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Введение 

Задача оптимизации правил управления динамической системой (называемая также 

задачей управления с обратной связью и задачей синтеза оптимального управления) является 

классической задачей теории управления [1] [2]. В рамках решения этой задачи на основе 

математического моделирования изучаемой динамической системы строится такая зависимость 

управления от текущего состояния (обратная связь), которая максимизирует некоторый 

критерий качества управления. В данной работе, в отличие от большинства работ в этой 

области, задача построения правил управления изучается при наличии большого числа 

конфликтующих критериев качества управления. Как обычно, предполагается, что структура 

обратной связи задана, так что требуется назначить вектор параметров обратной связи.  

В исследовании рассматривается задача, являющаяся обобщением задачи оптимизации 

управления каскадом водохранилищ. Для задач водного хозяйства характерна 

многокритериальность, поскольку водные ресурсы используются для обеспечения различных 

потребностей и должны удовлетворять многообразным требованиям (экологическим, 

социальным, экономическим, санитарным и многим другим). В данной работе используется 

нелинейная многошаговая динамическая модель каскада, причем в качестве критериев 

рассматриваются критерии типа уровня обеспеченности, имеющие смысл доли шагов, на 

которых выполняются (или не выполняются) некоторые априорные требования, предъявляемые 

к водной системе. Выбор именно таких критериев в изучаемой задаче обусловлен требованиями 

Минприроды РФ к правилам управления каскадами водохранилищ [3]. Эти критерии 

характеризуются кусочно-постоянной зависимостью от параметров правил управления, причем 

число областей постоянства критерия зависит экспоненциально от числа шагов по времени. 

Наличие таких критериев является главной особенностью изучаемой проблемы. Практическая 

важность многокритериальных задач построения правил управления для нелинейных 

многошаговых динамических моделей с критериями такого типа и отсутствие методов их 

решения обуславливают новизну исследования и актуальность темы диссертации.  

Поскольку математическая модель изучаемой динамической системы является 

многошаговой, то, предположив конечность числа параметров правила управления и числа 

шагов системы, задачу можно свести к задаче многокритериальной оптимизации (МКО) 

параметров правила. В задачах МКО предполагается наличие информации о направлении 

улучшения значений критериев (их увеличение или уменьшение), имеется бесконечное (или 

очень большое) число допустимых вариантов решения (в нашем случае – параметров правила 

управления), причем совокупность допустимых вариантов задается системой ограничений [4]. 
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В рассматриваемой задаче эти требования выполняются, поэтому прежде всего обсудим 

постановку и методы решения задач МКО  
 

Задачи многокритериальной оптимизации и методы их решения 

В задачах МКО важную роль играет понятие доминирования критериальных векторов по 

Парето, основанное на информации о направлениях улучшения значений критериев. На основе 

этого понятия из совокупности допустимых вариантов решения выделяется множество 

эффективных (неулучшаемых) вариантов, а из совокупности достижимых критериальных 

векторов – множество недоминируемых критериальных векторов. Последнее множество 

является частью границы множества достижимых критериальных векторов, его принято 

называть границей Парето (недоминируемой границей). Эти два множества являются решением 

задачи МКО с математической точки зрения [5]. Такое решение задачи МКО, однако, не 

пригодно на практике – практическим результатом применения методов МКО должно быть 

выявление одного или нескольких предпочтительных вариантов, предназначенных для 

дальнейшего детального анализа, обсуждения и окончательного выбора. Поэтому из множества 

эффективных вариантов решения должны быть выбраны предпочтительные варианты. Такой 

выбор осуществляется на основе предпочтений лиц, принимающих решение (ЛПР) [4].  

В рамках МКО разработано четыре основных подхода к построению методов выбора из 

совокупности эффективных решений, которые отличаются по роли ЛПР [6]. К первому относят 

методы выбора варианта решения без участия ЛПР. Эти методы используются в том случае, 

когда ЛПР отказывается выражать свои предпочтения и готов рассмотреть вариант, 

предложенный экспертами. Ко второму относят методы, в которых предпочтения ЛПР 

используются для построения правила выбора. Эти методы требуют интенсивной работы ЛПР, 

в рамках которой он должен отвечать на сложные вопросы о своих предпочтениях [4] [7]. К 

третьему относят диалоговые процедуры поиска варианта решения с участием ЛПР. Эти 

методы так же трудоемки, чем методы построения правила выбора решения [8]. К тому же, 

применение перечисленных подходов затруднительно в случае большого числа лиц, 

оказывающих воздействие на выбор варианта решения.  

Данная работа относится к четверному подходу, к которому относят методы, основанные 

на аппроксимации границы Парето и информировании ЛПР об этой границе. Такие методы 

вызывают интерес из-за того, что в них не требуется использовать информацию о 

предпочтениях ЛПР. Это особенно важно в случае участия в решении проблемы многих 

заинтересованных лиц, взаимодействие между которыми не формализовано. Так, в 

рассматриваемой в диссертации задаче оптимизации правил управления каскадом 

водохранилищ, кроме лиц, которым официально поручено решать эту задачу (сотрудники 
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федерального агентства и бассейновых управлений), влияние на выбор правил управления 

оказывают и другие люди, включая региональную администрацию и предпринимателей, 

которые имеют свои рычаги воздействия, а также простые граждане, которые могут стараться 

воздействовать через социальные сети и другими путями. Все эти лица могут быть 

проинформированы о возможных значениях критериев и их взаимосвязи с помощью 

информирования о границе Парето.  

Подход к задачам МКО, основанный на численных методах аппроксимации границы 

Парето и дальнейшем информировании ЛПР об этой границе был предложен для случая двух 

критериев в середине 1950-х годов С. Гассом и Т. Саати [9], а в нашей стране основные идеи 

этого подхода были высказаны для многих критериев академиками Н.Н. Моисеевым [10] и Г.С. 

Поспеловым [11] в конце 1960-х годов. С начала 1970-х годов численные методы 

аппроксимации границы Парето развивались в ВЦ АН СССР и МГУ им. М.В. Ломоносова 

научными школами академиков П.C. Краснощекова и А.А. Петрова, а в настоящее время они 

развиваются школой академика Ю.Г. Евтушенко. Большое влияние на формирование этой 

области науки оказали теоретические исследования Ю.Б. Гермейера [12], В.В. Подиновского и 

В.Д. Ногина [5], а также опыт применения аппроксимации границы Парето в рамках разработки 

систем автоматизации проектирования самолетов под руководством П.С. Краснощекова и Ю.А. 

Флерова [13] [14]. Важный вклад в развитие численных методов аппроксимации границы 

Парето внесли как исследователи, принадлежащие к упомянутым научным школам (В.А. 

Бушенков, А.И. Голиков, Ф. И. Ерешко, Г.К. Каменев, А.В. Лотов, И.С. Меньшиков, В.В. 

Морозов, В.Н. Нефедов, Н.М. Новикова, Н.М. Попов, М.А. Посыпкин, В.В. Федоров, О.Л. 

Черных и др.), так и многие другие российские и зарубежные исследователи (И. М. Соболь, Р. 

Б. Статников, K. Deb, J. Cohon, K. Miettinen, R. Steuer, A. Wierzbicky, P.-L. Yu, M. Zeleny, E. 

Zitzler и др.). Следует отметить, что если в XX веке методы МКО, основанные на 

аппроксимации границы Парето, не занимали ведущего положения в прикладных 

исследованиях (см., например, [6]), то в начале XXI века они стали наиболее часто 

применяемым подходом [15].  

Одним из наиболее эффективных способов информирования ЛПР о границе Парето 

является ее визуализация. Идея компьютерной визуализации границы Парето при нескольких 

критериях выбора была сформулирована в уже упомянутых работах Н.Н. Моисеева [10] и Г.С. 

Поспелова [11], где указывалось, что визуализация границы Парето помогает оценить 

реализуемые сочетания значений критериев и выявить связь между ними на этой границе. Для 

реализации такого подхода группой сотрудников ВЦ РАН им. А.А. Дородницына под 

руководством А.В. Лотова был предложен метод диалоговых карт решений, в рамках которого 

аппроксимируется множество достижимых критериальных векторов или его оболочка 
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Эджворта-Парето (ОЭП) – максимальное (по включению) множество, имеющее ту же границу 

Парето, что и множество достижимых критериальных векторов задачи МКО [16] [17]. При этом 

визуализация границы Парето осуществляется путем быстрого расчета и изображения на 

дисплее двумерных сечений заранее построенной аппроксимации ОЭП. На основе изучения 

границы Парето пользователь осознанно выбирает предпочтительное достижимое сочетание 

значений критериев (достижимую цель), а расчет (или поиск) соответствующего эффективного 

по Парето решения осуществляется компьютером автоматически.  

Для применения описанного подхода требуется решить задачу аппроксимации ОЭП, 

которая особенно сложна в случае нелинейных невыпуклых моделей, для которых достаточно 

точную аппроксимацию ОЭП удается найти только для отдельных классов моделей. Основные 

усилия при проведении данного исследования были направлены на разработку методов 

аппроксимации ОЭП для задач, для которых ранее этого сделать не удавалось – для задач МКО, 

порожденных проблемой многокритериальной оптимизации правил управления 

динамическими системами на основе нелинейных многошаговых моделей с критериями типа 

уровня обеспеченности.  
 

