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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

 Актуальность темы исследования. Функционирование технических 

изделий (ТИ) наукоемкой продукции высокой точности в условиях 

экстремальных нестационарных ударных механических, тепловых и 

электромагнитных возмущений и воздействия стохастических факторов 

промышленного производства и эксплуатации требует разработки 

методического, алгоритмического и инструментального программного 

обеспечения расчетного обоснования точностных характеристик ТИ на всех 

этапах жизненного цикла. Решению задач, касающихся ударного 

взаимодействия тел в механике и физике, в детерминированной постановке 

посвящено множество работ. Однако, очевидно, что наиболее адекватное 

методическое обеспечение основано на методах стохастического системного 

анализа.
1
 Большой вклад в развитие теории стохастического системного 

анализа внесли Пугачев В.С. (ВВИА им. Н.Е. Жуковского, ИПУ им. В.А. 

Трапезникова, ИПИ РАН), Казаков И.Е., Мальчиков С.В., Евланов Л.Г., 

Гладков Д.И, (ВВИА им. Н.Е. Жуковского), Синицын И.Н. (ВВИА им. Н.Е. 

Жуковского, ИПИ РАН, ФИЦ ИУ РАН), Шин В.И., Андреев Н.И., Сысоев 

Л.П., Шайкин М.Е., Добровидов А.В. (ИПУ им. В.А. Трапезникова), Кибзун 

А.И., Панков А.Р., Мощук Н.К., Рыбаков К.А. (МАИ), Синицын В.И., 

Борисов А.В., Босов А.В., Корепанов Э.Р., Белоусов В.В. (ФИЦ ИУ РАН). 

Вопросам идентификации в задачах системного анализа посвящены работы 

Бахтадзе Н.Н. 

 Техническое изделие, выполненное по определенным стандартам и 

условиям применения, рассматривается как ударная стохастическая 

система (УдСтС). Стохастическое дифференциальное уравнение, 

описывающее ошибки функционирования ТИ как следствие стохастических 

факторов и детерминированных и стохастических ударных воздействий, 

является математической моделью УдСтС. Стохастическое ударное 

воздействие характеризуется ударной случайной функцией (УдСФ). 

Центральной задачей стохастического системного анализа является задача 

анализа одно- и многомерных распределений стохастических процессов 

(СтП) в УдСтС, которые определяют их динамические ошибки 

функционирования. Для решения задачи анализа распределений в УдСтС 

применяют следующие три принципиально различных подхода. Первый 

подход состоит в использовании прямого численного решения 

стохастических уравнений ошибок методом Монте-Карло (методом 

статистического моделирования). Второй подход состоит в 

непосредственном составлении и интегрировании уравнений Фоккера–

Планка–Колмогорова (и его обобщений) для плотности вероятности или 

уравнения Пугачева (и его обобщений) для характеристической функции 

стохастического процесса, заданного стохастическим дифференциальным 

                                           
1
 Пугачев В.С., Синицын И.Н. Теория стохастических систем. – М.: Логос, 2000, 2004. 1000 с. 

[Англ. пер.  Stochastic Systems. Theory and Applications. Singapore. World Scientific, 2001. 908 p.]. 
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уравнением. Третий подход состоит в применении аналитических методов 

для приближенного решения уравнений, определяющих параметры одно- и 

многомерных распределений. К их числу относятся методы нормальной 

аппроксимации и статистической линеаризации, методы моментов, 

семиинвариантов, моментно-семиинвариантные методы и их модификации, 

методы ортогональных разложений и методы структурной параметризации. 

Эти методы позволяют по исходной УдСтС получить детерминированные 

нестационарные уравнения для параметров одно- и многомерных 

распределений.  

 Точное нахождение всех конечномерных вероятностных 

распределений вектора состояния УдСтС, в общем случае невозможно. Оно 

имеет место для линейных и узкого класса нелинейных систем. Поэтому 

актуальна проблема разработки приближенных методов вероятностного 

анализа УдСтС. Решению задач в вероятностной постановке, в том числе 

касающихся ударного взаимодействия тел в механике и физике, посвящено 

много публикаций. Наряду с общими методами нелинейной теории 

выделяют специальные методы, ориентированные на конкретные классы 

дифференциальных стохастических систем (СтС). Например, среди классов 

дифференциальных СтС с импульсными воздействиями получила развитие 

теория импульсных СтС. Особенностью этих работ является то 

обстоятельство, что изучение свойств УдСтС ведется на основе 

их математических моделей из-за трудности проведения натурных 

испытаний. Для проведения расчетных оценок в режиме реального времени 

широкое распространение получили фильтр Калмана и условно-оптимальные 

фильтры Пугачева. Для нестационарных задач расчетной практики 

разработано инструментальное программное обеспечение с использованием 

методического обеспечения на основе канонических разложений (КР), 

вейвлет разложений (ВЛР) и вейвлет канонических разложений (ВЛКР) 

случайных функций. 

 Для решения задачи анализа распределений СтП и обработки 

информации в УдСтС применение вейвлет технологий представляет собой 

актуальную научную проблему стохастического системного анализа. 

Вейвлет анализ позволяет исследовать временные ряды с выраженной 

неоднородностью. В отличие от преобразования Фурье, локализующего 

частоты, но не дающего временного разрешения процесса, и от аппарата -

функций, локализующего моменты времени, но не имеющего частотного 

разрешения, вейвлет преобразование эффективно выявляет как 

низкочастотные, так и высокочастотные характеристики сигнала на разных 

временных масштабах. Вопрос оценки погрешности аппроксимации 

детерминированной функции конечной линейной комбинацией 

ортонормированных вейвлетов с конечным носителем в работе не 

рассматривается, так как это отдельная и сложная задача. 

 Основная цель диссертации заключается в разработке методов и 

алгоритмов для инструментального программного обеспечения (ИПО) 
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вейвлет анализа точности и обработки информации в стохастических 

системах при ударных воздействиях.  

Для ее достижения требуется решить следующие задачи: 

1) разработать методы и алгоритмы построения скалярных и 

векторных УдСФ посредством их ВЛКР; 

2) разработать вейвлет методы и алгоритмы анализа динамической 

точности УдСтС; 

3) изучить возможности использования авторской модификации 

моментно-семиинвариантного метода для анализа точности УдСтС; 

4) для типовых круговых нелинейностей в УдСтС провести 

аналитические расчеты коэффициентов статистической круговой намотанной 

нормальной линеаризации; 

5) разработать методы и алгоритмы вейвлет обработки информации 

в режиме реального времени в линейных и линейных с параметрическими 

шумами УдСтС; 

6) разработать типовую методику анализа точности УдСтС. 

Основные положения, выносимые на защиту: 

1) представлены вейвлет методы построения канонического 

разложения скалярной и векторной ударных функций в заданной области 

изменения аргумента на основе ортогональных вейвлетов с компактным 

носителем; 

2) представлены алгоритмы нахождения неизвестных 

математического ожидания, ковариационной матрицы, матрицы 

ковариационных функций на основе применения метода Галёркина и вейвлет 

разложений (ВЛР) для линейной и линейной с параметрическими шумами 

УдСтС; 

3) представлен вейвлет метод построения оптимального в среднем 

квадратическом (с.к.) линейного оператора для обработки информации и 

разработан вейвлет метод синтеза с.к. оптимальной линейной системы для 

обработки информации в режиме реального времени в случае линейной 

зависимости сигнала от параметров и аддитивной помехи; 

4) представлены вейвлет модификации фильтра Калмана–Бьюси 

обработки информации в линейных УдСтС и линейного фильтра Пугачева 

обработки информации в линейных УдСтС с параметрическими шумами; 

5) представлены основные положения методики анализа точности 

УдСтС. 

Научная новизна, выносимых на защиту результатов состоит в 

следующем: 

1) разработана вейвлет теория точности линейной и линейной с 

параметрическими шумами УдСтС на основе применения метода Галёркина 

и вейвлет разложений; 

2) разработан алгоритм построения с.к. оптимального линейного 

оператора для обработки информации с применением вейвлет технологий; 
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3) разработаны вейвлет модификации фильтра Калмана–Бьюси и 

линейного фильтра Пугачева обработки информации в режиме реального 

времени в линейных и линейных с параметрическими шумами УдСтС 

соответственно. 

Методы исследования, используемые в работе, включают в себя 

методы теории линейных и нелинейных стохастических систем, методы 

теории вейвлетов, методы теории канонических разложений, методы 

оптимизации. 

Объектом исследования являются стохастические системы, 

функционирующие в условиях нестационарных ударных возмущений и под 

воздействием стохастических факторов. 

Предметом исследования являются методы и алгоритмы для 

инструментальных программных средств анализа точности и обработки 

информации в нестационарных СтС при ударных воздействиях. 

Теоретическая и практическая значимость работы.  

Теоретическая значимость работы заключается в разработке и 

обосновании методов анализа точностных характеристик и синтеза систем 

обработки информации в УдСтС на основе ВЛР, КР и ВЛКР. 

Практическая значимость работы состоит в разработке типовой 

методики анализа и синтеза точностных характеристик прецизионной 

информационно-управляющей системы и тестовых примеров. 

Соответствие паспорту специальности. Содержание диссертации 

соответствует: 

- п. 1 "Теоретические основы и методы системного анализа, 

оптимизации, управления, принятия решений и обработки 

информации", 

- п. 4 "Разработка методов и алгоритмов решения задач системного 

анализа, оптимизации, управления, принятия решений и обработки 

информации", 

в части вейвлет методов стохастического анализа и обработки информации. 

Реализация результатов работы. Результаты диссертации 

реализованы в 3-х НИР ИПИ АН СССР (1987-1992гг.), в 3-х НИР ИПИ РАН 

(2009-2011 гг.), в 2-х проектах РФФИ (№№ 15-07-002244 и 10-07-00021),  

в 3-х НИОКТР ФИЦ ИУ РАН (2018, 2019, 2020 гг.). 

