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ВВЕДЕНИЕ 

 Актуальность темы исследования. Функционирование технических изде-

лий (ТИ) наукоемкой продукции высокой точности в условиях экстремальных не-

стационарных ударных механических, тепловых и электромагнитных возмущений и 

воздействия стохастических факторов промышленного производства и эксплуата-

ции требует разработки методического, алгоритмического и инструментального 

программного обеспечения расчетного обоснования точностных характеристик ТИ 

на всех этапах жизненного цикла. Решению задач, касающихся ударного взаимо-

действия тел в механике и физике, в детерминированной постановке посвящено 

множество работ [1-18]. Однако, очевидно, что наиболее адекватное методическое 

обеспечение основано на методах стохастического системного анализа [19,20]. 

Большой вклад в развитие теории стохастического системного анализа внесли Пу-

гачев В.С. (ВВИА им. Н.Е. Жуковского, ИПУ им. В.А. Трапезникова, ИПИ РАН), 

Казаков И.Е., Мальчиков С.В., Евланов Л.Г., Гладков Д.И, (ВВИА им. Н.Е. Жуков-

ского), Синицын И.Н. (ВВИА им. Н.Е. Жуковского, ИПИ РАН, ФИЦ ИУ РАН), 

Шин В.И., Андреев Н.И., Сысоев Л.П., Шайкин М.Е., Добровидов А.В. (ИПУ им. 

В.А. Трапезникова), Кибзун А.И., Панков А.Р., Мощук Н.К., Рыбаков К.А. (МАИ), 

Синицын В.И., Борисов А.В., Босов А.В., Корепанов Э.Р., Белоусов В.В. (ФИЦ ИУ 

РАН). Вопросам идентификации в задачах системного анализа посвящены работы 

Бахтадзе Н.Н. 

 Техническое изделие, выполненное по определенным стандартам и условиям 

применения, рассматривается как ударная стохастическая система (УдСтС). Сто-

хастическое дифференциальное уравнение, описывающее ошибки функционирова-

ния ТИ как следствие стохастических факторов и детерминированных и стохасти-

ческих ударных воздействий, является математической моделью УдСтС. Стохасти-

ческое ударное воздействие характеризуется ударной случайной функцией (УдСФ). 

Центральной задачей стохастического системного анализа является задача анали-

за одно- и многомерных распределений стохастических процессов (СтП) в УдСтС, 

которые определяют их динамические ошибки функционирования. Для решения за-
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дачи анализа распределений в УдСтС применяют следующие три принципиально 

различных подхода. Первый подход состоит в использовании прямого численного 

решения стохастических уравнений ошибок методом Монте-Карло (методом стати-

стического моделирования). Второй подход состоит в непосредственном составле-

нии и интегрировании уравнений Фоккера–Планка–Колмогорова (и его обобщений) 

для плотности вероятности или уравнения Пугачева (и его обобщений) для характе-

ристической функции стохастического процесса, заданного стохастическим диффе-

ренциальным уравнением. Третий подход состоит в применении аналитических ме-

тодов для приближенного решения уравнений, определяющих параметры одно- и 

многомерных распределений. К их числу относятся методы нормальной аппрокси-

мации и статистической линеаризации, методы моментов, семиинвариантов, мо-

ментно-семиинвариантные методы и их модификации, методы ортогональных раз-

ложений и методы структурной параметризации. Эти методы позволяют по исход-

ной УдСтС получить детерминированные нестационарные уравнения для парамет-

ров одно- и многомерных распределений.  

 Точное нахождение всех конечномерных вероятностных распределений век-

тора состояния УдСтС, в общем случае невозможно. Оно имеет место для линейных 

и узкого класса нелинейных систем. Поэтому актуальна проблема разработки при-

ближенных методов вероятностного анализа УдСтС. Решению задач в вероятност-

ной постановке, в том числе касающихся ударного взаимодействия тел в механике и 

физике, посвящено много публикаций. Наряду с общими методами нелинейной 

теории выделяют специальные методы, ориентированные на конкретные классы 

дифференциальных стохастических систем (СтС). Например, среди классов диффе-

ренциальных СтС с импульсными воздействиями получила развитие теория им-

пульсных СтС. Особенностью этих работ является то обстоятельство, что изучение 

свойств УдСтС ведется на основе их математических моделей из-за трудности про-

ведения натурных испытаний. Для проведения расчетных оценок в режиме реаль-

ного времени широкое распространение получили фильтр Калмана и условно-

оптимальные фильтры Пугачева. Для нестационарных задач расчетной практики 

разработано инструментальное программное обеспечение с использованием мето-
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дического обеспечения на основе канонических разложений (КР), вейвлет разложе-

ний (ВЛР) и вейвлет канонических разложений (ВЛКР) случайных функций. 

 Для решения задачи анализа распределений СтП и обработки информации в 

УдСтС применение вейвлет технологий представляет собой актуальную научную 

проблему стохастического системного анализа. Вейвлет анализ позволяет исследо-

вать временные ряды с выраженной неоднородностью. В отличие от преобразова-

ния Фурье, локализующего частоты, но не дающего временного разрешения про-

цесса, и от аппарата дельта-функций, локализующего моменты времени, но не име-

ющего частотного разрешения, вейвлет преобразование эффективно выявляет как 

низкочастотные, так и высокочастотные характеристики сигнала на разных времен-

ных масштабах. Вопрос оценки погрешности аппроксимации детерминированной 

функции конечной линейной комбинацией ортонормированных вейвлетов с конеч-

ным носителем в работе не рассматривается, так как это отдельная и сложная зада-

ча. 

 Основная цель диссертации заключается в разработке методов и алгорит-

мов для инструментального программного обеспечения (ИПО) анализа точности и 

обработки информации в стохастических системах при ударных воздействиях с 

применением вейвлет технологий.  

Для ее достижения требуется решить следующие задачи: 

1) разработать методы и алгоритмы построения скалярных и векторных 

УдСФ посредством их ВЛКР; 

2) разработать вейвлет методы и алгоритмы анализа динамической точно-

сти УдСтС; 

3) изучить возможности использования авторской модификации момент-

но-семиинвариантного метода для анализа точности УдСтС; 

4) для типовых круговых нелинейностей в УдСтС провести аналитические 

расчеты коэффициентов статистической круговой намотанной нормальной линеа-

ризации; 
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5) разработать методы и алгоритмы вейвлет обработки информации в ре-

жиме реального времени в линейных и линейных с параметрическими шумами 

УдСтС; 

6) разработать типовую методику анализа точности УдСтС.  

Основные положения, выносимые на защиту: 

1) представлены вейвлет методы построения канонического разложения 

скалярной и векторной ударных функций в заданной области изменения аргумента 

на основе ортогональных вейвлетов с компактным носителем; 

2) представлены алгоритмы нахождения неизвестных математического 

ожидания, ковариационной матрицы, матрицы ковариационных функций на основе 

применения метода Галёркина и вейвлет разложений (ВЛР) для линейной и линей-

ной с параметрическими шумами УдСтС; 

3) представлен вейвлет метод построения оптимального в среднем квадра-

тическом (с.к.) линейного оператора для обработки информации и разработан 

вейвлет метод синтеза с.к. оптимальной линейной системы для обработки инфор-

мации в режиме реального времени в случае линейной зависимости сигнала от па-

раметров и аддитивной помехи; 

4) представлены вейвлет модификации фильтра Калмана–Бьюси обработ-

ки информации в линейных УдСтС и линейного фильтра Пугачева обработки ин-

формации в линейных УдСтС с параметрическими шумами; 

5) представлены основные положения методики анализа точности УдСтС. 

Научная новизна, выносимых на защиту результатов состоит в следующем: 

1) разработана вейвлет теория точности линейной и линейной с парамет-

рическими шумами УдСтС на основе применения метода Галёркина и вейвлет раз-

ложений; 

2) разработан алгоритм построения с.к. оптимального линейного операто-

ра для обработки информации с применением вейвлет технологий; 

3) разработаны вейвлет модификации фильтра Калмана–Бьюси и линейно-

го фильтра Пугачева обработки информации в режиме реального времени в линей-

ных и линейных с параметрическими шумами УдСтС соответственно. 
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Методы исследования, используемые в работе, включают в себя методы 

теории линейных и нелинейных стохастических систем, методы теории вейвлетов, 

методы теории канонических разложений, методы оптимизации. 

Объектом исследования являются стохастические системы, функциониру-

ющие в условиях нестационарных ударных возмущений и под воздействием стоха-

стических факторов. 

Предметом исследования являются методы и алгоритмы для инструмен-

тальных программных средств расчетного обоснования точности динамических и 

точностных характеристик нестационарных СтС при ударных воздействиях. 

Теоретическая и практическая значимость работы. Теоретическая зна-

чимость работы заключается в разработке и обосновании методов и алгоритмов 

анализа точностных характеристик и синтеза систем обработки информации в 

УдСтС на основе ВЛР, КР и ВЛКР. 

Практическая значимость работы состоит в разработке типовой методики 

анализа и синтеза точностных характеристик прецизионной информационно-

управляющей системы и тестовых примеров. 

Соответствие паспорту специальности. Содержание диссертации соответ-

ствует: 

- п. 1 "Теоретические основы и методы системного анализа, оптимизации, 

управления, принятия решений и обработки информации", 

- п. 4 "Разработка методов и алгоритмов решения задач системного анализа, 

оптимизации, управления, принятия решений и обработки информации", 

в части вейвлет методов стохастического анализа и обработки информации. 

Реализация результатов работы. Результаты диссертации реализованы в 3-

х НИР ИПИ АН СССР (1987-1992гг.), в 3-х НИР ИПИ РАН (2009-2011 гг.), в 2-х 

проектах РФФИ (№№ 15-07-002244 и 10-07-00021), в 3-х НИОКТР ФИЦ ИУ РАН 

(2018, 2019, 2020 гг.). 

Апробация работы. Основные результаты докладывались на следующих 

конференциях и научных семинарах: Международная научная конференция "Си-

стемы компьютерной математики и их приложения", г.  Смоленск, 2017, 2018, 2019, 
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2020; XIII Международная научно-практическая конференция "Современные ин-

формационные технологии и ИТ-образование", г. Москва, 2018 г; Международный 

семинар по проблемам устойчивости стохастических моделей, г. Светлогорск, 2012 

г.; VI международный рабочий семинар "Прикладные задачи теории вероятности и 

математической статистики, связанные с моделированием информационных си-

стем", г. Светлогорск, 2012 г.; XXIX Международный семинар по проблемам 

устойчивости стохастических моделей, г. Москва, 2011 г.  

Публикации по теме диссертации. Основные научные результаты изложе-

ны в 22 публикациях, в том числе в 16 статьях в изданиях, рекомендованных ВАК 

РФ, в 3 журналах, входящих в международные базы цитирования Scopus и Web of 

science [1,13,14]. 

Личный вклад. Все результаты, изложенные в диссертации, принадлежат 

лично автору. В совместных работах автор принимал непосредственное участие в 

разработке методов и алгоритмов анализа и синтеза СтС, реализации вычислитель-

ных процедур: 

- формулировки и доказательства теорем в статьях  

[8-11,13,14] и в сборнике трудов конференций [6]; 

- идея замыкания системы уравнений для моментов в статье [1]; 

- идея вейвлет метода построения с.к. оптимального линейного оператора 

для обработки информации в сборнике трудов конференций [6]; 

- результаты аналитических расчетов коэффициентов статистической круго-

вой намотанной нормальной линеаризации для типовых круговых нелинейных СФ 

в статье [7] и в сборниках трудов конференций [1,2];  

- разработка тестовых примеров, реализация вычислительных процедур в 

виде соответствующего ИПО в статьях [1-6,12-16] и в сборниках трудов конферен-

ций [3-5]. 

Структура и содержание диссертации. Диссертация содержит введение, 

четыре главы, приложение, заключение, список сокращений, библиографию, список 

публикаций автора по теме диссертации. В конце каждой главы приведены выводы 

по главе. 
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В разделе 1 "Обзор работ и постановка задач" вводятся основные понятия 

и определения. Приводятся определения удара и ударного воздействия. Вводится 

понятие ударной стохастической системы в качестве технического изделия, выпол-

ненного по определенным стандартам и условиям применения и подвергающегося 

УВ и стохастическим факторам в процессе эксплуатации. При этом УВ характери-

зуется векторной ударной случайной функцией (УдСФ). Приводятся основные ха-

рактеристики УВ, использующиеся в теории действительных стохастических удар-

ных процессов. Дается обзор работ в области теории ударных стохастических си-

стем. Для анализа и обработки ударных воздействий предлагается использовать 

вейвлет анализ, позволяющий одинаково хорошо выявлять низкочастотные и высо-

кочастотные характеристики сигнала на разных временных масштабах. Для иссле-

дования выделены вопросы анализа динамической точности и обработки информа-

ции в УдСтС. Сформулированы теоретические и прикладные задачи исследования и 

разработки. 

Раздел 2 "Вейвлет методы и алгоритмы построения канонических раз-

ложений ударных случайных функций" посвящен корреляционной теории 

вейвлет канонических разложений для УдСФ. В подразделах 2.1 и 2.2 приведены 

основные понятия вейвлет анализа и описан разработанный автором метод постро-

ения вейвлет КР для УдСФ. Идея ВЛКР была впервые высказана В.С. Пугачевым и 

И.Н. Синицыным[22]. Предлагаемый метод является дальнейшим развитием алго-

ритмов построения КР случайных функций, разработанных В.С. Пугачевым и И.Н. 

Синицыным, на основе ортонормированных вейвлет базисов, порожденных вейвле-

тами с конечными носителями, например, вейвлетами  Добеши. В подразделе 2.1 

доказана теорема о построении КР скалярной УдСФ на основе ортогонального раз-

ложения ее ковариационной функции по двумерному ортонормированному вейвлет 

базису. На основании этой теоремы разработан алгоритм построения ВЛКР скаляр-

ной УдСФ. В подразделе 2.2  доказана теорема о построении ВЛКР векторной 

УдСФ на основе ортогонального разложения элементов ее ковариационной функ-

ции по двумерному ортонормированному вейвлет базису. На основании теоремы 

разработан алгоритм построения ВЛКР векторной УдСФ.  В подразделе 2.3 приве-
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дена краткая информация о КР линейных и квазилинейных преобразований УдСФ. 

В подразделе 2.4 даны сведения о моделировании УдСФ. 

Раздел 3 "Вейвлет методы и алгоритмы анализа точности СтС при 

ударных воздействиях" посвящен методике анализа точности СтС в условиях 

сложных детерминированных и стохастических ударных воздействий, трудно реа-

лизуемых при натурных испытаниях. Ярким примером УдСтС являются прецизи-

онные информационно-управляющие системы (ИУС), особенностями которых яв-

ляются скоротечность воздействия на них СФ и фильтрационные свойства измери-

тельно-управляющих подсистем. При этом нелинейные стохастические эффекты не 

успевают развиваться. В таких случаях практически приемлемой моделью УдСтС 

являются нестационарные линейные дифференциальные СтС или нестационарные 

линейные дифференциальные СтС с параметрическими шумами (или приводимые к 

ним), описывающие накапливающиеся систематические и случайные ошибки. 

В подразделах 3.1 и 3.2  приведены корреляционные методы и алгоритмы 

анализа точности линейных и линейных с параметрическими шумами УдСтС, раз-

работанные автором на основе применения метода вейвлетов Хаара и метода Га-

лёркина (далее – метод вейвлетов Хаара–Галеркина (МВЛХГ)) [23,24] для решения 

известных систем обыкновенных дифференциальных уравнений для нахождения 

неизвестных параметров. Главным преимуществом применения МВЛХГ по сравне-

нию с другими приближенными методами решения задачи Коши является замена 

решения системы обыкновенных дифференциальных уравнений, содержащих удар-

ные функции (дельта-функцию или кусочно-непрерывные функции), решением си-

стемы линейных алгебраических уравнений (СЛАУ) с постоянными коэффициен-

тами с сохранением точности приближенных вычислений. 

В подподразделе 3.3 при исследовании долговременных нестационарных 

воздействий, когда нелинейные возмущения существенны, предлагается использо-

вать модифицированный моментно-семиинвариантный метод (ММСМ), предло-

женный автором для определения математического ожидания m(t) и ковариацион-

ной матрицы K(t) с учетом определенного набора старших моментов вектора состо-

яния Y=Y(t)𝑅𝑝 вида 𝑀(𝑌𝑗1
𝑙1 …𝑌𝑗𝑘

𝑙𝑘), где 𝑗1, … , 𝑗𝑘 – выборка k различных чисел из 
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J={1,2,…,p}; 𝑙1, … , 𝑙𝑘 – выборка k чисел из ℒ ={1,2,…,N}, удовлетворяющих усло-

вию 3 ≤ 𝑙1 +⋯+ 𝑙𝑘 ≤ 𝑁.  

В подразделе 3.4 рассматривается метод аналитического моделирования кру-

говых нелинейных УдСтС, основанный на эквивалентной статистической круговой 

намотанной нормальной линеаризации нелинейных преобразований. Для типовых 

нелинейных функций определены значения коэффициентов статистической линеа-

ризации.  

 В подразделе 3.5 описана методика анализа динамической точности УдСтС 

на основе уравнения ошибок, являющихся следствием стохастических факторов и 

ударных воздействий. В рамках теории марковских СтС, выбрана удобная для прак-

тики математическая модель для уравнения ошибок в виде векторного стохастиче-

ского дифференциального уравнения Ито.  

 В разделе 4 "Вейвлет методы и алгоритмы обработки информации в 

режиме реального времени в стохастических системах при ударных воздей-

ствиях" рассматриваются вейвлет методы и алгоритмы обработки информации в 

режиме реального времени в линейных УдСтС. В подразделе 4.1 доказана общая 

теорема о построении вейвлет с.к. оптимального линейного оператора в виде набора 

формальных правил, описывающих реакцию оператора на базисные вейвлет функ-

ции. В подразделе 4.2 доказана теорема о построении вейвлет с.к. оптимального ли-

нейного оператора для случая линейной зависимости сигнала от параметров и адди-

тивной помехи, получены формулы для вычисления с.к. оценки качества этого опе-

ратора и с.к. оценки требуемого выходного сигнала. 

В подразделах 4.3 и 4.4 приведены вейвлет модификации фильтра Калмана-

Бьюси (ФКБ) и линейного фильтра Пугачева (ЛФП) для обработки информации в 

режиме реального времени в УдСтС. Вейвлет ФКБ (ВЛФКБ) и вейвлет ЛФП 

(ВЛЛФП) решают систему линейных алгебраических уравнений с постоянными ко-

эффициентами в отличие от ФКБ и ЛФП, которые должны интегрировать систему 

обыкновенных дифференциальных уравнений, содержащих ударные функции.  

 В заключении приведены основные результаты диссертации. Приложение 

содержит обширный материал с описанием ИПО и тестовых примеров.  
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1. ОБЗОР РАБОТ И ПОСТАНОВКА ЗАДАЧ 

1.1. Обзор работ в области теории ударных стохастических 

систем 

Как известно [1-4], в технике ударом называют взаимодействие материаль-

ных систем, приводящее к конечному изменению их скоростей за бесконечно ма-

лый промежуток времени, называемый временем удара T. Оно не должно быть 

больше наименьшего периода собственных колебаний системы 𝑇0 = 2𝜋 0⁄ . Со-

гласно [1-4] в детерминированной теории различают простые (в виде однополярно-

го короткого импульса) и сложные (в виде совокупности импульсов одного и раз-

ных знаков с наложенными колебаниями) ударные воздействия (УВ). В отличие от 

простого удара сложное УВ может охватывать несколько периодов собственных 

колебаний. Системы могут подвергаться не только одиночным ударам (простым и 

сложным), но также последовательности ударов. 

Решению задач, касающихся ударного взаимодействия тел в механике и фи-

зике, посвящено в детерминированной постановке множество работ, например,  

[4-18]. Технические изделия (ТИ) наукоемкой продукции высокой точности функ-

ционируют в условиях экстремальных нестационарных ударных механических, 

тепловых и электромагнитных возмущений и воздействия стохастических факторов 

промышленного производства и эксплуатации. Адекватной математической моде-

лью, описывающей поведение ТИ под воздействием внешних условий, может быть 

только стохастическая. Техническое изделие, выполненное по определенным 

стандартам и условиям применения, рассматривается как ударная стохастическая 

система (УдСтС). Ударное воздействие характеризуется ударной случайной функ-

цией (УдСФ) X=X(t,U) времени t и параметра U. 

Технические изделия в процессе эксплуатации подвергаются интенсивным 

УВ. Причинами ударов могут быть механические столкновения, электромагнитные 

импульсы, взрывы, аварийные режимы при неправильном обращении с оборудова-

нием. Результаты УВ на изделия сложны и многообразны. Поэтому вводят различ-

ные показатели ударостойкости. Для того чтобы гарантировать удовлетворительное  
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функционирование изделий системы в условиях УВ, их подвергают испытаниям 

путем приложения контрольных эталонных УВ согласно рекомендациям ГОСТ 

28213-89 (МЭК 68-2-27-87) [3]. Создание соответствующего испытательного обору-

дования связано с одной стороны с глубоким пониманием существа УВ, а с другой 

стороны необходимо сложное дорогостоящее и узкоспециализированное оборудо-

вание. Поэтому актуальна задача разработки методов и алгоритмов анализа точно-

сти УдСтС на основе ее математической модели. Стохастическое дифференциаль-

ное уравнение, описывающее ошибки функционирования ТИ как следствие стоха-

стических факторов и детерминированных и стохастических ударных воздействий, 

рассматривается в качестве математической модели УдСтС. 

Центральной задачей стохастического системного анализа УдСтС является 

задача анализа нестационарных одно- и многомерных распределений. Для решения 

задачи анализа вероятностных распределений в УдСтС применяют следующие три 

принципиально различных подхода. Первый подход состоит в использовании стати-

стических методов обработки экспериментальных данных, например, прямых чис-

ленных расчетов  методом Монте-Карло. Второй подход состоит в непосредствен-

ном составлении и интегрировании уравнения Фоккера–Планка–Колмогорова для 

плотности вероятности и его обобщений или уравнения Пугачева для характери-

стической функции и его обобщений для стохастического процесса, заданного сто-

хастическим дифференциальным уравнением. Третий подход состоит в применении 

аналитических методов для приближенного решения уравнений, определяющих па-

раметры нестационарных одно- и многомерных распределений. К их числу отно-

сятся методы нормальной аппроксимации (МНА) и статистической линеаризации 

(МСЛ), методы моментов (ММ) и семиинвариантов (МС), моментно-

семиинвариантные методы (МСМ) и их модификации, методы ортогональных раз-

ложений (МОР) и методы структурной параметризации. Эти методы позволяют по 

исходной УдСтС получить детерминированные нестационарные уравнения для па-

раметров одно- и многомерных вероятностных распределений. 

Точное нахождение всех конечномерных вероятностных распределений век-

тора состояния УдСтС, в общем случае невозможно. Оно имеет место для линейных 
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и узкого класса нелинейных систем. Поэтому актуальна проблема разработки при-

ближенных методов вероятностного анализа УдСтС. Решению задач в вероятност-

ной постановке, в том числе касающихся ударного взаимодействия тел в механике и 

физике, посвящено также много публикаций, например, [25-35]. 

Широкое применение для описания математических моделей сложных си-

стем в условиях случайных возмущений нашли стохастические дифференциальные 

системы (СДС) [36-46]. Наряду с общими методами нелинейной теории выделяют 

специальные методы, ориентированные на конкретные классы дифференциальных 

СтС. Среди классов дифференциальных СтС с импульсными воздействиями полу-

чила развитие теория импульсных СтС. В ее основе лежат стохастические диффе-

ренциальные уравнения для моментов времени, когда не происходят импульсы, и 

стохастические разностные уравнения в моменты действия импульсов. Обзор работ 

по направлению импульсных СтС содержится в [34, 35]. Обзор работ по анализу и 

синтезу нестационарных СтС до 2011 года содержится в [19-21]. В дальнейшем ра-

боты велись по развитию методов анализа применительно к следующим типам СтС: 

– эредитарным (интегродифференциальным, приводимым к дифференциаль-

ным) [47-55]; 

– круговым, сферическим, кватернионным, неголономным и  на многообра-

зиях [56-59]; 

– со сложными нелинейностями, описываемыми специальными функциями, 

а также интегральными нелинейностями [60-86]. 

Для проведения непрерывного оценивания вектора состояния стохастиче-

ской дифференциальной системы при ударных воздействиях по результатам непре-

рывных наблюдений в режиме реального времени широкое распространение полу-

чили фильтр Калмана и условно-оптимальные фильтры Пугачева [87,88]. Часто ма-

тематические модели УдСтС содержат параметры, известные с ограниченной точ-

ностью, и возникает задача непрерывного оценивания этих параметров по результа-

там непрерывных наблюдений. Одним из способов ее решения является прием, ко-

гда уточняемые параметры включаются в вектор состояния системы. Таким обра-

зом, задача уточнения параметров УдСтС сводится к задаче фильтрации. В [89] 
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приведен обстоятельный обзор современных подходов решения задачи синтеза ли-

нейных оптимальных в среднем квадратическом фильтров. В [90-105] дано даль-

нейшее развитие методов построения субоптимальных фильтров и условно-

оптимальных фильтров Пугачева.  

Для нестационарных задач расчетной практики разработано инструменталь-

ное программное обеспечение, реализующее методы канонического разложения 

(КР) случайных функций, вейвлет разложения (ВЛР) ковариационной функции СФ, 

вейвлет канонического разложения (ВЛКР) случайной функции [106-120]. 

1.2. Модели ударных воздействий 

В [1,2] представлен ряд удобных для расчета точности детерминированных 

моделей УВ, основанных на воздействиях детерминированных импульсов различ-

ной формы на линейную детерминированную систему второго порядка. Для задач 

удародиагностики и испытаний в соответствии с рекомендациями МЭК [3] предла-

гается брать прямоугольные, пилообразные, полугармонические и др. формы им-

пульсов. В [9] описаны основные принципы моделирования детерминированных 

УВ, приведены основные характеристики УВ для различных тел и в различных 

условиях, даны рекомендации по их использованию при решении практических за-

дач с применением программного комплекса автоматизированного динамического 

анализа многокомпонентных механических систем ЭЙЛЕР (EULER). 

Для анализа УВ с заданным ударным спектром традиционно используется 

преобразование Фурье, дающее разложение исследуемой реализации УВ x(t) в ряд 

по тригонометрическим функциям, или в более общей форме записи 

𝑥(𝑡) = ∑ 𝑐𝑛exp⁡(𝑖𝑛𝑡)
∞
𝑛=−∞ . 

Коэффициенты сn являются амплитудами гармонических колебаний соответствую-

щей частоты и определяются формулой 

𝑐𝑛 = (2𝜋)
−1∫ 𝑥(𝑡)

2𝜋

0

exp(−𝑖𝑛𝑡) 𝑑𝑡. 

Множество функций exp(int) образует ортонормированный базис пространства 

L
2
(0,2). Аппарат Фурье–преобразований дает достаточно простые для расчетов 
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формулы и прозрачную интерпретацию результатов, но не лишен и некоторых не-

достатков. Преобразование, например, не отличает сигнал, являющийся суммой 

двух синусоид, от ситуации последовательного включения синусоид, не дает ин-

формации о преимущественном распределении частот во времени, может дать не-

верные результаты для сигналов с участками резкого изменения. Исследуемые ряды 

также далеко не всегда удовлетворяют требованию периодичности и заданы на 

ограниченном отрезке времени. 

 В настоящее время для исследования временных рядов с выраженной неод-

нородностью применяют теорию вейвлетов [121-123]. Анализ и обработка нестаци-

онарных сигналов разных типов представляют собой основное поле применения 

вейвлет анализа [124,125]. Практические приложения теории вейвлетов были разра-

ботаны в середине 80-х годов Морле и Гроссманом [126] как альтернатива преобра-

зованию Фурье для исследования временных (пространственных) рядов с выражен-

ной неоднородностью. В отличие от преобразования Фурье, локализующего часто-

ты, но не дающего временного разрешения процесса, и от аппарата дельта-функций, 

локализующего моменты времени, но не имеющего частотного разрешения, 

вейвлет-преобразование, обладающее самонастраивающимся подвижным частотно-

временным окном, одинаково хорошо выявляет как низкочастотные, так и высоко-

частотные характеристики сигнала на разных временных масштабах. По этой при-

чине вейвлет анализ часто сравнивают с "математическим микроскопом", вскрыва-

ющим внутреннюю структуру существенно неоднородных объектов. Указанная 

универсальность обеспечивает вейвлет анализу широкое использование при обра-

ботке информации в технических задачах, в том числе, при обработке и синтезе 

сигналов. 

Подобно тому, как в основе аппарата преобразований Фурье лежит един-

ственная функция w(t)=exp(it), порождающая ортонормированный базис простран-

ства L
2
(0,2) путем масштабного преобразования, так и вейвлет преобразование 

строится на основе единственной базисной функции (t), принадлежащей про-

странству L
2
(R). Любая функция из L

2
(R) может быть представлена суперпозицией 
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масштабных преобразований и сдвигов базисного вейвлета с коэффициентами, за-

висящими от масштаба (частоты) и параметра сдвига (времени). 

В задачах современной практики УВ имеют сложный характер и предпола-

гают использование сложных моделей УВ. Современные корреляционные модели 

УВ, основанные на вейвлет разложениях, канонических разложениях и вейвлет ка-

нонических разложениях обладают важным преимуществом, связанным с возмож-

ностью использования нестационарных стохастических УВ сложной формы. При-

менение при вычислительных процедурах вейвлет технологий  позволяет повысить 

оценку точности УдСтС в сложных экстремальных условиях, реализуемых на осно-

ве натурного имитационного моделирования. 

1.3. Характеристики ударных воздействий 

Для однократных УВ в качестве интегральных характеристик УдСФ 

X=X(t,U) вводят понятие ударного импульса l-го порядка 

𝐼𝑙 = ∫ 𝑋(𝑙)(𝑡, 𝑈)𝑑𝑡⁡⁡⁡⁡(𝑙 = 1,2,… )
𝑇

0
 . 

При простом ударе длительности 𝑇 ≫ 𝑇0 УдСФ характеризуется ударным импуль-

сом, а форма УВ не имеет значения. Ударные СФ сложной формы могут иметь как 

отличный от нуля, так и нулевой импульс. 

В корреляционной теории действительных УдСФ используются следующие 

корреляционные характеристики: 

𝑚𝐼𝑙 = 𝑀[𝐼𝑙],       (1.1.1) 

𝐾𝐼𝑙 = 𝑀[𝐼𝑙
0𝐼𝑙
0̅]⁡⁡⁡⁡(𝐼𝑙

0 = 𝐼𝑙 −𝑚
𝐼𝑙),    (1.1.2) 

Г𝐼𝑙 = 𝑀[𝐼𝑙𝐼𝑙̅] = 𝐾
𝐼𝑙 +𝑚𝐼𝑙𝑚̅𝐼𝑙.     (1.1.3) 

Если УдСФ задана каноническим разложением 

𝑋 = 𝑋(𝑡, 𝑈) = 𝑚𝑋(𝑡, 𝑈) + ∑ 𝑉 𝑥(𝑡, 𝑈)⁡, 

𝐾𝑋 = 𝐾𝑋(𝑡, 𝑈) = ∑ 𝐷 𝑥(𝑡, 𝑈)𝑥̅(𝑡, 𝑈)⁡⁡⁡, 

то корреляционные характеристики (1.1.1) – (1.1.3) будут вычисляться по формулам  

𝑚𝐼𝑙 = ∫ 𝑚𝑋(𝑙)(𝑡, 𝑈)𝑑𝑡⁡⁡⁡⁡
𝑇

0
, 

𝐾𝐼𝑙 = ∑ 𝐷 ∫ ∫ 𝑥(𝑡, 𝑈)𝑥̅(𝑡
′, 𝑈)𝑑𝑡

𝑇

0

𝑇

0
𝑑𝑡′. 
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 Как правило, УдСФ являются существенно негауссовскими марковскими 

процессами, поэтому в рамках теории марковских процессов [19-21] в качестве тон-

ких согласованных вероятностных характеристик используют n-мерные характери-

стические функции (х.ф.) 

𝑔𝑛
𝐼𝑙 = 𝑔𝑛

𝐼𝑙(1, … , 𝑛; 𝑡1, … , 𝑡𝑛, 𝑈) = 𝑀{𝑒𝑥𝑝[𝑖 ∑ 𝑘
𝑇𝐼𝑙

𝑛
𝑖=1 (𝑡𝑘 , 𝑈)]}  

или n-мерные плотности вероятности 

𝑓𝑛
𝐼𝑙 = 𝑓𝑛

𝐼𝑙(1, … ,𝑛; 𝑡1, … , 𝑡𝑛, 𝑈) 

 Для многократных УВ соответствующие характеристики вычисляются для 

моментов времени 𝑇ℎ⁡⁡(ℎ = 2,3,… )⁡. 

 В инженерных приложениях, пользуясь корреляционным принципом экви-

валентности СФ, стремятся заменить негауссовские СФ эквивалентными гауссов-

скими и пользоваться нелинейной корреляционной теорией анализа и обработки 

информации в УдСтС. При этом решается задача стохастического анализа на основе 

не осредненных характеристик, зависящих от параметра 𝑈, 

𝑖1𝑋
уд
= ∫ 𝑋(𝑡, 𝑈)𝑑𝑡,

𝑇

0
 𝑖2𝑋
уд
= 𝑡𝑟 ∫ 𝐾𝑋(𝑡, 𝑈)𝑑𝑡

𝑇

0
   

или 

𝑖1𝑋
уд
= ∫ 𝑚𝑋(𝑡, 𝑈)𝑑𝑡,

𝑇

0
 𝑖2𝑋
уд
= ∑ 𝐷𝜈𝜈 ∫ 𝑥𝜈(𝑡, 𝑈)𝑥𝜈(𝑡, 𝑈)

𝑇𝑑𝑡.
𝑇

0
  

 В соответствии с [19-21] для оценки и оптимизации показателей ударостой-

кости СтС (динамической точности, надежности, безопасности и др.) используются 

соответствующие критерии риска, вычисляемые на основе одно- и многомерных 

распределений.  

Так как любая стохастическая система осуществляет преобразование функ-

ций (каждой данной функции X(t,U) на входе соответствует вполне определенная 

функция Y(t,U) на выходе), то каждой системе соответствует вполне определенный 

оператор А: 

𝑌(𝑡, 𝑈) = А𝑋(𝑡, 𝑈). 

 В общей теории СтС обычно используется следующий общий принцип ана-

лиза качества системы. Всякое отклонение выходного сигнала Y системы от требу-
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емого сигнала 𝑌тр вызывает потери, которые в каждом конкретном случае характе-

ризуются некоторой функцией потерь 𝑙 = 𝑙(𝑌, 𝑌тр, 𝑈).  

 Качество системы в среднем для данной реализации требуемого выходного 

сигнала 𝑌тр при всех возможных реализациях действительного выходного сигнала 

Y, соответствующих 𝑌тр и параметрах U, оцениваются условным математическим 

ожиданием функции потерь при данной реализации требуемого выходного сигнала 

(𝐴|𝑌тр, 𝑈) = 𝑀[𝑙(𝑌, 𝑌тр, 𝑈)|𝑌тр, 𝑈]. Эту величину называют условным риском. Она 

зависит от оператора А, определяющего Y, а также от 𝑌тр. Среднее качество системы 

при всех возможных реализациях Y, соответствующих 𝑌тр,  характеризуется мате-

матическим ожиданием условного риска, равным безусловному математическому 

ожиданию функции потерь: 𝑅(𝐴) = 𝑀[(𝐴|𝑌тр, 𝑈)] = 𝑀[𝑙(𝑌, 𝑌тр, 𝑈)]. Величина 

𝑅(𝐴)⁡характеризует⁡ средние потери или средний риск и является обобщенным по-

казателем качества системы.  

 Для количественного описания качества УдСтС необходимо определить ве-

роятностные характеристики показателей качества выходного сигнала системы при 

известных характеристиках системы и входного сигнала ⁡𝑋(𝑡, 𝑈).  

Для вычисления многомерных распределений выходного сигнала широкое 

распространение получили методы их параметризации посредством МНА и МСЛ, 

ММ, МСМ, МОР и их модификаций, а также методы структурной параметризации 

(эллипсоидальной аппроксимации и др.).  

В инженерных приложениях прецизионных информационно-управляющих 

систем особенностью УдСтС являются скоротечность ударных СФ и фильтрацион-

ные свойства измерительно-управляющих подсистем. В этих условиях нелинейные 

стохастические эффекты не успевают развиться, и практически приемлемой моде-

лью процессов в УдСтС являются нестационарные линейные дифференциальные 

СтС или нестационарные линейные дифференциальные СтС с параметрическими 

шумами (или приводимые к ним). Такой подход позволяет оценить накапливающи-

еся систематические и случайные ошибки: разности между фактическими выход-

ными сигналами системы и требуемыми выходными сигналами представляют собой 
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систематические ошибки, а случайные колебания выходных сигналов – случайные 

ошибки системы.  

Для оценки УдСтС при нормально распределенном векторном параметре U 

размерности 𝑝𝑈 выбирается условная функция потерь  [128], допускающая квадра-

тичную аппроксимацию [69,85] 

 = (𝑈) = (𝑚𝑈) + ∑ 
𝑖
′𝑝𝑈

𝑖=1 (𝑚𝑈)𝑈𝑖
° + ∑ 

𝑖
′′𝑝𝑈

𝑖,𝑗 (𝑚𝑈)𝑈𝑖
°𝑈𝑗

°, 

и показатель 𝜀, равный 

𝜀 = 𝜀2
1 4⁄ , 𝜀2 = 𝑀𝑁[(𝑈)]

2 − ((𝑚𝑈))
2
,  

где 𝑀𝑁 – символ математического ожидания для нормального распределения,  

𝑀𝑁[(𝑈)]
2 = ((𝑚𝑈))

2
+ ′ (𝑚𝑈)𝑇𝐾𝑈

𝑖
′(𝑚𝑈) + 2(𝑚𝑈)𝑡𝑟[′′ (𝑚𝑈)𝐾𝑈] + 

+{𝑡𝑟[′′ (𝑚𝑈)𝐾𝑈]}
2
+ 2𝑡𝑟[′′ (𝑚𝑈)𝐾𝑈]

2
. 

Для нахождения производных ′ и ′′ необходимо решить уравнения для математи-

ческого ожидания 𝑚𝑡 = 𝑚𝑡(𝑈) и ковариационной матрицы 𝐾𝑡 = 𝐾𝑡(𝑈) стохастиче-

ского процесса 𝑌(𝑡, 𝑈), описываемого нестационарной линейной дифференциальной 

СтС или нестационарной линейной дифференциальной СтС с параметрическими 

шумами: 

𝑚̇𝑡 = 𝐴
𝑚(𝑚𝑡 , 𝐾𝑡, 𝑈),𝑚(𝑡0) = 𝑚0; 

𝐾̇𝑡 = 𝐴
𝐾(𝑚𝑡 , 𝐾𝑡 , 𝑈), 𝐾(𝑡0) = 𝐾0. 

 Как известно [69,85], методы чувствительности в инженерной практике ши-

роко применяются для приближенного анализа точности СтС со случайными пара-

метрами 𝑈 в предположении малых дисперсий этих параметров по сравнению с их 

математическими ожиданиями. В случае УдСтС при нормальном векторном пара-

метре U получаются следующие уравнения для функций чувствительности первого 

порядка ∇𝑈𝑚𝑡⁡(∇
𝑈= 𝜕 𝜕𝑈⁄ ), ∇𝑈𝐾𝑡⁡(∇

𝑈= 𝜕 𝜕𝑈⁄ ): 

∇𝑈𝑚̇𝑡 = ∇
𝑈𝐴𝑚, ∇𝑈𝑚(𝑡0) = 0;  

∇𝑈𝐾̇𝑡 = ∇
𝑈𝐴𝐾 , ∇𝑈𝐾(𝑡0) = 0.  

Аналогично выписываются уравнения функций чувствительности второго порядка 

∇𝑈(∇𝑈)𝑇𝑚𝑡 и ∇𝑈(∇𝑈)𝑇𝐾𝑡. 
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1.4. Постановка задач 

Основная цель диссертации заключается в разработке методов и алгоритмов 

для инструментального программного обеспечения анализа точности и обработки 

информации в стохастических системах при ударных воздействиях с применением 

вейвлет технологий.  

Для ее достижения требуется решить следующие задачи: 

1) разработать методы и алгоритмы построения скалярных и векторных 

УдСФ посредством их ВЛКР; 

2) разработать вейвлет методы и алгоритмы анализа динамической точно-

сти УдСтС; 

3) рассмотреть возможности использования авторской модификации мо-

ментно-семиинвариантного метода для анализа точности УдСтС; 

4) провести для типовых круговых нелинейностей в УдСФ аналитические 

расчеты коэффициентов статистической круговой намотанной нормальной линеа-

ризации; 

5) разработать методы и алгоритмы вейвлет оптимизации систем обработ-

ки информации в линейных УдСтС; 

6) разработать методы и алгоритмы вейвлет обработки информации в ре-

жиме реального времени в линейных и линейных с параметрическими шумами 

УдСтС; 

7) разработать типовую методику анализа точности УдСтС. 

 Первая задача рассматривается в разделе 2. Второй задаче посвящены под-

разделы 3.1, 3.2. Третья и четвертая задачи рассмотрены в подразделах 3.3 и 3.4. Пя-

той задаче посвящены подразделы 4.1, 4.2. В подразделах 4.3 и 4.4 рассматривается 

шестая задача. Задаче 7 посвящен пораздел  3.5. В приложение вынесен обширный 

материал с описанием ИПО и тестовых примеров.  
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2. ВЕЙВЛЕТ МЕТОДЫ И АЛГОРИТМЫ ПОСТРОЕНИЯ 

КАНОНИЧЕСКИХ РАЗЛОЖЕНИЙ УДАРНЫХ СЛУЧАЙНЫХ 

ФУНКЦИЙ 

2.1. Вейвлет анализ и построение канонического разложения  

ударной скалярной случайной функции 

2.1.1. Каноническое разложение скалярной УдСФ 

Создание общей теории канонических разложений случайных функций свя-

зано с именами Лоэва, Колмогорова, Карунена и Пугачева и относится к 40-50 гг. 

XX века. Как известно [21], канонические разложения представляют собой выраже-

ния  СФ через дискретный белый шум. Канонические разложения удобны для вы-

полнения различных операций анализа над СФ. Объясняется это тем, что в канони-

ческом разложении СФ ее зависимость от аргумента t выражается при помощи 

вполне определенных неслучайных координатных функций, что дает возможность 

свести выполнение различных линейных операций к соответствующим операциям 

над неслучайными координатными функциями.  

Методы и алгоритмы, разработанные В.С. Пугачевым и И.Н. Синицыным 

[21], применимы для построения КР скалярной УдСФ. Ударная случайная функция 

представляет собой математический объект большой сложности. В общем случае ее 

можно трактовать как несчетное  множество скалярных случайных величин (СВ). 

Если известны и конечны математическое ожидание, дисперсия и ковариационные 

моменты УдСФ )(tX , то ее можно построить ее каноническое разложение в виде 

)()()( txVtmtX v

v

vx  ,       (2.1.1) 

где vV  – некоррелированные скалярные СВ, математические ожидания которых 

равны нулю, а )(txv  – некоторые детерминированные функции. Случайные величи-

ны vV  называются коэффициентами КР, функции )(txv  – координатными функция-

ми КР. Каноническое разложение  УдСФ в общем случае представляет собой бес-

конечный ряд. В частных случаях оно может быть конечной суммой. 
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Выразив УдСФ )(tX  с помощью КР (2.1.1), можно для вычисления ее кова-

риационной функции (как ковариационного момента величин )(tX  и )'(tX ) приме-

нить формулу: 

)'()(])'()([)',( txtxDtXtXMttK vvv

v

x  ,   (2.1.2) 

где vD  – дисперсии СВ vV , черта сверху – символ комплексного сопряжения. Всякое 

представление ковариационной функции формулой вида (2.1.2) называется канони-

ческим разложением ковариационной функции. Полагая в (2.1.2) t = t' , имеем фор-

мулу для дисперсии СФ )(tX : 

2|)(|),()( txDttKtD vv

v

xx  .    (2.1.3) 

Последовательность некоррелированных СВ vV  можно рассматривать как 

дискретный (импульсный) белый шум. Тогда КР  (2.1.1) УдСФ )(tX  можно  тракто-

вать как  выражение ее через импульсный белый шум 

Пусть Vv– произвольные некоррелированные СВ, имеющие математические 

ожидания, равные нулю, и дисперсии vD : 











.]|[|][

),(0][,0][

2

vvv

vv

DVMVD

vVVMVM 
   (2.1.4) 

Справедливы следующие утверждения [21]. 

Теорема 2.1.1.  Пусть скалярная УдСФ допускает КР (2.1.1), тогда КР ко-

вариационной функции имеет КР (2.1.2). Наоборот, если ковариационная функция 

представлена КР (2.1.2) с линейно независимыми координатными функциями, то-

гда УдСФ может быть представлена КР (2.1.1) с теми же координатными функ-

циями. При этом выбор координатных функций )(txv  по формуле  

01
( ) [ ( ) ]x t M X t V

D
 



     (2.1.5) 

дает  наилучшее среднее квадратическое (с.к.) приближение к УдСФ

0( ) ( ) ( )XX t X t m t   с любым данным числом членов ряда )()(0 txVtX vv

v

  при данном 

выборе случайных коэффициентов vV . 
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Теорема 2.1.2.  Формула  

0

1

( ) ( ) ( )
n

v v n

n

X t V t R t


       (2.1.6) 

с отброшенным остаточным членом )(tRn  дает приближенное каноническое раз-

ложение УдСФ 0( )X t  с координатными функциями v .  

Замечание 2.1.1. Координатные функции )(txv , определяемые формулой 

(2.1.5), называются с.к. оптимальными координатными функциями. Полагая в 

(2.1.6) ),1()()( nvtxt vv  , по известной формуле определяется математическое 

ожидание квадрата модуля остаточного члена КР с с.к. оптимальными координат-

ными функциями: 

2 2

1

[| ( ) | ( ) | ( ) |
n

n n x v v

v

M R t D t D x t


    .    (2.1.7) 

2.1.2. Каноническое разложение скалярной УдСФ в заданной области 

изменения аргумента 

Возьмем в качестве случайных коэффициентов vV  канонического разложе-

ния (2.1.1)  УдСФ )(tX  линейные комбинации значений )(0 tX , соответствующих 

всем  значениям аргумента t  в данной области T , т.е. интегралы 

dttXtaV v

T

v )()( 0

 .     (2.1.8) 

Условие некоррелированности величин vV , V  при v  дает уравнения, которым 

должны удовлетворять функции )(tav [21]: 

)(0')',()'()( vdtdtttKtata xv

T T

   .    (2.1.9) 

Функции )(tav , удовлетворяющие уравнениям (2.1.9) можно  определить бес-

численным множеством способов. Определив функции )(tav , можно найти диспер-

сии vD  СВ vV : 

')',()'()(|[| 2 dtdtttKtataVMD xvv

T T

vv   ,   (2.1.10) 

и определить вид координатных функций )(txv :  
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𝑥(𝑡) =
1

𝐷
∫ 𝑎(𝑠)𝑇

𝐾𝑥(𝑡, 𝑠)𝑑𝑠.     (2.1.11) 

Из формул (2.1.9) и (2.1.10) следуют условия биортогональности функций )(tav  и 

)(txv : 

 vv

T

dttxta  )()( .       (2.1.12) 

Известны следующие утверждения [21]. 

Теорема 2.1.3. Если ковариационная функция )',( ttKx  скалярной  УдСФ  )(0 tX  

удовлетворяет условиям (2.1.10), то ее КР в данной области изменения аргумента 

имеет вид (2.1.2). При этом случайные коэффициенты vV  и их дисперсии определя-

ются (2.1.8), (2.1.10), а координатные функции )(txv  – условиями биортогонально-

сти (2.1.12). 

Теорема 2.1.4. В условиях теоремы 2.1.3, если взять произвольную последо-

вательность функций )(tfv , положив )()( 11 tfta   и определив функции )(tav , )(txv  ре-

куррентными формулами )()()(
1

1

tftacta nvnv

n

v

n 




, )1,1()()(   ndttxtfc
T

nn  , то 

можно найти систему пар функций )(tav , )(txv , удовлетворяющих условиям (2.1.11) 

и (2.1.12). 

2.1.3. Основные понятия вейвлет анализа 

Вводные замечания [121-127]. Анализ и обработка УдСФ с применением 

вейвлет базиса позволяют выявить характерные частоты (масштабы) и моменты 

времени, при которых эти частоты проявляют себя. Общий принцип построения 

вейвлет базиса состоит в использовании масштабного преобразования и смещений. 

Базисы на основе вейвлетов, определенных на R, не являются строго говоря орто-

нормированными, поскольку элементы базиса бесконечно дифференцируемы и экс-

поненциально спадают на бесконечности, что противоречит строгой ортонормиро-

ванности. Любой вейвлет с конечным носителем порождает полную ортонормиро-

ванную систему функций с конечным носителем. За счет изменения масштабов 
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вейвлетов выявляются различные частоты, а путем сдвига анализируются свойства 

функции в разные моменты времени. 