Математическая постановка задачи аппроксимации ОЭП 

Дадим математическую постановку проблемы, рассматриваемой в диссертации. В общем 

случае в задаче МКО предполагается [5] [6], что задано некоторое множество допустимых 

решений nX R⊂  и отображение : n mf R R→  решений в пространство критериев mR  

(критериальная вектор-функция). Компоненты векторов y из mR  называют частными 

критериями, они характеризуют решения x X∈  с разных точек зрения. Множество 

достижимых критериальных векторов Y  определяется как образ множества допустимых 

решений X  при отображении f , т.е. Y = f(X).  

Далее для определенности будем предполагать, что желательным является уменьшение 

значения каждого из критериев ( ), 1,...,j jy f j m= ⋅ = , при фиксированных значениях остальных 

критериев. Такие задачи называются задачами многокритериальной минимизации и формально 

записываются в виде 

 ( ) min,f x x X→ ∈ . (0.0.1) 

Под решением задачи (0.0.1) в МКО обычно понимается множество эффективных решений, 

определяемое следующим образом. 

Опpеделение 1. Пусть (1)x X∈  и (2)x X∈ . Говорят, что решение (2)x  доминирует (1)x  по 

Парето, если (2) (1)( ) ( ), 1,...,j jf x f x j m≤ = , и (2) (1)( ) ( )f x f x≠ . 
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Опpеделение 2. Критериальная точка (1)( )f x  называется недоминируемой (оптимальной по 

Парето) в задаче (0.0.1), а соответствующее ей решение (1)x X∈  – эффективным по Парето, 

если не существует решения (2)x X∈ , доминирующего (1)x  по Парето. 

Множество всех оптимальных по Парето критериальных точек называется границей 

Парето и обозначается через ( )P Y . Формально граница Парето в задачах многокритериальной 

минимизации определяется как 

 ( ) { }{ }: : ,P Y y Y y Y y y y y′ ′ ′= ∈ ∈ ≤ ≠ =∅ . (0.0.2) 

Множество решений, эффективных по Парето, является прообразом ( )P Y  и обозначается через 

( )P X . В тех случаях, когда имеет место так называемая внешняя устойчивость, т.е. для любого 

y из Y имеет место утверждение: либо y принадлежит P(Y), либо найдется y0 из P(Y), 

доминирующий y по Парето, можно ограничиться только границей Парето P(Y), т.е. ЛПР 

должен выбрать единственное, наиболее предпочтительное решение среди точек ( )P X .  

Как уже говорилось, в методе диалоговых карт решений (ДКР), применяемом в данной 

диссертации, информирование ЛПР о границе Парето (0.0.2) происходит на основе ее 

визуализации. Этим ДКР отличается от ранних работ по аппроксимации границы Парето [18] 

[19] [20], в которых информирование ЛПР о границе Парето осуществлялось на основе 

построения списка (конечной совокупности) точек, принадлежащих границе Парето, и 

предоставлении этого списка ЛПР. Как показывает практика [8], методы выбора из большого 

числа критериальных точек при более чем двух критериях затруднительны для ЛПР, поэтому 

визуализация границы Парето представляется более удобной, чем изучение больших списков 

многомерных точек. Отличие ДКР от других методов визуализации состоит в предварительной 

аппроксимации оболочки Эджворта-Парето (ОЭП) множества достижимых критериальных 

векторов Y, определяемой как  

 * mY Y R+= + , (0.0.3) 

где mR+  – неотрицательный конус пространства mR . Другими словами, *Y  содержит не только 

векторы (точки) множества Y , но и все доминируемые ими векторы. При этом, ( ) ( )*P Y P Y=  

[5]. Благодаря этому, визуализация ОЭП позволяет получить информацию о множестве ( )P Y . 

Преимущество аппроксимации ОЭП над непосредственной аппроксимацией границы Парето 

прежде всего состоит в том, что множество ( )P Y  часто неустойчиво по отношению к 
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возмущениям параметров задачи [21]. В отличие от ( )P Y , множество Y  и его ОЭП обычно 

устойчивы к таким возмущениям.  

Наличие аппроксимации ОЭП позволяет быстро рассчитывать и изображать на дисплее 

всевозможные наборы двумерных сечений ОЭП по требованию ЛПР. При этом наложение 

двумерных сечений при изменении некоторого единственного третьего критерия дает 

представление о границе Парето для трех критериев, а возможность анимации 

трехкритериальной картины, которую принято называть картой решений, позволяет оценить 

влияние и других критериев. Важно, что сечение ОЭП по двум критериям зависит монотонно 

от значений каждого из остальных критериев – оно не расширяется (обычно сужается) при 

улучшении значений других критериев [22]. Благодаря монотонной зависимости сечений от 

других критериев ЛПР получает представление о потенциальных возможностях выбора и, что 

особенно важно, о связи величин критериев на границе Парето (о так называемых 

критериальных или эффективных замещениях) в случае большого числа критериев.  

Визуализация границы Парето на основе аппроксимации множества *Y  была с успехом 

использована в моделях, для которых множество (0.0.3) выпукло. Были разработаны мощные 

адаптивные алгоритмы полиэдральной аппроксимации *Y  [16] [17], которые с успехом были 

использовано на практике в ряде прикладных систем поддержки принятия решений при 

нескольких критериях, в том числе и в водном хозяйстве [16] [17] [23] [24] [25]. В невыпуклом 

случае вопросы аппроксимации и визуализации ОЭП значительно усложняются в связи с 

невозможностью полиэдральной аппроксимации множества *Y . В методе ДКР в невыпуклом 

случае аппроксимация ОЭП строится с использованием конечной совокупности T  точек 

множества Y , которая называется базой аппроксимации. Множество  

 { }* :mT y R y T+= + ∈   (0.0.4) 

задает внутреннюю аппроксимацию множества *Y . В случае большого числа точек базы, 

достаточно близких к границе Парето, множество *T  может быть использовано для 

визуализации ОЭП, поскольку построение его двумерных сечений на его основе является 

простой задачей. Хотя для построения базы аппроксимации целесообразно использовать 

методы, непосредственно направленные на аппроксимацию ОЭП, для решения этой задачи 

можно также использовать методы построения (или аппроксимации) точек границы Парето. 

 

Обзор методов аппроксимации ОЭП и границы Парето в нелинейных задачах МКО 

Далее дадим краткий обзор методов, пригодных для построения базы аппроксимации в 

нелинейных задачах МКО, в том числе и направленных на аппроксимацию границы Парето, 
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после чего обсудим возможность использования этих методов для аппроксимации ОЭП в 

изучаемой нами задаче многокритериального синтеза управления динамической системы. 

Заранее подчеркнем, что мы не будем рассматривать методы, реализуемые только в двумерном 

случае, ссылки на которые собраны в [26]. В случае нелинейных задач МКО теоретически 

наиболее обоснованными являются методы аппроксимации ОЭП для нелинейных моделей, 

разработанные школой Ю.Г. Евтушенко [27] [28]. Они основаны на покрытии допустимого 

множества шарами, радиусы которых зависят от констант Липшица критериальных функций. 

Эти методы развивают идеи неравномерного покрытия множеств, предложенные в [29] для 

задач скалярной оптимизации, и гарантируют получение внешней и внутренней аппроксимации 

ОЭП с заданной точностью. Они пригодны для задач с малой размерностью пространства 

решений (обычно не более десяти) и при наличии информации о постоянных Липшица для 

функций, входящих в явное описание задачи. 

В случае нелинейных моделей с большим числом переменных широкое распространение 

получили методы аппроксимации границы Парето, основанные на решении задач глобальной 

оптимизации сверток (скалярных функций) критериев. В большинстве работ в качестве свертки 

используется взвешенная метрика Чебышева или метрика ,1pL p< < +∞ . Первые работы в этой 

области относятся к началу 1970-х годов [30]. Альтернативная свертка критериев вида 

1,..,
( ) min j jj m
y yϕ µ

=
=  была предложена Ю.Б. Гермейером [12]. Более сложные свертки были 

предложены, например, в работе [31]. Взвешенная метрика Чебышева была использована в 

прикладных исследованиях в области автоматизации проектирования, описанных в [13] [14]. 

Методы такого типа требуют решения большого числа задач глобальной оптимизации сверток 

критериев, поэтому число  критериев должно быть невелико, и они должны иметь малое число 

локальных оптимумов.  

Еще один популярный подход, основанный на скалярной оптимизации – это метод 

ограничений (ε-constraint method), предложенный в [32]. В этом методе решаются задачи 

глобальной оптимизации одного из критериев при различных ограничениях на остальные. 

Изучаемые диапазоны значений этих «остальных критериев» разбиваются на конечное число 

уровней с шагом 0ε > . При этом совокупность решаемых задач глобальной оптимизации 

должна быть такова, чтобы включать все возможные сочетания ограничений, наложенных на 

каждый из критериев. Тогда любое решение, оптимальное по Парето, может быть найдено 

методом ограничений при ε→0. Такие методы являются трудоемкими из-за того, что даже при 

относительно небольшом числе критериев требуется решить огромное число нелинейных задач 

глобальной оптимизации. Поэтому такие методы успешно применяются в случае, когда число 
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критериев не велико, модель выписана в явном виде и можно решить большое число задач 

глобальной оптимизации. 

Классическим методом нахождения эффективных решений (и соответствующих точек 

границы Парето) на основе случайного поиска, является метод изучения пространства 

параметров (Parameter Space Investigation, PSI-метод), предложенный И.М. Соболем и Р.Б. 

