных объектов с 

использованием методологии системного анализа; 

• своевременный анализ информации по исследованию 

деградационных процессов во время эксплуатации оборудования; 

• анализ надёжности технических систем по цензурированным 

выборкам. 

Основополагающую роль в становлении теории надёжности как 

математической дисциплины сыграли фундаментальный труд Гнеденко Б.В., 

Беляева Ю.К. и Соловьева А.Д. [23], а также работы Кордонского Х.Б. и 

Герцбаха И.Б., Половко А.М., Ушакова И.А., Barlow, R. и Proschan F. [21, 73, 

78, 127] и др. А.Д. Соловьев создал целую школу по асимптотическим методам в 

теории надёжности и теории массового обслуживания, уделяя особое внимание 

инженерной направленности практических задач надёжности. 

Фундаментальные вопросы классической теории восстановления, включая 

асимптотические свойства основной характеристики процесса восстановления – 

функции восстановления – были рассмотрены в работах Феллера В., Кокса Д.Р. и 

Смита В.Л. [60, 116]; применительно к интегральному уравнению восстановления 

для модели Гнеденко-Вейбулла можно назвать ряд авторов, изучающих данный 

вопрос: Constantine A.G. и Robinson N.I., Smith W.L. и  Leadbetter M.R., Cui L., 

Xie M., Makino M. [129, 140, 146, 152, 153] и др. 
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Вопросам применения современных статистических моделей и методов в 

теории надёжности сложных технических систем и элементов, в том числе с учетом 

их старения, и уделяя внимание задачам статистической обработки 

цензурированных наблюдений, отведено особое место в исследованиях Антонова 

А.В. и Никулина М.С., Острейковского В.А., Чепурина Е.В., Beichelt F. и 

Franken P. [3, 4, 8, 75, 120] и др.  

Исследованию проблем описания моделей и методов анализа надёжности 

технических структурно-сложных систем с помощью логико-вероятностных блок-

схем и марковского моделирования с привлечением современных средств 

автоматизации анализа надёжности посвящены работы Викторовой В.С. и 

Степанянца А.С. [19, 20, 100]; теории и практики управления надёжностью 

сложных технических систем в целом – работы Каштанова В.А. и Медведева 

А.И., Elsayed E.A. [56, 133] и др. 

Можно выделить ряд направлений, характеризующих состояние и тенденции 

развития системной надёжности ГТС. Так, вопросами анализа, оценки состояния и 

развития системы транспорта газа в разрезе АСДУ, описанием моделей системы 

поддержки принятия диспетчерских решений, разработкой требований  к 

комплексам технических средств и системам оперативного управления для 

магистральных газопроводов занимались Григорьев Л.И. и Костогрызов А.И., 

Панкратов В.С. и Степанян А.А., Сарданашвили С.А., Стёпин Ю.П. [34, 39, 41, 

76] и др. Различные аспекты и позиции методологических основ в области 

обеспечения надежности газо- и нефтепроводов, резервирования и оптимизации 

систем магистрального транспорта газа проработаны в трудах Бабаева С.Г., 

Сухарева М.Г. и Ставровского Е.Р., Иткина В.Ю., Дейнеко С.В. [7, 108, 110, 44] 

и др. 

Исследования Герцбаха И.Б. посвящены проблемам теории надёжности в 

приложении к планированию профилактического обслуживания систем на 

основании статистической обработки данных по надёжности [22]. Особенности 

методологии управления эксплуатационной надежностью и ресурсом конструкций 

магистральных газопроводов с позиций задач диагностического обслуживания и 
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обеспечение целостности, безопасной эксплуатации ГТС, в частности в сложных 

климатических условиях, подробно рассмотрены в работах Салюкова В. В., 

Харионовского В.В., Демченко В.Г. [45, 92, 119]. Исследованиям различных 

моделей надёжности с помощью процессов марковского и полумарковского типа в 

приложениях к задачам, характерным для производств нефтегазовой отрасли, 

посвящены труды Рыкова В.В., Сухарева М.Г. [89, 107] и др.  

Вопросами прогнозирования, мониторинга технического состояния и 

промышленной безопасности технологически активного оборудования в 

нефтегазовом комплексе с позиций системного анализа занимались Григорьев 

Л.И., Кершенбаум В.Я., Костогрызов А.И, Земенкова М.Ю., Седых И.А., 

Слепченко С.Д. [21, 38, 52, 63, 95, 97] и др. 

Исследованию разнообразных деградационных процессов в технических 

системах, математических моделей надёжности «стареющих» элементов и систем 

посвящены работы Антонова А.В. и Никулина М.С., Байхельта Ф. и Франкена 

П., Гродзенского С.Я., Барлоу Р. и Прошана Ф. [4, 8, 11, 42] и др.; изучению 

вероятностных моделей накопления повреждений, использующих аппарат 

характеристических и производящих функций наряду с  графоаналитическими 

методами, а также систематическому описанию феноменологических процессов 

деградации с помощью случайных процессов марковского типа положила начало 

работа Богданоффа Дж. и Козина Ф. [16]. 

Вопросам обработки статистической информации на основании 

цензурированных и усечённных наблюдений, а также получению оценок 

надёжности по результатам сокращенных испытаний уделено внимание в работах 

Аронова И.З., Скрипника В.М. и Назина А.Е. и др., Слепченко С.Д.  [5, 96, 97]. 

Основными стандартами по надёжности, которые распространяются на 

большинство технических объектов и определяют принципы, правила и методы 

управления их надежностью на различных стадиях жизненного цикла объектов 

являются ГОСТ Р 27.001-2009, ГОСТ Р 27.002-2009, ГОСТ 27.301-95, ГОСТ Р 

МЭК 61650-2007, ГОСТ 27.301-2011, ГОСТ Р 27.606-2013 и др. [25, 26, 29, 30]. В 

тоже время применительно к газовой отрасли разработан ряд отраслевых 
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стандартов организации (СТО) для проектирования, строительства, эксплуатации 

объектов магистральных газопроводов и обеспечения системной надёжности 

транспорта газа СТО Газпром 2-2.1-512-2010, СТО Газпром 2-3.5-138-2007, СТО 

Газпром 2-3.5-454-2010 [101, 102. 103].  

Стандарты ГОСТ Р 53563-2009, ГОСТ Р 53564-2009 отражают базовые 

позиции по мониторингу состояния оборудования опасных производств в 

отношении порядка организации и требований к системам мониторинга [31,32]. 

Проведенный обзор работ отечественных и зарубежных авторов показал, что 

в настоящее время отсутствуют модели вероятностно-статистических оценок, 

которые могут быть использованы для мониторинга показателей надёжности с 

единой позиции жизненного цикла эксплуатации объектов ГТС в условиях 

острого дефицита эксплуатационной информации, приводящих к  необходимости 

статистической обработки данных малого объёма. 

На основании анализа представленных работ в области исследования оценок 

надежности ГПА [68, 80, 93, 125] можно сделать однозначный вывод об 

актуальности внедряемой ИАС, и, поскольку большее число отказов приходится на 

заводские дефекты (см. [95, 68]), то наличие обратной связи с системами 

управления качеством производителей оборудования является крайне полезным и 

необходимым моментом.  

 

Исторические этапы развития теории надёжности 

 

Руководствуясь гениальным афоризмом великого русского ученого-

энциклопедиста Д.И. Менделеева: «Знание истории предмета необходимо для 

правильного движения вперёд», в работе прослеживается история развития теории 

надёжности, сравнительно молодой для науки дисциплины. 

Можно выделить три этапа формирования теории надёжности, 

характеризующие общие тенденции взаимоотношения науки и техники (см. [42, 

75]) , когда наука сначала отстаёт от техники в своем развитии, потом постепенно 

догоняет технику, решая насущные технические задачи; и, наконец, наука 
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начинает опережать технику в своем становлении, ставя и решая такие задачи, 

которые лишь впоследствии на основе научного исследования и чисто 

теоретического решения находят практические приложения. Соответственно, на 

первом этапе (30-е – 40-е годы XX века) попытки научного подхода к проблеме 

надёжности носят стихийный характер; теория надёжности уже догоняет технику, 

происходит бурное развитие статистических методов во время второго этапа (50-е 

– 60-е годы); и, начиная, с 70-х годов прошлого века теория надёжности начинает 

опережать технику в своем развитии, переходя уже на проблемы управления 

качеством технических устройств, промышленной безопасности и анализу 

рисков. 

В настоящее время следует отметить существенно новый этап в развитии 

научной дисциплины теории надёжности: ускоренными темпами идет как 

разработка новых моделей и методов, так и расширение областей применения 

методологии теории надёжности (см. [4, 20, 75]).  

Рассмотрим становление теории надёжности на примере Института проблем 

управления имени В. А. Трапезникова Российской академии наук (до 1969 г. – 

Институт автоматики и телемеханики АН СССР), который внес замечательный 

вклад в развитие науки теории надёжности в отечественной истории. Уже в начале 

50-х гг. Б.С. Сотсковым были инициированы исследования по проблеме 

надёжности, результаты которых сводились к обобщению экспериментальных 

данных и разработке математических моделей анализа надёжности элементов 

автоматики, в частности реле и коммутаторов.  

В 60-е гг. в руководимой Б.С. Сотсковым лаб. №12 формулируется новое 

направление в исследовании проблемы надёжности – физические основы 

надёжности элементов автоматики, − в рамках которого создаются модели анализа 

влияния физических факторов процесса эксплуатации на показатели 

параметрических и катастрофических отказов элементов. Впоследствии 

результаты теоретических исследований вошли в инженерную практику в качестве 

стандартов и типовых методик расчёта надёжности элементов, приборов и 

устройств.  
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Начало 60-х гг. открывает эпоху бурного развития автоматизации в стране, 

создания крупных автоматизированных комплексов в оборонной, химической и 

металлургической промышленности и других отраслях народного хозяйства. Резко 

возросла цена отказов, особую актуальность приобрели методы прогнозирования и 

обеспечения надёжности систем на всех этапах их жизненного цикла, особенно на 

стадии проектирования. В этот период проблема надёжности отечественной 

техники была поднята на государственный уровень. В центральных газетах 

публикуются статьи академиков В.А. Трапезникова, А.И. Берга, В.А. 

Котельникова. Вообще 60-70-е гг. отмечены массированным изданием литературы 

по теории и практике надёжности. Особо заслуживают внимания 

основополагающие работы Б.В. Гнеденко, Ю.К. Беляева и А.Д. Соловьева, А.М. 

Половко, И.А. Рябинина, Г.В. Дружинина, И.А. Ушакова. 

 В 70-е гг. задача анализа надёжности становится неотъемлемым 

компонентом процесса проектирования: в число обязательных проектных 

документов при создании технических систем стали включать раздел «Проектный 

анализ надёжности». Резко вырос уровень требований к точности расчётов.  

 В период 70-80-х гг. теория надёжности решительно шагнула в класс 

динамических моделей надёжности, позволяющих количественно учитывать 

развёрнутую во времени последовательность отказов элементов системы. Данные 

модели открыли новый путь к решению важной проблемы оценки качества 

функционирования систем. Появилась возможность научно обоснованного 

подхода к понятию эффективности системы.  

В 90-е гг. были начаты работы по анализу и обеспечению техногенной 

безопасности систем. Вклад в это направление внесли исследования, выполненные 

А.С. Степанянцем и В.С. Викторовой. В конце 90-х гг., с развитием рыночной 

экономики, резко возрос интерес к прогнозам производительности и 

эффективности крупных технологических комплексов. Решение таких задач 

потребовало комбинирования различных методов анализа надёжности систем и 

разработки программных комплексов автоматизации анализа.  
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В настоящее время ИПУ им. В. А. Трапезникова Российской академии наук 

располагает полным комплексом научно обоснованных методов и программного 

обеспечения для проведения самых разнообразных исследовательских и проектных 

работ – от обработки исходных экспериментальных данных о работоспособности 

элементов систем до получения оценок надёжности и эффективности систем 

сложной структуры (см. [54]).     

 

1.3. Обоснование проблемы организации мониторинга показателей 

надёжности, постановка задачи исследования 

 

Под мониторингом подразумевают текущий контроль, регулярное 

наблюдение за развитием и изменением какого-либо процесса, состояния, явления, 

их оценивание и прогнозирование. То есть задачей, мониторинга является 

выявление тенденции, ее устойчивости, определение критического момента 

времени подхода к аварийной ситуации и дальнейшее прогнозирование. 

Мониторинг появился в технических системах управления как постоянный 

(периодический) контроль определенных параметров, которые должны 

сохраняться в заданных пределах и поэтому мониторинг был пассивным явлением. 

Однако, развиваясь, мониторинг постепенно стал применяться для целей 

отслеживания, анализа и прогнозирования текущего состояния экономических, 

социальных и других объектов, тенденций их развития. 

В результате мониторинг превратился в активную форму познавательной 

деятельности, специфическим средством управления, способом контроля и анализа 

ситуации, а также фактором снижения рисков при осуществлении управления (см. 

Рисунок 6). 

Различают мониторинг параметров (наблюдение), и мониторинг состояния 

(анализ изменений).  

Мониторинг параметров представляет собой наблюдение за какими-либо 

параметрами. Результатом мониторинга параметров является совокупность 

измеренных значений параметров, получаемых непрерывно или на неразрывно 
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примыкающих друг к другу интервалах времени, в течение которых значения 

параметров существенно не изменяются. 

 

 

 

Рисунок 6. Функции мониторинга 

 

 Мониторинг состояния – это наблюдение за состоянием объекта для 

определения и предсказания момента перехода в предельное состояние. Результат 

мониторинга состояния объекта представляет собой совокупность диагнозов 

составляющих его субъектов, получаемых на непрерывном или неразрывно 

примыкающих друг к другу интервалах времени, в течение которых состояние 

объекта существенно не изменяется.  

Принципиальным отличием мониторинга состояния от мониторинга 

параметров является наличие интерпретатора измеренных параметров в терминах 

состояния – экспертной системы поддержки принятия решений о состоянии 

объекта и дальнейшем управлении. 

Система мониторинга – это система сбора/регистрации, хранения и анализа 

небольшого количества ключевых (явных или косвенных) признаков/параметров 

описания данного объекта для вынесения суждения о поведении/состоянии 

данного объекта в целом в данный момент и прогнозировании дальнейшего 

развития в том числе. То есть для вынесения суждения об объекте в целом на 



38 

 

основании анализа небольшого количества характеризующих его признаков – 

диагностирующих параметров.  

Система мониторинга является сложной комплексной системой, которая 

выполняет функции наблюдения, контроля, анализа, оценки и прогнозирования 

состояний, процессов и других явлений, возникающих в результате 

технологических процессов в АСДУ с объектами мониторинга. При 

проектировании такой системы важно выбрать ее архитектуру. 

Мониторинговые системы позволяют: 

➢ посредством сравнения выявлять изменения, происходящие в объектах 

наблюдения; 

➢ устанавливать механизмы процессов и явлений, происходящих в объектах 

наблюдения; 

➢ посредством статистических заключений обогащать знания, повышая тем 

самым достоверность представлений об объектах наблюдения; 

➢ выявлять тенденции процессов и явлений, определять их устойчивость, а 

также критический момент времени подхода к аварийной ситуации и дальнейшее 

прогнозирование событий. 

 

Актуальность создания мониторинговых систем как звена  

интеграционных процессов АСУ ТП. 

 

Системы мониторинга являются связующим звеном между двумя 

технологиями АСУ ТП: малолюдными автоматическими технологиями и 

комплексом АСДУ. 

Переход к малолюдным технологиям требует выполнения функции текущего 

контроля над объектами, работающими в почти автоматическом режиме. Зачастую 

это технологически опасные объекты, при работе с которыми требуется 

осуществлять оценки надёжности, качества функционирования и рисков. 

Поэтому возникает необходимость в системах мониторинга, которые должна 

объединяет общая концепция построения, при этом данные системы могут иметь 
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различное предназначение, в зависимости от поставленной задачи над 

рассматриваемым объектом/процессом.  

Таким образом, увеличение числа и сложности объектов управления 

поднимают вопросы безопасности, надёжности и эффективности управления 

технологическим процессом. Как следствие, возникают серьезные качественно 

новые задачи, направленные на оценку надёжности, качества функционирования, 

прогнозирования и рисков. Поэтому, мониторинговые системы следует 

рассматривать как составляющую автоматизированных систем диспетчерского 

управления технологическими процессами в нефтегазовой отрасли; это один из 

инструментов обеспечения безопасности и надёжности управления 

технологическими процессами. 

 

Особенности статистической обработки фрагментарных  

данных малого объёма 

 

При описании современного этапа развития статистических методов, с 

учетом обработки фрагментарных данных малого объёма, целесообразно выделить 

пять актуальных направлений, в которых развивается современная прикладная 

статистика, т.е. пять "точек роста": непараметрика; робастность; бутстреп; 

интервальная статистика; статистика объектов нечисловой природы.  

   В первой трети ХХ в., одновременно с параметрической статистикой, в 

работах Спирмена и Кендалла (см. [57, 58]) появились первые непараметрические 

методы, основанные на коэффициентах ранговой корреляции, носящих ныне имена 

этих статистиков. После второй мировой войны развитие непараметрической 

статистики пошло быстрыми темпами благодаря работам Вилкоксона и его 

школы. Но непараметрика, не делающая предположений о том, что функции 

распределения результатов наблюдений принадлежат тем или иным 

параметрическим семействам распределений, стала заметной частью 

статистики лишь со второй трети ХХ века после работ А.Н. Колмогорова, Н.В. 

Смирнова (см. [64]).   
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Если в параметрических постановках на данных накладываются слишком 

жесткие требования - их функции распределения должны принадлежать 

определенному параметрическому семейству, то в непараметрических, наоборот, 

излишне слабые - требуется лишь, чтобы функции распределения были 

непрерывны. При этом игнорируется априорная информация о том, каков 

"примерный вид" распределения. Априори можно ожидать, что учет этого 

"примерного вида" улучшит показатели качества статистических процедур. 

Развитием этой идеи является теория устойчивости (робастности) статистических 

процедур, в которой предполагается, что распределение исходных данных мало 

отличается от некоторого параметрического семейства. С 60-х годов эту теорию 

разрабатывали П. Хубер, Ф. Хампель. Частными случаями реализации идеи 

робастности (устойчивости) статистических процедур являются рассматриваемые 

ниже статистика объектов нечисловой природы и интервальная статистика.  

Имеется большое разнообразие моделей робастности в зависимости от того, 

какие именно отклонения от заданного параметрического семейства допускаются. 

Наиболее популярной оказалась модель выбросов, в которой исходная выборка 

"засоряется" малым числом "выбросов", имеющих принципиально иное 

распределение.  

Другое из упомянутых выше направлений - бутстреп - связано с 

интенсивным использованием возможностей вычислительной техники. Основная 

идея состоит в том, чтобы теоретическое исследование заменить вычислительным 

экспериментом. Вместо описания выборки распределением из параметрического 

семейства строим большое число "похожих" выборок, т.е. "размножаем" выборку. 

Затем вместо оценивания характеристик и параметров и проверки гипотез на 

основе свойств теоретического распределения решаем эти задачи вычислительным 

методом, рассчитывая интересующие нас статистики по каждой из "похожих" 

выборок и анализируя полученные при этом распределения. Например вместо того, 

чтобы теоретическим путем находить распределение статистики, доверительные 

интервалы и другие характеристики, моделируют много выборок, похожих на 

исходную, рассчитывают соответствующие значения интересующей 
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исследователя статистики и изучают их эмпирическое распределение. Квантили 

этого распределения задают доверительные интервалы, и т.д. 

Термин "бутстреп" мгновенно получил известность после первой же статьи 

Б. Эфрона в 1979 г. Основная идея бутстрепа состоит в том, что методом Монте-

Карло (статистических испытаний) многократно извлекаются выборки из 

эмпирического распределения. Эти выборки, естественно, являются вариантами 

исходной, напоминают ее. Можно изменять не выборку, а сами данные. Поскольку 

всегда имеются погрешности измерения, то реальные данные - это не числа, а 

интервалы (результат измерения плюс-минус погрешность).  

   Перспективное и быстро развивающееся направление последних лет - 

математическая статистика интервальных данных. Речь идет о развитии 

методов математической статистики в ситуации, когда статистические данные - не 

числа, а интервалы, в частности, порожденные наложением ошибок 

измерения на значения случайных величин. 

Статистика интервальных данных идейно связана с интервальной 

математикой, в которой в роли чисел выступают интервалы. Это направление 

математики является дальнейшим развитием всем известных правил 

приближенных вычислений, посвященных выражению погрешностей суммы, 

разности, произведения, частного через погрешности тех чисел, над которыми 

осуществляются перечисленные операции. 

Существует другое направление в статистике интервальных данных, которое 

также представляется перспективным. В нем развиваются асимптотические 

методы статистического анализа интервальных данных при больших объемах 

выборок и малых погрешностях измерений. В отличие от классической 

математической статистики, сначала устремляется к бесконечности объем выборки 

и только потом - уменьшаются до нуля погрешности.  

С начала 70-х годов под влиянием запросов прикладных исследований в 

технических, медицинских и социально-экономических науках в России активно 

развивается статистика объектов нечисловой природы, известная также как 

статистика нечисловых данных или нечисловая статистика. В создании этой 
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сравнительно новой области прикладной математической статистики приоритет 

принадлежит российским ученым, в частности Орлову А.И., Лемешко Б.Ю.   

 

Актуальность использования модели Гнеденко-Вейбулла распределения 

отказов технологически активных элементов ГТС для получения оценок их 

показателей надёжности. 

Распределение Гнеденко-Вейбулла может быть также применено при 

описании систем автоматического управления в транспорте газа, в частности, для 

решения задач управления надёжностью в рамках единой системы газоснабжения. 

Рассмотрим возможность применения распределения Гнеденко-Вейбулла для 

описания различных газотранспортных систем в газовой отрасли 

промышленности, относительно решения задач управления надёжностью в рамках 

единой системы газоснабжения, которая является достаточно сложным предметом 

для исследования. На практике необходимы простые инженерные модели и 

методы, которые позволяли бы на основе большого количества статистической 

информации делать оценки, проводить текущий контроль надёжности 

функционирования систем и аргументировано утверждать, когда необходимо 

менять то или иное оборудование, которое, несомненно, со временем устаревает. 

Распределение Гнеденко-Вейбулла занимает важное место среди 

распределений времени безотказной работы систем, состоящих из групп большого 

числа элементов, отказы которых происходят взаимно независимо, так что отказ 

любого из элементов приводит к отказу всей системы (принцип «слабейшего 

звена»). Многие устройства содержат значительно число одинаковых или близких 

по конструкции элементов, находящихся в примерно одинаковых 

эксплуатационных условиях. Например, газовая турбина (входящая в состав ГПА) 

имеет большое число лопаток, системы автоматики ГПА (САУ ГПА) – 

значительное число датчиков, различных элементов радиоэлектронной 

аппаратуры, электронных плат и т.д. Если повторяющиеся в одном устройстве 

элементы являются определяющими по отношению к времени безотказной работы 
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устройства, то образуется схема, приводящая к распределению Гнеденко-

Вейбулла. 

В современной литературе данное распределение нашло широкое 

применение, в связи с его универсальностью и гибкостью в приложениях. Целый 

ряд распределений является частным случаем распределения Гнеденко-Вейбулла. 

 Перечислим основные преимущества применения двухпараметрического 

распределения Гнеденко-Вейбулла для моделирования отказов технологических 

объектов ГТС, которые могут служить обоснованием эффективность его 

использования: 

➢ естественным образом обобщает однопараметрическое показательное 

распределение, традиционно доминирующего распределения в теории 

надёжности, и даёт возможность описания всех этапов жизненного цикла в 

рамках одной модели; 

➢ гибкое (простое и наглядное) моделирование интенсивности отказов, 

ключевого показателя в теории надёжности; 

➢ возможность адекватной работы с данными малого объема в случае 

выполнения критерия согласия (ввиду того, что такое «сильное» 

преобразование, как двойное логарифмирование  линеаризует теоретическую 

функцию распределения); 

➢ простое математическое описание деградационных процессов в терминах 

базовых показателей надёжности;  

➢ модель «слабейшего» звена: фундаментальная математическая модель 

протекания сложных для формализации (описания и изучения) 

деградационных процессов; 

➢ метрическая близость при определенных условиях к нормальному закону 

распределения (для которого интенсивность отказов явно не выражается и 

представляет собой сложную формулу, как и функция распределения); 

➢ распределение Рэлея, играющее базовую роль в радиоэлектронике, является 

частным случаем распределения Гнеденко-Вейбулла. 
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Но в тоже время непосредственное применение распределения Гнеденко-

Вейбулла для инженерных расчётов весьма затруднительно из-за необходимости 

оперировать комбинациями специальной гамма-функции Эйлера, через которую 

выражаются числовые характеристики данного распределения. В следствие этого, 

возникает вполне научная проблема теоретического исследования распределения 

Гнеденко-Вейбулла с точки зрения получения асимптотических разложений 

различных его числовых характеристик, чему будет полностью посвящена Глава 2.   