Согласно [122], "вейвлет базисы обладают универсальной применимостью: 

"все, что попадается под руку", будь то обычная или обобщенная функция, предста-

вимо в виде вейвлет ряда, и, в отличие от ситуации с рядами Фурье, коэффициенты 

вейвлет ряда передают свойства функции или распределения просто, точно и 

надежно". Выбор конкретного вейвлета зависит от вида анализируемой функции, и 

критерием выбора вейвлета является простота получаемого разложения. В то же 

время прямой переход от чистой математики к разработке инструментального про-

граммного обеспечения не тривиален и требует индивидуального подхода к изуча-

емой задаче и правильного выбора используемого вейвлета.   

Вейвлеты с конечным носителем не могут быть записаны в аналитической 

форме, кроме простейшего из них – вейвлета Хаара, а характеризуются набором 

численных коэффициентов в некоторых функциональных уравнениях, содержащих 

изменение масштаба и сдвиг аргументов. В практических вычислениях конкретная 

форма вейвлетов не выписывается, а используются только величины этих коэффи-

циентов функциональных уравнений. Вейвлет базис задается с помощью итераци-

онного алгоритма с изменением масштаба и сдвигом единственной функции. Это 

приводит к процедуре многомасштабного анализа, который делает возможными 

быстрые численные расчеты локальных характеристик на разных масштабах.   

При анализе УдСФ в большинстве случаев мы имеем дело с квадратично-

интегрируемыми функциями, определенными в конечной области вещественной 

оси. Для УдСФ оказывается важным определить момент времени, когда та или иная 

частотная характеристика изменилась. Поэтому базисные функции должны иметь 

конечную область определения: такими функциями являются вейвлеты с конечным 

носителем. С их помощью можно покрыть всю область изменения УдСФ, используя 

смещение по разному сжатых вариантов одной-единственной функции. Выбор ана-

лизирующего вейвлета определяется решаемой проблемой. Хорошим наглядным 

примером ортонормированных вейвлет базисов являются вейвлеты Хаара.  
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Вейвлеты Хаара [121,127]. Построим в пространстве  ортонормиро-

ванный базис Хаара. Он определяется на основе функции прямоугольной волны 

 

а процедуру построения базиса Хаара проведем в несколько этапов. Сначала опре-

делим возрастающую последовательность подпространств , в пределе имею-

щую все пространство . На основе этой последовательности будут естествен-

ным образом вводится пространства вейвлетов и сами вейвлеты Хаара. Далее рас-

смотрим систему функций, полученную из  целочисленными сдвигами: 

 

Обозначим через 𝑈0 – пространство в , порожденное линейными ком-

бинациями таких сдвигов (𝑈0 – замыкание линейной оболочки системы 

). Система  образует ортонормированный базис пространства 

𝑈0. 

Теперь рассмотрим масштабированные сдвиги . Они получаются из 

 сдвигами на :  Носитель функции стал в два раза 

меньше:  где  Поэтому 

 Если умножить такие функции на , тогда все они будут 

единичной нормы. 

Рассмотрим систему функций  

 

и пространство 𝑈1, порожденное ими. Система  образует ортонормирован-

ный базис пространства 𝑈1, причем 𝑈0𝑈1. Порождающая функция  простран-

ства 𝑈0 выражается в виде линейной комбинации элементов пространства 𝑈1: 

 где ненулевые  только такие: 

. 
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Далее рассмотрим пространство 𝑈2 порожденное функциями 

 полученными из функции  сдвигами на  по оси 

. Носитель,  есть отрезок длины ¼. Система  об-

разует ортонормированный базис пространства 𝑈2, причем 𝑈1𝑈2 . Продолжая эту 

процедуру, для любого  рассмотрим систему функций:  

Это ортонормированная система функций,  все функции 

системы получаются из  сдвигами на  по оси . Пусть 𝑈𝑗 – про-

странство, порожденное системой функций  Имеют место сле-

дующие включения: 𝑈0𝑈1𝑈2…𝑈𝑗. 

Продолжая этот процесс до бесконечности, получим бесконечную систему 

вложенных подпространств 𝑈𝑗𝐿
2(𝑹):𝑈0𝑈1𝑈2…𝑈𝑗.  В каждом пространстве 

𝑈𝑗 выделен ортонормированный базис . Линейные комбинации функций ви-

да 𝜑𝑗,𝑛(𝑥)⁡(⁡𝑗, 𝑛 ∈ 𝒁)⁡является кусочно-постоянными функциями. Поскольку по-

следние образуют плотное множество в , то ⋃ 𝑈𝑗
∞
𝑗=0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐿2(𝑅), где черта сверху 

обозначает замыкание. 

Для каждого  рассмотрим оператор ортогонального проецирования про-

странства  на подпространство 𝑈𝑗: 

𝑃𝑗: 𝐿
2(𝑅) → 𝑈𝑗 , 𝑃𝑗(𝑓) = ∑ (𝑓,

𝑗,𝑛𝑛∈𝑍 )
𝑗,𝑛
(𝑥).  

Проекции  являются приближениями функции , все более точными при 

увеличении . Сравним два последовательных приближения. Для этого рассмотрим 

разность . Эта разность лежит в 𝑈𝑗+1 и ортогональна к 𝑈𝑗𝑈𝑗+1, т. е. 

она принадлежит ортогональному дополнению  к пространству 𝑈𝑗 до 𝑈𝑗+1. Рас-

смотрим ортогональное разложение 

𝑈𝑗+1 = 𝑈𝑗𝑊𝑗. 

Точное приближение  в пространстве 𝑈𝑗+1 получается как сумма приближе-

ния  и дополнительного слагаемого , отражающего уточнения при пере-

ходе от  к : 
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Выясним, какими функциями порождается . Поскольку все пространства 

𝑈𝑗 получены из 𝑈0 изменением масштаба, то естественно сначала изучить простран-

ства  – ортогональное дополнение к 𝑈0 в пространстве 𝑈1 (𝑈1 = 𝑈0𝑊0). Пусть 

функция . Тогда она раскладывается по базису  пространства 𝑈1: 

 Поскольку 𝜓⏊𝑈0, то для любого n имеем: . Пространство 𝑈0  

входит в 𝑈1, следовательно, функции  также раскладываются по базису 

 пространства 𝑈1:  Коэффициенты этого разложения 

 и  Тогда условие ортогональности  к 𝑈0 при-

нимают вид . Так как  – ортогональный базис, то из последнего ра-

венства имеем . Уравнение имеет множество решений. Наиболее про-

стому решению ,  соответствует функция 

(𝑥) =
1

√2

10
(𝑥) −

1

√2

11
(𝑥) = (2𝑥) − (2𝑥 − 1) =

{
 

 1, 𝑥 ∈ [0,
1

2
) ,

−1, 𝑥 ∈ [
1

2
, 1) ,

0, 𝑥[0,1),

  

называемая  вейвлетом Хаара. Сдвиги  образуют базис пространства . 

Функции  образуют ортонормированную си-

стему в . Каждая функция
 

 ортогональна каждой функции . Система 

функций  образует (новый) ортонормированный базис пространства 𝑈1. 

Базис пространства  образует функции . В общем случае 

ли⁡⁡𝑈𝑗+1 = 𝑈𝑗𝑊𝑗, то ортонормированный базис пространства  образуют функ-

ции вида 

      (2.1.13) 

Известны следующие определения: 

– элементы пространства  называются вейвлетами Хаара; 

– функции (2.1.13) называются базисными вейвлетами; 
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– функция  называется масштабирующей функцией Хаара; 

– функция   называется материнским вейвлетом. 

Функции , которые порождают, подобно функции Хаара, возрастающую 

последовательность подпространств …𝑈−1𝑈0𝑈1𝑈2… , обладают уникаль-

ными свойствами. Действительно, если пространство 𝑈0 образовано сдвигами 

функции , а пространство 𝑈1 – сдвигами , то для включения 𝑈0𝑈1 

необходимо, чтобы (𝑥) ∈ 𝑈0, т. е. чтобы  могла быть представлена в виде ли-

нейной комбинации функций .  

Известны следующие определения: 

– функция  называется масштабирующей, если она может быть 

представлена в виде 

     (2.1.14) 

где числа  удовлетворяет условию 

 

– равенство (2.1.14) называется масштабирующим уравнением; 

– набор  коэффициентов разложения в уравнении (2.1.14) называется 

масштабирующим фильтром. 

Пусть  –  масштабирующая функция, аналогично (2.1.13), образуем сле-

дующие функции: . Каждая такая функция также явля-

ется масштабирующей.  

 Как известно [121], для любых  имеет место разложение: 

 

В частности,  

Для функции Хаара фильтр коэффициентов  состоит из двух ненуле-

вых элементов , поэтому его Фурье преобразование имеем вид 
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   (2.1.15) 

Сделаем преобразование Фурье масштабирующего соотношения (2.1.14): так 

как , то . Поэтому 

 Пусть в силу (2.1.15)  

     (2.1.16) 

Соотношение (2.1.16) также называется масштабирующим уравнением. Функцию 

 будем называть частотной функцией отклика масштабирующей функции 

. Если функция  непрерывна и интеграл от функции  отличен от нуля, 

то, подставляя в (2.1.16) значение , получаем  и .  

Вейвлеты Хаара являются простейшим примером вейвлетов Добеши с ко-

нечным носителем первого порядка. На основе вейвлетов Хаара можно выделить 

основные свойства вейвлетов Добеши [121]: 

1) фильтр коэффициентов  разложения  состоит из ко-

нечного числа вещественных ненулевых членов. Поэтому частотная функция 

 является тригонометрическим многочленом. Если длина носи-

теля  равна , то имеется не более  ненулевых коэффициентов ; 

2) преобразование Фурье  является ограничением на  целой аналити-

ческой функции экспоненциального типа. В частности,  является гладкой клас-

са ; 

3) из непрерывности  следует, что , а из масштабирующего урав-

нения вытекает . 

Если требовать  нулевых моментов функции , то функция  име-

ет вид где  – тригонометрический полином. Кроме того, 

коэффициенты  фильтра вейвлета  обладают свойствами 
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Поскольку  восстанавливается по функции  и формуле  

, 

то построение ортонормированных вейвлетов начинается с нахождения соответ-

ствующей функции . Такая функция должна удовлетворять соотношению 

 

Далее, рассмотрим наиболее простой нетривиальный случай, когда , а 

тригонометрический полином  имеет степень 1. Поскольку тригонометрический 

многочлен  имеет степень 3, то фильтр коэффициентов  будет иметь 4 

ненулевых элемента, а носитель будет иметь длину 3. Учитывая возможность сдви-

га носителя, потребуем чтобы функция  имела бы носитель на промежутке . 

Частотная функция  является тригонометрическим полиномом степени 3: 

 

                  (2.1.17) 

Вейвлет функция  строится по формуле (2.1.17). Она называется вейвле-

том Добеши порядка 2 и обозначается символом "db2" (рисунок 2.1.1). 

 

 

Рисунок 2.1.1 – Вейвлеты Добеши 
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Кратномасштабный анализ [121,124,125]. Пусть функции 𝑓 ∈ 𝐿2(𝑹).  

Кратномасштабный анализ (КМА) проводится с помощью набора последователь-

ных аппроксимирующих пространств 𝑈𝑗, которые представляют собой отмасштаби-

рованные и инвариантные относительно смещений на целые числа разновидности 

одного центрального пространства 𝑈0. В этом пространстве существует ортонорми-

рованный базис 𝑒𝑛, или, в общем случае, базис Рисса: 

(𝑒𝑛, 𝑒𝑚) = 𝑛𝑚 ,  ||𝑓||
2 ≤ ∑ |𝑓, 𝑒𝑛|

2
𝑛 ≤ ||𝑓||

2
⁡( > 0, < ∞). 

Кратномасштабный анализ – это последовательность {𝑈𝑗}𝑗∈𝑍 замкнутых 

подпространств 𝐿2(𝑹), удовлетворяющая следующим свойствам: 

1) 𝑈𝑗𝑈𝑗+1; 

2) ⋃ 𝑈𝑗𝑗∈𝑍
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐿2(𝑹); 

3) ⋂ 𝑈𝑗 = {0};𝑗∈𝑍  

4) 𝑓 ∈ 𝑈𝑗𝑓(2−𝑗 ∙) ∈ 𝑈0; 

5) 𝑓 ∈ 𝑈0𝑓(∙ −𝑘) ∈ 𝑈0⁡⁡для⁡любого⁡𝑘 ∈ 𝒁;⁡ 

6) существует функция  ∈ 𝑈0 такая, что последовательность 

 {(∙ −𝑘)𝑘∈𝑍  образует базис Рисса в 𝑈0. 

Из условия 2) следует, что lim𝑗→∞ 𝑃𝑗 𝑓 = 𝑓  для любой функции 𝑓 ∈ 𝐿2(𝑹). 

Основным свойством КМА является  возможность построения ортонорми-

рованного вейвлет базиса такого, что для любой функции 𝑓 ∈ 𝐿2(𝑹)  

𝑃𝑗+1𝑓 = 𝑃𝑗𝑓 + ∑ (𝑓,
𝑗𝑘𝑘∈𝑍 )

𝑗𝑘
. 

В частности, любую функцию 𝑓 ∈ 𝐿2(𝑹) можно аппроксимировать с точно-

стью 2−𝑗/2 (т.е. с любой произвольно высокой точностью при 𝑗 → ∞ ) конечной ли-

нейной комбинацией вейвлетов Хаара [121]. 

2.1.4. Вейвлет каноническое разложение скалярной УдСФ в заданной 

области изменения аргумента 

Вейвлет канонические разложения для СФ впервые были предложены в лек-

циях В.С. Пугачева и И.Н.Синицына по функциональному анализу [22]. Дадим раз-

витие алгоритмов построения КР УдСФ в данной области изменения аргумента на 
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основе ортонормированных вейвлет базисов, порожденных вейвлетами с конечны-

ми носителями, например, вейвлетами  Добеши [121]. 

Пусть СФ  задана в области t . В пространстве 𝐿2  определим 

ортонормированный вейвлет базис вида 

{
00
(𝑡);

𝑗𝑘
(𝑡)},                                                  (2.1.18) 

где 
00
(𝑡) = (𝑡)– масштабирующая функция; 

𝑗𝑘
(𝑡) = √2𝑗(2𝑗𝑡 − 𝑘) ; 


00
(𝑡) = (𝑡) – материнский вейвлет; 

𝑗𝑘
(𝑡) = √2𝑗 (2𝑗𝑡 − 𝑘); 

j=1,2,…,𝐽𝑡; k=0,1,…,2𝑗 − 1; 𝐽𝑡 – максимальный уровень вейвлет разрешения. 

 Пусть ковариационная функция 𝐿2([0, 𝑇] × ([0, 𝑇]). В пространстве 

𝐿2([0, 𝑇] × ([0, 𝑇]) определим двумерный ортонормированный вейвлет базис в виде 

тензорного произведения двух вейвлет базис вида (2.1.18) для случая, когда мас-

штабирование по обеим переменным происходит одинаково. В этом случае базис-

ные функции имеют вид: 

𝛷00
𝐴 (𝑡1, 𝑡2) = 

00
(𝑡1)00(𝑡2)⁡⁡, 𝛹𝑗𝑘𝑛

𝐻 (𝑡1, 𝑡2) = 
𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2), 

𝛹𝑗𝑘𝑛
𝐵 (𝑡1, 𝑡2) = 

𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2)⁡, 𝛹𝑗𝑘𝑛

𝐷 (𝑡1, 𝑡2) = 
𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2) ,     (2.1.19) 

j = 0,1,… , 𝐽𝑡; ⁡k, n = 0,1,… , 2𝑗 − 1. 

Тогда двумерная действительная функция  раскладывается в сходящийся 

вейвлет ряд: 

𝐾𝑋(𝑡1, 𝑡2) = 𝑎
𝑡𝛷00

𝐴 (𝑡1, 𝑡2) +∑∑ ∑[ℎ𝑗𝑘𝑛
𝑡 𝛹𝑗𝑘𝑛

𝐻 (𝑡1, 𝑡2) +

2𝑗−1

𝑛=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

 

+𝑏𝑗𝑘𝑛
𝑡 𝛹𝑗𝑘𝑛

𝐵 (𝑡1, 𝑡2) + 𝑑𝑗𝑘𝑛
𝑡 𝛹𝑗𝑘𝑛

𝐷 (𝑡1, 𝑡2)] ,                                           (2.1.20) 

где  

𝑎𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛷00
𝐴 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2,                           

ℎ𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)

𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐻 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 ,                   

𝑏𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)

𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐵 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 , 

𝑑𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑋(𝑡1, 𝑡2)

𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐷 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2.               (2.1.21) 

)(tX ],0[ T ],0[ T

),( 21 ttKX

),( 21 ttKX
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Далее для удобства представим одномерный вейвлет базис (2.1.18) в виде: 

𝑓1(𝑡) = 
00
(𝑡), 𝑓2(𝑡) = 

00
(𝑡)⁡,  

𝑓(𝑡) = 
𝑗𝑘
(𝑡)⁡⁡для⁡ = 2𝑗 + 𝑘 + 1; ⁡𝑗 = 1,2,… , 𝐽𝑡; 𝑘 = 0,1,… , 2𝑗 − 1;⁡(2.1.22) 

𝐿𝑡 = 2 ∗ 2𝐽
𝑡
; ⁡ = 3,4,… , 𝐿𝑡       

 Согласно теореме 2.1.4, задав последовательность функций 𝑓(𝑡) в виде ор-

тонормированного вейвлет базиса (2.1.22), построим каноническое разложение 

ударной случайной функции  X(t) (t[0,T]) в виде  

𝑋(𝑡) = 𝑚𝑋(𝑡) + ∑ 𝑉
𝐿𝑡
=1 𝑥(𝑡),                            (2.1.23) 

где 𝑚𝑋(𝑡)⁡– математическое ожидание СФ 𝑋(𝑡), 𝑉 – некоррелированные СВ с нуле-

выми математическими ожиданиями и дисперсиями 𝐷⁡⁡( = 1,2,… , 𝐿
𝑡); 𝑥(𝑡) – ко-

ординатные функции. Тогда каноническое разложение  ковариационной функции 

 в области изменения X(t) будет иметь вид 

𝐾𝑋(𝑡1, 𝑡2) = ∑ 𝐷
𝐿𝑡
=1 𝑥(𝑡1)𝑥(𝑡2).                               (2.1.24) 

Для этого определим систему пар функций 𝑎(𝑡), 𝑥(𝑡),⁡ удовлетворяющих услови-

ям (2.1.11), (2.1.12). Пусть 𝑎1(𝑡) = 𝑓1(𝑡), тогда по формулам (2.1.10) и (2.1.11) опре-

деляются 𝐷1 и 𝑥1(𝑡). Далее положим 𝑎2(𝑡) = с21𝑎1(𝑡) + 𝑓2(𝑡) и определим с21 так, 

чтобы функции 𝑎2(𝑡) и 𝑥1(𝑡)⁡удовлетворяли условию (2.1.12), т.е.  

с21 = −∫ 𝑓2(𝑡)𝑇
𝑥1(𝑡)𝑑𝑡.   

Предположим, что определены функции 𝑎µ(𝑡), 𝑥µ(𝑡) (µ=1,2,…, -1), удовле-

творяющие условиям (2.1.11), (2.1.12), а также дисперсии 𝐷µ⁡⁡ (µ=1,2,…, -1). При-

мем  

𝑎(t)=∑ 𝑐µ
−1
µ=1 𝑎µ(𝑡) + 𝑓(𝑡) 

и определим коэффициенты 𝑐µ так, чтобы функция 𝑎(t) была ортогональна к 

функциям 𝑥1(𝑡),…,⁡𝑥−1(𝑡). Условие (2.1.12) выполняется, если  

𝑐µ = −∫ 𝑓𝑇
(𝑡)𝑥µ(𝑡)𝑑𝑡 (µ=1,2,…, -1). 

 Далее введем вспомогательные случайные величины: 

𝐴𝑟 = ∫ 𝑓𝑟
𝑇

0
(𝑡)𝑋(𝑡)𝑑𝑡⁡⁡⁡⁡⁡⁡(𝑟 = 1,2,… , 𝐿𝑡).                           (2.1.25) 

Определим ковариационные моменты 𝐴 : 

),( 21 ttKX
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𝑘µ = 𝑀[𝐴
°𝐴µ

°̅̅̅̅ ] = ∫ ∫ 𝑓(𝑡1)
𝑇

0

𝑇

0
𝑓µ(𝑡2)𝐾𝑋(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2(, µ = 1,2,… , 𝐿

𝑡). (2.1.26) 

На основании (2.1.20) имеем: 

𝑘11 = 𝑎
𝑡; ⁡⁡𝑘12 = ℎ000

𝑡 ; ⁡⁡⁡𝑘21 = 𝑏000
𝑡 ; ⁡⁡𝑘22 = 𝑑000

𝑡 ; 

𝑘µ = 𝑑𝑗𝑘𝑛
𝑡  для  = 2𝑗 + 𝑘 + 1; ⁡µ = 2𝑗 + 𝑛 + 1;          

𝑗 = 1,2,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1,… , 2𝑗 − 1.           (2.1.27) 

Остальные взаимные ковариационные моменты равны нулю: . 

 На основании (2.1.11) имеем  

𝐴1
° = 𝑉1, 𝐴𝑟

° = −∑ 𝑐𝑟
𝑟−1
=1 𝑉 + 𝑉𝑟 ⁡(𝑟 = 2,3,… , 𝐿

𝑡),   

где  

𝑐1 = −
𝑘1
𝐷1
⁡⁡⁡( = 2,3,… , 𝐿𝑡);⁡ 

𝑐µ = −
1

𝐷µ
(𝑘µ − ∑ 𝐷𝑐µ𝑐

µ−1
=1 )⁡⁡(µ = 2,3,… , − 1;  = 3,4,… , 𝐿𝑡);  

𝐷1 = 𝐷[𝑉1] = 𝑘11; ⁡𝐷 = 𝐷[𝑉] = 𝑘 − ∑ 𝐷|𝑐|
2−1

=1 ⁡⁡( = 2,3,… , 𝐿𝑡).  (2.1.28) 

Для удобства введем функции  

𝑧(𝑡) = ∫ 𝑓
𝑇

0
()𝐾𝑋(𝑡, )𝑑⁡⁡⁡⁡⁡⁡( = 1,2,… , 𝐿

𝑡).             (2.1.29)  

На основании (2.1.20) имеем: 

𝑧1(𝑡) = 𝑎
𝑡

00
(𝑡) + 𝑏000

𝑡 
00
(𝑡), 

𝑧(𝑡) = ∑ [ℎ𝑗𝑘𝑛
𝑡 

𝑗𝑘
(𝑡) + 𝑑𝑗𝑘𝑛

𝑡 
𝑗𝑘
(𝑡)]2𝑗−1

𝑘=0    (2.1.30) 

(=2,3,…,⁡𝐿𝑡 ;  = 2𝑗 + 𝑛 + 1; 𝑗 = 0,1,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1,… , 2𝑗 − 1). 

Тогда координатные функции 𝑥(𝑡) определяются последовательно формулами: 

𝑥1(𝑡) =
1

𝐷1
𝑧1(𝑡);⁡⁡𝑥(𝑡) =

1

𝐷
{∑ 𝑑

−1
=1 𝑧(𝑡) + 𝑧(𝑡)}⁡;⁡    

𝑑 = 𝑐 + ∑ 𝑐µ𝑑µ⁡⁡⁡( = 1,2,… , − 2);⁡𝑑,−1 = 𝑐,−1
−1
µ=+1           (2.1.31) 

 ( = 2,3,… , 𝐿𝑡). 

Также координатные функции 𝑥(𝑡) можно представить в виде линейных 

комбинаций базисных вейвлет функций вида (2.1.18): 

𝑥1(𝑡) =
1

𝐷1
{𝑎𝑡

00
(𝑡) + 𝑏000

𝑡 
00
(𝑡)};                          (2.1.32) 

𝑥2(𝑡) =
1

𝐷2
{(𝑑21𝑎

𝑡 + ℎ000
𝑡 )

00
(𝑡) + (𝑑21𝑏000

𝑡 +𝑑000
𝑡 )

00
(𝑡)} ;    (2.1.33) 

0vk
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𝑥3(𝑡) =
1

𝐷3
{(𝑑31𝑎

𝑡 + 𝑑32ℎ000
𝑡 )

00
(𝑡) + (𝑑31𝑏000

𝑡 +𝑑32𝑑000
𝑡 )

00
(𝑡) + 

+ℎ100
𝑡 

10
(𝑡)+ℎ110

𝑡 
11
(𝑡)+𝑑100

𝑡 
10
(𝑡)+𝑑110

𝑡 
11
(𝑡)};                    (2.1.34) 

𝑥4(𝑡) =
1

𝐷4
{(𝑑41𝑎

𝑡 + 𝑑42ℎ000
𝑡 )

00
(𝑡) + (𝑑41𝑏000

𝑡 +𝑑42𝑑000
𝑡 )

00
(𝑡) + 

+∑ (1
𝑘=0 𝑑43ℎ1𝑘0

𝑡 + ℎ1𝑘1
𝑡 )

1𝑘
(𝑡) + ∑ (1

𝑘=0 𝑑43𝑑1𝑘0
𝑡 + 𝑑1𝑘1

𝑡 )
1𝑘
(𝑡)}.          (2.1.35) 

Далее для =5,6,…,⁡𝐿𝑡 введем обозначения: 

𝑥(𝑡) = 𝑥𝑗𝑛
∗ (𝑡)⁡⁡      (2.1.36) 

( = 2𝑗 + 𝑛 + 1; 𝑗 = 2,3,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1,… , 2𝑗 − 1). 

Если n=0, то  = 2𝑗 + 1 для 𝑗 = 2,3,… , 𝐽𝑡 и 

𝑥(𝑡) = 𝑥𝑗0
∗ (𝑡) =

1

𝐷
{(𝑑1𝑎

𝑡 + 𝑑2ℎ000
𝑡 )

00
(𝑡) + (𝑑1𝑏000

𝑡 +𝑑2𝑑000
𝑡 )

00
(𝑡) +   

+∑ ∑ ∑ 𝑑(ℎ𝑖𝑘𝑛1
𝑡 

𝑖𝑘
(𝑡) + 𝑑𝑖𝑘𝑛1

𝑡 
𝑖𝑘
(𝑡)2𝑖−1

𝑛1=0
2𝑖−1
𝑘=0

𝑗−1
𝑖=0 ) + ∑ (ℎ𝑗𝑘0

𝑡 
𝑗𝑘
(𝑡) + 𝑑𝑗𝑘0

𝑡 
𝑗𝑘
(𝑡)2𝑗−1

𝑘=0 )} (2.1.37) 

для  =2𝑖 + 𝑛1 + 1.                   

Если n≠0, то  = 2𝑗 + 𝑛 + 1 для 𝑗 = 2,3,… , 𝐽𝑡; 𝑛 = 0,1,…, 2𝑗 − 1⁡⁡и 

𝑥(𝑡) = 𝑥𝑗𝑛
∗ (𝑡) =

1

𝐷
{(𝑑1𝑎

𝑡 + 𝑑2ℎ000
𝑡 )

00
(𝑡) + (𝑑1𝑏000

𝑡 +𝑑2𝑑000
𝑡 )

00
(𝑡) +   

+∑∑ ∑ 𝑑(ℎ𝑖𝑘𝑛1
𝑡 

𝑖𝑘
(𝑡) + 𝑑𝑖𝑘𝑛1

𝑡 
𝑖𝑘
(𝑡)

2𝑖−1

𝑛1=0

2𝑖−1

𝑘=0

𝑗−1

𝑖=0

) + ∑ ∑ 𝑑1(ℎ𝑖𝑘𝑛1
𝑡 

𝑖𝑘
(𝑡) + 𝑑𝑖𝑘𝑛1

𝑡 
𝑖𝑘
(𝑡)

𝑛−1

𝑛1=0

2𝑗−1

𝑘=0

) + 

 

+∑ (ℎ𝑗𝑘𝑛
𝑡 

𝑗𝑘
(𝑡) + 𝑑𝑗𝑘𝑛

𝑡 
𝑗𝑘
(𝑡)2𝑗−1

𝑘=0 )}⁡для⁡= 2𝑖 +𝑛1 +1,1 = 2
𝑗+𝑛1 +1⁡.              (2.1.38) 

 Выражения (2.1.32)–(2.1.38) можно записать в общем виде: 

𝑥(𝑡) = ∑ ∑ [𝑎𝑗𝑘
𝑥 

𝑗𝑘
(𝑡) + 𝑑𝑗𝑘

𝑥 
𝑗𝑘
(𝑡)]2𝑗−1

𝑘=0
𝐽𝑡

𝑗=0 ⁡( = 1,2,… , 𝐿𝑡) .               (2.1.39) 

В этих обозначениях 

𝑎100
𝑥 =

𝑎𝑡

𝐷1
; ⁡𝑑100

𝑥 =
𝑏000
𝑡

𝐷1
; 

𝑎200
𝑥 =

𝑑21𝑎
𝑡 + ℎ000

𝑡

𝐷2
; ⁡𝑑200

𝑥 =
𝑑21𝑏000

𝑡 + 𝑑000
𝑡

𝐷2
; 

𝑎300
𝑥 =

𝑑31𝑎
𝑡 + 𝑑32ℎ000

𝑡

𝐷3
; ⁡𝑑300

𝑥 =
𝑑31𝑏000

𝑡 + 𝑑32𝑑000
𝑡

𝐷3
; 
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𝑎310
𝑥 =

ℎ100
𝑡

𝐷3
; ⁡𝑎311

𝑥 =
ℎ110
𝑡

𝐷3
; ⁡𝑑310

𝑥 =
𝑑100
𝑡

𝐷3
; ⁡𝑑311

𝑥 =
𝑑110
𝑡

𝐷3
; 

𝑎400
𝑥 =

𝑑41𝑎
𝑡 + 𝑑42ℎ000

𝑡

𝐷4
; ⁡𝑑400

𝑥 =
𝑑41𝑏000

𝑡 + 𝑑42𝑑000
𝑡

𝐷4
; 

𝑎410
𝑥 =

𝑑43ℎ100
𝑡 + ℎ101

𝑡

𝐷4
; ⁡𝑎411

𝑥 =
𝑑43ℎ110

𝑡 + ℎ111
𝑡

𝐷4
;⁡ 

𝑑410
𝑥 =

𝑑43𝑑100
𝑡 + 𝑑101

𝑡

𝐷4
; ⁡𝑑411

𝑥 =
𝑑43𝑑110

𝑡 + 𝑑111
𝑡

𝐷4
;⁡ 

𝑎500
𝑥 =

𝑑51𝑎
𝑡 + 𝑑52ℎ000

𝑡

𝐷5
; ⁡𝑑500

𝑥 =
𝑑51𝑏000

𝑡 + 𝑑52𝑑000
𝑡

𝐷5
; 

𝑎510
𝑥 =

𝑑53ℎ100
𝑡 + 𝑑54ℎ101

𝑡

𝐷5
; ⁡𝑎411

𝑥 =
𝑑53ℎ110

𝑡 + 𝑑54ℎ111
𝑡

𝐷5
;⁡ 

 

𝑑510
𝑥 =

𝑑53𝑑100
𝑡 + 𝑑54𝑑101

𝑡

𝐷5
; ⁡𝑑511

𝑥 =
𝑑53𝑑110

𝑡 + 𝑑54𝑑111
𝑡

𝐷4
;⁡ 

𝑎520
𝑥 =

ℎ200
𝑡

𝐷5
; ⁡𝑎521

𝑥 =
ℎ210
𝑡

𝐷5
; ⁡𝑑520

𝑥 =
𝑑200
𝑡

𝐷5
; ⁡𝑑521

𝑥 =
𝑑210
𝑡

𝐷5
; 

𝑎522
𝑥 =

ℎ220
𝑡

𝐷5
; ⁡𝑎523

𝑥 =
ℎ230
𝑡

𝐷5
; ⁡𝑑522

𝑥 =
𝑑220
𝑡

𝐷5
; ⁡𝑑523

𝑥 =
𝑑230
𝑡

𝐷5
⁡⁡и⁡т. д. 

Таким образом, получен следующий новый результат. 

Теорема 2.1.5. Пусть выполнены условия: 

1) действительная УдСФ имеет конечные первый и вторые моменты в 

области [0, 𝑇]; 

2) действительная ковариационная функция удовлетворяет условию: 

𝐾𝑋(𝑡1, 𝑡2)𝐿
2([0, 𝑇] × [0, 𝑇]); 

3) в пространстве 𝐿2[0, 𝑇] определен ортонормированный вейвлет базис, 

порожденный вейвлетами с конечным носителем, вида (2.1.18) 

Тогда вейвлет каноническое разложение УдСФ Х(t) на [0,T] имеет вид 

𝑋(𝑡) = 𝑚𝑋(𝑡) +∑𝑉

𝐿𝑡

=1

𝑥(𝑡), 

где  𝑉1, … , 𝑉𝐿𝑡  – некоррелированные СВ с нулевым математическим ожиданием и 

дисперсиями 𝐷, вычисляемыми по формулам (2.1.28); 𝑥1(𝑡),… , 𝑥𝐿𝑡(𝑡)⁡–⁡координат-
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ные функции, определяемые рекуррентными формулами (2.1.30), (2.1.31) или линей-

ными комбинациями базисных вейвлет функций (2.1.32)-(2.1.39). 

На основе теоремы 2.1.5 получен вейвлет алгоритм построения КР скаляр-

ной нестационарной СФ и ее ковариационной функции на основе ортонормирован-

ного вейвлет базиса, порожденного вейвлетами с конечными носителями. 

Алгоритм 2.1.5. 

1. Определение в пространстве 𝐿2[0, 𝑇] ортонормированного вейвлет ба-

зиса, порожденного вейвлетами с конечными носителями, вида (2.1.18). 

2. Представление ковариационной функции 𝐾𝑋(𝑡1, 𝑡2) в виде ВЛР (2.1.20), 

и определение коэффициентов 𝑘µ(, µ = 1,2,… , 𝐿
𝑡) по формулам (2.1.27). 

3. Вычисление дисперсий 𝐷( = 1,2,… , 𝐿
𝑡) некоррелированных СВ 

𝑉1, … , 𝑉𝐿𝑡  по формулам (2.1.28). 

4. Определение вида координатных функций 𝑥1(𝑡), … , 𝑥𝐿𝑡(𝑡)⁡ по рекур-

рентным формулам (2.1.30), (2.1.31) или линейными комбинациями базисных 

вейвлет функций (2.1.32)–(2.1.39). 

В приложении П.1 проведен сравнительный анализ построения КР на основе 

тригонометрического базиса и вейвлет КР на примере типовой скалярной случай-

ной функции. В приложении П.2 дано описание ИПО "СтИТ-КРВЛ.1", разработан-

ного на основе алгоритма 2.1.5. В приложении П.3 приведены примеры аналитиче-

ского построения ВЛКР скалярных случайных функций. 

 

2.2. Построение канонического разложения векторной ударной 

случайной функции 

2.2.1. Каноническое разложение векторной УдСФ 

Применим к составляющей векторной УдСФ (ВУдСФ) )(tXh , рассматривае-

мой как УдСФ аргумента t  и номера h  теорию КР, изложенную в подразделе 2.1. 

Для этого достаточно во всех формулах заменить аргумент t  совокупностью аргу-

мента t  и  номера h  составляющей ВУдСФ )(tX . Тогда формула (2.1.1) даст следу-

ющее КР ВУдСФ 1( ) [ ( )... ( )]T

lX t X t X t : 

( ) ( ) ( ), ( ) ( ) ( 1, )x x

v v h h v vh

v v

X t m t V x t X t m V x t h l      ,   (2.2.1) 
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где 1( ) [ ( )... ( )]x x x T

lm t m t m t . При этом формула (2.1.5), определяющая координатные 

функции, примет вид 

0

1

1
( ) [ ( )... ( )] , ( ) [ ( ) ] ( 1, )T

vv v vn vh h

v

x t x t x t x t M X t V h l
D

   .   (2.2.2) 

Таким образом, каноническое разложение ВУдСФ представляет собой сов-

местное КР всех ее составляющих с одними и теми же случайными коэффициента-

ми vV . При этом координатные функции получаются естественно различными для 

различных составляющих. 

Заменяя в формуле (2.1.2) аргумент t  совокупностью аргумента 1t  и номера 

1h  составляющей ВУдСФ X(t) и аргумент 't  совокупностью аргумент 2t  и номера 2h , 

найдем КР элементов матрицы ковариационных функций 

𝐾𝑥(𝑡1, 𝑡2) = ‖𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)‖ℎ1,ℎ2=1

𝑙
 в виде: 

 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) = ∑ 𝐷 𝑥ℎ1(𝑡1)𝑥ℎ2(𝑡2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (ℎ1, ℎ2 = 1,… , 𝑙).   (2.2.3) 

Применяя формулу (2.1.7) ко всем составляющим ВУдСФ )(tX , получим 

формулу для оценки точности представления ее составляющих отрезком канониче-

ского разложения: 

2 2

1

[| ( ) | ] ( , ) | ( ) | ( 1, )
N

N x

h Nh hh v vh

v

M R t K t t D x t h l


     .  (2.2.4) 

Справедливо следующее утверждение [21]. 

Теорема 2.2.1. Если векторная УдСФ )(tX  обладает конечными моментами 

первого и второго порядков, то из канонического разложения  ВУдСФ )(tX  выте-

кает КР матрицы ее ковариационных функций, и наоборот, если ковариационная 

матрица представлена КР с линейно-независимыми координатными функциями, 

то ВУдСФ может быть представлена КР с теми же координатными функциями. 
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2.2.2. Вейвлет каноническое разложение векторной УдСФ в заданной 

области изменения аргумента 

Пусть каждый элемент ковариационной функции 𝐾𝑋(𝑡1, 𝑡2) действительной 

ВУдСФ Х(t)=[𝑋1(𝑡), … , 𝑋𝑙(𝑡)]
𝑇, заданной на интервале [0, 𝑇], принадлежит про-

странству 𝐿2([0, 𝑇] × [0, 𝑇]). В пространстве 𝐿2  определим ортонормированный 

вейвлет базис вида (2.1.18). В пространстве 𝐿2([0, 𝑇] × [0, 𝑇]) определим двумерный 

ортонормированный вейвлет базис в виде тензорного произведения двух вейвлет 

базисов вида (2.1.18) для случая, когда масштабирование по обеим переменным 

происходит одинаково, вида (2.1.19). Тогда действительная функция 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) 

имеет сходящееся вейвлет разложение: 

𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) = 𝑎𝑡ℎ1ℎ2𝛷00

𝐴
(𝑡1, 𝑡2)+∑ ∑ ∑ [ℎ𝑗𝑘𝑛

𝑡ℎ1ℎ2𝛹𝑗𝑘𝑛
𝐻
(𝑡1, 𝑡2)+

2𝑗−1

𝑛=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

 

+𝑏𝑗𝑘𝑛
𝑡ℎ1ℎ2𝛹𝑗𝑘𝑛

𝐵 (𝑡1, 𝑡2) + 𝑑𝑗𝑘𝑛
𝑡ℎ1ℎ2𝛹𝑗𝑘𝑛

𝐷 (𝑡1, 𝑡2)] ,                                           (2.2.5) 

где                             

𝑎𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)

𝑇

0

𝑇

0
𝛷00
𝐴 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2, 

ℎ𝑗𝑘𝑛
𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐻 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2,  

𝑏𝑗𝑘𝑛
𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐵 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 , 

𝑑𝑗𝑘𝑛
𝑡ℎ1ℎ2 = ∫ ∫ 𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)
𝑇

0

𝑇

0
𝛹𝑗𝑘𝑛
𝐷 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2. 

 Пусть СВ 𝑉⁡ в (2.2.1) имеют вид:  

𝑉 = ∑ ∫ 𝑎h
𝑇

0
𝑙
h=1 (𝑡)𝑋h

°(𝑡)𝑑𝑡,⁡⁡⁡⁡ = 1,2,… , 𝐿𝑡 ⁡⁡⁡.   (2.2.6) 

Из условия некоррелированности СВ 𝑉 и 𝑉µ ( ≠ µ) следует, что  

𝑀[𝑉⁡𝑉µ] = ∑ ∑ ∫ ∫ 𝑎ℎ1(𝑡1
𝑇

0

𝑇

0
𝑙
ℎ2

𝑙
ℎ1

)𝑎µℎ2(𝑡2)𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 = 0.            (2.2.7) 

При этом дисперсии СВ 𝑉 равны 

𝐷 = 𝐷[𝑉] = ∑ ∑ ∫ ∫ 𝑎ℎ1(𝑡1
𝑇

0

𝑇

0
𝑙
ℎ2

𝑙
ℎ1

)𝑎ℎ2(𝑡2)𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2. 

Координатные функции 𝑥ℎ(𝑡) в (2.2.1) вычисляются по формулам  

𝑥ℎ(𝑡) =
1

𝐷
𝑀[𝑋ℎ

° (𝑡)𝑉] =
1

𝐷
∑ ∫ 𝑎g

𝑇

0
𝑙
𝑔=1 (𝑠)𝐾ℎ𝑔

𝑥 (𝑡, 𝑠)𝑑𝑠 (ℎ = 1,… , 𝑙).   (2.2.8) 

],0[ T
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Тогда из (2.2.7) следует условие биортогональности 

∑ ∫ 𝑎h
𝑇

0
𝑙
h=1 (𝑡)𝑥µh(𝑡)𝑑𝑡 = 𝛿µ.   (2.2.9) 

 Следуя подразделу 2.1.1, одномерный вейвлет базис (2.1.18) представим в 

виде (2.1.22). Положим 𝑎1ℎ(𝑡) = 𝑓1(𝑡)(ℎ = 1,… , 𝑙), тогда получим  

𝐷1 = ∑ ∑ ∫ ∫ 𝑓1(𝑡1
𝑇

0

𝑇

0
𝑙
ℎ2

𝑙
ℎ1

)𝑓1(𝑡2)𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2,   (2.2.10) 

𝑥1ℎ(𝑡) =
1

𝐷1
∑ ∫ 𝑓1

𝑇

0
𝑙
𝑔=1 (𝑠)𝐾ℎ𝑔

𝑥 (𝑡, 𝑠)𝑑𝑠.   (2.2.11) 

Примем 𝑎2ℎ(𝑡) = 𝑐21𝑎1ℎ(𝑡) + 𝑓2(𝑡) (ℎ = 1,… , 𝑙). Из (2.2.9) следует, что  

∑ ∫ 𝑎2ℎ
𝑇

0
𝑙
𝑔=1 (𝑡)𝑥1𝑔(𝑡) = 0.     (2.2.11) 

Отсюда находим 𝑐21 = −∑ ∫ 𝑓2
𝑇

0
𝑙
𝑔=1 (𝑡)𝑥1𝑔(𝑡)𝑑𝑡.    

Предположим, что определены функции 𝑎h(t) и 𝑥h(t) для =1,…,µ-1, удо-

влетворяющие условиям (2.2.8) и (2.2.9), а также дисперсии 𝐷 для =1,…,µ-1, тогда  

𝑎µℎ(𝑡) = ∑ 𝑐µℎ
µ−1
=1 𝑎ℎ(𝑡) + 𝑓µ(𝑡),     

𝑐µ = −∑ ∫ 𝑓µ
𝑇

0
𝑙
ℎ=1 (𝑡)𝑥ℎ(𝑡)𝑑𝑡⁡⁡⁡(⁡ = 1,… , µ − 1).   (2.2.12) 

Так же, как и в подразделе 2.1.1, введем вспомогательные СВ 

𝐴𝑟 = ∑ ∫ 𝑓𝑟
𝑇

0
(𝑡)𝑋ℎ(𝑡)𝑑𝑡

𝑙
ℎ=1 ⁡⁡⁡⁡⁡⁡(𝑟 = 1,2,… , 𝐿𝑡) с ковариационными моментами  

𝑘µ = 𝑀[𝐴
°𝐴µ

° ] = ∑ ∑ ∫ ∫ 𝑓(𝑡1)
𝑇

0

𝑇

0
𝑓µ(𝑡2)𝐾ℎ1ℎ2

𝑥 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2
𝑙
ℎ2

𝑙
ℎ1

(, µ = 1,2,… , 𝐿𝑡).   

На основании (2.2.5) имеем: 

𝑘11 = ∑ ∑ 𝑎𝑡ℎ1ℎ2𝑙
ℎ2

𝑙
ℎ1

; ⁡⁡𝑘12 = ∑ ∑ ℎ000
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

⁡⁡ ;  

𝑘21 = ∑ ∑ 𝑏000
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

; ⁡⁡𝑘22 = ∑ ∑ 𝑑000
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

;  

𝑘µ = ∑ ∑ 𝑑𝑗𝑘𝑛
𝑡ℎ1ℎ2𝑙

ℎ2
𝑙
ℎ1

 для  = 2𝑗 + 𝑘 + 1; ⁡µ = 2𝑗 + 𝑛 + 1;  

𝑗 = 1,2,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1,… , 2𝑗 − 1.   (2.2.13) 

Остальные взаимные ковариационные моменты равны нулю: 𝑘µ = 0. 

 На основании (2.2.6), (2.2.10), (2.2.12) имеем 

𝐴1
° = 𝑉1, 𝐴𝑟

° = −∑ 𝑐𝑟
𝑟−1
=1 𝑉 + 𝑉𝑟 ⁡(𝑟 = 2,3,… , 𝐿

𝑡),  

где  
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𝑐1 = −
𝑘1
𝐷1
⁡⁡⁡( = 2,3,… , 𝐿𝑡);⁡ 

𝑐µ = −
1

𝐷µ
(𝑘µ − ∑ 𝐷𝑐µ𝑐

µ−1
=1 )⁡⁡(µ = 2,3,… , − 1;  = 3,4,… , 𝐿𝑡);⁡    (2.2.14)  

𝐷1 = 𝐷[𝑉1] = 𝑘11; ⁡𝐷 = 𝐷[𝑉] = 𝑘 − ∑ 𝐷|𝑐|
2−1

=1 ⁡⁡( = 2,3,… , 𝐿𝑡).  (2.2.15) 

 Для упрощения вида координатных функций 𝑥(𝑡) = [𝑥1(𝑡), … , 𝑥𝑙(𝑡)]
𝑇 

( = 1,2,… , 𝐿𝑡) введем вспомогательные функции: 

𝑧ℎ(𝑡) = ∑ ∫ 𝑓
𝑇

0
(𝑠)𝐾ℎ𝑔

𝑥 (𝑡, 𝑠)𝑑𝑠𝑙
𝑔=1 ⁡⁡⁡⁡⁡⁡( = 1,2,… , 𝐿𝑡).          (2.2.16)  

На основании (2.2.5) имеем: 

𝑧1ℎ(𝑡) = ∑ [𝑎𝑡ℎ𝑔
00
(𝑡) + 𝑏000

𝑡ℎ𝑔

00
(𝑡)]𝑙

𝑔=1 , 

𝑧ℎ(𝑡) = ∑ ∑ [ℎ𝑗𝑘𝑛
𝑡ℎ𝑔


𝑗𝑘
(𝑡) + 𝑑𝑗𝑘𝑛

𝑡ℎ𝑔

𝑗𝑘
(𝑡)]2𝑗−1

𝑘=0
𝑙
𝑔=1    (2.2.17) 

(=2,3,…,⁡𝐿𝑡;  = 2𝑗 + 𝑛 + 1; 𝑗 = 0,1,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1, … , 2𝑗 − 1). 

Тогда координатные функции 𝑥ℎ(𝑡) определяются рекуррентными формулами: 

𝑥1ℎ(𝑡) =
1

𝐷1
𝑧1ℎ(𝑡);⁡⁡𝑥ℎ(𝑡) =

1

𝐷
{∑ 𝑑

−1
=1 𝑧ℎ(𝑡) + 𝑧ℎ(𝑡)}⁡( = 2,3,… , 𝐿

𝑡);  

𝑑 = 𝑐 + ∑ 𝑐µ𝑑µ⁡⁡⁡( = 1,2,… , − 2);⁡𝑑,−1 = 𝑐,−1.
−1
µ=+1     (2.2.18) 

Также представим координатные функции 𝑥ℎ(𝑡) в виде линейных комбина-

ций базисных вейвлет функций вида (2.1.18): 

𝑥1ℎ(𝑡) =
1

𝐷1
∑ {𝑎𝑡ℎ𝑔

00
(𝑡) + 𝑏000

𝑡ℎ𝑔

00
(𝑡)}𝑙

𝑔=1 ;                       (2.2.19) 

𝑥2ℎ(𝑡) =
1

𝐷2
∑ {(𝑑21𝑎

𝑡ℎ𝑔 + ℎ000
𝑡ℎ𝑔
)

00
(𝑡) + (𝑑21𝑏000

𝑡ℎ𝑔
+𝑑000

𝑡ℎ𝑔
)

00
(𝑡)}𝑙

𝑔=1 ; (2.2.20) 

𝑥3ℎ(𝑡) =
1

𝐷3
∑{(𝑑31𝑎

𝑡ℎ𝑔 + 𝑑32ℎ000
𝑡ℎ𝑔
)

00
(𝑡) + (𝑑31𝑏000

𝑡ℎ𝑔
+𝑑32𝑑000

𝑡ℎ𝑔
)

00
(𝑡)

𝑙

𝑔=1

+ 

+ℎ100
𝑡ℎ𝑔


10
(𝑡)+ℎ110

𝑡ℎ𝑔

11
(𝑡)+𝑑100

𝑡ℎ𝑔

10
(𝑡)+𝑑110

𝑡ℎ𝑔

11
(𝑡)};                    (2.2.21) 

𝑥4ℎ(𝑡) =
1

𝐷4
∑{(𝑑41𝑎

𝑡ℎ𝑔 + 𝑑42ℎ000
𝑡ℎ𝑔
)

00
(𝑡) + (𝑑41𝑏000

𝑡ℎ𝑔
+𝑑42𝑑000

𝑡ℎ𝑔
)

00
(𝑡)

𝑙

𝑔=1

+ 

+∑ (1
𝑘=0 𝑑43ℎ1𝑘0

𝑡ℎ𝑔
+ ℎ1𝑘1

𝑡ℎ𝑔
)

1𝑘
(𝑡) + ∑ (1

𝑘=0 𝑑43𝑑1𝑘0
𝑡ℎ𝑔

+ 𝑑1𝑘1
𝑡 )

1𝑘
(𝑡)}.          (2.2.22) 

Далее =5,6,…,⁡𝐿𝑡 введем обозначения: 

𝑥ℎ(𝑡) = 𝑥𝑗𝑛ℎ
∗ (𝑡)⁡⁡      (2.2.23) 
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;  = 2𝑗 + 𝑛 + 1; 𝑗 = 2,3,… , 𝐽𝑡: 𝑘, 𝑛 = 0,1,… , 2𝑗 − 1). 