Статниковым [33]. В PSI-методе рассчитываются критериальные векторы ( )y f x=  в случайных 

(или квазислучайных) точках x  множества X и среди них отбираются эффективные. Развитием 

методов случайного поиска является итерационный однофазный метод [34], в рамках которого 

возможна статистическая оценка качества аппроксимации, которая основывается на расчете 

доли точек, принадлежащих текущей аппроксимации ОЭП, и максимального отклонения 

полученных критериальных точек от текущей аппроксимации. На оценке качества 

аппроксимации базируется правило остановки. Эти методы дают хорошую аппроксимацию 

границы Парето только при малых размерностях пространства решений и критериев. 

Для тех случаев, когда решение большого числа задач глобальной оптимизации сверток 

критериев затруднительно из-за того, что число локальных экстремумов сверток достигает 

нескольких десятков, были предложены так называемые многофазные методы [34], [35]. Эти 

методы представляют собой различные способы распространения на задачи МКО идей 

мультистарта – известного подхода к глобальной оптимизации в невыпуклых задачах, который 

основан на решении достаточного числа задач локальной оптимизации с помощью процессов 

улучшения решения, начинающихся из случайных точек множества решений [36]. Перенос 

идей мультистарта на многокритериальный случай в многофазных методах основывается на 

адаптивном выборе параметров свертки. Эффективный поиск локальных минимумов 

обеспечивается использованием методов сопряженного градиента, разработанных в рамках 

диалоговой системы оптимизации ДИСО [37]. Опыт применения двухфазного метода, 

простейшего из многофазных методов, показал, что он позволяет достаточно точно 

аппроксимировать ОЭП для моделей типа черного ящика с сотнями переменных, если число 

локальных максимумов свертки не слишком велико [38] [39]. Свойства двухфазных методов 

изучены в [40] [41].  

В последние два десятилетия методы простого случайного поиска были вытеснены так 

называемыми мета-эвристическими методами (методы имитации отжига, эволюционные 

методы и др.). В основе метода имитации отжига лежит аналогия с физическим процессом 

остывания стали. На основе этой аналогии строится алгоритм случайного поиска решения, 

причем поиск лучшего решения осуществляется во все более узкой окрестности текущего 

решения. Этот подход был распространен на задачи многокритериальной оптимизации с 

помощью параметрической свертки критериев [42] [43]. Варьируя параметры свертки, авторы 
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надеются получить хорошую аппроксимацию границы Парето. В этом подходе анализ 

сходимости, за исключением тривиальных случаев, не производится, а эффективность его 

вызывает сомнения. 

Среди эволюционных методов ведущую роль играют генетические алгоритмы. Первый 

генетический алгоритм аппроксимации границы Парето  (VEGA) был предложен в работе Д. 

Шаффера в середине 1980-х [44]. В дальнейшим генетические алгоритмы аппроксимации 

границы Парето получили развитие в работах К. Деба [45], К. Коэльо [46] и многих других (см. 

также обзор [15]). Генетический алгоритм характеризуется наличием популяции точек в 

пространстве решений, которые в результате мутации и репродукции изменяются и 

комбинируются между собой, а затем подвергаются отбору (аналогично естественному отбору 

в природе), в результате чего генерируется новая популяция. Генетический алгоритм может 

иметь весьма специальную процедуру, упорядочивающую точки популяции и отбирающую 

наиболее перспективные из них. По принципу упорядочивания генетические алгоритмы 

аппроксимации границы Парето разделяют на три типа. К первому типу относят алгоритмы, 

использующие свертку критериев. Ко второму типу относят алгоритмы, в которых решения 

упорядочиваются сначала по первому критерию, затем по второму и т.д. К третьему типу 

относят алгоритмы, в которых метод упорядочивания точек основан на принципе 

доминирования по Парето. На этом, наиболее эффективном принципе построены известные 

генетические алгоритмы Non-dominated Sorting Genetic Algorithm (NSGA), Niched-Pareto Genetic 

Algorithm (NPGA), Multi-objective Genetic Algorithm (MOGA), Strength Pareto Evolutionary 

Algorithm (SPEA) (см., например, [15]). Другие эволюционные методы, имитирующих способы 

существования популяций различных биологических видов (например, самоорганизацию птиц 

в полете или насекомых и тому подобное) также вызывают большой интерес исследователей. 

Достоинство эволюционных алгоритмов в том, что при наличии имитационной модели объекта 

оптимизации, позволяющей рассчитать значения критериев, они могут применяться достаточно 

легко, причем разрывность критериев, их локальная нечувствительность к варьированию 

решений или наличие локальных экстремумов критериев не приводят к дополнительным 

затруднениям. Недостаток эволюционных алгоритмов  состоит в их медленной сходимости и в 

отсутствии доказательств того, что получаемые ими недоминируемые фронты аппроксимируют 

границу Парето. В связи с этим эволюционные методы постоянно совершенствуются (см., 

например, [47] [48] [49] [50] [51]), в том числе за счет их гибридизации с методами других 

классов [52] [53] [54] [55] [56] [57]. Из алгоритмов последнего типа наибольший интерес 

представляет гибридизация алгоритма NSGA-II с градиентными методами [56] [57], в которых 

итерации NSGA-II перемежаются с локальной оптимизацией некоторых точек популяции.  

Особенности постановки задачи многокритериальной оптимизации правил управления 
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Для ответа на вопрос о возможности использования описанных методов аппроксимации 

ОЭП в рамках рассматриваемой многокритериальной задачи построения правила управления 

для многошаговой динамической системы, изучаемой в данной работе, опишем особенности 

постановки задачи МКО для этой системы. Главной особенностью является наличие критериев, 

которые, как уже говорилось, связаны с выполнением некоторых априорных требований к 

состоянию и управлению системой, а также к их некоторым характеристикам, причем значение 

критерия равно доле шагов, на которых это требование выполняется (или, наоборот, не 

выполняется). Для математической формулировки таких критериев, которые принято называть 

критериями обеспеченности, удобно использовать функцию Хэвисайда ( )zΘ  от величины 

нарушения какого-либо требования (невязке)  z  на каждом шаге, равную нулю при  0z ≤  и 

равную единице при  0z > . В качестве простейшего примера такого критерия приведем 

критерий, используемый в задаче управления каскадом водохранилищ и отражающий долю 

шагов с недопроизводством электроэнергии на гидроэлектростанции i-ого водохранилища: 

 
0

,
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1 ( )
t

i i t
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t
y z

t =

= Θ∑ ,  1,...,i I= , (0.0.5) 

где , *i t t
N i iz N N= −  – невязка требования к выработке электроэнергии на i-ой ГЭС на шаге t, *

iN  – 

требование, t
iN  – фактическая выработка на шаге t, t0 – число шагов. Ясно, что такой критерий 

принимает дискретный набор значений в диапазоне от 0 до 1, а его значение желательно 

уменьшать. Как уже говорилось, сложность рассматриваемой задачи аппроксимации ОЭП 

связана, прежде всего, с тем, что критерии типа (1.5) являются многоэкстремальными 

разрывными функциями параметров правила управления с большим числом разрывов, равным 

числу шагов в модели динамической системы, принимают конечное, но достаточно большое 

число значений и являются постоянными в окрестностях точек непрерывности. Характерный 

вид такой функции приведен на рисунке 1.2.  

Второй особенностью рассматриваемой задачи является методика моделирования 

неконтролируемых внешних воздействий. Как и в большинстве задач разработки правил 

управления, необходимость конструирования зависимости управления от состояния системы (а 

не поиск оптимального управления как функции времени), связана с наличием неопределенных 

воздействий. Так, в моделях управления системами водных ресурсов наиболее важным 

неопределенным фактором является приточность. В принципе, качество варианта решения 

можно оценить на основе стохастической модели неопределенности (см., например, [58] [59]). 

Такая модель позволяет рассмотреть математическое ожидание критерия для данного варианта 

и поставить задачу нахождения варианта, оптимального с этой точки зрения. В 
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водохозяйственных исследованиях принята альтернативная методика – в связи со сложностью 

задачи для оценки качества управления используются сценарии динамики неопределенных 

факторов. Точнее говоря, сравнение качества различных наборов параметров правил 

управления происходит на основе построения траекторий динамической системы при 

некотором (одном и том же) сценарии неопределенных факторов. Рассчитав траектории 

системы для данного сценария и значения характеристик, к которым предъявляются 

требования, по невязкам  z  можно найти векторы критериев для различных правил управления 

и сравнить их. При этом предполагается, что исплдбзуемый сценарий достаточно точно 

отражает закономерности, характеризующие неопределенный фактор. 

При моделировании неопределенности, связанной с приточностью рек, в качестве 

сценария берут либо исторический ряд значений приточности за достаточно продолжительный 

срок, либо искусственный ряд, являющийся реализацией случайного процесса, построенного на 

основе исторического ряда приточности, а также с учетом возможных изменений климата [60]. 

При этом число шагов t0 математической модели, рассматриваемое в исследовании, 

определяется наличием соответствующего сценария. Так, в модели каскада водохранилищ при 

использовании исторического ряда приточности число шагов t0 определяется числом 

интервалов времени, на которые разбит год, умноженным на число лет, для которых есть 

информация в сценарии. В случае искусственного ряда его продолжительность определяется 

компромиссом возможностей вычислительной техники и желанием достаточно точно отразить 

свойства случайного процесса (иногда используются ряды продолжительностью до 10 000 лет).  