Таким образом, от постановки производственной проблемы оценки 

показателей надёжности и мониторинга состояния технологического 

оборудования для управления техническим состоянием и целостностью ГТС мы 

переходим к необходимости научного рассмотрения моделей и методов 

построения вероятностно-статистических оценок для мониторинга показателей 

надёжности в диспетчерском управлении транспортом газа. Данная проблема 

декомпозируется на целый ряд инженерных задач, указанных во Введении.  

 

Обоснование выбора программного средства моделирования Mathematica 

В диссертационной работе в качестве программного средства моделирования 

используется компьютерный пакет Mathematica, хотя существуют и с успехом 

могут применяться и другие похожие пакеты прикладных программ (MATLAB, 

Maple, Mathcad, Derive)   

Система Mathematica появилась в 1998 году, заняла менее чем за год ведущие 

позиции в области применения компьютерной алгебры и оказала очень большое 

влияние на использование компьютеров в науке и технике. Иногда даже говорят, 

что именно появление системы Mathematica открыло эру применения 

компьютерной алгебры в научных и технических вычислениях. 

Специализированные пакеты для решения численных, алгебраических, 

графических задач появились еще в 60-х годах прошлого века, но система 

Mathematica отличается от них концептуально: она универсальна, так как она 

предназначена для любых научных и технических вычислений.  Это одна из самых 

мощных систем, имеет чрезвычайно большую функциональную наполненность. 
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Mathematica обладает высокой скоростью вычислений, дружественным 

интерфейсом [149]. 

Mathematica признана фундаментальным достижением в области 

компьютерного проектирования, включающее в себя огромное число алгоритмов и 

технических новшеств. Среди этих новшеств – независимый от платформы 

интерактивный документ, называемый блокнотом, наглядный листинг 

программного кода в системе Mathematica. Блокноты используются не только для 

публикаций технических документов, став стандартом для многих видов отчета, но 

также в качестве убедительного учебного инструмента для проведения 

математических расчётов при решении различных задач теории надёжности [22, 

78]. 

Выводы по Главе 1 

1. В условиях активного развития трубопроводных ГТС повышается роль 

комплексных критериев надёжности и возникает необходимость 

формирования мониторинговых систем по оценке показателей надежности.  

2. Рассмотрены основные технические характеристики и показатели 

надёжности ГПА и их систем автоматического управления. 

3. Обзор работ отечественных и зарубежных авторов продемонстрировал 

отсутствие моделей вероятностно-статистических оценок, которые могут 

быть использованы для мониторинга показателей надёжности с единой 

позиции жизненного цикла эксплуатации объектов ГТС. 

4. Показаны актуальность и преимущества использования модели отказов 

Гнеденко-Вейбулла как базового распределения отказов технологически 

активных элементов ГТС в современных условиях острой необходимости 

статистической обработки фрагментарных данных малого объёма.  

5. Ввиду затруднительности применения распределения Гнеденко-Вейбулла 

для инженерных расчётов, сформулирована научная проблема 

аппроксимации фундаментальных характеристик распределения Гнеденко-

Вейбулла, для исследования которой будет использован мощный аппарат 

асимптотического анализа и теории рядов. 
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ГЛАВА 2. РАЗРАБОТКА РАСЧЁТНЫХ ПРОЦЕДУР ДЛЯ ПОЛУЧЕНИЯ 

ОЦЕНОК ПОКАЗАТЕЛЕЙ НАДЁЖНОСТИ НЕВОССТАНАВЛИВАЕМЫХ 

ЭЛЕМЕНТОВ В МОДЕЛИ ГНЕДЕНКО-ВЕЙБУЛЛА  

РАСПРЕДЕЛЕНИЯ ОТКАЗОВ 

 

 

 

 Данная глава посвящена теоретическому исследованию как самих числовых 

характеристик распределения Гнеденко-Вейбулла, так и основанных на нём 

различных показателей надёжности невосстанавливаемых объектов. Описываются 

процессы деградации с позиций указанного распределения.  

 

 

2.1. История и схема возникновения распределения Гнеденко-Вейбулла 

 

Распределение, в зарубежной литературе используемое под названием 

распределения Вейбулла (см. [46, 98, 127, 132, 141, 143, 146]), в русскоязычной 

литературе известно, как распределение Гнеденко-Вейбулла (см. [88, 89]) или 

Гнеденко-Вейбулла (см. [66, 75, 77, 82, 83, 87]). Впервые в технических 

приложениях указанное распределение было предложено в работе шведского 

физика В. Вейбулла [151] в 1939 г. для описания распределения прочности 

материалов без всякого математического обоснования, из чисто эвристических 

соображений. Строгое математическое рассмотрение указанного распределения 

было выполнено российским математиком Б.В. Гнеденко в 1941 г. в работе [24], 

где он дал теоретическое обоснование данного распределения, доказав, что оно 

является одним из трех типов предельных распределений выборочных 

максимумов. Ещё с осени 1938 года, будучи доцентом кафедры теории 

вероятностей механико-математического факультета МГУ, Б.В. Гнеденко работал 

над задачами построения асимптотических распределений максимального члена 

вариационного ряда и в начале июня 1941 года защитил докторскую диссертацию, 

включавшую в себя, в том числе, эту тему. В 1943 г. классическая работа Б.В. 
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Гнеденко, положившая начало целому направлению в теории вероятностей, была 

издана только на французском языке [135]. Поэтому (вслед за [88]) мы будем 

использовать термин «распределение Гнеденко–Вейбулла». Позже В. Вейбулл 

[150] призывал активно использовать данное распределение в теории надёжности 

и контроле качества ввиду достаточной гибкости моделирования различных 

возникающих на практике форм функции интенсивности отказов, которая будет 

рассмотрена в дальнейшем в работе. Как отмечается в [22] примерно половина всех 

работ по статистическим методам в надёжности за 1967-1980 гг. была посвящена 

распределению Гнеденко-Вейбулла. Таким образом, начиная с 70-х годов 

прошлого века, распределение Гнеденко-Вейбулла использовалось в весьма 

обширном спектре прикладных задач из самых разных областей знаний таки и 

нашло чрезвычайно широкое применение в машиностроении, приборостроении, 

радиоэлектронике. Приведем только некоторые из тем исследований, в которых 

применялся анализ данных на основе распределения Гнеденко-Вейбулла: 

моделирование скорости ветра над океаном, обобщенная модель массового 

отравления, моделирование сроков хранения продукции в фармакологии, описание 

человеческого поведения, изучение моделей продолжительности промышленных 

кризисов, динамические модели течения этнополитических конфликтов, задачи об 

оффшорных торгах по аренде нефтяных и газовых месторождений, оценивание 

влияния температуры на прорастание люцерны, описание процессов ползучести 

материалов, изучение проблем надёжности нефтепромыслового оборудования [7, 

46, 59, 77, 141, 143].         

Можно с полной уверенностью сказать, что распределение Гнеденко-

Вейбулла является одним из трех (наряду с лог-нормальным и гамма-

распределением), которые используются в современной практике для 

аппроксимации распределений различных односторонне ограниченных случайных 

величин [17]. 

Также интересно отметить, что история возникновения и развития 

распределение Гнеденко-Вейбулла удивительным образом пересекается с 

историей и этапами формирования самой теории надёжности. Примерно в одно 
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время появились (начало 40-х годов XX века), стали бурно использоваться и 

развиваться в 60-70-е годы.   

Приведем достаточно наглядную модель возникновения распределения 

Гнеденко-Вейбулла (которое будем в дальнейшем обозначать как ( , )GW   ): так 

называемую модель слабого звена (см. [87]). Пусть имеется последовательная цепь, 

состоящая из большого числа n  звеньев. Допустим, что прочности 1,..., nx x  

отдельных звеньев можно трактовать как реализации  n  независимых, одинаково 

распределенных неотрицательных случайных величин 1,..., nX X . На оба конца 

цепи подается равномерно возрастающая нагрузка, и фиксируется напряжение, при 

котором происходит разрыв цепи. Очевидно, что это напряжение равно прочности 

наислабейшего звена цепи (разрыв происходит, когда рвется самое слабое звено), 

поэтому его можно трактовать как реализацию случайной величины  

1    
minn k

k n
X X

 
= . 

Если ( )F x − функция распределения каждой из kX , 1,...,k n= , то функция 

распределения ( )nG x  для nX  находится следующим образом (в силу 

независимости и одинаковой распределённости случайных величин 1,..., nX X ): 

1( ) ( ) 1 ( ) 1 ( ,..., )n n n nG x P X x P X x P X x X x=  = −  = −   =  

1

1 ( ) 1 (1 ( )) .
n

n

k

k

P X x F x
=

= −  = − −  

В технических приложениях, при больших n , как правило, вместо  ( )nG x   

будет использоваться ее асимптотическое представление. Однако, при каждом 

фиксированном положительном x  очевидно, что lim ( ) 1n
n

G x
→

= . Поэтому 

необходимо провести нормировку nX  по аналогии с тем, как это делается в 

центральной предельной теореме из классической теории вероятностей, чтобы 

распределение не вырождалось при n→ .  

Понятно также, что nX  по вероятности сходится к нулю, что по определению 

означает:  
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0   {| |  } 0,   ( )nP X n    → → . 

Действительно,  

 
1    

 {| |  } { min }n n k
k n

P X P X P X  
 

 =  =  =  

 1

1

,..., { } (1 ( )) 0,  ( ),
n

n

n k

k

P X X P X F n   
=

=   =  = − → →  

так как 1 ( ) 1F −  . 

Произведем нормировку nX  с помощью домножения на некоторую 

растущую функцию от n . При этом нам не избежать условий на поведение 

функции распределения ( )F x  при 0x→ + . Предположим, что ( )F x ax
,                       

( 0x→ + ), где a  и   − неотрицательные числа, (все стандартные непрерывные 

распределения, сосредоточенные на положительной полуоси, удовлетворяют 

данному условию (см., например, [46])).   

 Функция распределения ( )W x  нормированной случайной величины 

1

nY n X=  уже не вырождается с ростом n , и её предельное распределение 

находится с помощью следующих выкладок: 

1 1
( ) ( ) 1 1

n

n

x x
W x P Y x P X F

n n 

    
=  =  = − −    

    
 

1
1 1 1 1 1 ,  ( ).

n n

axx ax
a e n

n n



 



−
    

− − = − − − →         

 

Заменяя параметр a  на новый параметр  , определяемый из уравнения 

a = , получаем распределение Гнеденко-Вейбулла, которое в дальнейшем 

будем обозначать как ( , )GW   ,  с функцией распределения: 

 

( )
( ) 1 ,     0,   0,   0.

x
F x e x




 
−

= −     
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2.2. Различные аппроксимации фундаментальных числовых характеристик     

распределения, точность полученных приближенных формул 

 

Итак, пусть случайная величина ( , )GW    подчиняется распределению 

Гнеденко-Вейбулла, т.е. её функция распределения имеет следующий вид:  

                                 
( )1 , 0

( )
0,             0

te t
F t

t

− − 
= 



                                        (1) 

где   называется масштабным параметром ( 0)  , а   − параметром формы 

( 0)  , от которого существенно зависит вид графика плотности распределения 

(см. Рисунок 7): 

                                          
( )1

,     0
( )

0,                                 0

tt e t
f t

t

 
  −−  

= 


                              (2)     

   

    

Рисунок 7. Формы кривой плотности распределения Гнеденко-Вейбулла для 

некоторых значений параметров   (при 0.5 = ). 

 

В современной литературе по теории надёжности данное распределение 

нашло широкое применение, в связи с его универсальностью и гибкостью в 

приложениях. Целый ряд распределений является частным случаем распределения 

Гнеденко-Вейбулла (см. Рисунок 7): значение параметра формы  , равное 1, 

превращает его в показательное распределение; при   = 2 распределение оно 
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совпадает с распределением Рэлея; начиная с значений    > 2  распределение 

Гнеденко-Вейбулла позволяет аппроксимировать лог-нормальное распределение 

[46]; если же   > 3,5, то данное распределение служит достаточно хорошим 

приближением для  нормального распределения, на котором базируются 

различные модели прикладной математической статистики.  

Математическое ожидание и дисперсия   равны, соответственно, 

          
1 1

1M
 

 
=  + 

 
,      

2

2

1 2 1
1 1D

  

    
=  + − +    

    
,            (3) 

где ( ) 1

0

x tx t e dt

+

− − =  − гамма-функция Эйлера. 

 Введем для краткости следующее обозначение: 1
def

k k




 
 =  + 

 
. Тогда  

11
M 


=  ,      ( )

2
2 1

2

1
D  


 =  − 
  

, 

а коэффициенты вариации, асимметрии и эксцесса имеют вид, соответственно: 

                         
( )

( )

2
2 1 2

21
1

1,V

D
C

M

  

 






 −  
= = = −

 
                          (4) 

                                        
( )

( )

3
3 1 2 1

3
2 21 2

3 2
,SA

   

 


 −   + 

=

  − 
  

                                   (5) 

                       
( ) ( ) ( )

( )

2 2 4
4 1 3 1 2 2 1

2
2

2 1

4 12 3 6
.XE

      

 


 −   +   −  − 

=
  − 
  

            (6) 

Отметим, что вышеуказанные коэффициенты являются специальными 

мерами, позволяющими охарактеризовать форму и другие особенности функции 

распределения, в чем состоит важность их рассмотрения. В силу того, что все 
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перечисленные характеристики случайной величины   с функцией распределения 

(1) включают в себя функцию специального вида ( )x , значения которой можно 

найти только численными методами, и требующими достаточно трудоемких 

вычислений, возникает проблема теоретического изучения распределения 

Гнеденко-Вейбулла. Для исследования числовых характеристик данного 

распределения используем методы асимптотического анализа [43, 74] и теории 

рядов [117], еще со времен И. Ньютона и Г. Лейбница являющиеся мощным 

инструментарием-орудием математического анализа.  

 

Асимптотические разложения для математического ожидания, 

дисперсии, коэффициентов вариации, асимметрии и эксцесса. 

Все указанные выше выражения (3) – (6) являются некоторыми 

комбинациями от выражений вида: 

1 , 1,2,3,4kk
k



 
 + =  = 
 

. 

Нас интересует асимптотика числовых характеристик распределения 

( , )GW    при достаточно больших  . С этой целью найдем разложение в ряд 

Тейлора функции ( )1 x +  в окрестности действительной точки 0x = :  

( ) ( )
( ) ( ) ( )2 31 1 1

1 1 ..., ( 0)
1! 2! 3!

x x
x x x

    
 + =  + + + + → . 

Как известно, (1) 0! 1 = = . Требуется найти ( )1 , ( )1 , ( )1  и т.д. Можно 

использовать для этой цели вспомогательную специальную функцию, тесно 

связанную с теорией Эйлеровых интегралов, которая представляет собой 

логарифмическую производную гамма-функции, и обозначаемую обычно через  

( )
( )

( )

x
x

x



=


, 

называемую дигамма-функцией [74].  
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 Но мы пойдем другим путём. Известно разложение гамма-функции в 

бесконечное произведение Вейерштрасса [33, 117]: 

1

1
1

( )

x

x k

k

x
xe e

x k


+

−

=

 
= + 

  
 , 

где  0,57721... =  − постоянная Эйлера-Маскерони. Тогда 

1

1 1
1

( ) (1 )

x

x k

k

x
e e

x x x k


+

−

=

 
= = + 

  +  
 , 

и, следовательно,  

      

1

1 1

1 ln 1 ln 1

1

(1 ) 1

x

k

k k

x x xx e
k k kx x xk

k

x
x e e e e e e

k

  

−+ +

= =

    −+ + − +    
   − − −  

=

  
 + = + =  =  

 
           (7) 

В силу стандартного разложения функции ln(1 )x+ в ряд Маклорена имеем:   

2 3 4 5
1 1 1 1

ln 1 ..., 1
2 3 4 5

x x x x x x x

k k k k k k k

         
− + = − + − +          

         
. 

Таким образом, получаем следующее соотношение: 

( ) ( ) ( )
2 3 4 5

11 1 2 2 1 2

1 1 1 1 1 1
...ln 1 1 1 1 ( )

2 3 4 5

n n n
n n n

n
kk k n n k n

x x x xx x x x x
n

k k k kk k n k n nk
e e e e e



++ + + + + +

== = = = = =

            − + − + − + − − −                          
    

= = = = ,  

где 
1

1
( )

s
k

s
k


+

=

=  − дзета-функция Римана, задаваемая в виде ряда Дирихле. Ввиду 

известного разложения функции xe  в ряд Маклорена получаем: 

( )
2

( )
21

2 3 4(2) (3) 1 (2)
1 (4) ...

2 3 4 2

n n

n

n
x

n
e x x x



  


+

=

−  
= + − + + − 

 
, 

2 2 3 3 4 4

1 ...
2! 3! 4!

x x xx
e x

  


−
= − + − + − , 

и, следовательно, на основании правила перемножения рядов [33, 117] из (7) 

следует: 
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( )
2

1 ( )

2 2 3 3
2 3

2 2 3 3

(1 )

(2) (3)
1 ... 1 ...

2! 3! 2 3

1 1
1 (2) 2 (3) 3 (2) ...,

2 6

n
n

n

x
n

nxx e e

x x
x x x

x x x




   


     

+

=

−
−


 + =  =

   
= − + − +  + − + =   

  

   = − + + − + + +   

 

но, в силу того что 

2

2
1

1
(2)

6n n




+

=

= =  

(см., например, [33]), в конечном итоге получаем разложение:  

2 2
2 2 3 31 1

(1 ) 1 2 (3) ...,
2 6 6 2

x x x x
  

   
   

 + = − + + − + + +   
   

 

где (3) 1,202... = − постоянная Апери, а 0,577... =  − постоянная Эйлера-

Маскерони. 

 Также получено полезное соотношение: 

2 4
2 3 4(3) 1

(1 ) 1 (4) ...
12 3 4 72

xx e x x x   
−

  
 + = + − + + −  

  
 

и, как следствие: 

2 4

2 3 4

(3) 1 1
1 (4) ...

12 3 4 72

1
eM



   


  




−  
=


+ − + + −  

  
. 

Таким образом можно окончательно получить разложения фундаментальных 

характеристик (3)-(6) распределения Гнеденко-Вейбулла по обратным степеням 

параметра формы   до любого порядка малости, используя технику оперирования 

со степенными рядами [117]. В силу громоздкости полученных выражений 

ограничимся 3-4 слагаемыми в разложениях: 
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2 2
2 3

2 3

4
4 2 2

4 4

1 1 1 1  1
1 2 (3)

2 6 6 2

1  3 1 1
8 (3) ,   ( )

24 20

M

o

  
   

   


    

 

    
= − + + − + + +    

   

   
+ + + + + →   

   

                  (8) 

 

 ( )

2 2 2 2
4

2 2 3 4

3 2 4 2 2

5

5

1 1  1   29 1
2 (3) 4 (3)

6 3 3 360

1 1
40 29 720 (3) 140 (3) 1080 (5)

180

1
,   ( )

D

o

   
   

   

       





    
= − + + + + −    

   


− + + + + +



 
+ → 

 

            (9) 

 

   

( )

( )

26

2 3 3

36 4

5 4 4

19 2160 (3)1 6 (3) 1 1

1206

(3) 1080 (3) 360 (5) 1 1
,      ( )

20

V

D
C

M

o

   


     

    


  

 −
= = − + −



+ +  
− + →  

 

              (10) 

 

( )

( )

26

3 2

36 4

4 2 2

11 2160 (3)1 3 1
24 (3)

2 5

(3) 432 (3) 24 (5) 1 1
15 ,      ( )

SA

o

 
 

  

    


  

 −
= +



− −  
− − + →  

 

           (11) 

 

     
( )

2

4

28 2

6 2

2

1 6 (3) 20 (5) 1
27 72

5

1087 (3) 15120 (3) 3628800 (3) (5)2 1
      

35

1
,      ( )

XE

o

  


 

     

 




 +
= + −



− −
− +



 
+ → 

 

             (12) 
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где ( )s и   определены выше.  

Получим некоторые комбинированные функционально-степенные 

разложения для фундаментальных характеристик случайной величины  , 

имеющей распределение Гнеденко-Вейбулла ( , )GW   . Эти разложения могут 

быть использованы для приближенных вычислений. Будем исходить из следующих 

классических соотношений, выполняющихся для всех 1   (см. [33]; фактически, 

первое было нами доказано выше): 

2

1 ( ) 1
ln 1 ( 1)n

n
n

n

n

 

  

+

=

 
 + = − + − 
 

 , 

2 1
1

1 1 (2 1) 1
ln 1 ln ,

2 Sin ( ) 2 1 n
n

n

n

   

    

+

+
=

  +
 + = − − 

+ 
  

После потенцирования первых двух перечисленных выше рядов, 

ограничившись разложениями в ряд до членов порядка малости не больше пяти, 

которые выполняются при  → , получаем:  

       32 4

2 3 4 4

1 1
1 1 , ( )

AA A
e o



 
    

−     
 + = + + + + →    
    

,                   (13) 

 3 51

3 5 5

1 1
1 1 , ( )

Sin ( )

B BB
o

 


      

    
 + = + + + + →    
    

,            (14) 

где   

   

2 4

2 3 4

(2) (3) 1
; ; (4) ,

2 12 3 4 72
A A A

   

 

= = = − = + 
 

 

                  
3 2

1 3 5

(3) (5) (3)
, , .

3 2 5 2
B B B

    
= − = − − = − −   

Таким образом, имеем два гибридных разложения для математического 

ожидания ( , )GW   , выполняющихся при  → : 

 32 4

2 3 4 4

1 1 1 1
1 1 ,

AA A
M e o




      

−     
=  + = + + + +    

    
                  (15) 
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        3 51

3 5 5

1 1
1

Sin ( )

B BB
M o

 


      

  
= + + + +  

  
,                      (16) 

Также можно получить два соотношения для дисперсии (при  → ):  

 

           

2 2

32 4 2

2 2 3 4 4

62 141 1
,

AA A A
D e o




    

−  −  
= + + +  

  
                     (17) 

 

2 2 2 2 4
2 2

1 3 1 1 3 1

2 2 3 4 4

7
6 2

1 16 3 12 160 96 .
Sin ( )

B B B B B B

D o

    
 


      

 
− + + + −  

= + − +  
  

  

 

Доказательство приведено в Приложении Б. 

И, как следствие, получаем следующие асимптотические разложения для 

коэффициента вариации ( , )GW    (при  → ): 

 

                   
4

2 3 3

1 6 (3) 1 252 (4) 1 1

246
VС o

   


     

  +
= − + +  

  
,                 (18) 

 

2

4
2 2 2 2

1 6 (3) 1 1 21 (4) 1 1
1

2 126
VС tg o

     


       

    
= − + − +    

   
. 

 

Коэффициенты вариации VC  , асимметрии SA  и эксцесса XE  ,  случайной 

величины   являются в силу задания безразмерной величиной. Данный факт 

позволяет использовать их в качестве универсальных количественных оценок 

распределения. В приложениях коэффициент вариации играет большую роль. Он 

содержит только параметр   (отсюда следует, что   представляет собой 

безразмерную величину).  

Учитывая, что (3) 1,202   и (5) 1,037  , (см. [33]) получаем следующие 

аппроксимирующие формулы, выполняющихся при больших значениях  : 
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2 3 4 5

1 0,577 0,989 0,907 0,981 0,982
1M

     

 
 − − + − + 

 
                  (19) 

 

                          

2 2 3 4 5

1 1,645 4,303 11,718 26,531
D

    

 
 − + − 

 
                            (20) 

 

                         
2 3 4 5

1,282 0,937 1,662 2,753 4,855
VC 

    
 − + − +                            (21) 

 

       
2 3 4 5

5,966 12,280 36,224 106,077 315,549
1,140SA 

    
 − + − + − +                   (22) 

 

      
2 3 4 5

27 28,918 152,616 666,448 2877,877 12120,831

5
XE 

    
 − − + − +              (23) 

 

Указанные выражения предлагается использовать при инженерных расчетах 

для приближенного и упрощенного вычисления важных числовых характеристик 

распределения Гнеденко-Вейбулла. Заметим, что из (15) можно получить совсем 

«грубое», но вполне имеющее практическую значимость, приближение для 

математического ожидания случайной величины ( , )GW   :  

                                 
2

2

1
1 ,

12
M e



 


 

−  
 + 

 
                                        (24) 

меру точности которой приведем далее. 