Апробация работы. Основные результаты докладывались на 

следующих конференциях и научных семинарах: Международная научная 

конференция "Системы компьютерной математики и их приложения", г.  

Смоленск, 2017, 2018, 2019, 2020; XIII Международная научно-практическая 

конференция "Современные информационные технологии и ИТ-

образование", г. Москва, 2018 г; Международный семинар по проблемам 

устойчивости стохастических моделей, г. Светлогорск, 2012 г.; VI 

международный рабочий семинар "Прикладные задачи теории вероятности и 

математической статистики, связанные с моделированием информационных 
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систем", г. Светлогорск, 2012 г.; XXIX Международный семинар по 

проблемам устойчивости стохастических моделей, г. Москва, 2011 г.  

Публикации. Основные научные результаты изложены в 22 

публикациях, в том числе в 16 статьях в изданиях, рекомендованных ВАК 

РФ,  в 3 журналах, входящих в международные базы цитирования Scopus и 

Web of science [1,13,14]. 

Личный вклад. Все результаты, изложенные в диссертации, 

принадлежат лично автору. В совместных работах автор принимал 

непосредственное участие в разработке методов и алгоритмов анализа и 

синтеза СтС, реализации вычислительных процедур: 

- формулировки и доказательства теорем в статьях  

[8-11,13,14] и в сборнике трудов конференций [6]; 

- идея замыкания системы уравнений для моментов в статье [1]; 

- идея вейвлет метода построения с.к. оптимального линейного 

оператора для обработки информации в сборнике трудов конференций [6]; 

- результаты аналитических расчетов коэффициентов статистической 

круговой намотанной нормальной линеаризации для типовых круговых 

нелинейных СФ в статье [7] и в сборниках трудов конференций [1,2];  

- разработка тестовых примеров, реализация вычислительных 

процедур в виде соответствующего ИПО в статьях [1-6,12-16] и в сборниках 

трудов конференций [3-5]. 

Структура и объем диссертации. Диссертация содержит введение, 

четыре раздела, заключение, список сокращений и условных обозначений, 

список литературы, приложение, список публикаций автора по теме 

диссертации. В конце каждого раздела приведены выводы. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении дается обоснование актуальности диссертационной 

работы и ее научная новизна, формулируются основные цели и задачи 

диссертационного исследования, приводятся основные положения, 

выносимые на защиту, а также кратко сформулировано основное содержание 

глав диссертации. 

В разделе 1 "Обзор работ и постановка задач" вводятся основные 

понятия и определения. Приводятся определения удара и ударного 

воздействия. Вводится понятие ударной стохастической системы в качестве 

технического изделия, выполненного по определенным стандартам и 

условиям применения и подвергающегося УВ и стохастическим факторам в 

процессе эксплуатации. При этом УВ характеризуется векторной ударной 

случайной функцией (УдСФ). Приводятся основные характеристики УВ, 

использующиеся в теории действительных стохастических ударных 

процессов. Дается обзор работ в области теории ударных стохастических 

систем. Для анализа и обработки ударных воздействий предлагается 

использовать вейвлет анализ, позволяющий одинаково хорошо выявлять 
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низкочастотные и высокочастотные характеристики сигнала на разных 

временных масштабах. Для исследования выделены вопросы анализа 

динамической точности и обработки информации в УдСтС. 

Сформулированы теоретические и прикладные задачи исследования и 

разработки. 

Раздел 2 "Вейвлет методы и алгоритмы построения канонических 

разложений ударных случайных функций" посвящен корреляционной 

теории вейвлет канонических разложений для УдСФ. В подразделах 2.1 и 2.2 

приведены основные понятия вейвлет анализа и описан разработанный 

автором метод построения вейвлет КР для УдСФ. Идея ВЛКР была впервые 

высказана В.С. Пугачевым и И.Н. Синицыным
 2

. Предлагаемый метод 

является дальнейшим развитием алгоритмов построения КР случайных 

функций, разработанных В.С. Пугачевым и И.Н. Синицыным, на основе 

ортонормированных вейвлет базисов, порожденных вейвлетами с конечными 

носителями, например, вейвлетами  Добеши. В подразделе 2.1 доказана 

теорема о построении КР скалярной УдСФ на основе ортогонального 

разложения ее ковариационной функции по двумерному 

ортонормированному вейвлет базису. На основании этой теоремы разработан 

алгоритм построения ВЛКР скалярной УдСФ. В подразделе 2.2 изложен 

метод построения ВЛКР для векторных УдСФ.  

Векторная УдСФ Х(t)=[𝑋1(𝑡),… ,𝑋𝑙(𝑡)]𝑇 задана на промежутке . В 

пространстве 𝐿2  определен ортонормированный базис вейвлетов с 

конечными носителями вида 

{
00
(𝑡);

𝑗𝑘
(𝑡)},                                                  (1) 

где 
00
(𝑡) = (𝑡)– масштабирующая функция; 

𝑗𝑘
(𝑡) = √2𝑗(2𝑗𝑡 − 𝑘) ; 


00
(𝑡) = (𝑡) – материнский вейвлет; 

𝑗𝑘
(𝑡) = √2𝑗 (2𝑗𝑡 − 𝑘); j=1,2,…,𝐽𝑡; 

k=0,1,…,2𝑗 − 1; 𝐽𝑡 – максимальный уровень вейвлет разрешения. Считается, 

что каждый элемент ковариационной функции 𝐾𝑋(𝑡1, 𝑡2) принадлежит 

пространству 𝐿2([0,𝑇] × ([0,𝑇]). В пространстве 𝐿2([0, 𝑇] × ([0, 𝑇]) 
определен двумерный ортонормированный вейвлет базис в виде тензорного 

произведения двух вейвлет базисов вида (1) для случая, когда 

масштабирование по обеим переменным происходит одинаково:  

𝛷00
𝐴 (𝑡1, 𝑡2) = 

00
(𝑡1)00(𝑡2)  , 𝛹𝑗𝑘𝑛

𝐻 (𝑡1, 𝑡2) = 
𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2), 

𝛹𝑗𝑘𝑛
𝐵 (𝑡1, 𝑡2) = 

𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2) , 𝛹𝑗𝑘𝑛

𝐷 (𝑡1, 𝑡2) = 
𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2),         (2) 

j=0,1,…,𝐽𝑡; n,k=0,1,…,2𝑗 − 1. 

Тогда действительная функция 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) имеет сходящееся ВЛР: 

𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) = 𝑎𝑡ℎ1ℎ2𝛷00

𝐴
(𝑡1, 𝑡2)+∑ ∑ ∑ [ℎ𝑗𝑘𝑛

𝑡ℎ1ℎ2𝛹𝑗𝑘𝑛
𝐻
(𝑡1, 𝑡2)+

2𝑗−1

𝑛=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

 

                                           
2
 Pugachev V.S., I.N.Sinitsyn.Lectures on Functional Analysis and Applications. –Scientific, Singapore, 

1999. 

],0[ T

],0[ T
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+𝑏𝑗𝑘𝑛
𝑡ℎ1ℎ2𝛹𝑗𝑘𝑛

𝐵 (𝑡1, 𝑡2) + 𝑑𝑗𝑘𝑛
𝑡ℎ1ℎ2𝛹𝑗𝑘𝑛

𝐷 (𝑡1, 𝑡2)] ,                                               (3) 

где 𝑎𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)

𝑇

0

𝑇

0
𝛷00
𝐴 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2, 

ℎ𝑗𝑘𝑛
𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐻 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 ,  

𝑏𝑗𝑘𝑛
𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐵 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 , 

𝑑𝑗𝑘𝑛
𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐷 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2. 

Для удобства одномерный вейвлет базис (1) представлен в виде: 

𝑓1(𝑡) = 
00
(𝑡), 𝑓2(𝑡) = 

00
(𝑡) ,  

𝑓(𝑡) = 
𝑗𝑘
(𝑡)  для  = 2𝑗 + 𝑘 + 1;  𝑗 = 1,2,… , 𝐽𝑡; 𝑘 = 0,1,… , 2𝑗 − 1; (4) 

𝐿𝑡 = 2 ∗ 2𝐽
𝑡
;   = 3,4,… , 𝐿𝑡.       

Введены вспомогательные случайные величины (СВ)  

𝐴𝑟 = ∑ ∫ 𝑓𝑟
𝑇

0
(𝑡)𝑋ℎ(𝑡)𝑑𝑡

𝑙
ℎ=1       (𝑟 = 1,2,… , 𝐿𝑡). 

Определены ковариационные моменты СВ 𝐴 : 

𝑘µ = 𝑀[𝐴
°𝐴µ°̅̅̅̅ ] = ∑ ∑ ∫ ∫ 𝑓(𝑡1)

𝑇

0

𝑇

0
𝑓µ(𝑡2)𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2
𝑙
ℎ2

𝑙
ℎ1

(, µ = 1,2, … , 𝐿𝑡).  

На основании (3) получены выражения: 

𝑘11 = ∑ ∑ 𝑎𝑡ℎ1ℎ2𝑙
ℎ2

𝑙
ℎ1

;   𝑘12 = ∑ ∑ ℎ000
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

  ;       

𝑘21 = ∑ ∑ 𝑏000
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

   ;   𝑘22 = ∑ ∑ 𝑑000
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

;     

𝑘µ = ∑ ∑ 𝑑𝑗𝑘𝑛
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

 для  = 2𝑗 + 𝑘 + 1;  µ = 2𝑗 + 𝑛 + 1; 

𝑗 = 1,2,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1,… , 2𝑗 − 1. 
Остальные взаимные ковариационные моменты равны нулю: 𝑘µ = 0. 