Для нашего исследования не имеет значения, какой способ формирования сценария 

неконтролируемых факторов используется. Методы, развиваемые в данной работе, пригодны 

для сценариев любого типа. Поэтому мы не останавливаемся на проблеме подготовки 

сценариев и считаем, что какой-то сценарий задан и для него требуется решить задачу 

численной аппроксимации ОЭП для многошаговой модели уже без неопределенных факторов. 

Подводя итог, можно сказать, что в исследовании рассматривается многошаговая модель 

некоторой динамической системы, для которой задан сценарий неопределенных факторов, 

причем по заданным параметрам правила управления можно построить траекторию системы. 

Критериями оценки качества правила являются уровни обеспеченности априорно заданных 

требований к некоторым характеристикам системы, связанным с управлениями и траекторией 

системы. В рамках задачи многокритериального выбора параметров правила управления для 

такой многошаговой модели требуется разработать методы аппроксимации ОЭП и 

использовать их в прикладном исследовании, направленном на выбор решения с помощью 

визуализации границы Парето на основе метода диалоговых карт решений (ДКР). Поскольку 

предлагаемые далее методы аппроксимации ОЭП не используют специфику математической 
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модели расчета траекторий, для расчета траектории по параметрам правила управления вместо 

математической модели может быть использован некоторый неизвестный вычислительный 

модуль (черный ящик). Блок-схема расчета критериев дана на рисунке 0.0.1. 

 
Рис. 0.0.1 Блок-схема расчета критериев задачи МКО для динамической системы 

 

Объект прикладного исследования 

В качестве объекта прикладного исследования взята задача разработки правил 

управления для каскада водохранилищ реки Ангара. Такой выбор обусловлен важностью 

проблемы управления Ангарским каскадом, связанной с задачей регулирования уровня озера 

Байкал. Водные ресурсы каскада используются для выработки электроэнергии, обеспечения 

речного транспорта (в том числе по реке Енисей), выполнения различных экологических, 

санитарных, муниципальных требований (типа обеспечения забора воды для нужд населения) и 

т.д. Основная идея управления Ангарским каскадом состоит в том, что в полноводные летне-

осенние месяцы уровень Байкала поднимается (за счет чего также удается избежать наводнений 

на Ангаре), а затем запасенная вода используется в маловодные зимние месяцы. Кроме того, в 

связи с колебанием приточности озера от года к году, вода, запасенная в многоводные годы, 

используется для предотвращения чрезмерного падения уровня озера в маловодные годы. При 

этом надо учитывать, что изменение уровня озера Байкал может вызвать отрицательные 

экологические последствия, в частности, препятствовать нормальному нересту рыбы. 

Возникает задача поддержки поиска сбалансированного решения, учитывающего различные 

требования. 

В диссертации ставится задача оптимизации параметров правил управления сразу для 

всех водохранилищ каскада (так называемых синхронизированных правил), что до настоящего 

времени предлагалось только в работе [61], в которой использовался однокритериальный 

подход к выбору правил управления каскадом. Если в случае отдельного водохранилища 

попуск определяется на основе уровня воды в водохранилище, то согласованные правила 

попуска для каскада должны также учитывать попуск вышележащего водохранилища. Это 

усложняет правила попуска воды, предлагаемые специалистами по водному хозяйству. 

Напомним, что параметры этих правил требуется определить при принятии решений. 
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Каждый год в модели был разбит на 22 интервала (5 месяцев разбито на три декады, а 

для остальных семи месяцев интервалом является месяц целиком). В качестве сценария 

приточности был использован исторический ряд продолжительностью 103 года. Таким 

образом, число шагов равнялось 2266. Общее число параметров правил управления всех плотин 

Ангарского каскада было порядка 300. Всего в основном варианте задачи было рассмотрено 24 

критерия типа (0.0.5). Требовалось построить аппроксимацию ОЭП с точностью порядка 1%, 

причем число вычислений вектора критериев не должно было превышать 10-15 миллионов для 

того, чтобы расчеты по модели Ангарского каскада занимали не более 6-8 часов персонального 

компьютера. Такое требование, связано с тем, что в процессе использования разработанных 

методов и программ для персональных компьютеров требовалось достаточно быстро 

исследовать задачи с различными требованиями к системе и с различными сценариями 

приточности.  

Как уже говорилось, критерии типа обеспеченности выполнения требований являются 

многоэкстремальными разрывными функциями параметров правил с большим числом разрывов 

и локальных экстремумов. Приведем характерный пример графика критерия в задаче выбора 

правила управления Ангарским каскадом.  

 
Рис. 0.0.2 Характерный график критерия типа (0.0.5) 

На рисунке 0.0.2 приведен график изменения критерия «Доля перебоев в выработке 

электроэнергии на Братской ГЭС» вдоль случайно выбранного одномерного отрезка, 

начинающегося в окрестности предложенной экспертами точки пространства параметров 
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правила управления. На рисунке ясно видны подмножества постоянности критерия и наличие 

многочисленных экстремумов. Свертки критериев имеют еще более сложных характер. 

В связи с такими свойствами критериев типа (0.0.5) для них не пригодны методы 

аппроксимации ОЭП, описанные в обзоре. Так, не годятся основанные на покрытии множества 

допустимых решений [28], поскольку они требуют наличия постоянной Липшица для 

используемых функций и достаточно малой размерности пространства решений. 

Непосредственное применение методов, основанных на глобальной оптимизации сверток 

критериев (типа [13] [14] [30] [31] [32]) либо на их локальной оптимизации [34] [35] и 

использующих расчет или аппроксимацию градиентов функций, здесь также невозможно. 

Таким образом, остались две возможности – применить методы аппроксимации ОЭП, 

основанные на оптимизации сверток с использованием вспомогательных непрерывных 

функции, или применить эволюционные многокритериальные методы [15]. В диссертации 

описаны эксперименты, которые показывают, что в задаче оптимизации правил управления 

Ангарским каскадом такие подходы также не приводят к желаемым результатам. Поэтому 

потребовалось разработать новые численные методы аппроксимации ОЭП в задачах МКО с 

критериями типа уровня обеспеченности, пригодные для поддержки выбора правил управления 

Ангарским каскадом. Предложенные в диссертации методы основаны на интегрировании идей 

многокритериального градиентного мультистарта (с использованием специально выбранных 

вспомогательных функций) и генетических методов. Поскольку оба этих подхода требуют 

расчета значений критериев с помощью построения траекторий для различных вариантов 

параметров правил управления, в исследовании также потребовалось разработать методику 

проведения таких расчетов для модели каскада водохранилищ. 

Содержание диссертации 

Целью работы является разработка численных методов аппроксимации границы Парето 

для задач многокритериальной оптимизации правил управления динамическими системами, 

описываемыми многошаговыми математическими моделями с критериями типа уровня 

обеспеченности, и применение разработанных методов для построения эффективных правил 

управления водными ресурсами каскада водохранилищ реки Ангара. Для этого требуется 

решить следующие задачи: 

• Сформулировать многошаговую модель каскада водохранилищ, пригодную для решения 

задачи построения правил согласованного управления каскадом и обосновать 

проведение вариантных расчетов с этой моделью; 

• Разработать численные методы оптимизации критериев типа уровня обеспеченности на 

основе использования вспомогательных функций специального вида; 
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• Разработать и изучить новые численные методы аппроксимации ОЭП в задачах МКО с 

большим числом критериев типа уровня обеспеченности и сотнями переменных; 

• Разработать комплекс программ для персональных и многопроцессорных компьютеров, 

решающий задачи, сформулированные выше; 

• Применить методы и программное обеспечение для построения правил управления 

Ангарским каскадом водохранилищ. 

 

Эти задачи решены в диссертационной работе. 

Диссертация состоит из трех глав. В гл. 1 описывается и анализируется математическая 

модель управления каскадом водохранилищ реки Ангара, изучавшаяся в исследовании, и 

формулируеися задача МКО, связанная с построением правил управления каскадом. На основе 

этой задачи МКО формулируется общая задача выбора правил управления многошаговой 

динамической системой с критериями типа уровня обеспеченности и изучаются ее свойства. 

Раздел 1.1 посвящен проблемам управления водными ресурсами Ангарского каскада 

водохранилищ, включающего озеро Байкал. Показывается противоречивость требований, 

выдвигаемых к правилам управления каскадом. В разделе 1.2 приводится описание 

используемой в исследовании многошаговой балансовой модели каскада водохранилищ, 

включающей также нелинейные соотношения, описывающие связь уровня водохранилищ с 

объемом воды в них и зависимость производства электроэнергии и других характеристик 

функционирования каскада от попуска и уровня водохранилищ. Описываются предложенные 

специалистами правила попуска воды через плотины, пригодные для использования в случае 

каскада водохранилищ и содержащие параметры, значения которых требуется оптимизировать. 

Показано, что попуски водохранилищ являются непрерывными функциями параметров правил, 

но не являются дифференцируемыми функциями. 

В разделе 1.3 рассматриваются вопросы, связанные с обоснованием вариантных расчетов 

траектории рассматриваемой динамической системы, которые используются для оценки 

качества управления, задаваемого параметрами правил. Расчеты основаны на использовании 

рядов приточности за сравнительно продолжительный период времени. Основное внимание 

уделяется обоснованию выбора подходящих начальных объемов воды в водохранилищах. 