 

Оценки точности полученных аппроксимаций 

 

Для оценки степени точности полученных аппроксимирующих соотношений 

был использован профессиональный компьютерный математический пакет 
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Wolfram Mathematica [149]. На основании численных расчетов, выполненных в 

указанном пакете, была исследована степень точности полученных приближенных 

равенств (19) и (21) с учетом количества членов данных разложений. Результаты 

сведены в Таблицу 1 значений относительной погрешности: 

Таблица 1. 

 Таблица значений относительной погрешности аппроксимирующих формул 

 

 M   
VC   

количество членов 

 

  

 

5 

 

4 

 

3 

 

5 

 

4 

 

3 

1,5 5,79 8,54 12,94 33,86 42,98 37,10 

1,6 4,06 6,39 10,32 27,63 34,18 31,46 

1,7 2,90 4,85 8,32 22,45 27,53 26,91 

1,8 2,11 3,74 6,78 18,22 22,42 23,20 

1,9 1,56 2,91 5,58 14,80 18,45 20,14 

2 1,17 2,30 4,63 12,06 15,32 17,60 

2,1 0,88 1,83 3,87 9,86 12,83 15,47 

2,2 0,68 1,47 3,26 8,10 10,82 13,67 

2,5 0,33 0,81 2,03 4,63 6,76 9,70 

2,6 0,26 0,67 1,75 3,88 5,85 8,73 

2,7 0,21 0,56 1,52 3,27 5,09 7,88 

2,8 0,17 0,47 1,32 2,77 4,44 7,14 

2,9 0,14 0,40 1,16 2,36 3,90 6,49 

3 0,11 0,34 1,02 2,02 3,44 5,91 

3,1 0,09 0,29 0,90 1,73 3,04 5,41 

3,2 0,08 0,25 0,80 1,50 2,70 4,96 

 

 

Относительная погрешность формулы (19) относительно параметра   не 

превышает 10% при 1,5  ; формулы (21) для VC   – не превышает 10% при 

2,  что вполне допустимо при инженерных расчетах. 
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Абсолютная погрешность формулы (24) для M  относительно параметра   

не превышает 3% при 1   и она уже меньше 1,5% при 2   (см. Рисунок 8). 

 

Рисунок 8. Графическая зависимость абсолютной погрешности формулы (24) 

 

Приближенные формулы ускоренных расчётов дисперсии и коэффициента 

вариации, приемлемые для экспресс-анализа 

С помощью компьютерного моделирования в профессиональном 

математическом пакете Mathematica были получены следующие приближенные 

формулы для ускоренных расчетов дисперсии и коэффициента вариации: 

                 
2 2,345

1 1
D

 
  ,           

0,934

1
VС 


                                 (25)                                                                                 

Абсолютная погрешность приближения (25) для D  относительно параметра 

  меньше 3% при 1,5  ; формулы для VС   – не превышает 0,7% при 1  (см. 

Рисунок 9). Данные соотношения могут пригодиться при инженерном экспресс–

анализе.  

 

Рисунок 9. Графическая зависимость абсолютной погрешности VС  от  . 
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Кроме того, в результате графического моделирования в пакете Mathematica 

позволило получить для ( , )GW    следующую приближенную формулу:  

                                         2,86 ( 1) 2S VA C   − + ,                                         (27) 

Но в силу (25) имеем:  

                                           
0.9342,86 0,86SA   −  −                                         (28) 

Рассмотрим некоторые частные случаи. В случае показательного 

распределения 1 = , 1VC  =  и 2SA  = , что вполне согласуется. Распределение 

Рэлея ( 2 = ), тогда из теории [46]: 

 

4
0,523VC






−
=    и 

3

2 ( 3)
0,631

(4 )
SA

 




−
= 

−
 , 

а по формуле (28) 

0,523VC    и 0,635sA     

Если же 3,6 = , когда 
2( , ) ( ; )GW N a    (о чем речь впереди, см. п. 2.5), 

то 

0 0,30069S VA C =   , 

что тоже вполне согласуется с классической теорией случайных величин (см. 

Таблицу 2).  

 

Таблица 2.  

Диапазон коэффициентов вариации для стандартных распределений 

    

Пределы изменения коэффициента 

вариации VC   

Закон распределения СВ   

0 0,3VC    Нормальный 

0,3 0,4VC    Гамма–распределение 

0,4 1VC    Гнеденко-Вейбулла 

1VC  =  Экспоненциальный 

 

Указанную зависимость (27) представлена графически на Рисунке 10. 
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  Рисунок 10. Графическая зависимость асимметрии от коэффициента вариации 

 

Показатели надёжности невосстанавливаемых объектов  

в модели Гнеденко-Вейбулла распределения отказов 

 

Исходным показателем надёжности невосстанавливаемых технологических 

объектов ГТС, оценка которого производится на основе обработки собираемых 

статистических данных, является интенсивность отказов ( )t , определяемая 

следующим образом: 

( )
( )

1 ( )

f t
t

F t
 =

−
.             

Отметим преимущества введенной величины:  

− по известной интенсивности ( )t  несложно оценить остальные 

показатели надёжности, т.е. функция интенсивности отказов является 

одной из форм закона распределения случайной величины: 

0 0 0

( ) ( ) ( ) exp ( ) , ( ) 1 ( ) exp ( )

t t t

f t P t t s ds P t f s ds s ds  
   

= − =  − = − = −   
   
  

– функция ( )t  наглядно описывает все этапы жизненного цикла 

функционирования объекта (см. рис.3), в частности кривая интенсивности 

отказов достаточно просто характеризует процессы деградации;  
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− интенсивность отказов может быть легко определена экспериментальным 

путем. 

Для распределения Гнеденко-Вейбулла функция интенсивности отказов 

имеет вид: 

                                                 
1

( )t t
 

  
−

=                                            (29) 

Распределение Гнеденко-Вейбулла позволяет аппроксимировать 

экспериментальную кривую интенсивности отказов на каждом из основных 

периодов функционирования системы [3]. В частности, период приработки 

отвечает распределению Гнеденко-Вейбулла с параметром (0;1)  ; период 

нормальной эксплуатации – с параметром 1   и период старения – с параметром 

2  . Это следует из исследования функциональной зависимости от параметров 

  и   интенсивности отказов ( )t  (см. Рисунок 11).  

 
 

Рисунок 11. Аппроксимация кривой интенсивности отказов распределением 

Гнеденко-Вейбулла (пунктирная линия) 

 

 

Применимость распределения Гнеденко-Вейбулла в описании 

функционирования объектов с позиций жизненного цикла, в том числе 

процессов деградации 

 

Здесь следует еще раз обратить внимание на тот факт, что в модели отказов 

по распределению Гнеденко-Вейбулла, для участка устойчивого 

функционирования, коэффициент  =1, а для третьего участка коэффициент   



64 

 

больше 2 (см. Рисунок 11). Разрыв между численными значениями коэффициента

 , очевидно, объясняется тем, что, практически, деградация как эволюционный 

процесс является непрерывным, а его возникновение происходит не дискретно, а 

непрерывно. Таким образом уже на участке нормальной работы ближе к началу 

третьего этапа, начинается процесс деградации.   

Из методики формирования оценок надёжности оборудования следует, что 

данное значения параметра характеризует нахождения оборудования в конце II-

этапа эксплуатации, на котором этап нормальной эксплуатации переходит в 

преддеградационное состояние (Рисунок 12). 

 

 

Рисунок 12.  Интенсивность отказов оборудования и граничные значения 

интервалов для параметра  . 

 

 Главной проблемой в решении подобных задач является определение 

критического значения critt – при котором можно считать, что оборудование 

перешло из периода нормально эксплуатации в период деградации или старения. 

Из теории известно, что при 2   наступает деградационный период, но на 

практике такого четкого разграничения на принадлежность реального состояния 

оборудования к одному из трех периодов эксплуатации не бывает. Характер 
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перехода от первого этапа ко второму, так же, как и от второго к третьему - 

достаточно плавный, например, при значениях   близких к 2, сложно 

идентифицировать состояние оборудования по оценки показателей надёжности. 

Можно наблюдать, что в конце второго периода уже начинают сокращаться 

интервалы между отказами, что говорит о начале третьего периода. Поэтому, 

необходимо применять комплексный подход к оценке показателей надёжности с 

использованием других методов, например, нечеткой логики. 

 

 

Прогнозирование наступления момента очередного отказа элементов 

системы ГПА 

Моменты начала деградационных процессов при эксплуатировании объектов 

ГТС, в частности ГПА и САУ ГПА, можно найти на основании изучения 

теоретической плотности вероятности отказа оборудования, подчиненной 

двухпараметрическому распределению Гнеденко-Вейбулла ( , )GW   .   

Сделаем эвристическое допущение о том, что максимальный рост 

вероятности отказа оборудования, который соответствует первой точке перегиба 

функции плотности вероятности отказа, находящейся левее математического 

ожидания случайной величины  , соответствует моменту времени следующего 

отказа. Проведя несложные преобразования, получим формулу для нахождения 

точки максимального изменения плотности вероятности отказа, соответствующей 

первой точке перегиба плотности распределения (2) ( , )GW   : 

                                            

1

3( 1) ( 1)(5 1)

2
critt

  



 − − − −
=   
 

.                             (30) 

Данное выражение определено при значениях 2  . При единичном 

значении параметра масштаба ( 1 = ) график critt  как функции от параметра формы 

  имеет вид: 
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Рисунок 13.  График зависимости critt  от параметра   при 1 = . 

 

Отметим, что в нашем случае t M
crit

 .  Несложно убедиться в том, что 

                                                  

1

critt 
−

 ,                                                   (31) 

ввиду того, что  

1

3( 1) ( 1)(5 1)
lim 1

2





  

→+

 − − − −
=  

 

. 

Следовательно, в терминах интенсивности отказов, получаем  

                                                  

1
2

( )critt  
−

                                            (32) 

 

Итак, пусть имеются эксплуатационные данные об отказах активных 

элементов ГТС  , 1,..,k k n = . Формируем последовательность  , 1,.., 1kt k n= −  

где 
1k kt

k
 += − . Предполагая, что распределение времени между отказами 

подчиняется двухпараметрическому распределению Гнеденко-Вейбулла с 

функцией распределения (1) найдем точечные оценки неизвестных параметров    

и  . Среднее время безотказной работы, т.е. наработка до отказа, составляет  

1

1 1
1T M

 

 
= =  + 

 
. Следовательно, значения должны kt  лежать в окрестности 

1T  в период нормальной эксплуатации, характеризующийся постоянством 
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0.9

1.0

1.1

1.2

1.3

1.4



67 

 

интенсивности отказов. Процесс старения (деградации) означает нарастание 

интенсивности отказов, интервалы между отказами уменьшаются, что 

соответствует приближению kt  к  critt . 

Детально изучим первую точку перегиба распределения Гнеденко-Вейбулла 

с помощью асимптотических методов. Справедливо следующее разложение при 

больших значениях параметра формы  , полагая параметр масштаба 1 = : 

11

3( 1) ( 1)(5 1) 1 3 1 1
3 1 5

2 2
critt

  

   

   − − − −   
 = = − − − − =               

 

( )2 2

2

1 1 3
ln 3 5

2 3 5 1
1 ln

2

3 5 1 6 1
ln ln 2 ln 3 5

2 2 5 3

e
 





  
− −    −    + + 

 

  −  
+ − + + −      −   

 

( )2

0,962 2,688
1 

 
 − + →                                                     (33) 

в силу того, что  

1 1 1
( ) 0 1 5 5

  

    
→  →  − − →    

    
. 

 

  

2.3. Асимптотическое исследование функции средней остаточной наработки, 

дисперсии и коэффициента вариации остаточной наработки 

 

Средняя остаточная наработка (остаточное время жизни) как функция от 

времени является важной характеристикой (или даже мерой) процессов старения в 

приложениях теории надёжности. Ее используют в актуарной математике и 

страховании, в медицине и биологии. Теоретические свойства ее были 
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рассмотрены Коксом в 1962 [60]. Обзор по теории и приложениям средней 

остаточной наработки имеется в книгах [90, 133]. 

  

Остаточная наработка и функция средней остаточной наработки 

Пусть время T безотказной работы элемента является случайной величиной, 

подчиненной двухпараметрическому закону распределения Гнеденко-Вейбулла 

( , )GW    с функцией распределения (1), плотностью (2) и математическим 

ожиданием 

( )

0

0

1 1
1tMT T e dt



 

+

−

 

= = = + 
 

 . 

Рассмотрим условную случайную величину ( )tX T t T t= −  , которая 

называется остаточной наработкой (или остаточное время безотказной 

работы), являющейся интересным объектом для анализа как в теории надёжности, 

так и в проблемах качества и безопасности. Найдем математическое ожидание 

указанной случайной величины, т.е. функцию средней остаточной наработки 

(или математическое ожидание остатка долговечности) на отказ. Имеем: 

1 ( )

( )
( ) ( )

tX
F t

P t T t
F P T t T t


 

−

  +
= −   = =  

1 ( ) 1 ( )

( )( ) ( ) 1 ( ) ( ) 1
1 ,

( )F t F t

P tF t F t F t F t

P t

 

− −

++ − − + + −
= = = −  

где ( ) 1 ( )P x F x= −  обозначает вероятность безотказной работы. Тогда 

0

0 0 0

1 1
( ) ( ) ( ) ( )

( ) ( )tt XMX x dF x x dP t x x P t x P t x dx
P t P t

+ + +
+ 

= = − + = − + + + = 
 

    

0

1 1
( ) ( ) ( ) ,

( ) ( )
t

P t x d x t P y dy
P t P t

+ +

= + + =   

так как, по правилу Бернулли-Лопиталя: 

 

2

2

1 ( ) ( )
lim ( ) lim lim lim ( ) 0,

1 1x x x x

F t x f t x
x P t x x f t x

x x
→+ →+ →+ →+

− + − +
+ = = = + =

−
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в предположении существования второго момента распределения, что, очевидно, 

верно, для распределения Гнеденко-Вейбулла. 

Итак, функция средней остаточной наработки определяется следующим 

образом: 

 ( )
1 1

( ) ( ) ( ) 1 ( )
( ) 1 ( )

t M T t T t P x dx F x dx
P t F t

t t


+ +

= −  = = − 
−

.            (34) 

В случае существования плотности распределения можно получить другое 

выражение для нахождения ( )t : 

( )

( ) ( )
( )

x f x dx

tt M T t T t t
P t



+



= −  = −  

Выразим через ( )t  базовые показатели надёжности, а именно: 

интенсивность отказов ( )t  и вероятность безотказной работы ( )P t , и как 

следствие, функцию плотности времени безотказной работы ( )f t . Из соотношения 

(34) следует, что  

( ) ( )( ) 1 ( ) 1 ( )t F t F x dx

t


+

− = − . 

После дифференцирования получаем: 

( ) ( ) ( ) ( )( ) 1 ( ) ( ) ( ) 1 ( ) 1 ( )
t

t F t t f t F x F t 
+

 − + − = − = − −  

Следовательно,  

1 ( )
( )

( )

t
t

t






+
= ,                                     

и, тогда, по известному в теории надёжности соотношению [78]:   

0

( )

( )

t

d

P t e
  −

=  

вероятность безотказной работы может быть выражена через функцию ( )t  

следующим образом: 
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0

0 0 00 0

( ) 1 1( ) 1
ln ( )

( ) ( ) ( )( ) ( )(0)

( )
( )

t t tt t
t d

d d dd

t
P t e e e e

   
    

        



    +    − + − +− −
   
   
   

= = = =  , 

то есть, 

0
( )(0)

( ) 1 ( )
( )

t
dz

z
P t F t e

t





−
= − =  . 

Дифференцированием последнего соотношения получаем, что функция 

плотности времени безотказной работы элемента имеет вид: 

                                

1

0

( )

2

(0) ( ( ) 1)
( )

( )

t

z dz
t

f t e
t

 



−− +
=                                 

Применяя правило Бернулли–Лопиталя к выражению для ( )t , получаем 

соотношение: 

( )
( )

1 ( ) ( )

1 ( )
1 ( ) 1 1

lim ( ) lim lim lim lim
( ) ( )

1 ( )

t t tF t f t

F x dx
F ttt

f t tt t
F t


→+ →+ →+− −

+
−

− −
= = = =

→ + → +
−

, 

устанавливающее интересную связь между предельными значениями ( )t  и ( )t . 

Отсюда следует предельное соотношение для средней остаточной наработки 

в случае распределения Гнеденко-Вейбулла ( , )GW   : 

                                          

, 0 1

1
lim ( ) ,       1 .

0, 1

t
t



 




→+

+  



= =




                                   (35) 

Отметим, что несмещенной статистической оценкой ( )t  для выборки 

1 2, ,..., nt t t  является эмпирическая функция [90]: 
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( )( )
1

1

( ) [ ]

ˆ ( )

1 1 ( ) [ ]

n

i i

i
n n

n

i

i

t t t t

t

P t t t







=

=

−  

=

− −  




 

где [ ]it t  – индикаторная функция: 

1,
[ ]

0,

i

i

i

t t
t t

t t



 = 


. 

 

Асимптотическое разложение средней остаточной наработки 

Теперь найдем аналитическое представление для ( ).t  Имеем, исходя из 

определения: 

( )
( )

( ) ( )

( )

( ) ( )

1 ( )

1 ( )

( )

1 1 ( )
1 .

0 0 0

t

t t

F t

F x dx
xtt e e dx

t

t tx x x
e e dx e dx e e dx



 



 






    



−



+
−

+ −
=  

 +  − −   − − +    
      

= =

= = −

 

Для вычисления интеграла используем неполную гамма-функцию (см. 

8.350(1) из [33]):  

 ( ) 1,

0

x
t aa x e t dt − −=   . (36) 

По формуле 3.381(8) из [33] имеем  

 

 
1 1( )

, ( )

0

t
x

e dx t


 
 

 

 −
=  

 
 .  

Отсюда 
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 ( )
1 1 1 1( )

( ) 1 , .
t

t e t


 
  

   

    
=  + −    

    
  (37) 

 

Преобразуем (37), используя свойства гамма-функции Эйлера 

 

( )

( ) ( )

( )

( ) ( )

1 1 1 1
( ) 1 ,

1 1 1 1 1 1 1 1
, , .

t

t t

t e t

e t e t



 



 


  

   

 
  

       


    
=  + − =    

    

          
=  −  =           

          
−

 

 

Отсюда 

 ( )( ) 1 1
( ) ,

t
t e t

 
 

 

  
=   

  
,  (38) 

где  ( ) 1, a y

z

a z y e dy

+

− −
=   – неполная гамма-функция (см. 8.350(2) из [33]).  

Получим еще одно аналитическое представление средней остаточной 

наработки через функцию Куммера-Похгаммера, воспользовавшись аппаратом 

специальных функций. Справедливо следующее соотношение: 

1( ) ( )
1; 1; ( )

1 1
0

t
x t

e dx te F t
 

  




 − −
= +  

 
, 

где    

        ( )
1 ( ) ( )

; ; 1
1 1 (1 )( ) ( ) ( ) !1 00

k l kk kF x x x
l l k kk kl

  
 

  

−+ ++   +
= + = 

+ +   + = ==

     (39)  

стандартное обозначение вырожденной гипергеометрической функции 1-го рода 

или функции Куммера-Похгаммера, относящейся к классу специальных функций 

[6, 74].   

Доказательство приведено в Приложении Б. 

Следовательно,  
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1 1 1( ) ( )

( ) 1 1; 1; ( ) .
1 1

t t
t e t e F t

 
  

 
  

    −
=   + −  +    

     

  (40) 

Получим выражение для ( )t  в виде обобщенного степенного ряда. 

Применяя формулу (39) получаем: 

1 1 ( )( )
1, 1; ( ) 1

1 1 10 1

k
tt

F t e

k k

 


 



+   −
+ =  +     

     =  + + 
 

 

Таким образом, 

 

1
1 ( )( ) ( ) ( )

1
1 10 00 1 1

k k kt t tx t t
e dx e te

k kk

k

       



 

++ +  − − −
=  + =   

     = = + + +   
   

 

где ( )
k

a  обозначает символ Похгаммера [6]:  

( )
( )

( )

a k
a

k a

 +
=


. 

Окончательно приходим к следующему разложению: 

                               
( ) !

( ) 1
0 ! 10 1

k
t t k

t T
kk k


 





 
 +   =  −
  =  + +  

  

,                        (41) 

где 0T  определено ранее.  

При 1 =  данное соотношение дает 

1
( )t const


= = , 

соответствующее показательному распределению. 

Рассмотрим важный частый случай распределения Гнеденко-Вейбулла, 

когда значение параметра формы 2 = , так называемое распределение Рэлея.  
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1
2 212( ) 1

2
0

t
t xt e e dx  

 
−   −=   + −   

  
 

 

Так как 

1
1

2 2



 
+ = 

 
,       

( )
( ) ( )

2
2

2 1 2 2 2
020 0

x
t t

xe dx e d x t



  


−
− = =   , 

где  

( )
2

2
1

0 2 0

x

e dx





−
 =   – функция Лапласа. 

Следовательно, 

( ) ( )
2 21 1

( ) 2 2
0 02 2

t tt e t e t
     
  

   
= −  = −   

  
. 

Данную зависимость представим в графическом виде (см. Рисунок 14), 

считая, без ограничения общности, что значение параметра масштаба 1 = .  

 

Рисунок 14. Функция средней остаточной наработки для распределения Рэлея. 

 

Укажем оценку погрешности в случае приближенного вычисления  ( )t  по 

найденному аналитическому разложению. Имеет место следующее утверждение:  

1 2 3 4 5

0.2

0.4

0.6

0.8
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1

0 1
10

( ) !
( ) 1 ( )

!

kN

N
kk

t t k
t T R t

k





 


−

 
 + + =
 

  
 =  − +
 
 

 , 

где 

 1

1 ( ) 1 1
( ) 1

! 1 ( )

N

N

t N
R t t

N N t







 
−

  +  
  +    +   + −   

,   1 ( )N t +  .  

Замечание. Очевидно, что  

1lim ( ) 0N
N

R t−
→+

=  

при фиксированных , , t  . 

Доказательство приведено в Приложении Б. 

Изучим асимптотическое поведение ( )t  при t →+ . Справедливо 

асимптотическое представление для ( )t : 

1 11
( ) 1 ( 1) 1 ( ) , ( )      

1

kkt t t t

k k

 
 

  

+  − −
  + − − → +     = 

(42) 

 

Или более развернуто: 

 

1 1 2 1 3

2 3

1

1 1 (1 )(1 2 )
( ) ...

( ) ( )

(1 )(1 2 ) (1 ( 1) ) 1
         ... , ( )                         

( 1) 1( )

N

N

t t t t

N
t O t

N
t

  

  





  


     

  

 

− − −

−

− − −
= + + +

 − −   − −
+  + → + 

 + −
 

 

В частности, главный член асимптотики имеет вид: 

                                     
11

( ) , 1, ( )t t t


 

 

−  → + .                              (43) 

Доказательство приведено в Приложении Б. 
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Нахождение дисперсии остаточной наработки. 

 

Рассмотрим теперь остаточную дисперсию условной случайной величины 

( )tX T t T t= −  .  Согласно [133] она выражается следующим образом: 

2 2 2 22
( ) ( ) ( ) (1 ( )) ( ) ( )

1 ( )
t

t

t E X t F x x dx t
F t

   
+

= − = − −
−   

 

В случае распределения Гнеденко-Вейбулла ( , )GW   имеем: 

 

( ) ( ) ( ) ( )2 2( ) 2 ( )

( ) ( ) ( ) ( )2 22 ( ) 2 ( )

( ) ( ) 22 ( ) ( )

( ) ( ) ( ) 22 (

t x x z
t e e e e dz dx t

t x

z
t z t z

e dx e dz t e dz e dx t

t x t t

t z
e e z t dz t

t

t z z
e e zdz t e dz

t t

   
   

 

   
   

 

 
 



  
  



+ +
− −

= − = 

+ + +
− −

= − = − =   

+
−

= − − =

+ + − −
 = − − 
 
 

)t

 

Но, ввиду справедливости следующих соотношений: 

( )( )

( )

tx
e dx

tt e

 




+
−

= ,              
( )( )

( )

t tz
z e dz

tt e

 



 

+ +−
=  

получаем, что 
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( )( ) ( )2 2( ) 2 ( )

( )

( ) ( ) 2        = 2 2 ( ) ( )

tt z
t e e zdz t t

tt e

t z
e e zdz t t t

t

   
 




 
 

 

 +
− = − − = 

 
 

+
−

− −

 

В силу того, что 

1 2( )
, ( )

2

z
e zdz t

t


 


 

+  −
=   

 
, 

получаем формулу для нахождения дисперсии остаточной наработки: 

1 2( )2 2( )  2 , ( ) 2 ( ) ( )
2

t
t e t t t t


 

   
 

 
=  − − 

 
.        (44) 

 

Асимптотическое представление дисперсии остаточной наработки и 

коэффициента вариации остаточной наработки 

 

Получим асимптотическое представление дисперсии остаточной наработки 

из предыдущего соотношения. Заметим, что 

                            

2 ,( )( )
2 22 ,( ) ( )

2 1 , ( )

tt
e

t t

t

 


 
    



 
 

   
 = 

    
 

                        (45) 

 Используя профессиональный пакет символьных вычислений Wolfram 

Mathematica, получаем следующее разложение: 
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2 ,( ) 2 12(1 ) (4 11 7 )11
2 3 4 12 31 ( ) ( ) ( ), ( )

t

t O

t t t tt




   


         


 
     − − +   = + + + +   −        
 

, 

верное при 4 1 0 −  . В случае деградационных процессов, как мы знаем, 1  .  