Независимые СВ 𝑉  определены рекуррентными соотношениями: 

𝐴1
° = 𝑉1, 𝐴𝑟

° = −∑ 𝑐𝑟
𝑟−1
=1 𝑉 + 𝑉𝑟  (𝑟 = 2,3,… , 𝐿

𝑡),  
где  

𝑐1 = −
𝑘1

𝐷1
   ( = 2,3,… , 𝐿𝑡);   

𝑐µ = −
1

𝐷µ
(𝑘µ − ∑ 𝐷𝑐µ𝑐

µ−1
=1 )  (µ = 2,3,… , − 1;  = 3,4,… , 𝐿𝑡);              (5) 

𝐷1 = 𝐷[𝑉1] = 𝑘11;  𝐷 = 𝐷[𝑉] = 𝑘 − ∑ 𝐷|𝑐|
2−1

=1   ( = 2,3,… , 𝐿𝑡).           (6) 

Координатные функции 𝑥ℎ(𝑡) представлены в виде линейных комбинаций 

базисных вейвлет функций вида (1): 

𝑥ℎ(𝑡) = ∑ ∑ [𝑎𝑗𝑘
𝑥ℎ 

𝑗𝑘
(𝑡) + 𝑑𝑗𝑘

𝑥ℎ 
𝑗𝑘
(𝑡)]2𝑗−1

𝑘=0
𝐽𝑡

𝑗=0  ( = 1,2,… , 𝐿𝑡) .               (7) 

Получен следующий результат. 

Теорема 1. Пусть выполнены следующие условия: 

1) векторная УдСФ Х(t)=[𝑋1(𝑡),… , 𝑋𝑙(𝑡)]
𝑇 на [0, 𝑇] обладает 

конечными моментами первого и второго порядка; 

2)  элементы ковариационной функции 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) принадлежат 

пространству 𝐿2([0, 𝑇] × ([0, 𝑇]). 
Тогда ВЛКР составляющих  векторной УдСФ Х(t)=[𝑋1(𝑡), … , 𝑋𝑙(𝑡)]

𝑇 

на [0,T] имеет вид 𝑋ℎ(𝑡) = 𝑚ℎ
𝑥(𝑡) + ∑ 𝑉𝑥ℎ(𝑡)

𝐿𝑡
=1   (ℎ = 1,… , 𝑙), где  
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𝑉1, … , 𝑉𝐿𝑡– некоррелированные СВ с нулевым математическим ожиданием и 

дисперсиями 𝐷, вычисляемыми по формулам (5), (6); 

𝑥1(𝑡),… , 𝑥𝐿𝑡(𝑡) – координатные функции, определяемые формулами (7). 

В подразделе 2.3 приведена краткая информация о КР линейных и 

квазилинейных преобразований УдСФ. В подразделе 2.4 даны сведения о 

моделировании УдСФ. 

В приложении П.1 проведен сравнительный анализ построения КР и 

ВЛКР на примере типовой скалярной случайной функции (СФ) X(t) с 

математическим ожиданием, равным 0, и ковариационной функцией 

𝐾𝑋(𝑡, ) = Dexp(−|𝑡 − |) на [0,15]. Для сравнения рассматривались ВЛКР, 

построенное на основе базиса Хаара, и КР, построенное на основе 

тригонометрического базиса 𝑓2+1(𝑡) = 𝑐𝑜𝑠
2𝜋𝑡 

𝑇
 ( = 0,1,2, … ),  

  𝑓2(𝑡) = 𝑠𝑖𝑛
2𝜋𝑡 

𝑇
 ( = 1,2,… ), 𝑇 = 15, 𝑡 ∈ [0,15]. Точность методов 

оценивалась по формуле:  = √
1

𝑛
∑ (𝐷𝑎(𝑡𝑖) − 𝐷𝑇(𝑡𝑖))

2𝑛
𝑖=1 , где 𝐷𝑎(𝑡𝑖) – 

аппроксимирующее значение дисперсии в точке 𝑡𝑖, 𝐷𝑇(𝑡𝑖)  –точное значение 

дисперсии, равное в данном случае единице. В таблице 1 приведены 

значения  в зависимости от числа членов n в каноническом разложении X(t) 

на основе тригонометрического базиса и в вейвлет каноническом разложении 

X(t) для  𝐽𝑡=2. 

 

     Таблица 1  

Вид КР КР на основе тригонометрического базиса ВЛКР 

n 11 21 31 41 51 8 

 0.5355 0.3435 0.2533 0.1986 0.1649 0,0057 

  

 Вывод. Как показали вычислительные эксперименты, уже при 

наименьшем уровне вейвлет разрешения  𝐽𝑡=2 точность ВЛКР значительно 

выше аналогичного метода КР, построенного на основе тригонометрического 

базиса. 

В приложении П.2 дано описание ИПО построения ВЛКР СФ "СтИТ-

КРВЛ.1". В приложении П.3 приведены примеры аналитического построения 

ВЛКР скалярных СФ. В приложении П.4 изложен рекуррентный алгоритм 

построения ВЛКР двумерной векторной СФ в заданной области изменения 

аргумента.  

Раздел 3 "Вейвлет методы и алгоритмы анализа точности 

стохастических систем при ударных воздействиях" посвящен методике 

анализа точности СтС в условиях сложных детерминированных и 

стохастических ударных воздействий, трудно реализуемых при натурных 

испытаниях. Ярким примером УдСтС являются прецизионные 

информационно-управляющие системы (ИУС), особенностями которых 

являются скоротечность воздействия на них СФ и фильтрационные свойства 

измерительно-управляющих подсистем. При этом нелинейные 
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стохастические эффекты не успевают развиваться. В таких случаях 

практически приемлемой моделью УдСтС являются нестационарные 

линейные дифференциальные СтС или нестационарные линейные 

дифференциальные СтС с параметрическими шумами (или приводимые к 

ним), описывающие накапливающиеся систематические и случайные 

ошибки. 

В подразделах 3.1 и 3.2  приведены корреляционные методы и 

алгоритмы анализа точности линейных и линейных с параметрическими 

шумами УдСтС, разработанные автором на основе применения метода 

вейвлетов Хаара и метода Галёркина (далее – метод вейвлетов Хаара–

Галеркина (МВЛХГ))
34

. Главным преимуществом применения МВЛХГ по 

сравнению с другими приближенными методами решения задачи Коши 

является замена решения системы обыкновенных дифференциальных 

уравнений, содержащих ударные функции (дельта-функцию или кусочно-

непрерывные функции), решением системы линейных алгебраических 

уравнений (СЛАУ) с постоянными коэффициентами с сохранением точности 

приближенных вычислений. 

 Рассмотрена линейная УДСтС, заданная стохастическим 

дифференциальным уравнением (СДУ) при 𝑡 ∈[𝑡0, 𝑇]
56

:  

𝑌 ̇ = 𝑎𝑌 + 𝑎0 + 𝑏𝑉, 𝑌(𝑡0) = 𝑌0 ,  (8) 

где 𝑌  – вектор состояния системы размерности p; V – белый шум (в 

широком смысле) размерности 𝑛𝑣 с интенсивностью =(t); a=a(t), 𝑎0 =
𝑎0(𝑡), b=b(t) – известные коэффициенты размерности (p× 𝑝), (p×1), (p× 𝑛𝑣) 

соответственно. Для применения МВЛХГ осуществлен переход к 

соответствующему СДУ при 𝑡̅ ∈ [0,1] с помощью замены переменных 

𝑡̅ =
(𝑡−𝑡0)

(𝑇−𝑡0)
 : 

𝑌′̅ = 𝑎̅(𝑡̅)𝑌̅ + 𝑎0̅̅ ̅(𝑡̅) + 𝑏̅(𝑡̅)𝑉̅(𝑡̅)         (9) 

с начальным условием 𝑌̅(0)=𝑌0 и белым шумом 𝑉̅(𝑡̅) с интенсивностью  

̅(𝑡̅)=( (𝑇 − 𝑡0)𝑡̅ + 𝑡0). Здесь  приняты следующие обозначения:  

𝑌̅(𝑡̅)=Y( (𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑉̅(𝑡̅) = 𝑉((𝑇 − 𝑡0)𝑡̅ + 𝑡0),  
𝑎̅(𝑡̅)=( 𝑇 − 𝑡0)𝑎( (𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑎̅0(𝑡̅)=( 𝑇 − 𝑡0)𝑎0( (𝑇 − 𝑡0)𝑡̅ + 𝑡0), 

𝑏̅(𝑡̅)=( 𝑇 − 𝑡0)𝑏( (𝑇 − 𝑡0)𝑡̅ + 𝑡0), 

где штрихом отмечена операция дифференцирования по безразмерному 

времени 𝑡̅. В дальнейшем для простоты записи положим 𝑡̅ = 𝑡. 
 Как известно, в основе корреляционной теории нестационарных СтП 

лежат известные обыкновенные дифференциальные уравнения: 

                                           
3
 Xu J. and Shann W. Galerkin-wavelet methods for two point value problems. Numer. Math. 63, pp. 123-

144, 1992 
4
 U. Lepik. Numerical solution of differential equations using Haar wavelets. Mathematics and 

Computers in Simulation, 68 (2005), pp. 127-143 
5
 Пугачев В.С., Синицын И.Н. Стохастические дифференциальные системы. Анализ и фильтрация. 

– 2-е изд., доп. – М.: Наука. Гл. ред. Физ.-мат. лит., 1990. – 632 с. – ISBN 5-02-014392-8. 
6
 Пугачев В.С., Синицын И.Н. Теория стохастических систем. – М.: Логос, 2000, 2004. 1000 с. 