Строится и изучается итеративный алгоритм поиска таких начальных объемов воды, что для 

заданного набора параметров правила попуска начальные и конечные объемы близки.  

В разделе 1.4 формулируются критерии, используемые при выборе параметров правил 

управления водохранилищами. Эти критерии характеризуют долю шагов (интервалов времени), 

в течение которых нарушены требования к характеристикам (показателям функционирования) 

каскада водохранилищ, т.е. имеют вид типа (0.0.5) и более сложный вид такого же типа. Всего 
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для Ангарского каскада рассмотрено 24 критерия, каждый из которых связан с определенным 

требованием. Кроме того, описаны альтернативные критерии годовой обеспеченности 

требований, имеющие смысл доли лет, в течение которых требования выполняются.  

В разделе 1.5 дается общая формулировка проблемы многокритериального выбора 

правил управления с критериями типа уровня обеспеченности на основе многошаговой 

динамической модели или некоторого неизвестного алгоритма (черного ящика), 

рассчитывающего траектории и характеристики системы. Описываются свойства ОЭП и 

границы Парето в этой задаче, дается достаточное условие устойчивости множества 

достижимых значений критериев. В разделе 1.6 описывается программное обеспечение, 

реализующее вариантный расчет траектории модели Ангарского каскада.  

Глава 2 посвящена предлагаемым методам использования вспомогательных функций в 

задачах оптимизации разрывных критериев типа уровня обеспеченности, а также их сверток. В 

разделе 2.1 предлагается метод построения вспомогательных функций, отличающийся от 

широко распространенных методов, в которых вспомогательные функции строятся на основе 

расчета значений исходной функции в некоторых точках и дальнейшего использования 

регрессионных методов, сплайнов и т.д. Предлагаемый метод (метод эрзац-функций) 

использует специфику критериев типа (0.0.5): функции Хэвисайда заменяются на непрерывные 

эрзац-функции, для минимизации которых можно применять градиентные методы.  

Раздел 2.2 посвящен экспериментальному изучению с использованием модели 

Ангарского каскада результатов применения степенной эрзац-функции в рамках 

вспомогательных функций. Изучается влияния показателя степенной эрзац-функции на 

качество решения задачи глобальной оптимизации отдельных критериев. Найден диапазон 

значений показателя степени, в пределах которого метод эрзац-функций дает 

удовлетворительный результат. Далее метод эрзац-функций применяется для оптимизации 

сверток критериев. Оказывается, что даже в случае простых сверток метод эрзац-функций не 

позволяет находить решения, близкие к глобальному оптимуму из-за наличия слишком 

большого числа локальных экстремумов. В то же время, результаты дальнейших экспериментов 

показали, что при правильном подборе стартовых точек процесса локальной оптимизации 

можно приближенно найти разумные решения.  
В разделе 2.3 предлагается диалоговая итеративная человеко-машинная процедура 

поиска предпочтительного решения сложной задачи МКО («Метод наследуемого решения»), в 

которой вместо нахождения на каждой итерации глобального оптимума свертки критериев 

решается большое число задач локальной оптимизации свертки. Ее особенностью является то, 

что множество стартовых точек процесса локальной оптимизации берется в малой окрестности 
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решения, наследуемого с предыдущей итерации. ЛПР при этом может изменять не только 

параметры, но и вид свертки критериев, который может варьироваться от итерации к итерации. 

В разделе 2.4 описывается опыт применения предлагаемой процедуры при выборе 

правил управления Ангарским каскадом водохранилищ. За 11 итераций находится эффективное 

решение задачи, обозначенное 11α , которое за счет небольшого увеличения доли интервалов 

нарушения требований к уровню озера Байкал позволяет существенно улучшить значения 

остальных критериев. В следующей главе это решение используется для оценивания скорости 

сходимости методов аппроксимации ОЭП. В разделе 2.5 описывается программное обеспечение 

локальной оптимизации на основе вспомогательных функций.  

Глава 3 посвящена методам аппроксимации ОЭП для систем с критериями типа (0.0.5). В 

разделе 3.1 описываются эксперименты с методами, разработанными ранее, показавшие, эти 

методы не могут аппроксимировать ОЭП в рассматриваемой задаче для модели Ангарского 

каскада водохранилищ с требуемой точностью за разумное время. Методы главы 3, 

позволившие решить эту проблему, являются вариантами предложенного в диссертации метода 

стартовой площадки, основанного на построении совокупности таких стартовых точек 

процедур локальной оптимизации, на основе которых возможно нахождение решений, близких 

к эффективным. Методы такого типа получили в работе название методов стартовой площадки 

(МСП).  

В разделе 3.2 описывается один из методов построения стартовой площадки – метод 

инжекции оптимумов (ИО). Метод ИО основан на комбинации скалярного мультистарта, 

являющегося методом глобальной оптимизации с использованием градиентных методов 

локальной оптимизации, и генетических методов аппроксимации границы Парето. Мультистарт 

находит глобальные оптимумы частных критериев, которые затем периодически включаются в 

популяцию генетического алгоритма. Таким образом, в методе ИО осуществляется 

гибридизация градиентной и генетической оптимизации, но, в отличие от работ [56] и [57], 

градиентная и генетическая оптимизация разделены, что обеспечивает простоту варьирования 

как генетических, так и градиентных методов в зависимости от решаемой задачи. 

Эксперименты с методом ИО продемонстрировали, что этот метод можно использовать также 

для грубой аппроксимации ОЭП. При этом для нахождения критериального вектора, 

отличающегося вектора критериев, порождаемого решением 11α , не более чем на 1%, методу 

ИО требуется в 6 раз меньшее число расчетов критериальной функции, чем известному 

генетическому алгоритму NSGA-II, причем преимущество метода ИО возрастает с ростом 

требуемой точности. Экспериментально показано, что в асимптотике точность аппроксимации, 

измеряемая отклонением аппроксимации ОЭП от критериального вектора, порождаемого 
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решением 11α , обратно пропорциональна квадрату числа итераций метода ИО. Этим метод ИО 

также превосходит генетический алгоритм NSGA-II. Наконец, непосредственное сравнение 

построенных аппроксимаций показало, что при том же числе расчетов критериальной функции 

метод ИО строит более точные аппроксимации ОЭП, чем NSGA-II.  

Раздел 3.3 посвящен варианту метода стартовой площадки, в котором стартовая 

площадка строится с помощью метода ИО. Описывается используемая в данном варианте МСП 

модификация процедуры многокритериального мультистарта, основанная на поиске локального 

экстремума вспомогательной функции с использованием метода сопряженного градиента с 

параболической оптимизацией шага [37]. Приводится теоретическое исследование 

идеализированного варианта МСП. Экспериментальное изучения МСП показывает, что МСП 

требует значительно меньшего числа расчетов критериальной функции, чем алгоритм NSGA-II. 

Также показано, что МСП имеет важное преимущество над методом ИО, поскольку в нем 

строятся высококачественные эффективные решения. В частности, отклонение от 

аппроксимации критериального точки, соответствующей решению 11α , удалось уменьшить до 

1% за 18 миллионов расчетов критериальной функции. Таким образом, задача, поставленная 

перед исследованием, то есть задача аппроксимации ОЭП для модели управления Ангарским 

каскадом с точностью 1% за 10-15 миллионов расчетов критериальной функции оказалась, в 

целом, решена. В то же время, МСП несколько уступает ИО по качеству большинства решений, 

задающих базу аппроксимации.  

Этот недостаток МСП устраняется в дополненном МСП (ДМСП), который основан на 

применении генетического метода к множеству решений, построенному методом МСП. ДМСП 

описывается в разделе 3.4. Экспериментально показывается, что при этом качество 

аппроксимации резко улучшается, причем ДМСП превосходит как МСП, так и метод ИО. При 

этом в асимптотике отклонение критериальной точки y( 11α ) от построенной аппроксимации 

ОЭП обратно пропорционально кубу числа итераций генетического метода, используемого на 

последнем шаге ДМСП, т.е. ДМСП превосходит метод ИО по асимптотической скорости 

сходимости. 

В разделе 3.5 рассматриваются альтернативные критерии – критерии годовой 

обеспеченности требований к управлению попуском водохранилищ. Стартовая площадка здесь 

строится по-другому – путем прямого расчета новых критериальных точек для решений, 

полученных в разделе 3.4. Сравнение такой аппроксимации ОЭП, полученной практически 

бесплатно, с аппроксимациями ОЭП, полученными методом ИО, показывает, что она годится 

для грубого представления границы Парето в задаче управления каскадом. Далее 

экспериментально показано, что ДМСП, основанный на использовании такой стартовой 
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площадки, значительно превосходит методы ИО и МСП по качеству построенной 

аппроксимации при том же числе расчетов вектора критериев.  

В разделе 3.6 приводятся примеры использования аппроксимаций ОЭП для выбора 

предпочтительных правил управления Ангарским каскадом на основе визуализации границы 

Парето. Для задач выбора правил с разными группами критериев найдены решения, более 

предпочтительные, чем 11α . В разделе 3.7 рассматриваются вопросы, связанные с 

распараллеливанием методов аппроксимации ОЭП. Описывается один подход к 

распараллеливанию таких методов, и обсуждаются результаты экспериментов при различном 

числе процессоров многопроцессорной системы. Краткое описание комплекса программ, 

предназначенного для аппроксимации ОЭП, приведено в разделе 3.8. 