Окончательно, из формулы (45) получаем: 

       
14(1 ) 2(1 )(3 5 )2 1( ) 1

2( 1) 2 3 22 22 ( ) ( )

t O

t t tt

  


   
    

   − − −
 = + + +   − −    

      (46) 

Изобразим графически полученную зависимость, взяв первые три члена 

разложения, при значениях параметров масштаба 1 =  и формы 2 = :   

 

Рисунок 15. График 
2 ( )t  для значений параметров 1, 2 = = . 

Проверим полученное соотношение на показательном распределении. В этом 

случае, при значении 1 =  

2

2

1 1
( ) , ( )t t 

 
= = . 

В силу того, что  

( )
2

,( ) 2, (1 )x tt t xe dx te

t

   
 

+  − − =  = = + 
 

, 

получаем 
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1 1 1 12( )  2 (1 ) 2
2 2 2

t tt e t te
  

  

−= + − − = , 

что и требовалось показать. 

На основании полученных соотношений выше найдем асимптотическое 

представление для коэффициента вариации ( )C T t
V

: 

                      
( ) 11 1

( ) 1
2 32( ) ( ) ( )

t
C T t O

V t t t t

  

      

 − −
= = − + +   

 

.                  (47) 

Графическое представление полученной зависимости, учитывающее первые 

четыре члена разложения, при значениях параметров масштаба 1 =  и формы 

1,1 = .   

 

Рисунок 16. График коэффициента вариации ( )C T t
V

 для значений 1 =  и 1,1 =  

 

2.4. Теоретическое описание процессов деградации в терминах 

показателей надёжности 

 

Вопросы энергетической безопасности и надёжности в нефтегазовой отрасли 

напрямую зависят от возможности математического моделирования 

деградационных процессов, протекающих в трубопроводном транспорте 

углеводородов. Они всегда будут в приоритете, поскольку месторождения 
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переходят в стадию падающей добычи, основные производственные фонды 

стареют, оборудование изнашивается. При этом уровень обязательных поставок 

углеводородного сырья все более увеличивается.   

Скорость износа и старения определяется режимами работы и 

интенсивностью воздействия различных факторов (природные условия). Оценка 

скорости протекания процесса деградации во времени является необходимой для 

решения задач надёжности. Различные режимы работы, уровень нагрузок, 

диапазон (перепады) температур, скоростей, химических или атмосферных 

воздействий окружающей среды, запыленности и влаги воздуха, наличие 

агрессивных сред оказывают значительное влияние на скорость протекания 

процессов деградации и старения. Износ систем можно существенно замедлить 

своевременным проведением профилактических ремонтов и технических 

обслуживаний, которые следует осуществлять на основе системного мониторинга 

показателей надёжности технологического оборудования. Суть методов расчета 

технологических объектов на надёжность сводится к определению целого 

комплекса количественных характеристик показателей надёжности [49, 56, 94].  

Конечно же, в основе потери системой работоспособности лежат физические 

закономерности, но в силу разнообразия и переменности действующих факторов 

эти зависимости приобретают вероятностный характер и для решения задач 

надёжности необходимо знать закономерности изменения выходных параметров 

технологических систем, а также их элементов во времени и представить 

совокупность явлений, происходящих при эксплуатации технологических систем, 

которые происходят при различных режимах нагружения. Необходима удобная 

вероятностная модель, пригодная для инженерных расчётов, которые 

подразумевают удобство и простоту вычислений, интуитивную наглядность 

интерпретации результатов анализа надёжности. Закон распределения времени до 

отказа Гнеденко-Вейбулла как раз и представляет такую модель.  

Технологические системы имеют регламентируемый цикл работы и 

простоев, являются восстанавливаемыми (ремонтируемыми) изделиями и 

работают до предельного состояния, указанное в нормативно-технической 
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документации. Но в пределах отдельного интервала работы для восстанавливаемых 

систем справедливы все показатели надёжности, описывающие работу 

невосстанавливаемых объектов, если считать за начальный момент времени 

начало интервала. Соответственно, существует определенная зависимость между 

показателями надёжности восстанавливаемых и невосстанавливаемых объектов в 

силу двойственного подхода к функционированию объектов системы транспорта 

газа с точки зрения показателей теории надёжности. Она естественным образом 

может быть описана с помощью аппарата теории восстановления [60, 89], о чем 

будет речь в Главе 3. 

На данном этапе диссертационной работы можно рассматривать пару 

надёжностных показателей, на языке которых очень удобно и наглядно 

описываются процессы деградации, особенно в рамках модели Гнеденко-Вейбулла 

распределения отказов. Это функция интенсивности отказов ( )t  и функция 

средней остаточной наработки ( )t .  

 Средняя остаточная наработка до отказа ( )t  позволяет удобно 

классифицировать распределения времени жизни объекта с точки зрения 

процессов старения (деградации) в зависимости от выполнения свойства 

монотонности функции ( )t  [21]. В отличие от функции интенсивности отказов 

функция ( )t  часто выражается сложным образом для многих известных 

распределений времени жизни объекта [3, 4].  

Основное преимущество функции средней остаточной наработки ( )t  перед 

функцией интенсивности отказов ( )t  состоит в следующем.  Кривая ( )t  имеет 

очевидный наглядный смысл и достаточно просто вычисляется, но статистическое 

оценивание ( )t  весьма нестабильно, неустойчиво. Напротив, статистические 

свойства оцениваемых средних намного устойчивее и стабильнее, чем их 

производные характеристики, к коим относится ( )t . Таким образом, информация, 

содержащаяся в ( )t более надёжная и достоверная. 
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Но существует еще один показатель надёжности, необходимый для 

дальнейшего рассмотрения: параметр потока отказов, а также связанная с ним 

ведущая функция потока отказов, которым будет посвящена Глава 3. 

  

Соотношения, характеризующие протекание процессов деградации 

 

Резюмируем ряд соотношений, характеризующих процессы деградации с 

позиций ( , )GW   , в том случае, когда 2  : 

 

       

1 1
2( ) 1 1 1

2 , ln , , ( )
1 ( )

crit crit

t
t t t

t F t

  
    

 

− −

     
−

          (48) 

Действительно, из (1) следует, что  

1
ln ln

1 ( )

ln( )

F t

t

−
=


, 

 

а значит, верна цепочка неравенств  

 

21 1
2 ln ln 2ln( ) ln ( )

1 ( ) 1 ( )
t t

F t F t
    

− −
    

 

 

1 1
ln

1 ( )
t

F t
 

−
    при    

1
1t t  


, 

 

ввиду того, что 

 
2( ) ( ) ln( ) 2ln( ) ln( ) 0 1t t t t t t             . 

 

2.5. Связь распределения Гнеденко-Вейбулла с распределением Гаусса 

 

Исследование границ параметра формы для нормальной аппроксимации 

распределения Гнеденко-Вейбулла позволяют определить реальные границы 
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применимости распределения Гнеденко-Вейбулла, отсекая ту область, где хорошо 

применяется нормальный закон и те прикладные задачи, которые решаются в 

предположении выполнения нормального закона распределения. К тому же как 

отмечено в зарубежной литературе, что «распределения, которые 

аппроксимируются при помощи нормального распределения, можно 

рассматривать как распределения, которые сами аппроксимируют нормальное 

распределение» [46]. 

Впервые самостоятельный интерес к нормальной аппроксимации 

распределения Гнеденко-Вейбулла возник в 1960 [132] при одном только значении 

параметра формы распределения Гнеденко-Вейбулла 3,25  . Позже В. Вейбулл 

в 1961 высказывался о близости распределений «при надлежащем выборе 

параметров распределений» [26]. В обширной статье [132] S. Dubey был 

рассмотрен диапазон (3,25; 3,61)  значений параметра  , при которых нормальный 

закон распределения может быть приближен распределением Гнеденко-Вейбулла. 

В качестве вероятностной меры близости бралась равномерная метрика (или 

метрика Колмогорова, как принято в зарубежной литературе [27]). Подгонка 

параметров распределений осуществлялась в «ручном» режиме с использованием 

ЭВМ и только для четырех значений параметра  .    

Эмпирическим путем в пакете Wolfram Mathematica было установлено, что 

распределение Гнеденко-Вейбулла с заданными математическим ожиданием M  

и дисперсией D  удовлетворительно аппроксимируется в среднеквадратичной 

метрике нормальным законом распределения 
2( , )a N  с параметрами a M=  и 

D


 


=  . Отметим, что размерности a  и   остались прежними. Таким образом 

2( , ) ( , )GW a  N ,           

где  

1 1
1a

 

 
=  + 

 
,    

2

3

2 1
1 1




  

    
=  + − +    

    
. 
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Указанная аппроксимация имеет ограничение на значения параметра формы: 

3,25 5  . Отметим, что найденная аппроксимация улучшает результаты Dubey 

[132]  и Cui, Xie [130], уменьшая погрешность рассматриваемого приближения (см. 

Таблицы 3 и 4), и расширяет диапазон для параметра формы 3,25 5.  К тому 

же указанные выше авторы рассматривали значение параметра масштаба только 

,  равное 1. В нашем случае значение   это любое положительное число.  

Отметим, что указанную нижнюю границу для значений параметра  , 

можно получить исходя из свойств, характерных для нормального распределения:  

• попарное равенство (примерное) между собой математического 

ожидания, моды и медианы, что возможно при 3,26 ( )Mo Me   , 

3,31 ( )Mo M   , 3,44 ( )Me M   . 

• очевидного соотношения для коэффициентов асимметрии (5) и 

эксцесса (6): 0SA    и 0XE   , возможных при 3,60   и 3,25  , 

соответственно.  

Также из наглядных соображений понятно, что нормальная аппроксимация 

распределения Гнеденко-Вейбулла имеет смысл, когда выполнено условие:  

21 2 1
3 0 1 3 1 1 0M D 

  

     
−     + −   + − +      

     
, 

что возможно при 3,30  .  

Все численные расчеты были выполнены в среде Mathematica.  

Таблица 3 

 

Значения   

2( , ) ( , )
0

sup ( ) ( )GW a
x

F x F x  


−
N

    

по Dubey (1967) 

 

2( , ) ( , )
0

sup ( ) ( )GW a
x

F x F x  


−
N

  

3,25899 0,0105 0,0177  (+68%) 

3,31125 0,0099 0,0126  (+27%) 

3,43938 0,0088 0,0102  (+16%) 

3,60232 0,0078 0,0073  (-6%) 
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Таблица 4 

 

Значения   

2( , ) ( , )
0

sup ( ) ( )GW a
x

F x F x  


−
N

    

по Cui, Xie (2003) 

 

2( , ) ( , )
0

sup ( ) ( )GW a
x

F x F x  


−
N

  

3,0 0,0144 0,0197  (+37%) 

3,5 0,0084 0,0092  (+9%) 

4,0 0,0115 0,0098  (-15%) 

4,5 0,0168 0,0156  (-7%) 

5 0,0240 0,0214  (-11%) 

7 0,0344 0,0389  (+13%) 

10 0,0450 0,0536  (+19%) 

 

На Рисунке 17 для наглядности приведены сравнительные графики 

плотностей и функций распределений Гнеденко-Вейбулла и нормального закона. 

  

  

Рисунок 17. Сравнительные графики плотностей и функций распределения 

данного распределения Гнеденко-Вейбулла и аппроксимирующего его нормального 

распределения ( 3, 4 = = ).   

Вычисления в профессиональном пакете Wolfram Mathematica дают меру 

отклонения в среднеквадратичной метрике для значений параметров 3, 4 = = :  

2

21

2
( )

( ) 2

0

1
0,0241

2

t a

tt e e dt


    


−

−+
−

−
 

−  
 
 
  
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Замечание 1. Найденная зависимость между параметрами дает возможность 

получить нормальную аппроксимацию суммы n  независимых одинаково 

распределенных случайных величин k , подчиненных закону распределения 

Гнеденко-Вейбулла с параметрами  и :  

2

21

3

1 1 2 1
1 ; 1 1 .

n

k

k N
n




    
=

        
  +  + − +                 


 

Замечание 2. Также возможна аппроксимация кривой интенсивности 

отказов для нормального распределения с помощью распределения Гнеденко-

Вейбулла с учетом зависимостей между их параметрами. Известна зависимость для 

функции интенсивности отказов для нормального распределения [78, 124]: 

2

2 2

2

2 2

2

( )

( ) 2

2

( , ) ( )

2

1

2
( )

0,5

t a

t a

a x a

t

e
e

t
t a

e dx













−
−

−
−

−+
−

= =
− 

− 
 

N
 

Для больших значений времени t интенсивность отказов имеет асимптоту: 

2( , )
( ) , ( , )

a

t a
t t t a






−
 → 

N
. 

Теперь мы можем при известных значениях параметров нормального закона 

a  и   из системы   

2

3

1 1
1 ,                        

2 1
1 1 .

a
 




  

  
=  +  

 


     =  + − +         

 

найти численными методами значения параметров   и  . После чего можно найти 

интенсивность отказов для нормального распределения: 
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2
2

2

2

2

( )
1 1

12
3

2

( , )
2 121 1

( )

( )

1

2
( )

2

t a

t

a

t

t

e

t e
e






 






 








−
−   

−  +  
  − +

    
  + − +   
     

−
 =

N
,  

где 

2

3

2 1
1 1




  

    
=  + − +    

    
 . 

 

Метод максимального правдоподобия для выборок, распределенных по 

закону Гнеденко-Вейбулла 

 

Общепринятыми, классическими методами получения статистических 

оценок параметров распределения в классической математической статистике 

являются: графический метод «вероятностной бумаги» или метод наименьших 

квадратов; метод моментов; метод максимального правдоподобия [17, 46, 64, 121]. 

 Метод получения графических оценок основан на графической 

линеаризации функции распределения Гнеденко-Вейбулла путем введения 

логарифмической шкалы аргумента и двойной логарифмической шкалы функции 

1
ln ln ln ln

1 ( )
i

i

t
F t

  = −
−

 

угловой коэффициент полученной таким образом прямой является оценкой 

параметра  , по которой затем легко находится оценка  . Данный метод 

позволяет находить оценки параметров распределения непосредственно по 

статистическому ряду без вычисления его моментов. Графический метод требует 

точных графических построений (особенно для    в диапазоне 0,2 1,5−  ) (см. [58]). 

Отметим, что полученные по этому методу статистические оценки можно 

использовать в качестве начального приближения для искомых параметров в 

методе максимального правдоподобия. Кроме того, в результате использования 

данного метода появляется возможность наглядной проверки согласия 
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эмпирических данных применяемому теоретическому закону распределения, в 

нашем случае закону Гнеденко-Вейбулла.   

 Метод моментов состоит в приравнивании значений выборочных начальных 

моментов данной выборки и теоретических моментов закона распределения, 

реализацией которого является исходная выборка. Это исторически первый общий 

метод оценивания неизвестных параметров, предложенный английским 

математиком и биологом К. Пирсоном в 1894 г. Система уравнений в методе 

моментов во многих случаях проста с точки зрения решения вычислительными 

методами численного анализа.  

Зависимость моментов распределения Гнеденко-Вейбулла от его параметров 

очень сложна (включает в себя комбинации гамма-функций), поэтому рассчитаны 

специальные таблицы, связывающие моменты с параметрами распределения 

Гнеденко-Вейбулла.  

Возникает только естественный вопрос об однозначном определении 

распределения вероятностей по последовательности ее моментов, в частности, для 

распределения Гнеденко-Вейбулла. Данная проблема будет подробно освещена в 

следующей главе, тоже по необходимости. 

 Методом, который наилучшим образом использует информацию о 

параметрах, содержащихся в наблюдаемых данных, является метод максимального 

правдоподобия (ММП), наиболее универсальный метод оценивания параметров 

распределения. В работах Р. Фишера, популяризировавшего данный метод, было 

показано, что для многих задач самой различной статистической природы ММП 

дает хорошие результаты. Широкие границы применимости оценок максимального 

правдоподобия связаны с их хорошими асимптотическими свойствами, в 

частности, состоятельности, несмещённости и эффективности.    

В Приложении В рассмотрен ММП для однократно цензурированной слева 

выборки, распределенной по закону Гнеденко-Вейбулла. Там же приведено 

доказательство существования и единственности решения уравнений 

правдоподобия для полной выборки. 

Результаты этого раздела опубликованы в [82], [83], [84] и [87]. 
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Выводы по главе 2 

 

1. Приведено обоснование применение модели двухпараметрического 

распределения отказов Гнеденко-Вейбулла ( , )GW    (модель «слабого звена») 

для описания жизненного цикла функционирования объектов ГТС. 

2. Представлен системный подход к получению статистических оценок 

фундаментальных числовых характеристик распределения Гнеденко-Вейбулла 

( , )GW    с позиций ускоренных расчётных схем.   

3. Рассмотрен вопрос нормальной аппроксимации распределения 

Гнеденко-Вейбулла ( , )GW    с указанием конкретной зависимости между 

параметрами распределений ( , )GW    и 
2( , )a N . 

4. Изложена схема деградационных процессов на заключительном этапе 

жизненного цикла функционирования объектов газотранспортной системы в 

терминах кривой интенсивности отказов и средней остаточной наработки до 

отказа. 

5. Получено детальное описание случайной величины остаточной 

наработки (остаточного времени безотказной работы), а именно: найдены 

разложения и асимптотические представления математического ожидания, 

дисперсии и коэффициента вариации в пакете символьной математики  

Mathematica. 

6. Приведено доказательство существования и единственности решения 

уравнений правдоподобия нахождения оценок распределения Гнеденко-Вейбулла 

( , )GW    в методе максимального правдоподобия.  

7. Получена система уравнений правдоподобия для однократно 

цензурированной слева выборки из распределения Гнеденко-Вейбулла ( , )GW    

в методе максимального правдоподобия.  
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ГЛАВА 3.  АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ ПОДХОДЫ К 

НАХОЖДЕНИЮ ОЦЕНОК ПОКАЗАТЕЛЕЙ НАДЁЖНОСТИ 

ВОССТАНАВЛИВАЕМЫХ ОБЪЕКТОВ В МОДЕЛИ РЕКУРРЕНТНОГО 

ПОТОКА ОТКАЗОВ ГНЕДЕНКО-ВЕЙБУЛЛА 

 

3.1. Зависимость между показателями надёжности восстанавливаемых и 

невосстанавливаемых объектов с позиций теории восстановления 

 

 Как было отмечено в п. 2.4. технологически активные элементы системы 

газоснабжения можно рассматривать как с позиций ремонтнопригодных, так и 

неремонтнопригодных объектов. Для наглядности можно рассмотреть следующий 

пример. Автомобиль, очевидно, представляет собой восстанавливаемый объект; 

его всегда починят в автосервисе.  Но в момент движения, на пути в аэропорт, к 

примеру, автомобиль, уже необходимо рассматривать как невосстанавливаемый. 

Поломка – аварийный останов – и свою функцию он не выполнит… 

Параметр потока отказов ( )t  характеризует надёжность восстанавливаемых 

систем. Это есть отношение среднего числа отказов восстанавливаемого объекта за 

произвольно малую его наработку к значению этой наработки [75]. Время 

восстановления, при этом, не учитывается. Как говорят, происходит мгновенное 

восстановление.  Для таких объектов моменты отказов на оси суммарной наработки 

или на оси непрерывного времени образуют поток отказов. В качестве 

характеристики потока отказов используют «ведущую функцию» ( )t  данного 

потока – математическое ожидание числа отказов за время t : 

( ) ( ( ))t M n t = , 

где ( )n t – число отказов за время t . Тогда по определению имеем: 

( ) ( )t t =  , 

или, что тоже самое 

0

( ) ( )

t

t d   =  . 
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Статистически параметр потока отказов определяется по формуле (см. [75]): 

                                     1

0

( )
( , )

n t
t t

N t


 
 =


,                                            (49)  

где 1( )n t  – общее число отказов восстанавливаемого объекта за интервал 

времени   ;
2 2

t t
t t

  
− + 

 
.  

 В терминах теории процессов восстановления или просто теории 

восстановления, которая возникла и весьма плодотворно развивалась на почве 

задач теории надёжности, мы имеем дело с плотностью восстановления ( )h t  и 

функцией восстановления ( )H t , соответственно. Отметим, что одним из наиболее 

важных вопросов в приложениях процессов восстановления является исследование 

асимптотического поведения функции восстановления [88]. 

 

 

3.2. Аналитический способ решения интегрального уравнения 

восстановления, обобщение на случай произвольного распределения 

 

 Для рекуррентных потоков, или потоков с ограниченным последействием, 

следующее интегральное уравнение Вольтерра устанавливает соотношение между 

параметром потока отказов  ( )t  и плотностью распределения времени работы 

между отказами ( )f t (см. [75, 78]): 

 ( ) ( ) ( ) ( )

0

t
t f t f t d   = +  −   (50) 

Уравнение (60) называется уравнением Вольтерра второго рода типа свертки 

с разностным ядром [55, 65]. Из общей теории интегральных уравнений известно, 

что интегральное уравнение Вольтерра (50) при условии непрерывности ядра ( )f t  

всегда имеет решение. Решение уравнения (50) можно найти аналитически или 

средствами численного анализа. Отметим, однако, что аналитическое решение 

уравнения восстановления в замкнутом виде можно найти только для 

экспоненциального распределения. Обычно используется представление решения 
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рядом. Обзор соответствующих работ имеется в статье [147].  Для распределения 

Гнеденко-Вейбулла в работе [146] получено представление функции 

восстановления степенным рядом, имеющим хорошую сходимость для малых 

2,5t  .  Исследователи Constantine и Robinson [129] для распределения Гнеденко-

Вейбулла получили решение в виде экспоненциального ряда по вычетам 

преобразования Лапласа плотности распределения, для приближенного 

вычисления которого требуется около 500 членов [143]. Используя аппроксимацию 

распределения Гнеденко-Вейбулла нормальным распределением, в статье [130] 

дано представление функции восстановления в виде ряда по функциям Лапласа 

стандартного нормального распределения при значении параметра формы 3  .  

Решим уравнение (50) относительно ( )t , используя методы операционного 

исчисления [69] и теории рядов [117]. Пусть ( )s и ( )f s  обозначают 

преобразования Лапласа от функций ( )t  и ( )f t , соответственно. Иными словами,  

0

( ) ( )stf s e f t dt

+

−=  , 

где s , т.е. является комплексным числом. 

Заметим [107], что преобразование Лапласа для неотрицательной 

непрерывной случайной величины   с плотностью ( )f t  представляет собой 

производящую функцию моментов, так как  

0 00 0

( )
( ) ( ) ( ) ( 1)

! !

n n
st n

n

n n

st s
f s e f t dt f t dt

n n

+ + + +
−

= =

−
= = = −    ,    (51) 

где n  – начальный момент случайной величины   с плотностью ( )f t  порядка n : 

0

( )n

n t f t dt

+

 =  , 

Рассмотрим выражение для плотности вероятности отказа в виде 

                   
( )1

, 0( )

0,             0

t
t e tf t

t


 

 
 −− = 
 

                           (52)
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представляющее собой двухпараметрическое распределение Гнеденко-Вейбулла с 

параметром формы 0   и параметром масштаба 0  .  

Найдем преобразование Лапласа для данного распределения в терминах 

производящей функции моментов. Имеем  

( ) 1

0
1

( )
1 1 1 1 1

( ) ( ) 1

( ) ( )

x

z x

e dx dz x d x

dz
d x x





+

−  −

−

= 
   

= =    =  =  +   
       

 = 


  

1 ( ) 1 ( )

0 0

1

0

( ) 1
1

( )

n

n t n t

n

n z

n

t t e dt t e dt

z t n
z e dz

dz t dt

 



+ +

 − −   +− − 

+

− −

−

 =   =   =

=   
= =  =  + 

 =    

 



           

 

Таким образом,  

                                
0

( 1)
( ) 1

!

nn

n

n s
f s

n

+

=

 −  
=  +   

   
 ,                    (53) 

где s .  