[Англ пер.  Stochastic Systems Theory and Applications. Singapore. World Scientific, 2001. 908 p.] 
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𝑚𝑦̇ = 𝑎𝑚𝑦 + 𝑎0 ,  𝑚𝑦(𝑡0) = 𝑚0,          (10) 

𝐾𝑦̇ = 𝑎𝐾𝑦 + 𝐾𝑦𝑎
𝑇 + 𝑏𝑏𝑇 ,  𝐾(𝑡0) = 𝐾0,         (11) 

𝜕𝐾𝑦(𝑡1, 𝑡2)

𝜕𝑡2
= 𝐾𝑦(𝑡1, 𝑡2)𝑎(𝑡2)

𝑇  при 𝑡1 < 𝑡2,  

𝐾𝑦(𝑡1, 𝑡1) = 𝐾𝑦(𝑡1) при 𝑡1 > 𝑡2, 𝐾𝑦(𝑡1, 𝑡2) = 𝐾𝑦(𝑡2, 𝑡1)
𝑇,      (12) 

где 𝑚𝑦 – вектор математического ожидания, 𝐾𝑦 – ковариационная матрица, 

𝐾𝑦(𝑡1, 𝑡2) – матрица ковариационных функций. 

Для решения уравнения  

𝑚̅′ = 𝑎̅𝑚̅ + 𝑎̅0, 𝑚̅(0) = 𝑚0,     (13) 

определяющего математическое ожидание 𝑚̅=M𝑌̅, будем считать, что 

элементы векторно-матричных функций 𝑚̅′, 𝑚̅, 𝑎̅, 𝑎̅0  принадлежат 

пространству 𝐿2[0,1] и имеют ВЛР по ортонормированному вейвлет базису 

Хаара
7
: 

𝑤1(𝑡) = (𝑡) = 
00
(𝑡) = {

1 при 𝑡 ∈ [0,1),

0  при 𝑡[0,1);
 𝑤2(𝑡) = (𝑡) = 

00
(𝑡) =

{
 
 

 
 1 при  𝑡 ∈ [0,

1

2
)

−1 при  𝑡 ∈ [
1

2
, 1)

0  при 𝑡[0,1);

 

𝑤𝑖(𝑡) = 
𝑗𝑘
(𝑡) =

{
 
 

 
 √2𝑗  при  𝑡 ∈ [

𝑘

𝑙
,
𝑘+0.5

𝑙
) ,

−√2𝑗 при  𝑡 ∈ [
𝑘+0.5

𝑙
,
𝑘+1

𝑙
)

0  при 𝑡 [
𝑘

𝑙
,
𝑘+1

𝑙
) .

,   (14) 

где k=0,1,…,l-1; l=2𝑗; j=1,2,…,𝐽𝑡; 𝐿𝑡 = 2 ∗ 2𝐽
𝑡
; i=l+k+1; i=3,4,…, 𝐿𝑡; 𝐽𝑡 – 

натуральное число (максимальный уровень вейвлет разрешения). 

Определены интегралы от вейвлетов Хаара: 

𝑝𝑖(𝑡) = ∫ 𝑤𝑖(𝑡)𝑑𝑡   (𝑖 = 1,2, … , 𝐿𝑡),
𝑡

0
   (15) 

где  𝑝1(𝑡) = {
𝑡  при 𝑡 ∈ [0,1),

0  при 𝑡[0,1),
  𝑝𝑖(𝑡) =

{
 
 

 
 √2𝑗 (𝑡 −

𝑘

𝑙
)  при  𝑡 ∈ [

𝑘

𝑙
,
𝑘+0.5

𝑙
) ,

√2𝑗 (
𝑘+1

𝑙
− 𝑡)  при  𝑡 ∈ [

𝑘+0.5

𝑙
,
𝑘+1

𝑙
) ,

0  при 𝑡 [
𝑘

𝑙
,
𝑘+1

𝑙
) .

 

Для каждой составляющей 𝑚̅ℎ = 𝑚̅ℎ(𝑡) ( h=1,…,p) вектора 

 𝑚̅ = 𝑚̅(𝑡) уравнение (13) дает выражения: 

𝑚̅ℎ
′ = ∑ 𝑎̅ℎ𝑘(𝑡)𝑚̅𝑘

𝑝
𝑘=1 (𝑡) + 𝑎̅0ℎ(𝑡), 𝑚̅ℎ(0) = 𝑚0ℎ .  (16) 

Вейвлет разложение 𝑚̅ℎ
′  по ортонормированному базису вейвлетов Хаара 

имеет вид: 

𝑚̅ℎ
′ = ∑ 𝑐ℎ𝑖𝑤𝑖(𝑡),

𝐿
𝑖=1   где 𝑐ℎ𝑖 = ∫ 𝑚̅ℎ

′ ()
1

0
𝑤𝑖()𝑑.   (17) 

Тогда решение (16) относительно 𝑚̅ℎ можно представить в виде  

𝑚̅ℎ(𝑡) = ∫ ∑ 𝑐ℎ𝑖
𝐿
𝑖=1

𝑡

0
𝑤𝑖()𝑑+𝑚0ℎ = ∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ  (ℎ = 1, … , 𝑝).  𝐿

𝑖=1  (18) 

После подстановки (17), (18) в (16) получено соотношение:  

                                           
7
 Добеши И. Десять лекций по вейвлетам. - Москва-Ижевск: НИЦ "Регулярная и хаотическая 

динамика", 2004, 464 стр. 
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∑ 𝑐ℎ𝑖𝑤𝑖(𝑡) = ∑ 𝑎̅ℎ𝑘(𝑡)
𝑝
𝑘=1  [∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ    

𝐿
𝑖=1 ] 𝐿

𝑖=1 + 𝑎̅0ℎ(𝑡). (19) 

Проецируя (19) на базис 𝑤𝑖(𝑡), приходим к системе (L× 𝑝) линейных 

алгебраических уравнений: 

𝑐ℎ𝑠 = ∑ ∑ 𝑐ℎ𝑖𝑔𝑠
ℎ𝑘𝑖 +𝐿

𝑖=1
𝑝
𝑘=1 𝑚0ℎ  ∑ 𝑞𝑠

ℎ𝑘 + 
𝑠
ℎ𝐿

𝑖=1    (s=1,2,…,L; h=1,2,…,p).  (20) 

где 𝑔𝑗
ℎ𝑘𝑖 = ∫ 𝑎̅ℎ𝑘()𝑝𝑖()

1

0
𝑤𝑗()𝑑, 𝑞𝑗

ℎ𝑘 = ∫ 𝑎̅ℎ𝑘()
1

0
𝑤𝑗()𝑑, 


𝑗
ℎ = ∫ 𝑎̅0ℎ()

1

0
𝑤𝑗()𝑑. 

Получен новый результат. 

Теорема 2.  

Пусть выполнены условия: 

1) вектор состояния Y=Y(t) размерности p определяется  линейной 

дифференциальной СтС (8), система (8) приведена к виду (9); 

2) скалярные функции 𝑚̅ℎ′, 𝑚̅ℎ, 𝑎̅ℎ𝑘, 𝑎̅0ℎ  (h,k=1,2,…,p) 

принадлежат пространству 𝐿2[0,1]. 

Тогда решение системы дифференциальных уравнений (13) для 

составляющих 𝑚̅ℎ вектора математического ожидания стохастического 

процесса 𝑌̅(t) имеет вид  

𝑚̅ℎ(𝑡) = ∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ  (ℎ = 1, … , 𝑝),𝐿
𝑖=1     

где 𝑝𝑖(𝑡) – известные функции вида (15), коэффициенты 𝑐ℎ𝑖 определяются 

СЛАУ (20). 

 Аналогичные методы и теоремы разработаны для решения системы 

дифференциальных уравнений (11) относительно элементов ковариационной 

матрицы 𝐾𝑦  и для решения системы дифференциальных уравнений (12) 

относительно элементов матрицы ковариационных функций стохастического 

процесса Y(t), описываемого линейной СтС (8). 

В качестве линейной СтС с параметрическими шумами 

рассматривалась СтС вида 

𝑌̇ = 𝑎(𝑡)𝑌 + 𝑎0(𝑡) + (𝑏0(𝑡) + ∑ 𝑏𝑛(𝑡)𝑌𝑛)
𝑝
𝑛=1 𝑉(𝑡)   (21) 

при 𝑡 ∈[𝑡0, 𝑇] с начальным условием Y(0)=𝑌0. Здесь Y – вектор состояния 

размерности p, V(t) – вектор белых шумов в строгом смысле размерности 𝑛𝑣 с 

интенсивностью (t); a(t), 𝑎0(𝑡), 𝑏0(𝑡), 𝑏𝑛(𝑡), (t) – известные матричные 

функции размерностей 𝑝 × 𝑝, 𝑝 × 1, 𝑝 × 𝑛𝑣, 𝑝 × 𝑛𝑣, 𝑛𝑣 × 𝑛𝑣 соответственно. 

Как известно, для данной системы получены точные корреляционные 

уравнения
8
: 

000 )(, mtmaamm  ,     (22) 

00

1 1 1

0000 )(),()( KtKKmmbbmbbbbbbKaaKK hllh

p

h

p

h

p

l

T

lhh

T

h

T

h

TT   
  



, (23) 

)(),(,)(),(
),(

111221

2

21 tKttKtattK
t

ttK T 




.  (24) 

                                           
8
 Пугачев В.С., Синицын И.Н. Стохастические дифференциальные системы. Анализ и фильтрация. 

– 2-е изд., доп. – М.: Наука. Гл. ред. Физ.-мат. лит., 1990. – 632 с. – ISBN 5-02-014392-8. 
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Для нахождения неизвестных математического ожидания m(t), 

ковариационной матрицы K(𝑡)  и матрицы ковариационных функций 

𝐾(𝑡1, 𝑡2) , повторяя предыдущие рассуждения, были разработаны 

аналогичные методы, позволяющие заменить процедуру интегрирования 

системы обыкновенных дифференциальных уравнений решением системы 

линейных алгебраических уравнений с постоянными коэффициентами. 