Если n=0, то  = 2𝑗 + 1 для 𝑗 = 2,3,… , 𝐽𝑡 и 

𝑥ℎ(𝑡) = 𝑥𝑗0ℎ
∗ (𝑡) =

1

𝐷
∑ {(𝑑1𝑎

𝑡ℎ𝑔 + 𝑑2ℎ000
𝑡ℎ𝑔
)

00
(𝑡) + (𝑑1𝑏000

𝑡ℎ𝑔
+𝑑2𝑑000

𝑡ℎ𝑔
)

00
(𝑡)𝑙

𝑔=1 +   

+∑ ∑ ∑ 𝑑(ℎ𝑖𝑘𝑛1
𝑡ℎ𝑔


𝑖𝑘
(𝑡) + 𝑑𝑖𝑘𝑛1

𝑡ℎ𝑔

𝑖𝑘
(𝑡)2𝑖−1

𝑛1=0
2𝑖−1
𝑘=0

𝑗−1
𝑖=0 ) + ∑ (ℎ𝑗𝑘0

𝑡ℎ𝑔

𝑗𝑘
(𝑡) + 𝑑𝑗𝑘0

𝑡ℎ𝑔

𝑗𝑘
(𝑡)2𝑗−1

𝑘=0 )}       (2.2.24) 

для  =2𝑖 + 𝑛1 + 1.                   

Если n≠0, то  = 2𝑗 + 𝑛 + 1 для 𝑗 = 2,3,… , 𝐽𝑡; 𝑛 = 0,1,…, 2𝑗 − 1⁡⁡и 

𝑥ℎ(𝑡) = 𝑥𝑗𝑛ℎ
∗ (𝑡) =

1

𝐷
∑ {(𝑑1𝑎

𝑡ℎ𝑔 + 𝑑2ℎ000
𝑡ℎ𝑔
)

00
(𝑡) + (𝑑1𝑏000

𝑡ℎ𝑔
+𝑑2𝑑000

𝑡ℎ𝑔
)

00
(𝑡)𝑙

𝑔=1 +   

+∑∑ ∑ 𝑑(ℎ𝑖𝑘𝑛1
𝑡ℎ𝑔


𝑖𝑘
(𝑡) + 𝑑𝑖𝑘𝑛1

𝑡ℎ𝑔

𝑖𝑘
(𝑡)

2𝑖−1

𝑛1=0

2𝑖−1

𝑘=0

𝑗−1

𝑖=0

) + ∑ ∑ 𝑑1(ℎ𝑖𝑘𝑛1
𝑡ℎ𝑔


𝑖𝑘
(𝑡) + 𝑑𝑖𝑘𝑛1

𝑡ℎ𝑔

𝑖𝑘
(𝑡)

𝑛−1

𝑛1=0

2𝑗−1

𝑘=0

) + 

+∑ (ℎ𝑗𝑘𝑛
𝑡ℎ𝑔


𝑗𝑘
(𝑡) + 𝑑𝑗𝑘𝑛

𝑡ℎ𝑔

𝑗𝑘
(𝑡)2𝑗−1

𝑘=0 )}⁡для⁡ = 2𝑖+𝑛1+1,1 = 2
𝑗+𝑛1 +1⁡.      (2.2.25) 

Выражения (2.2.19) – (2.2.25) можно записать в общем виде: 

𝑥ℎ(𝑡) = ∑ ∑ [𝑎𝑗𝑘
𝑥ℎ 

𝑗𝑘
(𝑡) + 𝑑𝑗𝑘

𝑥ℎ 
𝑗𝑘
(𝑡)]2𝑗−1

𝑘=0
𝐽𝑡

𝑗=0 ⁡( = 1,2,… , 𝐿𝑡) .               (2.2.26) 

 В итоге имеем искомое КР элементов векторной ударной случайной функ-

ции Х(t)=[𝑋1(𝑡),… , 𝑋𝑙(𝑡)]
𝑇 на [0,T]: 

𝑋ℎ(𝑡) = 𝑚ℎ
𝑥(𝑡) + ∑ 𝑉𝑥ℎ(𝑡)

𝐿𝑡
=1 ⁡⁡(ℎ = 1,… , 𝑙).  (2.2.27) 

Тогда КР элементов ковариационной функции 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) имеет вид: 

𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) = ∑ 𝐷

𝐿𝑡
=1 𝑥ℎ1(𝑡1)𝑥ℎ2(𝑡2).   (2.2.28) 

Таким образом, получен следующий новый результат. 

Теорема 2.2.2. Пусть выполнены следующие условия: 

1) векторная УдСФ Х(t)=[𝑋1(𝑡),… , 𝑋𝑙(𝑡)]
𝑇 на [0, 𝑇] обладает конечными 

моментами первого и второго порядка; 

2)  элементы ковариационной функции 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) принадлежат про-

странству⁡𝐿2([0, 𝑇] × [0, 𝑇]); 

3) в пространстве 𝐿2[0, 𝑇] определен ортонормированный вейвлет-базис, 

порожденный вейвлетами с конечным носителем, вида (2.1.18).   

Тогда ВЛКР составляющих  ВУдСФ Х(t)=[𝑋1(𝑡),… , 𝑋𝑙(𝑡)]
𝑇 на [0,T] имеет 

вид (2.2.27), где  𝑉1, … , 𝑉𝐿𝑡  – некоррелированные СВ с нулевым математическим 

ожиданием и дисперсиями 𝐷, вычисляемыми по формулам (2.2.13)–(2.2.15); 

𝑥1(𝑡),… , 𝑥𝐿𝑡(𝑡)⁡–⁡координатные функции, определяемые рекуррентными формулами 



47 

 

 

(2.2.16),(2.2.17) или линейными комбинациями базисных вейвлет функций (2.2.19)-

(2.2.26). 

На основе теоремы 2.2.2  получен вейвлет алгоритм построения КР вектор-

ной УдСФ и ее ковариационной функции на основе ортонормированного вейвлет 

базиса, порожденного вейвлетами с конечным носителем. 

Алгоритм 2.2.2. 

1. Определение в пространстве L2[0, T] ортонормированного вейвлет-

базиса, порожденного вейвлетами с конечными носителями, вида (2.1.18). 

2. Представление элементов ковариационной функции 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) в виде 

ВЛР (2.2.5), и определение параметров  𝑘µ(, µ = 1,2,… , 𝐿
𝑡) по формулам (2.2.13). 

3. Вычисление дисперсий D( = 1,2,… , L
t) некоррелированных СВ 

𝑉1, … , 𝑉𝐿𝑡  по формулам (2.2.14), (2.2.15). 

4. Определение вида координатных функций 𝑥1(𝑡), … , 𝑥𝐿𝑡(𝑡)⁡ по рекур-

рентным формулам (2.2.16)–(2.2.18) или линейными комбинациями базисных 

вейвлет функций (2.2.19)–(2.2.26). 

 В приложении П.4 изложен реккурентный алгоритм аналитического постро-

ения ВЛКР двумерной векторной случайной функции в заданной области изменения 

аргумента. 

2.3. Канонические разложения линейных и квазилинейных 

преобразований УдСФ 

Предположим, что известны математическое ожидание и ковариационная  

функция скалярной УдСФ )(tX . Поставим задачу найти математическое  ожидание 

и ковариационную функцию УдСФ вида 

)()( tAXsY  ,      (2.3.1) 

где A  – произвольный линейный оператор. В [21] доказана следующая теорема: 

Теорема 2.3.1. Пусть заданы математическое ожидание )(tmx  и ковариа-

ционная функция )',( ttKx  скалярной СФ )(tXX  . Тогда математическое ожидание 

и ковариационная функция скалярного линейного преобразования (2.3.1) при условии 

переместительности оператора A  и операции математического ожидания  опре-

деляются формулами  



48 

 

 

)()( tAmsm xy  ,       (2.3.2) 

)',()',()',( '' ttKAAttKAAssK xttxtty  ,     (2.3.3) 

Выразив скалярную УдСФ )(tX  в виде канонического разложения  

)()()( txVtmtX vv

v

x  ,     (2.3.4) 

получим КР скалярной СФ )(tY : 

)()()( syVtmsY vv

v

y  ,       (2.3.5)  

где )(smy   определяется формулой (2.3.2), а координатные функции )(syv  формулой 

)()( tAxsy vv  .       (2.3.6) 

На основании (2.1.2) и (2.1.3) ковариационная функция и дисперсия скаляр-

ной СФ )(tY  выразятся формулами 

)'()()',( sysyDssK vvv

v

y  ,     (2.3.7) 

2|)(|)( syDsD vv

v

y  .      (2.3.8) 

Имеет место следующее утверждение [21]. 

Теорема 2.3.2. В условиях теоремы 2.3.1, если известно КР скалярной УдСФ 

)(tX  (2.3.4), то математическое ожидание и ковариационная функция линейного 

преобразования (2.3.1) допускают КР (2.3.5) и (2.3.7), в которых )(smy  и )(syv   опре-

деляются (2.3.2) и (2.3.6). 

Общее линейное преобразование векторной УдСФ T

n tXtXtX )]()...([)( 1  для 

каждой компоненты )(sYp  вектора T

m sYsYsY )]()...([)( 1  выражается формулой 

),1()()(),()(
1

mptXAsYtAXsY hph

n

h

p  


,    (2.3.9) 

где ),1;,1( nhmpAph   – произвольные линейные операторы. Предполагая, что 

операция математического ожидания переместительна со всеми линейными опера-

торами phA , известна формула для математического ожидания векторной СФ )(tY  

[21]: 

1

( ) || ( ) ||, ( ) ( ) ( 1, )
n

y y y x

p p ph h

h

m s m s m s A m t p m


   .   (2.3.10) 
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Матрица ковариационных функций векторной СФ )(tY  (т.е. совокупность 

ковариационных функций и взаимных ковариационных функций всех ее составля-

ющих) определяется формулами: 

'

, 1

( , ') || ( , ') ||, ( , ') ( ') ( , ') ( , 1, )
n

y y t t x

y pq pq ph ql hl

h l

K s s K s s K s s A A t K t t p q m


   .     (2.3.11) 

Справедливо следующее утверждение [21]. 

Теорема 2.3.3. Пусть задан вектор математических ожиданий 

Tx

n

xx tmtmtm )]()...([)( 1  и матрица ковариационных функций ( , ') || ( , ') ||x x

hlK t t K t t  

),1;,1( mlnh    векторной УдСФ )(tX . Тогда вектор математических ожиданий 

Ty

m

yy smsmsm )]()...([)( 1  и матрица ковариационных функций ( , ') || ( , ') ||y

y pqK s s K s s  линей-

ного преобразования вида (2.3.9) при условии переместительности оператора A  и 

операции математического ожидания M  определяются формулами  (2.3.10) и 

(2.3.11). 

Выразив элементы векторной УдСФ T

n tXtXtX )]()...([)( 1  каноническим раз-

ложением  

),1()()()( nptxVtmtX vpv

v

x

pp   ,    (2.3.12) 

получим КР элементов векторной СФ T

m sYsYsY )]()...([)( 1 : 

),1()()()(
1

mpsyVsmsY vpv

n

h

x

pp  


,    (2.3.13) 

где координатные функции определяются формулой 

),1()()(
1

mptxAsy vhph

n

h

vp 


.     (2.3.14) 

В силу (2.3.3) элементы матрицы ковариационных функций векторной СФ 

𝑌(𝑡) выразятся через координатные функции формулой 

( , ') || ( , ') ||, ( , ') ( ) ( ')y y

y pq pq v vp vq

v

K s s K s s K s s D y s y s   , mqp ,1,  .  (2.3.15) 

Справедливо следующее утверждение [21]. 

Теорема 2.3.4. В условиях теоремы 2.3.3, если известно КР векторной 

УдСФ )(tX  (2.3.12), то векторная функция )(sY  и матрица ее ковариационных 

функций допускают КР (2.3.13) и (2.3.15), в которых вектор математических 
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ожиданий )(smy  и координатные функции )(syvp   определяются согласно (2.3.10) и 

(2.3.14). 

 Теперь рассмотрим канонические разложения квазилинейных преобразова-

ний УдСФ. Линеаризация нелинейных преобразований может быть применена в 

двух  различных вариантах. Во-первых, можно непосредственно линеаризовать за-

данную зависимость между УдСФ и заменить таким образом нелинейные уравне-

ния, связывающие  УдСФ, линейными. Во-вторых, можно применить методы  КР, 

которые приводят к замене операций над УдСФ операциями над обычными СВ, по-

сле чего можно применить обычный в теории вероятностей метод линеаризации 

функциональных зависимостей между СВ. 

Метод непосредственной линеаризации преобразования УдСФ состоит в за-

мене всех заданных уравнений, связывающих УдСФ, приближенными линейными 

уравнениями, достаточно хорошо отражающими истинную зависимость между  

УдСФ в области практически возможных реализаций УдСФ. Так как математиче-

ские ожидания УдСФ являются средними значениями, около которых рассеиваются 

их возможные реализации, то практически удобнее всего производить линеариза-

цию соотношений между УдСФ относительно их отклонений от математических 

ожиданий, т.е. центрированных УдСФ. При этом все функции, входящие в задан-

ные уравнения, следует разложить в ряды Тейлора по центрированным УдСФ и от-

бросить члены этих рядов выше первой степени. Степень точности получаемого та-

ким образом приближения может быть оценена по максимальной возможной вели-

чине отброшенных членов в области практически возможных реализаций УдСФ. 

Заменив данные уравнения, связывающие  УДСФ, приближенными линейными 

уравнениями, можем применить теорию линейных преобразований УдСФ для при-

ближенного определения математических ожиданий и ковариационных функций 

УдСФ, полученных в результате рассматриваемого нелинейного преобразования.  
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2.4. О моделировании ударной случайной функции  

Как известно, непосредственное экспериментальное изучение сложных слу-

чайных ударных явлений часто требует чрезмерно больших затрат, а иногда и 

принципиально невозможно. В таких случаях прибегают к статистическому моде-

лированию изучаемых ударных явлений. Средства компьютерной техники дают 

возможность имитировать практически без ограничений сложнейшие ударные яв-

ления и процессы. В этом случае используется метод статистического моделиро-

вания [21], как научный метод исследования, позволяющий сочетать теоретические 

расчеты с имитацией различных экспериментов, а частично и с натурными экспе-

риментами над отдельными элементами, исследуемых стохастических систем. Ме-

тод статистического моделирования основан на компьютерном моделировании 

(имитации) ударного явления с помощью теоретических зависимостей с непосред-

ственным моделированием влияющих на его течение случайных факторов и на ста-

тистической обработке получаемых результатов. Его основой являются модели 

УдСФ в виде ее канонического разложения, в том числе вейвлет КР, и событий с 

заданными вероятностями. 

Этот метод для решения задачи анализа точности сводится к многократному 

непосредственному компьютерному моделированию ударного явления, включая 

моделирование тех УдСФ, вероятностные характеристики которых известны и по-

следующему статистическому оцениванию вероятностных характеристик получен-

ных.  

Его достоинством является возможность включения в процесс моделирова-

ния некоторых реальных элементов, в том числе не поддающихся математическому 

описанию. Недостатком этого метода является необходимость многократного моде-

лирования УдСФ, чтобы получить выборку, по которой необходимые статистиче-

ские характеристики могли быть оценены с достаточной точностью. 
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2.5. Выводы к разделу 2 

1. Для анализа и моделирования существенно нестационарной скалярной 

ударной случайной функции и ее ковариационной функции на основе ортогональ-

ных вейвлетов с компактным носителем разработан алгоритм построения вейвлет 

канонического разложения (Теорема 2.1.5 и алгоритм 2.1.5). 

2. В приложении П1 приведены результаты сравнительного анализа постро-

ения КР на основе тригонометрического базиса и вейвлет КР на основе базиса 

вейвлетов Хаара для типовой скалярной СФ, который показал что точность ВЛКР 

значительно выше аналогичного КР на основе тригонометрического базиса. 

3. В приложении П2 дано описание инструментального программного обес-

печения построения ВЛКР случайной функции "СтИТ-КРВЛ.1", реализующего ал-

горитм 2.1.5. 

4. Для иллюстрации теоремы 2.1.5 в приложении П.3 приведены примеры 

аналитического построения ВЛКР скалярных СФ.  

5. Для анализа и моделирования существенно нестационарной векторной 

ударной случайной функции и ее матрицы ковариационных функций на основе ор-

тогональных вейвлетов с компактным носителем разработан алгоритм построения 

вейвлет канонического разложения (Теорема 2.2.2 и алгоритм 2.2.2). 

6. Для иллюстрации теоремы 2.2.2 применительно к двумерной векторной 

СФ детально разработан рекуррентный алгоритм построения ВЛКР, представлен-

ный в приложении П4. 
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3. ВЕЙВЛЕТ МЕТОДЫ И АЛГОРИТМЫ АНАЛИЗА ТОЧНОСТИ 

СТОХАСТИЧЕСКИХ СИСТЕМ ПРИ УДАРНЫХ ВОЗДЕЙСТВИЯХ 

3.1 Корреляционные методы и алгоритмы анализа точности 

линейных УдСтС 

3.1.1 Линейные УдСтС 

Следуя [19, 20], рассмотрим линейную УдСтС следующего вида:  

𝑌 ̇ = 𝑎𝑌 + 𝑎0 + 𝑏𝑉, 𝑌(𝑡0) = 𝑌0 ,  (3.1.1) 

где 𝑌 = 𝑌(𝑡) – вектор состояния УдСтС размерности p; 𝑉 = 𝑉(𝑡) – белый шум (в 

широком смысле) размерности 𝑛𝑣 с интенсивностью =(t); 𝑎 = 𝑎уд(𝑡) , 𝑎0 =

𝑎0
уд
(𝑡), 𝑏 = 𝑏уд(𝑡) – известные коэффициенты размерности (p×p), (p×1), (p× 𝑛𝑣) со-

ответственно. 

 В основе корреляционной теории УдСФ лежат известные обыкновенные 

дифференциальные уравнения: 

𝑚𝑦̇ = 𝑎𝑚𝑦 + 𝑎0⁡,⁡⁡𝑚𝑦(𝑡0) = 𝑚0;      (3.1.2) 

𝐾𝑦̇ = 𝑎𝐾𝑦 + 𝐾𝑦𝑎
𝑇 + 𝑏𝑏𝑇,⁡ ⁡𝐾(𝑡0) = 𝐾0;    (3.1.3) 

𝜕𝐾𝑦(𝑡1, 𝑡2)

𝜕𝑡2
= 𝐾𝑦(𝑡1, 𝑡2)𝑎(𝑡2)

𝑇 ⁡, 𝐾𝑦(𝑡1, 𝑡1) = 𝐾𝑦(𝑡1)⁡при⁡𝑡1 < 𝑡2;⁡ 

𝐾𝑦(𝑡1, 𝑡2) = 𝐾𝑦(𝑡2, 𝑡1)
𝑇 ⁡⁡⁡ при 𝑡1 > 𝑡2;     (3.1.5) 

где 𝑚𝑦 – вектор математического ожидания, 𝐾𝑦⁡– ковариационная матрица, 

𝐾𝑦(𝑡1, 𝑡2) – матрица ковариационных функций СтП 𝑌(𝑡). 

 Рассмотрим систему (3.1.1) на интервале времени [𝑡0, 𝑇]. С помощью замены 

переменных  

𝑡̅ =
(𝑡−𝑡0)

(𝑇−𝑡0)
     (3.1.6) 

сведем (3.1.1) к соответствующему векторному линейному стохастическому урав-

нению  

𝑌′̅ = 𝑎̅(𝑡̅)𝑌̅ + 𝑎0̅̅ ̅(𝑡̅) + 𝑏̅(𝑡̅)𝑉̅(𝑡̅)         (3.1.7) 

при 𝑡̅ ∈ [0,1] с начальным условием 
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 𝑌̅(0)=𝑌0     (3.1.8) 

и белым шумом 𝑉̅(𝑡̅)  с интенсивностью 

 ̅(𝑡̅)=(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0).    (3.1.9) 

Здесь  приняты следующие обозначения:  

𝑌̅(𝑡̅)=Y(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑉̅(𝑡̅) = 𝑉((𝑇 − 𝑡0)𝑡̅ + 𝑡0),  

𝑎̅(𝑡̅)=(⁡𝑇 − 𝑡0)𝑎(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑎̅0(𝑡̅)=(⁡𝑇 − 𝑡0)𝑎0(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0),(3.1.10) 

𝑏̅(𝑡̅)=(⁡𝑇 − 𝑡0)𝑏(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

Штрихом отмечена операция дифференцирования по безразмерному времени 𝑡̅. В 

дальнейшем для простоты записи положим 𝑡̅ = 𝑡. 

3.1.2 Вейвлет метод вычисления математического ожидания  

Для решения уравнения  

𝑚̅′ = 𝑎̅𝑚̅ + 𝑎̅0,⁡⁡⁡𝑚̅(0) = 𝑚0,     (3.1.11) 

определяющего математическое ожидание 𝑚̅=M𝑌̅, применим вейвлет версию мето-

да Галеркина [23] и метод вейвлетов Хаара[24]. Будем считать, что элементы мат-

ричных функций 𝑚̅′, 𝑚̅, 𝑎̅, 𝑎̅0⁡⁡принадлежат пространству 𝐿2[0,1]. Как показано в 

[121], они могут быть разложены в сходящиеся вейвлет ряды по ортогональным 

вейвлетам Хаара. Следуя [24], определим ортонормированный базис вейвлетов 

Хаара в следующем виде: 

𝑤1(𝑡) = (𝑡) = 
00
(𝑡) = {

1⁡при⁡𝑡 ∈ [0,1),

0⁡⁡при⁡𝑡[0,1),
   (3.1.12) 

𝑤2(𝑡) = (𝑡) = 
00
(𝑡) =

{
 

 1⁡при⁡⁡𝑡 ∈ [0,
1

2
)

−1⁡при⁡⁡𝑡 ∈ [
1

2
, 1)

0⁡⁡при⁡𝑡[0,1),

   (3.1.13) 

𝑤𝑖(𝑡) = 
𝑗𝑘
(𝑡) =

{
 
 

 
 √2𝑗 ⁡при⁡⁡𝑡 ∈ [

𝑘

𝑙
,
𝑘+0.5

𝑙
) ,

−√2𝑗⁡при⁡⁡𝑡 ∈ [
𝑘+0.5

𝑙
,
𝑘+1

𝑙
)

0⁡⁡при⁡𝑡 [
𝑘

𝑙
,
𝑘+1

𝑙
) .

,   (3.1.14) 

Здесь =(t) – масштабирующая функция,  = (𝑡) – материнский вейвлет,  


𝑗𝑘
= 

𝑗𝑘
(𝑡) = √2𝑗(2𝑗𝑡 − 𝑘),   (3.1.15) 
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k=0,1,…,l-1; l=2𝑗; j=1,2,…,J; L=2 ∗ 2𝐽; i=l+k+1; i=3,4,…,L; J – максимальный уро-

вень вейвлет разрешения. 

 Кроме этого, определим интегралы от вейвлетов Хаара 

𝑝𝑖(𝑡) = ∫ 𝑤𝑖(𝑡)𝑑𝑡⁡⁡⁡(𝑖 = 1,2, … , 𝐿),
𝑡

0
   (3.1.16) 

где  𝑝1(𝑡) = {
𝑡⁡⁡при⁡𝑡 ∈ [0,1),

0⁡⁡при⁡𝑡[0,1),
  𝑝𝑖(𝑡) =

{
 
 

 
 √2𝑗 (𝑡 −

𝑘

𝑙
) ⁡при⁡⁡𝑡 ∈ [

𝑘

𝑙
,
𝑘+0.5

𝑙
) ,

√2𝑗 (
𝑘+1

𝑙
− 𝑡) ⁡при⁡⁡𝑡 ∈ [

𝑘+0.5

𝑙
,
𝑘+1

𝑙
)

0⁡⁡при⁡𝑡 [
𝑘

𝑙
,
𝑘+1

𝑙
) ,

,      (i=2,3,…,L). 

Для каждой составляющей 𝑚̅ℎ = 𝑚̅ℎ(𝑡),⁡⁡h=1,…,p, вектора 𝑚̅ = 𝑚̅(𝑡) уравне-

ние (3.1.11) дает выражения: 

𝑚̅ℎ
′ = ∑ 𝑎̅ℎ𝑘(𝑡)𝑚̅𝑘

𝑝
𝑘=1 (𝑡) + 𝑎̅0ℎ(𝑡), 𝑚̅ℎ(0) = 𝑚0ℎ .  (3.1.17) 

Представим 𝑚̅ℎ
′  в виде ВЛР по ортонормированному базису вейвлетов Хаара: 

𝑚̅ℎ
′ = ∑ 𝑐ℎ𝑖𝑤𝑖(𝑡),

𝐿
𝑖=1   где 𝑐ℎ𝑖 = ∫ 𝑚̅ℎ

′ ()
1

0
𝑤𝑖()𝑑.   (3.1.18) 

Тогда решение (3.1.17) относительно 𝑚̅ℎ можно записать в виде  

𝑚̅ℎ(𝑡) = ∫ ∑ 𝑐ℎ𝑖
𝐿
𝑖=1

𝑡

0
𝑤𝑖()𝑑+𝑚0ℎ = ∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ⁡⁡(ℎ = 1, … , 𝑝).⁡⁡𝐿

𝑖=1  (3.1.19) 

После подстановки (3.1.18), (3.1.19) в (3.1.17) получим соотношение  

∑ 𝑐ℎ𝑖𝑤𝑖(𝑡) = ∑ 𝑎̅ℎ𝑘(𝑡)
𝑝
𝑘=1 ⁡ [∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ⁡⁡⁡⁡

𝐿
𝑖=1 ]⁡𝐿

𝑖=1 + 𝑎̅0ℎ(𝑡). (3.1.20) 

Проецируя (3.1.20) на базис 𝑤𝑖(𝑡), приходим к системе (L× 𝑝) линейных алгебраи-

ческих уравнений: 

∑𝑐ℎ𝑖(𝑤𝑖(𝑡),𝑤𝑠(𝑡)) = ∑∑𝑐ℎ𝑖(𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡),

𝐿

𝑖=1

𝑝

𝑘=1

𝑤𝑠(𝑡)) + 𝑚0ℎ⁡⁡∑(𝑎̅ℎ𝑘(𝑡), 𝑤𝑠(𝑡)) +

𝐿

𝑖=1

⁡

𝐿

𝑖=1

(𝑎̅0ℎ(𝑡),𝑤𝑠(𝑡)) 

(s=1,2,…,L; h=1,2,…,p).                                                     (3.1.21) 

В силу ортонормированности системы вейвлетов 𝑤𝑖(𝑡) из (3.1.21) получаем 

𝑐ℎ𝑠 =∑∑𝑐ℎ𝑖(𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡),

𝐿

𝑖=1

𝑝

𝑘=1

𝑤𝑠(𝑡)) +⁡𝑚0ℎ⁡⁡∑(𝑎̅ℎ𝑘(𝑡), 𝑤𝑠(𝑡)) +

𝐿

𝑖=1

(𝑎̅0ℎ(𝑡), 𝑤𝑠(𝑡)) 

(s=1,2,…,L; h=1,2,…,p).                                                     (3.1.22) 

Представим функции 𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡), 𝑎̅ℎ𝑘(𝑡), 𝑎̅0ℎ(𝑡)⁡⁡⁡⁡в виде ВЛР по ортонормирован-

ному базису вейвлетов Хаара: 

𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡) = ∑ 𝑔𝑗
ℎ𝑘𝑖𝑤𝑗(𝑡)

𝐿
𝑗=1  (i=1,2,…,L; h,k=1,2,…,p), (3.1.23) 



56 

 

 

𝑎̅ℎ𝑘(𝑡) = ∑ 𝑞𝑗
ℎ𝑘𝑤𝑗(𝑡)

𝐿
𝑗=1 ⁡⁡⁡⁡⁡⁡⁡ (h,k=1,2,…,p),           (3.1.24) 

𝑎̅0ℎ(𝑡) = ∑ 
𝑗
ℎ𝑤𝑗(𝑡)

𝐿
𝑗=1 ⁡⁡⁡⁡⁡⁡⁡ (h,k=1,2,…,p),          (3.1.25) 

где  

𝑔𝑗
ℎ𝑘𝑖 = (𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡),𝑤𝑗(𝑡)) = ∫ 𝑎̅ℎ𝑘()𝑝𝑖()

1

0
𝑤𝑗()𝑑, (3.1.26) 

𝑞𝑗
ℎ𝑘 = (𝑎̅ℎ𝑘(𝑡),𝑤𝑗(𝑡)) = ∫ 𝑎̅ℎ𝑘()

1

0
𝑤𝑗()𝑑,   (3.1.27) 


𝑗
ℎ = (𝑎̅0ℎ(𝑡),𝑤𝑗(𝑡)) = ∫ 𝑎̅0ℎ()

1

0
𝑤𝑗()𝑑.   (3.1.28) 

Уравнения (3.1.22) можно записать в следующем окончательном виде: 

𝑐ℎ𝑠 = ∑ ∑ 𝑐ℎ𝑖𝑔𝑠
ℎ𝑘𝑖 +𝐿

𝑖=1
𝑝
𝑘=1 𝑚0ℎ⁡⁡∑ 𝑞𝑠

ℎ𝑘 + 
𝑠
ℎ𝐿

𝑖=1    (s=1,2,…,L; h=1,2,…,p).     (3.1.29) 

В итоге имеем новый результат. 

Теорема 3.1.1.  

Пусть выполнены условия: 

1) вектор состояния Y=Y(t) размерности p определяется  линейной диф-

ференциальной СтС (3.1.1); 

2)  допускается  возможность приведения системы (3.1.1) к виду (3.1.7) и 

как следствие возможность приведения системы обыкновенных дифференциаль-

ных уравнений для математического ожидания m(t)=MY(t) (3.1.2) к виду (3.1.11); 

3) скалярные функции 𝑚̅ℎ′, 𝑚̅ℎ, 𝑎̅ℎ𝑘, 𝑎̅0ℎ⁡⁡(h,k=1,2,…,p) принадлежат про-

странству 𝐿2[0,1]; 

4) в пространстве 𝐿2[0,1] определен ортонормированный базис вейвлетов 

Хаара вида (3.1.12)- (3.1.15). 

Тогда решение системы дифференциальных уравнений (3.1.17) для состав-

ляющих 𝑚̅ℎ вектора математического ожидания стохастического процесса 𝑌̅(t) 

имеет вид  

𝑚̅ℎ(𝑡) = ∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ⁡⁡(ℎ = 1, … , 𝑝),𝐿
𝑖=1    (3.1.30) 

где 𝑝𝑖(𝑡)– известные функции вида (3.1.16), коэффициенты 𝑐ℎ𝑖 определяются си-

стемой линейных алгебраических уравнений (СЛАУ) (3.1.29). 

 На основании теоремы 3.1.1 получен алгоритм решения системы дифферен-

циальных уравнений для математических ожиданий элементов стохастического 
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векторного процесса, описываемого линейным стохастическим дифференциальным 

уравнением (3.1.1). В основе алгоритма лежит технология представления квадра-

тично интегрируемых функций в виде сходящихся ВЛР.  

 Алгоритм 3.1.1. 

1. Определение в пространстве L2[0,1] ортонормированной системы 

вейвлетов Хаара вида (3.1.12)- (3.1.15). 

2. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 

3. Приведение СтС (3.1.1) к виду (3.1.7), и как следствие приведение си-

стемы обыкновенных дифференциальных уравнений для математического ожида-

ния m(t)=MY(t) (3.1.2) к виду (3.1.11). 

4. Определение коэффициентов вейвлет разложения функций 𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡),

𝑎̅ℎ𝑘(𝑡), 𝑎̅0ℎ(𝑡)⁡⁡⁡⁡по ортонормированному базису вейвлетов Хаара по формулам 

(3.1.23) – (3.1.28). 

5. Составление и решение СЛАУ (3.1.29) для определения коэффициентов 

𝑐ℎ𝑖. 

6. Вычисление составляющих 𝑚̅ℎ вектора математического ожидания 𝑌̅(t) 

по формуле (3.1.30). 

7. Переход к математическому ожиданию Y(t) по формуле  

𝑚̅ℎ(𝑡̅) = 𝑚ℎ((𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

 

3.1.3 Вейвлет метод вычисления ковариационной матрицы  

Из (3.1.3) для каждого элемента 𝐾̅𝑟1𝑟2 = 𝐾̅𝑟1𝑟2(𝑡)(𝑟1, 𝑟2 = 1,2,… , 𝑝) ковариа-

ционной матрицы 𝐾̅ = 𝑀[(𝑌̅ − 𝑚̅)(𝑌̅ − 𝑚̅)𝑇] имеем обыкновенное дифференциаль-

ное уравнение  

1 21 2 1 2
1 2 2 1 1 20

1 1 1 1

' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0)
p p p n

r rr h r h r h hs r sr r hr r h r r

h h h s

K t a t K t K t a t b t t b t K K
   

      . (3.1.31) 

В силу симметричности ковариационной матрицы K  достаточно составить 

уравнения только для prrpr ,,,1 121  . При этом элементы 2hrK  для 2rh   заменяются 
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равными hrK 2 , а hrK 1  при hr 1  заменяются на 1hrK . В результате количество уравне-

ний сокращается и будет равно 
2

)1( pp
. Введем обозначение 


 


n

h

n

s

srhshrrr tbttbtB
1 1

)()()()(
2121

 ,    (3.1.32) 

тогда повторяя рассуждение п. 3.1.2, получим следующие формулы: 

𝐾′̅̅̅𝑟1𝑟2 = ∑ 𝑐𝑖
𝑟1𝑟2𝑤𝑖(𝑡),

𝐿
𝑖=1      (3.1.33) 

 𝑐𝑖
𝑟1𝑟2 = ∫ 𝐾′̅̅̅𝑟1𝑟2()

1

0
𝑤𝑖()𝑑,    (3.1.34) 

𝐾̅𝑟1𝑟2 = ∑ 𝑐𝑖
𝑟1𝑟2𝑝𝑖(𝑡) + 𝐾0𝑟1𝑟2 .⁡⁡

𝐿
𝑖=1    (3.1.35) 

После подстановки (3.1.32)–( 3.1.35) в (3.1.31) имеем 

)()(

)()()()()()(

2121

2

1

121

221

1

0

1 11

0

1 11

tBtaK

tptactaKtptactwc

rr

p

h

hrhr

L

i

p

h

ihr
hr

i

p

h

hrhr

L

i

p

h

ihr
hr

ii

L

i

rr

i











    (3.1.36) 

Проецируя (3.1.36) на базис ( )sw t , получим систему из L
pp

2

)1( 
 обыкновенных ли-

нейных алгебраических уравнений для определения коэффициентов 21rr

ic : 

 1 2 2 1 1 2 1 2 1 2

2 10 0

1 1 1 1 1 1

p p p pL L
r r hr r hi r h r hi r h r h r r

s i s i s hr s r h s s

i h i h h h

c c g c g K q K q 
     

        ,  (3.1.37) 

где дополнительно к (3.1.26), (3.1.27) введены обозначения: 


𝑠
𝑟1𝑟2 = ∫ 𝐵𝑟1𝑟2()

1

0
𝑤𝑖()𝑑.     (3.1.38) 

В итоге имеем следующее новое утверждение. 

Теорема 3.1.2.  

Пусть выполнены условия теоремы 3.1.1, а также: 

1) допускается  возможность приведения обыкновенных дифференциаль-

ных уравнений для элементов ковариационной матрицы, удовлетворяющих систе-

ме уравнений (3.1.3), к виду (3.1.31); 

2) скалярные функции 𝐾′̅̅̅𝑟1𝑟2, 𝐾̅𝑟1𝑟2, )(
21

tB rr  (𝑟1, 𝑟2=1,2,…,p) принадлежат 

пространству 𝐿2[0,1]; 

Тогда решение системы дифференциальных уравнений (3.1.31) для элемен-

тов 𝐾̅𝑟1𝑟2 ковариационной матрицы стохастического процесса 𝑌̅(t) имеет вид 
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(3.1.35), где 𝑝𝑖(𝑡)– известные функции вида (3.1.16), коэффициенты 𝑐𝑖
𝑟1𝑟2 определя-

ются системой линейной алгебраических уравнений (3.1.37). 

 На основе теоремы 3.1.2 получен алгоритм решения системы дифференци-

альных уравнений для элементов ковариационной матрицы СтП, описываемого ли-

нейным стохастическим дифференциальным уравнением (3.1.1). В основе алгорит-

ма лежит вейвлет технология разложения квадратично интегрируемых функций.  

 Алгоритм 3.1.2. 

1. Определение в пространстве L2[0,1] ортонормированной системы 

вейвлетов Хаара вида (3.1.12)- (3.1.15). 

2. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 

3. Приведение УдСтС (3.1.1) к виду (3.1.7), и как следствие приведение 

обыкновенных дифференциальных уравнений для элементов ковариационной мат-

рицы, удовлетворяющих системе уравнений (3.1.3), к виду (3.1.31). 

4. Определение коэффициентов ВЛР функций 𝑎̅ℎ𝑘(𝑡)𝑝𝑖(𝑡), 𝑎̅ℎ𝑘(𝑡)⁡, )(
21

tB rr  

по ортонормированному базису вейвлетов Хаара по формулам (3.1.26), (3.1.27), 

(3.1.38). 

5. Составление и решение СЛАУ (3.1.37) для определения коэффициентов 

𝑐𝑖
𝑟1𝑟2. 

6. Вычисление элементов K̅r1r2 ковариационной матрицы Y̅(t) по формуле 

(3.1.35). 

7. Переход к ковариационной матрице Y(t) по формуле  

𝐾̅𝑟1𝑟2 ⁡(𝑡̅) = 𝐾𝑟1𝑟2 ⁡((𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

 

3.1.4 Вейвлет метод вычисления ковариационных функций 

Из (3.1.5) для каждого элемента 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2) ковариационной функции 

𝐾̅(𝑡1, 𝑡2) = 𝑀[(𝑌̅(𝑡1) − 𝑚̅(𝑡1))(𝑌̅(𝑡2) − 𝑚̅(𝑡2))
𝑇] в момент 1t  имеем обыкновенное 

дифференциальное уравнение с соответствующим начальным условием: 
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1 2

1 2

1 2
1 2 2
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( , )
( , ) ( )

p
r r

r h r h

h

K t t
K t t a t

t 


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
 ,     (3.1.39) 

1 2 1 21 1 1( , ) ( )r r r rK t t K t , 1 2 1 2 1 2( , 1, , , [0,1], )r r p t t t t   .  (3.1.40) 

Повторяя рассуждения п. 3.1.2 и 3.1.3, придем к следующим соотношениям: 

1 2 1 2

L
1 2

2

12

( , )
( )

r r r r

i i

i

K t t
d w t

t 





 ,      (3.1.41) 

1 21 2

1
1 2

2 2
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( )

r rr r

i i

K
d w d

 
 






 ,     (3.1.42) 
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1 2 1 2

L

1 2 2 1

1

( , ) ( ) ( )r r

r r i i r r

i

K t t d p t K t


  ,     (3.1.43) 

1 2 1

2 1

1

L 2L
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1 1 1

( ) ( ) ( ) ( )
p

r r r h

i i r h i i r h

i h i

d w t a t d p t K t
  

 
  

 
   .   (3.1.44) 

Проецируя (3.1.44) на базис 2( )sw t  и учитывая (3.1.26), (3.1.27), получим систему 

2p L  линейных уравнений для определения коэффициентов 1 2r r

id : 

1 2 1 2 2

1

L

1

1 1 1

( )
p p

r r r h r hi r h

s i s r h s

i h h

d d g K t q
  

     1 2 1( , 1, , 1, )r r p s L    (3.1.45) 

Полученные результаты можно сформулировать в виде нового утверждения. 

Теорема 3.1.3.  

Пусть выполнены условия теорем 3.1.1 и 3.1.2, а также: 

1) допускается  возможность приведения обыкновенных дифференциаль-

ных уравнений для элементов матрицы ковариационных функций, удовлетворяю-

щих системе уравнений (3.1.5), к виду (3.1.39), (3.1.40); 

2) функции 
𝜕𝐾𝑟1𝑟2(𝑡1,𝑡2)

𝜕𝑡2
⁡⁡, 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2)⁡(𝑟1, 𝑟2=1,2,…,p) относительно пере-

менной 𝑡2 принадлежат пространству 𝐿2[0,1] при фиксированном значении 

𝑡1⁡⁡(𝑡1 ∈ [0,1])⁡⁡⁡. 

Тогда решение системы дифференциальных уравнений (3.1.39), (3.1.40) для 

элементов 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2)⁡⁡(𝑟1⁡, 𝑟2 = 1,2,… , 𝑝)⁡матрицы ковариационных функций сто-

хастического процесса 𝑌̅(t) для 𝑡1 < 𝑡2⁡имеет вид (3.1.43), где 𝑝𝑖(𝑡)⁡– известные 

функции вида (3.1.16), коэффициенты 1 2r r

id  определяются СЛАУ (3.1.45), значения 

функций 
1 2 1( )r rK t  определяются теоремой 3.1.2. 
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На основе теоремы 3.1.3 получен алгоритм решения системы дифференци-

альных уравнений для элементов матрицы ковариационных функций векторных 

СтП, описываемых линейным стохастическим дифференциальным уравнением 

(3.1.1). В основе алгоритма лежит технология представления квадратично интегри-

руемых функций в виде ВЛР.  

 

Алгоритм 3.1.3. 

1. Определение в пространстве L2[0,1] ортонормированной системы вейвле-

тов Хаара вида (3.1.12)- (3.1.15). 

2. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 

3. Приведение СтС (3.1.1) к виду (3.1.7), и как следствие приведение обык-

новенных дифференциальных уравнений для элементов матрицы ковариационных 

функций, удовлетворяющих системе уравнений (3.1.5), к виду (3.1.39), (3.1.40); 

4. Определение ковариационной матрицы 
1 2 1( )r rK t  согласно алгоритму 3.1.2; 

5. Составление и решение СЛАУ (3.1.45) для определения коэффициентов 

1 2r r

id . 

6. Вычисление элементов 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2) матрицы ковариационных функций 

стохастического процесса Y̅(t) по формуле (3.1.43). 

7. Переход к элементам матрицы ковариационных функций СтП Y(t) по 

формуле  

𝐾̅𝑟1𝑟2 ⁡(𝑡1̅, 𝑡2̅) = 𝐾𝑟1𝑟2 ⁡((𝑇 − 𝑡0)𝑡1̅ + 𝑡0, (𝑇 − 𝑡0)𝑡2̅ + 𝑡0). 

8. Нахождение 𝐾𝑟1𝑟2(𝑡1, 𝑡2) = 𝐾𝑟2𝑟1(𝑡2, 𝑡1) при 𝑡2 < 𝑡1. 

3.2 Корреляционные методы и алгоритмы вейвлет анализа 

точности линейных УдСтС с параметрическими шумами 

3.2.1 Линейные УдСтС с параметрическими шумами 

Рассмотрим линейную УдСтС с параметрическими шумами  вида 

0 0 0 0

1

( ) , ( ) .
p

n n

n

Y aY a b b Y V Y t Y


        (3.2.1) 
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Здесь Y – вектор состояния размерности p, V –векторный белый шум в строгом 

смысле размерности n с интенсивностью  = (𝑡);⁡𝑎 = 𝑎уд(𝑡), 𝑎0 = 𝑎0
уд(𝑡), 𝑏 =

𝑏уд(𝑡), 𝑏𝑛 = 𝑏𝑛
уд(𝑡) – известные матричные функции размерностей 𝑝 × 𝑝, 𝑝 × 1, 𝑝 ×

𝑛, 𝑝 × 𝑛 соответственно; 𝑡 ∈ [𝑡0, 𝑇]. 

В [19, 20] для (3.2.1) получены точные корреляционные уравнения: 

000 )(, mtmaamm  ,      (3.2.2) 

00

1 1 1

0000 )(),()( KtKKmmbbmbbbbbbKaaKK hllh

p

h

p

h

p

l

T

lhh

T

h

T

h

TT   
  



, (3.2.3) 

)(),(,)(),(
),(

111221

2

21 tKttKtattK
t

ttK T 




.   (3.2.4) 

Здесь 𝑚 = 𝑀𝑌 = [𝑚1 𝑚2
… 𝑚𝑝]𝑇 – вектор математических ожиданий; 

 𝐾 = 𝐾(𝑡) = ‖𝐾𝑖𝑗(𝑡)‖𝑖,𝑗=1
𝑝

 – ковариационная матрица; 𝐾(𝑡1, 𝑡2) = ‖𝐾𝑖𝑗(𝑡1, 𝑡2)‖𝑖,𝑗=1
𝑝

– 

матрица ковариационных функций. 

С помощью замены переменных 𝑡̅ =
(𝑡−𝑡0)

(𝑇−𝑡0)
  (𝑡̅ ∈ [0,1])  сведем уравнение 

(3.2.1) к соответствующему векторному линейному стохастическому уравнению  

𝑌′̅ = 𝑎̅(𝑡̅)𝑌̅ + 𝑎0̅̅ ̅(𝑡̅) + (𝑏0̅̅ ̅(𝑡̅) + ∑ 𝑏̅𝑛(𝑡̅)𝑌̅𝑛)
𝑝
𝑛=1 𝑉̅(𝑡̅)  (3.2.5) 

с начальным условием 𝑌̅(0)=𝑌0 и белым шумом 𝑉̅(𝑡̅) с интенсивностью 

̅(𝑡̅)=(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 

 где приняты следующие обозначения:  

𝑌̅(𝑡̅)=Y(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑉̅(𝑡̅)=V(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0),  

𝑎̅(𝑡̅)=(⁡𝑇 − 𝑡0)𝑎(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑎̅0 (𝑡̅)=(⁡𝑇 − 𝑡0)𝑎0(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 

𝑏̅0 (𝑡̅)=(⁡𝑇 − 𝑡0)𝑏0(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑏̅𝑛(𝑡̅)=(⁡𝑇 − 𝑡0)𝑏𝑛(⁡(𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

Штрихом отмечена операция дифференцирования по безразмерному времени 𝑡̅. В 

дальнейшем для простоты записи положим 𝑡̅=t.  

3.2.2 Вейвлет метод вычисления математического ожидания  

Уравнение для математического ожидания 𝑚̅=M𝑌̅ отделяется от уравнений 

для корреляционных характеристик и имеет вид  

𝑚̅′ = 𝑎̅𝑚̅ + 𝑎̅0, 𝑚̅(0) = 𝑚0,     (3.2.6) 
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который совпадает с видом уравнения (3.1.11) для линейных УдСтС. Повторяя рас-

суждения п. 3.1.2, получим следующее новое утверждение. 

Теорема 3.2.1.  

Пусть выполнены условия: 

1) вектор состояния Y=Y(t) размерности p определяется  линейной диф-

ференциальной СтС с параметрическими шумами (3.2.1); 

2)  допускается  возможность приведения системы (3.2.1) к виду (3.2.5) и 

как следствие возможность приведения системы обыкновенных дифференциаль-

ных уравнений для математического ожидания m(t)=MY(t) (3.2.2) к виду (3.2.6); 

3) скалярные функции 𝑚̅ℎ′, 𝑚̅ℎ, 𝑎̅ℎ𝑘, 𝑎̅0ℎ⁡⁡(h,k=1,2,…,p) принадлежат про-

странству 𝐿2[0,1]; 

4) в пространстве 𝐿2[0,1] определен ортонормированный базис вейвлетов 

Хаара вида (3.1.12)- (3.1.15). 