Исследуем данный степенной ряд на сходимость в области комплексных 

чисел в зависимости от значений параметра + . Найдем радиус сходимости 

ряда R , используя функциональное свойство и асимптотическое разложение для 

гамма-функции Эйлера:  

 

1
n n n   

 + =    
     

,     
1
2

1
( ) 2 1 , ( )

xxx e x o x
x

−−   
 =  + → +  

  
, 

 

( ) ( )
1
21 ( ) 2 , ( )

nnn n n ne n n
 −− +  =        → + , где 

1
 =


. 

Следовательно,  
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( )

( )( )

( )

( )( )

1 1
2 2

1 1
2 2

( 1) ( 1)( 1)

1
1

( 1) 1!
lim lim

1 ( 1) 1 1
1 1

( 1)!

( 1)
lim lim

( 1) ( 1) ( 1)

( ) 2 ( )

( ) 2 ( )

n nn

n nn

n
nn

R
n nn n

n
n

n

n nn n n

n n

ne n ne n

e

 −  −− 

 + −  + −− +

−
 + 

+  +
= = 

→+ →+− +  + +
 + + 

+

+
 

→+ →++ + +

 
=



   
= = =

   

 

1
2

lim lim
1 1

0, 1 1

lim , 1 1
1

, 1 1

1 1
1 1

1 ( ) ( )

1

( )

n n

n nn n

n n

e n n e n

n n n

n

 − −  

   

 

 
→+ →++ +

    

   =   =
→+ +

     

   
= = + + =   

 +    




= = 
 

 

Итак, при 1   указанный ряд сходится абсолютно везде в области 

комплексных чисел, а при 1   ряд сходится в окрестности нуля: s   . 

Предельная ситуация 0s →  соответствует случаю t → , который нас интересует 

в первую очередь.    

Заметим, что соотношение (60) на языке преобразования Лапласа имеет вид   

                              ( ) ( ) ( ) ( )s f s s f s = + .                                         (54) 

Откуда получаем, что   

0 0

1

11

( 1)
1 ( 1)

!( ) !
( )

1 ( ) ( 1) ( 1)1
!!

nn

n nn

n n

nn
n nn

nn

n s
s

nf s n
s

f s n s s
nn

+ +

= =

++
+

==

 −  
 + −  

   
 = = =

−  −   −−  +   
   

 



      (55) 

Применим технику деления бесконечных рядов для нахождения разложения 

( )s  в (55).  

0 1

1

1 1

( 1) 1 ( 1)
! !

( )

( 1) ( 1)
! !

n n n nn n

n n

n n n nn n

n n

s s
n n

s

s s
n n

+ +

= =

+ +
+

= =

 
− + −

 = = =
 

− − −

 

 
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1

1 1

1 1 1
1 1

( 1) ( 1)
! !

n n n nn n

n n

s
s s

n n

+ +
−

= =

= − − = − −
 

− − 
 

Найдем ряд, обратный к  

1

1

( 1)
!

n nn

n

s
n

+
−

=


− . 

Будем искать его в виде:  

2 3 10 3 11 2

2 3 4
1 11 1 1 1 1

1

1
...

( 1)
!

nn

n
n n nn

n

c c cc c
s s s s

s
n

+
−−

+
− =

=

= + + + + =
     

−



 

Отсюда следует, что  

1 11

1 1 1

1 ( 1)
!

n n nn n

n
n n

c
s s

n

+ +
− −−

= =


= − 


   

или 

2 3 4 2 3 43 5 0 31 2 4 1 2 4

2 3 4 5

1 1 1 1 1

1 ... ...
1! 2! 3! 4! 5!

c cc c c
s s s s s s s s

     
= − + − + − + + + + + +  

      
 

Получаем бесконечную систему линейных уравнений относительно 

коэффициентов nc : 

0

1 0 0

2 0 1 1 0

3 0 2 1 1 2 0

4 0 3 1 2 2 1 3 0

5 0 4 1 3 2 2 3 1 4 0

1 1

0 1 1 2 2 3 2 1 1 0

1,

0,

0,

0,

0,

0,

...

... ( 1) ( 1) 0,

...

n n

n n n n n n

c

c m c

c m c m c

c m c m c m c

c m c m c m c m c

c m c m c m c m c m c

c m c m c m c m c m c+ +

− − − − −

= −


− =
 − + =


− + − =


− + − + =
 − + − + − =
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где 

1 2 , 0,1,2,3...
( 2)!

k

k
km k

k
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= =

+
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Введем обозначение 
0

n

n

A c
+

=

= . Тогда из указанной системы уравнений, 

рассматривая её по столбцам и сложив все её строки, получаем соотношение: 

 

10 2

1 31 2 1 41 ... 1
2! 3! 4!

A
     
− + − + = − 

 
, 

или 

( )0 1 2 31 ... 1A m m m m− + − + = − . 

Следовательно, 

1 2

00

1 1

1 ( 1)1 ( 1)
( 2)!

k
kk k

k

kk

A

m
k

++
+

==

= =
 

− + −− + − 
+


. 

Докажем, что ряд     

1 2

0 0

( 1) ( 1)
( 2)!

k
k k k

k

k k

m
k

+ +
+

= =

 
− = − 

+
   

 

абсолютно сходится в случае распределения Гнеденко-Вейбулла.  

Действительно,    

1 2

2 2
0 0 0 0

1 2
1 1

( 1)
( 2)! ( 2)!

k

k
k k

k k k
k k k k

k

m m
k k

+ + + +
+

+
= = = =

    +
 +  +    

       
− = = =

+  +
    , 

 

в силу того, что 

1
1k k

k 
 =  + 

  
. 

 

Для обоснования сходимости полученного ряда используем признак 

Даламбера, учитывая, что 1  , и, применяя формулу Стирлинга: 
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1

1 1 3 31

1 2 2

3

2

2

lim lim lim

lim lim

( 2)!

( 3)! 3

1 1 1 3 3
1 1 1

1 1 1
1

3 31 2 2
1 1

k

k k k

k

k k k

k

k

k k k

k k

m k

m k k

k k

k kk k

+

+ + +

+ +

+

+

→+ →+ →+

→+ →+

   + 
= =  =

+   + 

     + +
 +  +  +     

          
= =  + = 

+   +   + +  +  +   
     

 

3 1
3

2

2 12
2

2

lim

( )

3
2

1 1
1

2
3 2

k
k

k
kk

k
e

k
k e

+
− +

−


+
− +

−


→+

 +
 

   
=  + = 
    +

+  
 

 

1 2

1
1

2

22
lim

3

1 1 3
1

3 2
2

k

kk

k

e k

k k
k

+ +



−
−

+


→+

 +
 

  +   
=  + =  
  + +    +

 
 

 

( )

1

1

1
1 2

2

2

11 11 1
2

2

2

1 1 1

2

lim

lim

lim

3

1 3 3
1

3 2 2

1 1 ( 3) 3 1
1 1

3 2 2

1 1
1 3

k

k

k

k

k

k

e k k

k k k

e k k

k k k

e e
k



+−
−



−
− +  

−
  

→+

→+

→+

 +
 

  + +    
=  + =    
  + + +    

    + +   
=  + + =      
   + + +        

  
=  + +  

    

1
1

22
0

3

k

k

−
 + 

= 
+ 

 

Численные расчеты показывают, что  
0

1 ( 1) 0, 0, 0k

k

k

m  
+

=

− + −      . 

Таким образом,  

0

n

n

A c
+

=

=   . 
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Следовательно, 

lim 0n
n

c
→+

= , 

 что означает: 

0 0: 1kk k k c     . 

Найдем компактное выражение для коэффициентов nc . Для этого указанную 

выше систему перепишем в более удобном виде: 

0

1 0

2 0 1 1

3 0 2 1 1 2

4 0 3 1 2 2 1 3

5 0 4 1 3 2 2 3 1 4

1 2

0 1 1 2 2 3 2 1 1

1,

,

,

,

,

,

...

... ( 1) ( 1) ,

...

n n

n n n n n n

c

c m

c m c m

c m c m c m

c m c m c m c m

c m c m c m c m c m

c m c m c m c m c m+ +

− − − − −

= −


= −
 − =


− + = −


− + − =
 − + − + = −




− + − + + − = −



 

Для нахождения первых n коэффициентов nc  искомого ряда рассмотрим 

конечную систему: 

 

1 0

2 0 1 1

3 0 2 1 1 2

4 0 3 1 2 2 1 3

5 0 4 1 3 2 2 3 1 4

1

0 1 1 2 2 3 2 1 1

,

,

,

,

,

...

... ( 1) ( 1)n n

n n n n n n

c m

c m c m

c m c m c m

c m c m c m c m

c m c m c m c m c m

c m c m c m c m c m+

− − − − −

 = −


− =
 − + = −


− + − =
 − + − + = −




− + − + + − = −

 

 

воспользуемся правилом Крамера решения систем линейных уравнений: 

, 1,...,kc

kc k n


= =


, 

где 
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0

1 0

2 1 0

3 2 1 0

1 1 2 3

2 3 4 5 6

1 0 0 0 0 ... 0

1 0 0 0 ... 0

1 0 0 ... 0

1 0 ... 0 1

1 ... 0

... ... ... ... ... ... ...

( 1) ( 1) ( 1) ( 1) ( 1) ... 1n n n n n

n n n n n

m

m m

m m m

m m m m

m m m m m+ − − −

− − − − −

−

−

 = − − =

− −

− − − − −

  

и 

0

0 1

1 0 2

2 1 0 3

3 2 1 4

1 1

2 3 4 1

1 0 0 ... ... 0

1 0 ... ... 0

1 ... ... 0

... ... 0

... ... 0

... ... ... ... ... ... ...

( 1) ( 1) ( 1) ... ( 1) ... 1

kc

n n n n

n n n n

m

m m

m m m

m m m m

m m m m

m m m m+ −

− − − −

−

−

− −

 = − −

− −

− − − −

 . 

Причем, определитель n-го порядка 
kc сводится (редуцируется) в итоге к 

определителю k-го порядка на основании свойств вычислений определителей. 

В частности, 

1 0c m= − , 

0 2

2 0 1

0 1

1 m
c m m

m m

−
= = − +
−

, 

0

3

3 0 1 0 0 1 2

1 0 2

1 0

1 2

m

c m m m m m m

m m m

−

= − = − + −

− − −

, 

0

0 1 4 2 2

4 0 0 1 1 0 2 3

1 0 2

2 1 0 3

1 0 0

1 0
3 2

1

m

m m
c m m m m m m m

m m m

m m m m

−

−
= = − + − − +

− −

− −

. 

 

Или в общем случае: 
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0

0 1

1 0 2

2 1 0 3

3 2 1 4

1 1

2 3 4 0 1

1 0 0 ... 0

1 0 ... 0

1 ... 0

... 0

... 0

... ... ... ... 1 ...

( 1) ( 1) ( 1) ... ( 1)

k

k k k k

k k k k

m

m m

m m m

c m m m m

m m m m

m m m m m+ −

− − − −

−

−

− −

= − −

− −

− − − − −

 

Справедливо также рекуррентное соотношение: 

2 1

0 1 1 2 2 3 2 1 1 0 0 1 0... ( 1) ( 1) , 1,n n

n n n n n nc m c m c m c m c m c c c m+ +

− − − − −= − + − + − + − = − = − . 

Итак, получаем следующий ряд: 

1 2 11 1

1
1 1 1 01 1 1

1

1 1 1
( ) 1 1 1 1

( 1)
!

n n nn n n

n n n
n n n n nn

n

c c c
s s s s

s s
s

n

+ + +
− − −− −

+ +
− = = =

=

 = − − = − − = − − = − −
   

−
  


 

Выпишем несколько первых членов найденного разложения 

2 3 2
22 1 3 2 1 2 3 1 42

2 3 4

1 1 1 1

3 2 3 41
( ) 1

2 12 24
s s s

s

   −    −    +  
 = + − + + + 

    
 

( )
4 2 2 2 2 3

32 1 2 3 1 3 1 2 4 1 5

5

1

5 3 2 2 2 2 3 3 4
4 42 1 2 3 1 2 3 1 2 4 1 3 4 1 2 5 1 6

6

1

45 90 20 30 6
                                       56

720

45 120 60 45 20 12 2
( )

1440

s

s o s

 −    +   +    −  
+ +



 −    +    +    −    −    +  
+ +



 

 

  Отметим, что данное соотношение выполняется для произвольного 

распределения, имеющего конечные моменты любого порядка и 

удовлетворяющего определенным условиям, о которых речь впереди. 

Если от изображения ( )s  в (56) перейти к оригиналу ( )t , то получим 

следующее выражение: 
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2 3 2

2 1 3 2 1 2 3 1 42

2 3 4

1 1 1 1

4 2 2 2 2 3

2 1 2 3 1 3 1 2 4 1 5

5

1

3 2 3 41
( ) 1 ( ) ( ) ( )

2 12 24

45 90 20 30 6
( ) ...

720

t t t t

t

   −    −    +  
  = + −  +  +  + 

    

 −    +   +    −  
+  +



,    (57) 

где ( )t  обозначает дельта − функцию Дирака, а  ( )t , ( )t , ( )t ,… − её первую, 

вторую, третью и т.д. производные, соответственно. 

 Известно (см., например, [65]), что решение уравнения (50) имеет вид 

 

                       ( ) ( )t f t R f = +  ,                    (58) 

где ( )R t  – резольвента уравнения (50), а символ * обозначает свертку функций. 

Применяя преобразование Лапласа к (58) получаем  

( ) ( ) ( ) ( )s f s R s f s = + .   

Следовательно,  

                                        
( ) ( )

( ) .
( )

s f s
R s

f s

 −
=                                  (59) 

 Тогда с учетом первой части формулы (58) имеем: 

                 

( )
( )

( )1 ( )
( ) ( )

( ) 1 ( )

f s
f s

f sf s
R s s

f s f s

−
−

= = = 
−

            

 Таким образом,  

( ) ( )t f t f = +   

 или   

 ( ) ( ) ( ) ( )t f t s f s = +  

 Отсюда, если подставить ряд (57), содержащий дельта – функции, в 

последнее соотношение, то получим решение в виде бесконечной суммы сверток 

дельта – функций и их производных с функцией f . Приведем выкладку, 

обеспечивающую указанное разложение.  
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 В силу известных из теории обобщенных функций свойств дельта – функции 

имеем (см. [55,65]) в точках непрерывности функции ( )f t : 

( ), ( ), ( ), ( ), ...f f t f f t f f t f f t      =   =   =   =  

а также  

0

1 ( )

t

f f d =   . 

 В конечном итоге получаем, что 

          

2

2

1 10

2 3 2

2 1 3 2 1 2 3 1 4

3 4

1 1

4 2 2 2 2 3

2 1 2 3 1 3 1 2 4 1 5

5

1

1
( ) ( ) ( ) 1 ( )

2

3 2 3 4
( ) ( )

12 24

45 90 20 30 6
( ) ...

720

t

t f t f d f t

f t f t

f t

 
 = +    + − + 

  

 −    −    +  
 + + +

 

 −    +   +    −  
+ +





              (60) 

 Или после упрощения: 

2 3 2

2 1 3 2 1 2 3 1 42

2 3 4

1 1 1 10

3 2 3 41
( ) ( ) ( ) ( ) ( )

2 12 24

t

t f d f t f t f t
 −    −    +  

  =    + + + +
                       

 

     
4 2 2 2 2 3

2 1 2 3 1 3 1 2 4 1 5

5

1

45 90 20 30 6
( ) ...

720
f t

 −    +   +    −  
+ +


             (61) 

Коэффициент при 
(4) ( )f t  в полученном разложении равен:  

3 2 2 2 2 3 3 45

2 1 2 3 1 2 3 1 2 4 1 3 4 1 2 5 1 6

6

1

45 120 60 45 20 12 2

1440

 −    +    +    −    −    +  


. 

  В качестве первичного, очевидного обоснования заметим, что   

2

2 1 32

2 3

1 1 10

3 21
lim ( ) lim ( ) ( ) ( ) ...

2 12

t

t t
t f d f t f t

→+ →+

  −  
 =    + + + = 

   
  

              
1 1 10 0

1 1 1
lim ( ) ( )

t

t
f d f d

+

→+

 
=    =    = 

   
       



103 

 

в силу того, что для распределения Гнеденко-Вейбулла, на основании правила 

Бернулли – Лопиталя 

lim ( ) 0
t

f t
→+

= ,      lim ( ) 0
t

f t
→+

 = ,     lim ( ) 0
t

f t
→+

 =   и  т.д. 

Замечание. Полученное разложение (71) параметра потока отказов (или 

плотности восстановления) имеет асимптотический характер. Оно описывает ( )t

при достаточно больших значениях времени t , характерных для процессов 

деградации или третьего этапа жизненного цикла функционирования объекта.     

Действительно, имеем интегральное уравнение Вольтерра второго рода с 

разностным ядром: 

0

( ) ( ) ( ) ( )

t

t f t f t x x dx = + −      

В терминах преобразования Лапласа 

( ) ( ) ( ) ( )s f s f s s = +  .     

Тогда      

 
( )

( )
1 ( )

f s
s

f s
 =

−
. 

В силу (56) коэффициенты выражаются через моменты распределения с 

плотностью f    

2 3

0 1 2 3

1

1
( ) .....s c c s c s c s

s
 = + + + + +


 

Тогда 

( )

( )

2 3

0 1 2 3

1

0 1

1

2

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ...

1
( ) ( ) ( ) (0) (0)

( ) (0) (0) (0) (0)

s f s f s c f s c sf s c s f s c s f s
s

f s c f s c sf s f f
s

c s f s sf f sf f

 = + + + + + =


= + + − + +


 + − − + + +
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( )3 2 2

3

0 1 2 3

1

2

1 2 2 3 3 3

( )

0

11 0

( ) (0) (0) (0) (0) (0) (0) ...

1
( ) ( ) ( ) ( ) ( ) ...

(0) (0) (0) (0) (0) (0) ....

1
( ) ( ) ( )

t

k

k

k

c s f s s f sf f s f sf f

f s c f s c f t c f t c f t
s

c f c sf c f c s f c sf c f

f x dx c f t c f t
+

=

   + − − − + + + + =

  = + + + + + +


  + + + + + + + =

= + + +


 ( )

( ) ( ) ( )

2 3

1 2 3 4

2 3 2 2

2 3 4 5 3 4 5 4 5 6

( ) ( )

0 1

1 11 0

(0) ...

(0) ... (0) ... (0) .. ...

1
( ) ( ) ( ) (0) ( ), ( 0)

t

k k

k k

k k

f c c s c s c s

f c c s c s c s f c c s c s f c c s c s

f x dx c f t c f t c f o s s
+ +

+

= =

+ + + + +

  + + + + + + + + + + + + + + =

= + + + + →


 

 

В итоге получаем: 

( ) ( )

0 1

1 11 0

1
( ) ( ) ( ) ( ) ( ) ( ) (0) ( ), ( )

t

k k

k k

k k

s f s f x dx c f t c f t t c f o t t
+ +

+

= =

 = + + +  + → +


   

при расчётах берётся во внимание только первые три слагаемых, предполагая, что 

( )

1

1

(0)k

k

k

c f
+

+

=

   

 Проверим формулу (61) на простом законе распределения, когда известно, 

чему равен в точности параметр потока отказов, а именно, показательном 

распределении с плотностью, являющемся частным распределения Гнеденко-

Вейбулла   

                                                 ( ) tf t e−=  .                                                   (62) 

Как известно (см., например, [78]), в этом случае  

                                                   ( )t  .                                                       (63) 

 Действительно, для показательного распределения (62) имеем:  
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1 2 32 3

1 2 6 !
, , , ..., n n

n
 =  =  =  =

   
, 

то есть,   

1

!

n

nn


=


,  

и, значит,  

1 2

2 2

1
, 0,1,2,3...

( 2)!

k

k
k k

m k
k

+

+

 
= = =

+ 
 

 Тогда, пользуясь рекуррентной зависимостью для nc , получаем:  

0 1c = − , 1 2

1
c = −


, 

2 0 1 1 2 2 3

1 1 1 1
( 1) 0c m c m

 
= + = − − − = 

    
, 

3 0 2 1 1 2 3 2 4 2

1 1 1 1 1
0 ( 1) 0c m c m c m

 
= − − = − − − − = 

     
, 

4 0 3 1 2 2 1 3 4 2 2 5 3

1 1 1 1 1
0 0 ( 1) 0c m c m c m c m

 
= − + + = + + − − − = 

     
, 

5 0 4 1 3 2 2 3 1 4 5 3 2 6 4

1 1 1 1 1
0 0 0 ( 1) 0c m c m c m c m c m

 
= − + − − = + + − − + − = 

     
, 

 Используя метод доказательства по индукции, получаем, что 

0 1 1 2 2 3 1

2 2 1 1

... ( 1)

1 1 1 1 1
0 0 ... ( 1) 0

n

n n n n n

n n n n

c m c m c m c m− − − −

− − +

= − + − + − =

 
= + + + − − − = 

     

 

 Следовательно, для показательного распределения получаем, что 

1

1 2 2 2 2
0 1 1 1 1 1

1 1 1 1
( ) 1 1 1nn

n
n

c
s s

s s

+
−

+
=

 = − − = − + + = − +
      

 ,  

что означает 
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1 1
( ) ( ) ( ) 1 ( ).

2 2
01 1

t
t f t f d f t

 
  = +    + −     
 

 

В итоге, получаем 

( ) ( )
1 0

1
( ) 1 1 1 ,

t

t t t tt e e d e e e− − − − − =  +    + −  =  +   −  
   

что согласуется с указанным выше свойством параметра потока отказов для 

показательного распределения (63).   

 Еще раз запишем полученную формулу (61) для распределения Гнеденко-

Вейбулла с плотностью (2) в окончательном виде: 

                      
( )

11 1

1
( ) ( ) ( )kk

k
k

c
t F t F t

 

+

=

 
= + 

 
 ,                           (64) 

где 
( ) ( )kF t  означает k -ю производную функции ( )F t , а коэффициенты разложения 

kc  находятся по правилу: 

1 22
1 0 , , 0,1, 2,...

2! ( 2)!

k

k
kc m m k

k

+ 
= − = − = =

+
,      1

1 1
1

 

 
=  + 

 
 

 

0

0 1

1 0 2

2 1 0 3

3 2 1 4

1 1

2 3 4 0 1

1 0 0 ... 0

1 0 ... 0

1 ... 0

... 0

... 0

... ... ... ... 1 ...

( 1) ( 1) ( 1) ... ( 1)

k

k k k k

k k k k

m

m m

m m m

c m m m m

m m m m

m m m m m+ −

− − − −

−

−

− −

= − − −

− −

− − − − −

 

 

В частности, первые пять коэффициентов имеют вид: 

0

1

1
c =


,   2

1 2

12
c


=


,  

2

2 1 3
2 3

1

3 2

12
c

 −  
=


,  

3 2

2 1 2 3 1 4
3 4

1

3 4

24
c

 −    +  
=


, 
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4 2 2 2 2 3

2 1 2 3 1 3 1 2 4 1 5
4 5

1

45 90 20 30 6

720
c

 −    +   +    −  
=


, 

 

5 3 2 2 2 2 3 3 4

2 1 2 3 1 2 3 1 2 4 1 3 4 1 2 5 1 6
5 6

1

45 120 60 45 20 12 2

1440
c

 −    +    +    −    −    +  
=


. 

Проведем исследование первых несколько коэффициентов для 

распределения Гнеденко-Вейбулла. Имеем 

2 2

0 2 2

1 1
1 , ( )

2 121
1

c o
       

= =  + + − + → +    
        + 

 

 

где   − постоянная Эйлера, равная 0,577... 

 Элементарный анализ показывает, что  

2 2

2

1
1 0

2 12

   
+ + −  
  

 

 при 
1

0,5


, т.е. 2  . Таким образом, 0 0c   при условии 2  .  

 Далее, 

 
2

1 2 2
2

2
1

1 1 1
, ( )

2 121
2 1

c o

 
 + 

   
= = +  + → + 

     + 
 

. 

 

 Очевидно, что 1 0c   уже при 1  . 

2

2

3

2 1 3
3 1 2 1 1

1

1
12 1

c

     
 + −  +  +     

       
= =
  

 + 
 

 

( )2 2

2 2

1 1 1 1
1 6 , ( )

12 12
o

  
= − +  +  + → +  

     
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причем нетрудно убедиться, что 2 0c   1  .  

 Продолжая, получаем:  

3 2

3 2
4

2 1 2 3 1 4
3 1 4 1 1 1 1 1

1

1
24 1

c

           
 + −  +  +  + +  +  +           

                
= =
  

 + 
 

 

 

2

2 2 2

1 1 1
0 , ( )

24 6
o

  
= − +  → +  

    
 

при этом, очевидно, что  3 0 1c    . 