В приложении П.5 дано сравнение решения задачи анализа точности 

УдСтС, полученного с применением вейвлет методов, с точным решением на 

примере информационно-управляющей системы: 

{
𝑌1̇ = 𝑌2,

𝑌2̇ = −𝜔
2𝑌1 − 2𝜀𝜔𝑌2 + 𝑆 + 𝑛𝑡

уд
+ 𝑉𝑡 .

 

Здесь 𝜀, 𝜔 – постоянные параметры, 𝑆 – полезное постоянное ускорение, 

𝑛𝑡
уд

 – регулярная часть ударного ускорения: 𝑛𝑡
уд
= 𝑛𝑚𝛿(𝑡 − 𝑡уд). 

Уравнения для составляющих математического ожидания M[Y(𝑡)] =
[𝑚1, 𝑚2]

Т имеют вид: 

{
𝑚̇1 = 𝑚2,

𝑚̇2 = −𝜔
2𝑚1 − 2𝜀𝜔𝑚2 + 𝑆 + 𝑛𝑡

уд
.
 

Точное решение для 𝑚1(𝑡) 9: 

𝑚1(𝑡) =
𝑆2

0
∫ 𝑒−𝜀𝜔(𝑡−𝜏)𝑠𝑖𝑛
𝑡

𝑡0
0(𝑡 − 𝜏)𝑑𝜏 + 𝐼2

1,  0 = 𝜔√1 − 𝜀
2, 

𝐼2
1 = {

0,    если 𝑡 < 𝑡уд,

𝑛𝑚
2

0
𝑒−𝜀𝜔(𝑡−𝑡уд)𝑠𝑖𝑛0(𝑡 − 𝑡уд),    если 𝑡 ≥ 𝑡уд.

 

Исходные данные: 𝑛𝑚 = 8; 𝑡уд = 2,1875;  𝜔 = 1;  𝜀 = 0,7; 𝑆 = 1, 10, 20. 

Точность методов оценивалась ошибкой приближения: 

𝜎 =
1

𝑁
√∑ (𝑚𝑖

1 − 𝑚𝑖
1ап)

2𝑁
𝑖=1 , 

где 𝑚𝑖
1 – точное значение, 𝑚𝑖

1ап– приближенной значение. Результаты 

вычислительных экспериментов приведены на рис. 1. 

 

Рисунок 1– Графики  𝑚1(𝑡) для 𝑆 = 1, 10, 20 

В таблице 2 приведены значения погрешности 𝜎 вычисления 𝑚1(𝑡) с 

применением МВЛХГ для  J=3 и J=5. 

                                           
9
 Пугачев В.С., Синицын И.Н. Теория стохастических систем. – М.: Логос, 2000, 2004. 1000 с. 

[Англ пер.  Stochastic Systems Theory and Applications. Singapore. World Scientific, 2001. 908 p.] 
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Таблица 2  

Метод S 𝜎 

МВХ (J=3) 1 0,0785 

МВХ (J=5) 0,0086 

МВХ (J=3) 10 0,0751 

МВХ (J=5) 0,0083 

МВХ (J=3) 20 0,0717 

МВХ (J=5) 0,0081 

 

 Вывод. При решении задачи Коши для системы обыкновенных 

дифференциальных функций, содержащих дельта-функцию, МВЛХГ 

позволяет получить приближенное решение с точностью 𝜎 менее 10% при 

J=3, менее 1% при J=5.  

 В приложении П.6 дано описание ИПО "СтС-ВЛ-Анализ" для анализа 

динамической точности УдСтС. 

В подразделе 3.3 при исследовании долговременных нестационарных 

воздействий, когда нелинейные возмущения существенны, предлагается 

использовать модифицированный моментно-семиинвариантный метод 

(ММСМ), предложенный автором для определения математического 

ожидания m(t) и ковариационной матрицы K(t) с учетом определенного 

набора старших моментов вектора состояния Y=Y(t)𝑅𝑝 вида 𝑀(𝑌𝑗1
𝑙1 …𝑌𝑗𝑘

𝑙𝑘), 

где 𝑗1, … , 𝑗𝑘 – выборка k различных чисел из J={1,2,…,p}; 𝑙1, … , 𝑙𝑘 – выборка k 

чисел из ℒ ={1,2,…,N}, удовлетворяющих условию 3 ≤ 𝑙1 +⋯+ 𝑙𝑘 ≤ 𝑁.  

 В приложении П.7 на тестовом примере приведен сравнительный 

анализ ММСМ, МНА, МЭА. Вычислительные эксперименты показали, что 

ММСМ дает более высокую точность (менее 2%) по сравнению с МНА и 

МЭА определения математического ожидания и ковариационной матрицы 

вектора состояния СтС, удовлетворяющих замкнутой системы обыкновенных 

дифференциальных уравнений для математического ожидания и 

ковариационной матрицы, а также определенного набора вероятностных 

старших моментов. В приложении П.8 дано описание ИПО "СтС-Анализ-

ММСМ", которое реализует ММСМ 

В подразделе 3.4 рассматривается метод аналитического 

моделирования круговых нелинейных УдСФ, основанный на эквивалентной 

статистической круговой намотанной нормальной линеаризации нелинейных 

преобразований. Круговой случайной величиной X называется случайный 

угол, принимающий значения в пределах 0≤X2. По определению 

нормальным намотанным на единичную окружность распределением 

называется распределение круговой случайной величины X, связанной с 

линейной нормально распределенной случайной величиной NX  

соотношением: )2(mod NXX  . Для типовых нелинейных функций 

определены значения коэффициентов статистической линеаризации.  
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В подразделе 3.5 описана методика анализа динамической точности 

УдСтС на основе уравнения ошибок, являющихся следствием 

стохастических факторов и детерминированных и стохастических ударных 

воздействий. В рамках теории марковских СтС, выбрана удобная для 

практики математическая модель для уравнения ошибок в виде векторного 

стохастического дифференциального уравнения Ито: 

𝑍̇ = 𝑎уд(𝑍, 𝑡) + 𝑏уд(𝑍, 𝑡)𝑉, 𝑍(𝑡0) = 𝑍0,    (25) 

где Z=Z(t) – p-мерный вектор состояния, V=V(t) – n-мерный белый шум в 

строгом смысле, 𝑎уд(𝑍, 𝑡) и 𝑏уд(𝑍, 𝑡) – известные матричные функции 

соответствующих размерностей. Систематические ошибки определяются 

вектором математических ожиданий 𝑚𝑧(𝑡), а случайные ошибки – 

ковариационной матрицей 𝐾𝑍(t) и матрицей ковариационных функций 

𝐾𝑍(𝑡, 𝑡
′).  

 Если уравнение ошибок УдСтС имеет вид нестационарной линейной 

дифференциальной СтС (8) с коэффициентами 𝑎(𝑡) = 𝑎
уд(𝑡), 

 𝑎0(𝑡) = 𝑎0
уд(𝑡), 𝑏(𝑡) = 𝑏уд(𝑡), определяющими УВ, то в основе 

корреляционной теории точности лежат уравнения (10)-(12), а вейвлет 

алгоритмы расчетов вектора математических ожиданий 𝑚𝑍(𝑡), 
ковариационной матрицы 𝐾𝑍(t), матрицы ковариационных функций 𝐾𝑍(𝑡, 𝑡

′) 
определяются соответствующими вейвлет методами и алгоритмами, 

описанными в подразделе 3.1. 

 Если уравнение ошибок имеет вид нестационарной линейной 

дифференциальной СтС с параметрическими шумами (21), то в основе 

корреляционной теории точности лежат уравнения (22)–(24), а для расчетов 

математических ожиданий, ковариационной матрицы и матрицы 

ковариационных функций применяются соответствующие вейвлет методы и 

алгоритмы, описанные в подразделе 3.2. 

Если УдСтС является квазилинейной вида (25), где  

𝑎уд(𝑍, 𝑡) = 𝑎0
уд(𝑡) + 𝑎1

уд(𝑡)𝑍 + 𝜇𝐹̅0𝑡 ,   

𝑏уд(𝑍, 𝑡) = 𝑏0
уд(𝑡) + ∑ 𝑏ℎ

уд𝑝
ℎ=1 (𝑡)𝑍ℎ + √𝜇𝐹̅1𝑡 ,   

𝜇 – малый параметр, функции 𝜇𝐹̅0𝑡 и √𝜇𝐹̅1𝑡 зависят от времени, параметров 

УВ и инструментальных ошибок, то в простейшем случае можно 

использовать решение, полученное с применением МНА. Более точные 

результаты получаются с применением ММСМ. Если функции 𝜇𝐹̅0𝑡 и √𝜇𝐹̅1𝑡, 
вследствие их малости, аппроксимировать функциями времени, то для 

расчета точности квазилинейной УдСтС применяются корреляционные 

вейвлет методы и алгоритмы, разработанные для анализа точности линейных 

УдСтС с параметрическими шумами вида (21). 

 В приложении П.9 приведены результаты анализа точности УдСтС на 

примере прецизионной ИУС при продольно-поперечном ударе. 

 В разделе 4 "Вейвлет методы и алгоритмы обработки 

информации в режиме реального времени в стохастических системах 

при ударных воздействиях" рассматриваются вейвлет методы и алгоритмы 
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обработки информации в режиме реального времени в линейных УдСтС. В 

подразделе 4.1 доказана общая теорема о построении вейвлет с.к. 

оптимального линейного оператора в виде набора формальных правил, 

описывающих реакцию оператора на базисные вейвлет функции. В 

подразделе 4.2 доказана теорема о построении вейвлет с.к. оптимального 

линейного оператора для случая линейной зависимости сигнала от 

параметров и аддитивной помехи. 