Тогда решение системы дифференциальных уравнений (3.2.6) для элементов 

𝑚̅ℎ вектора математического ожидания стохастического процесса 𝑌̅(t) имеет 

вид  

𝑚̅ℎ(𝑡) = ∑ 𝑐ℎ𝑖𝑝𝑖(𝑡) +𝑚0ℎ⁡⁡(ℎ = 1, … , 𝑝),2𝐿
𝑖=1    (3.2.7) 

где 𝑝𝑖(𝑡)– известные функции вида (3.1.16), коэффициенты 𝑐ℎ𝑖 определяются 

СЛАУ (3.1.29). 

Алгоритм 3.2.1. Алгоритм решения системы дифференциальных уравнений 

для математических ожиданий элементов стохастического векторного процесса, 

описываемого линейным стохастическим дифференциальным уравнением Ито с па-

раметрическими шумами (3.2.1), в основе которого лежит теорема 3.2.1, полностью 

совпадает с алгоритмом 3.1.1.   

 

3.2.3 Вейвлет метод вычисления ковариационной матрицы 

Уравнения для элементов 𝐾̅𝑟1𝑟2 = 𝐾̅𝑟1𝑟2(𝑡)⁡ ковариационной матрицы 𝐾̅ =

𝑀[(𝑌̅ − 𝑚̅)(𝑌̅ − 𝑚̅)𝑇] в силу ее симметричности составляются, как и в п. 3.1.3 для 

𝑟1 = 1,2,… , 𝑝; 𝑟2 = 1,2,… , 𝑟1 и имеют вид: 
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  (3.2.8) 

Введем в (3.2.8) следующие обозначения: 
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    (3.2.9) 

тогда уравнения (3.2.8) примут вид 
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    (3.2.10) 

 Будем считать, что элементы матричных функций 𝐾̅𝑟1𝑟2
′ (𝑡), 𝐾̅𝑟1𝑟2(𝑡) принад-

лежат пространству 𝐿2[0,1]. Как показано в [121], они могут быть разложены в схо-

дящиеся вейвлет ряды по ортогональным вейвлетам Хаара. 

Разложим левую часть уравнения (3.2.10) по ортонормированному базису 

вейвлетов Хаара (3.1.12) – (3.1.15): 
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1

, '

0

( ) ( )
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i ic K w dr   .      (3.2.12) 

Тогда решение уравнения (3.2.10) примет вид 
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где 𝑝𝑖(𝑡) – известнные функции вида (3.1.16). Подставляя соотношения (3.2.13) в 

уравнение (3.2.10) и учитывая (3.2.7), получим следующие соотношения: 
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    (3.2.14) 

Далее будем считать, что ниже перечисленные функции принадлежат про-

странству 𝐿2[0,1] и, следовательно, могут быть представлены в виде ВЛР по орто-

гональным вейвлетам Хаара (3.1.12) – (3.1.15): 
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Проецируя уравнения (3.2.14) на вейвлет базис 𝑤𝑠(𝑡), получим систему  

𝑄 =
𝑝(𝑝+1)𝐿⁡⁡

2
⁡⁡линейных алгебраических уравнений относительно неизвестных ко-

эффициентов 1 2

1 2 1( 1, ; 1, ; 1, )r r

sc r p r r s L   : 
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       (3.2.23) 

Таким образом, имеем следующий новый результат.  

Теорема 3.2.2.  

Пусть выполнены условия теоремы 3.2.1, а также: 

1) допускается приведения системы обыкновенных дифференциальных 

уравнений (3.2.3) ковариационной матрицы )(tKK  к виду (3.2.8) для t∈ [0,1]; 

2) скалярные функции 
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
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221 , tptB i

l
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, 
)(

21 , tB l

rr



⁡⁡(i,k,l,,𝑟1,𝑟2, 𝑖1, 𝑖2=1,2,…,p) при-

надлежат пространству 𝐿2[0,1]; 

Тогда решение системы обыкновенных дифференциальных уравнений для 

элементов ковариационной матрицы  (3.2.8) стохастического процесса 𝑌̅(t) имеет 

вид (3.2.13), где 𝑝𝑖(𝑡)⁡– известные функции вида (3.1.16), коэффициенты 

1 2

1 2 1( 1, ; 1, ; 1, )r r

sc r p r r s L    определяются СЛАУ (3.2.23). 

На основании теоремы 3.2.2 получен алгоритм решения системы дифферен-

циальных уравнений для ковариационной матрицы стохастического векторного 

процесса, описываемого линейным стохастическим дифференциальным уравнением 

Ито с параметрическими шумами (3.2.1). В основе алгоритма лежит технология 

разложения квадратично интегрируемых функций в сходящиеся вейвлет ряды.  

Алгоритм 3.2.2.  

1. Определение в пространстве L2[0,1] ортонормированной системы вейвле-

тов Хаара вида (3.1.12)- (3.1.15). 

2. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 
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3. Приведение системы обыкновенных дифференциальных уравнений 

(3.2.3) для элементов ковариационной матрицы )(tKK   к виду (3.2.8) для t∈ [0,1]. 

4. Определение коэффициентов ВЛР функций 
1 , ( ) ( )r l ia t p t , 
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⁡⁡(i,k,l,,𝑟1,𝑟2, 𝑖1, 𝑖2=1,2,…,p) по ортонормированному базису вейвлетов Хаара по фор-

мулам (3.2.15)-(3.2.22). 

5. Составление и решение СЛАУ (3.2.23) для определения коэффициентов

1 2

1 2 1( 1, ; 1, ; 1, )r r

sc r p r r s L   . 

6. Вычисление элементов ковариационной матрицы стохастического про-

цесса Y̅(t) по формуле (3.2.13). 

7. Переход к ковариационной матрице Y(t) по формуле  

𝐾̅𝑟1𝑟2(𝑡̅) = 𝐾𝑟1𝑟2((𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

 

3.2.4. Вейвлет метод вычисления матрицы ковариационных функций 

Уравнения для элементов матрицы ковариационных функций (3.2.4) совпа-

дают с соответствующими уравнениями для линейной СтС. Повторяя рассуждения 

п. 3.1.4,  будем искать решение системы дифференциальных уравнений (3.2.4), вы-

писанных для приведенного стохастического уравнения (3.2.5). Для каждого эле-

мента 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2) ковариационной функции 𝐾̅(𝑡1, 𝑡2)=M(𝑌̅(𝑡1) − 𝑚̅(𝑡1))(𝑌̅(𝑡2) −

𝑚̅(𝑡2))
𝑇] в момент 1t  имеем обыкновенное дифференциальное уравнение с соответ-

ствующим начальным условием 
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1 2 1 21 1 1( , ) ( )r r r rK t t K t , 1 2 1 2 1 2( , 1, , , [0,1], )r r p t t t t   .  (3.2.25) 

Решение системы дифференциальных уравнений (3.2.24) с начальными условиями 

(3.2.25) будем искать в виде:  
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Согласно п. 3.1.4 коэффициенты 1 2r r

id  удовлетворяют СЛАУ вида (3.1.45):  

1 2 1 2 2

1
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1 1 1
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i h h

d d g K t q
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     1 2 1( , 1, , 1, )r r p s L  . (3.2.27) 

Имеет место следующее новое утверждение. 

Теорема 3.2.3.  

Пусть выполнены условия теорем 3.2.1и 3.2.2; а также: 

1) допускается возможность приведения системы обыкновенных диффе-

ренциальных уравнений (3.2.4)  для элементов матрицы ковариационных функций 

⁡⁡⁡𝐾𝑟1𝑟2(𝑡1, 𝑡2)⁡(𝑟1, 𝑟2=1,2,…,p)  к виду (3.2.24), (3.2.25) для 𝑡1, 𝑡2 ∈ [0,1]; 

2) функции 
𝜕𝐾𝑟1𝑟2(𝑡1,𝑡2)

𝜕𝑡2
⁡⁡, 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2)⁡(𝑟1, 𝑟2=1,2,…,p) относительно пере-

менной 𝑡2 при фиксированном значении 𝑡1⁡⁡(𝑡1 ∈ [0,1]⁡⁡)⁡принадлежат простран-

ству 𝐿2[0,1]. 

Тогда решение системы дифференциальных уравнений (3.2.24) с начальными 

условиями (3.2.25) для элементов 𝐾̅𝑟1𝑟2(𝑡1, 𝑡2)⁡⁡(𝑟1⁡, 𝑟2 = 1,2,… , 𝑝)⁡ матрицы ковари-

ационных функций стохастического процесса 𝑌̅(t) имеет вид (3.2.26) при 𝑡1 < 𝑡2, 

где 𝑝𝑖(𝑡)⁡– известные функции вида (3.1.16), коэффициенты 1 2r r

id  определяются 

СЛАУ (3.2.27), значения функций 
1 2 1( )r rK t  определяются теоремой 3.2.2. 

На основании теоремы 3.2.3 получен алгоритм решения системы дифферен-

циальных уравнений для матрицы ковариационных функций  стохастического век-

торного процесса, описываемого линейным стохастическим дифференциальным 

уравнением Ито с параметрическими шумами (3.2.1). В его основе лежит техноло-

гия разложения квадратично интегрируемых функций в сходящиеся вейвлет ряды.  

Алгоритм 3.2.3. 

1. Определение в пространстве L2[0,1] ортонормированной системы 

вейвлетов Хаара вида (3.1.12)- (3.1.15). 

2. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 

3. Решение системы дифференциальных уравнений для ковариационной 

матрицы стохастического векторного процесса, описываемого линейным стохасти-
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ческим дифференциальным уравнением Ито с параметрическими шумами (3.2.1) с 

применением алгоритма, полученного на основе теоремы 3.2.2. 

4. Приведение системы обыкновенных дифференциальных уравнений 

(3.2.4)  для элементов матрицы ковариационных функций ),( 21 ttKY

 к виду (3.2.24), 

(3.2.25) для t1, t2 ∈ [0,1]. 

5. Составление и решение системы линейных алгебраических уравнений 

(3.2.27) для определения коэффициентов 1 2r r

id . 

6. Вычисление элементов матрицы ковариационных функций стохастиче-

ского процесса Y̅(t) по формуле (3.2.26). 

7. Переход к матрице ковариационных функций для Y(t) по формуле  

𝐾̅𝑟1𝑟2
(𝑡1, 𝑡2) = 𝐾𝑟1𝑟2((𝑇 − 𝑡0)𝑡1̅ + 𝑡0, (𝑇 − 𝑡0)𝑡2̅ + 𝑡0). 

9. Нахождение 𝐾𝑟1𝑟2(𝑡1, 𝑡2) = 𝐾𝑟2𝑟1(𝑡2, 𝑡1) при 𝑡2 < 𝑡1. 

 

3.3. Модифицированный моментно-семиинвариантный метод и 

алгоритм анализа динамической точности нелинейной УдСтС 

Пусть вектор состояния Y нелинейной УдСтС описывается стохастическим 

дифференциальным уравнением Ито вида 

𝑑𝑌 = 𝑎(𝑌, 𝑡) + 𝑏(𝑌, 𝑡)𝑑𝑊, 𝑡 ≥ 𝑡0, 𝑌(𝑡0) = 𝑌0,                              (3.3.1) 

где Y=Y(t)𝑅𝑝⁡–⁡стохастический процесс, 𝑌0 – случайный вектор с известным рас-

пределением; W(t)𝑅𝑛; 𝑊1(𝑡), …,𝑊𝑛 – независимые между собой процессы с незави-

симыми приращениями; 𝑎(𝑦, 𝑡), 𝑏(𝑦, 𝑡) –непрерывные или имеющие точки разрыва 

первого рода известные функции y и t размерности p×1 и p×n соответственно. 𝑌0 не 

зависит от приращений W(𝑡2)-W(𝑡1) при 𝑡0⁡ ≤ 𝑡1 < 𝑡2. Известна одномерная харак-

теристическая функция ℎ1(µ; 𝑡) процесса W(t). 

Для нелинейной УдСтС, описываемой многомерным стохастическим диф-

ференциальным уравнением Ито, рассматривается задача анализа точности путем 

определения вероятностных моментов первого и второго порядков СтП с учетом 

определенного набора старших начальных моментов. Для решения этой задачи по-
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сле предлагается использовать модифицированный моментно-семиинвариантный 

метод. 

Как известно [20], приближенные методы параметризации неизвестных рас-

пределений вектора состояния СтС (3.3.1) основаны на аппроксимации неизвестных 

характеристической функции или плотности вероятности известными функциями, 

зависящими от конечного числа неизвестных параметров (моментов, семиинвари-

антов, квазимоментов и т.д.), что позволяет свести решение задачи анализа к 

нахождению этих параметров, удовлетворяющих системе обыкновенных диффе-

ренциальных или разностных уравнений. Эти методы дают высокую точность ре-

шения задачи, но требуют составления и решения большого количества уравнений 

для параметров, особенно в случае большой размерности вектора состояния стоха-

стической системы. Зависимость числа уравнений 𝑄1(𝑝, 𝑁) для параметров распре-

делений от размерности p вектора состояния и наивысшего порядка учитываемых 

параметров N вычисляется по формуле 𝑄1(𝑝, 𝑁) = 𝐶𝑁+𝑝
𝑝

− 1. Так, например, при 

анализе 10-мерной стохастической системы количество уравнений для моментов 

вектора состояния системы⁡𝑄1(10,4) = 1000, если учитываются моменты до 4-го 

порядка. 

Модифицированный моментно-семиинвариантный метод требует значи-

тельно меньшего объема вычислений. Идея метода была впервые изложена в [129] 

и состоит в составлении уравнений для математического ожидания, ковариацион-

ной матрицы и определенного набора старших моментов вектора состояния систе-

мы. При этом семиинварианты, не соответствующие этому набору старших момен-

тов, полагаются равными нулю. Этот подход к замыканию системы для моментов 

дает лучшие результаты по сравнению с другими приближенными методами, 

например, с методом моментов, в котором обнуляются старшие моменты, порядок 

которых больше некоторого заданного натурального числа. Семиинварианты убы-

вают с увеличением порядка в отличие от моментов, которые растут. Проверка ра-

ботоспособности ММСМ на конкретных примерах СтС с полиномиальными нели-

нейностями показала его высокую эффективность [20,129,130]: метод незначитель-

но уступает в точности полным методам стохастического анализа, например, мо-
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ментно-семиинвариантному методу, и при этом количество уравнений для парамет-

ров распределений равно  𝑄2(𝑝, 𝑁) = 𝑝 +
1

2
𝑝(𝑝 + 1) + 𝑝(𝑁 − 2). Так, при p=10 и 

N=4 имеем 𝑄2(10,4)=85. 

Основываясь на [20], для получения уравнений для начальных моментов 

𝑟 = 𝑟1,𝑟2,…,𝑟𝑝 = 𝑀[𝑌1
𝑟1𝑌2

𝑟2…𝑌𝑝
𝑟𝑝

]  

(𝑟 = [𝑟1, 𝑟2, … , 𝑟𝑝]
т
|𝑟| = 𝑟1 + 𝑟2 +⋯+ 𝑟𝑝; ⁡𝑟1, 𝑟2, … , 𝑟𝑝 = 0,1,… ) стохастического про-

цесса Y(t) воспользуемся формулой связи момента 𝑟 ⁡ и характеристической функ-

ции (х.ф.) 𝑔1(; 𝑡): 

𝑟 = 𝑟1,𝑟2,…,𝑟𝑝 = [
𝜕|𝑟|𝑔1(;𝑡)

𝜕(𝑖1)
𝑟1…𝜕(𝑖𝑝)

𝑟𝑝]=0.            (3.3.2) 

 Уравнение для одномерной х.ф. 𝑔1(; 𝑡) СтП Y(t), заданного уравнением 

(3.3.1), имеет вид [20]: 

𝜕𝑔1(,𝑡)

𝜕𝑡
= 𝑀{[𝑖т𝑎(𝑌, 𝑡) + (; 𝑌, 𝑡)]𝑒𝑖

т𝑌}, 𝑔1(, 𝑡0) = 𝑔0(), 𝑡 ≥ 𝑡0,   (3.3.3) 

где 𝑔0() – известная х.ф. 𝑌0,  = [1, … , 𝑝]
т
. Функция ⁡⁡определяется формулой 

(µ; 𝑡) =
𝜕

𝜕𝑡
𝑙𝑛ℎ1(µ; 𝑡),⁡⁡после подстановки вместо µ⁡ выражения⁡⁡𝑏(𝑌, 𝑡)т⁡⁡⁡имеем 

(; 𝑌, 𝑡) = (⁡𝑏(𝑌, 𝑡)т⁡⁡; 𝑡).                                    (3.3.4) 

Применим формулу (3.3.2) к уравнению (3.3.3): 

𝑟̇ = 𝑀 {
𝜕|𝑟|

𝜕(𝑖1)
𝑟1 …𝜕(𝑖𝑝)

𝑟𝑝
[𝑖т𝑎(𝑌, 𝑡) + (; 𝑌, 𝑡)]𝑒𝑖

т𝑌}

=0,⁡⁡⁡

 

𝑟(𝑡0) = 𝑀[𝑌1(𝑡0)
𝑟1…𝑌𝑝(𝑡0)

𝑟𝑝], 𝑡 > 𝑡0.        (3.3.5) 

Дифференцируя уравнения (3.3.5)⁡⁡𝑟1 раз по 𝑖1, 𝑟2 раз по 𝑖2 , … , 𝑟𝑝 раз по 𝑖𝑝 и 

положив после этого =0, получим  

𝑟̇ = 𝑀{∑𝑟𝑘

𝑝

𝑘=1

𝑎𝑘(𝑌, 𝑡)𝑌1
𝑟1…𝑌𝑘

𝑟𝑘−1 …𝑌𝑝
𝑟𝑝 +  

+∑ …∑ 𝐶𝑟1
ℎ1 …𝐶𝑟𝑝

ℎ𝑝𝑟𝑝
ℎ𝑝=0

𝑟1
ℎ1=0

[
𝜕ℎ1+…+ℎ𝑝

𝜕(𝑖1)
ℎ1…𝜕(𝑖𝑝)

ℎ𝑝
(; 𝑌, 𝑡)]

=0⁡

𝑌1
𝑟1−ℎ1 …𝑌1

𝑟𝑝−ℎ𝑝}.     (3.3.6) 

Введем обозначение 
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𝑍𝑟(𝑌, 𝑡) = ∑𝑟𝑘

𝑝

𝑘=1

𝑎𝑘(𝑌, 𝑡)𝑌1
𝑟1 …𝑌𝑘

𝑟𝑘−1…𝑌𝑝
𝑟𝑝 +⁡ 

+∑ …∑ 𝐶𝑟1
ℎ1…𝐶𝑟𝑝

ℎ𝑝𝑟𝑝
ℎ𝑝=0

𝑟1
ℎ1=0

𝜕ℎ1+…+ℎ𝑝

𝜕(𝑖1)
ℎ1…𝜕(𝑖𝑝)

ℎ𝑝
[(; 𝑌, 𝑡)]=0⁡𝑌1

𝑟1−ℎ1 …𝑌1
𝑟𝑝−ℎ𝑝

 .   

Тогда уравнения (3.3.6) примут вид: 

𝑟̇ = 𝑀𝑍𝑟(𝑌, 𝑡) 

или 

𝑟̇ = ∫ 𝑍𝑟(𝑦, 𝑡)
+∞

−∞
𝑓1(𝑦, 𝑡)𝑑𝑦,        (3.3.7) 

где 𝑓1(𝑦, 𝑡)⁡– плотность вероятности Y(t). 

Для приближенного вычисления интегралов в уравнениях (3.3.7) аппрокси-

мируем плотность вероятности 𝑓1(𝑦, 𝑡) конечным отрезком ее ортогонального раз-

ложения по биортогональной системе полиномов {𝑝(𝑦), 𝑞(𝑦)} c весом 𝜔1(𝑦) [20]:   

𝑓1(𝑦, 𝑡) ≈ 𝜔1(𝑦)[1 + ∑ ∑ 𝑐||=𝛽
𝑁
𝛽=3 (𝑡)𝑝(𝑦)],                            (3.3.8) 

где ||=1 +⋯+ 𝑝 для векторного индекса =[1, … , 𝑝]
т, 1, … , 𝑝 = 0,1,… ,𝑁; 

𝜔1(𝑦)– некоторая известная плотность, для которой существуют все моменты, а 

первый и второй моменты совпадают с соответствующими моментами плотности 

вероятности 𝑓1(𝑦, 𝑡); 𝑐 = 𝑐(𝑡);⁡⁡𝑐 = 𝑀𝑞(𝑦) = 𝑞() - линейная комбинация мо-

ментов случайного процесса Y(t), полученная из 𝑞(𝑦)⁡заменой всех одночленов 

𝑦1
𝑘1 …𝑦𝑝

𝑘𝑝
 соответствующими моментами 𝑘1,…,𝑘𝑝.  

 После подстановки (3.3.8) в (3.3.7) имеем 

𝑟̇=
𝑟,0
(𝑚,𝐾, 𝑡) + ∑ ∑ 𝑐||=𝛽

𝑁
𝛽=3 

𝑟,
(𝑚,𝐾, 𝑡), 

где m=m(t), K=K(t) – математическое ожидание и ковариационная матрица соответ-

ственно СтП Y(t), 


𝑟,0
(𝑚, 𝐾, 𝑡) = ∫ 𝑍𝑟(𝑦, 𝑡)𝜔1(𝑦)𝑑𝑦

+∞

−∞
,  

𝑟,
(𝑚,𝐾, 𝑡) = ∫ 𝑍𝑟(𝑦, 𝑡)𝑝(𝑦)𝜔1(𝑦)𝑑𝑦

+∞

−∞
.  

Требуется определить m(t), K(t) и некоторые старшие моменты вида 

𝑀(𝑌𝑗1
𝑙1 …𝑌𝑗𝑘

𝑙𝑘)                                                    (3.3.9) 

где 𝑗1, … , 𝑗𝑘 – выборка k различных чисел из J={1,2,…,p}; 𝑙1, … , 𝑙𝑘 – выборка k чисел 

из ℒ ={1,2,…,N}, удовлетворяющих условию 3 ≤ 𝑙1 +⋯+ 𝑙𝑘 ≤ 𝑁. 
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Дифференциальное уравнение для математического ожидания m(t) СтП Y(t), 

заданного уравнением (3.3.1), имеет вид 

𝑚(𝑡)̇ =
1,0
(𝑚, 𝐾, 𝑡) + ∑ ∑ 𝑐||=𝛽

𝑁
𝛽=3 

1,
(𝑚, 𝐾, 𝑡) ,  (3.3.10) 

где  


1,0
(𝑚, 𝐾, 𝑡) = ∫ 𝑎(𝑦, 𝑡)𝜔1(𝑦)𝑑𝑦

+∞

−∞
,   

1,
(𝑚, 𝐾, 𝑡) = ∫ 𝑎(𝑦, 𝑡)𝑝(𝑦)𝜔1(𝑦)𝑑𝑦

+∞

−∞
.   

Дифференциальное уравнение ковариационной матрицы K(t) СтП Y(t), за-

данного уравнением (3.3.1), имеет вид 

𝐾(𝑡)̇ =
20
1 (𝑚,𝐾, 𝑡) + ∑ ∑ 𝑐||=𝛽

𝑁
𝛽=3 

2
1 (𝑚,𝐾, 𝑡) ,               (3.3.11) 

где  


20
1 (𝑚,𝐾, 𝑡) =

∫ {𝑎(𝑦, 𝑡)(𝑦т−𝑚т) + (𝑦 −𝑚)𝑎(𝑦, 𝑡)т + 
1
𝑦т + 𝑦

1
т + 𝑦𝑦т(; 𝑦, 𝑡) +

+∞

−∞


2
}=0𝜔1(𝑦)𝑑𝑦,        


2
1 (𝑚,𝐾, 𝑡) = 

= ∫ {𝑎(𝑦, 𝑡)(𝑦т−𝑚т) + (𝑦 −𝑚)𝑎(𝑦, 𝑡)т + 
1
𝑦т + 𝑦

1
т + 𝑦𝑦т(; 𝑦, 𝑡) +

+∞

−∞


2
}=0𝑝(𝑦)𝜔1(𝑦)𝑑𝑦,                   

функция (; 𝑦, 𝑡) имеет вид (3.3.4), 
1
= [

𝜕(;𝑦,𝑡)

𝜕(𝑖1)
; … ;

𝜕(;𝑦,𝑡)

𝜕(𝑖𝑝)
]т, 


2
= [

𝜕2(;𝑦,𝑡)

𝜕(𝑖𝑘)𝜕(𝑖𝑗)
]𝑘,𝑗=1
𝑝

. 

Дифференциальные уравнения для набора старших моментов (3.3.9) СтП 

Y(t), заданного уравнением (3.3.1), имеют вид 

𝑑

𝑑𝑡
𝑀(𝑌𝑗1

𝑙1 …𝑌𝑗𝑘
𝑙𝑘)=

𝑙1,…,𝑙𝑘
0 (𝑚, 𝐾, 𝑡) + ∑ ∑ 𝑐||=𝛽

𝑁
𝛽=3 

𝑙1,…,𝑙𝑘
 (𝑚, 𝐾, 𝑡),    (3.3.12) 

где  


𝑙1,…,𝑙𝑘
0 (𝑚, 𝐾, 𝑡) = ∫ 𝑍𝑙1,…,𝑙𝑘(𝑦, 𝑡)𝜔1(𝑦)𝑑𝑦

+∞

−∞
,   


𝑙1,…,𝑙𝑘
 (𝑚, 𝐾, 𝑡) = ∫ 𝑍𝑙1,…,𝑙𝑘(𝑦, 𝑡)𝑝(𝑦)𝜔1(𝑦)𝑑𝑦

+∞

−∞
,     

𝑍𝑙1,…,𝑙𝑘(𝑦, 𝑡) = ∑ 𝑙ℎ
𝑘
ℎ=1 𝑎𝑗ℎ(𝑦, 𝑡)𝑦𝑗1

𝑙1 …𝑦𝑗ℎ
𝑙ℎ−1 …𝑦𝑗𝑘

𝑙𝑘 +     

+∑ …∑ 𝐶ℎ1
𝑙1 …𝐶ℎ𝑘

𝑙𝑘𝑙𝑘
ℎ𝑘=0

𝑙1
ℎ1=0

[
𝜕ℎ1+…+ℎ𝑘

𝜕(𝑖𝑗1)
ℎ1…𝜕(𝑖𝑗𝑘)

ℎ𝑘
(; 𝑦, 𝑡)]

=0⁡

𝑦𝑗1
𝑙1−ℎ1 …𝑦𝑗𝑘

𝑙𝑘−ℎ𝑘 . 
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Начальными условия для уравнений (3.3.10) – (3.3.12) для СтП Y(t), заданно-

го уравнением (3.3.1), являются 

𝑚(𝑡0) = 𝑚0 = 𝑀𝑌(𝑡0), 𝐾(𝑡0) = 𝐾0 = 𝑀(𝑌(𝑡0) − 𝑚0)(𝑌(𝑡0) − 𝑚0)
т,  (3.3.13) 

а также значения начальных моментов ⁡𝑀(𝑌𝑗1
𝑙1(𝑡0)…𝑌𝑗𝑘

𝑙𝑘(𝑡0))⁡. 

Правые части уравнений (3.3.10) – (3.3.12) содержат параметры 𝑐, завися-

щие от старших моментов 𝑀(𝑌𝑗1
𝑑1…𝑌𝑗𝑚

𝑑𝑚), отличных от набора (3.3.9). Для замыка-

ния системы уравнений надо выразить моменты 𝑀(𝑌𝑗1
𝑑1 …𝑌𝑗𝑚

𝑑𝑚) через моменты пер-

вого и второго порядков и старшие моменты вида (3.3.9), используя рекуррентные 

формулы связи моментов и семиинвариантов [20,129]: 

𝑀(𝑌𝑗1
𝑑1 …𝑌𝑗𝑚

𝑑𝑚)=

⁡∑ 𝐶𝑑1−1
ℎ1−1 ∑ 𝐶𝑑2

ℎ2𝑑2
ℎ2=0

𝑑1
ℎ1=1

…∑ 𝐶𝑑𝑚
ℎ𝑚𝑑𝑚

ℎ𝑚=0
𝑠𝑗1,…,𝑗𝑘
ℎ1,…,ℎ𝑘𝑀(𝑌𝑗1

𝑑1−ℎ1𝑌𝑗2
𝑑2−ℎ2 …𝑌𝑗𝑚

𝑑𝑚−ℎ𝑚),       (3.3.14) 

𝑠𝑗1,…,𝑗𝑘
ℎ1,…,ℎ𝑘 = ⁡𝑀(𝑌𝑗1

ℎ1…𝑌𝑗𝑚
ℎ )-

[⁡∑ 𝐶ℎ1−1
𝑙1−1 ∑ 𝐶ℎ2

𝑙2ℎ2
𝑙2=0

ℎ1
𝑙1=1

…∑ 𝐶ℎ𝑚
𝑙𝑚ℎ𝑚

𝑙𝑚=0
𝑠𝑗1,…,𝑗𝑘
𝑙1,…,𝑙𝑘𝑀(𝑌𝑗1

ℎ1−𝑙1𝑌𝑗2
ℎ2−𝑙2 …𝑌𝑗𝑚

ℎ𝑚−𝑙𝑚)],   (3.3.15) 

где в (3.3.15) из выражения стоящего в квадратных скобках следует исключить 

𝑠𝑗1,…,𝑗𝑚
ℎ1,…,ℎ𝑚 , 𝑠𝑗1,…,𝑗𝑘

ℎ1,…,ℎ𝑘 ⁡–⁡семиинвариант порядка ℎ1 +⋯+ ℎ𝑘 случайного вектора 

[𝑌𝑗1, … , 𝑌𝑗𝑘]
т. При этом все семиинварианты в (3.3.14), (3.3.15), не соответствующие 

моментам (3.3.9), выражаются через моменты первого и второго порядков и стар-

шие моменты вида (3.3.9) по формулам (3.3.14), (3.3.15). Процесс замыкания систем 

(3.3.10) - (3.3.12) достигается рекуррентным использованием формул связи (3.3.14), 

(3.3.15). 

 Доказано следующее утверждение [86]. 

 Теорема 3.3.1. 

 Пусть выполнены следующие условия: 

1) вектор состояния Y нелинейной СтС описывается стохастическим 

дифференциальным уравнением Ито вида (3.3.1); 

2) неизвестная плотность вероятности 𝑓1(𝑦, 𝑡)⁡⁡ задана конечным отрез-

ком ее ортогонального разложения вида (3.3.8) по заданной биортогональной си-

стеме полиномов {𝑝(𝑦), 𝑞(𝑦)} c весом 𝜔1(𝑦). 
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 Тогда верны следующие утверждения: 

1) математическое ожидание m(t), ковариационная матрица K(t),  стар-

шие начальных моменты вида (3.3.9) СтП Y(t)  удовлетворяют системе обыкно-

венных дифференциальных уравнений (3.3.10)-(3.3.12), в которых вид функции 

(; 𝑦, 𝑡)⁡ задается формулой (3.3.4), с начальными условиями (3.3.13);  

2) для замыкания системы (3.3.10)-(3.3.12) старшие моменты, содержа-

щиеся в правых частях уравнений и отличные от моментов вида (3.3.9), прибли-

женно выражаются через моменты первого и второго порядков и старшие мо-

менты вида (3.3.9) по формулам связи моментов и семиинвариантов (3.3.14), 

(3.3.15), при этом все старшие семиинварианты, не соответствующие моментам 

(3.3.9), полагаются равными нулю. 

Таким образом, на основании теоремы 3.3.1 получен алгоритм анализа точ-

ности нестационарных нелинейных СтС [86]. 

Алгоритм 3.3.1. 

1. Составление обыкновенных дифференциальных уравнений (3.3.10), 

(3.3.11), (3.3.12) (где функция (; 𝑦, 𝑡)⁡ задается формулой (3.3.4)) соответственно 

для математического ожидания m(t), ковариационной матрицы K(t) и набора стар-

ших начальных моментов вида (3.3.9) случайного процесса Y(t), описываемого сто-

хастическим дифференциальным уравнением Ито (3.3.1). 

2. Замыкание системы уранений (3.3.10), (3.3.11), (3.3.12) путем выражения 

старших начальных моментов, содержащихся в правых частях уравнений (3.3.10), 

(3.3.11), (3.3.12) и отличных от старших моментов вида (3.3.9), через моменты пер-

вого и второго порядков и старшие моменты вида (3.3.9) по формулам связи момен-

тов и семиинвариантов (3.3.14), (3.3.15), при этом все старшие семиинварианты, не 

соответствующие моментам вида (3.3.9), полагаются равными нулю. 

3. Решение замкнутой системы дифференциальных уравнений (3.3.10), 

(3.3.11), (3.3.12) с начальными условиями (3.3.13). 

В приложении П.7 на примере двумерной  нелинейной СтС, для которой 

имеется точное решение, проведен сравнительный анализ ММСМ с МНА и МЭА. В 
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приложении П.8 дано описание ИПО "СтС-Анализ-ММСМ", которое реализует ал-

горитм 3.3.1.  

Вычислительные эксперименты показали, что ММСМ дает высокую точ-

ность (менее 2%) определения математического ожидания и ковариационной мат-

рицы вектора состояния СтС, удовлетворяющих замкнутой системе обыкновенных 

дифференциальных уравнений для математического ожидания и ковариационной 

матрицы и определенного набора вероятностных старших моментов.  

3.4. Метод аналитического моделирования круговых 

нелинейных УдСФ, основанный на эквивалентной статистической 

линеаризации 

Пусть X – круговая случайная величина. Круговой случайной величиной 

называется случайный угол, принимающий значения в пределах 0≤X2. Характе-

ристической функцией случайного угла X называется последовательность ipx

p Me  , 

,...2,1,0 p В случае распределения вероятностей на окружности характеристиче-

ская функция p представляет собой последовательность тригонометрических мо-

ментов. Круговым средним направлением случайного угла Х называется угол 

1 Arg . 

Задана нелинейная зависимость Y от X в виде ударной случайной функции 

Y=φ(X). Метод статистической линеаризации основан на замене нелинейной зави-

симости φ(X) приближенной линейной зависимостью вида [20,70]:  

0 1( ) ( )X U k k X      .     (3.4.1) 

Здесь μ – круговое среднее направление круговой случайной величины X. Неиз-

вестные параметры 0k  и 1k  находятся из принципа минимума среднего квадрата 

ошибки  iY iUe e от замены нелинейной зависимости приближенной линейной зави-

симостью: 

min|)(| 2  iUiY eeM .     (3.4.2) 
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Подставляя в (3.4.2) выражение для U и Y, получим функцию относительно 

неизвестных параметров 0k  и 1k . Приравнивая к нулю частные производные этой 

функции по 0k  и 1k , получим уравнение для определения неизвестных параметров: 

))(()( 10   XkkiXi MeMe .     (3.4.3) 

Для вычисления величин 0k  и 1k  необходимо знать одномерную плотность вероят-

ностей круговой случайной величины X.  Будем считать, что Х имеет намотанное 

нормальное распределение, которое наряду с распределением Мизеса считается  

аналогом "нормального" распределения на окружности. Эти два распределения хо-

рошо аппроксимируют друг друга. Но тригонометрические моменты для намотан-

ного нормального распределения вычисляются проще, в отличие от распределения 

Мизеса.  

По определению нормальным намотанным на единичную окружность рас-

пределением называется распределение F круговой случайной величины X, связан-

ной с линейной нормально распределенной случайной величиной NX  соотношени-

ем [131]: 

)2(mod NXX  .      (3.4.4) 

Если NF  – функция распределения сл. в. NX , то  







k

k

NN kFkxFxF ))2()2(()(  .    (3.4.5) 

Аналогично, если Nf  –  плотность вероятностей нормально распределенной 

линейной случайной величины NX , то плотность вероятностей круговой случайной 

величины X, имеющей намотанное нормальное распределение, выражается форму-

лой  







k

k

N kxfxf )2()(  .     (3.4.6) 

Пусть 𝑔𝑁(λ) – характеристическая функция нормально распределенной ли-

нейной случайной величиной NX , тогда характеристическая функция или последо-

вательность тригонометрических моментов круговой случайной величины X, име-

ющей намотанное нормальное распределение, определяются формулой [131]: 
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  










 )()()()(
2

0

)1(2

2

pgdxxfedxxfedxxfe N

ipx
k

k

k

k

N

ipxipx

p

 



 .  (3.4.7) 

Для линейной нормально распределенной случайной величины 

2
2 2

2

1 ( ) 1
( ) exp , ( ) exp( ),

2 22
N N

x a
f x g i a   



 
    

   

где а – математическое ожидание NX , σ- среднее квадратическое отклонение NX . 

Тогда для круговой случайной величины X, имеющей намотанное нормальное рас-

пределение, первый тригонометрический момент равен[131]: 

)
2

1
exp()exp( 2

1   ia .     (3.4.8) 

Как известно, основными характеристиками круговой СВ X являются [131]: 

1) круговое среднее направление a ; 

2) результирующая длина )
2

1
exp( 2

1   ; 

3) круговая дисперсия )
2

1
exp(11 2

1  D . 

Согласно (3.4.3): 

)()())(( 101010    XikikXikikXkki MeeMeMeMe . 

Далее вычислим )(1 XikMe  при а=μ:  

2

2
1 1 1

( )

( ) ( ) ( ) 2
1

( ) .
2

x a

ik X a ik x a ik x a

NMe e f x dx e e dx



 


  

 

  
 

Применим преобразование Фурье при ω=x-a, t= 1k , p= 2/2 : 

24
1

22

22

2

2

2

1

2

12 k

ptptpti eee
p

d
p

ee
p 

































. 

Окончательно имеем: 

2))((
1

22

010

k

ikXkki eeMe





        (3.4.9) 

Учитывая, что  

( ) ( , )( , )i X iMe r e     ,      (3.4.10) 

где ( , )r    – модуль, ( , )    – аргумент комплексного числа ( )i XMe  , получим урав-

нения для определения статистических коэффициентов  0k  и 1k : 
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2 2

1
0

( , )
( , ) ( , ); exp ( , ).

2

k
k r

  
       

 
   

 
   (3.4.11) 

Согласно основным формулам разработанного метода (3.4.9) – (3.4.11) были 

определены точные значения коэффициентов 0k  и 1k  для некоторых типовых нели-

нейных функций или получены точные уравнения для их определения. Результаты 

приведены в таблице 3.4.1.  

 

Таблица 3.4.1 – Cтатистические коэффициенты для типовых нелинейных круговых 

функций 

Y=φ(X) 𝑘0, 𝑘1 

, 0,
( ) sgn( )

, 0.

l x
x l x

l x


 
  

  








 )(*2arctan

1
0






Фtglk

, 

2

22

1 )(sin4cosln2
1













a
Фllk

. 










.0,

,0,0
)(1*)(

xl

x
xlx

 


























































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
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Продолжение таблицы 3.4.1 

Y=φ(X) 𝑘0, 𝑘1 










.0,

,0,0
)(1*)(

xlx

x
xlxx

 

𝑘1 находится из уравнения: 

 
2 2 2 2

1
2
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2
2 2

1 2

1 1 1
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2 2 4

k l
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 1

2
cos sinP l IE l l  


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 2
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
 
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𝑘0 находится из уравнения: 
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
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
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При 𝜇 = a = 0 
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При выписывании уравнений для 0k  и 1k  были использованы специальные 

функции: 

1) функция Лапласа (𝑧) =
1

√2𝜋
∫ 𝑒

−𝑡2
2⁄ 𝑑𝑡

𝑧

0
=

1

2
erf (

𝑧

√2
) ;  
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2) erf 𝑧 =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡;

𝑧

0
        

3) erfc 𝑧 =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡 = 1 − erf 𝑧 ⁡.

∞

𝑧
      

Здесь введены обозначения: 
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,0,0 если ),/(arg

),arctan(
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CS







 

 

3.5. Методы анализа динамической точности УдСтС 

3.5.1. Уравнение ошибок УдСтС 

Как правило, большинство непрерывных линейных систем, встречающихся в 

практических приложениях, составляют системы, поведение которых описывается 

системой обыкновенных дифференциальных уравнений в форме Коши, т.е. решен-

ных относительно производных. Если добавить к этим уравнениям нелинейные за-

висимости между входными и выходными сигналами, то получим, в общем случае, 

систему нелинейных дифференциальных уравнений в форме Коши, описывающих 

нелинейную систему. 

Стохастические модели систем учитывают действие различных случайных 

факторов. При применении математических моделей в форме системы нелинейных 

дифференциальных уравнений, учет случайных факторов приводит к стохасти-

чеким дифференциальным уравнениям.  

В качестве математической модели УдСтС рассмотрим стохастическое диф-

ференциальное уравнение, описывающее ошибки функционирования УдСтС как 

следствие стохастических факторов и детерминированных и стохастических удар-

ных воздействий, следующего вида: 

𝑍̇ = 𝐹уд(𝑍, 𝑋,𝑁1(𝑡), 𝑡), 𝑌 = 𝐺
уд(𝑍, 𝑁2(𝑡), 𝑡),    (3.5.1) 
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где X(t) – входной сигнал, Y(t) – выходной сигнал, Z(t) – вектор состояния, 𝑁1(𝑡) и 

𝑁2(𝑡) – известные случайные функции, описывающие случайные возмущения, дей-

ствующие на систему, 𝐹уд(𝑍, 𝑋, 𝑁1(𝑡), 𝑡)⁡ и 𝐺уд(𝑍,𝑁2(𝑡), 𝑡)⁡– известные функции, 

описывающие детерминированные и стохастические ударные воздействия. Началь-

ный вектор состояния системы 𝑍0 в практических задачах всегда является случай-

ной величиной, независимой от случайных функций 𝑁1(𝑡) и 𝑁2(𝑡).  

 В том случае, когда важен учет дополнительных случайных факторов в виде 

𝑚1- и 𝑚2-мерных векторов 1(𝑡) и 2(𝑡) случайных параметров, уравнения (3.5.1) 

принимают вид 

𝑍̇ = 𝐹уд(𝑍, 𝑋,𝑁1(𝑡),1(𝑡), 𝑡), 𝑌 = 𝐺
уд(𝑍,𝑁2(𝑡),2(𝑡), 𝑡),   (3.5.2) 

Эти уравнения приводятся к виду (3.5.1), если принять 𝑁̅1(𝑡) = [𝑁1
𝑇1

𝑇]
𝑇
 и 

𝑁̅2(𝑡) = [𝑁2
𝑇2

𝑇]
𝑇
. 

 Так как значение выходного сигнала системы Y(t) в каждый момент времени 

зависит только от значений вектора состояния системы Z(t) и заданной случайной 

функции 𝑁2(𝑡) и момента времени t, то все вероятностные характеристики СтП Y(t) 

выражаются через соответствующие вероятностные характристики Z(t) и 𝑁2(𝑡) из-

вестными формулами теории вероятности.  

 Если составляющие СтП Z(t) являются круговыми случайными величинами 

и заданы нелинейные зависимости между составляющими СтП Y(t) и составляю-

щими СтП Z(t), то для определения вероятностных характеристик СтП Y(t) можно 

применить метод эквивалентной статистической линеаризации, описанный в под-

разделе 3.4. В результате нелинейные зависимости приближенно заменятся линей-

ными зависимостями. Этот метод можно применить и для линеаризации заданной 

нелинейной стохастической системы (3.5.1) для  случая круговых случайных вели-

чин. 

 Далее рассмотрим только вопрос нахождения вероятностных характеристик 

вектора состояния системы Z(t).Если ограничиться теорией марковских стохастиче-

ских процессов [20], то удобной для практики моделью является модель векторного 

стохастического дифференциального уравнения Ито. Для приведения уравнения, 
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определяющего вектора состояния системы Z(t), к стохастическому дифференци-

альному уравнению Ито вначале включим в расширенный вектор состояния систе-

мы входной сигнал X(t).  Стохастическое дифференциальное уравнение формирова-

ния требуемого входного сигнала можно составить, например, в виде: 

𝑋̇ = 𝑄(𝑋, 𝑡), 𝑋(𝑡0) = 𝑋0. 

 Для приведения уравнения, определяющего вектора состояния системы Z(t), 

к форме Ито можно применить метод формирующих фильтров [19,20]. Тогда урав-

нение ошибок УдСтС можно записать в виде: 

𝑍̇ = 𝑎уд(𝑍, 𝑡) + 𝑏уд(𝑍, 𝑡)𝑉, 𝑍(𝑡0) = 𝑍0,    (3.5.3) 

где 𝑎уд(𝑍, 𝑡) и 𝑏уд(𝑍, 𝑡) – известные функции, V=V(t) – белый шум.  

 Задача анализа точности УдСтС, описываемой уравнением (3.5.3), заключа-

ется в определении математического ожидания 𝑚𝑍(𝑡), ковариационной матрицы 

𝐾𝑍(𝑡) и матрицы ковариационных функций 𝐾𝑍(𝑡, 𝑡
′)⁡ векторного стохастического 

процесса Z(t). При этом систематические ошибки определяются вектором матема-

тических ожиданий, а случайные ошибки – ковариационной матрицей и матрицей 

ковариационных функций.  

 

3.5.2. Точность линейной УдСтС  

Пусть математической моделью УдСтС является линейная СтС вида:  

𝑍̇ = 𝑎уд(𝑡)⁡𝑍 + 𝑎0
уд
(𝑡) + 𝑏уд(𝑡)𝑉, Z(𝑡0) = 𝑍0 ,  (3.5.4) 

где 𝑍 = 𝑍(𝑡) – вектор состояния УдСтС размерности p; 𝑉 = 𝑉(𝑡) – белый шум (в 

широком смысле) размерности 𝑛𝑣 с интенсивностью =(t); 𝑎уд(𝑡) , 𝑎0
уд
(𝑡), 𝑏 =

𝑏уд(𝑡) – известные функции размерности (p×p), (p×1), (p× 𝑛𝑣) соответственно. То-

гда математическое ожидание 𝑚𝑍(𝑡), ковариационная матрица 𝐾𝑍(𝑡) и матрица ко-

вариационных функций 𝐾𝑍(𝑡, 𝑡
′)⁡ векторного стохастического процесса Z(t) удовле-

творяют уравнениям (3.1.2)–(3.1.5) и вычисляются в соответствии с вейвлет алго-

ритмами 3.1.1 – 3.1.3.  
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3.5.3. Точность линейной параметрической УдСтС 

Рассмотрим подробнее УдСтС, математической моделью которой является 

СтС с параметрическими шумами вида 

0 0 0 0

1

( ) , ( ) .
p

уд уд уд уд

n n

n

Z a Z a b b Z N Z t Z


        (3.5.5) 

Здесь Z– вектор состояния размерности p, N – вектор параметрических шумов раз-

мерности 𝑛𝑁 с известными корреляционными характеристиками (𝑚𝑁 , ⁡𝐾𝑁⁡и др.); 

𝑎уд(𝑡), 𝑎0
уд(𝑡), 𝑏уд(𝑡), 𝑏𝑛

уд(𝑡) – известные матричные функции размерностей 

𝑝 × 𝑝, 𝑝 × 1, 𝑝 × 𝑛𝑁 , 𝑝 × 𝑛𝑁 соответственно.  

Первым важным таким классом являются системы (3.5.5) при  

𝑁 = 𝑉 = 𝑉(𝑡), где 𝑉 – нормально распределенный векторный белый шум с интен-

сивностью  = (𝑡), а соответствующее стохастическое дифференциальное уравне-

ние понимается в смысле Ито. Тогда математическое ожидание 𝑚𝑍(𝑡), ковариаци-

онная матрица 𝐾𝑍(𝑡) и матрица ковариационных функций 𝐾𝑍(𝑡, 𝑡
′)⁡ векторного сто-

хастического процесса Z(t) удовлетворяют уравнениям (3.2.2)–(3.2.4) и вычисляют-

ся в соответствии с вейвлет алгоритмами 3.2.1 – 3.2.3. 

Вторым важным классом являются системы (3.5.5), когда 𝑁 является окра-

шенным белым шумом и связан с нормально распределенным белым шумом 𝑉 ли-

нейным уравнением формирующего фильтра следующего вида [20]: 

000 )(, NtNVccNN 
.     (3.5.6) 

Здесь 𝑐 = 𝑐(𝑡), 𝑐0 = 𝑐0(𝑡) известные матричные функции размерностей 𝑛𝑁 ×

𝑛𝑁 , 𝑛𝑁 × 1 соответственно. Вводя составной вектор 𝑍̃ = [𝑍𝑇 𝑁𝑇]𝑇, приведём 

(3.5.5), (3.5.6) к виду: 

( , ) ( )Z a Z t b t V  .    (3.5.7) 

Здесь 

00 0 0
11

0

0

( , ) , ( ) ,
N

pp
уд уд удуд уд уд уд уд

pn nn n
nn

n
p

Oa b b Za Z a b b Z N a
a a Z t Z b b t

Ic
O ccN c



    
         

            
          

  
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𝑂𝑛 и 𝐼𝑛𝑁 – квадратные нулевые и единичные матрицы. Стохастические системы ви-

да (3.5.7) называются билинейными СтС [20]. При небольшом уровне шумов урав-

нение (3.5.7) допускает тейлоровскую линеаризацию относительно математических 

ожиданий 𝑚𝑛
𝑍 и 𝑚𝑁 следующего вида: 

0 0Z N N Z N Z Z N

n n n n n n nZ N m m Z m m N Z m m N m m      . (3.5.8) 

В этом случае соотношения (3.5.8), (3.5.9) принимают вид линейной неста-

ционарной системы с аддитивным белым шумом: 

0 1 0 0, ( )Z a a Z bV Z t Z    ,    (3.5.9) 

где  

1 1 1 ,

0

1 10 0 1 1

0 0

[ ] , [ ] , [ ] , [ ] ,
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( ) .