 Аналогично 

2 2

4 3 2 2

1 3 9 1 1
1 0, ( )

2 4
c o

      
= − + − + +  → +    
      

 

2

5 4 2 2

1 1
0, ( )

2880
c o

  
= +  → +  
    

 

   

Более того, учитывая общую формулу для производной n - го порядка от 

сложной функции из [33], которая для распределения ( , )GW    принимает вид:  

 

( )
( )( )

( ) ( )

0 0

( 1) ( ) (1 ( ) )

!( )!

l

k
t

jk l
kt k

l j

t l j k
e e t

j l j

 



 
 

− − −

= =

− − + − −
=

−
 , 

 

где   ( )
( )
( )k

a k

a
a

 +


= , можно записать формулу для нахождения ППО ( )t : 

 

( )
11 1

( ) ( )

0 0

( 1) ( ) (1 ( ) )1
(

!
) 1

( )!

ljk l
kt t

l

k

k
j

k
k

t l j k
e e

j
t

t l j

c 



 
 


 

− −

= =

+

=

− − + − − 
 = − +
 


−


  
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 Отметим, что при аналитическом подходе к решению интегрального 

уравнения восстановления методами производящей функции моментов было 

сделано неявное предположение об однозначном задании распределения ( , )GW  

рядом своих моментов, что не совсем очевидно. Подробное рассмотрение данного 

вопроса изложено в Приложении Г.    

 

Обобщение аналитического метода на случай произвольного распределения 

 

Рассмотренный выше аналитический метод решения интегрального 

уравнения восстановления (60) при определенных условиях можно распространить 

на более общий случай рекуррентного потока отказов. Выделив ключевые позиции 

в предыдущих рассуждениях, сделав некоторые предположения, можно 

сформулировать следующее утверждение. Сделаем это с позиций теории 

восстановления, т.е., для плотности восстановления.     

Теорема. Пусть имеется неотрицательная непрерывная случайная величина 

  с плотностью ( )f t  и функцией распределения ( )F t , у которой существуют все 

начальные моменты порядка , ( )n n  (т.е., определена производящая функция 

моментов для  , являющаяся преобразованием Лапласа от ( )f t ):  

1

0

( ) ,n

n t f t dt M

+

 =  =  , 

удовлетворяющие условиям: 

1. ( )
1

2

1

,n
n

n

+
−

=

 = +   

2. 
1

lim ( 1) n

n
n

n
→+

+

 
+ = + 

 
,  

3.   1 2

1

( 1) 1
( 2)!

n
n n

n n

+
+

=

 
− 

+
 ,  

4. ( )lim ( ) 0n

t
f t n

→+
=   .   
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тогда решение уравнения восстановления для плотности восстановления ( )h t : 

0

( ) ( ) ( ) ( )

t

h t f t h f t d= +  −    

имеет следующий вид: 

                                          
( )

11 1

1
( ) ( ) ( )kk

k
k

c
h t F t F t

+

=

 
= + 
  

 ,                                    (65) 

где 
( ) ( )kF t  означает k -ю производную функции ( )F t , а коэффициенты разложения 

kc  находятся по правилу: 

1 22
1 0 , , 0,1, 2,...

2! ( 2)!

k

k
kc m m k

k

+ 
= − = − = =

+
 

0

0 1

1 0 2

2 1 0 3

3 2 1 4

1 1

2 3 4 0 1

1 0 0 ... 0

1 0 ... 0

1 ... 0

... 0

... 0

... ... ... ... 1 ...

( 1) ( 1) ( 1) ... ( 1)

k

k k k k

k k k k

m

m m

m m m

c m m m m

m m m m

m m m m m+ −

− − − −

−

−

− −

= − − −

− −

− − − − −

 , 

  При этом справедливы соотношения:  
 

 0 1 1 2 2 3 1... ( 1)k

k k k k kc m c m c m c m− − − −= − + − + − ,   

 

0

1

0

( 1)

1 ( 1)

k

k

k
n

kn
k

k

m

c

m

+

+
=

+
=

=

−

=  

− + −





,       

что означает: 

lim 0,k
k

c
→

=  

следовательно, 

0 0: 1.kk k k c      



111 

 

Замечания.  

1. Условие 1 представляет собой достаточное условие Карлемана для 

однозначной определенности проблемы моментов, иными словами, для 

существования производящей функции моментов для  ; 

2. Условие 2 обеспечивает абсолютную сходимость производящей функции 

моментов для  на всей комплексной плоскости ; 

3. Абсолютная сходимость ряда из Условия 3 следует из условия 2. 

Действительно, применим признак Даламбера: 

1

1 3
1

1 3 31

1 2 1 2 2

3 1
1

2

1

( 2)!( 3)!
lim lim lim

( 3)! ( 3)

( 2)!

1
                    lim 0 1,

( 3)
lim ( 1)

n

n
n

n n

n nn n n
n n n

n

n
n n

n
n

nn

n n

n

n
n

+

+
+

+ +

→+ →+ →+
+ + +

+

→+
+

→+
+

 

  ++
= = =

  +   + 

+

 
=  = = 

+   
+ 

 

 

что влечет за собой сходимость ряда. 

Следствие.  Аналитическое разложение функции восстановления 

0

( ) ( )

t

H t h d=    

в предположении, что для функции 
2

( )f s

s
 существует обратное преобразование 

Лапласа, имеет следующий вид: 

                                  
1 ( )

2 2
11

1

1 1

( ) 1
( ) (

1
)k

k

k

k

cf s
H t L F t

s

+
+

−

=

 
= − 

 
 ,                  (66) 

где 
0

( ) ( )stf s e f t dt

+

−=   обозначает преобразование Лапласа для функции ( )f t , а

1[ ( )]L G s−
 обозначает обратное преобразование Лапласа для функции ( )G s .  

В самом деле, рассмотрим уравнение восстановления для функции 

восстановления сначала в рамках модели Гнеденко–Вейбулла: 
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              ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

t t
H t F t F t dH F t H t f d= + −   = + −                (67) 

Применим методы операционного исчисления. Из (67) получаем   

( ) ( ) ( ) ( )H s F s H s f s= + , 

что приводит к выражению  

( ) ( )
( )

1 ( ) (1 ( ))

F s f s
H s

f s s f s
= =

− −
. 

Принимая во внимание разработанную методику, для нахождения оригинала 

преобразования Лапласа ( )H s  воспользуемся производящей функции моментов 

плотности распределения Гнеденко–Вейбулла. Соотношение ( ) ( )h t H t=  в 

терминах преобразования Лапласа можно записать как  ( ) ( ) /H s h s s= . 

Выше было получено представление преобразования Лапласа плотности 

восстановления 

2 3 2
22 1 3 2 1 2 3 1 42

2 3 4

1 1 1 1

3 2 3 41
( ) 1 ...

2 12 24
h s s s

s

   −    −    +  
= + − + + + 
    

, 

отсюда 

2 3 2

2 1 3 2 1 2 3 1 42

2 2 3 4

1 1 1 1

3 2 3 4( ) 1 1
( ) 1 ...

2 12 24

h s
H s s

s s s

   −    −    +  
= = + − + + + 

    
 

 Используя обозначения kd , связанные с введенными выше kc  (см. (71 )): 

1

1

, 1,2,3,...k
k k

c
d k

 +
= = ,    

0

1

1
d =


,   

2
1 2

12
d


=


,  

2

2 1 3
2 3

1

3 2

12
d

 −  
=


,  

3 2

2 1 2 3 1 4
3 4

1

3 4

24
d

 −    +  
=


, 

4 2 2 2 2 3

2 1 2 3 1 3 1 2 4 1 5
4 5

1

45 90 20 30 6

720
d

 −    +   +    −  
=


, 

5 3 2 2 2 2 3 3 4

2 1 2 3 1 2 3 1 2 4 1 3 4 1 2 5 1 6
5 6

1

45 120 60 45 20 12 2
,

1440
d

 −    +    +    −    −    +  
=


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6 4 2 2 2 3 3 2 3 3

6 2 1 2 3 1 2 3 1 3 1 2 4 1 2 3 4

4 2 3 2 4 4 5 7

1 4 1 2 5 1 3 5 1 2 6 1 7 1

(945 3150 2520 280 1260 1260

105 378 168 84 12 ) / 60480 ,....

d =  −    +    −   +    −     +

+   −    +    +    −   
 

имеем 

( ) 2 3 40
1 2 3 4 5 62

1
( ) 1 ... .

d
H s d d d s d s d s d s

s s
= + − + + + + + +  

Тогда 

( )1 2 30
1 2 3 4 52

1
( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ...

d
H t F t L f s d f s d f s d sf s d s f s d s f s

s s

−  
= + + − + + + + + 

 
 

где 
1[ ( )]L G s−

 обозначает обратное преобразование Лапласа для функции ( )G s . 

 Таким образом, 

( )1 0
1 2 3 42

0

1 0
1 2 3 42

( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ...

( ) ( ) ( ) ( ) ( ) ...,

t
d

H t F t L f s d f d d f t d f t d f t
s

d
L f s d F t d F t d F t d F t

s

−

−

 
 = + + −   + + + + = 

 

 
  = + + + + + 

 



 

что совпадает с (66) с учётом 
1

1

, 1,2,3,...k
k k

c
d k

 +
= = . 

Далее, в силу того что для распределения Гнеденко–Вейбулла   

1 1 ( ) 1 ( ) ( )0
0 02

0 0 0

( ) ( )

t t t
d

L f s d t e d d t e d e d
s

  −  − −   − −   − 
  

= −     =     −   =  
   

    

 

( )0 01

1 1 1 1
1,( ) 1 ,( ) ( ) 1 ,( ) ,

t
d t t d tF t t   

 +

      
=     −  +  = −  +       

            
 

где 
0

1
( , )

x

a t
t e dta x
− −

 =   – неполная гамма- функция Эйлера, ввиду равенств:  

( )

1

0

1 1
,( )

t

e d t
 −  

+

  +
  =    

   
 ,         ( )

( )

0

1,( ) ( )

t

zt e dz F t



 −  = = , 

окончательно получаем следующее представление: 
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( )

  ( )

0 1 2 3

0
0 1 2 3

0
0 1 2 3

1 1
( ) ( ) ( ) 1 , ( ) 1 ( ) ( ) ( ) ...

1
( ) 1 1 ,( ) 1 ( ) ( ) ( ) ...

1
( ) 1 , ( ) ( ) ( ) ( ) ...

H t F t d t F t t d F t d F t d F t

d
F t d t t d F t d F t d F t

d
d t F t t d F t d F t d F t







  
 = +  −   +  + − + + +  

   

 
 = + −  +  + − + + + = 

  

 
 =  −  +  + + + + 

  

 

где коэффициенты kd определены выше. 

 Другая запись полученного соотношения:  

0
1 2 3 4

1

1 1
( ) ( ) 1 ,( ) ( ) ( ) ( ) ...

d
H t F t t d t d F t d F t d F t   

  = + −  +  + + + +   
    

 

Осталось только еще удостовериться в том, что полученное соотношение 

согласуется с асимптотической формой функции восстановления [59], которая в 

наших обозначениях имеет вид (см. (Рис. 22)):   

 1

1

1
( ) 1 (1),H t t d o t= + − + →


  (68) 

 

3.3. Комбинированный метод дискретизации Ритца–Галеркина 

численного решения уравнения восстановления, получение рекуррентных 

формул 

 

Для численного решения уравнения восстановления (50) в работе 

используется дискретизация интегрального уравнения, как в методе Ритца в 

вариационных задачах или в методе Галеркина [55]. Обычный метод 

дискретизации интегрального уравнения [12] состоит в использовании 

квадратурных формул, которые применяются ко всей подынтегральной функции.  

Для уравнения восстановления (50) дискретизация уравнения (прямой RS-

метод) была рассмотрена в статьях [152,153], с использованием значений первой 

подынтегральной функции в середине отрезка разбиения. В статье [147] получены 
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алгоритмы дискретизации уравнения (50) методами типа метода трапеций и метода 

Симпсона. 

Используемая в настоящей работе дискретизация состоит в применении 

соответствующего алгоритма только к неизвестной функции, стоящей под знаком 

интеграла, а интегралы от ядер операторов вычисляются в пакете Wolfram 

Mathematica. Таким образом, решение   ищется как в методе Ритца- Галеркина виде 

линейной комбинации соответствующих базисных функций. Точность 

аппроксимации решения достигается не за счет использования более сложных 

базисных функций, как в методе Галеркина, а за счет более мелкого разбиения 

области.  Такая дискретизация функционалов с использованием кусочно - 

полиномиальной аппроксимации называется также методом конечных элементов 

[106]. Дискретизация по методу Галеркина с использованием кубических сплайнов 

была рассмотрена в работе [131]. Однако счёт для большого числа точек разбиений 

по предложенной в этой работе схема затруднителен из-за большого массива 

данных в оперативной памяти компьютера. 

Дискретизация интегрального уравнения восстановления по методу Ритца–

Галеркина позволяет получить систему линейных уравнений простого 

треугольного вида, решение которой выписывается в рекуррентном виде. Так что 

численные расчеты на обычных персональных компьютерах можно производить с 

большой скоростью для любого числа точек разбиения, обеспечивающих 

необходимую точность вычислений. При обычной дискретизации из-за большой 

размерности массива коэффициентов соответствующей системы линейных 

уравнений счёт для большого числа точек разбиения делать затруднительно. 

 

 Получение рекуррентных формул в методе дискретизации 

 

Рассмотрим три способа дискретизации уравнения (50). Разделим 

рассматриваемый отрезок времени max[0, ]t  на n  равных частей точками  

0 1 0 00, , , nt t t t t n= = +  = +  , где   – шаг  разбиения. Базисные функции, 
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используемые для дискретизации уравнения Вольтерра в первом и третьем 

способах, были рассмотрены ранее в работе [105]. Используемый нами алгоритм 

решения линейных систем, позволяет решать системы большой размерности, тем 

самым получать аппроксимацию решений с необходимой точностью. В результате 

численных экспериментов получено также, что наиболее оптимальным является 

второй способ дискретизации, так как при первом способе сходимость к точному 

решению хуже, а при третьем способе – счёт для большого числа точек разбиения 

требует много машинного времени. 

1. Метод правых узлов. Будем искать решение ( )t  уравнения (50) в виде 

суммы кусочно-постоянных функций равных на каждом отрезке разбиения 

1k kt t t−    значению искомого решения в правой точке kt  разбиения  ( )k ku t= ,  

также как в квадратурном методе прямоугольников. В качестве базисных функций 

возьмем характеристические функции ( )kI t  равные 1 при 1k kt t t−     и нулю в 

остальных точках, тогда приближенное решение ищется в виде 
1

( ) ( )
n

k k

k

u t u I t
=

= . 

Найдем решение по первому способу. Подставим точки разбиения в уравнение 

(60), заменив ( )t  на ( )k kt u = .  

 0 0(0) ,u f f= =   

 

1 1

1 1 1 1 1 1 1

0 0

1 1 1 1

( ) ( ) ( ) ( ) .

,

t t

u f t u f t s ds t s r f t u f r dr

u f u K

= + − = − = = +

= +

    

где 
1

1 1 1

0

( ), ( )

t

f f t K f r dr= =   . 

1 2

1

2 2 1 2 1

2 1 1

2 2 1 2 2 2 2

0

2 1 2 2 1 2

0 0

2 2 1 2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

,

t t

t

t t t t t

t t t

u f t u f t s ds u f t s ds t s r

f t u f r dr u f r dr f t u f r dr u f r dr

u f u K u K

−

−

= + − + − = − = =

= + + = + +

= + +

 

     
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где 
2

1

2 2 2( ), ( )

t

t

f f t K f r dr= =  . 

В общем случае 

1 2

1 1

1 1

1 2

1 2

0

1 2

0

1 2 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

n

n

n n

n n

tt t

n n n n n n n

t t

t t t

n n

t t

n n n n n

u f t u f t s ds u f t s ds u f t s ds t s r

f t u f r dr u f r dr u f r dr

u f u K u K u K

−

−

− −

−

= + − + − + + − = − = =

= + + + +

= + + + +

  

    

где 

1

( ), ( ) .
n

n

t

n n n

t

f f t K f r dr

−

= =   

Решение по первому способу задается рекуррентными формулами:  

 

  

0 0

1 1 1

2 2 1 2 1

1 2 1 1 2 1

,

/ (1 ),

( ) / (1 ),

( ) / (1 ).n n n n n

u f

u f K

u f u K K

u f u K u K u K K− −

=


= −



= + −



= + + + + −

  

где  0 0(0) ,u f f= =  
1

1

1

0

( ), ( ) , ( ) .
n

n

tt

n n n

t

f f t K f r dr K f r dr

−

= = =   

 2. Метод средних.  Положим значение приближённого решения ( )u t  на k -

ом отрезке равное среднему значению 1( ) ( )

2

k k
k

t t
u − +

= , (см. Рисунок 18).  

Приближенное решение, соответственно, ищется в виде: 
1

( ) ( )
n

k k

k

u t u I t
=

= .   
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t   

1
t   

2
t

  
1

t
n−

  maxt

  

Рисунок 18. Метод средних 

 При втором способе дискретизации заменим ( )t  на соответствующем 

отрезке средним 1

2
k

k k
u u

u
+

−
= . Соответственно модифицируется система 

рекуррентных формул: 

0 0

0 1
1 1 1

01 1 1
2 2 2 2 1

1 0 11 2 1 1
1 2 1 1

,

( ) / (1 ),
2 2

( ) / (1 ),
2 2 2 2

( ) / (1 ).
2 2 2 2 2 2 2

n n
n n n n n n

u f

u K
u f K

uu u K
u f K K K

u u uu u u K
u f K K K K K K− −

− −

=

 = + −



= + + + −



 = + + + + + + + + −


  

3. Линейные сплайны.  В качестве приближённого решения на k  -ом 

отрезке ( )
k

u t  выберем интерполяционные многочлены Лагранжа первой степени, 

которые в узлах 1, , 1, ,k kt t k n− =  равны значениям решения  

1 1( ), ( )k k k ku t u t − −= = .  

                 1
1

1 1

( ) .k k
k k k

k k k k

t t t t
u t u u

t t t t

−
−

− −

− −
= +

− −
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Таким образом, на каждом отрезке разбиения искомое решение заменяется 

линейной функцией, т.е. рассматривается приближение решения ( )t  ломаной. 

Обозначим    

 
1

( ) k k
k

k k

t t t t
l t

t t −

− −
= =

− 
.  

Тогда 

 1 1( ) ( ) ( ).k k k k ku t u l t u l t− −= −    

Для линейных функций kl  справедливо при m k  равенство 

           
( )

( ) ( ).k m m k m k
k m m k

t t t t t t t t
l t t l t−

−

− + − − + −
− = = = − = −

  
               (69) 

Из уравнения (50) 0 0(0) ,u f f= =  далее при 1t t= , учитывая равенство (69), имеем 

 

1

1 1 1

1 1 1 0 1 1 0 1 1

0

0 1 1 1 0 1 1 0 0 1 1

0 0 0

1 0 10 1 11

( ) ( )( ( ) ( )) ( )

( )( ( ) ( )) ( ) ( ) ( ) ( )

.

t

t t t

u f t f t s u l s u l s ds t s r f t

f r u l t r u l t r dr f u f r l r dr u f r l r dr

f u G u G

= + − − = − = = +

+ − − − = − +

= − +



      

Отсюда 

 1 11 1 0 10(1 ) ,u G f u G− = −   

           Подставим в уравнение nt t= :  

1 2

1

1

1

1 2

0 1 1 0 1 2 2 1

0

1 1

0 1 1 0 1 2 2 1

( ) ( )( ( ) ( )) ( )( ( ) ( ))

( )( ( ) ( ))

( )( ( ) ( )) ( )( ( ) ( ))

n

n

n

n n

t t

n n n n

t

t

n n n n n n n

t

t t

n n n n

t t

u f t f t s u l s u l s ds f t s u l s u l s ds

f t s u l s u l s ds t s r f

f r u l t r u l t r dr f r u l t r u l t r dr

−

−

− −

− −

= + − − + − − + +

+ − − = − = = +

+ − − − + − − − + +

 





1

1 1

0

( )( ( ) ( ))

n

t

n n n n n nf r u l t r u l t r dr− −+ − − − =




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1 1

1 1

2 2

1 1

0 1 1

1 2 2 1

1 0 1

0 0

0 1 1 1 2 1 22 10 11

( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ))

( )( ( ) ( ) ( ))

( ) ( ) ,

n n

n n

n n

n n

t t

n n n

t t

t t

n n

t t

t t

n n

n nn nn n n n n

f u f r l r dr u f r l r dr

u f r l r dr u f r l r dr

u f r l r dr u f r l r dr

f u G u G G u G G u G

− −

− −

− −

−

− −

−

− − − −

= − + −

− + − −

− + =

= − + − + + − +

 

 

 

 

где 

 

1

( ) ( ) .
k

k

t

kj j

t

G f r l r dr

−

=     

Таким образом, 

 
11 0 1 1 1 2 1 22 10(1 ) ( ) ( ).n n nn nn n n nu G f u G u G G u G G− − − −− = − + − + + −   

Итак, система уравнений имеет вид 

0 0

1 11 1 0 10

2 11 2 0 21 1 22 10

11 0 1 1 1 2 1 22 10

,

(1 ) ,

(1 ) ( )

(1 ) ( ) ( ).n n nn nn n n n

u f

u G f u G

u G f u G u G G

u G f u G u G G u G G− − − −

 =


− = −


− = − + −



− = − + − + + −

 

Окончательные рекуррентные формулы для приближенного при 

приближении линейными сплайнами решения имеют вид: 

 

0 0

1 1 0 10 11

2 2 0 21 1 22 10 11

0 1 1 1 2 1 22 10 11

,

( ) / (1 ),

( ( )) / (1 )

( ( ) ( )) / (1 ).n n nn nn n n n

u f

u f u G G

u f u G u G G G

u f u G u G G u G G G− − − −

 =


= − −


= − + − −



= − + − + + − −

   

      где   

1

( ) ( ) ,
k

k

t

kj j

t

G f r l r dr

−

=    
1

( ) k k
k

k k

t t t t
l t

t t −

− −
= =

− 
. 
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Рисунок 19.  Линейные сплайны 

( )
2

tu   

 

 

Проверка приближенных методов на тестовом распределении Рэлея 

 

Полученные алгоритмы были проверены на контрольных примерах с 

использованием профессионального математического пакета Wolfram 

Mathematica. Погрешность приближенного решения определяется не только 

построенным алгоритмом, но также погрешностью численного интегрирования в 

пакете Wolfram Mathematica, равной 
1510−

. Отметим, что при больших значениях t  

погрешность решения контролируется известным в теории восстановлений ([60], 

стр.166) асимптотическим значением параметра потока 

 
1

lim ( ) ,
t

t
T→

 =   (70) 

где  T  – среднее время между отказами. 

 Так, для распределения Рэлея (плотность распределения  
2

( ) 2 tf t te−= ) 

1, 3
2

1
1

T



=  (на Рисунке 20 – прямая зеленого цвета), при 20 точках разбиения 

получены следующие кривые: 
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Из графиков на рисунке 17 видно, что приближение линейными сплайнами и 

метод трапеций даёт одно и то же решение, которое близко к приближенному 

решению, полученному методом производящих функций моментов. 

Рассмотренные приближённые решения быстро сходятся к предельному значению 

параметра потока (70). Отметим, что для квадратурных формул совпадение 

приближений по методу трапеций и линейными сплайнами следует из 

геометрических соображений, т.к. вычисляется площадь трапеции двумя 

способами: по формуле и с помощью интеграла. Метод прямоугольников для 

рассмотренного числа точек разбиения (20) даёт большую погрешность при  1t  .  

Однако, увеличение числа точек разбиения до 200 даёт практически совпадение 

приближённых решений (Рисунок 21), найденных рассмотренными выше 

методами прямоугольников, трапеций, аналитическим. Время счёта при таком 

разбиении, как показывает опыт, составляет 2-3 секунды. 

 

 
 

 

Рисунок 2 

Рисунок 20.   Графики параметра потока отказов для распределения Рэлея, 

полученные дискретизацией (20 точек) и аналитическим методами 

 

Рисунок 21. Графики параметра потока отказов для распределения Рэлея, 

полученные дискретизацией (200 точек) и аналитическим методами 
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Аналитический и численный методы нахождения функции восстановления 

 

W.L. Smith и M.R. Leadbetter [146] разработали метод для вычисления 

функции восстановления для распределения Гнеденко-Вейбулла с помощью 

разложения в степенной ряд для 1,   численное вычисление этого ряда 

ограничено малым диапазоном t . A. G. Constantine и N.I. Robinson в [129] 

представили метод вычисления ( )H t  с помощью вычетов, позволяющих получить 

представление для ( )H t  равномерно сходящимся рядом затухающих 

экспоненциальных членов. В статье [138] была предложена оценка функции 

восстановления, основанная на первых трех моментах распределения, уточняющая 

асимптотическую формулу (68). Получен также ряд других приближений, таких 

как L. Cui и M. Xie [130], E. Smeltink и R. Dekker [145], S. Maghsoodloo и D. Helvaci 

[139], изучавших функцию восстановления для нормального, гамма, равномерного 

распределений времени жизни. 