В конце диссертации приводятся основные результаты диссертационной работы и 

список цитированной литературы. Результаты диссертации содержатся в 24 публикациях ([62-

69], [101-102], [104-117]), в том числе в 10 публикациях в журналах из списка ВАК ([62], [64-

69],[101-102], [106]). Семь публикаций входят в международные базы данных ( [62] [65] [66] 

[67] [68] [69] [63]). 

Программное обеспечение МСП, адаптированное к задаче оптимизации правил 

управления каскадом водохранилищ, было зарегистрировано в Федеральной службе по 

интеллектуальной собственности (Свидетельство о государственной регистрации программы 

для ЭВМ № 2020663645 от 30 октября 2020 г.) 
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Глава 1 Задача построения правил управления нелинейной 

динамической системой с разрывными многоэкстремальными 

критериями 

В данной главе описывается и анализируется многокритериальная задача построения 

правил управления каскадом водохранилищ реки Ангара. Дается математическая формализация 

правил попуска, пригодных для использования в случае каскада водохранилищ. Дается 

математическое обоснование используемому на практике способу проведения вариантных 

расчетов, основанных на использования рядов приточности за сравнительно продолжительный 

период и предназначенных для оценки качества правил управления, соответствующих тем или 

иным наборам параметров правил. Описываются критерии, используемые при выборе 

параметров правил управления водохранилищами. На основе задачи многокритериальной 

оптимизации правил управления Ангарским каскадом формулируется общая задача выбора 

правил управления динамической многошаговой системой с критериями типа уровня 

обеспеченности выполнения требований. Рассматриваются свойства такой задачи МКО и 

обсуждается проблема аппроксимации ОЭП для этой задачи. 

1.1 Проблемы управления водными ресурсами Ангарского каскада 

водохранилищ 

 Каскады водохранилищ играют значительную роль в удовлетворении потребностей 

многих отраслей народного хозяйства, таких как гидроэнергетика, водный транспорт, 

коммунальное хозяйство, ирригация, рыбное хозяйство и пр. В настоящее время роль 

водохранилищ стала особенно важна как источников электрической энергии, не связанных с 

использованием ископаемых ресурсов и выделением парниковых газов. Возрастание уровня 

использования водных ресурсов, недетерминированность внешних факторов (таких как 

приточность к водохранилищам, осадки, испарение), ограниченность полезных объемов 

водохранилищ и высокие требования водопользователей к надежности обеспечения водой 

приводят к необходимости использовать методы оптимизации для построения правил 

управления каскадом водохранилищ [70] [71]. 

Для управления каскадом водохранилищ служат диспетчерские правила управления [70] 

[71] [72] [61], решающие задачу управления функционированием водохранилищ в условиях 

неопределенности приточности. Управление водохранилищами по диспетчерским правилам 
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состоит в назначении попусков водохранилищ на основе информации о текущем состоянии 

водохозяйственной системы и, может быть, прогноза на ближайшее время. В рамках этих 

правил требуется реализовать компромисс между противоречивыми требованиями к 

водопользованию и окружающей среде. Диспетчерские правила должны смягчать 

нежелательные последствия дисбалансов между приточностью и сбросными расходами 

водохранилищ. Например, в маловодные периоды попуски водохранилища должны 

обеспечивать безопасное прохождение судов, а в периоды паводков – оберегать от затопления 

территории, прилегающие к нижнему бьефу.  

Требования к управлению каскадом устанавливаются раздельно для теплой части года 

(период открытого русла) и для зимних месяцев [71]. При этом в летне-осенний период 

учитываются требования водного транспорта к навигационным глубинам, а также потребности 

водоснабжения (промышленного, сельскохозяйственного и коммунального) в минимальных 

расходах попусков, обеспечивающих работу водозаборов в нижнем бьефе. В зимний период 

управление водными ресурсами водохранилища призвано обеспечивать работу водозаборов, 

гарантированную энергоотдачу ГЭС, а также благоприятные условия зимующих подо льдом 

рыб. Пропуск через гидроузлы весенних половодий и дождевых паводков преследует три цели. 

Во-первых, требуется по возможности наполнить водохранилища до проектного уровня для 

обеспечения потребностей в воде, во-вторых, нужно не превысить регламентированные 

максимальные расходы и уровни в нижних бьефах, а в-третьих, необходимо создать безопасные 

условия прохождения паводка собственно для гидротехнического сооружения. Подводя итог 

сказанному, можно утверждать, что задача построения правил управление каскадом 

водохранилищ представляет собой сложную многокритериальную задачу. 

Методы, разработанные в диссертации, применяются к задаче управления водными 

ресурсами бассейна река. Ангара является единственной рекой, вытекающей из озера Байкал, и 

самым крупным притоком Енисея. Река протекает по территории Иркутской области и 

Красноярского края России. Длина реки – 1779 км. Среднегодовой расход воды в истоке 

Ангары составляет 1 855 м³/с, в Братске — 2814 м³/с, в устье — 4530 м³/с.  

Байкал – самое глубокое озеро на Земле, современное значение максимальной глубины 

озера – 1642 м. Байкал содержит более 23 тысяч км³ пресной воды, что составляет около 19% 

мировых запасов озерной пресной воды. Вода озера Байкал является исключительно чистой, 

она содержит так мало солей, что может использоваться вместо дистиллированной воды. В 

Байкале обитает около 2600 видов и подвидов водных животных, более половины которых 

обитают только в этом водоеме. Озеро Байкал является одним из 200 природных объектов на 

Земле, признанных Юнеско объектом всемирного наследия. 

https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%B3%D0%BB%D1%83%D0%B1%D0%BE%D1%87%D0%B0%D0%B9%D1%88%D0%B8%D1%85_%D0%BE%D0%B7%D1%91%D1%80_%D0%BC%D0%B8%D1%80%D0%B0
https://ru.wikipedia.org/w/index.php?title=%D0%93%D0%BB%D1%83%D0%B1%D0%B8%D0%BD%D0%B0_(%D0%B2%D0%BE%D0%B4%D0%BE%D1%91%D0%BC%D0%B0)&action=edit&redlink=1
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D1%81%D0%BD%D0%B0%D1%8F_%D0%B2%D0%BE%D0%B4%D0%B0
https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D0%B8%D0%BB%D0%BB%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B2%D0%BE%D0%B4%D0%B0
https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B2%D0%B8%D0%B4
https://ru.wikipedia.org/wiki/%D0%96%D0%B8%D0%B2%D0%BE%D1%82%D0%BD%D1%8B%D0%B5
https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%B4%D0%BE%D1%91%D0%BC
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Ангара имеет значительный перепад высот, равный 380 м, и большой 

гидроэнергетический потенциал. Во второй половине XX века был построен Ангарский каскад 

водохранилищ, который включал три водохранилища: Иркутское, Братское и Усть-Илимское 

(см. рис. 1.1.1). Позднее, в 2015 г. было завершено строительство и заполнение Богучанского 

водохранилища. В нашем исследовании рассматриваются первые три водохранилища в связи с 

отсутствием достаточной информации о Богучанском водохранилище.  

Основными водопользователями Ангарского каскада являются энергетический 

комплекс, транспорт, лесопромышленный комплекс, коммунальное хозяйство. Комплекс ГЭС 

играет важную роль в обеспечении устойчивости энергосистемы Сибири и европейской части 

России. Сток Ангары играет важнейшую роль в обеспечении так называемого северного завоза 

по реке Енисей. ГЭС Ангарского каскада имеют суммарную действующую мощность 12 000 

МВт, они вырабатывают около 6 % от средней потребляемой мощности в стране. Так, 

электроэнергия, вырабатываемая Иркутской ГЭС, позволила открыть энергоёмкие 

производства, такие как Иркутский алюминиевый завод. Кроме того, попуски Иркутской ГЭС 

обеспечивают поддержание судоходных глубин на Ангаре вплоть до Братского водохранилища. 

Иркутская ГЭС обеспечивает надёжную работу водозаборов, расположенных как на Иркутском 

водохранилище (в верхнем бьефе), так и ниже ГЭС по течению (в нижнем бьефе). Иркутская 

ГЭС имеет существенное противопаводковое значение, позволяя эффективно бороться с 

традиционными для Иркутска наводнениями. В зимние месяцы значительная часть 

гидроэлектроэнергии идет на теплоснабжение городов и поселков Иркутской области.  

 
Рисунок 1.1.1 Продольный профиль ангарского каскада ГЭС 

Управление Ангарским каскадом водохранилищ строится так, чтобы восстанавливать 

уровень озера Байкал за счет большой приточности, приходящейся на полноводные летне-

осенние месяцы, и использовать этот ресурс в зимние месяцы. Кроме того, в маловодные годы 
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используют воду, запасенную в многоводные годы. Поэтому Байкал рассматривается как часть 

Иркутского водохранилища. Эффективность работы Ангарского каскада ГЭС в значительной 

степени определяется возможностью варьировать уровень озера с целью регулирования 

выработки электроэнергии, обеспечения транспорта, предотвращения половодий и для других 

нужд. В то же время, варьирование уровня озера Байкал может вызвать отрицательные 

экологические последствия. В частности, из-за сильных колебаний уровня воды в озере Байкал 

могут временно исчезать небольшие маловодные заливы, где находят себе пищу и 

размножаются рыбы, обитающие только в этом водоеме. Для ограничения отрицательных 

экологических последствий варьирования уровня озера Байкал правительство РФ в 2001 году 

установило предельный уровень наполнения озера Байкал в 457 м и предельный нижний 

уровень в 456 м над уровнем океана. На рисунке 1.1.2 приведен график объема годовой 

приточности озера Байкал за 103 года с 1902 по 2005 годы, который дан в сравнении с объемом 

31,5 км3, соответствующим слою толщиной в 1 м в диапазоне 457-456 м (прямая линия). 