N N

T T T T T T

p n n

p p
Z N N Z

n n n n nZ N Z N
n n

p

n

Z Z N Z Z Z N N N V V V

a b m m aZ b Z m m N
a a t m m a a t m m

c cN c

O
b b t

I

 

   

   
        

   
      

 
   

 

   

Тогда математическое ожидание 𝑚𝑍̃(𝑡), ковариационная матрица 𝐾𝑍̃(𝑡) и матрица 

ковариационных функций 𝐾𝑍̃(𝑡, 𝑡
′)⁡ векторного стохастического процесса 𝑍̃(t) удо-

влетворяют уравнениям (3.1.2)–(3.1.5) и вычисляются в соответствии с вейвлет ал-

горитмами 3.1.1 – 3.1.3. 

3.5.4. Точность квазилинейной УдСтС 

Рассмотрим УдСтС, математической моделью которой является квазилиней-

ная СтС вида: 

𝑍̇ = 𝑎уд(𝑍, 𝑡) + 𝑏уд(𝑍, 𝑡)𝑉, 𝑍(𝑡0) = 𝑍0,    (3.5.11) 

где 𝑎уд(𝑍, 𝑡) = 𝑎0
уд(𝑡) + 𝑎1

уд(𝑡)𝑍 + 𝜇𝐹̅0𝑡 ,⁡⁡ 

⁡𝑏уд(𝑍, 𝑡) = 𝑏0
уд(𝑡) + ∑ 𝑏ℎ

уд𝑝
ℎ=1 (𝑡)𝑍ℎ + √𝜇𝐹̅1𝑡 ,⁡ 𝜇⁡–⁡малый параметр. 

Функции 𝜇𝐹̅0𝑡 и √𝜇𝐹̅1𝑡 зависят от времени, параметров УВ и инструментальных 

ошибок, т.е. от t и Z. 

 В простейшем случае для анализа точности УдСтС можно использовать ме-

тод нормальной аппроксимации [19, 20]. Более точные результаты получаются при 
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применении модифицированного моментно-семиинвариантного метода, описанного 

в подразделе 3.3. В этом случае в соответствии с алгоритмом 3.3.1 составляются и 

решаются уравнения для математического ожидания 𝑚𝑍(𝑡), ковариационной мат-

рицы 𝐾𝑍(𝑡), матрицы ковариационных функций 𝐾𝑍(𝑡, 𝑡
′)⁡, а также уравнения для 

старших моментов, например, для тех, которые присутствуют в правых частях точ-

ных уравнений для 𝑚𝑍(𝑡), 𝐾𝑍(𝑡) и 𝐾𝑍(𝑡, 𝑡
′). 

 Функции 𝜇𝐹̅0𝑡 и √𝜇𝐹̅1𝑡, всдедствие их малости, можно аппроксимировать 

функциями времени. Тогда уравнение (3.5.11) примет вид (3.5.5), где  

𝑎0 = 𝑎0
уд(𝑡) + 𝜇𝐹̅0𝑡,  𝑏0 = 𝑏0

уд(𝑡) + √𝜇𝐹̅1𝑡. 

В этом случае математическое ожидание 𝑚𝑍(𝑡), ковариационная матрица 𝐾𝑍(𝑡) и 

матрица ковариационных функций 𝐾𝑍(𝑡, 𝑡
′)⁡ векторного стохастического процесса 

Z(t) удовлетворяют уравнениям (3.2.2)–(3.2.4) и вычисляются в соответствии с 

вейвлет алгоритмами 3.2.1 – 3.2.3 

  

3.6. Выводы к разделу 3 

1. Для линейной УдСтС и линейной УдСтС с параметрическими шумами из-

вестны замкнутые системы обыкновенных дифференциальных уравнений для 

нахождения неизвестных математического ожидания, ковариационной матрицы, 

матрицы ковариационных функций, содержащие функции, описывающие ударные 

воздействия. 

Ударные воздействия описываются с помощью ударной силы или ударного 

импульса. Ударная сила в начале удара быстро возрастает до наибольшего значе-

ния, а затем падает до нуля. Максимальное ее значение может быть очень большим. 

Часто для описания ударной силы применяют дельта-функцию. Ударные импульсы 

бывают различной формы: прямоугольными, пилообразными, полугармоническими 

и др., и описываются непрерывными и кусочно-непрерывными функциями.    

Применение приближенных итерационных методов решения задачи Коши 

для системы обыкновенных дифференциальных функций, содержащих функции 

сложной формы (дельта-функцию или кусочно-непрерывные функции), часто тре-
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буют разработки специальных приближенных методов для каждого вида функции. 

Разработанные вейвлет алгоритмы являются универсальными и позволяют заменить 

вычислительные процедуры с функциями сложной формы арифметическими дей-

ствиями с постоянными коэффициентами вейвлет разложений соотвествующих 

функций по ортонормированному вейвлет базису.  

На основе применения модификации известных метода вейвлетов Хаара и 

метода Галеркина (метода вейвлетов Хаара–Галеркина) для линейной УдСтС и для 

линейной УдСтС с параметрическими шумами  разработаны агоритмы нахождения 

неизвестных математического ожидания, ковариационной матрицы, матрицы кова-

риационных функций, позволяющие заменить решение систем обыкновенных диф-

ференциальных уравнений решением СЛАУ с постоянными коэффициентами (тео-

ремы 3.1.1 – 3.1.3, алгоритмы 3.1.1 – 3.1.3 и теоремы 3.2.1 – 3.2.3, алгоритмы 3.2.1 – 

3.2.3 соотвественно). 

 2. В приложении П.5 на примере информационно-управляющей системы, 

описываемой двумерной линейной УдСтС, приведены результаты сравнения 

вейвлет анализа точности ИУС с точным решением. При решении задачи Коши для 

системы обыкновенных дифференциальных функций, содержащих дельта-

функцию, применение ВЛР позволяет получить приближенное решение с точно-

стью менее 10% при J=3, менее 1% при J=5. 

 3. В приложении П.6 приведено описание ИПО "СтС-ВЛ-Анализ", реализу-

ющее вейвлет алгоритмы 3.1.1, 3.1.2 и 3.2.1, 3.2.2. 

4. Для анализа точности многомерных нелинейных УдСтС в общем случае 

невозможно выписать замкнутую систему обыкновенных дифференциальных урав-

нений для нахождения неизвестных математического ожидания, ковариационной 

матрицы, матрицы ковариационных функций. Для нахождения неизвестных пара-

метров предлагается применять  модифицированный моментно-семиинвариантный 

метод. Идея метода состоит в составлении и решении замкнутой системы обыкно-

венных дифференциальных уравнений для неизвестных математического ожидания, 

ковариационной матрицы, матрицы ковариационных функций и определеного 

набора старших моментов (теорема 3.3.1 и алгоритм 3.3.1). В эти уравнения неиз-
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вестные составляющие математического ожидания, ковариационной матрицы, мат-

рицы ковариационных функций входят нелинейно, поэтому применение метода 

вейвлетов Хаара–Галеркина приводит к усложнению вычислительных процедур и 

его применение нецелесообразно.  

5. В приложении П.7 на примере двумерной  нелинейной СтС, для которой 

имеется точное решение, проведен сравнительный анализ ММСМ с МНА и МЭА.  

Вычислительные эксперименты показали, что ММСМ дает более высокую точность 

по сравнению с МНА и МЭА (менее 2%) определения математического ожидания и 

ковариационной матрицы вектора состояния СтС, удовлетворяющих замкнутой си-

стеме обыкновенных дифференциальных уравнений для математического ожидания 

и ковариационной матрицы и определенного набора вероятностных старших мо-

ментов.  

 6. В приложении П.8 дано описание ИПО "СтС-Анализ-ММСМ", которое 

реализует алгоритм 3.3.1.  

7. Для нелинейных круговых УдСФ разработан метод эквивалентной стати-

стической круговой намотанной нормальной линеаризации. Рассчитаны статисти-

ческие коэффициенты для некоторых типовых нелинейностей (таблица 3.4.1). Сов-

местное использование этого метода и МНА позволяет выписать замкнутую систе-

му обыкновенных дифференциальных уравнений для неизвестных математического 

ожидания, ковариационной матрицы, матрицы ковариационных функций стохасти-

ческого процесса, удовлетворяющего заданному нелинейному стохастическому 

дифференциальному уравнению Ито. Если неизвестные составляющие математиче-

ского ожидания, ковариационной матрицы, матрицы ковариационных функций 

входят в уравнения линейно, то целесообразно для их нахождения применять 

вейвлет алгоритмы 3.1.1 – 3.1.3или 3.2.1 – 3.2.3. 

8. Разработана методика анализа динамической точности УдСтС. 

 9. В приложении П.9 приведены результаты аналиха динамической точности 

информационно-управляющей системы при продольно-поперечном ударе с приме-

неем ИПО "СтС-ВЛ-Анализ". 
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4. ВЕЙВЛЕТ МЕТОДЫ И АЛГОРИТМЫ ОБРАБОТКИ 

ИНФОРМАЦИИ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ В 

СТОХАСТИЧЕСКИХ СИСТЕМАХ ПРИ УДАРНЫХ 

ВОЗДЕЙСТВИЯХ 

4.1. Теорема о вейвлет с.к. оптимальном линейном операторе 

На практике часто возникает задача: спроектировать систему обработки ин-

формации в режиме реального времени таким образом, чтобы она обладала 

наибольшей возможной точностью при данных условиях. Для решения задачи 

необходимо задать критерий оптимальности для определения величины, характе-

ризующей качество системы. 

Пусть одномерная входная функция системы Z(t) представляет собой сумму 

полезного сигнала P(t) и случайной помехи X(t). Случайная функция Z(t) наблюда-

ется в некоторой области Т (𝑡 ∈ 𝑇). Требуемый одномерный выходной сигнал си-

стемы W(s) должен воспроизводиться в области S (𝑠 ∈ 𝑆) и представляет собой за-

данное преобразование полезного сигнала P (t). Область Т представляет собой, как 

правило, отрезок времени, в течение которого наблюдается СФ Z(t). Область S – от-

резок времени или отдельный момент времени, в течение которого система должна 

воспроизводить выходной сигнал W(s). Значение 𝑡 ∈ 𝑇 зависит от значения 𝑠 ∈ 𝑆. 

Действительным выходным сигналом системы является случайная функция 𝑊∗(𝑠), 

которая представляет собой результат преобразования данной системой входной 

СФ Z(t): 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡),     (4.1.1) 

где 𝐴𝑡 – оператор системы. В отличие от требуемого выходного сигнала, действи-

тельная выходная СФ системы всегда содержит помеху, от которой принципиально 

невозможно полностью избавиться. Заданная система является стохастической: 

каждому входному сигналу ставит в соответствие определенное распределение вы-

ходного сигнала. Случайная функция 𝑊∗(𝑠) представляет собой оценку требуемого 

выходного сигнала. 



90 

 

 

 Задача сводится к нахождению оптимального линейного оператора системы 

𝐴𝑡, обеспечивающего наилучшую точность СтС, т.е. наилучшее воспроизведение 

требуемого выходного сигнала W(s). Ошибка системы является случайной функци-

ей и равна 

𝐸(𝑠) = 𝑊∗(𝑠) −𝑊(𝑠). 

Как известно [87], среди критериев качества СтС  простейшим является критерий 

минимума средней квадратической (с.к.) ошибки: 

√ = √𝑀[𝐸2(𝑠)]. 

Система, обладающая наибольшей возможной точностью в соответствии с критери-

ем минимума с.к. ошибки, называется с.к. оптимальной.  

Согласно [21], с.к. оптимальный линейный оператор 𝐴𝑡 удовлетворяет урав-

нению:  

𝐴𝑡Г𝑍(𝑡, 𝜏) − Г𝑊𝑍(𝑠, 𝜏) = 0⁡(𝜏 ∈ 𝑇)    (4.1.2) 

или  

𝐴𝑡𝐾𝑍(𝑡, 𝜏) = 𝐾𝑊𝑍(𝑠, 𝜏) + [𝑚𝑊(𝑠) − 𝐴𝑡𝑚𝑍(𝑡)]𝑚𝑍(𝜏)̅̅ ̅̅ ̅̅ ̅̅ ⁡⁡⁡(𝜏 ∈ 𝑇), (4.1.3) 

где Г𝑍(𝑡, 𝜏) = 𝑀[𝑍(𝑡)𝑍(𝜏)̅̅ ̅̅ ̅̅ ],⁡⁡⁡⁡𝐾𝑍(𝑡, 𝜏) = 𝑀[𝑍
°(𝑡)𝑍°(𝜏)̅̅ ̅̅ ̅̅ ̅] , Г𝑊𝑍(𝑠, 𝜏) = 𝑀[𝑊(𝑠)𝑍(𝜏)̅̅ ̅̅ ̅̅ ], 

⁡⁡𝐾𝑊𝑍(𝑠, 𝜏) = 𝑀[𝑊
°(𝑠)𝑍°(𝜏)̅̅ ̅̅ ̅̅ ̅]⁡,⁡ 𝑚𝑍(𝑡) = 𝑀[𝑍(𝑡)], 𝑚𝑊(𝑠) = 𝑀[𝑊(𝑠)]. 

 Оценка 𝑊∗(𝑠), удовлетворяющая уравнению (4.1.1), где 𝐴𝑡 – с.к. оптималь-

ный линейный оператор, называется с.к. оптимальной. 

Как известно [21], для определения с.к. оптимального линейного оператора 

пригодны только такие решения уравнения (4.1.3), которые преобразуют СФ Z(t) в 

случайные функции, обладающие конечными дисперсиями, т.е. уравнение (4.1.3) 

можно записать в  общем виде 

𝐴𝑡[𝐾𝑍(𝑡, 𝜏)] = 𝑓(𝑠, 𝜏)⁡⁡(𝑡, 𝜏 ∈ 𝑇, 𝑠 ∈ 𝑆⁡),   (4.1.4) 

где 𝑓(𝑠, 𝜏) – известная функция. 

 Любую квадратично интегрируемую функцию можно представить в виде 

суперпозиции вейвлетов, и существует устойчивый численный алгоритм вычисле-

ния коэффициентов при таком разложении [121, 124, 125]. Также эти коэффициен-

ты полностью характеризуют функцию, и ее можно восстановить численно устой-
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чивым способом непосредственно по этим коэффициентам. Благодаря этим свой-

ствам вейвлеты нашли применение в функциональном анализе и при решении 

уравнений различных типов. Исследование многих операторов, действующих в 

пространстве обычных или обобщенных функций, заметно упрощается, если ис-

пользуется подходящий вейвлет базис, т.к. соответствующие матрицы становятся 

почти диагональными по отношению к разложению по этому базису. Действие опе-

ратора на вейвлет разложения, представляющие данную функцию, не приводят к 

каким-либо неконтролируемым последствиям, т.е. ВЛР устойчиво. В определенном 

смысле вейвлеты устойчивы относительно операций интегрирования и дифферен-

цирования. Поэтому вейвлеты, используемые в качестве базисных функций, помо-

гают решать различные уравнения и появляются в виде собственных функций неко-

торых операторов. Применим вейвлет технологии для решения уравнения (4.1.4). 

Сигналы Z(t) и W(s) определены на отрезках  T и S, поэтому в качестве орто-

нормированных вейвлет базисов возьмем базисы, порожденные вейвлетами с ко-

нечным носителем. Пусть T=[𝑡0, 𝑡1], S=[𝑠0, 𝑠1]. В 𝐿2(𝑇) определим ортонормирован-

ный вейвлет базис вида 

 {𝜑00
𝑡 (𝑡), 𝜓𝑗𝑘

𝑡 (𝑡)}     (4.1.5) 

где 𝜑00
𝑡 (𝑡) = 𝜑𝑡(𝑡)– масштабирующая функция, 𝜑𝑗𝑘

𝑡 (𝑡) = √2𝑗𝜑𝑡(2𝑗𝑡 − 𝑘), 

𝜓00
𝑡 (𝑡) = 𝜓𝑡(𝑡)–⁡ материнский вейвлет, 𝜓𝑗𝑘

𝑡 (𝑡) = √2𝑗𝜓𝑡(2𝑗𝑡 − 𝑘); 

j=1,2,…,𝐽𝑡; k=0,1,…,⁡2𝑗 − 1; 𝐽𝑡– максимальный уровень разрешения, который выби-

рается с учетом того, что точность аппроксимации любой функции f(𝑡) ∈ 𝐿2(T) со-

ответствующим ВЛР пропорциональна 
1

√2𝐽
𝑡
 и постоянному шагу ℎ𝑡 =

𝑡1−𝑡0

2∗2𝐽
𝑡  разбие-

ния области Т на 𝐿𝑡 = 2 ∗ 2𝐽
𝑡
 равных интервалов [121].  

 Аналогично, в области 𝐿2(𝑆) определим ортонормированный вейвлет-базис 

вида  

{𝜑00
𝑠 (𝑠), 𝜓𝑗𝑘

𝑠 (𝑠)}     (4.1.6) 

где 𝜑00
𝑠 (𝑠) = 𝜑𝑠(𝑠)– масштабирующая функция, 𝜑𝑗𝑘

𝑠 (𝑠) = √2𝑗𝜑𝑠(2𝑗𝑠 − 𝑘), 

𝜓00
𝑠 (𝑠) = 𝜓𝑠(𝑠)–⁡ материнский вейвлет, 𝜓𝑗𝑘

𝑠 (𝑠) = √2𝑗𝜓𝑠(2𝑗𝑠 − 𝑘); 
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j=1,2,…,𝐽𝑠; k=0,1,…,⁡2𝑗 − 1; 𝐽𝑠– максимальный уровень разрешения, который выби-

рается с учетом того, что точность аппроксимации любой функции f(𝑠) ∈ 𝐿2(S) со-

ответствующим ВЛР пропорциональна 
1

√2𝐽
𝑠
 и постоянному шагу ℎ𝑠 =

𝑠1−𝑠0

2∗2𝐽
𝑠  разбие-

ния области S на 𝐿𝑠 = 2 ∗ 2𝐽
𝑠
 равных интервалов [121].  

 Пусть 𝐾𝑍(𝑡, 𝜏) ∈ 𝐿
2(𝑇 × 𝑇) и 𝑓(𝑠, 𝜏) ∈ 𝐿2(𝑆 × 𝑇). Чтобы представить функ-

цию 𝐾𝑍(𝑡, 𝜏) в виде сходящегося вейвлет ряда, определим двумерный ортонормиро-

ванный базис путем тензорного произведения двух одномерных вейвлет базисов 

(4.1.5) в случае, когда масштабирование по обеим переменным происходит одина-

ково: 

𝛷00
𝑡𝐴(𝑡1, 𝑡2) = 𝜑00

𝑡 (𝑡1)𝜑00
𝑡 (𝑡2),    (4.1.7) 

𝛹𝑗𝑘𝑛
𝑡𝐻 (𝑡1, 𝑡2) = 𝜑𝑗𝑘

𝑡 (𝑡1)𝜓𝑗𝑛
𝑡 (𝑡2),    (4.1.8) 

𝛹𝑗𝑘𝑛
𝑡𝐵 (𝑡1, 𝑡2) = 𝜓𝑗𝑘

𝑡 (𝑡1)𝜑𝑗𝑛
𝑡 (𝑡2),    (4.1.9) 

𝛹𝑗𝑘𝑛
𝑡𝐷 (𝑡1, 𝑡2) = 𝜓𝑗𝑘

𝑡 (𝑡1)𝜓𝑗𝑛
𝑡 (𝑡2),    (4.1.10) 

где j=1,…,⁡𝐽𝑡; k,n=0,1,…,⁡2𝑗 − 1. Тогда двумерное вейвлет разложение 𝐾𝑍(𝑡, 𝜏) имеет 

вид: 

𝐾𝑍(𝑡, 𝜏) = 𝑎𝑡𝛷00
𝑡𝐴(𝑡, 𝜏) + ∑ ∑ ∑ [ℎ𝑗𝑘𝑛

𝑡 𝛹𝑗𝑘𝑛
𝑡𝐻 (𝑡, 𝜏) + 𝑏𝑗𝑘𝑛

𝑡 𝛹𝑗𝑘𝑛
𝑡𝐵 (𝑡, 𝜏) + 𝑑𝑗𝑘𝑛

𝑡 𝛹𝑗𝑘𝑛
𝑡𝐷 (𝑡, 𝜏)]2𝑗−1

𝑛=0
2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 , (4.1.11) 

где  

𝑎𝑡 = ∫ ∫ 𝐾𝑍(𝑡1, 𝑡2)𝑇
𝛷00
𝑡𝐴(𝑡1, 𝑡2)𝑇

𝑑𝑡1𝑑𝑡2,   (4.1.12) 

ℎ𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑍(𝑡1, 𝑡2)𝑇

𝛹𝑗𝑘𝑛
𝑡𝐻 (𝑡1, 𝑡2)𝑇

𝑑𝑡1𝑑𝑡2,   (4.1.13) 

𝑏𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑍(𝑡1, 𝑡2)𝑇

𝛹𝑗𝑘𝑛
𝑡𝐵 (𝑡1, 𝑡2)𝑇

𝑑𝑡1𝑑𝑡2,   (4.1.14) 

𝑑𝑗𝑘𝑛
𝑡 = ∫ ∫ 𝐾𝑍(𝑡1, 𝑡2)𝑇

𝛹𝑗𝑘𝑛
𝑡𝐷 (𝑡1, 𝑡2)𝑇

𝑑𝑡1𝑑𝑡2.   (4.1.15) 

 Чтобы представить функцию 𝑓(𝑠, 𝜏) в виде сходящегося вейвлет ряда, опре-

делим двумерный ортонормированный базис путем тензорного произведения двух 

одномерных вейвлет базисов (4.1.6) и (4.1.5) в случае, когда масштабирование по 

обеим переменным происходит по-разному: 

𝛷00
𝑠𝐴(𝑠, 𝑡) = 𝜑00

𝑠 (𝑠)𝜑00
𝑡 (𝑡),    (4.1.16) 

𝛹𝑗2𝑛
𝑠𝐻(𝑠, 𝑡) = 𝜑00

𝑠 (𝑠)𝜓𝑗2𝑛
𝑡 (𝑡),    (4.1.17) 
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𝛹𝑗1𝑘
𝑠𝐵 (𝑠, 𝑡) = 𝜓𝑗1𝑘

𝑠 (𝑠)𝜑00
𝑡 (𝑡),    (4.1.18) 

𝛹𝑗1𝑘𝑗2𝑛
𝑠𝐷 (𝑠, 𝑡) = 𝜓𝑗1𝑘

𝑠 (𝑠)𝜓𝑗2𝑛
𝑡 (𝑡),    (4.1.19) 

где 𝑗1=0,1,…,⁡𝐽𝑠; k=0,1,…,⁡2𝑗1 − 1;⁡𝑗2=0,1,…,⁡𝐽𝑡; n=0,1,…,⁡2𝑗2 − 1. Тогда двумерное 

вейвлет разложение 𝑓(𝑠, 𝜏) имеет вид: 

𝑓(𝑠, 𝜏) ⁡= 𝑎𝑓𝛷00
𝑠𝐴(𝑠, 𝜏) +∑∑ ℎ𝑗𝑘

𝑓
𝛹𝑗𝑘
𝑠𝐻(𝑠, 𝜏) +∑∑ 𝑏𝑗𝑘

𝑓
𝛹𝑗𝑘
𝑠𝐵(𝑠, 𝜏)

2𝑗−1

𝑘=0

𝐽𝑠

𝑗=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

+ 

+∑ ∑ ∑ ∑ 𝑑𝑗1𝑘𝑗2𝑛
𝑓2𝑗2−1

𝑛=0
𝐽𝑡

𝑗2=0
2𝑗1−1
𝑘=0

𝐽𝑠

𝑗1=0
 𝛹𝑗1𝑘𝑗2𝑛

𝑠𝐷 (𝑠, 𝜏),        (4.1.20) 

где  

𝑎𝑓 = ∫ ∫ 𝑓(𝑠, 𝜏)
𝑇

𝛷00
𝑠𝐴(𝑠, 𝑡)

𝑆
𝑑𝑡𝑑𝑠,   (4.1.21) 

ℎ𝑗𝑘
𝑓
= ∫ ∫ 𝑓(𝑠, 𝜏)

𝑇
𝛹𝑗𝑘
𝑠𝐻(𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠,   (4.1.22) 

𝑏𝑗𝑘
𝑓
= ∫ ∫ 𝑓(𝑠, 𝜏)

𝑇
𝛹𝑗𝑘
𝑠𝐵(𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠,   (4.1.23) 

𝑑𝑗1𝑘𝑗2𝑛
𝑓

= ∫ ∫ 𝑓(𝑠, 𝜏)
𝑇

𝛹𝑗1𝑘𝑗2𝑛
𝑠𝐷 (𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠.  (4.1.24) 

Подставим выражения (4.1.11) и (4.1.20) в уравнение (4.1.4), с учетом (4.1.7)-(4.1.10) 

и (4.1.16)-(4.1.19) имеем: 

𝑎𝑡𝐴𝑡[𝜑00
𝑡 (𝑡)]𝜑00

𝑡 (𝜏) +∑∑ ∑{ℎ𝑗𝑘𝑛
𝑡 𝐴𝑡[𝜑𝑗𝑘

𝑡 (𝑡)]𝜓𝑗𝑛
𝑡 (𝜏) +

2𝑗−1

𝑛=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

 

+𝑏𝑗𝑘𝑛
𝑡 𝐴𝑡[𝜓𝑗𝑘

𝑡 (𝑡)]𝜑𝑗𝑛
𝑡 (𝜏) + 𝑑𝑗𝑘𝑛

𝑡 𝐴𝑡[𝜓𝑗𝑘
𝑡 (𝑡)]𝜓𝑗𝑛

𝑡 (𝜏)} = 

= ⁡⁡𝑎𝑓𝜑00
𝑠 (𝑠)𝜑00

𝑡 (𝜏) + ∑ ∑ ℎ𝑗𝑘
𝑓
𝜑00
𝑠 (𝑠)𝜓𝑗𝑘

𝑡 (𝜏) +2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0            (4.1.25) 

+∑∑ 𝑏𝑗𝑘
𝑓
𝜓𝑗𝑘
𝑠 (𝑠)𝜑00

𝑡 (𝜏)

2𝑗−1

𝑘=0

𝐽𝑠

𝑗=0

+ ∑ ∑ ∑ ∑ 𝑑𝑗1𝑘𝑗2𝑛
𝑓

𝜓𝑗1𝑘
𝑠 (𝑠)𝜓𝑗2𝑛

𝑡 (𝜏)

2𝑗2−1

𝑛=0

𝐽𝑡

𝑗2=0

2𝑗1−1

𝑘=0

𝐽𝑠

𝑗1=0

⁡. 

 Пусть 𝐴𝑡[𝜑𝑗𝑘
𝑡 (𝑡)] и 𝐴𝑡[𝜓𝑗𝑘

𝑡 (𝑡)] (j=0,1,…,⁡𝐽𝑡; k=0,1,…,⁡2𝑗 − 1) – некоторые 

функции, зависящие от переменной s и принадлежащие пространству 𝐿2(𝑆). Тогда 

эти функции имеют сходящиеся ВЛР: 

𝐴𝑡[𝜑𝑗𝑘
𝑡 (𝑡)] = 𝑢𝑗𝑘(𝑠) = 𝑎𝑗𝑘

𝑢 𝜑00
𝑠 (𝑠) + ∑ ∑ 𝑑𝑗𝑘𝑖𝑛

𝑢 𝜓𝑖𝑛
𝑠 (𝑠)2𝑖−1

𝑛=0
𝐽𝑠

𝑖=0 ,  (4.1.26) 

𝐴𝑡[𝜓𝑗𝑘
𝑡 (𝑡)] = 𝑣𝑗𝑘(𝑠) = 𝑎𝑗𝑘

𝑣 𝜑00
𝑠 (𝑠) + ∑ ∑ 𝑑𝑗𝑘𝑖𝑛

𝑣 𝜓𝑖𝑛
𝑠 (𝑠)2𝑖−1

𝑛=0
𝐽𝑠

𝑖=0 ,  (4.1.27) 

где  
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𝑎𝑗𝑘
𝑢 = ∫ 𝑢𝑗𝑘(𝑠)𝑆

𝜑00
𝑠 (𝑠)𝑑𝑠,    (4.1.28) 

𝑑𝑗𝑘𝑖𝑛
𝑢 = ∫ 𝑢𝑗𝑘(𝑠)𝑆

𝜓𝑖𝑛
𝑠 (𝑠)𝑑𝑠,    (4.1.29) 

𝑎𝑗𝑘
𝑣 = ∫ 𝑣𝑗𝑘(𝑠)𝑆

𝜑00
𝑠 (𝑠)𝑑𝑠,    (4.1.30) 

𝑑𝑗𝑘𝑖𝑛
𝑣 = ∫ 𝑣𝑗𝑘(𝑠)𝑆

𝜓𝑖𝑛
𝑠 (𝑠)𝑑𝑠.    (4.1.31) 

С учетом (4.1.26) и (4.1.27) уравнение (4.1.25) примет вид: 

𝑎𝑡𝑢00(𝑠)𝜑00
𝑡 (𝜏) +∑∑ ∑{ℎ𝑗𝑘𝑛

𝑡 𝑢𝑗𝑘(𝑠)𝜓𝑗𝑛
𝑡 (𝜏) +

2𝑗−1

𝑛=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

 

+𝑏𝑗𝑘𝑛
𝑡 𝑣𝑗𝑘(𝑠)𝜑𝑗𝑛

𝑡 (𝜏) + 𝑑𝑗𝑘𝑛
𝑡 𝑣𝑗𝑘(𝑠)𝜓𝑗𝑛

𝑡 (𝜏)} = 

= ⁡⁡𝑎𝑓𝜑00
𝑠 (𝑠)𝜑00

𝑡 (𝜏) + ∑ ∑ ℎ𝑗𝑘
𝑓
𝜑00
𝑠 (𝑠)𝜓𝑗𝑘

𝑡 (𝜏) +2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0               (4.1.32) 

+∑∑ 𝑏𝑗𝑘
𝑓
𝜓𝑗𝑘
𝑠 (𝑠)𝜑00

𝑡 (𝜏)

2𝑗−1

𝑘=0

𝐽𝑠

𝑗=0

+ ∑ ∑ ∑ ∑ 𝑑𝑗1𝑘𝑗2𝑛
𝑓

𝜓𝑗1𝑘
𝑠 (𝑠)𝜓𝑗2𝑛

𝑡 (𝜏)

2𝑗2−1

𝑛=0

𝐽𝑡

𝑗2=0

2𝑗1−1

𝑘=0

𝐽𝑠

𝑗1=0

⁡. 

 Проецируя (4.1.32) на базисные функции 𝜑𝑗𝑛
𝑡 (𝜏) (j=0,1,…,⁡𝐽𝑡;n=0,1,…,⁡2𝑗 − 1)  

имеем: 

𝑎𝑡𝑢00(𝑠) + 𝑏000
𝑡 𝑣00(𝑠) = ⁡⁡𝑎

𝑓𝜑00
𝑠 (𝑠) + ∑ ∑ 𝑏𝑗𝑘

𝑓2𝑗−1
𝑘=0

𝐽𝑠

𝑗=0 𝜓𝑗𝑘
𝑠 (𝑠),                (4.1.33) 

∑ 𝑏𝑗𝑘𝑛
𝑡2𝑗−1

𝑘=0 𝑣𝑗𝑘(𝑠) = 0⁡(для⁡j = 1,… , 𝐽
𝑡; ⁡n = 0,1,… , 2𝑗 − 1)          (4.1.34). 

 Из (4.1.34) следует, что 

 𝑣𝑗𝑘(𝑠) = 0⁡для⁡𝑗 = 1,… , 𝐽
𝑡; ⁡𝑘 = 0,1,… , 2𝑗 − 1.    (4.1.35) 

Действительно, если j=1, то имеем замкнутую систему из двух линейных уравнений 

для определения 𝑣10(𝑠)⁡и⁡ 𝑣11(𝑠): 

{
𝑏100
𝑡 𝑣10(𝑠) + 𝑏110

𝑡 𝑣11(𝑠) = 0,

𝑏101
𝑡 𝑣10(𝑠) + 𝑏111

𝑡 𝑣11(𝑠) = 0.
 

Отсюда 𝑣11(𝑠) = 0, 𝑣10(𝑠) = 0. 

Аналогично, 𝑣𝑗𝑘(𝑠) = 0 для каждого уровня разрешения j и  

𝑘 = 0,1,… , 2𝑗 − 1. 

Далее проецируем (4.1.32) на базисные функции 𝜓𝑗𝑛
𝑡 (𝜏) для j=0,1,…,⁡𝐽𝑡; 

n=0,1,…,⁡2𝑗 − 1: 
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∑ {ℎ𝑗𝑘𝑛
𝑡 𝑢𝑗𝑘(𝑠) +

2𝑗−1
𝑘=0 𝑑𝑗𝑘𝑛

𝑡 𝑣𝑗𝑘(𝑠)} = ℎ𝑗𝑛
𝑓
𝜑00
𝑠 (𝑠) + ∑ ∑ 𝑑𝑖𝑘𝑗𝑛

𝑓
𝜓𝑖𝑘
𝑠 (𝑠)2𝑖−1

𝑘=0
𝐽𝑠

𝑖=0 .      (4.1.36) 

В итоге имеем систему линейных алгебраических уравнений (4.1.33), 

(4.1.35), (4.1.36), состоящую из (𝐿𝑡 + 1) уравнений. Найдем проекции этих уравне-

ний на вейвлет базис (4.1.6). Проекция (4.1.33) на 𝜑00
𝑠 (𝑠) имеет вид: 

𝑎𝑡𝑎00
𝑢 + 𝑏000

𝑡 𝑎00
𝑣 = ⁡⁡𝑎𝑓.    (4.1.37) 

Проекция (4.1.35) на 𝜑00
𝑠 (𝑠) имеет вид: 

𝑎𝑗𝑘
𝑣 = 0⁡(⁡j = 1,… , 𝐽𝑡; ⁡k = 0,1,… , 2𝑗 − 1).   (4.1.38) 

Проекция (4.1.36) на 𝜑00
𝑠 (𝑠) имеет вид: 

∑ {ℎ𝑗𝑘𝑛
𝑡 𝑎𝑗𝑘

𝑢 +2𝑗−1
𝑘=0 𝑑𝑗𝑘𝑛

𝑡 𝑎𝑗𝑘
𝑣 } = ℎ𝑗𝑛

𝑓
⁡(⁡j = 0,… , 𝐽𝑡; ⁡n = 0,1,… , 2𝑗 − 1).  (4.1.39) 

Проекция (4.1.33) на 𝜓𝑖𝑙
𝑠 (𝑠) для ⁡i = 0,… , 𝐽𝑠; ⁡l = 0,1,… , 2𝑖 − 1 имеет вид: 

𝑎𝑡𝑑00𝑖𝑙
𝑢 + 𝑏000

𝑡 𝑑00𝑖𝑙
𝑣 = 𝑏𝑖𝑙

𝑓
.    (4.1.40) 

Проекция (4.1.35) на 𝜓𝑖𝑙
𝑠 (𝑠) для ⁡i = 0,… , 𝐽𝑠; ⁡l = 0,1,… , 2𝑖 − 1 имеет вид: 

𝑑𝑗𝑘𝑖𝑙
𝑣 = 0 (⁡j = 1,… , 𝐽𝑡; ⁡k = 0,1,… , 2𝑗 − 1).  (4.1.41) 

Проекция (4.1.36) на 𝜓𝑖𝑙
𝑠 (𝑠) для ⁡i = 0,… , 𝐽𝑠; ⁡l = 0,1,… , 2𝑖 − 1 имеет вид: 

∑ {ℎ𝑗𝑘𝑛
𝑡 𝑑𝑗𝑘𝑖𝑙

𝑢 +2𝑗−1
𝑘=0 𝑑𝑗𝑘𝑛

𝑡 𝑑𝑗𝑘𝑖𝑙
𝑣 } = 𝑑𝑖𝑙𝑗𝑛

𝑓
 (⁡j = 0,… , 𝐽𝑡; ⁡n = 0,1,… , 2𝑗 − 1).⁡⁡(4.1.42) 

Учитывая (4.1.38) и (4.1.41), имеем следующую СЛАУ, состоящую из 

(𝐿𝑡 + 1)𝐿𝑠 уравнений для определения неизвестных коэффициентов (4.1.28) – 

(4.1.31) ВЛР искомых функций (4.1.26) и (4.1.27): 

{
 
 
 
 

 
 
 
 

𝑎𝑡𝑎00
𝑢 + 𝑏000

𝑡 𝑎00
𝑣 = ⁡⁡𝑎𝑓 ,

ℎ000
𝑡 𝑎00

𝑢 + 𝑑000
𝑡 𝑎00

𝑣 = ℎ00
𝑓
,

∑ ℎ𝑗𝑘𝑛
𝑡 𝑎𝑗𝑘

𝑢 = ℎ𝑗𝑛
𝑓
(⁡j = 1,… , 𝐽𝑡; ⁡k = 0,1, … , 2𝑗 − 1),2𝑗−1

𝑘=0

𝑎𝑡𝑑00𝑖𝑙
𝑢 + 𝑏000

𝑡 𝑑00𝑖𝑙
𝑣 = 𝑏𝑖𝑙

𝑓
⁡(⁡i = 0,… , 𝐽𝑠; ⁡l = 0,1, … , 2𝑖 − 1),

ℎ000
𝑡 𝑑00𝑖𝑙

𝑢 + 𝑑000
𝑡 𝑑00𝑖𝑙

𝑣 = 𝑑𝑖𝑙00
𝑓
⁡(⁡i = 0,… , 𝐽𝑠; ⁡l = 0,1, … , 2𝑖 − 1),

∑ ℎ𝑗𝑘𝑛
𝑡 𝑑𝑗𝑘𝑖𝑙

𝑢2𝑗−1
𝑘=0 = 𝑑𝑖𝑙𝑗𝑛

𝑓
(i = 1,… , 𝐽𝑠; ⁡l = 0,1, … , 2𝑖 − 1; j = 1,… , 𝐽𝑡; ⁡n = 0,1, … , 2𝑗 − 1)

      (4.1.43) 

Из СЛАУ (4.1.43) можно выделить несколько замкнутых подсистем. Решая 

систему из двух линейных уравнений относительно 𝑎00
𝑢 ⁡и 𝑎00

𝑣   

{
𝑎𝑡𝑎00

𝑢 + 𝑏000
𝑡 𝑎00

𝑣 = ⁡⁡𝑎𝑓 ,

ℎ000
𝑡 𝑎00

𝑢 + 𝑑000
𝑡 𝑎00

𝑣 = ℎ00
𝑓
,
 

имеем 
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𝑎00
𝑣 =

ℎ00
𝑓
𝑎𝑡−ℎ000

𝑡 ⁡⁡𝑎𝑓

𝑑000
𝑡 𝑎𝑡−𝑏000

𝑡 ℎ000
𝑡 ,        (4.1.44) 

𝑎00
𝑢 =

⁡⁡𝑎𝑓−𝑏000
𝑡 𝑎00

𝑣

𝑎𝑡
=

⁡⁡𝑎𝑓(𝑑000
𝑡 𝑎𝑡−𝑏000

𝑡 )−𝑏000
𝑡 (ℎ00

𝑓
𝑎𝑡−ℎ000

𝑡 ⁡⁡𝑎𝑓)

𝑎𝑡(𝑑000
𝑡 𝑎𝑡−𝑏000

𝑡 ℎ000
𝑡 )

.   (4.1.45) 

Решая систему из двух линейных уравнений относительно 𝑑00𝑖𝑙
𝑢 ⁡и 𝑑00𝑖𝑙

𝑣  

(i = 0,1, … , 𝐽𝑠; ⁡l = 0,1, … , 2𝑖 − 1) 

{
𝑎𝑡𝑑00𝑖𝑙

𝑢 + 𝑏000
𝑡 𝑑00𝑖𝑙

𝑣 = 𝑏𝑖𝑙
𝑓

ℎ000
𝑡 𝑑00𝑖𝑙

𝑢 + 𝑑000
𝑡 𝑑00𝑖𝑙

𝑣 = 𝑑𝑖𝑙00
𝑓
,
, 

имеем 

𝑑00𝑖𝑙
𝑣 =

ℎ000
𝑡 𝑏𝑖𝑙

𝑓
−𝑎𝑡𝑑𝑖𝑙00

𝑓

ℎ000
𝑡 𝑏000

𝑡 −𝑎𝑡𝑑000
𝑡 ,         (4.1.46) 

𝑑00𝑖𝑙
𝑢 =

𝑑𝑖𝑙00
𝑓

−𝑑000
𝑡 𝑑00𝑖𝑙

𝑣

ℎ000
𝑡 =

𝑑𝑖𝑙00
𝑓

(ℎ000
𝑡 𝑏000

𝑡 −𝑑000
𝑡 )−𝑑000

𝑡 (ℎ000
𝑡 𝑏𝑖𝑙

𝑓
−𝑎𝑡𝑑𝑖𝑙00

𝑓
)

ℎ000
𝑡 (ℎ000

𝑡 𝑏000
𝑡 −𝑎𝑡𝑑000

𝑡 )
.      (4.1.47) 

Для определения 𝑎𝑗𝑘⁡⁡
𝑢 (j = 1,… , 𝐽𝑡; ⁡k = 0,1,… , 2𝑗 − 1) необходимо решить 

СЛАУ 

∑ ℎ𝑗𝑘𝑛
𝑡 𝑎𝑗𝑘

𝑢 = ℎ𝑗𝑛
𝑓
(⁡j = 1,… , 𝐽𝑡; ⁡k = 0,1,… , 2𝑗 − 1).2𝑗−1

𝑘=0    (4.1.48) 

Для определения 𝑑𝑗𝑘𝑖𝑙
𝑢  (i = 1,… , 𝐽𝑠; ⁡l = 0,1, … , 2𝑖 − 1; j = 1,… , 𝐽𝑡; 

 n = 0,1, … , 2𝑗 − 1)⁡⁡необходимо решить СЛАУ 

∑ ℎ𝑗𝑘𝑛
𝑡 𝑑𝑗𝑘𝑖𝑙

𝑢2𝑗−1
𝑘=0 = 𝑑𝑖𝑙𝑗𝑛

𝑓
(i = 1,… , 𝐽𝑠; ⁡l = 0,1, … , 2𝑖 − 1; j = 1, … , 𝐽𝑡; ⁡n = 0,1, … , 2𝑗 − 1) (4.1.49) 

 Таким образом, получено следующее утверждение. 

Теорема 4.1.1.  

Пусть выполняются следующие условия: 

1) в пространстве 𝐿2(𝑇), 𝑇 = [𝑡0, 𝑡1], задан ортонормированный вейвлет 

базис вида (4.1.5), порожденный вейвлетами с конечными носителями; 

2) в пространстве 𝐿2(𝑆), 𝑆 = [𝑠0, 𝑠1], задан ортонормированный вейвлет 

базис вида (4.1.6), порожденный вейвлетами с конечными носителями; 

3) в пространстве 𝐿2(𝑇 × 𝑇) определен двумерный ортонормированный 

базис вида (4.1.7) – (4.1.10); 

4) в пространстве 𝐿2(𝑆 × 𝑇) определен двумерный ортонормированный 

базис вида (4.1.16) – (4.1.19); 

5) функция f(s,t)∈ 𝐿2(𝑆 × 𝑇) и имеет ВЛР (4.1.20); 
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6) функция 𝐾𝑍(𝑡, ) ∈ 𝐿
2(𝑇 × 𝑇) и имеет ВЛР (4.1.11); 

7) результат воздействия неизвестного линейного оператора 𝐴𝑡 на ба-

зисные вейвлет функции вида (4.1.5) представляет собой функции, принадлежащие 

пространству 𝐿2(𝑆). 

Тогда с.к. оптимальный линейный оператор 𝐴𝑡, который является решени-

ем уравнения (4.1.4), определяется посредством набора формальных правил: 

𝐴𝑡[𝜑𝑗𝑘
𝑡 (𝑡)] = 𝑢𝑗𝑘(𝑠) (𝑗 = 0,1, … , 𝐽𝑡; ⁡𝑘 = 0,1, … , 2𝑗 − 1), 

𝐴𝑡[𝜓00
𝑡 (𝑡)] = 𝑣00(𝑠),            (4.1.50) 

𝐴𝑡[𝜓𝑗𝑘
𝑡 (𝑡)] = 0⁡(𝑗 = 1, … , 𝐽𝑡; ⁡𝑘 = 0,1, … , 2𝑗 − 1), 

где 

1)  𝑢00(𝑠) = 𝑎00
𝑢 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑00𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 , параметры 𝑎00
𝑢  и 𝑑00𝑖𝑛

𝑢  

вычисляются по формулам (4.1.45) и (4.1.47) соответственно; 

2)  𝑣00(𝑠) = 𝑎00
𝑣 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑00𝑖𝑛
𝑣 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 , параметры 𝑎00
𝑣  и 𝑑00𝑖𝑛

𝑣  

вычисляются по формулам (4.1.44) и (4.1.46) соответственно; 

3) 𝑢𝑗𝑘(𝑠) = 𝑎𝑗𝑘
𝑢 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑𝑗𝑘𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0  

 (𝑗 = 1,… , 𝐽𝑡; ⁡𝑘 = 0,1,… , 2𝑗 − 1), параметры 𝑎𝑗𝑘
𝑢  являются решением СЛАУ 

(4.1.48), 𝑑𝑗𝑘𝑖𝑛
𝑢  (𝑖 = 1,… , 𝐽𝑠; ⁡𝑛 = 0,1,… , 2𝑖 − 1; 𝑗 = 1,… , 𝐽𝑡; 𝑘 = 0,1,… , 2𝑗 − 1)⁡⁡ – ре-

шением СЛАУ (4.1.49). 

 

Замечание. Чтобы представить результат воздействия линейного оператора 

𝐴𝑡, определенного теоремой 4.1.1, на детерминированную функцию, необходимо 

выполнить следующие действия. Пусть (t)∈ 𝐿2(𝑅). Тогда (t) раскладывается в 

сходящийся вейвлет ряд: 

(𝑡) = 𝑎
00
𝑡 (𝑡) + ∑ ∑ 𝑑𝑗𝑘

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑡 (𝑡). 

Согласно теореме 4.1.1, 

𝐴𝑡[(𝑡)] = 𝐴𝑡 [𝑎


00
𝑡 (𝑡) + ∑ ∑ 𝑑𝑗𝑘

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑡 (𝑡)]= 
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= 𝑎𝐴𝑡⁡[00
𝑡 (𝑡)] +∑∑ 𝑑𝑗𝑘



2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

𝐴𝑡[𝑗𝑘
𝑡 (𝑡)] = 𝑎𝑢00(𝑡) + 𝑑00


𝑣00(𝑡) = 

= 𝑎(𝑎00
𝑢 ⁡𝜑00

𝑠 (𝑠) +∑∑ 𝑑00𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)

2𝑖−1

𝑛=0

𝐽𝑠

𝑖=0

) + 𝑑00

(𝑎00

𝑣 𝜑00
𝑠 (𝑠) +∑∑ 𝑑00𝑖𝑛

𝑣 𝜓𝑖𝑛
𝑠 (𝑠)

2𝑖−1

𝑛=0

𝐽𝑠

𝑖=0

) = 

= (𝑎𝑎00
𝑢 +𝑑00


𝑎00
𝑣 )𝜑00

𝑠 (𝑠) +⁡∑ ∑ (𝑎𝑑00𝑖𝑛
𝑢 +2𝑖−1

𝑛=0
𝐽𝑠

𝑖=0 𝑑00

𝑑00𝑖𝑛
𝑣 )𝜓𝑖𝑛

𝑠 (𝑠)       

где параметры 𝑎00
𝑢  и 𝑑00𝑖𝑛

𝑢  вычисляются по формулам (4.1.45) и (4.1.47) соответ-

ственно, параметры 𝑎00
𝑣  и 𝑑00𝑖𝑛

𝑣   – по формулам (4.1.46) и (4.1.48) соответственно. 

4.2. Построение вейвлет с.к. оптимального линейного 

оператора в случае линейной зависимости сигнала от параметров и 

аддитивной помехи 

Пусть наблюдаемый сигнал Z(t) и сигнал W(s), подлежащий воспроизведе-

нию, можно представить в виде суммы линейной комбинации известных функций 

со случайными коэффициентами и помехи в виде некоторой случайной функции: 

𝑍(𝑡) = ∑ 𝑈𝑟
𝑁
𝑟=1 𝜉𝑟(𝑡) + 𝑋(𝑡),⁡⁡⁡𝑡 ∈ 𝑇,   (4.2.1) 

𝑊(𝑠) = ∑ 𝑈𝑟
𝑁
𝑟=1 𝜁𝑟(𝑠) + 𝑌(𝑠),⁡⁡⁡𝑠 ∈ 𝑆.   (4.2.2) 

Здесь X(t), Y(s) – случайные функции с нулевыми математическими ожиданиями, 

описывающие случайные помехи и случайные ударные воздействия; 

𝜉1, . . . , 𝜉𝑁 , 𝜁1, … , 𝜁𝑁(𝑠)⁡– заданные структурные функции, описывающие также и де-

терминированные ударные воздействия; 𝑈1, … , 𝑈𝑁 – случайные величины с нулевы-

ми математическими ожиданиями и не коррелированные со случайными функция-

ми X(t) и Y(s). 