На Рисунке 22 для сравнения представлены различные аппроксимации 

функция восстановления для распределения Рэлея.  

 

 

Сравнение графиков функций восстановления, полученных для 

распределения Рэлея методом вычетов [129] и методом производящих функций 

моментов, представленных в диссертационной работе, показывает совпадение 

результатов (Рисунок 23). 

H

t

Метод производящих функций моментов

Метод линейных сплайнов

Метод правых узлов

Метод средних

Асимптота Смита

0.5 1.0 1.5 2.0

0.5

1.0

1.5

Рисунок 22. Аппроксимации функции восстановления для распределения Рэлея 
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3.4.  Система рекомендаций по статистической обработке данных об отказах 

технологически активных элементов ГТС 

             

 

Актуальность инженерных оценок показателей надёжности      

эксплуатируемых систем на базе статистических данных по отказам 

оборудования ГТС 

 

Требования к обеспечению энергетической безопасности усиливаются с 

каждым годом, поэтому становится важным не только оценивать выбранные 

показатели надежности, но и проводить мониторинг надежности выполнения 

отдельных функций автоматизированного управления и надежности 

функционирования базовых объектов ГТС ЕСГ. Оценка надежности в этих 

условиях должна проводиться на основе статистической информации об отказах 

оборудования и систем автоматизации, а также их технического состояния. 

В этих условиях, становится актуальной задача создания и введения в АСДУ 

предприятий по транспортировке и добыче газа информационно-аналитических 

Рисунок 23. Сравнение аппроксимаций функции восстановления для распределения 

Рэлея, полученных методом производящих функций моментов и методом вычетов 

Constantine, Robinson  
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систем оценки и мониторинга надежности, обеспечивающих мониторинг (текущий 

контроль) надежности. 

Информационно-аналитические системы оценки и мониторинга надежности 

предназначены для повышения (на основе текущей и прогнозной информации) 

эксплуатационной надежности функционирования АСДУ технологическими 

процессами в газовой отрасли (в первую очередь, транспорта и добычи газа) за счет 

своевременных организационных мер по резервированию, замене оборудования и 

проведению планово-предупредительных работ. Оценку надежности следует 

производить на основе математических моделей и информационных технологий.  

Внедрение на газотранспортных предприятиях указанных систем 

предоставит руководству диспетчерской службы возможность мониторинга 

состояния технологических объектов и оценки показателей надежности всей 

системы в целом, включая как объект (уровень технологического оборудования), 

так и систему управления (т.е. уровень управления «диспетчер-ЭВМ» и уровень 

систем автоматики и телемеханики), руководству производственных служб 

предоставит возможность принятия своевременных и обоснованных решений по 

замене и восстановлению основного оборудования предприятия. 

 Для вновь создаваемых или модернизируемых систем диспетчерского 

управления транспортом газа предлагается внедрение информационно-

аналитических систем оценки и мониторинга надежности, практически 

реализующих требование по надежности базовой цели диспетчерского управления 

– бесперебойное снабжение газопоставок и «надежное обеспечение газом 

потребителей» [Федеральный закон №63-ФЗ от 31.03.1999]. 

 

Обзоры различных информационно-аналитических систем контроля 

технического состояния объектов ЕСГ 

 

Информационно-аналитическая система газотранспортного предприятия, 

применение которой рассматривается в данной работе, должна обеспечивать 

решение следующих групп задач:  
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1. Первая группа задач – задачи организации информационного обеспечения 

в виде баз данных. Это сбор, ведение, архивирование и представление как 

паспортной, так и всей оперативной информации по отказам оборудования, 

приборов и устройств, входящих в объект управления (диагностируемое 

технологическое оборудование) и в состав АСУ ТП (АСДУ) предприятия, включая 

уровни автоматического управления и автоматизированного управления. 

2. Вторая группа задач. Это задачи формирования на основе этих 

фактических данных реальных показателей времени безотказной работы, 

интенсивности отказов и показателей технического состояния основного 

технологического оборудования и др.  

3. Третья группа задач – задачи оценки и мониторинга надежности по 

основным функциям АСУТП и АСДУ для ГТП и ГДП. 

4. Четвертая группа задач. Это задачи формирования интегрированных 

показателей надежности (в том числе и по различным уровням анализа). 

5. Пятая группа задач. Это задачи разработки рекомендаций для 

проведения плановых предупредительных работ, профилактического 

обслуживания, ввода резервов и других ремонтных и организационных 

мероприятий. Задачи пятой группы носят в основном организационный характер и 

в большей степени относятся к компетенции руководителей, нежели чем 

диспетчеров. 

Особенности разработки и практического применения информационно-

аналитической системы оценки и мониторинга надежности АСДУ в транспорте 

газа рассмотрены в работах [71, 95]. 

Основным преимуществом информационно-аналитической̆ системы оценки 

и мониторинга надежности является ее использование на самом нижнем 

организационном уровне компании, а именно уровне компрессорного цеха, 

газораспределительной̆ станции, магистрального газопровода. Это обеспечивает 

бизнес-процесс сбора, консолидации и анализа данных отказов технических систем 

и технологических элементов не только по всей компании, но и для каждого цеха 

(службы, производственного отдела) в отдельности. 
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За период эксплуатации системы в базу данных внесены происшедшие 

события, разработаны основные формы оперативной̆ отчетности на основе данных 

по отказам и наработке технологического оборудования. 

На Рисунке 24 показан пример фрагмента информационно-аналитической 

системы оценки и мониторинга надёжности – журнала событий, 

зарегистрированных на филиалах предприятия. 

 

Рисунок 24 – Основные модули ИАС - «Журнал событий». 

В данном журнале системы может быть представлен перечень отказов 

технологических элементов как по всей системе в целом, так и по каждому 

элементу в частности.  

Основные параметры отдельного зарегистрированного в ИАС события такие 

как идентификатор объекта, дата возникновения события, время возникновения 

события, описание и характеристика произошедшего события, детальное описание 

причины возникновения события, укрупненный вид отказа, группа отказа, 

подгруппа отказа, вид отказавшего оборудования и др. представлены на карточке 

зарегистрированного события (отказа) (Рисунок 25).  
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По результатам эксплуатации системы были показаны актуальность 

внедрения и практическое применение системы. Результаты выгрузки основных 

показателей̆ надёжности были использованы на производственных заседаниях 

газотранспортного общества ПАО «Газпром», произведены консолидация данных 

об отказах системы, наработки агрегатов и мониторинг показателей̆ надежности. 

 

 

Рисунок 25 – Основные модули ИАС – «Карточка событий». 

 
 
 

3.4.1. Методика получения оценок параметров распределения Гнеденко-

Вейбулла и прогнозирование момента следующего отказа ГПА 

 

В работе предложена комплексная методика и инструкция получения 

статистических оценок параметров распределения Гнеденко-Вейбулла, и 

получение прогнозного критического значения времени наступления следующего 
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отказа элементов ГПА с указанием вероятной зоны начала деградационных 

процессов в системе ГПА.  Процедура состоит из следующих шагов: 

➢ графоаналитическая проверка на соответствие модели Гнеденко-Вейбулла 

времени работы до отказа методами регрессионного анализа; 

➢ нахождение оценки параметра формы с помощью аппроксимирующей 

формулы для выборочного коэффициента вариации; 

➢ применение метода максимального правдоподобия, адаптированного для 

распределения Гнеденко-Вейбулла;  

➢ ретроспективный анализ предложенной модели с целью проверки 

устойчивости и адекватности статистического моделирования; 

➢ в случае выполнения условия начала деградации в системе ГПА вычисляется 

прогнозное критическое значение времени наступления следующего отказа 

элементов ГПА; 

➢ с целью получения момента переходного процесса выхода элементов ГПА 

или САУ ГПА на предельное состояние строится графическая зависимость 

параметра потока отказов и средней остаточной наработки до отказа в 

компьютерной среде Wolfram Mathematica. 

Для инженеров, обеспечивающих эксплуатацию ГТС, для сотрудников 

АСДУ требуется иметь под рукой оперативную возможность инженерной оценки 

показателей надежности эксплуатируемых систем, при этом ориентируясь на 

реальные статистические данные по отказам оборудования. Эта позиция актуальна 

для разработки мониторинговых систем с целью отслеживания и прогнозирования 

показателей надёжности технологических объектов на стадии эксплуатации.  Более 

предпочтительным вариантом является рецептурный подход или получение набора 

(свода) инженерных рекомендаций. Соответственно, требуется получить ряд 

формул и методик для поставленной задачи. С этой целью были проведены 

аналитические исследования теоретического характера, в результате которых 

возможно получение требуемых формул.  

Рассмотрим примерную инструкцию для инженерных расчетов обработки 

эксплуатационных данных по отказам ГПА.  
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1. Построение вариационного ряда и эмпирической функции 

распределения на основе статистических данных по отказам. 

2. Графоаналитическая проверка исходных данных на соответствие 

модели Гнеденко-Вейбулла времени работы до отказа (используется метод 

линейной регрессии для линеаризованной эмпирической функции распределения 

Гнеденко-Вейбулла). 

3. Получение статистических оценок для параметров   и   методом 

максимального правдоподобия, адаптированного для распределения Гнеденко-

Вейбулла.    

4. Сравнение значения   с числом 1:  

• если 1  , то это классический случай показательного распределения, 

для которого const=  и const =  ; 

• если 1  , то можно использовать как аналитический подход, так и 

метод дискретизации; отмечаем, что это этап деградационных процессов; 

• если 1  , то следует применять только дискретные методы для 

исследования. 

5. Построение графической зависимости параметра потока отказов ( )t  

на основе указанных методов.  

6. Визуальный анализ графика ( )t , сравнение полученной кривой с 

асимптотическим значением параметра потока отказов, соответствующей данной 

выборке.  

7. Если 1 2   , то исследование кривой ( )t  позволяет определить 

примерное начало выхода на предельное состояние объектов, установление 

преддеградационного этапа. 

8. Если 2  , то в этом случае появляется возможность прогнозирования 

момента наступления очередного отказа и обоснование вхождения агрегата в 

окончательную зону деградации, когда эксплуатирование объекта 

нецелесообразно. 



131 

 

3.4.2. Структурная схема управления надёжностью и целостностью в 

АСДУ на основе разработанных моделей и методов 

 

 

В настоящее время в условиях наличия финансовых, ресурсных и 

организационно-технических ограничений, а также в совокупности с такими 

объективными факторами, как высокий износ основных фондов, его возрастная и 

технологическая разнородность, снижение профессионального уровня 

эксплуатирующего и ремонтного персонала, работа трубопроводов при 

сверхнормативных режимах нагрузки на предприятиях, эксплуатирующих объекты 

трубопроводного транспорта, актуальна проблема оптимизации затрат на 

проведение технического обслуживания и ремонта (ТОиР). 

В настоящее время сформировались два основных подхода к управлению 

надежностью и целостностью технологического оборудования: 

Подход № 1. Ремонт и замена оборудования проводятся в минимальном 

объеме по факту отказа. Диагностика оборудования выполняется в соответствии с 

требованиями законодательства (техническое освидетельствование по нормам 

правил безопасности, экспертиза промышленной безопасности для оборудования с 

истекшим сроком эксплуатации и др.). 

Подход № 2. Ремонт и замена оборудования проводятся в соответствии с 

нормативными сроками, рекомендациями изготовителя с учетом результатов 

технического освидетельствования. Диагностика оборудования выполняется в 

соответствии с требованиями законодательства (техническое освидетельствование 

по нормам правил безопасности, экспертиза промышленной безопасности для 

оборудования с истекшим сроком эксплуатации и др.). 

Альтернативным, является подход, основанный на оценке риска отказов и 

нарушения целостности оборудования (RBI – Risk Based Inspection, RCM – 

Reliability Centered Maintenance), который называют риск-ориентированным. При 

риск-ориентированном подходе затраты в первую очередь направляются на 

предотвращение отказов с наиболее негативными последствиями (ущерб людям, 
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окружающей среде, репутации компании, значительные производственные 

потери), т.е. неприемлемых рисков.  

В настоящее время в ПАО «Газпром» осуществляется переход к 

планированию работ с использованием новой методологии управления 

техническим состоянием и целостностью объектов ГТС. Эта методология 

обеспечивает приоритетный выбор объектов для капитального ремонта на основе 

анализа рисков и системной значимости, а также максимальный положительный 

эффект по показателям целостности ГТС, а для менее приоритетных газопроводов 

– аналогичное точечное планирование выборочных ремонтов. 

Такой подход в полной мере отражает изменения в законодательстве в 

области промышленной безопасности (Федеральный закон № 22-ФЗ от 4 марта 

2013 г. «О внесении изменений в Федеральный закон «О промышленной 

безопасности опасных производственных объектов» и иные законодательные акты 

Российской Федерации»). 

Применение систем технического обслуживания и ремонта, основанных на 

планировании объемов технического обслуживания и ремонтов исходя из 

фактического и прогнозируемого состояния ГПА и САУ ГПА, условий их 

эксплуатации, а также производственных планов и ограничений позволят 

обеспечить на газотранспортных предприятиях надежность процесса 

транспортировки природного газа, структурную целостность и заданный уровень 

технического состояния объектов ЕСГ. 

Система технического обслуживания и ремонта (maintenance and repair 

system) - совокупность взаимосвязанных средств, документации технического 

обслуживания и ремонта и исполнителей̆, необходимых для поддержания и 

восстановления (качества либо эксплуатационных характеристик) объектов, 

входящих в эту систему [ГОСТ 18322- 2016 «Система технического обслуживания 

и ремонта техники. Термины и определения»]. 

Введение в практику диспетчерских служб системы оценки и мониторинга 

надежности АСУТП (АСДУ) открывает новые возможности для управления 
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целостностью ГТС (см. Рисунок 26, блок «Мониторинг функционирования и 

технического состояния ГПА»).  

Например, может быть налажена обратная связь между эксплуатирующими 

организациями и производителями оборудования, в частности ГПА и САУ ГПА, 

усиливается роль служб управления качеством на производстве. Оценки 

показателей надежности позволят обеспечить возможность получения оценки 

технического состояния и уровня обслуживания эксплуатируемых систем и 

повышения качества производства.  

 

 

 
 

Рисунок 26. Управление целостностью в АСДУ транспортом газа  

 

В итоге на основании вышеизложенных исследований была создана 

структурная инженерная методика обработки статистических данных об отказах 

технологически активных элементов ГТС (Рисунок 27). 
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Рисунок 27. Методика системных исследований показателей надёжности ГПА 

на этапах жизненного цикла для модели отказов Гнеденко-Вейбулла. 

 

 
 

 

По сути, можно считать, что мы находимся в динамическом пространстве 

( )( ), ( ), ( )t t t    показателей надёжности технологически активных элементов 
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ГТС в рамках модели отказов ( , )GW    с позиций двойственного подхода к 

природе объектов (восстанавливаемые/невосстанавливаемые элементы). 

Представляет интерес дальнейшее изучение указанной динамической системы, 

исследование ее фазового портрета.    

Предложенная методика была продемонстрирована на базе анализа 

статистических данных отказов КИПиА Ростовского УМГ. Методом 

максимального правдоподобия, адаптированного для распределения Гнеденко-

Вейбулла, установлено, что время работы до отказа имеет распределение 

( , )GW    с параметрами 0,03; 1,29 = = . На Рисунке 28 представлены графики 

приближённых решений, асимптотическое значение параметра потока отказов 
1

T
 , 

а также график интенсивности отказов.  

 

 

 

 
    

 Рисунок 28. Графики параметра потока отказов КИПиА Ростовского УМГ,  

полученные дискретными и аналитическим методами 

 

 

Аналогичным способом были рассмотрены данные по механическим отказам 

Ростовского УМГ. Параметры соответствующего распределения Гнеденко-

Вейбулла составляют: 0,2; 1,38 = = . Приближённые решения интегрального 

уравнения для потока отказов (50) представлены графиками на Рисунке 29. 
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Рисунок 29. Графики параметра потока механических отказов Ростовского 

УМГ, полученные дискретным и аналитическим методами 

 

На основе проведенных исследований были составлены предложения по 

проведению НИР на тему «Информационно-аналитические системы (ИАС) 

мониторинга для оценки надежности и качества функционирования 

технологических процессов и объектов нефтегазовой отрасли» (см. 

Приложение Е). 

Результаты данного раздела опубликованы в [84], [85], [86]. 
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ВЫВОДЫ ПО ГЛАВЕ 3 

 

1. Указана зависимость между показателями надёжности невосстанавливаемых 

и восстанавливаемых объектов ГТС, выраженная с помощью интегрального 

уравнения восстановления, представляющее собой интегральное уравнение 

Вольтерра второго рода с разностным ядром типа свертки. 

2. Рассмотрен аналитический метод решения интегрального уравнения 

восстановления с распределением отказов Гнеденко-Вейбулла ( , )GW    на 

основе аппарата производящей функции моментов и теории рядов, который 

был обобщен и на произвольное распределение при выполнении 

определенного ряда условий.  

3. Представлены три типа рекуррентных формул в гибридном методе 

дискретизации Ритца–Галеркина приближенного решения интегрального 

уравнения восстановления в среде Mathematica для модели потока отказов 

( , )GW   : метод правых узлов, метод средних, метод линейных сплайнов. 

4. Рассмотрена проблема моментов Чебышева-Маркова-Стилтьеса 

распределения Гнеденко-Вейбулла ( , )GW    с помощью проверки условий 

Карлемана и Крейна. Найдена нижняя граница для значений параметра 

формы  , определяющая единственность представления распределения 

( , )GW    своими моментами.    

5. Подготовлены рекомендации для практического применения разработанных 

положений: комплексная методика, схема взаимосвязи с подсистемой 

верхнего уровня ТОИР, проект предложения по НИР для реализации 

системы управления целостностью (в аспекте ГПА).  
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ЗАКЛЮЧЕНИЕ 

 

 

 

Разработанные в диссертации модели и методы построения вероятностно-

статистических оценок составляют аналитическую основу  мониторинговой 

системы показателей надёжности  ГПА, которую необходимо 

построить  для  обеспечения оперативного взаимодействия  между уровнем 

автоматизированного диспетчерского управления  технологическим 

процессом  транспорта газа (предоставление информации о 

фактическом состоянии ГПА)  и  уровнем управления производственно-

хозяйственной деятельностью, на котором  по предоставленной информации 

планируются и выполняются ремонты и замена оборудования. Разработанные 

модели и методы прошли апробацию в учебном процессе. В ходе выполненных 

исследований были получены следующие результаты: 

 

1. С позиций мониторинга показателей надёжности технологических объектов 

ГТС для управления целостностью ЕСГ показана актуальность и используется 

модель потока отказов на основе двухпараметрического распределения 

Гнеденко-Вейбулла ( , )GW   . Непосредственное применение распределения 

Гнеденко-Вейбулла для практических расчётов затруднительно из-за 

необходимости оперировать комбинациями специальных гамма-функций Эйлера, 

через которую выражаются характеристики данного распределения.   

2. Разработан метод получения приближенных расчетных формул для 

упрощенных вычислений математического ожидания, дисперсии и 

коэффициента вариации распределения Гнеденко-Вейбулла с приемлемой 

степенью точности.  

3. Предложен метод получения аналитического разложения средней 

остаточной наработки до отказа и ее дисперсии (с позиций невосстанавливаемых 

элементов), с помощью аппарата асимптотического анализа, теории рядов и теории 

специальных функций.  
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4. Представлены различные методы аппроксимации параметра потока 

отказов (ППО) на деградационном этапе эксплуатации (при 1  ) 

технологических объектов ГТС. Получено аналитическое разложение ППО в ряд 

вида Грама–Шарлье в терминах вероятностных моментов. В связи с чем была 

рассмотрена проблема моментов Чебышёва-Маркова-Стилтьеса об однозначном 

восстановлении распределения рядом моментов для распределения ( , )GW   . 

Предложены рекуррентные формулы для быстрых численных расчетов при 

нахождении параметра потока отказов, которые также могут быть использованы на 

первом этапе жизненного цикла (при 1  ), когда рассмотренные аналитические 

методы неприменимы.   

5. С помощью разработанных аналитических методов получено 

асимптотическое разложение как плотности восстановления (решение уравнения 

восстановления), так и функции восстановления для других возможных 

распределений (при удовлетворении ряда условий).  

6. Эксперименты, проведённые на материалах реальных статистик по 

отказам, полученных из Ростовского УМГ, показали, что модель Гнеденко-

Вейбулла адекватно описывает функционирование технологически активных 

элементов ГТС. В качестве основы исследований применялась созданная методика 

обработки статистических данных об отказах.  

7. Разработанные модели и методы имеют значимость для построения 

системы промышленного мониторинга показателей надёжности активных 

элементов трубопроводного транспорта газа. Методика статистического анализа 

процесса потока отказов доведена до уровня алгоритмов и программ в пакете 

Wolfram Mathematica. 

8. Полученные в диссертационном исследовании результаты открывают 

возможность создания, в рамках автоматизированных систем диспетчерского 

управления, подсистемы мониторинга надёжности АСДУ, способствующей как 

повышению эффективности транспорта газа, так и развитию научных 

исследований в области эргатических систем управления и повышению качества 
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подготовки специалистов в области автоматизированного диспетчерского 

управления в нефтегазовом производстве. 
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СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 

 

АО – аварийный останов; 

АСДУ – автоматизированная система диспетчерского управления;   

ВО – вынужденный останов; 

ГПА – газоперекачивающий агрегат; 

ГТС – газотранспортная сеть; 

ГТУ – газотурбинная установка; 

ЕСГ – Единая система газоснабжения; 

ЖЦ – жизненный цикл; 

ИАС – информационно-аналитическая система; 

ИО – интенсивность отказов; 

КС – компрессорная станция; 

КИПиА – контрольно-измерительные приборы и автоматика; 

МГ – магистральный газопровод; 

ММП – метод максимального правдоподобия; 

ППО – параметр потока отказов; 

ППР – планово-предупредительные работы; 

ПХГ – подземное хранилище газа; 

САУ – система автоматического управления; 

ТЭК – топливно-энергетический комплекс; 

ТЭР – топливно-энергетический ресурс; 

ЦДУ – центральное диспетчерское управление; 

( )t , ( )t  – ИО и ППО;  

( )t – функция средней остаточной наработки; 

( , )GW    – двухпараметрическое распределение Вейбулла–Гнеденко с 

параметрами масштаба   и формы  . 
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Приложение Б. Доказательства утверждений из Главы 2 

 

(к стр. 57) 

Действительно, для обоснования первого разложения в (17) имеем из (13): 

2

2

3 32 4 2 4

2 3 4 4 2 3 4

2

2

4

2

84 1

1 2 1

6 1 1
1 1

1 1
e

A AA A A A
o o

D





       


   

−

 

    
=  + − + =     



  
+ + + + − + + + +    

  

   

 
  =
   

 

 

2 2

3 32 4 2 2 4

2 2 3 4 2 3 4 4

2 2

32 4 2

2 2 3 4 4

8 24 16 2 21 1
1 1

62 141 1
.

A AA A A A A
e o

AA A A
e o









       

    

−

−

 +  
+ + + − − − − + =  

  

 −  
+ + +  

  

=

=

 

 

Докажем второе соотношение в (17). Из (14) получаем:  
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Далее, в силу справедливости разложения в ряд Маклорена следующих 

функций: 
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выражение в   имеет вид:  
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Преобразуя данное выражение, окончательно получаем: 
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(к стр. 75)  

В самом деле. Имеют место следующие оценки при  1N t+  : 
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То есть,  
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Таким образом, 
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(к стр. 72)  

Действительно, используя стандартное разложение экспоненциальной 

функции в ряд Маклорена, получаем ( 0, 0   ): 
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=   =
       
+  +  +   +       

       


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( )
0

1 1 1 1 1
1 2 3 1

( )
1 1 1 1

! 1 1 1 2 1 1 1

1 1
; 1; ( ) .