Наблюдаемый сигнал Z(t) и сигнал W(s), подлежащий 

воспроизведению, представлены в виде суммы линейной комбинации 

известных функций со случайными коэффициентами и помехи в виде 

некоторой случайной функции: 

𝑍(𝑡) = ∑ 𝑈𝑟
𝑁
𝑟=1 𝜉𝑟(𝑡) + 𝑋(𝑡),   𝑡 ∈ 𝑇, 𝑇 = [𝑡0, 𝑡1],    (26) 

𝑊(𝑠) = ∑ 𝑈𝑟
𝑁
𝑟=1 𝜁𝑟(𝑠) + 𝑌(𝑠),   𝑠 ∈ 𝑆,   𝑆 = [𝑠0, 𝑠1] .   (27) 

Здесь X(t), Y(s) –СФ с нулевыми математическими ожиданиями; 

𝜉1, . . . , 𝜉𝑁 , 𝜁1, … , 𝜁𝑁(𝑠) – заданные структурные функции; 𝑈1, … , 𝑈𝑁 – 

случайные величины с нулевыми математическими ожиданиями и не 

коррелированные со случайными функциями X(t) и Y(s). 

 Требуется найти такой оператор 𝐴𝑡, чтобы СФ 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡)      (28) 

была с.к. оптимальной оценкой сигнала 𝑊(𝑠). Для того, чтобы линейный 

оператор 𝐴𝑡 был с.к. оптимальным, необходимо и достаточно, чтобы он 

удовлетворял уравнению
10

: 

𝐴𝑡[𝐾𝑋(𝑡, 𝜏)] = 𝐾𝑌𝑋(𝑠, 𝜏) + ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 {𝜁𝑝(𝑠) − 𝐴𝑡[𝜉𝑝(𝑡)]}𝜉𝑞(𝜏). (29) 

Здесь 𝐾𝑋(𝑡, 𝜏) = 𝑀[𝑋(𝑡)𝑋(𝜏)̅̅ ̅̅ ̅̅ ],  𝐾𝑌𝑋(𝑠, 𝜏) = 𝑀[𝑌(𝑠)𝑋(𝜏)̅̅ ̅̅ ̅̅ ], 𝛾𝑝𝑞 = 𝑀[𝑈𝑝𝑈𝑞̅̅̅̅ ]. 

В пространстве 𝐿2(T) определим ортонормированный базис вейвлетов 

с конечными носителями вида (1): 

 {𝜑00
𝑡 (𝑡), 𝜓𝑗𝑘

𝑡 (𝑡)}     (30) 

где j=1,2,…,𝐽𝑡; k=0,1,…, 2𝑗 − 1; 𝐽𝑡– максимальный уровень разрешения. 

Аналогично, в пространстве 𝐿2(S) определим ортонормированный вейвлет 

базис вида (1): 

{𝜑00
𝑠 (𝑠), 𝜓𝑗𝑘

𝑠 (𝑠)}     (31) 

где j=1,2,…,𝐽𝑠; k=0,1,…, 2𝑗 − 1; 𝐽𝑠– максимальный уровень разрешения. 

Пусть функции 𝜉1, . . . , 𝜉𝑁 ∈ 𝐿
2[𝑡0, 𝑡1]  и, как следствие, представимы в 

виде сходящихся вейвлет рядов: 


𝑝
(𝑡) = 𝑎𝑝



00
𝑡 (𝑡) + ∑ ∑ 𝑑𝑝𝑗𝑘

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑡 (𝑡)  (𝑝 = 1,… ,𝑁), (32) 

где 𝑎𝑝

= ∫ 

𝑝
(𝑡)

𝑇

00
𝑡 (𝑡)𝑑𝑡,  𝑑𝑝𝑗𝑘


= ∫ 

𝑝
(𝑡)

𝑇

𝑗𝑘
𝑡 (𝑡)𝑑𝑡. 

Пусть функции ζ1, … , ζN(s) ∈ 𝐿
2[𝑠0, 𝑠1] и, как следствие, представимы 

в виде сходящихся вейвлет рядов: 

ζ𝑝(𝑡) = 𝑎𝑝
ζ

00
𝑠 (𝑠) + ∑ ∑ 𝑑𝑝𝑗𝑘

ζ2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑠 (𝑠)  (𝑝 = 1,… ,𝑁),  (33) 

                                           
10

 Синицын И.Н. Канонические представления случайных функций и их применение в задачах 

компьютерной поддержки научных исследований. М.: ТОРУС-ПРЕСС. 2009. 
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где 𝑎𝑝
ζ
= ∫ ζ𝑝(𝑠)𝑆


00
𝑠 (𝑠)𝑑𝑠,  𝑑𝑝𝑗𝑘

ζ
= ∫ ζ𝑝(𝑠)𝑆


𝑗𝑘
𝑠 (𝑠)𝑑𝑠 . 

 Пусть 𝐾𝑋(𝑡, 𝜏) ∈ L
2(𝑇 × 𝑇 ), 𝐾𝑌𝑋(𝑠, ) ∈ L

2(𝑆 × 𝑇 ).  В пространстве 

L2(𝑇 × 𝑇 )  определим двумерный ортонормированный базис путем 

тензорного произведения двух одномерных вейвлет базисов (30) для случая, 

когда масштабирование по обеим переменным происходит одинаково: 

𝛷00
𝑡𝐴(𝑡1, 𝑡2) = 𝜑00

𝑡 (𝑡1)𝜑00
𝑡 (𝑡2),    (34) 

𝛹𝑗𝑘𝑛
𝑡𝐻 (𝑡1, 𝑡2) = 𝜑𝑗𝑘

𝑡 (𝑡1)𝜓𝑗𝑛
𝑡 (𝑡2),    (35) 

𝛹𝑗𝑘𝑛
𝑡𝐵 (𝑡1, 𝑡2) = 𝜓𝑗𝑘

𝑡 (𝑡1)𝜑𝑗𝑛
𝑡 (𝑡2),    (36) 

𝛹𝑗𝑘𝑛
𝑡𝐷 (𝑡1, 𝑡2) = 𝜓𝑗𝑘

𝑡 (𝑡1)𝜓𝑗𝑛
𝑡 (𝑡2),    (37) 

где j=1,…, 𝐽𝑡; k,n=0,1,…, 2𝑗 − 1. Тогда двумерное вейвлет разложение 

𝐾𝑋(𝑡, 𝜏) в L2(𝑇 × 𝑇 ) имеет вид: 

𝐾𝑋(𝑡, 𝜏) = 𝑎
𝑡𝛷00

𝑡𝐴(𝑡, 𝜏) + ∑ ∑ ∑ [ℎ𝑗𝑘𝑛
𝑡 𝛹𝑗𝑘𝑛

𝑡𝐻 (𝑡, 𝜏) + 𝑏𝑗𝑘𝑛
𝑡 𝛹𝑗𝑘𝑛

𝑡𝐵 (𝑡, 𝜏) + 𝑑𝑗𝑘𝑛
𝑡 𝛹𝑗𝑘𝑛

𝑡𝐷 (𝑡, 𝜏)]2𝑗−1
𝑛=0

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 , (38) 

где 𝑎𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)𝑇
𝛷00
𝑡𝐴(𝑡1, 𝑡2)𝑇

𝑑𝑡1𝑑𝑡2, ℎ𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)𝑇

𝛹𝑗𝑘𝑛
𝑡𝐻 (𝑡1, 𝑡2)𝑇

𝑑𝑡1𝑑𝑡2, 

𝑏𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)

𝑇

𝛹𝑗𝑘𝑛
𝑡𝐵 (𝑡1, 𝑡2)

𝑇

𝑑𝑡1𝑑𝑡2, 𝑑𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)

𝑇

𝛹𝑗𝑘𝑛
𝑡𝐷 (𝑡1, 𝑡2)

𝑇

𝑑𝑡1𝑑𝑡2. 

 В пространстве L2(𝑆 × 𝑇 )  определим двумерный ортонормированный 

базис путем тензорного произведения двух одномерных вейвлет базисов (30) 

и (31) для случая, когда масштабирование по обеим переменным происходит 

по-разному: 

𝛷00
𝑠𝐴(𝑠, 𝑡) = 𝜑00

𝑠 (𝑠)𝜑00
𝑡 (𝑡),    (39) 

𝛹𝑗2𝑛
𝑠𝐻(𝑠, 𝑡) = 𝜑00

𝑠 (𝑠)𝜓𝑗2𝑛
𝑡 (𝑡),    (40) 

𝛹𝑗1𝑘
𝑠𝐵 (𝑠, 𝑡) = 𝜓𝑗1𝑘

𝑠 (𝑠)𝜑00
𝑡 (𝑡),    (41) 

𝛹𝑗1𝑘𝑗2𝑛
𝑠𝐷 (𝑠, 𝑡) = 𝜓𝑗1𝑘

𝑠 (𝑠)𝜓𝑗2𝑛
𝑡 (𝑡),   (42) 

где 𝑗1=0,1,…, 𝐽𝑠; k=0,1,…, 2𝑗1 − 1; 𝑗2=0,1,…, 𝐽𝑡; n=0,1,…, 2𝑗2 − 1. Тогда 

двумерное вейвлет разложение 𝐾𝑌𝑋(𝑠, )  в L2(𝑆 × 𝑇 )   имеет вид: 

𝐾𝑌𝑋(𝑠, )  = 𝑎
𝑠𝛷00

𝑠𝐴(𝑠, 𝜏) +∑∑ ℎ𝑗𝑘
𝑠 𝛹𝑗𝑘

𝑠𝐻(𝑠, 𝜏) +∑∑ 𝑏𝑗𝑘
𝑠 𝛹𝑗𝑘

𝑠𝐵(𝑠, 𝜏)

2𝑗−1

𝑘=0

𝐽𝑠

𝑗=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

+ 

+∑ ∑ ∑ ∑ 𝑑𝑗1𝑘𝑗2𝑛
𝑠2𝑗2−1

𝑛=0
𝐽𝑡

𝑗2=0
2𝑗1−1
𝑘=0

𝐽𝑠

𝑗1=0
 𝛹𝑗1𝑘𝑗2𝑛

𝑠𝐷 (𝑠, 𝜏),    (43) 

где 𝑎𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇
𝛷00
𝑠𝐴(𝑠, 𝑡)

𝑆
𝑑𝑡𝑑𝑠, ℎ𝑗𝑘

𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇
𝛹𝑗𝑘
𝑠𝐻(𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠, 

𝑏𝑗𝑘
𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇

𝛹𝑗𝑘
𝑠𝐵(𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠, 𝑑𝑗1𝑘𝑗2𝑛

𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇
𝛹𝑗1𝑘𝑗2𝑛
𝑠𝐷 (𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠. 