 Требуется найти такой оператор 𝐴𝑡, чтобы СФ 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡) 

была с.к. оптимальной оценкой сигнала 𝑊(𝑠). Согласно [21], чтобы линейный опе-

ратор 𝐴𝑡 был с.к. оптимальным, необходимо и достаточно, чтобы он удовлетворял 

уравнению (4.1.2) или (4.1.3). На основании (4.2.1) и (4.2.2)  

Г𝑍(𝑡, 𝜏) = 𝑀[𝑍(𝑡)𝑍(𝜏)̅̅ ̅̅ ̅̅ ] = ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 𝜉𝑝(𝑡)𝜉𝑞(𝜏) + 𝐾𝑋(𝑡, 𝜏)⁡⁡(𝑡, 𝜏 ∈ 𝑇), (4.2.3) 
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Г𝑊𝑍(𝑠, 𝜏) = 𝑀[𝑊(𝑠)𝑍(𝜏)̅̅ ̅̅ ̅̅ ] = ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 𝜁𝑝(𝑠)𝜉𝑞(𝜏) + 𝐾𝑌𝑋(𝑠, 𝜏)⁡⁡(𝑠 ∈ 𝑆, 𝜏 ∈ 𝑇),  (4.2.4) 

где 𝐾𝑋(𝑡, 𝜏) = 𝑀[𝑋(𝑡)𝑋(𝜏)̅̅ ̅̅ ̅̅ ],  𝐾𝑌𝑋(𝑠, 𝜏) = 𝑀[𝑌(𝑠)𝑋(𝜏)̅̅ ̅̅ ̅̅ ], 𝛾𝑝𝑞 = 𝑀[𝑈𝑝𝑈𝑞̅̅̅̅ ]. 

После подстановки (4.2.3), (4.2.4) в уравнение (4.1.2) получим  

𝐴𝑡[𝐾𝑋(𝑡, 𝜏)] = 𝐾𝑌𝑋(𝑠, 𝜏) + ∑ 𝛾𝑝𝑞
𝑁
𝑝,𝑞=1 {𝜁𝑝(𝑠) − 𝐴𝑡[𝜉𝑝(𝑡)]}𝜉𝑞(𝜏). (4.2.5) 

Для решения операторного уравнения (4.2.5) применим теорему 4.1.1. Будем 

считать, что  

1) функции 𝜉1, . . . , 𝜉𝑁 ∈ 𝐿
2(𝑇)⁡и имеют ВЛР:  


𝑝
(𝑡) = 𝑎𝑝



00
𝑡 (𝑡) + ∑ ∑ 𝑑𝑝𝑗𝑘

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑡 (𝑡)⁡⁡(𝑝 = 1,… ,𝑁),  (4.2.6) 

где  

𝑎𝑝

= ∫ 

𝑝
(𝑡)

𝑇

00
𝑡 (𝑡)𝑑𝑡,      (4.2.7) 

𝑑𝑝𝑗𝑘


= ∫ 
𝑝
(𝑡)

𝑇

𝑗𝑘
𝑡 (𝑡)𝑑𝑡;     (4.2.8) 

2) функции ζ1, … , ζN(s) ∈ L
2(S) и имеют ВЛР: 

ζ𝑝(𝑡) = 𝑎𝑝
ζ

00
𝑠 (𝑠) + ∑ ∑ 𝑑𝑝𝑗𝑘

ζ2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑠 (𝑠)⁡⁡(𝑝 = 1,… ,𝑁),  (4.2.9) 

где  

𝑎𝑝
ζ
= ∫ ζ𝑝(𝑠)𝑆


00
𝑠 (𝑠)𝑑𝑠,     (4.2.10) 

𝑑𝑝𝑗𝑘
ζ

= ∫ ζ𝑝(𝑠)𝑆

𝑗𝑘
𝑠 (𝑠)𝑑𝑠;    (4.2.11) 

3) двумерная функция 𝐾𝑋(𝑡, ) ∈ 𝐿
2(𝑇 × 𝑇) и имеет ВЛР вида (4.1.11) с ко-

эффициентами (4.1.12)-(4.1.15); 

4) двумерная функция 𝐾𝑌𝑋(𝑠, ) ∈ 𝐿
2(𝑆 × 𝑇) и имеет ВЛР: 

𝐾𝑌𝑋(𝑠, ) ⁡= 𝑎
𝑠𝛷00

𝑠𝐴(𝑠, 𝜏) +∑∑ ℎ𝑗𝑘
𝑠 𝛹𝑗𝑘

𝑠𝐻(𝑠, 𝜏) +∑∑ 𝑏𝑗𝑘
𝑠 𝛹𝑗𝑘

𝑠𝐵(𝑠, 𝜏)

2𝑗−1

𝑘=0

𝐽𝑠

𝑗=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

+ 

+∑ ∑ ∑ ∑ 𝑑𝑗1𝑘𝑗2𝑛
𝑠2𝑗2−1

𝑛=0
𝐽𝑡

𝑗2=0
2𝑗1−1
𝑘=0

𝐽𝑠

𝑗1=0
 𝛹𝑗1𝑘𝑗2𝑛

𝑠𝐷 (𝑠, 𝜏),      (4.2.12) 

где  

𝑎𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇
𝛷00
𝑠𝐴(𝑠, 𝑡)

𝑆
𝑑𝑡𝑑𝑠,   (4.2.13) 

ℎ𝑗𝑘
𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇

𝛹𝑗𝑘
𝑠𝐻(𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠,   (4.2.14) 

𝑏𝑗𝑘
𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇

𝛹𝑗𝑘
𝑠𝐵(𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠,   (4.2.15) 
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𝑑𝑗1𝑘𝑗2𝑛
𝑠 = ∫ ∫ 𝐾𝑌𝑋(𝑠, )𝑇

𝛹𝑗1𝑘𝑗2𝑛
𝑠𝐷 (𝑠, 𝑡)

𝑇
𝑑𝑡𝑑𝑠;  (4.2.16) 

5) с.к. оптимальный линейный оператор 𝐴𝑡 задается набором формальных 

правил (4.1.50). 

Неизвестные коэффициенты ВЛР функций 𝑢00(𝑠), 𝑣00(𝑠), ujk(s)⁡(j =

1,… , Jt; k = 0,1,… , 2j − 1)  удовлетворяют СЛАУ вида (4.1.43): 

𝑎𝑡𝑎00
𝑢 + 𝑏000

𝑡 𝑎00
𝑣 = 𝑎𝑠 + ∑ 𝛾𝑝𝑞

𝑁
𝑝,𝑞=1 {𝑎𝑝

ζ
− 𝑎𝑝


𝑎00
𝑢 − 𝑑𝑝00


𝑎00
𝑣 } 𝑎𝑞⁡⁡⁡⁡


,  (4.2.17) 

𝑑000
𝑡 𝑎00

𝑣 + ℎ000
𝑡 𝑎00

𝑢 = ℎ00
𝑠 + ∑ 𝛾𝑝𝑞 {𝑎𝑝

ζ
− 𝑎𝑝


𝑎00
𝑢 − 𝑑𝑝00


𝑎00
𝑣 }𝑁

𝑝,𝑞=1 𝑑𝑞00

⁡⁡, (4.2.18) 

∑ ℎ𝑗𝑘𝑛
𝑡

2𝑗−1

𝑘=0

𝑎𝑗𝑘
𝑢 = ℎ𝑗𝑛

𝑠 + ∑ 𝛾𝑝𝑞

𝑁

𝑝,𝑞=1

{𝑎𝑝
𝜁
− 𝑎𝑝


𝑎00
𝑢 − 𝑑𝑝00


𝑎00
𝑣 } 𝑑𝑞𝑗𝑛


 

(𝑗 = 1,… , 𝐽𝑡; ⁡𝑛 = 0,1,… , 2𝑗 − 1),       (4.2.19) 

𝑎𝑡𝑑00𝑖𝑙
𝑢 ⁡+ 𝑏000

𝑡 𝑑00𝑖𝑙
𝑣 ⁡= 𝑏𝑖𝑙

𝑠 + ∑ 𝛾𝑝𝑞

𝑁

𝑝,𝑞=1

{𝑑𝑝𝑖𝑙
ζ
− 𝑎𝑝


𝑑00𝑖𝑙
𝑢 ⁡− 𝑑𝑝00


𝑑00𝑖𝑙
𝑣 } 𝑎𝑞


 

 (𝑖 = 0,1,… , 𝐽𝑠; ⁡𝑙 = 0,1,… , 2𝑖 − 1),            (4.2.20) 

𝑑000
𝑡 𝑑00𝑖𝑙

𝑣 + ℎ000
𝑡 𝑑00𝑖𝑙

𝑢 =⁡𝑑𝑖𝑙00
𝑠 + ∑ 𝛾𝑝𝑞

𝑁

𝑝,𝑞=1

{𝑑𝑝𝑖𝑙
ζ
− 𝑎𝑝


𝑑00𝑖𝑙
𝑢 − 𝑑𝑝00


𝑑00𝑖𝑙
𝑣 } 𝑑𝑞00


 

(𝑖 = 0,1,… , 𝐽𝑠; ⁡𝑙 = 0,1,… , 2𝑖 − 1),            (4.2.21) 

∑ ℎ𝑗𝑘𝑛
𝑡

2𝑗−1

𝑘=0

𝑑𝑗𝑘𝑖𝑙
𝑢 = 𝑑𝑖𝑙𝑗𝑛

𝑠 + ∑ 𝛾𝑝𝑞

𝑁

𝑝,𝑞=1

{𝑑𝑝𝑖𝑙
ζ
− 𝑎𝑝


𝑑00𝑖𝑙
𝑢 − 𝑑𝑝00


𝑑00𝑖𝑙
𝑣 } 𝑑𝑞𝑗𝑛


 

(𝑗 = 1,… , 𝐽𝑡; ⁡𝑛 = 0,1,… , 2𝑗 − 1; ⁡𝑖 = 0,1,… , 𝐽𝑠; ⁡𝑙 = 0,1,… , 2𝑖 − 1).  (4.2.22) 

 Качество оптимального с.к. оператора определяется с.к. оценкой [21]: 

 = 𝑀[|𝑊|2] = 𝑀[|𝑊(𝑠) −𝑊∗(𝑠)|2] = ⁡𝑀[|𝑊(𝑠) − 𝐴𝑡𝑍(𝑡)|
2] = 

=Г𝑊(s, s) −⁡𝐴𝑡Г𝑊𝑍(s, t).    (4.2.23) 

Согласно (4.2.1), (4.2.2): 

Г𝑊(s, s) = ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 
𝑞
(𝑠) + 𝐾𝑌(𝑠, 𝑠),  

Г𝑊𝑍(s, t) = ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 
𝑞
(𝑡) + 𝐾𝑌𝑋(𝑠, 𝑡).  

Отсюда 
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 = ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 
𝑞
(𝑠) + 𝐾𝑌(𝑠, 𝑠) − 𝐴𝑡 [∑ 

𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 
𝑞
(𝑡) + 𝐾𝑌𝑋(𝑠, 𝑡)] =  

= ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 
𝑞
(𝑠) + 𝐾𝑌(𝑠, 𝑠) − ∑ 

𝑝𝑞

𝑝
(𝑠)𝐴𝑡

𝑁
𝑝,𝑞=1 [

𝑞
(𝑡)] − 𝐴𝑡[⁡𝐾⁡𝑌𝑋(𝑠, 𝑡)] =  

= ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 (
𝑞
(𝑠) − 𝐴𝑡 [𝑞(𝑡)]) + 𝐾𝑌(𝑠, 𝑠) − 𝐴𝑡[⁡𝐾⁡𝑌𝑋(𝑠, 𝑡)] =  

= ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 (
𝑞
(𝑠) − 𝐴𝑡 [𝑎𝑞



00
𝑡 (𝑡) + ∑ ∑ 𝑑𝑞𝑗𝑘

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑡 (𝑡)]) +⁡  

+𝐾𝑌(𝑠, 𝑠) − 𝐴𝑡 [𝑎
𝑠𝜑00

𝑠 (𝑠)𝜑00
𝑡 (𝑡) +∑∑ ℎ𝑗𝑘

𝑠 𝜑00
𝑠 (𝑠)𝜓𝑗𝑘

𝑡 (𝑡) +∑∑ 𝑏𝑗𝑘
𝑠

2𝑗−1

𝑘=0

𝐽𝑠

𝑗=0

2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

𝜓𝑗𝑘
𝑠 (𝑠) 𝜑00

𝑡 (𝑡) + 

+∑ ∑ ∑ ∑ 𝑑𝑗1𝑘𝑗2𝑛
𝑠2𝑗2−1

𝑛=0
𝐽𝑡

𝑗2=0
2𝑗1−1
𝑘=0

𝐽𝑠

𝑗1=0
𝜓𝑗1𝑘
𝑠 (𝑠)𝜓𝑗2𝑛

𝑡 (𝑡)] = 

= ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 (
𝑞
(𝑠) − 𝑎𝑞


𝑢00(𝑠) − 𝑑𝑞00


𝑣00(𝑠))+  

+𝐾𝑌(𝑠, 𝑠) − (𝑎
𝑠𝜑00

𝑠 (𝑠)𝑢00(𝑠) + ℎ00
𝑠 𝜑00

𝑠 (𝑠)𝑣00(𝑠)+∑∑ 𝑏𝑗𝑘
𝑠

2𝑗−1

𝑘=0

𝜓𝑗𝑘
𝑠 (𝑠)𝑢00(𝑠)

𝐽𝑠

𝑗=0

) = 

= ∑ 
𝑝𝑞

𝑝
(𝑠)𝑁

𝑝,𝑞=1 (
𝑞
(𝑠) − 𝑎𝑞


𝑢00(𝑠) − 𝑑𝑞00


𝑣00(𝑠)) +  

+𝐾𝑌(𝑠, 𝑠) − ((𝑎
𝑠𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑏𝑗𝑘
𝑠2𝑗−1

𝑘=0 𝜓𝑗𝑘
𝑠 (𝑠))𝑢

00
(𝑠)𝐽𝑠

𝑗=0 + ℎ00
𝑠 𝜑00

𝑠 (𝑠)𝑣00(𝑠))   

 В итоге получено следующее утверждение. 

 Теорема 4.2.1. 

Пусть выполняются условия теоремы 4.1.1, а также: 

1) наблюдаемый сигнал 𝑍(𝑡) имеет вид (4.2.1), сигнал, подлежащий воспро-

изведению, 𝑊(𝑠) имеет вид (4.2.2); 

2) ⁡𝜉1, . . . , 𝜉𝑁 ∈ 𝐿
2(𝑇)⁡⁡⁡и имеют ВЛР (4.2.6); 

3) 𝜁1, … , 𝜁𝑁(𝑠) ∈ 𝐿
2(𝑆) и имеют ВЛР (4.2.9); 

4) 𝐾𝑋(𝑡1, 𝑡2) ∈ 𝐿
2(𝑇 × 𝑇) и имеет ВЛР вида (4.1.11); 

5) 𝐾𝑌𝑋(𝑠, 𝑡) ∈ 𝐿
2(𝑆 × 𝑇) и имеет ВЛР  (4.2.12). 

Тогда с.к. оптимальный линейный оператор 𝐴𝑡, который определяется 

уравнением (4.2.5), задается набором формальных правил: 

𝐴𝑡[𝜑𝑗𝑘
𝑡 (𝑡)] = 𝑢𝑗𝑘(𝑠) (𝑗 = 0,1,… , 𝐽

𝑡; ⁡𝑘 = 0,1,… , 2𝑗 − 1), 

𝐴𝑡[𝜓00
𝑡 (𝑡)] = 𝑣00(𝑠),               (4.2.24) 

𝐴𝑡[𝜓𝑗𝑘
𝑡 (𝑡)] = 0⁡(𝑗 = 1,… , 𝐽𝑡; ⁡𝑘 = 0,1,… , 2𝑗 − 1), 
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где 

 𝑢00(𝑠) = 𝑎00
𝑢 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑00𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 ; 

𝑣00(𝑠) = 𝑎00
𝑣 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑00𝑖𝑛
𝑣 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 ; 

𝑢𝑗𝑘(𝑠) = 𝑎𝑗𝑘
𝑢 𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑑𝑗𝑘𝑖𝑛
𝑢 𝜓𝑖𝑛

𝑠 (𝑠)2𝑖−1
𝑛=0

𝐽𝑠

𝑖=0 (𝑗 = 1,… , 𝐽𝑡; ⁡𝑘 = 0,1, … , 2𝑗 − 1); 

а параметры 𝑎𝑗𝑘
𝑢 , 𝑑𝑗𝑘𝑖𝑛

𝑢 ⁡⁡, 𝑎00
𝑢 , 𝑑00𝑖𝑛

𝑢 , 𝑎00
𝑣 , 𝑑00𝑖𝑛

𝑣 ⁡ (𝑖 = 0,… , 𝐽𝑠; ⁡𝑛 = 0,1, … , 2𝑖 − 1; 𝑗 =

1,… , 𝐽𝑡; ⁡𝑘 = 0,1,… , 2𝑗 − 1)⁡определяются СЛАУ (4.2.17) – (4.2.22). 

Качество с.к. оптимального линейного оператора 𝐴𝑡 определяется с.к. 

оценкой: 

 = ∑ 
𝑝𝑞

𝑝
(𝑠)

𝑁

𝑝,𝑞=1

(
𝑞
(𝑠) − 𝑎𝑞


𝑢00(𝑠) − 𝑑𝑞00


𝑣00(𝑠)) + 

+𝐾𝑌(𝑠, 𝑠) − ((𝑎
𝑠𝜑00

𝑠 (𝑠) + ∑ ∑ 𝑏𝑗𝑘
𝑠2𝑗−1

𝑘=0 𝜓𝑗𝑘
𝑠 (𝑠))𝑢

00
(𝑠)𝐽𝑠

𝑗=0 + ℎ00
𝑠 𝜑00

𝑠 (𝑠)𝑣00(𝑠)) (4.2.25) 

 

Следствие. Пусть выполнены условия теоремы 4.2.1 и СФ X(t) представле-

на в виде ВЛКР в соответствие с теоремой 2.1.5. Тогда с.к. оптимальная оценка 

𝑊∗(𝑠) сигнала W(s) вычисляется по формуле 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡) =∑𝑈𝑟(𝑎𝑟

𝑢00(𝑠) + 𝑑𝑟00


𝑣00(𝑠))

𝑁

𝑟=1

+ 

+∑ 𝑉(𝑑00
𝑥𝐿𝑡

=1 𝑣00(𝑠) + ∑ ∑ 𝑎𝑗𝑘
𝑥 𝑢𝑗𝑘(𝑠))

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 .  (4.2.26) 

Доказательство. Действительно, 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡) = 𝐴𝑡 [∑𝑈𝑟

𝑁

𝑟=1

𝜉𝑟(𝑡) + 𝑋(𝑡)] = 

= 𝐴𝑡 [∑𝑈𝑟 (𝑎𝑟


00
𝑡 (𝑡) +∑∑ 𝑑𝑟𝑗𝑘



2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0


𝑗𝑘
𝑡 (𝑡))

𝑁

𝑟=1

+∑𝑉

𝐿𝑡

=1

𝑥(𝑡)] = 

=∑𝑈𝑟 (𝑎𝑟

𝐴𝑡[00

𝑡 (𝑡)] +∑∑ 𝑑𝑟𝑗𝑘


2𝑗−1

𝑘=0

𝐽𝑡

𝑗=0

𝐴𝑡[𝑗𝑘
𝑡 (𝑡)])

𝑁

𝑟=1

+∑𝑉𝐴𝑡[

𝐿𝑡

=1

𝑥(𝑡)] = 

=∑ 𝑈𝑟(𝑎𝑟

𝑢00(𝑠) + 𝑑𝑟00


𝑣00(𝑠))

𝑁
𝑟=1 ++∑ 𝑉𝐴𝑡[

𝐿𝑡
=1 ∑ ∑ (𝑎𝑗𝑘

𝑥 
𝑗𝑘
𝑡 (𝑡) + 𝑑𝑗𝑘

𝑥 
𝑗𝑘
𝑡 (𝑡))] =2𝑗−1

𝑘=0
𝐽𝑡

𝑗=0  
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=∑ 𝑈𝑟(𝑎𝑟

𝑢00(𝑠) + 𝑑𝑟00


𝑣00(𝑠))

𝑁
𝑟=1 ++∑ 𝑉

𝐿𝑡
=1 ∑ ∑ (𝑎𝑗𝑘

𝑥 𝐴𝑡[𝑗𝑘
𝑡 (𝑡)] +2𝑗−1

𝑘=0
𝐽𝑡

𝑗=0

+𝑑𝑗𝑘
𝑥 𝐴𝑡[𝑗𝑘

𝑡 (𝑡)]) =∑ 𝑈𝑟(𝑎𝑟

𝑢00(𝑠) + 𝑑𝑟00


𝑣00(𝑠))

𝑁
𝑟=1 + 

+∑ 𝑉(𝑑00
𝑥𝐿𝑡

=1 𝑣00(𝑠) + +∑ ∑ 𝑎𝑗𝑘
𝑥 𝑢𝑗𝑘(𝑠))

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 . 

Утверждение доказано. 

Следствием теоремы 4.2.1 являются два алгоритма.  

Алгоритм 4.2.1.1. Построение с.к. оптимального линейного оператора 𝐴𝑡 и 

вычисление с.к. оценки  качества оператора 𝐴𝑡 . 

1. Задание вейвлет базисов (4.1.5), (4.1.6), (4.1.7)-(4.1.10), (4.1.16)-(4.1.19). 

2. Вейвлет разложение функций 𝜉1, . . . , 𝜉𝑁 ∈ 𝐿
2(𝑇) по базису (4.1.5) в виде 

(4.2.6), функций 𝜁1, … , 𝜁𝑁(𝑠) ∈ 𝐿
2(𝑆) по базису (4.1.6) в виде (4.2.9), функции  

𝐾𝑋(𝑡, ) ∈ 𝐿
2(𝑇 × 𝑇) по базису (4.1.7)-(4.1.10) в виде (4.1.11), функции 𝐾𝑌𝑋(𝑠, ) ∈

𝐿2(𝑆 × 𝑇)⁡по базису (4.1.16)-(4.1.19) в виде (4.2.12). 

3. Составление и решение СЛАУ (4.2.17)–(4.2.22) относительно 𝑎𝑗𝑘
𝑢 , 𝑑𝑗𝑘𝑖𝑛

𝑢 , 

𝑎00
𝑢 , 𝑑00𝑖𝑛

𝑢  𝑎00
𝑣 , 𝑑00𝑖𝑛

𝑣 ⁡(𝑖 = 0,… , 𝐽𝑠; ⁡𝑛 = 0,1,… , 2𝑖 − 1; 𝑗 = 1,… , 𝐽𝑡; ⁡𝑘 = 0,1,… , 2𝑗 − 1)⁡. 

4. Задание набора формальных правил (4.2.24), которыми  определяется 

с.к. оптимальный линейный оператор 𝐴𝑡. 

5. Вычисление с.к. оценки  по формуле (4.2.25) для определения качества 

с.к. оптимального линейного оператора 𝐴𝑡. 

Алгоритм 4.2.1.2. Построение с.к. оптимальной оценки 𝑊∗(𝑠) сигнала W(s). 

1. Вейвлет разложение функций 𝜉1, . . . , 𝜉𝑁 ∈ 𝐿
2(𝑇) в виде (4.2.6). 

2. Выполнение алгоритма 2.1.5 для вейвлет канонического разложения СФ 

X(t) в виде (2.1.39). 

3. Вычисление с.к. оптимальной оценки W∗(s) сигнала W(s) по формуле 

(4.2.26). 
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4.3. Вейвлет модификация фильтра Калмана – Бьюси  

На практике часто возникают задачи оценивания состояния системы по ре-

зультатам измерений, которые всегда сопровождаются ошибками. Рассмотрим за-

дачу оценивания вектора состояния УдСтС, описываемой линейными нестационар-

ными стохастическими дифференциальными уравнениями Ито, в любой момент 

времени 𝑡 > 𝑡0 по результатам непрерывного наблюдения стохастического процес-

са, который также определяется линейными нестационарными стохастическими 

дифференциальными уравнениями Ито, на отрезке времени [𝑡0, 𝑡]. Задача в такой 

постановке называется задачей фильтрации. Критерием оптимальности служит 

критерий мимнимума среднего квадрата ошибки. 

Для линейной с.к. оптимальной обработки информации в линейных неста-

ционарных дифференциальных СтС широкое распространение получил дифферен-

циальный фильтр Калмана – Бьюси (ФКБ). В его основе применительно к УдСтС 

лежит следующая теорема [87]. 

Теорема 4.3.1.  

Пусть нестационарная дифференциальная СтС описывается уравнениями 

на отрезке [𝑡0, 𝑇]: 

𝑋̇𝑡 = 𝑎0𝑡
уд
+ 𝑎1

уд
𝑋𝑡 + 𝑉1

уд
,     (4.3.1) 

𝑍𝑡 = 𝑌̇𝑡 = 𝑏1 𝑋𝑡 + 𝑉2 .     (4.3.2) 

Здесь 𝑋𝑡, 𝑌𝑡 – векторы состояния и наблюдения системы, а 𝑉1
уд
= 𝑉1 ⁡и⁡𝑉2⁡– незави-

симые белые шумы (в общем случае негауссовские) с матрицами интенсивностей 

1𝑡
уд

 и 2. 

 Тогда в случае невырожденности шумов в наблюдениях (|𝑑𝑒𝑡2| ≠ 0) урав-

нения с.к. оптимального несмещенного дифференциального фильтра имеют вид: 

𝑋̇̂𝑡 = 𝑎0𝑡
уд
+ 𝑎1

уд
𝑋̂𝑡 + 𝛽𝑡(𝑍𝑡 − 𝑏1𝑋̂𝑡), 𝑋̂(𝑡0) = 𝑋̂0,  (4.3.3) 

𝛽𝑡 = 𝑅𝑡𝑏1
𝑇2

−1,       (4.3.4) 

𝑅̇𝑡 = 𝑎1𝑅𝑡 + 𝑅𝑡𝑎1
𝑇 + 1𝑡

уд
− 𝛽𝑡2𝛽𝑡

𝑇 ,⁡⁡⁡⁡⁡𝑅(𝑡0) = 𝑅0.  (4.3.5) 

Здесь 𝑋̂𝑡 – с.к. оценка 𝑋𝑡, 𝑅𝑡 – ковариационная матрица ошибки фильтрации, 𝛽𝑡 – 

матричный коэффициент усиления. Для вычисления 𝑅𝑡 и 𝛽𝑡 не требуются результа-
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ты измерений, и они вычисляются заранее. В этих условиях уравнение (4.3.3) явля-

ется линейным. 

 Применяя метод вейвлетов Хаара–Галеркина для решения уравнения (4.3.3), 

получим уравнения для вейвлет фильтра Калмана – Бьюси (ВЛФКБ). Выполним в 

(4.3.3) для 𝑡 ∈ [𝑡0, 𝑇] замену переменных: 

𝑡̅ =
𝑡−𝑡0

𝑇−𝑡0
, 𝑡̅ ∈ [0,1],⁡⁡      (4.3.6) 

В результате получим: 

𝑋̂̅′(𝑡̅) = 𝐴̅0𝑡̅ + 𝐴̅𝑡̅𝑋̂̅(𝑡̅), 𝑋̂̅(0) = 𝑋̂0,    (4.3.7) 

𝑋̂̅(𝑡̅) = 𝑋̂((𝑇 − 𝑡0)𝑡̅ + 𝑡0), 𝑋̂̅(0) = 𝑋̂0,   (4.3.8) 

𝐴̅0(𝑡̅) = (𝑇 − 𝑡0)[𝑎0𝑡
уд
((𝑇 − 𝑡0)𝑡̅ + 𝑡0) + 𝛽𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)𝑍𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)], (4.3.9) 

𝐴̅(𝑡̅) = (𝑇 − 𝑡0)[𝑎1 − 𝛽𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)𝑏1].  (4.3.10) 

Здесь штрих – дифференцирование по безразмерному времени. В дальнейшем в ин-

дексах зависимость от безразмерного времени опускается.  

 Для каждой составляющей 𝑋̂̅ℎ(ℎ = 1,2,… , 𝑝) вектора 𝑋̂̅(𝑡̅)⁡уравнение (4.3.7) 

дает 

𝑋̂̅ℎ
′ = 𝐴̅ℎ0 + ∑ 𝐴̅ℎ𝑘

𝑝
𝑘=1 𝑋̂̅𝑘 .    (4.3.11) 

Будем считать, что 𝑋̂̅ℎ
′ , 𝑋̂̅ℎ, 𝐴̅ℎ𝑘, 𝐴̅ℎ0 (ℎ, 𝑘 = 1,2,… , 𝑝) принадлежат пространству 

𝐿2[0,1]. Следуя разделу 3.1, введем базис вейвлетов Хаара 𝑤𝑖 и интегралов 𝑝𝑖 от 

вейвлетов Хаара. Разложим производную 𝑋̂̅ℎ
′  в вейвлет ряд Хаара: 

𝑋̂̅ℎ
′ = ∑ 𝑐ℎ𝑖

𝐿
𝑖=1 𝑤𝑖,       (4.3.12) 

𝑐ℎ𝑖 = ∫ 𝑋̂̅ℎ
′1

0
𝑤𝑖𝑑.      (4.3.13) 

Тогда решение (4.3.11) относительно 𝑋̂̅ℎ можно представить в виде 

𝑋̂̅ℎ = ∑ 𝑐ℎ𝑖
𝐿
𝑖=1 𝑝𝑖 + 𝑋̂0ℎ .      (4.3.14) 

После подстановки (4.3.12), (4.3.14) в (4.3.11) получим соотношения для определе-

ния 𝑐ℎ𝑖: 

∑ 𝑐ℎ𝑖
𝐿
𝑖=1 𝑤𝑖 = 𝐴̅ℎ0 + ∑ 𝐴̅ℎ𝑘

𝑝
𝑘=1 (∑ 𝑐ℎ𝑖

𝐿
𝑖=1 𝑝𝑖 + 𝑋̂0ℎ).  (4.3.15) 

Проецируя (4.3.15) на базис 𝑤𝑖 и учитывая ортонормированность 𝑤𝑖 , приходим к 

(𝐿 × 𝑝)⁡– мерной СЛАУ: 
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𝑐ℎ𝑠 = ∑ ∑ 𝑐ℎ𝑖
𝐿
𝑖=1

𝑝
𝑘=1 (𝐴̅ℎ𝑘𝑝𝑖 , 𝑤𝑠) + 𝑋̂0ℎ ∑ (𝐴̅ℎ𝑘, 𝑤𝑠)

𝐿
𝑖=1 + (𝐴ℎ0, 𝑤𝑠)  

⁡(𝑠 = 1,2,… , 𝐿; ℎ = 1,2,… , 𝑝).     (4.3.16) 

Далее представим 𝐴̅ℎ𝑘𝑝𝑖, 𝐴̅ℎ𝑘, 𝐴ℎ0 в виде сходящихся рядов по базису Хаара:  

𝐴̅ℎ𝑘𝑝𝑖 = ∑ 𝑔𝑗
ℎ𝑘𝑖𝑤𝑗

𝐿
𝑗=1 ,⁡⁡⁡𝐴̅ℎ𝑘 = ∑ 𝑞𝑗

ℎ𝑘𝐿
𝑗=1 𝑤𝑗 ,⁡⁡⁡𝐴̅ℎ0 = ∑ 

𝑗
ℎ𝐿

𝑗=1 𝑤𝑗 ,   (4.3.17) 

где 𝑔𝑗
ℎ𝑘𝑖 = (𝐴̅ℎ𝑘𝑝𝑖 , 𝑤𝑗) = ∫ 𝐴̅ℎ𝑘𝑝𝑖

1

0
𝑤𝑗𝑑; 𝑞𝑗

ℎ𝑘 = (𝐴̅ℎ𝑘, 𝑤𝑗) = ∫ 𝐴̅ℎ𝑘
1

0
𝑤𝑗𝑑; 


𝑗
ℎ = (𝐴ℎ0, 𝑤𝑗) = ∫ 𝐴̅ℎ0

1

0

𝑤𝑗𝑑. 

В результате СЛАУ (4.4.16) примет следующий окончательный вид: 

𝑐ℎ𝑠 = ∑ ∑ 𝑐ℎ𝑖
𝐿
𝑖=1

𝑝
𝑘=1 𝑔𝑠

ℎ𝑘𝑖 + 𝑋̂0ℎ ∑ 𝑞𝑠
ℎ𝑘𝐿

𝑖=1 + 
𝑠
ℎ ⁡⁡⁡(𝑠 = 1,2,… , 𝐿; ⁡ℎ = 1,2,… , 𝑝). (4.3.18) 

Таким образом, получен следующий результат. 

 Теорема 4.3.2.  

Пусть выполнены условия теоремы 4.3.1, а также: 

1) скалярные функции 𝑋̂̅ℎ
′ , 𝑋̂̅ℎ, 𝐴̅ℎ𝑘, 𝐴̅ℎ0 (ℎ, 𝑘 = 1,2,… , 𝑝) принадлежат 

пространству 𝐿2[0,1]; 

2) в пространстве 𝐿2[0,1] определен ортонормированный базис вейвлетов 

Хаара 𝑤𝑖 вида (3.1.12)–(3.1.14). 

Тогда вейвлет фильтр Калмана–Бьюси определяется соотношениями 

(4.3.14), где 𝑝𝑖(𝑡)⁡– известные функции вида (3.1.16), коэффициенты 𝑐ℎ𝑖 определя-

ются системой линейных алгебраических уравнений (4.3.18). 

Из теоремы 4.3.2 вытекает алгоритм 4.3.2 определения с.к. оценки  вектора 

состояния 𝑋𝑡 нестационарной дифференциальной СтС, описываемой уравнениями 

(4.3.1), (4.3.2). 

Алгоритм 4.3.2. 

1. Вычисления 𝑅𝑡 и 𝛽𝑡 согласно (4.3.5), (4.3.4). 

2. Определение в пространстве L2[0,1] ортонормированной системы 

вейвлетов Хаара с максимальным уровнем вейвлет разрешения J. 

3. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 

4. Задание значений наблюдаемого процесса Z(t) (𝑡 ∈ [𝑡0, 𝑇])⁡ в точках  

𝑡𝑗 = 𝑡0 + (j − 1)∆t⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝐿; 𝐿 = 2 ∙ 2
𝐽; ⁡∆t =

𝑇−𝑡0

𝐿−1
. 
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5. Составление и решение системы линейных алгебраических уравнений 

(4.3.18) для определения коэффициентов 𝑐ℎ𝑠. 

6. Вычисление с.к. оценки 𝑋̂̅ℎ для каждой составляющей вектора состояния 

𝑋̅𝑡 по формуле (4.3.14). 

7. Переход от безразмерного времени 𝑡̅ ∈ [0,1]⁡к 𝑡 ∈ [𝑡0, 𝑇] и определение 

с.к. оценки 𝑋̂(𝑡) по формуле:   

𝑋̂̅(𝑡̅) = 𝑋̂((𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

 

4.4. Вейвлет модификация линейного фильтра Пугачева  

Рассмотрим задачу фильтрации для линейной дифференциальной стохасти-

ческой системы Ито с параметрическими шумами при УВ:  

𝑋̇𝑡 = 𝑎0𝑡 + 𝑎1𝑡𝑋𝑡 + 𝑎𝑡 𝑌𝑡 + (𝑐10𝑡 + ∑ 𝑐1𝑟𝑡𝑌𝑟
𝑛𝑌
𝑟=1 + ∑ 𝑐1,𝑛𝑌+𝑟,𝑡𝑋𝑟

𝑛𝑋
𝑟=1 )𝑉,⁡⁡  

 𝑋(𝑡0) = 𝑋0      (4.4.1) 

𝑌̇𝑡 = 𝑏0𝑡+𝑏𝑡𝑌𝑡 + 𝑏1𝑡𝑋𝑡 + (𝑐20𝑡 + ∑ 𝑐2𝑟𝑡𝑌𝑟
𝑛𝑌
𝑟=1 + ∑ 𝑐2,𝑛𝑌+𝑟,𝑡𝑋𝑟

𝑛𝑋
𝑟=1 )𝑉.  

 𝑌(𝑡0) = 𝑌0       (4.4.2) 

Здесь 𝑡 ∈ [𝑡0, 𝑡], 𝑋𝑡– 𝑛𝑋-мерный ненаблюдаемый СтП, 𝑌𝑡– 𝑛𝑌-мерный наблюдаемый 

СтП, 𝑉 – белый шум в строгом смысле, в общем случае негауссовский, 𝑎0𝑡 = 𝑎0𝑡
уд
, 

𝑎1𝑡 = 𝑎1𝑡
уд
, 𝑎𝑡 = 𝑎𝑡

уд
, 𝑐10𝑡 = 𝑐10𝑡

уд
,⁡ 𝑐1𝑟𝑡 = 𝑐1𝑟𝑡

уд
 , 𝑐1,𝑛𝑌+𝑟,𝑡 = 𝑐1,𝑛𝑌+𝑟,𝑡

уд
 (r=1,…,⁡𝑛𝑌),⁡ 

𝑏0𝑡 , 𝑏𝑡 , 𝑏1𝑡 , 𝑐20𝑡 , 𝑐2𝑘𝑡 , 𝑐2,𝑛𝑌+𝑘,𝑡⁡⁡(k=1,…,⁡𝑛𝑋) – известные матричные функции. 

 Решение задачи оптимальной фильтрации, когда критерием оптимальности 

является минимум среднего квадрата ошибки, в этом случае приводит к необходи-

мости интегрирования системы уравнений высокого порядка. Поэтому единствен-

ный способ получения практически реализуемого фильтра является понижение его 

порядка. Согласно теории условной оптимальной фильтрации В.С. Пугачева [87], 

условно оптимальный фильтр находится в классе допустимых фильтров, поведение 

которых описывается уравнением того же порядка, что и уравнение для 𝑋𝑡, в дан-

ном случае линейным. 
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При решении задачи условно оптимальной фильтрации для уравнений (4.4.1) 

и (4.4.2) линейный фильтр Пугачева (ЛФП) определяются следующей теоремой 

[87]. 

Теорема 4.4.1. 

Пусть нестационарная линейная дифференциальная система описывается 

уравнениями (4.4.1), (4.4.2). Тогда уравнения линейного условно-оптимального (по 

Пугачеву) фильтра, в общем случае с негаусовским векторным белым шумом ин-

тенсивности 𝑡 имеют вид: 

𝑋̇̂𝑡 = 𝑎0𝑡 + 𝑎𝑡 𝑌𝑡 + 𝑎1𝑡𝑋̂𝑡 + 𝛽𝑡 (𝑍𝑡 − (𝑏0𝑡+𝑏𝑡𝑌𝑡 + 𝑏1𝑡𝑋̂𝑡)) , 𝑋̂(𝑡0) = 𝑋̂0. (4.4.3) 

После нахождения вероятностных моментов первого и второго порядков случай-

ного вектора [𝑌1…𝑌𝑛𝑌 𝑋1…𝑋𝑛𝑋]
𝑇согласно уравнениям  

𝑚̇𝑡 = 𝑎0𝑡 + 𝑎1𝑡𝑚𝑡 , 𝑚𝑡0 = 𝑚0,    (4.4.4) 

𝐾̇𝑡 = 𝑎̅𝑡𝐾𝑡 + 𝐾𝑡𝑎̅𝑡
𝑇 + 𝑐0̅𝑡𝑡𝑐0̅𝑡

𝑇 + ∑ (𝑐0̅𝑡𝑡𝑐𝑟̅𝑡
𝑇 + 𝑐𝑟̅𝑡𝑡𝑐0̅𝑡

𝑇 )𝑚𝑟𝑡 +

𝑛𝑌+𝑛𝑋

𝑟=1

 

+∑ 𝑐𝑟̅𝑡𝑡𝑐𝑠̅𝑡
𝑇 (𝑚𝑟𝑡𝑚𝑠𝑡 + 𝐾𝑟𝑠),

𝑛𝑌+𝑛𝑋
𝑟,𝑠=1 𝐾𝑡0 = 𝐾0,  (4.4.5) 

𝑎̅𝑡 = [
𝑏𝑡 𝑏1𝑡
𝑎𝑡 𝑎1𝑡

] , 𝑎̅0𝑡 = [
𝑏0𝑡
𝑎0𝑡
] , 𝑐𝑟̅𝑡 = [

𝑐2𝑟𝑡
𝑐1𝑟𝑡

],⁡   (4.4.6) 

и ковариационной матрицы ошибки 𝑅𝑡 согласно уравнению:  

𝑅̇𝑡 = 𝑎1𝑡𝑅𝑡 + 𝑅𝑡𝑎1𝑡
𝑇 − [𝑅𝑡𝑏1𝑡

𝑇 + (𝑐10𝑡 + ∑ 𝑐1𝑟𝑡𝑚𝑟𝑡

𝑛𝑌+𝑛𝑋

𝑟=1

)𝑡 (𝑐20𝑡
𝑇 + ∑ 𝑐2𝑟𝑡

𝑇

𝑛𝑌+𝑛𝑋

𝑟=1

𝑚𝑟𝑡) + 

+ ∑ 𝑐1𝑟𝑡𝑡

𝑛𝑌+𝑛𝑋

𝑟,𝑠=1

𝑐2𝑠𝑡
𝑇 𝐾𝑟𝑠]æ11𝑡

−1 [𝑏1𝑡𝑅𝑡 + (𝑐20𝑡 + ∑ 𝑐2𝑟𝑡𝑚𝑟𝑡

𝑛𝑌+𝑛𝑋

𝑟=1

)𝑡 ∙ 

∙ (𝑐10𝑡
𝑇 + ∑ 𝑐1𝑟𝑡

𝑇

𝑛𝑌+𝑛𝑋

𝑟=1

𝑚𝑟𝑡) + ∑ 𝑐2𝑟𝑡

𝑛𝑌+𝑛𝑋

𝑟=1

𝑡𝐾𝑟𝑠] + 

+(𝑐10𝑡 + ∑ 𝑐1𝑟𝑡𝑚𝑟𝑡
𝑛𝑌+𝑛𝑋
𝑟=1 )𝑡(𝑐10𝑡

𝑇 + ∑ 𝑐1𝑟𝑡
𝑇𝑛𝑌+𝑛𝑋

𝑟=1 𝑚𝑟𝑡) + ∑ 𝑐1𝑟𝑡𝑡
𝑛𝑌+𝑛𝑋
𝑟=1 𝑐1𝑠𝑡

𝑇 𝐾𝑟𝑠, (4.4.7) 

параметр æ11𝑡  и оптимальный коэффициент 𝛽𝑡 определяются по формулам:  
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æ11𝑡 = (𝑐20𝑡 + ∑ 𝑐2𝑟𝑡𝑚𝑟𝑡

𝑛𝑌+𝑛𝑋

𝑟=1

)𝑡 (𝑐20𝑡
𝑇 + ∑ 𝑐2𝑟𝑡

𝑇

𝑛𝑌+𝑛𝑋

𝑟=1

𝑚𝑟𝑡) + 

+∑ 𝑐2𝑟𝑡𝑡
𝑛𝑌+𝑛𝑋
𝑟,𝑠=1 𝑐2𝑠𝑡

𝑇 𝐾𝑟𝑠,     (4.4.8) 

 

𝛽𝑡 = [𝑅𝑡𝑏1𝑡
𝑇 + (𝑐10𝑡 + ∑ 𝑐1𝑟𝑡𝑚𝑟𝑡

𝑛𝑌+𝑛𝑋

𝑟=1

)𝑡 (𝑐20𝑡
𝑇 + ∑ 𝑐2𝑟𝑡

𝑇

𝑛𝑌+𝑛𝑋

𝑟=1

𝑚𝑟𝑡) + 

+∑ 𝑐1𝑟𝑡𝑡
𝑛𝑌+𝑛𝑋
𝑟,𝑠=1 𝑐2𝑠𝑡

𝑇 𝐾𝑟𝑠]æ11𝑡
−1 .    (4.4.9) 

Для вычисления вероятностных моментов первого порядка 𝑚𝑡⁡ и второго по-

рядка 𝐾𝑡 случайного вектора [𝑌1…𝑌𝑛𝑌 𝑋1…𝑋𝑛𝑋]
𝑇, ковариационной матрицы 

ошибки 𝑅𝑡, параметра æ11𝑡 и оптимального коэффициента 𝛽𝑡 не используются ре-

зультаты измерений. Эти параметры вычисляются заранее.  

 Рассмотрим частный случай: 𝑎𝑡 = 0, 𝑏𝑡 = 0, 𝑏0𝑡 = 0. Применяя метод 

вейвлетов Хаара–Галеркина для решения уравнения (4.4.3), получим уравнения для 

вейвлет ЛФП (ВЛЛФП). Для этого выполним в (4.4.3) для 𝑡 ∈ [𝑡0, 𝑇] замену пере-

менных: 

𝑡̅ =
𝑡−𝑡0

𝑇−𝑡0
, 𝑡̅ ∈ [0,1],⁡⁡      (4.4.10) 

В результате получим: 

𝑋̂̅′(𝑡̅) = 𝐴̃0𝑡̅ + 𝐴̃𝑡̅𝑋̂̅(𝑡̅), 𝑋̂̅(0) = 𝑋̂0,    (4.4.11) 

где 

𝑋̂̅(𝑡̅) = 𝑋̂((𝑇 − 𝑡0)𝑡̅ + 𝑡0), 

𝐴̃0𝑡̅ = (𝑇 − 𝑡0)[𝑎0𝑡((𝑇 − 𝑡0)𝑡 ̅ + 𝑡0) + 𝛽𝑡((𝑇 − 𝑡0)𝑡 ̅ + 𝑡0)𝑍𝑡((𝑇 − 𝑡0)𝑡 ̅ + 𝑡0)],  

𝐴̃𝑡̅ = (𝑇 − 𝑡0)[𝑎1𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0) − 𝛽𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)𝑏1𝑡((𝑇 − 𝑡0)𝑡̅ + 𝑡0)], 

волной отмечены функции, зависящие от безразмерного времени 𝑡̅. Или для каждой 

состаляющей 𝑋̂̅ℎ(ℎ = 1,2,… , 𝑛𝑋) СтП 𝑋̂̅(𝑡̅) имеем:  

𝑋̂̅ℎ
′ = 𝐴̃ℎ0 + ∑ 𝐴̃ℎ𝑘

𝑛𝑋
𝑘=1 𝑋̂̅𝑘 ⁡(ℎ = 1,2,… , 𝑛𝑋),  𝑋̂̅𝑘 = 𝑋̂0𝑘 ,  (4.4.12) 

𝐴̃0𝑡̅ = ‖𝐴̃ℎ0‖ℎ=1
𝑛𝑋

, 𝐴̃𝑡̅ = ‖𝐴̃ℎ𝑘‖ℎ,𝑘=1
𝑛𝑋

. 
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 Будем считать, что скалярные функции  ⁡𝑋̂̅ℎ , 𝑋̂̅ℎ
′ , 𝐴̃ℎ𝑘𝑝𝑖 ,⁡⁡⁡𝐴̃ℎ𝑘,⁡⁡⁡𝐴̃ℎ0⁡ 

(ℎ, 𝑘 = 1,2,… , 𝑛𝑋) принадлежат пространству 𝐿2[0,1]. Следуя разделу 3.1, введем 

базис вейвлетов Хаара 𝑤𝑖 и интегралов 𝑝𝑖 от вейвлетов Хаара. Повторяя действия, 

описанные в подразделе 4.3, получим соотношения:  

𝑋̂̅ℎ = ∑ 
ℎ𝑖

𝐿
𝑖=1 𝑝𝑖 + 𝑋̂0ℎ⁡⁡(ℎ = 1,2,… , 𝑛𝑋),    (4.4.13) 


ℎ𝑠
= ∑ ∑ 

ℎ𝑖
𝐿
𝑖=1

𝑛𝑋
𝑘=1 𝑔𝑠

ℎ𝑘𝑖 + 𝑋̂0ℎ ∑ 𝑞𝑠
ℎ𝑘𝐿

𝑖=1 + 
𝑠
ℎ   

(ℎ = 1,2,… , 𝑛𝑋; ⁡𝑠 = 1,2,… , 𝐿);     (4.4.14) 

где 𝑔𝑠
ℎ𝑘𝑖 = ∫ 𝐴̃ℎ𝑘𝑝𝑖

1

0
𝑤𝑗𝑑; ⁡⁡𝑞𝑠

ℎ𝑘 = ∫ 𝐴̃ℎ𝑘
1

0
𝑤𝑗𝑑; ⁡⁡𝑠

ℎ = ∫ 𝐴̃ℎ0
1

0
𝑤𝑗𝑑.   

Таким образом, имеем следующий результат. 

Теорема 4.4.2. 