1 1

k

k

k

t t

k k

t F t

    


   




 

+

=

       
 +  +  +   − +       
       

=   − =
       
+  + +  + +   − + +       

       

 
=  + − 

 



 

Согласно правилу первого преобразования Куммера – Лиувилля [6, 74] 

( ) ( ); ; ; ;
1 1 1 1

xF x e F x    =  − − , 

и, значит, окончательно получаем соотношение:  

1 1 1( ) ( )
; 1; ( ) 1; 1; ( )

1 1 1 1
0

t
x t

e dx t F t te F t
 

  
 

  

   − −
=  + − = +    

   
,  

завершающее доказательство утверждения. 

 

(к стр. 75) 

 Действительно, имеем 

( ) t xt e e dx

t

 
 

+
−=    

Применяя трехкратное интегрирование по частям в несобственном 

интеграле, получим  

1 1 (1 )(1 2 )1 1 2 1 3
( )

2 3( ) ( )

(1 )(1 2 )(1 3 )
         

3 3( )

t t t t

xete dx

xt

    


  


   


− − −− − −
= + + +

−+− − −
+   

 

или после интегрирования по частям последовательно N раз:  
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1 1 2 1 3

2 3

1 1 (1 )(1 2 )
( ) ...

( ) ( )
t t t t    


  

− − −− − −
= + + +  

 

(1 )(1 2 ) (1 ( 2) ) 1 ( 1)
         ...

1( )

           

(1 )(1 2 ) (1 ( 1) ) 1
           

( )

(1 )(1 2 ) (1 )
           ,

( )

N N
t

N

N N
t

N

xN ete dx
N N

xt

   



   




   


− −   − − − −
+  +

−

− −   − − −
+  +

−+− −   −
+   

 

но  

1 1
lim

1 1

N Nxe dx x tte dx
N N N Nxx xt t

  


   

− −−  + +
   = − 
 − −→ + 

, 

Значит, если 

1 1
N

N



    , 

то 

1

lim 0
1

N

x

x

N





−

→+

 
= 

− 
,      

1

1

Nxe tte dx
N Nxt

 


 

−−+
 

−
 

тогда   

(1 )(1 2 ) (1 ) 1
, ( )

( )

xN e Nte dx O t t
N N

xt


   


−+− −  − −   = → + 
 
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(1 )(1 2 ) (1 ( 1) ) 1

( )

(1 )(1 2 ) (1 ) 1
, ( ).

( )

N N
t

N

xN e Nte dx O t t
N N

xt

   




   


− −   − − −
 +

−+− −   − − +   = → + 
 

 

 

Таким образом, верны соотношения: 

 

1 1 (1 )(1 2 )1 1 2 1 3 1 4
( ) , ( )

2 3( ) ( )
t t t t O t t

     


  

− − −− − − − = + + + → + 
 

 

 

1 1 (1 )(1 2 )1 1 2 1 3
( ) ...

2 3( ) ( )

(1 )(1 2 ) (1 ( 1) ) 1 ( 1)1
         ... , ( )

( )

t t t t

N NN
t O t t

N

    


  

   



− − −− − −
= + + +

− −   − − − +−  +  + → + 
 

 

 

Отметим, что мы получили асимптотическое разложение функции ( )t  в 

окрестности бесконечности: 

 

1

2 2 3 3

1 1 1 (1 )(1 2 ) 1 (1 )(1 2 ) (1 3 ) 1
( ) 1 ...

( ) ( )
t t

t t t



  

     


   

−  − − − − −   −
 + + + + 

 
, 

 

где символ « » является стандартным обозначением асимптотического 

представления для функции при t →+ . 
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Приложение В. Метод максимального правдоподобия для случаев полной и 

цензурированной    выборок, распределенных по закону Гнеденко-Вейбулла 

 

Как правило, для прогнозирования надёжности изделий в течение реальных 

сроков их эксплуатации используют данные цензурированных испытаний, при 

этом число реально наблюдавшихся отказов может быть невелико, что сильно 

ограничивает точность и надёжность прогнозов [5]. В этой связи возникает 

потребность в поиске более совершенных методов оценки надёжности, достаточно 

подробно освещенных в [96]. Цензурированность или усеченность данных 

означает неполноту исходных эмпирических данных об отказах.   

Рассмотрим модель однократно цензурированных слева выборок, когда 

время наблюдения за эксплуатацией фиксировано, а число отказов является 

случайной величиной [96]. Усечение слева приходится применять из-за отсутствия 

предыстории реальных данных по отказам на объектах систем автоматического 

управления в транспортировке газа, которые были построены еще в советские 

времена. 

Введем необходимые обозначения. Пусть n  – первоначальный объем 

выборки; нT – момент времени, начиная с которого фиксируются отказы в моменты 

времени ,  ( 1,.., )t k r n
k

= + ; r  – количество наименьших ненаблюдаемых 

(усеченных слева) элементов выборки. 

В дальнейшем удобнее рассматривать плотность двухпараметрического (с 

параметрами с параметрами 0,   0   ) распределения Гнеденко-Вейбулла в 

виде 

1
exp ,     0

( ; , )

0,                                     0

t
t t

f t

t

 

   

  −
  −   

=   




                      (В.1) 

и функцией распределения  
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1 exp ,    0

( ; , )

0,                          0

t
t

F t

t



  

  
  − − 

=  
 




                              (В.2) 

Для однократно цензурированной слева выборки следует максимизировать 

функцию правдоподобия [58, 64]: 

              
1( , ) 1 exp

1

r

нT
n r tn

kL e t
k

k r





 
 

−

 
−−      

−    −    
    = +   

            

(В.3) 

В результате получаем систему уравнений правдоподобия для определения 

неизвестных параметров   и  : 

 

1 1

2 2
1

lnln 1
ln ln 0,

1

ln 1
+ 0                                   

1

н

н

n n
o н

k kT
k r k r

n
н

T
k r

T TL r n r
t t t

k
e

TL r n r
t
k

e















   

   

= + = +

= +

 −
=  + + −  = 

 −



 − =  −  =

 
 −

 



 

Или после упрощения системы получаем 

                      

( )
1

1

1

1 ln

,                                
1

ln ( ) ln

1
( )                                   

1
н

n

k

k r

n

k н

k r

n
н

T
k r

t t
k

t n r T

Tr
n r t

k
e














 

= +

= +

= +


+


=

  + − +   


  = − − 

 −







(В.4)

 

Численные решения для данной системы нелинейных уравнений 

относительно неизвестных   и   могут быть получены с использованием 

компьютерного пакета Wolfram Mathematica. 
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Существование и единственность решения уравнений правдоподобия 

для полной выборки 

 

В случае полной выборки (соответствующей полной информации о работе 

ГПА и САУ ГПА, вернее, об их отказах) функция правдоподобия для (В.1) имеет 

вид:  

     
1

1 1

( , ) ( , , ) exp .

nn n
k

k k

k k

t
L f t t




   
 

−

= =

  
= =  −  

   
 

                   

 

Удобнее рассматривать логарифмическую функцию правдоподобия:  

1 1

1
ln ( , ) ln   ln   ( 1) ln    .

n n

k k

k k

L n n t t     
= =

= − + − − 
                 

Тогда уравнения правдоподобия записываются в виде:  

 

                  

1 1

1

1

  ln  ln 0,            

1
.                                                  

n n

k k kn
k k

k

k

n

k

k

n n
t t t

t

t
n











= =

=

=


+ −  =




 =


 



                      

(В.5) 

Указанная система (В.5) распадается, т.е. параметр   может быть определен 

из первого уравнения, а параметр   – из второго уравнения системы. Докажем, что 

решение (В.5) существует и единственно.  Действительно, имеем для параметра 

соотношение: 

1 1

1

1 1 1
 ln ln

n n

k k kn
k k

k

k

t t t
n

t



 = =

=

− +  = 


 

Обозначим  

1

1

1 1
( )  ln 

n

k kn
k

k

k

g t t

t






 =

=

= − + 

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Тогда   

               ( )
0

lim ( ) ,     lim ( ) ln ng g t
 

 
→ + →+

= − = ,                         (П.6) 

где

 

 
( )

1
max{ }n k

k n
t t

 
=  – максимальная порядковая статистика выборки моментов 

отказов . 

Покажем, что производная ( )g   положительна для всех 0  , что будет 

означать монотонное возрастание функции ( )g   для всех  0  . 

Действительно, имеем 

( )
2

2
ln  ln  

1 1 1 1
( )   

2 2

1

n n n
t t t t t
k k k k k

k k k
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n
t
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k

  


 

 
 −   

 
= = =  = +

 
 

 
= 

. 

Но, так как  

( )

( )

2
2

ln  ln    0  

1 1 1

2
2

 ln  ln   

1 1 1

n n n
t t t t t
k k k k k

k k k

n n n
t t t t t
k k k k k

k k k

  

  

 
 −     

 
= = = 

 
     

 
= = = 

 

 

выполняется в силу известного неравенства Йенсена [57]: 

 

2
2  

1 1    ,    0,    1,..., ,  

  

1 1

n n
p x p x
k k k k

k k p k n
kn n

p p
k k

k k

 
   

 = =   =
 
  
 

= = 

 

 

kt
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где lnx t
k k
=  и  p t

k k


= . 

Итак, 

( )  0     0.g       

Далее, ввиду очевидного неравенства 

( )

1

1
ln ln

n

k n

k

t t
n =

 , 

с учетом (В.6), решение уравнения  

1

1
( ) ln

n

k

k

g t
n


=

=   

существует и единственно.  

Следовательно, зная, чему равно  , однозначно находим и значение 

параметра   из (В.5).   

Таким образом, система (В.5) имеет единственное решение, которое может 

быть найдено с использованием компьютерных пакетов, в частности Wolfram 

Mathematica. 
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Приложение Г. Проблема моментов Чебышёва-Маркова-Стилтьеса для 

распределения Гнеденко – Вейбулла 

 

Задача однозначного определения распределения вероятностей по 

последовательности ее моментов впервые была рассмотрена великим русским 

математиком и механиком П.Л. Чебышевым еще в 1874 году в связи с 

исследованиями по предельным теоремам теории вероятностей. Данная задача 

носит название проблемы моментов, и позже оказалось, что она тесно связана с 

теорией квазианалитических классов функций, общей теорией ортогональных 

многочленов, теорией непрерывных дробей, теорией квадратурных формул для 

приближенного вычисления определенных интегралов. Единственным пробелом в 

работе Чебышева было отсутствие доказательства одного неравенства (был 

намечен только путь доказательства). Только спустя 10 лет, в 1884 году в своей 

диссертации А.А. Марков полностью обосновал проблему моментов Чебышева 

(когда распределение рассматривается на отрезке конечной длины).  

В 1885 году П.Л. Чебышев опубликовал очередной мемуар по данной 

проблеме, в котором он находит новые важные формулы и распространяет все на 

случай функции, заданной в бесконечном интервале. А уже в 1887 году П.Л. 

Чебышев использовал свой метод моментов при доказательстве центральной 

предельной теоремы. В дальнейшем метод моментов не получил широкого 

применения, так как в техническом отношении он оказался намного сложнее, чем 

более мощный и гибкий в аналитическом плане метод характеристических 

функций, предложенный А.М. Ляпуновым в 1900 году. В то же время метод 

моментов Чебышева стал использоваться в математической статистике при 

изучении отклонений эмпирического распределения от теоретического и для 

статистической оценки параметров распределения по результатам наблюдений 

после работы 1984 года основателя математической статистики К. Пирсона.              

Почти одновременно с А. А. Марковым, но всё же несколько позже, 

аналогичные результаты по проблеме моментов опубликовал голландский 

математик Т. Стилтьес, не упоминая о работах П. Л. Чебышева и А. А. Маркова. 
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По этому поводу А. А. Марков написал письмо Ш. Эрмиту, и в ответ на это письмо 

Т. Стилтьес поместил небольшую заметку, в которой признал приоритет русских 

учёных, объяснив, что о работах А. А. Маркова он не мог знать, а заметка П. Л. 

Чебышева ускользнула от его внимания.  

На основании первого тома фундаментальной монографии по теории 

вероятностей и математической статистике [57], а также известной книги [104] 

можно сделать вывод, что в зарубежной научной литературе ничего не известно 

про вклад в проблему моментов П.Л. Чебышева, а есть только проблема моментов 

Стилтьеса (если распределение задано на неотрицательной полуоси) и проблема 

моментов Гамбургера (если распределение задано на всей числовой оси). С 

учетом вышеизложенного, будем называть проблему моментов проблемой 

моментов Чебышёва-Маркова-Стилтьеса.      

 

Критерии однозначного определения распределения неотрицательной 

случайной величины своими моментами 

Имеются различные условия, с помощью которых возможна проверка 

единственности проблемы моментов, являющиеся как достаточными, так и 

необходимыми и достаточными в случае абсолютно непрерывного распределения, 

каким является распределения Гнеденко-Вейбулла. 

Условие Карлемана (см. [57]) для неотрицательной случайной величины 

состоит в проверке следующего условия: 

  

( )
1

2

1

n
n

n


+

−

=

= + , 

где n  – начальный момент случайной величины с плотностью ( )f t  порядка n : 

0

( )n

n t f t dt
+

=  . 
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Критерий Крейна М.Г. заключается в том, что если для абсолютно 

непрерывной неотрицательной случайной величины выполнено условие (см. 

[104]): 

2

2

0

ln ( )

1

f x
dx

x

+
−

 
+ , 

то она не определяется однозначно последовательностью своих моментов  
1n n


+

=
. 

Рассмотрим критерий Карлемана для распределения Гнеденко-Вейбулла.  

В случае распределения Гнеденко-Вейбулла 

1 ( ) 1 ( )

0 0

1
1n t n t

n n

n
t t e dt t e dt

          
 

+ +

− − + − −  
= = =  + 

 
  , 

и условие Карлемана выполняется при определенном условии на значение 

параметра формы  . Действительно: 

1 1

2 2

1 1

1
1 1

n n

n
n n

n n


  

− −
+ +

= =

      
 + =   +  +      
      
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−  
−  + 

 
  
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Но, так как 

( )
1 1

ln 1 ln ln(2 ), ( )
2 2

x x x x x
 

 +  + − + → 
 

  

то  

( )
1 1

ln 1 ln 1 ,
2 2
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x x

n x  

 
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 . 

Следовательно 
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Таким образом, имеем 

( )

1 1 1 1 11
ln 1 ln 1

2 2 2 2 22
2

n n

nn
e e e e e n

       


 
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Итак, 

( )

1
112

22

1 1

1
n

n n

n
e n 



−
+ + −

= =

  
 +   
  

   . 

Ввиду того что 
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Окончательно, получаем: 
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   

Поэтому, только при значении параметра формы 
1

2
   проблема моментов 

для распределения Гнеденко-Вейбулла решается однозначным образом.  

Осуществим теперь проверку условия Крейна, обеспечивающего 

однозначную определенность распределения последовательностью своих 

моментов: 

2

2

0

ln ( )

1

f x
dx

x

+

= 
+  

В случае распределения Гнеденко-Вейбулла с функцией плотности: 

( )1
, 0( )
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x
x e xf x

x

 −   −  = 
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, 

имеем 
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2
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  Первый интеграл, очевидно, сходится. Элементарными средствами 

математического анализа можно доказать также, что  
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+ . 

 Исследуем сходимость третьего интеграла. Имеем 
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Поэтому, по предельному признаку сходимости несобственных интегралов 
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и, при этом,  
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Если же 
1

2
 = , то 

2

2

00

1
ln |1 |

1 2

xdx
x
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= + = +
+  

Таким образом, только при значении параметра формы 
1

2
   

2

2

0

ln ( )

1

f x
dx

x

+

= 
+ , 

что означает однозначную определенность распределения Гнеденко-Вейбулла 

своими моментами в силу выполнения критерия Крейна [104]. 
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Приложение Д. Применение функции восстановления и её аппроксимаций к 

стратегии управления эксплуатационными затратами 

 

Полученные формулы для нахождения функции восстановления могут быть 

применены для стратегии «групповой (или блоковой) политики замен» («block 

replacement policy – BRP» [11, 137]) в задаче обеспечения надёжного и 

эффективного функционирования технологических объектов с позиций 

мониторинга показателей надёжности элементов.   

Согласно ГОСТ Р 27.606–2013 [30]: «Если же отказ не несет угроз 

безопасности, но ведет к утрате изделием готовности к применению по 

назначению, то периодичность замен устанавливают, исходя из заданного уровня 

готовности, обеспечиваемого при оптимальных за-тратах, включающих в себя, в 

том числе, стоимость заменяемых изделий и экономический ущерб от отказов». 

Таким образом, необходим баланс между суммой, потраченной на 

профилактическое обслуживание, и суммой на замены при внезапном отказе. 

В схеме BRP предполагается, что  объект заменяется новым изделием при 

постоянной длине интервала замен 
p

t , независимо от возраста объекта, а также 

замены объекта происходят столько раз, сколько требуется на интервале (0, )pt  при 

внезапных отказах объекта.  

Пусть 
pC  – средняя стоимость профилактического обслуживания, 

fC  – 

средняя стоимость восстановления при отказе ( )p fC C . Средняя стоимость на 

интервале (0, )pt  профилактического обслуживания и восстановления после отказа 

равна ( )p f pC C H t+ , где ( )pH t  – среднее число восстановлений на интервале 

(0, )pt  В качестве критерия оптимальности рассматривается средняя стоимость 

эксплуатационных затрат в единицу времени:  

 

  
(1 ( ))

( )
p o p

p

p

C c H t
R t

t

+
= ,                                               (Д.1) 



175 

 

где /o f pc C C=  – коэффициент затрат. Точка минимума функции (Д.1) дает 

соответствующее значение времени оптимального профилактического 

обслуживания 
pt . Покажем, что в точке 0t  экстремума 

0 0 0( ) ( ) ( )f fR t C H t C h t= = , 

т. е. значение функции ( )R t  определяется плотностью восстановления 0( )h t .  

В самом деле, 

2 2

( ) 1 ( ) ( ) 1 ( )
( ) o o o o

p p

c tH t c H t c h t t c H t
R t C C

t t

− − − −
 = = .                 (Д.2) 

Следовательно, в точке 0t  экстремума 
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что означает 
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и тогда 
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Более того, можно доказать равенство  

                                       
0

0

0

( )
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fC H t
R t
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
 = .                                                (Д.4) 

Действительно, из (Д.2) следует  
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c t H t c h t t c H t
R t C
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тогда, с учетом (Д.3) получаем 

2
00 0 0 0 0

0 3
00

( )( ) 2 ( ) 2(1 ( ))
( )

fo o o
p

C H tc t H t c h t t c H t
R t C

tt

 − + +
 = = . 

Из равенства (Д.4) следует, что характер выпуклости функции ( )R t  в точках 

экстремума совпадает с характером выпуклости функции ( )H t  и осцилляция 
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функции восстановления согласуется с осцилляцией средней стоимости 

эксплуатационных затрат.  

Достаточным условием существования минимума функции ( )R t  является 

условие на коэффициент затрат oс  [134], имеющее в наших обозначениях вид:  

2

2

1
oс

CV


−
,                                                       (Д.5) 

где 2 22 /CV =    – квадрат коэффициента вариации,   и 
2σ  – математическое 

ожидание и дисперсия времени работы между отказами. 

Отметим, что условие (Д.5) не является необходимым. Приведем 

иллюстрацию данного утверждения, служащую контрпримером условию (Д.5). 

Рассмотрим распределение Рэлея, для которого ограничение (Д.5) означает, что 

2,8oc  . Однако, как видно из графика (Рисунок Д.1) при значении коэффициента 

2,6oc = , не удовлетворяющему условию (Д.5), функция ( )R t  имеет вполне 

конкретный минимум.  

 

 

Рисунок Д.1. Графики приближений функции стоимости ( )R t для распределения 

Рэлея при коэффициенте затрат co = 2,6   

 

Более того, при этом же коэффициенте затрат функция стоимости имеет еще 

и максимум. Иными словами, при большем значении интервала 

профилактического обслуживания можно попасть в точку максимума затрат, а из 

асимптотической формулы для функции восстановления (асимптота Смита): 
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2 21 1
( ) ~ , ( )

22
H t t t

  −
 + →
   

 

следует, что ( ) /fR C =   является наименьшим значением функции стоимости. 

Поэтому в этом случае оптимальной стратегией будет замена лишь после 

наступления отказа.  

Заметим, что применение критерия (Д.1) для определения времени 

оптимального профилактического обслуживания требует достаточно точного 

вычисления функции восстановления. Сравнение графиков (Рисунок Д.2) критерия 

(Д.1) показывает значительное расхождение графиков ( )R t  при вычислении 

функции восстановления по методу производящих моментов или дискретизацией 

с графиком ( )R t  по методу [14] с использованием трёх моментов.  

 

 

Рисунок Д.2. Графики приближений функции R(t) для распределения Рэлея при 

коэффициенте затрат со = 10  
 

Соответствующие координаты точек минимума:  0,32;{ 6,28};  

{0,32; 6,22}; {0,22; 5,17} . Сравнение результатов, полученных в данной работе с 

результатами {0,34;  6,17} работы [145] показывают небольшое расхождение 5% 

и 2% соответственно.  
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Приложение Е. НИОКР «Информационно-аналитические системы 

мониторинга для оценки надёжности и качества функционирования 

технологических процессов и объектов нефтегазовой отрасли» 

 

Цель проекта – создать действующий в режиме реального времени 

исследовательский прототип информационно-аналитической системы (ИАС) 

оценки и мониторинга надежности и качества функционирования 

технологического процесса или объекта нефтегазовой отрасли. Создание такого 

уровня мониторинговых систем открывает возможности для перехода к 

управлению локальными объектами на основе малолюдных технологий.  

Данное предложение основано на разработанной авторами информационно-

аналитической технологии, включающей: 

➢ информационную систему сбора данных об отказах оборудования; 

➢ совокупность математических моделей и алгоритмов обработки данных об 

отказах и качестве обслуживания; 

➢ математические модели оценки качества функционирования сложных 

технологических объектов, соответствующих программных средств; 

➢ обучаемые и самообучающиеся интеллектуальные системы диагностики 

(сложных технических систем, работающих в условиях, не допускающих 

отказ функционирования). 

Отдельные компоненты системы прошли апробацию на решение локальных задач. 

Предлагаемый проект призван: 

➢ обеспечить необходимый уровень надежности и безопасности 

технологических объектов и производственных комплексов; 

➢ снизить риски возникновения аварийных ситуаций и минимизировать 

масштабы ущербов; 

➢ создать единое информационное пространство компании за счет 

формирования и обеспечения производственно-технологической 

информации из САУ и АСУ ТП в информационно- управляющие системы.  
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Информационно-аналитические мониторинговые системы должны 

обеспечить требуемое взаимодействие между двумя уровнями управления: 

уровнем управления технологическими процессами, т.е. АСУТП и уровнем 

управления организационно-технологическими системами (уровень ERP-систем).  

Практически введение в эксплуатацию предлагаемых ИАС позволит создать 

новый контур обратной связи для управления процессами планирования, 

перевооружения, реконструкции и развития объектов нефтегазовой отрасли. 

Информация об отказах и состоянии технической части нефтегазовой системы 

поступает с АСУ ТП в ИАС, в которой обрабатывается, а полученные на основе 

этих расчетов оценки и прогнозы передаются на верхний уровень управления, 

т.е. на уровень ERP- системы, например, в подсистему TOPO (следующим этапом 

развития проекта может быть согласование проектируемой ИАС с модулем ТОРО 

ERP SAP). В этой подсистеме планируются ремонты и сроки замены оборудования. 

Эта информация в свою очередь передается на уровень АСУ ТП. В АСДУ данная 

информация необходима для планирования диспетчерских графиков, которые уже 

далее реализуются системой оперативного диспетчерского управления.  

Особенностью данного проекта является его междисциплинарный характер; 

поэтому реализация проекта требует объединения усилий специалистов 

различного профиля. Реализация прототипа ИАС следует принципу системной 

интеграции.  

Конечный результат – прототип ИАС, в которой: на основе предложенных 

методик с помощью разработанных моделей обрабатывается статистическая 

информация об отказах и паспортных характеристиках объектов управления; 

производятся оценки технического состояния, показателей надежности и качества 

функционирования этих объектов 

  На основе полученных оценок производятся расчеты оценки качества 

функционирования системы и оценки рисков, отражающие реальные техническое 

состояние и показатели надежности функционирования технологических объектов. 

Также оцениваются риски возникновения аварийных ситуаций и т д. На основе 

применения Web-технологий производятся расчеты и формируются отчеты по 
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запросу. В ИАС для различных уровней пользователей иерархической АСДУ 

должны быть сформированы формы типовых запросов и отчетов. 

  Мониторинговая информация о качестве функционирования объекта, 

обработанная на моделях, отражающих требования по стандарту ГОСТ Р 57193-

2016 «Системная и программная инженерия. Процессы жизненного цикла систем», 

обеспечивает руководство компании необходимыми данными для принятий 

управленческих решений.  