Получен следующий результат. 

 Теорема 3. 

Пусть выполняются следующие условия: 

1) наблюдаемый сигнал 𝑍(𝑡) имеет вид (26), сигнал, подлежащий 

воспроизведению, 𝑊(𝑠) имеет вид (27); 

2) 𝜉1, . . . , 𝜉𝑁 ∈ 𝐿
2(𝑇) и имеют ВЛР (32), 𝜁1, … , 𝜁𝑁(𝑠) ∈ 𝐿

2(𝑆) и имеют 

ВЛР (33), 𝐾𝑋(𝑡1, 𝑡2) = 𝑀[𝑋(𝑡1)𝑋(𝑡2)̅̅ ̅̅ ̅̅ ̅] ∈ 𝐿2(𝑇 × 𝑇) и имеет ВЛР (38),  

 𝐾𝑌𝑋(𝑠, 𝑡) = 𝑀[𝑌(𝑠)𝑋(𝑡)̅̅ ̅̅ ̅̅ ] ∈ 𝐿2(𝑆 × 𝑇) и имеет ВЛР (43); 
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3) результат воздействия неизвестного линейного оператор 𝐴𝑡 на 

базисные вейвлет функции вида (30) представляют собой функции, 

принадлежащие 𝐿2(𝑆). 
Тогда с.к. оптимальный линейный оператор 𝐴𝑡, который 

определяется уравнением (29), задается набором формальных правил: 

𝐴𝑡[𝜑𝑗𝑘
𝑡 (𝑡)] = 𝑢𝑗𝑘(𝑠) (𝑗 = 0,1,… , 𝐽

𝑡;  𝑘 = 0,1,… , 2𝑗 − 1), 

𝐴𝑡[𝜓00
𝑡 (𝑡)] = 𝑣00(𝑠),          (44) 

𝐴𝑡[𝜓𝑗𝑘
𝑡 (𝑡)] = 0 (𝑗 = 1,… , 𝐽𝑡;  𝑘 = 0,1,… , 2𝑗 − 1), 

где 

𝑢00(𝑠) = 𝑎00
𝑢 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑00𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 ; 

𝑣00(𝑠) = 𝑎00
𝑣 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑00𝑖𝑛
𝑣 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 ; 

𝑢𝑗𝑘(𝑠) = 𝑎𝑗𝑘
𝑢 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑𝑗𝑘𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 (𝑗 = 1,… , 𝐽𝑡;  𝑘 = 0,1, … , 2𝑗 − 1); 

а параметры 𝑎𝑗𝑘
𝑢 , 𝑑𝑗𝑘𝑖𝑛

𝑢   , 𝑎00
𝑢 , 𝑑00𝑖𝑛

𝑢 , 𝑎00
𝑣 , 𝑑00𝑖𝑛

𝑣   (𝑖 = 0,… , 𝐽𝑠;  𝑛 = 0,1,… , 2𝑖 −

1; 𝑗 = 1,… , 𝐽𝑡 ; 𝑘 = 0,1,… , 2𝑗 − 1) определяются СЛАУ : 

𝑎𝑡𝑎00
𝑢 + 𝑏000

𝑡 𝑎00
𝑣 = 𝑎𝑠 + ∑ 𝛾𝑝𝑞

𝑁
𝑝,𝑞=1 {𝑎𝑝

ζ
− 𝑎𝑝


𝑎00
𝑢 − 𝑑𝑝00


𝑎00
𝑣 }𝑎𝑞    


,       

𝑑000
𝑡 𝑎00

𝑣 + ℎ000
𝑡 𝑎00

𝑢 = ℎ00
𝑠 + ∑ 𝛾𝑝𝑞{𝑎𝑝

ζ
− 𝑎𝑝


𝑎00
𝑢 − 𝑑𝑝00


𝑎00
𝑣 }𝑁

𝑝,𝑞=1 𝑑𝑞00

  ,        

∑ ℎ𝑗𝑘𝑛
𝑡2𝑗−1

𝑘=0 𝑎𝑗𝑘
𝑢 = ℎ𝑗𝑛

𝑠 + ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 {𝑎𝑝

𝜁
− 𝑎𝑝


𝑎00
𝑢 − 𝑑𝑝00


𝑎00
𝑣 }𝑑𝑞𝑗𝑛


        

𝑎𝑡𝑑00𝑖𝑙
𝑢  + 𝑏000

𝑡 𝑑000𝑖𝑙
𝑣  = 𝑏𝑖𝑙

𝑠 + ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 {𝑑𝑝𝑖𝑙

ζ
− 𝑎𝑝


𝑑00𝑖𝑙
𝑢  − 𝑑𝑝00


𝑑000𝑖𝑙
𝑣 }𝑎𝑞


              

𝑑000
𝑡 𝑑000𝑖𝑙

𝑣 + ℎ000
𝑡 𝑑00𝑖𝑙

𝑢 = 𝑑𝑖𝑙00
𝑠 + ∑ 𝛾𝑝𝑞

𝑁
𝑝,𝑞=1 {𝑑𝑝𝑖𝑙

ζ
− 𝑎𝑝


𝑑00𝑖𝑙
𝑢 − 𝑑𝑝00


𝑑000𝑖𝑙
𝑣 }𝑑𝑞00


     

∑ ℎ𝑗𝑘𝑛
𝑡2𝑗−1

𝑘=0 𝑑𝑗𝑘𝑖𝑙
𝑢 = 𝑑𝑖𝑙𝑗𝑛

𝑠 + ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 {𝑑𝑝𝑖𝑙

ζ
− 𝑎𝑝


𝑑00𝑖𝑙
𝑢 − 𝑑𝑝00


𝑑000𝑖𝑙
𝑣 }𝑑𝑞𝑗𝑛


       

Качество с.к. оптимального линейного оператора 𝐴𝑡 определяется с.к. 

оценкой: 

 = ∑ 
𝑝𝑞

𝑝
(𝑠)

𝑁

𝑝,𝑞=1

(
𝑞
(𝑠) − 𝑎𝑞


𝑢00(𝑠) − 𝑑𝑞00


𝑣00(𝑠)) + 

+𝐾𝑌(𝑠, 𝑠) − ((𝑎
𝑠𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑏𝑗𝑘
𝑠2𝑗−1

𝑘=0 𝜓𝑗𝑘
𝑠 (𝑠))𝑢

00
(𝑠)𝐽𝑠

𝑗=0 + ℎ00
𝑠 𝜑00

𝑠 (𝑠)𝑣00(𝑠))            

Пусть выполнены условия теоремы 3 и СФ X(t) представлена в виде 

ВЛКР в соответствие с теоремой 1. Тогда с.к. оптимальная оценка W∗(s) 
сигнала W(s) вычисляется по формуле 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡) =∑𝑈𝑟(𝑎𝑟

𝑢00(𝑠) + 𝑑𝑟00


𝑣00(𝑠))

𝑁

𝑟=1

+ 

+∑ 𝑉(𝑑00
𝑥𝐿𝑡

=1 𝑣00(𝑠) + +∑ ∑ 𝑎𝑗𝑘
𝑥 𝑢𝑗𝑘(𝑠))

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 .   

В приложении П.10 построен вейвлет с.к. оптимальный линейный 

оператор для СтС при ударных воздействиях, описываемых дельта-

функцией. Вычислительные эксперименты показали, что уже при 𝐽𝑡 = 2  и 

𝐽𝑠 = 2 с.к. оценка  качества с.к. оптимального линейного оператора 𝐴𝑡 
равна 0,7973 при значениях сигнала 𝑊(𝑠) ∈ [−12; 10]. В приложении П.11 

дано описание ИПО "Синтез-ВЛ", реализующее методы разделов 4.1 и 4.2 
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В подразделах 4.3 и 4.4 приведены вейвлет модификации фильтра 

Калмана-Бьюси (ФКБ) и линейного фильтра Пугачева (ЛФП) для обработки 

информации в режиме реального времени в УдСтС. Вейвлет ФКБ (ВЛФКБ)  

и вейвлет ЛФП (ВЛЛФП) решают систему линейных алгебраических 

уравнений с постоянными коэффициентами в отличие от ФКБ и ЛФП, 

которые должны интегрировать систему обыкновенных дифференциальных 

уравнений. 

Для линейной с.к. оптимальной обработки информации в линейных 

нестационарных дифференциальных СтС широкое распространение получил 

дифференциальный ФКБ.
11

. Пусть нестационарная дифференциальная СтС 

описывается уравнениями: 

𝑋̇𝑡 = 𝑎0𝑡
уд
+ 𝑎1

уд
𝑋𝑡 + 𝑉1

уд
,     (45) 

𝑍𝑡 = 𝑌̇𝑡 = 𝑏1 𝑋𝑡 + 𝑉2 .     (46) 

Здесь 𝑋𝑡, 𝑌𝑡 – векторы состояния и наблюдения системы, а V1
уд
= V1  и V2 – 

независимые белые шумы (в общем случае негауссовские) с матрицами 1t
уд

 и 

2 интенсивностей. 