Пусть выполнены условия теоремы 4.4.1, а также 

1) скалярные функции  ⁡𝑋̂̅ℎ , 𝑋̂̅ℎ
′ , 𝐴̃ℎ𝑘𝑝𝑖 ,⁡⁡⁡𝐴̃ℎ𝑘,⁡⁡⁡𝐴̃ℎ0⁡(ℎ, 𝑘 = 1,2,… , 𝑛𝑋) при-

надлежат пространству 𝐿2[0,1]; 

2) в пространстве 𝐿2[0,1] определен ортонормированный базис вейвлетов 

Хаара 𝑤𝑖 вида (3.1.12)–(3.1.14). 

Тогда вейвлет линейный фильтр Пугачева определяется соотношениями 

(4.4.13), где 𝑝𝑖(𝑡)⁡– известные функции вида (3.1.16), коэффициенты⁡⁡
ℎ𝑖

 определя-

ются системой линейных алгебраических уравнений (4.4.14). 

Из теоремы 4.3.4 вытекает алгоритм построения вейвлет линейного фильтра 

Пугачева для непрерывных линейных УдСтС с параметрическими шумами, описы-

ваемой уравнениями (4.4.1), (4.4.2) при 𝑎𝑡 = 0, 𝑏𝑡 = 0, 𝑏0𝑡 = 0. 

Алгоритм 4.4.2. 

1. Нахождение вероятностных моментов первого и второго порядков слу-

чайного вектора [Y1…YnY X1…XnX]
T путем интегрирования уравнений (4.4.4), 

(4.4.5). 

2. Нахождение ковариационной матрицы ошибки 𝑅𝑡 путем интегрирования 

уравнения (4.4.7). 

3. Вычисление параметра æ11𝑡 и оптимального коэффициента 𝛽𝑡 по форму-

лам (4.4.8), (4.4.9). 
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4. Определение в пространстве 𝐿2[0,1] ортонормированной системы 

вейвлетов Хаара вида (3.1.12)–(3.1.14) с максимальным уровнем вейвлет разреше-

ния J. 

5. Вычисление интегралов от вейвлетов Хаара по формулам (3.1.16). 

6. Задание значений наблюдаемого процесса 𝑍𝑡 (𝑡 ∈ [𝑡0, 𝑇])⁡ в точках  

𝑡𝑗 = 𝑡0 + (j − 1)∆t⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝐿; 𝐿 = 2 ∙ 2
𝐽; ⁡∆t =

𝑇−𝑡0

𝐿−1
. 

7. Составление и решение системы линейных алгебраических уравнений 

(4.4.14) для определения коэффициентов 
ℎ𝑠

. 

8. Вычисление оптимальной оценки 𝑋̂̅ℎ для каждой составляющей вектора 

состояния 𝑋̅𝑡 в классе линейных фильтров Пугачева по формуле (4.4.13). 

9. Переход от безразмерного времени 𝑡̅ ∈ [0,1]⁡к 𝑡 ∈ [𝑡0, 𝑇] и определение 

оценки 𝑋̂(𝑡) по формуле: 𝑋̂̅(𝑡̅) = 𝑋̂((𝑇 − 𝑡0)𝑡̅ + 𝑡0). 

4.5. Выводы к разделу 4 

1. Для оценки требуемого скалярного выходного сигнала построен вейвлет 

с.к. оптимальный линейный оператор в виде набора формальный правил, описыва-

ющих реакцию системы на базисные вейвлет функции (теорема 4.1.1). 

2. Для случая линейной зависимости сигнала от параметров и аддитивной 

помехи построен вейвлет с.к. оптимальный линейный оператор, получены формулы 

для вычисления с.к. оценки качества этого оператора и с.к. оценки требуемого вы-

ходного сигнала (теорема 4.2.1 и алгоритмы 4.2.1.1 и 4.2.1.2). 

3. В приложении П.10 построен вейвлет с.к. оптимальный линейный опера-

тор для СтС при ударном воздействии, описываемом дельта-функцией. Вычисли-

тельные эксперименты показали, что уже при уровне вейвлет разрешения, равном 2, 

оценка  качества с.к. оптимального линейного оператора 𝐴𝑡 равна 0,7973 при зна-

чениях сигнала 𝑊(𝑠) ∈ [−12; 10]. 

4. В приложении П.11 дано описание ИПО "Синтез-ВЛ", реализующего ал-

горитмы 4.2.1.1 и 4.2.1.2. 
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5. Получены вейвлет модификации фильтра Калмана-Бьюси и линейного 

фильтра Пугачева для обработки информации в режиме реального времени в 

УдСтС на основе применения метода вейвлетов Хаара и метода Галеркина (метода 

вейвлетов Хаара–Галеркина). Вейвлет ФКБ и вейвлет ЛФП должны решать в режи-

ме реального времени систему линейных алгебраических уравнений с постоянными 

коэффициентами в отличие от ФКБ и ЛФП, которые должны интегрировать систе-

му обыкновенных дифференциальных уравнений, содержащих функции сложной 

формы (дельта-функцию или кусочно-непрерывные функции). Разработанные 

вейвлет алгоритмы позволяют заменить вычислительные процедуры с функциями 

сложной формы арифметическими действиями с постоянными коэффициентами 

вейвлет разложений известных функций по ортонормированному вейвлет базису 

(теорема 4.3.2 и алгоритм 4.3.2 для ВЛФКБ, теорема 4.4.2 и алгоритм 4.4.2 для 

ВЛЛФП). 

6. В приложении П.12 построен вейвлет ФКБ для информационно-

управляющей системы в условиях ударного воздействия и дано описание ИПО 

"СтС-ВЛ-Фильтр", реализующее алгоритм 4.3.2. 
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ЗАКЛЮЧЕНИЕ 

Диссертация посвящена разработке методов и алгоритмов для инструмен-

тального программного обеспечения анализа точности и обработки информации в 

стохастических системах при ударных воздействиях с применением вейвлет техно-

логий. 

Для скалярной и векторной ударных СФ разработаны алгоритмы построения 

вейвлет канонических разложений (теорема 2.1.5 и алгоритм 2.1.5, теорема 2.2.2 и 

алгоритм 2.2.2). 

В случае линейной УдСтС и линейной УдСтС с параметрическими шумами 

при решении известных замкнутых систем обыкновенных дифференциальных 

уравнений относительно  неизвестных математического ожидания, ковариационной 

матрицы, матрицы ковариационных функций разработаны алгоритмы на основе 

ВЛР, позволяющие заменить решение системы обыкновенных дифференциальных 

уравнений, содержащих ударные функции (дельта-функцию или кусочно-

непрерывную функцию) решением системы линейных алгебраических уравнений с 

постоянными коэффициентами (теоремы 3.1.1, 3.1.2, 3.1.3 и алгоритмы 3.1.1, 3.1.2, 

3.1.3; теоремы 3.2.1, 3.2.2, 3.2.3 и алгоритмы 3.2.1, 3.2.2, 3.2.3). 

Для нелинейной УдСтС, когда невозможно выписать замкнутую систему 

обыкновенных дифференциальных уравнений относительно неизвестных матема-

тического ожидания, ковариационной матрицы, матрицы ковариационных функ-

ций, предлагается использовать модифицированный моментно-семиинвариантный 

метод (теорема 3.3.1 и алгоритм 3.3.1), который позволяет определять вероятност-

ные моменты первого и второго порядков с учетом некоторого набора старших 

начальных моментов. Для типовых круговых УдСФ аналитически рассчитаны ко-

эффициенты статистической круговой намотанной нормальной линеаризации  

(таблица 3.4.1). 

Разработан метод синтеза вейвлет с.к. оптимального линейного оператора 

(теорема 4.1.1) и метод построения вейвлет с.к. оптимального линейного оператора 
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в случае линейной зависимости сигнала от параметров и аддитивной помехи (тео-

рема 4.2.1 и алгоритмы 4.2.1.1 и 4.2.1.2). 

Разработана вейвлет модификация фильтра Калмана-Бьюси  для обработки 

информации в режиме реального времени в линейных УдСтС (теорема 4.3.2 и алго-

ритм 4.3.2) и вейвлет модификация линейного фильтра Пугачева для обработки ин-

формации в режиме реального времени в линейных УдСтС с параметрическими 

шумами (теорема 4.4.2 и алгоритм 4.4.2). 

Разработаны основные положения методики анализа точности УдСтС. 

Приложение содержит обширный материал с описанием ИПО и тестовых 

примеров. Работа выполнялась с использованием инфраструктуры ЦКП "Информа-

тика" ФИЦ ИУ РАН [132]. 
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СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 

ВЛКР – вейвлет каноничекое разложение 

ВЛЛФП – вейвлет линейный фильтр Пугачева 

ВЛР – вейвлет разложение 

ВЛФКБ – вейвлет фильтр Калмана – Бьюси 

ВСФ – векторная случайная функция 

ВУдСФ – векторная ударная случайная функция 

ИПО – инструментальное программное обеспечение 

ИУС – информационно-управляющая система 

КР – каноничекое разложение 

ЛФП – линейный фильтр Пугачева 

МВЛХГ –  метод вейвлетов Хаара–Галеркина 

МНА –  метод нормальной аппроксимации 

ММ –  метод моментов 

МС – метод семиинвариантов 

МСЛ – метод статистической линеаризации 

МСМ –  моментно-семиинвариантный метод  

ММСМ –  модифицированный моментно-семиинвариантный метод 

МОР –  метод ортогональных разложений 

СВ – случайная величина 

СДС – стохастическая дифференциальная система 

с.к. средний квадратический  

СЛАУ – система линейных алгебраических уравнений  

СтС – стохастическая система 

СтП – стохастический процесс 

СФ – случайная функция 

ТИ – техническое изделие 

УВ – ударное воздействие 

УдСтС – ударная стохастическая система 
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УдСФ – ударная случайная функция 

ФКБ – фильтр Калмана – Бьюси 

х.ф. – характеристическая функция  
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ПРИЛОЖЕНИЯ  

П.1. Сравнительный анализ построения КР и ВЛКР типовой 

скалярной СФ 

Проведем сравнительный анализ построения КР и ВЛКР на примере типовой 

скалярной СФ X(t) (0<t<T) с нулевым математическим ожиданием и ковариацион-

ной функцией, заданной формулой  

𝐾𝑥(𝑡, 𝑡
′) = 𝐷𝑒−𝛼|𝑡−𝑡

′|      (П.1.1) 

для D=1, α=1, T=15, t∊[0,15]. 

Точность методов оценивалась по формуле: 

 = √
1

𝑛
∑ (𝐷𝑎(𝑡𝑖) − 𝐷𝑇(𝑡𝑖))

2𝑛
𝑖=1 ,   (П.1.2) 

где 𝐷𝑎(𝑡𝑖) – аппроксимирующее значение дисперсии в точке 𝑡𝑖, 𝐷𝑇(𝑡𝑖)⁡⁡– истинное 

значение дисперсии, в данном примере равное единице. 

Каноническое разложение СФ X(t) (0<t<T) было построено на основе триго-

нометрического базиса 

 𝑓2+1(𝑡) = 𝑐𝑜𝑠
2𝜋𝑡⁡

𝑇
⁡( = 0,1,2,… ), 𝑓2(𝑡) = 𝑠𝑖𝑛

2𝜋𝑡⁡

𝑇
⁡( = 1,2,… ). 

Результаты построения КР для различных значений параметра  приведены на ри-

сунках П.1.1, П.1.2. В таблице П.1.1 даны значения среднеквадратической ошибки  

аппроксимации дисперсии в зависимости от значения параметра . 

 

 

Рисунок П.1.1 
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Рисунок П.1.2  

Таблица П.1.3. 

 5 10 15 20 25 

𝜎 0.5355 0.3435 0.2533 0.1986 0.1649 

 

 Результаты построения вейвлет КР СФ X(t) основе ортонормированного 

вейвлет базиса Хаара при наименьшем уровне вейвлет разрешения  𝐽𝑡=2 показаны 

на рисунке П.1.3. Уже при 8 членах КР значение среднеквадратической ошибки ап-

проксимации дисперсии  = 0,0057. 

 

Рисунок П.1.3 

 

Вывод. Вычислительные эксперименты показали, что уже при наименьшем 

уровне вейвлет разрешения  𝐽𝑡=2 точность ВЛКР значительно выше аналогичного 

метода КР, построенного на основе тригонометрического базиса.  
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П.2. Описание ИПО построения ВЛКР СФ  

"СтИТ-КРВЛ.1" 

На основе методических результатов подраздела 2.1.4 разработано ИПО 

"СтИТ-КРВЛ.1" в среде MATLAB, которое реализует алгоритм  2.1.5 и осуществ-

ляет: 

1) ввод исходных данных: ковариационной функции одномерного СтП 

X(t), область определения СтП X(t) в виде отрезка [0, 𝑇], максимальный уровень 

вейвлет разложения; 

2) вейвлет разложение ковариационной функции по вейвлет базису Хаара 

с применением стандартной функции wavedec2; 

3) определение коэффициентов kµ(, µ = 1,2,… , L
t) по формулам (2.5.34); 

4) вычисление дисперсий D( = 1,2,… , L
t) некоррелированных СВ 

V1, … , VLt по формулам (2.5.38); 

5) определение вида координатных функций x1(t), … , xLt(t)⁡ по формулам 

(2.5.42)-(2.5.49); 

6) вывод результатов в числовом виде. 

В состав ИПО входят две подпрограммы-функции fcov и KRWL1. 

Подпрограмма-функция fcov задает в аналитическом виде ковариационной 

функции одномерного СтП X(t) и имеет синтаксис вызова: cov= fcov(t1,t2). Подпро-

грамма-функция fcov вызывается их основной  подпрограммы-функции KRWL1. 

 Все вычисления осуществляются в подпрограмме-функции KRWL1, которая 

имеет синтаксис вызова: 

[Xnu,Dnu,DispX,XKRW]= KRWL1(J,N,T). 

где J - максимальный уровень вейвлет разложения; ⁡𝑁 = 2 ∗ 2𝐽; T – правый конец 

области определения СтП X(t), заданной в виде отрезка [0, 𝑇]. При вычислениях ис-

пользуется стандартная функция wavedec2 для получения коэффициентов двумер-

ного вейвлет разложения ковариационной функции одномерного СтП X(t), заданной 

с помощью подпрограммы-функции fcov. Выходные данные выдаются в матричном 

виде: 
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1) Xnu(N,N) – матрица значений координатных функций ВЛКР: 

𝑋𝑛𝑢(𝑖, 𝑗) = x𝑖 (T ∗
𝑗−0,5

𝑁
) ⁡⁡для⁡𝑖, 𝑗 = 1,2,… ,𝑁;  

2) Dnu(N) – вектор значений дисперсий D( = 1,2,… , 𝑁) некоррелиро-

ванных СВ V1, … , V𝑁; 

3) DispX(N) – вектор значений дисперсии СтП X(t) в  точках  𝑡𝑗 = T ∗

𝑗−0,5

𝑁
⁡⁡⁡для⁡⁡𝑗 = 1,2,… ,𝑁; 

4) XKRW(N) – вектор значений реализации СтП X(t) в точках 𝑡𝑗 = T ∗

𝑗−0,5

𝑁
⁡⁡⁡для⁡⁡𝑗 = 1,2,… ,𝑁. 

 

П.3. Примеры построения ВЛКР скалярных СФ 

Пример 1. Рассмотрим случай типовой ковариационной функции вида  

𝐾𝑥(𝑡1, 𝑡2) = {
𝑞1(𝑡2)𝑞2(𝑡1)⁡при⁡𝑡2 ≤ 𝑡1,

𝑞1(𝑡1)𝑞2(𝑡2)⁡при⁡𝑡2 > 𝑡1.
   (П.3.1) 

Пусть СФ X(t) задана на интервале [0, 𝑇] в дискретных точках 0,1,…,7, где 

Т=7. Ковариационная функция 𝐾𝑥(𝑡1, 𝑡2) принадлежит пространству 

𝐿2([0, 𝑇] × [0, 𝑇]). Определим ортонормированную систему функций {𝑓𝑟(𝑡)}⁡(𝑟 =

1,… ,8) на основе вейвлетов Добеши "db1" (или вейвлетов Хаара) в виде: 

𝑓1(𝑡) = 
00
(𝑡) = (𝑡), 𝑓2(𝑡) = 

00
(𝑡) = (𝑡),⁡⁡ 

𝑓3(𝑡) = 
10
(𝑡) = √2(2𝑡), 𝑓4(𝑡) = 

11
(𝑡) = √2(2𝑡 − 1),     (П.3.2) 

𝑓5(𝑡) = 
20
(𝑡) = 2(4𝑡), 𝑓6(𝑡) = 

21
(𝑡) = 2(4𝑡 − 1), 

𝑓7(𝑡) = 
22
(𝑡) = 2(4𝑡 − 2), 𝑓8(𝑡) = 

23
(𝑡) = 2(4𝑡 − 3), 

где (𝑡)⁡– масштабирующая функция Добеши "db1", (𝑡)⁡– материнский вейвлет 

Добеши "db1", 𝐽𝑡 = 2,⁡⁡⁡⁡⁡⁡𝐿𝑡 = 8. 

 Далее введем вспомогательные случайные величины: 

𝐴𝑟 = ∫ 𝑓𝑟
𝑇

0
(𝑡)𝑋(𝑡)𝑑𝑡⁡⁡⁡⁡⁡⁡(𝑟 = 1,2, … , 𝐿𝑡). 

Определим ковариационные моменты СВ 𝐴 : 

𝑘µ = 𝑀[𝐴
°𝐴µ

°̅̅̅̅ ] = ∫ ∫ 𝑓(𝑡1)
𝑇

0

𝑇

0
𝑓µ(𝑡2)𝐾𝑋(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2(, µ = 1,2,… , 𝐿

𝑡);  
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𝑘11 = 𝑎
𝑡; ⁡⁡𝑘12 = ℎ000

𝑡 ; ⁡⁡⁡𝑘21 = 𝑏000
𝑡 ; ⁡⁡𝑘22 = 𝑑000

𝑡 ; 

𝑘33 = 𝑑100
𝑡 ,⁡⁡⁡⁡⁡𝑘34 = 𝑑101

𝑡 , 𝑘43 = 𝑑110
𝑡 , 𝑘44 = 𝑑111

𝑡 , 

𝑘55 = 𝑑200
𝑡 ,⁡⁡⁡⁡⁡𝑘56 = 𝑑201

𝑡 , 𝑘57 = 𝑑202
𝑡 , 𝑘58 = 𝑑203

𝑡 , 

𝑘65 = 𝑑210
𝑡 ,⁡⁡⁡⁡⁡𝑘66 = 𝑑211

𝑡 , 𝑘67 = 𝑑212
𝑡 , 𝑘68 = 𝑑213

𝑡 , 

𝑘75 = 𝑑220
𝑡 ,⁡⁡⁡⁡⁡𝑘76 = 𝑑221

𝑡 , 𝑘77 = 𝑑222
𝑡 , 𝑘78 = 𝑑223

𝑡 , 

𝑘85 = 𝑑230
𝑡 , 𝑘86 = 𝑑231

𝑡 , 𝑘87 = 𝑑232
𝑡 , 𝑘88 = 𝑑233

𝑡 . 

Остальные взаимные ковариационные моменты равны нулю: . 

Или 

𝑘µ =

[
 
 
 
 
 
 
 
 
 
𝑎𝑡

𝑏000
𝑡

ℎ000
𝑡

𝑑000
𝑡

0
0

0
0

0
0

0
0

𝑑100
𝑡

𝑑110
𝑡

𝑑101
𝑡

𝑑111
𝑡

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0 0 0
0
0
0

0
0
0

0
0
0

0
0
0

𝑑200
𝑡 𝑑201

𝑡 𝑑202
𝑡 𝑑203

𝑡

𝑑210
𝑡

𝑑220
𝑡

𝑑230
𝑡

𝑑211
𝑡

𝑑221
𝑡

𝑑231
𝑡

𝑑212
𝑡

𝑑222
𝑡

𝑑232
𝑡

𝑑213
𝑡

𝑑223
𝑡

𝑑233
𝑡 ]
 
 
 
 
 
 
 
 
 

   

 

Далее введем функции 𝑧(𝑡) = ∫ 𝑓
𝑇

0
()𝐾𝑋(𝑡, )𝑑⁡⁡⁡⁡⁡⁡( = 1,2,… , 𝐿

𝑡): 

z1(t) = a
t
00
(t) + b000

t 
00
(t), z2(t) = h000

t 
00
(t) + d000

t 
00
(t), 

z3(t) = ∑ [h1k0
t 

1k
(t) + d1k0

t 
1k
(t)]1

k=0 , 𝑧4(𝑡) = ∑ [ℎ1𝑘1
𝑡 

1𝑘
(𝑡) + 𝑑1𝑘1

𝑡 
1𝑘
(𝑡)]1

𝑘=0  

z5(t) = ∑ [h2k0
t 

2k
(t) + d2k0

t 
2k
(t)]3

k=0 ,⁡z6(t) = ∑ [h2k1
t 

2k
(t) + d2k1

t 
2k
(t)]3

k=0 , 

z7(t) = ∑ [h2k2
t 

2k
(t) + d2k2

t 
2k
(t)]3

k=0 ,⁡z8(t) = ∑ [h2k3
t 

2k
(t) + d2k3

t 
2k
(t)]3

k=0 . 

Некоррелированные СВ 𝑉1,…,⁡𝑉8 имеют нулевые математические ожидания 

и дисперсии 𝐷 (=1,…,8), равные 

𝐷1 = 𝑘11 = 𝑎
𝑡 ,⁡⁡⁡⁡𝑐21 = −

𝑘21
𝐷1

= −
𝑏000
𝑡

𝑎𝑡
,⁡⁡⁡⁡𝐷2 = 𝑘22 − 𝐷1|𝑐21|

2 = 𝑑000
𝑡 −

(𝑏000
𝑡 )2

𝑎𝑡
. 

Далее вычисляем параметры 𝑐µ и дисперсии 𝐷⁡по рекуррентным формулам для 

=3,…,8 и µ=2,…,7: 

𝑐µ = −
1

𝐷µ
(𝑘µ − ∑ 𝐷𝑐̅̅ ̅̅

µ−1
=1 𝑐µ)⁡, 𝐷 = 𝑘 − ∑ 𝐷|𝑐|

2−1
=1 . 

Координатные функции  𝑥(𝑡) определяются последовательно формулами: 

0vk
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𝑥1(𝑡) =
1

𝐷1
𝑧1(𝑡), 𝑥(𝑡) =

1

𝐷
{∑ 𝑑

−1
=1 𝑧(𝑡) + 𝑧(𝑡)}⁡,⁡    

𝑑 = 𝑐 + ∑ 𝑐µ𝑑µ⁡⁡⁡( = 1,2,… , − 2), 𝑑,−1 = 𝑐,−1
−1
µ=+1  ( = 2,3,… ,8). 

  

Пример 2. Пусть ковариационная функция СП X(t) имеет вид  

𝐾𝑥(𝑡1, 𝑡2) = 𝑔(𝑡1)𝑔(𝑡2)𝛿(𝑡1 − 𝑡2) ,   (П.3.3) 

где 𝑡1, 𝑡2 ∈ [0, 𝑇]. 

 Коэффициенты разложения 𝛿(𝑡1 − 𝑡2) по двумерной ортонормированной си-

стеме вейвлетов, построенной на основе вейвлет базиса (П.3.2), равны: 

𝑎𝑡 =∬ 𝛿(𝑡1 − 𝑡2)00(𝑡1)00(𝑡2)𝑑𝑡1

+∞

−∞

𝑑𝑡2 = ∫ 
00
(𝑡1)00(𝑡1)𝑑𝑡1

+∞

−∞

= 1;⁡⁡ 

ℎ000
𝑡 =∬ 𝛿(𝑡1 − 𝑡2)00(𝑡1)00(𝑡2)𝑑𝑡1

+∞

−∞

𝑑𝑡2 = ∫ 
00
(𝑡1)00(𝑡1)𝑑𝑡1 =

+∞

−∞

0;⁡ 

⁡𝑏000
𝑡 =∬ 𝛿(𝑡1 − 𝑡2)00(𝑡1)00(𝑡2)𝑑𝑡1

+∞

−∞

𝑑𝑡2 = ∫ 
00
(𝑡1)00(𝑡1)𝑑𝑡1 =

+∞

−∞

0; 

 

⁡𝑑𝑗𝑘𝑛
𝑡 = ∬ 𝛿(𝑡1 − 𝑡2)𝑗𝑘(𝑡1)𝑗𝑛(𝑡2)𝑑𝑡1

+∞

−∞
𝑑𝑡2 = ∫ 

𝑗𝑘
(𝑡1)𝑗𝑛(𝑡1)𝑑𝑡1 =

+∞

−∞
𝛿𝑘𝑛,  

где 𝛿𝑘𝑛 = {
1,⁡⁡⁡если⁡𝑘 = 𝑛,
0, если⁡𝑘 ≠ 𝑛.⁡⁡

⁡⁡⁡⁡⁡ 

Разложение дельта-функции по двумерной ортонормированной системе 

вейвлетов, построенной на основе системы (П.3.2), имеет вид: 

𝛿(𝑡1 − 𝑡2) = 
00
(𝑡1)00(𝑡2) + ∑ ∑ 

𝑗𝑘
(𝑡1)𝑗𝑘(𝑡2)

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 = ∑ 𝑓(𝑡1)𝑓(𝑡2)
𝐿𝑡
=1 .   (П.3.4) 

В этом случае для СФ X(t) и ковариационной функции 𝐾𝑥(𝑡1, 𝑡2) получим КРВЛ: 

X(t)=∑ 𝑉
𝐿𝑡
=1 ⁡𝑔(𝑡)𝑓(𝑡),       𝐾𝑥(𝑡1, 𝑡2) = ⁡𝑔(𝑡1)𝑔(𝑡2)∑ 𝑓(𝑡1)𝑓(𝑡2)

𝐿𝑡
=1 . 

Здесь  𝑉 – независимые СВ с нулевыми математическими ожиданиями и дисперси-

ями, равными 1. 
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П.4. Пример построения ВЛКР двумерной векторной СФ  

Пусть ковариационная функция 𝐾𝑋(𝑡1, 𝑡2) действительной ВСФ 

Х(t)=[𝑋1(𝑡), 𝑋2(𝑡)]
𝑇 , заданной на интервале [0, 𝑇] в дискретных точках 0,1,…,7 для  

Т=7, принадлежит пространству 𝐿2([0, 𝑇] × ([0, 𝑇]). Определим ортонормирован-

ную систему функций {𝑓𝑟(𝑡)}⁡(𝑟 = 1,… ,8) на основе вейвлетов Добеши "db1" (или 

вейвлетов Хаара) в виде (П.3.2).  

Введем СВ 𝐴𝑟 = ∑ ∫ 𝑓𝑟
𝑇

0
(𝑡)𝑋ℎ(𝑡)𝑑𝑡

2
ℎ=1 ⁡⁡⁡⁡⁡⁡(𝑟 = 1,2,… ,8). Ковариационные 

моменты СВ 𝐴𝑟 ⁡вычисляются по формулам 

𝑘µ = 𝑀[𝐴
°𝐴µ°̅̅̅̅ ] = ∑∑∫ ∫ 𝑓(𝑡1)

𝑇

0

𝑇

0

𝑓µ(𝑡2)𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

2

ℎ2

2

ℎ1

(, µ = 1,2, … ,8). 

В пространстве 𝐿2([0, 𝑇] × ([0, 𝑇]) определим двумерный ортонормирован-

ный вейвлет-базис в виде тензорного произведения двух вейвлет-базис вида (П.3.2) 

для случая, когда масштабирование по обеим переменным происходит одинаково. 

Тогда двумерная действительная функция 𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) раскладывается в вейвлет-ряд: 

𝐾ℎ1ℎ2
𝑥 (𝑡1, 𝑡2) = 𝑎𝑡ℎ1ℎ200(𝑡1)00(𝑡2)+∑ ∑ ∑ [ℎ𝑗𝑘𝑛

𝑡ℎ1ℎ2𝑗𝑘(𝑡1)𝑗𝑛(𝑡2)+

2𝑗−1

𝑛=0

2𝑗−1

𝑘=0

2

𝑗=0

 

+𝑏𝑗𝑘𝑛
𝑡ℎ1ℎ2

𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2) + 𝑑𝑗𝑘𝑛

𝑡ℎ1ℎ2
𝑗𝑘
(𝑡1)𝑗𝑛(𝑡2)] ,       

где 
𝑗𝑘
(𝑡) = √2𝑗(2𝑗𝑡 − 𝑘) ; 

𝑗𝑘
(𝑡) = √2𝑗 (2𝑗𝑡 − 𝑘). 

Определим параметры  kµ(, µ = 1,2,… ,8): 

𝑘11 = ∑ ∑ 𝑎𝑡ℎ1ℎ22
ℎ2

2
ℎ1

; ⁡⁡𝑘12 = ∑ ∑ ℎ000
𝑡ℎ1ℎ22

ℎ2
2
ℎ1

⁡⁡ ; 𝑘21 = ∑ ∑ 𝑏000
𝑡ℎ1ℎ22

ℎ2
2
ℎ1

;⁡  

𝑘22 = ∑ ∑ 𝑑000
𝑡ℎ1ℎ22

ℎ2
2
ℎ1

; 𝑘33 = ∑ ∑ 𝑑100
𝑡ℎ1ℎ2 ⁡; ⁡𝑘34 = ∑ ∑ 𝑑101

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

⁡ ;  

𝑘43 = ∑ ∑ 𝑑110
𝑡ℎ1ℎ2 ⁡; ⁡𝑘44 = ∑ ∑ 𝑑111

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

;𝑘55 = ∑ ∑ 𝑑200
𝑡ℎ1ℎ2 ⁡; ⁡𝑘56 = ∑ ∑ 𝑑201

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

⁡ ; 

𝑘57 = ∑ ∑ 𝑑202
𝑡ℎ1ℎ2 ⁡; ⁡𝑘58 = ∑ ∑ 𝑑203

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

; 𝑘65 = ∑ ∑ 𝑑210
𝑡ℎ1ℎ2 ⁡; ⁡𝑘66 = ∑ ∑ 𝑑211

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

⁡ ; 

𝑘67 = ∑ ∑ 𝑑212
𝑡ℎ1ℎ2 ⁡; ⁡𝑘68 = ∑ ∑ 𝑑213

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

; 𝑘75 = ∑ ∑ 𝑑220
𝑡ℎ1ℎ2 ⁡; ⁡𝑘76 = ∑ ∑ 𝑑221

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

; 

𝑘77 = ∑ ∑ 𝑑222
𝑡ℎ1ℎ2 ⁡; ⁡𝑘78 = ∑ ∑ 𝑑223

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

; 𝑘85 = ∑ ∑ 𝑑230
𝑡ℎ1ℎ2 ⁡; ⁡𝑘86 = ∑ ∑ 𝑑231

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

⁡ ;⁡  
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𝑘87 = ∑ ∑ 𝑑232
𝑡ℎ1ℎ2 ⁡; ⁡𝑘88 = ∑ ∑ 𝑑233

𝑡ℎ1ℎ22
ℎ2

2
ℎ1

2
ℎ2

2
ℎ1

. Остальные взаимные ковариационные мо-

менты равны нулю: 𝑘µ = 0. 

Определим функции 𝑧ℎ, =1,…,8; h=1,2: 

𝑧1ℎ(𝑡) = ∑ [𝑎𝑡ℎ𝑔
00
(𝑡) + 𝑏000

𝑡ℎ𝑔

00
(𝑡)]2

𝑔=1 ,𝑧2ℎ(𝑡) = ∑ [ℎ000
𝑡ℎ𝑔


00
(𝑡) + 𝑑000

𝑡ℎ𝑔

00
(𝑡)]2

𝑔=1 , 

𝑧3ℎ(𝑡) = ∑ ∑ [ℎ1𝑘0
𝑡ℎ𝑔


1𝑘
(𝑡) + 𝑑1𝑘0

𝑡ℎ𝑔

1𝑘
(𝑡)]1

𝑘=0
2
𝑔=1 ,  

𝑧4ℎ(𝑡) = ∑ ∑ [ℎ1𝑘1
𝑡ℎ𝑔


1𝑘
(𝑡) + 𝑑1𝑘1

𝑡ℎ𝑔

1𝑘
(𝑡)]1

𝑘=0
2
𝑔=1 ,  

𝑧5ℎ(𝑡) = ∑ ∑ [ℎ2𝑘0
𝑡ℎ𝑔


2𝑘
(𝑡) + 𝑑2𝑘0

𝑡ℎ𝑔

2𝑘
(𝑡)]3

𝑘=0
2
𝑔=1 ,  

𝑧6ℎ(𝑡) = ∑ ∑ [ℎ2𝑘1
𝑡ℎ𝑔


2𝑘
(𝑡) + 𝑑2𝑘1

𝑡ℎ𝑔

2𝑘
(𝑡)]3

𝑘=0
2
𝑔=1 , 

𝑧7ℎ(𝑡) = ∑ ∑ [ℎ2𝑘2
𝑡ℎ𝑔


2𝑘
(𝑡) + 𝑑2𝑘2

𝑡ℎ𝑔

2𝑘
(𝑡)]3

𝑘=0
2
𝑔=1 , 

𝑧8ℎ(𝑡) = ∑ ∑ [ℎ2𝑘3
𝑡ℎ𝑔


2𝑘
(𝑡) + 𝑑2𝑘3

𝑡ℎ𝑔

2𝑘
(𝑡)]3

𝑘=0
2
𝑔=1 . 

Вейвлет КР элементов 𝑋1(𝑡)⁡⁡и⁡⁡𝑋2(𝑡)  векторной СФ X(t) с матрицей ковари-

ационных функций 𝐾𝑋(𝑡1, 𝑡2) и математическим ожиданием 

 𝑚𝑋(𝑡) = [𝑚1(𝑡), 𝑚2(𝑡)]
𝑇 имеет вид  

𝑋ℎ(𝑡) = 𝑚ℎ(𝑡) + ∑ 𝑉
8
=1 𝑥ℎ(𝑡)⁡⁡(ℎ = 1,2),   

где 𝑉 – независимые СВ с нулевыми математическими ожиданиями и дисперсиями 

𝐷, 𝑥ℎ(𝑡) – координатные функции. 

Дисперсии 𝐷1 и 𝐷2 вычисляются по формулам: 

 𝐷1 = 𝑘11 = 𝑎
𝑡 ,⁡⁡⁡⁡𝑐21 = −

𝑘21

𝐷1
= −

𝑏000
𝑡

𝑎𝑡
,⁡⁡⁡⁡𝐷2 = 𝑘22 − 𝐷1|𝑐21|

2 = 𝑑000
𝑡 −

(𝑏000
𝑡 )

2

𝑎𝑡
. 

Далее вычисляем параметры 𝑐µ и дисперсии 𝐷⁡по рекуррентным формулам для 

=3,…,8 и µ=2,…,7: 

𝑐µ = −
1

𝐷µ
(𝑘µ − ∑ 𝐷𝑐̅̅ ̅̅

µ−1
=1 𝑐µ)⁡, 𝐷 = 𝑘 − ∑ 𝐷|𝑐|

2−1
=1 . 

Координатные функции  𝑥(𝑡) определяются последовательно по формулам: 

𝑥1ℎ(𝑡) =
1

𝐷1
𝑧1ℎ(𝑡);⁡⁡𝑥ℎ(𝑡) =

1

𝐷
{∑ 𝑑

−1
=1 𝑧ℎ(𝑡) + 𝑧ℎ(𝑡)}⁡( = 2,3, … ,8);  

𝑑 = 𝑐 + ∑ 𝑐µ𝑑µ⁡⁡⁡( = 1,2,… , − 2);⁡𝑑,−1 = 𝑐,−1.
−1
µ=+1   

Рассмотрим два частных случая: 

1) 𝑋1(𝑡)⁡⁡и⁡⁡𝑋2(𝑡)  не зависимы; 

2) 𝑋1(𝑡)⁡⁡и⁡⁡𝑋2(𝑡) поляризованы, т.е. 𝑋1(𝑡) = 𝑌(𝑡), 𝑋2(𝑡) = 𝑌(𝑡). 
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Если 𝑋1(𝑡)⁡⁡и⁡⁡𝑋2(𝑡)  не зависимы, т.е. 𝐾12
𝑥 (𝑡1, 𝑡2) = 𝐾21

𝑥 (𝑡1, 𝑡2) = 0, то пара-

метры 𝑘µ (, µ = 1,2,… ,8) равны:  

𝑘11 = 𝑎
𝑡11 + 𝑎𝑡22; ⁡⁡𝑘12 = ℎ000

𝑡11 + ℎ000
𝑡22 ; 𝑘21 = 𝑏000

𝑡11 + 𝑏000
𝑡22; ⁡⁡𝑘22 = 𝑑000

𝑡11 + 𝑑000
𝑡22 ; 

𝑘33 = 𝑑100
𝑡11 + 𝑑100

𝑡22 ; 𝑘34 = 𝑑101
𝑡11 + 𝑑101

𝑡22 ; 𝑘43 = 𝑑110
𝑡11 + 𝑑110

𝑡22; 𝑘44 = 𝑑111
𝑡11 + 𝑑111

𝑡22 ; 

𝑘55 = 𝑑200
𝑡11 + 𝑑200

𝑡22 ; 𝑘56 = 𝑑201
𝑡11 + 𝑑201

𝑡22 ; 𝑘57 = 𝑑202
𝑡11 + 𝑑202

𝑡22 ; 𝑘58 = 𝑑203
𝑡11 + 𝑑203

𝑡22 ; 

𝑘65 = 𝑑210
𝑡11 + 𝑑210

𝑡22 ; 𝑘66 = 𝑑211
𝑡11 + 𝑑211

𝑡22 ; 𝑘67 = 𝑑212
𝑡11 + 𝑑212

𝑡22 ; 𝑘68 = 𝑑213
𝑡11 + 𝑑213

𝑡22 ; 

𝑘75 = 𝑑220
𝑡11 + 𝑑220

𝑡22 ; 𝑘76 = 𝑑221
𝑡11 + 𝑑221

𝑡22 ; 𝑘77 = 𝑑222
𝑡11 + 𝑑222

𝑡22 ; 𝑘78 = 𝑑223
𝑡11 + 𝑑223

𝑡22 ; 

𝑘85 = 𝑑230
𝑡11 + 𝑑230

𝑡22 ; 𝑘86 = 𝑑231
𝑡11 + 𝑑231

𝑡22 ; 𝑘87 = 𝑑232
𝑡11 + 𝑑232

𝑡22 ; 𝑘88 = 𝑑233
𝑡11 + 𝑑233

𝑡22 . 

Остальные 𝑘µ = 0. 

Функции 𝑧ℎ, =1,…,8; h=1,2 в этом случае имеют вид: 

𝑧1ℎ(𝑡) = 𝑎
𝑡ℎℎ

00
(𝑡) + 𝑏000

𝑡ℎℎ
00
(𝑡), 𝑧2ℎ(𝑡) = ℎ000

𝑡ℎℎ
00
(𝑡) + 𝑑000

𝑡ℎℎ
00
(𝑡),  

𝑧3ℎ(𝑡) = ∑ [ℎ1𝑘0
𝑡ℎℎ

1𝑘
(𝑡) + 𝑑1𝑘0

𝑡ℎℎ
1𝑘
(𝑡)]1

𝑘=0 , 𝑧4ℎ(𝑡) = ∑ [ℎ1𝑘1
𝑡ℎℎ

1𝑘
(𝑡) + 𝑑1𝑘1

𝑡ℎℎ
1𝑘
(𝑡)]1

𝑘=0 ,  

𝑧5ℎ(𝑡) = ∑ [ℎ2𝑘0
𝑡ℎℎ

2𝑘
(𝑡) + 𝑑2𝑘0

𝑡ℎℎ
2𝑘
(𝑡)]3

𝑘=0 , 𝑧6ℎ(𝑡) = ∑ [ℎ2𝑘1
𝑡ℎℎ

2𝑘
(𝑡) + 𝑑2𝑘1

𝑡ℎℎ
2𝑘
(𝑡)]3

𝑘=0 , 

𝑧7ℎ(𝑡) = ∑ [ℎ2𝑘2
𝑡ℎℎ

2𝑘
(𝑡) + 𝑑2𝑘2

𝑡ℎℎ
2𝑘
(𝑡)]3

𝑘=0 ,⁡𝑧8ℎ(𝑡) = ∑ [ℎ2𝑘3
𝑡ℎℎ

2𝑘
(𝑡) + 𝑑2𝑘3

𝑡ℎℎ
2𝑘
(𝑡)]3

𝑘=0 . 

Если 𝑋1(𝑡)⁡⁡и⁡⁡𝑋2(𝑡) поляризованы, то сначала построим КРВЛ СФ Y(t): 

𝑌(𝑡) = 𝑚𝑌(𝑡) + ∑ 𝑉
𝑌𝑥

𝑌8
=1 (𝑡),  

где 𝑉
𝑌 – независимые гауссовские СВ с дисперсиями 𝐷

𝑌; 𝑥
𝑌(𝑡) – координатные 

функции. Имеем 

𝑘µ =∑∑∫ ∫ 𝑓(𝑡1)
𝑇

0

𝑇

0

𝑓µ(𝑡2)𝐾ℎ1ℎ2
𝑋 (𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

2

ℎ2

2

ℎ1

= 

= ∫ ∫ 𝑓(𝑡1)
𝑇

0

𝑇

0

𝑓µ(𝑡2)[
2𝐾𝑌(𝑡1, 𝑡2) + 2𝐾

𝑌(𝑡1, 𝑡2) + 2𝐾𝑌(𝑡1, 𝑡2)]𝑑𝑡1𝑑𝑡2 = 

= (+ )2 ∫ ∫ 𝑓

(𝑡1)

𝑇

0

𝑇

0
𝑓
µ
(𝑡2)𝐾

𝑌(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2 = (+ )2𝑘µ
𝑌 ⁡(, µ = 1,2, … ,8), 

𝐾𝑋(𝑡1, 𝑡2) = [
2𝐾𝑌(𝑡1, 𝑡2) 𝐾𝑌(𝑡1, 𝑡2)

𝐾𝑌(𝑡1, 𝑡2) 2𝐾𝑌(𝑡1, 𝑡2)
]. 

Тогда  

𝑧1
𝑋 (𝑡) = (+ )∫ ∫ 𝑓


(𝑠)

𝑇

0

𝑇

0

𝐾𝑌(𝑡, 𝑠)𝑑𝑠 = (+ )𝑧
𝑌(𝑡), 
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𝑧2
𝑋 (𝑡) = (+ )∫ ∫ 𝑓


(𝑠)

𝑇

0

𝑇

0

𝐾𝑌(𝑡, 𝑠)𝑑𝑠 = (+ )𝑧
𝑌(𝑡), 

𝑋1(𝑡) = 𝑚𝑌(𝑡) +∑𝑉
𝑋𝑥1

𝑋

8

=1

(𝑡),⁡⁡⁡𝑋2(𝑡) = 𝑚𝑌(𝑡) +∑𝑉
𝑋𝑥2

𝑋

8

=1

(𝑡) 

𝐷[𝑉
𝑋] = (+ )2𝐷[𝑉

𝑌], 𝑥1
𝑋 (𝑡) =

(+)

(+)2
𝑥
𝑌(𝑡), ⁡𝑥2

𝑋 (𝑡) =
(+)

(+)2
𝑥
𝑌(𝑡).⁡  

 

П.5. Сравнение вейвлет методов анализа динамической 

точности ИУC с точным решением 

Сравним решение задачи анализа динамической точности ИУC, полученное 

с применением приближенных вейвлет методов, с точным решением. Пусть инфор-

мационно-измерительная система на [𝑡0, 𝑇] описывается стохастическим дифферен-

циальным уравнением 

𝑥̈ + 2𝜀𝜔𝑥̇ + 𝜔2𝑥 = 𝑆 + 𝑛𝑡
уд
+𝑁𝑡

уд
 

с начальными условиями 𝑥(𝑡0) = 𝑥0, 𝑥̇(𝑡0) = 𝑥10. 

Здесь 𝜀, 𝜔 – постоянные параметры, 𝑆⁡–⁡полезное постоянное ускорение, 𝑛𝑡
уд

 – регу-

лярная часть ударного ускорения, 𝑁𝑡
уд

 – стохастическая часть ударного ускорения, 

представляющая собой скалярный белый шум 𝑉𝑡 интенсивности 𝑡
уд

: 

𝑡
уд
= √𝑛𝑡

уд
, 

где ⁡ – коэффициент, учитывающий соотношение между регулярным и стохасти-

ческим ускорениями. Функции 𝑛𝑡
уд

 имеет вид: 

𝑛𝑡
уд
= 𝑛𝑚𝛿(𝑡 − 𝑡уд). 

Пусть 𝑌1 = 𝑥, 𝑌2 = 𝑥̇ и 𝑡 ∈ [0, 𝑇]. Тогда ИУС описывается двумерной линей-

ной СтС: 

{
𝑌1̇ = 𝑌2,

𝑌2̇ = −𝜔
2𝑌1 − 2𝜀𝜔𝑌2 + 𝑆 + 𝑛𝑡

уд
+ 𝑉𝑡 .

 

Здесь СтП 𝑌(𝑡) = [𝑌1,⁡⁡⁡𝑌2]
𝑇, начальные условия: 𝑌1(0) = 𝑥(0) = 𝑌01,  𝑌2(0) =

𝑥̇(0) = 𝑌02. Введем обозначения: 
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𝑎 = [
0 1

−𝜔2 −2𝜀𝜔
],⁡⁡⁡𝑎0 = [

0
𝑆 + 𝑛𝑡

уд] ,⁡⁡⁡⁡𝑏 = [
0
1
]. 

 

 В этих обозначениях уравнения для составляющих математического ожида-

ния M[Y(𝑡)] = [𝑚1, 𝑚2]
Т имеют вид: 

{
𝑚̇1 = 𝑚2,

𝑚̇2 = 𝑎21𝑚1 + 𝑎22𝑚2 + 𝑎02(𝑡).
 

Начальные условия: 𝑚1(0) = 𝑀[𝑥(0)] = 𝑚01,⁡⁡⁡⁡𝑚2(0) = 𝑀[𝑥̇(0)] = 𝑚02⁡⁡. 

Точное решение для 𝑚1(𝑡)⁡имеет вид [20]: 

𝑚1(𝑡) =
2

0
∫ 𝑒−𝜀𝜔(𝑡−𝜏)𝑠𝑖𝑛
𝑡

𝑡0

0(𝑡 − 𝜏)(𝑆 + 𝑛𝑡
уд
)𝑑𝜏 = 

=
𝑆2

0
∫ 𝑒−𝜀𝜔(𝑡−𝜏)𝑠𝑖𝑛
𝑡

𝑡0

0(𝑡 − 𝜏)𝑑𝜏 +
2

0
∫ 𝑒−𝜀𝜔(𝑡−𝜏)𝑠𝑖𝑛
𝑡

𝑡0

0(𝑡 − 𝜏)𝑛𝑡
уд
𝑑𝜏, 

0 = 𝜔√1 − 𝜀
2. 

Введем обозначения: 

𝐼1
1 =

𝑆2

0
∫ 𝑒−𝜀𝜔(𝑡−𝜏)𝑠𝑖𝑛
𝑡

𝑡0
0(𝑡 − 𝜏)𝑑𝜏, 𝐼2

1 =
2

0
∫ 𝑒−𝜀𝜔(𝑡−𝜏)𝑠𝑖𝑛
𝑡

𝑡0
0(𝑡 − 𝜏)𝑛𝑡

уд
𝑑𝜏. 

Если 𝑛𝑡
уд
= 𝑛𝑚𝛿(𝑡 − 𝑡уд), то  

𝐼2
1 = {

0,⁡⁡⁡⁡если⁡𝑡 < 𝑡уд,

𝑛𝑚
2

0
𝑒−𝜀𝜔(𝑡−𝑡уд)𝑠𝑖𝑛0(𝑡 − 𝑡уд),⁡⁡⁡⁡если⁡𝑡 ≥ 𝑡уд.

 

 Для проведения сравнительного анализа ⁡вычислим параметр 𝑚1(𝑡) методом 

вейвлетов Хаара–Галеркина  с применением ИПО "СтС-ВЛ-Анализ" для разных 

значений J.  Точность методов будем оценивалась  двумя ошибками приближения 

для параметра 𝑚1(𝑡): 

1) ∆= max𝑖 |
𝑚𝑖
1−⁡𝑚𝑖

1ап

𝑚𝑖
1 |, 

2) 𝜎 =
1

𝑁
√∑ (𝑚𝑖

1 −⁡𝑚𝑖
1ап)

2𝑁
𝑖=1 , 

где 𝑚𝑖
1 – точное значение,⁡𝑚𝑖

1ап– приближенной значение. 

При вычислениях использовались исходные данные: 𝑛𝑚 = 8;⁡𝑡уд = 2,1875; 

𝜔 = 1; ⁡𝜀 = 0,7; 𝑡0 = 0; ⁡𝑇 = 10; 𝑆 = 1, 10, 20.⁡Результаты вычислительных экспери-
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ментов приведены на графиках П.5.1 – П.5.3. На графиках значения функций выво-

дились с интервалом 0,2.  