 
Рис. 1.1.2 График объема годовой приточности оз. Байкал (по годам) 

Из рис. 1.1.2 видно, что годовой объем приточности озера от года к году может резко 

меняться (от 35 км3 до 100 км3). При этом среднегодовой объем приточности озера Байкал 

составляет около 63 км3. Это, например, означает, что, в случае снижения уровня Байкала до 

минимального разрешенного значения в 456 м, для наполнения озера до максимального уровня 

в 457 м потребуется годовая приточность даже в случае минимального попуска Иркутского 

водохранилища, который составляет 37 км3 воды в год. Таким образом, восстановление уровня 

озера Байкал является весьма сложной задачей, решение которой может привести к резкому 

уменьшению возможностей производства электроэнергии и перевозки грузов по Ангаре и 

Енисею, а также к другим проблемам. 
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Специалисты по водному хозяйству традиционно разбивают год на конечное число 

интервалов. Длительность интервала зависит от достоверности прогнозов приточности в это 

время. В случае Ангарского каскада длительность одного интервала составляет 10 дней в летне-

осенние месяцы (с мая по сентябрь) и 30 дней в зимние месяцы. Таким образом, в период с мая 

по сентябрь каждый месяц разбивается на три декады. В итоге год разбивается на 22 интервала, 

15 из них приходятся на полноводные месяцы с мая по сентябрь. 

 

Рис. 1.1.3 График приточности озера Байкал за полноводный 1933 год 

 

Рис. 1.1.4 График приточности озера Байкал за маловодный 1980 год 

Рассмотрим теперь два графика приточности озера Байкал за полноводный 1933 год 

(рис. 1.1.3) и за маловодный 1980 год (рис. 1.1.4) с учетом разбиения каждого года на 

интервалы. На графиках по оси абсцисс отложены номера месяцев. По оси ординат отложены 
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величины приточности озера Байкал за декаду в период с мая по сентябрь и за месяц в период 

с октября по апрель. В графиках учитывается испарение воды с поверхности озера, поэтому в 

некоторых случаях приточность отрицательна. С мая по сентябрь средний объем приточности 

озера Байкал за декаду в полноводный 1933 год составляет 5.9 км3, что почти в 3 раза больше 

чем средний объем приточности за декаду в маловодный 1980 год. В отдельные периоды, 

например в последнюю декаду августа, объемы приточности отличаются почти в 9 раз. 

Суммарно за май-сентябрь 1933 года приток воды составил 89.1 км3, что почти в 3 раза 

превосходит приток воды за май-сентябрь в маловодный 1980 год. В то же время, и в 1933 г., и 

в 1980 г. объемы приточности Байкала с мая по сентябрь значительно выше, чем в зимние 

периоды. Таким образом, для приточности озера характерна большая изменчивость, что 

затрудняет управление его уровнем. 

С одной стороны, большие объемы приточности и высокий уровень воды в Байкале 

позволяют удовлетворить всех водопользователей. С другой стороны, при высоком уровне 

воды происходит затопление пляжей, подтопление и заболачивание пониженных прибрежных 

территорий и приустьевых участков рек и разрушение причальных сооружений, оказывается 

существенное отрицательное влияние на рыбные запасы озера. В то же время, при низком 

уровне воды в Байкале могут высохнуть мелководные заливы на озере и на реках, впадающих в 

него, в частности, в дельте реки Селенги – месте массового нерестилища рыбы.  

Как уже говорилось, для ограничения отрицательных экологических последствий 

варьирования уровня озера Байкал правительство РФ в 2001 году установило (постановление № 

234 от 26.03.2001) максимальное и минимальное значения уровня воды в озере Байкал на 

отметках соответственно 457 и 456 метров. Такое решение было обосновано требованиям 

некоторых экологов, считавших что уменьшение колебаний Байкала должно создать 

благоприятные условия для экологии Байкала, в особенности для воспроизводства омуля. 

Специалисты по водному хозяйству с самого начала предупреждали, что такое решение 

неправильно, поскольку противоречит естественным процессам колебания уровня Байкала и 

помешает запасти воду в многоводные годы для использования ее в маловодные. Это 

утверждение основывалось на том, что в естественном состоянии (до строительства системы 

водохранилищ) колебания уровня Байкала составляли более двух метров. Предсказания 

водохозяйственников сбылись в годы низкой приточности (2014-2018 гг.), когда уровень 

Байкала упал значительно ниже 456 м. В связи с этим было принято постановление 

правительства РФ от 27 декабря 2017 года N 1667 «О максимальных и минимальных значениях 

уровня воды в озере Байкал в 2018-2020 годах», в котором действие постановления № 234 

приостанавливалось до 01.01.2021 и на 2018-2020 годы устанавливалось минимальное значение 

уровня воды в озере Байкал в маловодный период на отметке 455,54 метра, а в максимальное 
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значение уровня в многоводный период на отметке 457,85 метра. Вопрос о том, в какой мере 

это временное постановление должно стать основой постоянного постановления и являются ли 

его ограничения обоснованными с точки зрения противоречивых требований к каскаду 

водохранилищ реки Ангара, остается открытым и требует дополнительных исследований. 

Подводя итог, можно утверждать, что разработка методики поддержки выбора правил 

управления Ангарским каскадом водохранилищ представляет собой сложную задачу, 

изучаемою в данной работе. 

1.2 Математическая модель каскада водохранилищ 

Рассматривается каскад из 0n  действующих водохранилищ, расположенных в основном 

русле реки. Обозначим через i номер водохранилища, 01,...,i n= . Предполагается, что 

водохранилище с номером 1i +  находится ниже i-го водохранилища. Как уже говорилось, 

примером такого каскада является каскад из трех водохранилищ, расположенных на реке 

Ангара, схема которого Ангарского каскада дана на рисунке 1.1.1. Математическая модель 

каскада, использованная, например, в [73], представляет собой динамическую многошаговую 

систему с дискретным временем. Считается, что интервал времени t  начинается в момент 1t −  
и заканчивается в момент t , 1, 2,...t =  (см. рис. 1.2.1). 

 
Рис. 1.2.1 Интервал времени t  

Продолжительность интервала времени в модели зависит от его номера. Будем считать, что 

динамическая модель каскада рассматривается на отрезке времени продолжительностью в 0P  

лет, причем каждый год в модели разбивается на I  интервалов. Тогда общее число интервалов 

составляет 0 0t I P= ⋅ . Для каждого интервала времени с номером t , где 01,...,t t= , можно найти 

соответствующий ему календарный интервал ( )tτ . Так, интервалам с номером  3t j I= ⋅ + , где 

j=0,…,P0-1 , соответствует третья декада мая.  

Состояние каскада в момент t  задается величинами 0, 1,...,tW i ni = , где tWi  – объем воды 

в i-м водохранилище в момент t. Динамика величин tWi  для всех водохранилищ, кроме 

Иркутского, описывается балансовым уравнением [71] [74] 

 0
1 , 2,...,1

t t t t tW W Q R R i ni i i i i
−= + + − =− , (1.2.1) 
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где t
iR  – попуск из i-го водохранилища, 1

tRi −  – попуск из водохранилища, лежащего выше по 

течению, t
iQ  – боковая (т.е. не включающая 1

tRi − ) приточность к i-му водохранилищу, все за 

интервал времени t . В этой модели пренебрегаем испарением воды, коммунальным и 

промышленным водозабором и т.д., в том числе временем добегания волны, вызываемой 

изменением попуска из водохранилища, расположенного выше по течению. Таким образом, 

продолжительность интервала времени должна быть достаточно велика (не менее декады).  

 Для Иркутского водохранилища (i=1), частью которого является озеро Байкал, в 

качестве объема воды 1
tW  принимается объем озера Байкал, находящийся выше уровня 455 м 

(изменениями объема воды в собственно Иркутском водохранилище пренебрегаем). Балансовое 

уравнение (1.2.1) для Иркутского водохранилища имеет вид 

 1
1 1 1 1 0, 1,..,t t t tW W Q R t t−= + − = , (1.2.2) 

где 1
tQ  – полная приточность Байкала плюс боковая приточность Иркутского водохранилища. 