 Как известно, в случае невырожденности шумов в наблюдениях 
(|det2| ≠ 0) уравнения с.к. оптимального несмещенного 

дифференциального фильтра имеют вид: 

𝑋̇̂𝑡 = 𝑎0𝑡
уд
+ 𝑎1

уд
𝑋̂𝑡 + 𝛽𝑡(𝑍𝑡 − 𝑏1𝑋̂𝑡), 𝑋̂(𝑡0) = 𝑋̂0,   (47) 

𝛽𝑡 = 𝑅𝑡𝑏1
𝑇2

−1,        (48) 

𝑅̇𝑡 = 𝑎1𝑅𝑡 + 𝑅𝑡𝑎1
𝑇 + 1𝑡

уд
− 𝛽𝑡2𝛽𝑡

𝑇 ,     𝑅(𝑡0) = 𝑅0.    (49) 

Здесь 𝑋̂𝑡 – с.к. оценка 𝑋𝑡, 𝑅𝑡 – ковариационная матрица ошибки фильтрации, 

𝛽𝑡 – матричный коэффициент усиления. Для вычисления 𝑅𝑡 и 𝛽𝑡 не 

требуются результаты измерений, и они вычисляются заранее.  

 В этих условиях уравнение (47) является линейным. После перехода в 

(47) от 𝑡 ∈ [𝑡0, 𝑇] к 𝑡̅ =
𝑡−𝑡0

𝑇−𝑡0
, 𝑡̅ ∈ [0,1],  имеем: 

𝑋̂̅′(𝑡̅) = 𝐴̅0𝑡̅ + 𝐴̅𝑡̅𝑋̂̅(𝑡̅), 𝑋̂̅(0) = 𝑋̂0.    (50) 

где 𝑋̂̅(𝑡̅) = 𝑋̂((𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝐴̅(𝑡̅) = (𝑇 − 𝑡0)[𝑎1 − 𝛽𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)𝑏1], 

𝐴̅0(𝑡̅) = (𝑇 − 𝑡0)[𝑎0𝑡
уд
((𝑇 − 𝑡0)𝑡̅ + 𝑡0) + 𝛽𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)𝑍𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)]. 

Здесь штрих – дифференцирование по безразмерному времени.  

 Пусть 𝑋̂̅ℎ
′ , 𝑋̂̅ℎ, 𝐴̅ℎ𝑘, 𝐴̅ℎ0 (ℎ, 𝑘 = 1,2,… , 𝑝) ∈ 𝐿2[0,1].Согласно МВЛХГ, 

решение (50) относительно 𝑋̂̅ℎ (ℎ = 1,2,… , 𝑝) вектора 𝑋̂̅(𝑡̅)  имеет вид: 

𝑋̂̅ℎ = ∑ 𝑐ℎ𝑖
𝐿
𝑖=1 𝑝𝑖 + 𝑋̂0ℎ .      (51) 

Для нахождения неизвестных параметров 𝑐ℎ𝑖   составлена СЛАУ: 

𝑐ℎ𝑠 = ∑ ∑ 𝑐ℎ𝑖
𝐿
𝑖=1

𝑝
𝑘=1 𝑔𝑠

ℎ𝑘𝑖 + 𝑋̂0ℎ ∑ 𝑞𝑠
ℎ𝑘𝐿

𝑖=1 + 
𝑠
ℎ    (𝑠 = 1,2,… , 𝐿),  (52) 

где 𝑔𝑗
ℎ𝑘𝑖 = ∫ 𝐴̅ℎ𝑘𝑝𝑖

1

0
𝑤𝑗𝑑; 𝑞𝑗

ℎ𝑘 = ∫ 𝐴̅ℎ𝑘
1

0
𝑤𝑗𝑑, 𝑗

ℎ = ∫ 𝐴̅ℎ0
1

0
𝑤𝑗𝑑. 

Получен следующий новый результат. 

                                           
11

 Синицын И.Н. Фильтры Калмана и Пугачева: Монография. Изд. 2-е, перераб. и доп. – М. Логос, 

2007. 
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 Теорема 4.  

Пусть нестационарная дифференциальная СтС описывается 

уравнениями (45), (46); в (50) скалярные функции 𝑋̂̅ℎ
′ , 𝑋̂̅ℎ, 𝐴̅ℎ𝑘, 𝐴̅ℎ0 (ℎ, 𝑘 =

1,2,… , 𝑝) принадлежат пространству 𝐿2[0,1]. Тогда ВЛФКБ определяется 

соотношениями (51), где 𝑝𝑖(𝑡) – известные функции вида (15), 

коэффициенты 𝑐ℎ𝑖 определяются СЛАУ (52). 

В подразделе 4.4 рассмотрена задача фильтрации для линейной 

дифференциальной стохастической системы Ито с параметрическими 

шумами при УВ:  

𝑋̇𝑡 = 𝑎0𝑡 + 𝑎1𝑡𝑋𝑡 + 𝑎𝑡 𝑌𝑡 + (𝑐10𝑡 +∑𝑐1𝑟𝑡𝑌𝑟

𝑛𝑌

𝑟=1

+∑𝑐1,𝑛𝑌+𝑟,𝑡𝑋𝑟

𝑛𝑋

𝑟=1

)𝑉, 

   𝑋(𝑡0) = 𝑋0      ,(53) 

𝑌̇𝑡 = 𝑏0𝑡+𝑏𝑡𝑌𝑡 + 𝑏1𝑡𝑋𝑡 + (𝑐20𝑡 + ∑ 𝑐2𝑟𝑡𝑌𝑟
𝑛𝑌
𝑟=1 + ∑ 𝑐2,𝑛𝑌+𝑟,𝑡𝑋𝑟

𝑛𝑋
𝑟=1 )𝑉. 

   𝑌(𝑡0) = 𝑌0      (54) 

В этом случае уравнения линейного фильтра Пугачева (ЛФП) с векторным 

белым шумом в строгом смысле имеют вид 
12

: 

𝑋̇̂𝑡 = 𝑎0𝑡 + 𝑎𝑡 𝑌𝑡 + 𝑎1𝑡𝑋̂𝑡 + 𝛽𝑡 (𝑍𝑡 − (𝑏0𝑡+𝑏𝑡𝑌𝑡 + 𝑏1𝑡𝑋̂𝑡)) , 𝑋̂(𝑡0) = 𝑋̂0. (55) 

Оптимальный коэффициент 𝛽𝑡 не зависит от текущих измерений в процессе 

фильтрации и вычисляется заранее. Для случая 𝑎𝑡 = 0, 𝑏𝑡 = 0, 𝑏0𝑡 = 0, 

повторяя предыдущие рассуждения, была разработана вейвлет модификация  

ЛФП.  

В приложении 12 построен ВЛФКБ для ИУС в условиях УВ и дано 

описание ИПО "СтС-ВЛ-Фильтр" для моделирования ВЛФКБ.  

В заключении приведены основные результаты диссертации. 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ 

1. Для скалярной и векторной ударных СФ разработаны алгоритмы 

построения вейвлет канонических разложений (теорема 2.1.5 и алгоритм 

2.1.5, теорема 2.2.2 и алгоритм 2.2.2). 

2. В случае линейной УдСтС и линейной УдСтС с параметрическими 

шумами при решении известных замкнутых систем обыкновенных 

дифференциальных уравнений относительно  неизвестных математического 

ожидания, ковариационной матрицы, матрицы ковариационных функций 

разработаны алгоритмы на основе ВЛР, позволяющие заменить решение 

системы обыкновенных дифференциальных уравнений, содержащих ударные 

функции (дельта-функцию или кусочно-непрерывную функцию) решением 

системы линейных алгебраических уравнений с постоянными 

коэффициентами (теоремы 3.1.1, 3.1.2, 3.1.3 и алгоритмы 3.1.1, 3.1.2, 3.1.3; 

теоремы 3.2.1, 3.2.2, 3.2.3 и алгоритмы 3.2.1, 3.2.2, 3.2.3). 

                                           
12

 Синицын И.Н. Фильтры Калмана и Пугачева: Монография. Изд. 2-е, перераб. и доп. – М. Логос, 

2007. 
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3. Для нелинейной УдСтС, когда невозможно выписать замкнутую 

систему обыкновенных дифференциальных уравнений относительно 

неизвестных математического ожидания, ковариационной матрицы, матрицы 

ковариационных функций, предлагается использовать модифицированный 

моментно-семиинвариантный метод (теорема 3.3.1 и алгоритм 3.3.1), 

который позволяет определять вероятностные моменты первого и второго 

порядков с учетом некоторого набора старших начальных моментов. Для 

типовых круговых УдСФ аналитически рассчитаны коэффициенты 

статистической круговой намотанной нормальной линеаризации  

(таблица 3.4.1). 

4. Разработан метод синтеза вейвлет с.к. оптимального линейного 

оператора (теорема 4.1.1) и метод построения вейвлет с.к. оптимального 

линейного оператора в случае линейной зависимости сигнала от параметров 

и аддитивной помехи (теорема 4.2.1 и алгоритмы 4.2.1.1 и 4.2.1.2). 

5. Разработана вейвлет модификация фильтра Калмана-Бьюси  для 

обработки информации в режиме реального времени в линейных УдСтС 

(теорема 4.3.2 и алгоритм 4.3.2) и вейвлет модификация линейного фильтра 

Пугачева для обработки информации в режиме реального времени в 

линейных УдСтС с параметрическими шумами (теорема 4.4.2 и алгоритм 

4.4.2). 

6. Разработаны основные положения методики анализа точности 

УдСтС. 
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