 

Рисунок П.5.1 – График  𝑚1(𝑡) для 𝑆 = 1 
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Рисунок П.5.2 – График  𝑚1(𝑡) для 𝑆 = 10 

 

Рисунок П.5.3 – График  𝑚1(𝑡) для 𝑆 = 20 
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В таблице П.5.1 приведены значения погрешностей 𝜀 и 𝜎 вычисления 𝑚1(𝑡) 

с примененем метода вейвлетов Хаара для  J=3 и J=5. 

Таблица П.5.1 

Метод S ∆ 𝜎 

МВХ (J=3) 1 0,58 0,0785 

МВХ (J=5) 0,0276 0,0086 

МВХ (J=3) 10 0,0945 0,0751 

МВХ (J=5) 0,0187 0,0083 

МВХ (J=3) 20 0,0673 0,0717 

МВХ (J=5) 0,0088 0,0081 

 

Вывод. При решении задачи Коши для системы обыкновенных дифференциальных 

функций, содержащих 𝛿 −функцию, метод вейвлетов Хаара–Галеркина позволяет 

получить приближенное решение с точностью, оцениваемой в норме 𝜎 , менее 10% 

при J=3, менее 1% при при J=5.  

 

П.6. Описание ИПО "СтС-ВЛ-Анализ"  

На основе методических результатов п. 3.1 и 3.2  разработано ИПО "СтС-

ВЛ-Анализ" в среде MATLAB, которое реализует алгоритмы нахождения матема-

тического ожидания, ковариационной матрицы линейной нестационарной СтС и 

линейной СтС с параметрическими шумами на основе метода вейвлетов Хаара. 

ИПО "СтС-ВЛ-Анализ" реализовано в виде подпрограмм-функций: 

1) MWHLSMY для вычисления математического ожидания линейной не-

стационарной СтС и линейной СтС с параметрическими шумами; 

2) MWHLSKY для вычисления ковариационной матрицы линейной неста-

ционарной СтС; 
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3) MWHLSSHKY для вычисления ковариационной матрицы линейной СтС 

с параметрическими шумами. 

  

 Подпрограмма-функция MWHLSMY имеет синтаксис вызова: 

[mw,tris]= MWHLSMY (T0,T,py,m0,J,NJ,Nris). 

 Исходные данные, задаваемые в числовом виде: 

1) T0 – начальный момент времени 𝑡0; 

2) T – конечный момент времени; 

3) py – размерность p вектора состояния системы Y(t); 

4) m0(py) – вектор размерности p с начальными значениями 𝑚0  вектора  

математического ожидания 𝑚𝑌; 

5) J – максимальный уровень вейвлет разложения; 

6) 𝑁𝐽 = 2 ∙ 2𝐽⁡–⁡количество базисных вейвлет функций; 

7) Nris – количество значений математических ожиданий 𝑚ℎ(𝑡)⁡элементов 

вектора состояния системы Y(t), выводимых на печать.  

 Выходные данные выдаются в матричном виде: 

1) mw(py, Nris) – матрица значений математических ожиданий составля-

ющих вектора состояния системы Y(t) в точках  𝑡𝑗 ⁡для⁡𝑗 = 1,2,… , 𝑁𝑟𝑖𝑠; 

2) tris(Nris) - вектор значений моментов времени 𝑡𝑗 = 𝑡0 + (j −

1)∆𝑡⁡⁡⁡для⁡⁡𝑗 = 1,2,… ,𝑁𝑟𝑖𝑠; ⁡∆𝑡 =
𝑇−𝑡0

(𝑁𝑟𝑖𝑠−1)
.  

 Исходные данные в аналитическом в виде задаются в виде пользовательских 

функций-подпрограмм: 

1) набор функций-подпрограмм fahk для задания 𝑎ℎ𝑘(𝑡)(ℎ, 𝑘 = 1,2,… , 𝑝); 

2) набор функций-подпрограмм fa0h для задания 𝑎0ℎ(𝑡)(ℎ = 1,2,… , 𝑝). 

 Подпрограмма-функции MWHLSMY осуществляет: 

1) ввод исходных данных в числовом и аналитическом виде; 

2) вычисление интегралов от вейвлетов Хаара; 
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3) определение коэффициентов вейвлет-разложения функций 𝑎ℎ𝑘̅̅ ̅̅ ̅(𝑡)𝑝𝑖(𝑡),

𝑎ℎ𝑘̅̅ ̅̅ ̅(𝑡), 𝑎0ℎ̅̅ ̅̅ ̅̅ (𝑡)⁡⁡⁡⁡по ортонормированному базису вейвлетов Хаара с применением 

стандартной функции wavedec; . 

4) составление и решение с применением стандартной функции MATLAB 

системы линейных алгебраических уравнений для определения коэффициентов 

chi; 

5) вычисление составляющих 𝑚̅ℎ вектора математического ожидания сто-

хастического процесса Y̅(t); 

6) вывод результатов в числовом виде. 

  

 Подпрограмма-функция MWHLSKY для вычисления ковариационной мат-

рицы линейной нестационарной СтС имеет синтаксис вызова: 

[Кw,tris]= MWHLSMКY (T0,T,py,nv,K0,J,NJ,Nris). 

 Исходные данные, задаваемые в числовом виде: 

1) T0 – начальный момент времени 𝑡0; 

2) T – конечный момент времени; 

3) py – размерность p вектора состояния системы Y(t); 

4) nv – размерность 𝑛𝑣 белого шума; 

5) K0(py,py) –квадратная матрица размерности 𝑝 × 𝑝 с начальными значе-

ниями 𝐾0 ковариационной матрицы вектора состояния системы Y(t); 

6) J – максимальный уровень вейвлет разложения; 

7) 𝑁𝐽 = 2 ∙ 2𝐽⁡–⁡количество базисных вейвлет функций; 

8) Nris – количество значений элементов ковариационной матрицы векто-

ра состояния системы Y(t), выводимых на печать.  

 Выходные данные выдаются в матричном виде: 

1) Kw(py,py,Nris) – матрица значений элементов ковариационной матрицы 

вектора состояния системы Y(t) в точках  𝑡𝑗 ⁡для⁡𝑗 = 1,2,… ,𝑁𝑟𝑖𝑠; 

2) tris(Nris) - вектор значений моментов времени  

𝑡𝑗 = 𝑡0 + (j − 1)∆𝑡⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝑁𝑟𝑖𝑠;⁡∆𝑡 =
𝑇−𝑡0

(𝑁𝑟𝑖𝑠−1)
.  
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 Исходные данные в аналитическом в виде задаются в виде пользовательских 

функций-подпрограмм: 

1) набор функций-подпрограмм fahk для задания 𝑎ℎ𝑘(𝑡)(ℎ, 𝑘 = 1,2,… , 𝑝); 

2) набор функций-подпрограмм fbhr для задания 𝑏ℎ𝑘(𝑡) 

(ℎ = 1,2,… , 𝑝; 𝑟 = 1,2,… , 𝑛𝑣); 

3) набор функций-подпрограмм fnurs для задания 𝑟𝑠(𝑡)(𝑟, 𝑠 = 1,2,… , 𝑛𝑣). 

 Подпрограмма-функции MWHLSKY осуществляет: 

1) ввод исходных данных в числовом и аналитическом виде; 

2) вычисление интегралов от вейвлетов Хаара; 

3) определение коэффициентов вейвлет-разложения функций ahk̅̅ ̅̅ (t)pi(t),

ahk̅̅ ̅̅ (t)⁡, 𝐵𝑟1𝑟2(𝑡)⁡по ортонормированному базису вейвлетов Хаара с применением 

стандартной функции wavedec; 

4) cоставление системы линейных алгебраических уравнений для определе-

ния коэффициентов 𝑐𝑖
𝑟1𝑟2 и ее решение с применением стандартной функции 

MATLAB; 

5) вычисление элементов K̅r1r2  ковариационной матрицы стохастического 

процесса Y̅(t); 

6) вывод результатов в числовом виде. 

 

 Подпрограмма-функция MWHLSSHKY для вычисления ковариационной 

матрицы линейной СтС с параметрическими шумами имеет синтаксис вызова: 

[Кw,tris]=MWHLSSHKY(T0,T,py,nv,K0,J,NJ,Nris). 

 Исходные данные, задаваемые в числовом виде: 

1) T0 – начальный момент времени 𝑡0; 

2) T – конечный момент времени; 

3) py – размерность p вектора состояния системы Y(t); 

4) nv – размерность 𝑛𝑣 белого шума; 

5) K0(py,py) –квадратная матрица размерности 𝑝 × 𝑝 с начальными значе-

ниями 𝐾0 ковариационной матрицы вектора состояния системы Y(t); 

6) J – максимальный уровень вейвлет разложения; 
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7) 𝑁𝐽 = 2 ∙ 2𝐽⁡–⁡количество базисных вейвлет функций; 

8) Nris – количество значений элементов ковариационной матрицы векто-

ра состояния системы Y(t), выводимых на печать.  

 Выходные данные выдаются в матричном виде: 

1) Kw(py,py,Nris) – матрица значений элементов ковариационной матрицы 

вектора состояния системы Y(t) в точках  𝑡𝑗 ⁡для⁡𝑗 = 1,2,… ,𝑁𝑟𝑖𝑠; 

2) tris(Nris) - вектор значений моментов времени  

𝑡𝑗 = 𝑡0 + (j − 1)∆𝑡⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝑁𝑟𝑖𝑠;⁡∆𝑡 =
𝑇−𝑡0

(𝑁𝑟𝑖𝑠−1)
.  

 Исходные данные в аналитическом в виде задаются в виде пользовательских 

функций-подпрограмм: 

1) набор функций-подпрограмм fahk для задания 𝑎ℎ𝑘(𝑡)(ℎ, 𝑘 = 1,2,… , 𝑝); 

2) набор функций-подпрограмм fbihr для задания 𝑏𝑖ℎ𝑘(𝑡) 

(𝑖 = 0,1,2,… , 𝑝; ℎ = 1,2,… , 𝑝; 𝑟 = 1,2,… , 𝑛𝑣); 

3) набор функций-подпрограмм fnurs для задания 𝑟𝑠(𝑡)(𝑟, 𝑠 = 1,2,… , 𝑛𝑣). 

 Подпрограмма-функции MWHLSSHKY осуществляет: 

1) ввод исходных данных в числовом и аналитическом виде; 

2) вычисление интегралов от вейвлетов Хаара; 

3) вызов подпрограммы MWHLSMY для вычисления математического 

ожидания вектора состояния системы Y(t);  

4) определение коэффициентов вейвлет-разложения функций 
)()(,1

tpta ilr , 

)(,1
ta lr , 

)()(,2
tpta ilr , 
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ta lr , 
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, 21
tB rr , 
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tptBtB irrrr

 
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
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21 , tptB i

l

rr



⁡⁡(i,k,𝑟1,𝑟2, 𝑖1, 𝑖2=1,2,…,p) по ортонормиро-

ванному базису вейвлетов Хаара с применением стандартной функции wavedec; 

5) составление системы линейных алгебраических уравнений для определе-

ния коэффициентов 1 2r r

sc  и ее решение с применением стандартной функции 

MATLAB; 

6) вычисление элементов ковариационной матрицы стохастического про-

цесса Y̅(t); 
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7) вывод результатов в числовом виде. 

 

П.7. Сравнительный анализ ММСМ с МНА и МЭА 

На примере двумерной  нелинейной СтС, для которой имеется точное реше-

ние, проведем сравнительный анализ ММСМ с МНА и МЭА [20]. 

Пусть двумерный стохастический процесс Y(t) описывается системой стоха-

стических дифференциальных уравнений Ито вида (3.3.1) 

𝑑𝑌1 = −𝑌1𝑌2𝑑𝑡,  𝑑𝑌2 = −𝑌2𝑑𝑡 + 𝑑𝑊0,⁡⁡⁡⁡⁡𝑡 ≥ 0, 𝑌(0) = 𝑌0, 

где 𝑌0 – гауссовский случайный вектор с параметрами 

𝑚0 = [
0,5
0,5
],⁡⁡⁡𝐾0 = [

0,1 0
0 0,1

], 

𝑊0 − одномерный стандартный винеровский процесс,  = 5.  

Точное выражение для моментов 𝑘0(𝑡) = 𝑀𝑌1
𝑘(𝑡) имеет вид [20] 

𝑘0(𝑡) = 𝑘0(0) exp(
𝑘2𝐷(𝑡)

2
− 𝑘𝑚(𝑡)). 

Здесь 𝑚(𝑡)⁡⁡и⁡𝐷(𝑡) – математическое ожидание и дисперсия случайного процесса 

(𝑡) = ∫ 𝑌2
𝑡

0
()𝑑, определяемые по формулам 

𝑚(𝑡) =
02(0)(1 − exp(−𝑡))


, 

𝐷(𝑡) =
𝐾0(2,2)

2
−
1,5

3
+
𝑡

2
−
𝐾0(2,2) 𝑒𝑥𝑝(−𝑡) (2 − 𝑒𝑥𝑝(−𝑡))

2

+
𝑒𝑥𝑝(−𝑡) (4 − 𝑒𝑥𝑝(−𝑡))

23
⁡, 

где ⁡02(0)=1,25. 

 Плотность вероятности 𝑓1(𝑦, 𝑡) СтП Y(t) аппроксимируется конечным отрез-

ком ее ортогонального разложения по полиномам Эрмита с учетом моментов до 

четвертого порядка c весом 𝜔1(𝑦) −⁡ нормальной плотностью с математическим 

ожиданием m и ковариационной матрицей K СтП Y(t). С помощью ММСМ были 

рассчитаны математическое ожидание m, ковариационная функция K и старшие 
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моменты 21,22 для уточнения m, K. Для проведения сравнительного анализа па-

раметры m, K были вычислены также с применением МНА и МЭА. 

Результаты вычислительных экспериментов приведены в таблице П.7.1 и на 

рисунке П.7.1. 

 

Таблица П.7.1 

Момент Метод t 

0 0,1 0,2 0,4 0,6 

10 = 𝑚1 ТР 0,5 0,482 0,473 0,467 0,466 

МНА 0,5 0,482 0,473 0,467 0,465 

МЭА 0,5 0,482 0,473 0,467 0,465 

ММСМ 0,5 0,482 0,473 0,467 0,466 

𝐷1=𝐾11 ТР 0,1 0,096 0,095 0,098 0,102 

МНА 0,1 0,096 0,092 0,091 0,093 

МЭА 0,1 0,096 0,092 0,091 0,093 

ММСМ 0,1 0,096 0,095 0,098 0,102 

Примечание. ТР – точное решение, МНА – метод нормальной аппроксимации, МЭА 

– метод эллипсоидальной аппроксимации,ММСМ– модифицированный моментно-

семиинвариантный метод. 

 

 

Рисунок П.7.1 – График 𝐷1=𝐾11 

Результаты сравнительного анализа, приведенные в таблице П.7.1 и на ри-

сунке П.7.1, показывают: 
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– высокую точность вычисления математического ожидания 𝑚1, получен-

ную с применением ММСМ, МНА, МЭА; 

– высокую точность вычисления  дисперсии 𝐷1, полученную с помощью 

ММСМ с учетом старших начальных моментов, присутствующих в правых частях 

уравнений для m и K (около 0,1%). 

 

П.8. Описание ИПО "СтС-Анализ-ММСМ"  

Автором разработано инструментально-программное обеспечение "СтС-

Анализ-ММСМ", которое реализует алгоритм 3.3.1 и осуществляет: 

- ввод исходных данных в матричном и аналитическом виде, 

- автоматическое составление замкнутой системы дифференциальных урав-

нений для искомых параметров;  

- численные вычисления с использованием стандартных программ 

MATLAB, 

- получение результатов в числовом виде. 

Исходные данные для ПО "СтС-Анализ-ММСМ", задаваемые в числовом 

или матричном виде: 

-начальный момент времени 𝑡0; 

-конечный момент времени T; 

-размерность p случайного процесса Y; 

- параметры набора старших моменты вида 𝑀(𝑌𝑗1
𝑙1…𝑌𝑗𝑘

𝑙𝑘) в виде двух векто-

ров [𝑗1, … , 𝑗𝑘]
т и [𝑙1, … , 𝑙𝑘]

т; 

- начальные⁡значения⁡𝑚(𝑡0) = 𝑚0 = 𝑀𝑌(𝑡0)⁡⁡⁡ в виде вектора; 

- начальные⁡значения⁡𝐾(𝑡0) = 𝐾0 = 𝑀(𝑌(𝑡0) − 𝑚0)(𝑌(𝑡0) − 𝑚0)
т в виде 

матрицы; 

- начальные значения старших моментов 𝑀(𝑌𝑗1
𝑙1(𝑡0)…𝑌𝑗𝑘

𝑙𝑘(𝑡0)) в виде матри-

цы. 
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Исходные данные в аналитическом в виде для ПО "СтС-Анализ-ММСМ", 

задаваемые в виде пользовательских функций-подпрограмм: 

- функция 𝑎(𝑦, 𝑡); 

- полиномы 𝑝(y); 

- линейные комбинации 𝑐 = 𝑀𝑞(𝑦) = 𝑞() моментов СтП Y(t), получен-

ные из 𝑞(𝑦)⁡заменой всех одночленов 𝑦1
𝑘1 …𝑦𝑝

𝑘𝑝
 соответствующими моментами 

𝑘1,…,𝑘𝑝; 

- плотность 𝜔1(𝑦); 

- функция (; 𝑦, 𝑡)⁡при⁡ = 0; 

- вектор функций  
1
= [

𝜕(;𝑦,𝑡)

𝜕(𝑖1)
; … ;

𝜕(;𝑦,𝑡)

𝜕(𝑖𝑝)
]т при  = 0; 

- матрица функций 
2
= [

𝜕2(;𝑦,𝑡)

𝜕(𝑖𝑘)𝜕(𝑖𝑗)
]𝑘,𝑗=1
𝑝

 при  = 0; 

- набор функций 
𝜕ℎ1+…+ℎ𝑘

𝜕(𝑖𝑗1)
ℎ1…𝜕(𝑖𝑗𝑘)

ℎ𝑘
(; 𝑦, 𝑡) при  = 0⁡(ℎ1 = 0,… , 𝑙1; … ;⁡ℎ𝑘 =

0,… , 𝑙𝑘) для вычисления набора старших начальных моментов 𝑀(𝑌𝑗1
𝑙1 …𝑌𝑗𝑘

𝑙𝑘). 

В состав ПО "СтС-Анализ-ММСМ" входят программные модули, реализу-

ющие алгоритм 3.3.1. Результаты выдаются в табличном виде. 

 

П.9. Анализ точности информационно-управляющей системы 

при продольно-поперечном УВ 

Рассмотрим прецизионную информационно-управляющую систему (ИУС) 

третьего порядка в условиях УВ, описываемую следующими уравнениями Ито 

[19,20]: 

{
 
 

 
 𝑌1̇ = 𝑌2,

𝑌2̇ = −𝜔с
2𝑌1 − 2𝜀𝜔с𝑌2 + (𝑆 + 𝑛𝑡

уд
+ 𝑉𝑡

уд
)(𝑐𝑜𝑠𝛼 + 𝑌1𝑠𝑖𝑛𝛼),

𝑌3̇ = 𝑌1,

𝑌𝑖(𝑡0) = 𝑌𝑖0(𝑖 = 1,2,3).
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Здесь 𝑌𝑖– составляющие СтП 𝑌(𝑡) = [𝑌1,⁡⁡⁡𝑌2, 𝑌3]
𝑇; 𝜀, 𝜔с, 𝑆 – параметры ИУС; 𝑛𝑡

уд
 – 

детерминированная функция в виде прямоугольного ударного импульса в момент 

времени 𝑡уд; где 𝛼⁡– угол, образованный ускорением (𝑆 + 𝑛𝑡
уд
+ 𝑉𝑡

уд
) с продольной 

осью ИУС; 𝑉𝑡
уд

 – белый шум с интенсивностью 𝑡
уд

, определяющий стохастический 

прямоугольный ударный импульс. Система является линейной системой с парамет-

рическими шумами: 

𝑌̇ = 𝑎0
уд
+ 𝑎

уд
𝑌 + (𝑏0

уд
+ 𝑏1

уд
𝑌)𝑉𝑡

уд
, 

где 𝑌 = [𝑌1 𝑌2 𝑌3]
𝑇, 𝑎0

уд
= [

0
(𝑆 + 𝑛𝑡

уд
)𝑐𝑜𝑠𝛼

0

],⁡⁡⁡𝑎
уд
= [

0 1 0
−𝑡

уд
−2𝜀𝜔с 0

1 0 0
], 

𝑏0
уд
= [

0
𝑐𝑜𝑠𝛼
0
] , 𝑏1

уд
= [

0
𝑠𝑖𝑛𝛼
0
] , 𝑡

уд
= 𝜔𝑐

2 − (𝑆 + 𝑛𝑡
уд
)𝑠𝑖𝑛𝛼. 

Уравнения для математических ожиданий 𝑚𝑖 = 𝑀[𝑌𝑖] и элементов ковариа-

ционной матрицы 𝑘𝑖𝑗 = 𝑀[(𝑌𝑖 −𝑚𝑖)(𝑌𝑗 −𝑚𝑗)] имеют вид: 

{
 

 
𝑚̇1 = 𝑚2,

𝑚̇2 = 𝑎21
уд
𝑚1 + 𝑎22

уд
𝑚2 + 𝑎02

уд(𝑡)

𝑚̇3 = 𝑚1

𝑚𝑖(𝑡0) = 𝑚𝑖0(𝑖 = 1,2,3);

 

{
 
 
 
 

 
 
 
 

𝑘̇11 = 2𝑘12,

𝑘̇12 = 𝑎21
уд
𝑘11 + 𝑎22

уд
𝑘12 + 𝑘22,

𝑘̇13 = 𝑘11 + 𝑘23,

𝑘̇22 = 2𝑎21
уд
𝑘12 + 2𝑎22

уд
𝑘22 + 𝑡

уд
𝑐𝑜𝑠2𝛼 + 𝑡

уд
𝑚1𝑠𝑖𝑛2𝛼 + 𝑡

уд
(𝑚1 + 𝑘11)𝑠𝑖𝑛

2𝛼,

𝑘̇23 = 𝑘12 + 𝑎21
уд
𝑘13 + 𝑎22

уд
𝑘23,

𝑘̇33 = 2𝑘13,

𝑘𝑖𝑗(𝑡0) = 𝑘𝑖𝑗0⁡(𝑖, 𝑗 = 1,2,3);

 

На рис. П.9.1 – П.9.4 приведены типовые графики для продольно-

поперечных УВ. Для вычислительных экспериментов задавались 𝛼 = 45°, 225°; 

𝜀 = 0,7;𝜔𝑐 = 1; ⁡𝑆 = 1; детерминированный удар с 𝑛𝑡
уд

 и стохастический удар 𝑡
уд
⁡в 

𝑡уд = 0,135: 

𝑛𝑡
уд
= {

10, если⁡𝑡 ∈ [𝑡уд; ⁡𝑡уд + 1],

0, если⁡𝑡[𝑡уд; ⁡𝑡уд + 1].⁡⁡
𝑡
уд
= {

6, если⁡𝑡 ∈ [𝑡уд; ⁡𝑡уд + 1],

0, если⁡𝑡[𝑡уд; ⁡𝑡уд + 1].⁡⁡
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Рисунок. П.9.1 – Графики  𝑚1, 𝑚2, 𝑚3  

при 𝛼 = 45°  

Рисунок П.9.2 – Графики  𝑘11, 𝑘22, 𝑘33  

при 𝛼 = 45°   

  

Рисунок. П.9.3 – Графики  𝑚1, 𝑚2, 𝑚3  

при 𝛼 = 225° 

Рисунок. П.9.4 – Графики  𝑘11, 𝑘22, 𝑘33  

при 𝛼 = 225° 

 

Вывод. Имеет место эффект накопления систематических и случайных оши-

бок по переменной 𝑌3.  

 

П.10. Вейвлет с.к. линейная оптимизация при ударных 

воздействиях 

Найти с.к. оптимальный линейный фильтр, предназначенный для воспроиз-

ведения сигнала  

𝑊(𝑠) = 𝑈1 + 𝑈2𝛿(𝑠 − 𝑠
∗)    (П.10.1) 

по результатам наблюдения суммы этого сигнала и некоррелированной помехи, т.е. 

𝑍(𝑡) = 𝑈1 + 𝑈2𝛿(𝑡 − 𝑡
∗) + 𝑋(𝑡).   (П.10.2) 
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Наблюдения производятся в течение интервала времени длительностью Т, предше-

ствующему данному моменту 𝑠⁡(𝑠 ≥ 𝑇). Период наблюдения сигнала 𝑊(𝑠) равен S,  

𝑠, 𝑠∗ ∈ 𝑆. Параметры 𝑡, ⁡𝑡∗ ∈ [𝑠 − 𝑇, 𝑠]⁡.⁡Случайная функция 𝑋(𝑡) задана математиче-

ским ожиданием, равным 0, и ковариационной функцией  

𝐾𝑋(𝑡, ) = Dexp(−|𝑡 − |). 

 𝑈1, 𝑈2 – случайные величины с нулевыми математическими ожиданиями, не корре-

лированные со случайной функцией X(t), 𝑀[𝑈𝑝𝑈𝑞̅̅̅̅ ] = 𝛾𝑝𝑞.(p,q=1,2). 

Построим с.к. оптимальный линейный оператор 𝐴𝑡 для воспроизведения 

сигнала W(s), заданного формулой (П.10.1), по результатам наблюдения сигнала 

Z(t), заданного формулой (П.10.2), определим с.к. оценку η качества оператора 𝐴𝑡⁡ и 

с.к. оценку сигнала 𝑊∗(𝑠). Для этого выполним алгоритмы 4.2.1.1 и 4.2.1.2. При 

вычислениях будем использовать ортонормированный базис Хаара. Поэтому пе-

рейдем от переменной t∈ [s − T, s] к переменной 𝑡̅ ∈ [0,1] с помощью замены пере-

менной 𝑡̅ =
𝑡−(𝑠−𝑇)

𝑠−(𝑠−𝑇)
=

𝑡−(𝑠−𝑇)

𝑇
. Далее в примере для простоты записи будем считать, 

что 𝑡̅ = 𝑡, ̅ = . Уравнение для с.к. оптимального линейного оператора 𝐴𝑡 имеет 

вид  

𝐴𝑡[𝐾𝑋(𝑡, 𝜏)] = ∑ 𝛾𝑝𝑞
2
𝑝,𝑞=1 {𝜁𝑝(𝑠) − 𝐴𝑡[𝜉𝑝(𝑡)]}𝜉𝑞(𝜏),   

т.к. Y(s)=0 и, как следствие, 𝐾𝑌𝑋(𝑠, ) = 0. Отсюда 

𝑎𝑡𝑢00(𝑠)00
𝑡 () + 𝑏000

𝑡 𝑣00(𝑠)00
𝑡 () + 𝑑000

𝑡 𝑣00(𝑠)00
𝑡 () + ∑ ∑ ∑ ℎ𝑗𝑘𝑛

𝑡2𝑗−1
𝑛=0

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 𝑢𝑗𝑘(𝑠)𝑗𝑛
𝑡 () =  

= ∑ 𝛾𝑝𝑞
2
𝑝,𝑞=1 {𝜁𝑝(𝑠) − 𝑎𝑝


𝑢00(𝑠) − 𝑑𝑝00


𝑣00(𝑠)} ×    

× (𝑎𝑞


00
𝑡 () + ∑ ∑ 𝑑𝑞𝑗𝑘

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 
𝑗𝑘
𝑡 ())  

Тогда СЛАУ для определения неизвестных функций 𝑢00(𝑠), 𝑣00(𝑠), 𝑢𝑗𝑘(𝑠)⁡⁡⁡⁡   

(j = 1,2,… , 𝐽𝑡; ⁡k = 0,1,… ,2𝑗−1) для заданного значения переменной s имеет вид: 

{
 
 
 

 
 
 𝑎𝑡𝑢00(𝑠) + 𝑏000

𝑡 𝑣00(𝑠) = ∑ 𝛾𝑝𝑞𝑝𝑎𝑞

,2

𝑝,𝑞=1

𝑑000
𝑡 𝑣00(𝑠) + ℎ000

𝑡 𝑢00(𝑠) = ∑ 𝛾𝑝𝑞𝑝𝑑𝑞00

,2

𝑝,𝑞=1

∑ ℎ𝑗𝑘𝑛
𝑡2𝑗−1

𝑘=0 𝑢𝑗𝑘(𝑠) = ∑ 𝛾𝑝𝑞𝑝𝑑𝑞𝑗𝑛

⁡(j = 1,2, … , 𝐽𝑡; ⁡k = 0,1, … , 2𝑗 − 1),2

𝑝,𝑞=1

1 = 𝜁1(𝑠)−𝑎1

𝑢00(𝑠)−𝑑100


𝑣00(𝑠),

2 = 𝜁2(𝑠)−𝑎2

𝑢00(𝑠)−𝑑200


𝑣00(𝑠).

   

Здесь для удобства введены переменные 
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𝑝 = 𝜁𝑝(𝑠) − 𝑎𝑝

𝑢00(𝑠) − 𝑑𝑝00


𝑣00(𝑠)⁡(𝑝 = 1,2)⁡.     

 

С.к. оценка  качества с.к. оптимального линейного оператора 𝐴𝑡 вычисля-

ется по формуле: 

 = (
11

1
(𝑠) + 

21

2
(𝑠)) (

1
(𝑠) − 𝑎1


𝑢00(𝑠) − 𝑑100


𝑣00(𝑠)) + 

+(
12

1
(𝑠) + 

22

2
(𝑠))⁡(

2
(𝑠) − 𝑎2


𝑢00(𝑠) − 𝑑200


𝑣00(𝑠)), 

где  ⁡𝜁1(𝑠) = 1, ⁡⁡𝜁2(𝑠) = 𝛿(𝑠 − 𝑠∗) ≈ 
00
(𝑠)

00
(𝑠∗) + ∑ ∑ 

𝑗𝑘
(𝑠)

𝑗𝑘
(𝑠∗)2𝑗−1

𝑘=0
𝐽𝑠

𝑗=0 ⁡.  

С.к. оптимальная оценка 𝑊∗(𝑠) сигнала W(s) вычисляется по формуле: 

𝑊∗(𝑠) = 𝐴𝑡𝑍(𝑡) =∑𝑈𝑟(𝑎𝑟

𝑢00(𝑠) + 𝑑𝑟00


𝑣00(𝑠))

2

𝑟=1

+ 

+∑ 𝑉(𝑑00
𝑥𝐿𝑡

=1 𝑣00(𝑠) + +∑ ∑ 𝑎𝑗𝑘
𝑥 𝑢𝑗𝑘(𝑠))

2𝑗−1
𝑘=0

𝐽𝑡

𝑗=0 . 

 Вычисления выполнялись с применением ИПО " Синтез-ВЛ" для вейвлет ба-

зиса Хаара с максимальным уровнем разрешения 𝐽𝑡 = 2 при 𝑡 ∈ [𝑠 − 𝑇, 𝑠] и для 

вейвлет базиса Хаара с максимальным уровнем разрешения 𝐽𝑠 = 2 при 𝑠 ∈ 𝑆. При 

вычислениях использовались 

1) исходные данные: 

 = 1, 𝑇 = 8, 𝑠 ∈ [11,18], ⁡𝑡∗ = (𝑠 − 𝑇) +
3𝑇

2 ∗ 2𝐽
𝑡 , ⁡𝑠

∗ = 𝑠; 

2) вейвлет разложение 𝛿 −функции (см. приложение П.3):  

𝛿(𝑡 − 𝑡∗) = 
00
(𝑡)

00
(𝑡∗) + ∑ ∑ 

𝑗𝑘
(𝑡)

𝑗𝑘
(𝑡∗)2𝑗−1

𝑘=0
𝐽𝑡

𝑗=0 , 

𝛿(𝑠 − 𝑠∗) = 
00
(𝑠)

00
(𝑠∗) + ∑ ∑ 

𝑗𝑘
(𝑠)

𝑗𝑘
(𝑠∗)2𝑗−1

𝑘=0
𝐽𝑠

𝑗=0 . 

 Вычислительные эксперименты показали, что уже при 𝐽𝑡 = 2⁡ и 𝐽𝑠 = 2 с.к. 

оптимальная оценка  качества с.к. оптимального линейного оператора 𝐴𝑡 равна 

0,7973 при значениях сигнала 𝑊(𝑠) ∈ [−12; 10]. На рисунке П.10.11 изображены 

графики реализации сигнала 𝑊(𝑠) и его оценки 𝑊∗(𝑠) при 𝑠 ∈ [11,18]. На рисунке 

4.3.2 изображен график с.к. оценки (s)  качества оператора 𝐴𝑡 при 𝑠 ∈ [11,18]. 
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Рисунок П.10.11 – Реализация сигнала 𝑊(𝑠) и его оценка 𝑊∗(𝑠) 

 

Рисунок П.10.12 – С.к. оценка (s) качества оператора 𝐴𝑡  

 

П.11. Описание ИПО "Синтез-ВЛ" 

На основе методических результатов п. 4.2 разработано ИПО "Синтез-ВЛ" в 

среде MATLAB, которое реализует алгоритм построения вейвлет с.к. оптимального 



155 

 

 

линейного оператора в случае линейной зависимости сигнала от параметров и адди-

тивной помехи (алгоритмы 4.2.1.1 и 4.2.1.2) и осуществляет: 

1) ввод исходных данных: набор подпрограмм-функций, задающих струк-

турные функции ξ1(𝑡), . . . , ξN(𝑡), ζ1(𝑠), … , ζN(s); ковариационные функции KX(t, ) и 

KYX(s, ); область определения T наблюдения СтП Z(t) в виде отрезка [t0, t1]; об-

ласть определения S оценки СтП W(t) в виде отрезка [s0, s1]; максимальные уровни 

вейвлет разложения 𝐽𝑡 и 𝐽𝑠; 

2) одномерное вейвлет разложение структурных функций 

ξ1(𝑡), . . . , ξN(𝑡), ζ1(𝑠), … , ζN(s) по вейвлет базису Хаара с применением стандартной 

функции wavedec; 

3) двумерное вейвлет разложение ковариационных функций 𝐾𝑋(𝑡, ) и 

𝐾𝑌𝑋(𝑠, )⁡по вейвлет базису Хаара с применением стандартной функции wavedec2; 

4) автоматическое составление и решение СЛАУ  для вычисления парамет-

ров: 𝑎𝑗𝑘
𝑢 , 𝑑𝑗𝑘𝑖𝑙

𝑢 ⁡⁡, 𝑎00
𝑣 , 𝑑00𝑖𝑛

𝑣 ⁡ (i = 1,… , Js; ⁡n = 0,1,… , 2i − 1; j = 1,… , Jt; k =

0,1,… , 2j − 1); 

5) вывод результатов в числовом виде. 

 

Исходные данные, задаваемые в числовом виде: 

1) начальный момент времени наблюдения сигнала T0=𝑡0; 

2) конечный момент времени наблюдения сигнала T=𝑡1; 

3) начальный момент времени оценки сигнала S0=𝑠0; 

4) конечный момент времени оценки сигнала SS=𝑠1; 

5) максимальные уровни вейвлет разложения 𝐽𝑡 = 𝐽𝑡 , 𝐽𝑠 = 𝐽𝑠; 

6) количество базисных вейвлет функций ⁡𝑁𝑡 = 2 ∗ 2𝐽
𝑡
, 𝑁𝑠 = 2 ∗ 2𝐽

𝑠
. 

Исходные данные в аналитическом в виде, задаваемые в виде пользователь-

ских функций-подпрограмм: 

1) набор функций-подпрограмм fksi1,…,fksiN для задания структурных 

функций 𝜉1, . . . , 𝜉𝑁; 

2) набор функций-подпрограмм fdzet1,…,fdzetN для задания структурных 

функций 𝜁1, … , 𝜁𝑁(𝑠); 
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3) подпрограмма-функция fcov для задания ковариационной функции 

𝐾𝑋(𝑡, ); 

4) подпрограмма-функция fcovYX для задания ковариационной функции 

𝐾𝑌𝑋(𝑠, ).  

Подпрограммы-функции имеют синтаксис вызова: cov= fcov(t1,t2); covYX= 

fcovYX(s,t); ksi=fksii(t) (i=1,…,N); dzet= fdzeti(s) ((i=1,…,N). 

 Все вычисления осуществляются в подпрограмме-функции 

SYNTHESISWL1, которая имеет синтаксис вызова: 

[WOt,nett]= SYNTHESISWL1 (Jt,Nt,T0,T, Js,Ns,S0,SS,NS). 

Выходные данные выдаются в матричном виде: 

1) WOt(Ns) - вектор значений с.к. оптимальной оценки 𝑊∗(𝑠) сигнала W(s) 

в  точках  𝑠𝑗 = 𝑆0 + (j − 1)⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝑁𝑆; 

2) nett(Ns) - вектор значений с.к. оптимальной оценки  качества с.к. оп-

тимального линейного оператора 𝐴𝑡 в  точках  𝑠𝑗 = 𝑆0 + (j − 1)⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝑁𝑆. 

При вычислениях используется подпрограмма-функция KRWL1 для постро-

ения ВЛКР процесса X(t) на основе двумерного вейвлет разложения ковариацион-

ной функции 𝐾𝑋(𝑡, ) по вейвлетам Хаара. 

 

П.12. Вейвлет фильтры для информационно-управляющей 

системы в условиях ударных воздействий 

Информационно-управляющая система в условиях ударных воздействий 

описывается уравнениями на отрезке [𝑡0, 𝑇]: 

𝑋1̇ = 𝑋2,

𝑋2̇ = −𝜔с
2𝑋1 − 2𝜀𝜔с𝑋2 + 𝑆 + 𝑛𝑡

уд
+ 𝑉1

уд

𝑋3̇ = 𝑋1,

,   (П.12.1) 

в условиях наблюдений: 

𝑍1 = 𝑌̇1 ≡ 0, 𝑍2 = 𝑌̇2 = 𝑋2 + 𝑉2, ⁡𝑍3 = 𝑌̇3 ≡ 0,    (П.12.2) 
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где 𝑋 = [𝑋1 𝑋2 𝑋3]
𝑇 и 𝑌 = [0 𝑌2 0]𝑇 – векторы состояния и наблюдений, 𝑉1

уд
 

и 𝑉2 – скалярные независимые гауссовские белые шумы с интенсивностями 1
уд

 и 2 

(2 ≠ 0). 

 Для оценки 𝑋̂𝑡 вектора состояния 𝑋𝑡 = 𝑋(𝑡) ИУС уравнение фильтра Калма-

на–Бьюси в векторной форме имеет вид: 

𝑋̇̂𝑡 = 𝑎0𝑡
уд
+ 𝛽𝑡𝑍𝑡 + (⁡𝑎1

уд
− 𝛽𝑡𝑏1)𝑋̂𝑡 , 𝑋̂𝑡(𝑡0) = 𝑋̂0.  (П.12.3) 

Здесь введены обозначения: 

𝑎0𝑡
уд
= [

0
𝑆 + 𝑛𝑡

уд

0

] , 𝑎1
уд
= [

0 1 0
−𝜔с

2 −2𝜀𝜔с 0
1 0 0

] , 𝑏1 = [
0 0 0
0 1 0
0 0 0

], 

𝛽𝑡 = 𝑅𝑡𝑏1
𝑇2

−1 =

[
 
 
 
 0 −

1

2
𝑅12 0

0 −
1

2
𝑅22 0

0 −
1

2
𝑅23 0]

 
 
 
 

. 

Уравнения для 𝑅𝑡 записываются в векторном виде 

𝑅̇𝑡 = 𝑎1𝑅𝑡 + 𝑅𝑡𝑎1
𝑇 + 𝑐11

уд
𝑐1
𝑇 − 𝛽𝑡2𝛽𝑡

𝑇,⁡⁡⁡⁡⁡𝑅(𝑡0) = 𝑅0, 𝑐1
𝑇 = [0 1 0]𝑇 ⁡,  

или в скалярной форме 

{
 
 
 
 

 
 
 
 𝑅̇11 = 2𝑅12 −

1

2
𝑅12
2 , 𝑅11(𝑡0) = 𝑅110⁡;

𝑅̇12 = 𝑅22 −𝜔с
2𝑅11 − 2𝜀𝜔с𝑅12 −

1

2
𝑅12𝑅22, 𝑅12(𝑡0) = 𝑅120;

𝑅̇13 = 𝑅11 + 𝑅23 −
1

2
𝑅12𝑅23, 𝑅13(𝑡0) = 𝑅130;

𝑅̇22 = −2(𝜔с
2𝑅12 + 2𝜀𝜔с𝑅22) + 1

уд
−

1

2
𝑅22
2 , 𝑅22(𝑡0) = 𝑅220;

𝑅̇23 = 𝑅12 − 𝜔с
2𝑅13 − 2𝜀𝜔с𝑅23 −

1

2
𝑅22𝑅23, 𝑅23(𝑡0) = 𝑅230;

𝑅̇33 = 2𝑅13 −
1

2
𝑅23
2 , 𝑅11(𝑡0) = 𝑅110.

  

Окончательные скалярные уравнения ФКБ для ИУС при УВ имеют вид: 

𝑋̇̂1 = (1 +
1

2
𝑅12) 𝑋̂2 −

1

2
𝑅12𝑍2, 

𝑋̇̂2 = 𝑆 + 𝑛𝑡
уд
−𝜔с

2𝑋̂1 − (2𝜀𝜔с −
𝑅22

2
) 𝑋̂2 −

1

2
𝑅22𝑍2,  (П.12.4) 

𝑋̇̂3 = 𝑋̂1 +
1

2
𝑅23𝑋̂2 −

1

2
𝑅23𝑍2. 
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Перейдем к построению вейвлет фильтра Калмана–Бьюси в предположении, 

что скалярные элементы матриц 𝑆, 𝑛𝑡
уд

, 1
уд

, 2, 𝑅𝑡 принадлежат пространству 

𝐿2[𝑡0, 𝑇]. Сначала запишем уравнения (П.12.3) в виде  

𝑋̇̂𝑡 = 𝐴0 + 𝐴𝑋𝑡, 𝑋̂(𝑡0) = 𝑋̂0, 

𝐴0 = [𝐴ℎ0]ℎ =

[
 
 
 
 −

1

2
𝑅12𝑍2

−
1

2
𝑅22𝑍2 + 𝑆 + 𝑛𝑡

уд

−
1

2
𝑅23𝑍2 ]

 
 
 
 

,  

𝐴 = [𝐴ℎ𝑘]ℎ,𝑘 =

[
 
 
 
 0 1 +

1

2
𝑅12 0

−𝜔с
2 −(2𝜀𝜔с −

𝑅22

2
) 0

1 0
1

2
𝑅23]

 
 
 
 

.  

Далее перейдем к уравнениям, заданным на единичном отрезке:  

𝑋̂̅′ = 𝐴̅0 + 𝐴̅𝑋̂̅, 𝑋̂̅(0) = 𝑋̂0. 

Здесь 𝐴̅0 = (𝑇 − 𝑡0)𝐴0,⁡ 𝐴̅ = (𝑇 − 𝑡0)𝐴. В результате, согласно теореме 4.3.2, придем 

к искомому ВЛФКБ для оценки составляющих 𝑋̂̅ℎ (h=1,2,3) в режиме реального 

времени: 

𝑋̂̅ℎ = ∑ 𝑐ℎ𝑠
𝐿
𝑠=1 𝑝𝑠 + 𝑋̂0ℎ .  

Здесь коэффициенты 𝑐ℎ𝑠 находятся из СЛАУ: 

𝑐ℎ𝑠 = ∑ ∑ 𝑐ℎ𝑖
𝐿
𝑖=1

3
𝑘=1 𝑔𝑠

ℎ𝑘𝑖 + 𝑋̂0ℎ ∑ 𝑞𝑠
ℎ𝑘𝐿

𝑖=1 + 
𝑠
ℎ ⁡⁡⁡(𝑠 = 1,2,… , 𝐿), 

где введены обозначения: 𝑔𝑠
ℎ𝑘𝑖 = ∫ 𝐴̅ℎ𝑘()𝑝𝑖

1

0
()𝑤𝑠()𝑑; 𝑞𝑠

ℎ𝑘 = ∫ 𝐴̅ℎ𝑘()
1

0
𝑤𝑠()𝑑; 


𝑠
ℎ = ∫ 𝐴̅ℎ0

1

0

()𝑤𝑠()𝑑. 

 Вычислительные эксперименты осуществлялись с применением ИПО "СтС-

ВЛ-Фильтр" для 𝜔𝑐 = 1; ⁡𝑆 = 1; 2 = 1; ⁡⁡𝐽 = 5.⁡ Для проведения сравнительного 

анализа зависимости результатов синтеза ВФКБ от параметра 𝜀, на рисунках 

П.12.1–П.12.10 результаты представлены для⁡𝜀 = 0,7⁡и⁡𝜀 = 0,1 для  детерминиро-

ванного удара с 𝑛𝑡
уд

 и стохастического удара с 𝑡
уд
⁡⁡в 𝑡уд = 0,135: 
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𝑛𝑡
уд
= {

10, если⁡𝑡 ∈ [𝑡уд; ⁡𝑡уд + 1],

0, если⁡𝑡[𝑡уд; ⁡𝑡уд + 1].⁡⁡
𝑡
уд
= {

6, если⁡𝑡 ∈ [𝑡уд; ⁡𝑡уд + 1],

0, если⁡𝑡[𝑡уд; ⁡𝑡уд + 1].⁡⁡
 

  

Рис. П.12.1. График реализации 𝑋1⁡ и ее оценки 

 для 𝜀 = 0,7 

Рис. П.12.2. График реализации 𝑋1⁡ и ее оценки 

 для 𝜀 = 0,1 

  

Рис. П.12.3. График реализации 𝑋2⁡ и ее оценки 

 для 𝜀 = 0,7 

Рис. П.4.124. График реализации 𝑋2⁡ и ее оценки 

  для 𝜀 = 0,1 

  

Рис. П.12.5. График реализации 𝑋3⁡ и ее оценки 

 для 𝜀 = 0,7 

Рис. П.12.6. График реализации 𝑋3⁡ и ее оценки  

для 𝜀 = 0,1 
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Рис. П.12.7. Графики дисперсий ошибки фильтра-

ции 𝑅11, 𝑅22, 𝑅33⁡для 𝜀 = 0,7 

Рис. П.12.8. Графики дисперсий ошибки фильтра-

ции 𝑅11, 𝑅22, 𝑅33для 𝜀 = 0,1 

  

Рис. П.12.9. Графики дисперсий ошибки фильтра-

ции 𝑅12, 𝑅13, 𝑅23⁡⁡для 𝜀 = 0,7 

Рис. П.12.10. Графики дисперсий ошибки фильтра-

ции 𝑅12, 𝑅13, 𝑅23⁡для 𝜀 = 0,1 

 

Для моделирования ВЛФКБ для ИУС в условиях ударных воздействий в 

среде MATLAB разработано ИПО "СтС-ВЛ-Фильтр". При моделировании скаляр-

ного белого шума 𝑉1
уд

 с интенсивностью 1
уд

 использовалось ИПО построения 

ВЛКР СФ "СтИТ-КРВЛ.1" на основе ортогонального разложения ковариационной 

функции белого шума 𝑉1
уд

 по двумерному ортонормированному вейвлет базису 

Хаара. При решении систем обыкновенных дифференциальных уравнений методом 

вейвлетов Хаара применялось ИПО "СтС-ВЛ-Анализ". 

С применением ИПО "СтС-ВЛ-Фильтр" был реализован следующий  алго-

ритм построения ВЛФКБ: 

1. Задание исходных данных: промежутка наблюдения [𝑡0, 𝑡1], начальных 

данных вектора состояния 𝑋, параметров 𝜀, ⁡𝜔𝑐 , 𝑆, 2, 𝑛𝑡
уд

,𝑡
уд

. 

2. Вычисление 𝑅𝑡. 

3. Определение в пространстве L2[0,1] ортонормированной системы 

вейвлетов Хаара с заданным уровнем вейвлет разрешения J. 
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4. Вычисление интегралов от вейвлетов Хаара. 

5. Для моделирования реализаций приведение заданной системы к безраз-

мерному времени и ее решение МВЛХГ с применением ИПО "СтС-ВЛ-Анализ" и 

"СтИТ-КРВЛ.1". 

6. Задание значений наблюдаемого процесса Z(t) (𝑡 ∈ [𝑡0, 𝑡1])⁡ в точках  

𝑡𝑗 = 𝑡0 + (j − 1)∆t⁡⁡⁡для⁡⁡𝑗 = 1,2,… , 𝐿; 𝐿 = 2 ∙ 2
𝐽; ⁡∆t =

𝑡1−𝑡0

𝐿−1
. 

7. Составление и решение системы линейных алгебраических уравнений 

для определения коэффициентов 𝑐ℎ𝑠. 

8. Вычисление с.к. оценки 𝑋̂̅ℎ для каждой составляющей вектора состояния 

𝑋̅𝑡. 

9. Переход от безразмерного времени 𝑡̅ ∈ [0,1]⁡к 𝑡 ∈ [𝑡0, 𝑡1] и определение 

с.к. оценки 𝑋̂(𝑡) по формуле:   

𝑋̂̅(𝑡̅) = 𝑋̂((𝑡1 − 𝑡0)𝑡̅ + 𝑡0). 

10. Построение графиков. 
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