 Уровень i-го водохранилища (включая уровень озера Байкал) t
iH  связан с его объемом, 

так называемой батиметрической функцией, заданной таблично 

 ( )1
0 0, 1,.., , 1,...,t t

i i iH F W t t i n= = = . (1.2.3) 

На основе уровня озера Байкал 1
tH  и попуска Иркутского водохранилища 1

tR  по табличной 

функции можно получить уровень верхнего бьефа Иркутского водохранилища  

 ( )1 1 1 1 0, , 1,..,t ВБ t tH F H R t t= = . (1.2.4)    

Уровень нижнего бьефа Иркутского водохранилища в конце интервала t  также задается 

табличной функцией 

 ( )1 1 1 0, 1,..,t НБ tH F R t t= = . (1.2.5) 

Для остальных водохранилищ, т.е. 02,...,i n= , уровни верхнего tHi  и нижнего tHi  

бьефов в конце интервала t  можно рассчитать аналогичным образом на основе объема tWi  в 

конце интервала t  и попуска tRi  за интервал t . Эти величины рассчитываются по формулам  

 ( , )t ВБ t t
i i i iH F W R= , ( )t НБ t

i i iH F R= , 01,..,t t=  (1.2.6) 

где 0( , ), ( ), 2,...,НБ ВБ
i iF F i n⋅ ⋅ ⋅ = , – функции, заданные таблично. На основе величин ,t t

i iH H , 

01,...,i n=  может быть приближенно рассчитана средняя выработка электроэнергии в единицу 

времени на i-ом гидроузле за интервал времени t   
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 ( , )t N t t t

i i i i iN F H H R= − , 01,..,t t=  (1.2.7) 

где ( , )N
iF ⋅ ⋅  – заданная непрерывная нелинейная функция, 01,...,i n= . В ней учитываются КПД 

турбин, расход воды на их работу, фильтрационный расход воды через плотину и т.д.  

Приведем пример расчета выработки электроэнергии для Братского водохранилища [73]. 

Здесь выработка электроэнергии t
БрN  задается формулой ( )maxmin ,t t t

Бр Бр Бр БрN k S H N= ⋅ ⋅∆ , где 

t t t
Бр Бр БрH H H∆ = − , а t

БрS  – расход воды через турбины за интервал времени t , max
БрN – константа, 

равная максимально возможной величине выработки электроэнергии на данном гидроузле. 

Величина t
БрS задается формулой 

 1

2

( )
min ,

( )

t
Брt t

Бр Бр Брt t
Бр Бр

L H
S R F

L H H
 ∆

= −  ∆ ⋅∆ 
, 01,..,t t=  (1.2.8) 

 где 1( )L ⋅  и 2 ( )L ⋅  – заданные кусочно-линейные непрерывные функции, БрF  – фильтрационный 

расход через плотину Братской ГЭС. 

При проектировании i-го водохранилища максимальный попуск max
iR  берется таким, 

чтобы наибольшая суммарная приточность 1
t t t
i i iq Q R −= +  никогда не превосходила max

iR . 

Учитывая, что приточность всегда положительна, получаем 

 max0 t
i iq R< ≤ . (1.2.9) 

 

1.2.1 Правила управления попуском 

Попуски воды через плотину tRi , 01,...,i n= , являются управляющими воздействиями в 

задаче управления каскадом. Решения о величине попуска принимаются регулярно в начале 

каждого периода времени, т.е. величины  tRi , 01,...,i n= , определяются в момент  1t − . Важно, 

что они выбираются в условиях неопределенности о притоке воды в будущем. Поэтому попуск 

не планируется заранее, вместо чего строятся правила выбора попуска, в которых попуск 

определяется, в основном, уровнем воды в водохранилище.  

Широко известным подходом к решению задачи построения правил попуска является 

назначение правил на основе требований водопользователей (см., например, [75]). Применение 

такого подхода встречает затруднения при конфликте требований. В этом случае иногда 

удается построить функцию, которая позволяет свести потери всех пользователей в 

единственный показатель потерь, который служит критерием выбора решения. Тогда для 

поиска оптимальной в смысле единственного критерия зависимости попуска от уровня 

водохранилища можно применить оптимизационный подход [76]. Если же потери различных 



31 
 
водопользователей невозможно свести к единственному критерию, приходится рассматривать 

изучаемую здесь задачу многокритериальной оптимизации правил.  

В связи с наличием батиметрических функций (1.2.3), позволяюших связать объем воды 

в водохранилище с его уровнем, зависимость попуска от уровня водохранилища можно 

заменить на зависимость попуска от объема воды в водохранилище, которую удобнее 

применять при использовании балансовых соотношений (1.2.1) и (1.2.2). При этом обычно 

используется зависимость попуска i-го водохранилища на t-том интервале времени от 

состояния водохранилища в начале интервала, т.е.  

 1
(t) (W )t i t

i iR fτ
−= , (1.2.10) 

где индекс τ показывает, что функция зависит от календарного интервала, соответствующего 

интервалу времени t. Такой подход, однако, не позволяет разработать согласованные (или, как 

иногда принято говорить, синхронизированные) правила попуска для каскада водохранилищ, 

когда в правилах управления требуется учитывать попуски водохранилища, лежащего выше по 

течению реки. По этой причине правила управления каскадом зачастую строят для каждого 

водохранилища отдельно, что не позволяет эффективно использовать имеющиеся водные 

ресурсы. В нашем исследовании строятся согласованные правила для всего каскада. Для того 

чтобы учесть попуск водохранилища, лежащего выше по течению, специалисты предлагают 

считать, что попуск зависит не от состояния водохранилища в начале интервала, а от 

прогнозируемого значения объема воды в конце интервала ˆ tWi  (см., например, [77]), т.е. 

 (t)
ˆ(W )t i t

i iR fτ= . (1.2.11) 

 Важный класс правил попуска, предложенных специалистами по водному хозяйству, 

составляют правила, которые основываются на кусочно-постоянной зависимости попуска от 

объема воды в водохранилище. Для этого множество состояний водохранилища разбивается на 

зоны, в каждой из которых заранее определена величина попуска, связанная с особенностями 

генерации электроэнергии. Она определяется заранее на этапе проектирования гидроузлов. 

Итак, попуск связывается с некоторыми кусочно-постоянными функциями (W)ifτ , 

зависящими от τ и заданными при 0W ≥ . Они являются неубывающими функциями объема W. 

Для простоты обозначений опустим номер водохранилища. Предположим, что число разрывов 

функций ( )fτ ⋅  для всех 1,..., Iτ =  является одинаковым, равным K+1. Значения числа K обычно 

лежат в диапазоне от трех до шести. Обозначим через (k)Lτ , где 0,...,Kk = , значения аргумента 

функции ( )fτ ⋅ , при которых происходит разрыв этой функции. При этом для всех 1,..., Iτ =  

значение (0)Lτ совпадает с минимальным уровнем водохранилища (с так называемым уровнем 
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мертвого объема водохранилища – УМО), а (K)Lτ  совпадает с максимально допустимым уровнем 

водохранилища (с так называемым форсированным подпорным уровнем – ФПУ). Эти два 

крайних значения аргумента определяются на этапе проектирования гидроузлов и в процессе 

разработки правила попуска не меняются. Таким образом, значения (0)Lτ  и (K)Lτ  не зависят от 

индекса τ , поэтому обозначим их через minL  и maxL , соответственно. При значениях аргумента, 

меньших minL  либо больших maxL , попуск не зависит от W и задан заранее: он равен нулю при 
minW L<  и некоторой достаточно большой величине maxR  при maxW L> . 

 
Рис. 1.2.2 График функции ( )fτ ⋅   при заданных (k)Lτ , 1,..., Iτ = , 1,...,K 1k = −  

 На рисунке 1.2.2 приведен пример графика функции ( )fτ ⋅  при некоторых (k)Lτ , 1,..., Iτ = , 

1,...,K 1k = −  Напомним, что функция ( )fτ ⋅  определена при любом 0W ≥ , кроме 

(0) (1) ( ), ,..., KW L L Lτ τ τ= . Подчеркнем еще раз, что значения функции (отличие от величин (k)Lτ ) 

задаются заранее, поскольку зависят от решений, которые принимаются во время 

проектирования плотины и в процессе разработки правил не меняются, при оптимизации 

правил попуска варьируемыми параметрами правил являются величины  

 (k)Lτ , 1,..., Iτ = , 1,...,K 1k = − . (1.2.12) 

Правило (1.2.11) задает попуск t
iR  в неявном виде, поскольку объем воды в водохранилище в 

конце интервала времени t сам зависит от попуска. Согласно балансовому соотношению (1.2.1), 

имеет место прогноз объема воды в конце интервала 

 1 ˆˆ
1

t
i

t t t tW W Q R Ri i i i
−= + + −− , (1.2.13) 
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где ˆ t

iQ  – прогноз боковой приточности к рассматриваемому водохранилищу за текущий 

интервал времени t. Отметим, что величина боковой приточности к водохранилищу за текущий 

интервал времени  t  может быть спрогнозирована в момент времени  t−1  достаточно точно, что 

отличает ее от всего ряда будущей приточности, прогноз которого недостоверен. Поэтому 

можно считать, что достаточно точный прогноз известен. Объем воды в водохранилище в 

начале интервала времени t, т.е. 1tWi
− , также естественно считать известным. Если имеется 

информация о попуске водохранилища, лежащего выше по течению, за текущий интервал 

времени t, т. е. 1
tRi − , то правило (1.2.11) и балансовое соотношение  (1.2.13) для величины 

ˆ tx Wi=  дают уравнение  

 ( )( )
1 ˆ

1
t
i t

t tW Q R x f xi i τ
− + + − =− ,  (1.2.14) 

в котором величины 1tWi
− , ˆ t

iQ  и 1
tRi −  заданы. В силу того, что неубывающая функция (W)fτ  

не является непрерывной, уравнение (1.2.14) может не иметь решения. Рассмотрим графики 

функций 1 ˆ
1

t
i

t ty W Q R xi i
−= + + −−  и ( )( )ty f xτ= . Легко заметить, что могут встретиться два 

случая, проиллюстрированные на рисунке 1.2.3 и 1.2.4.  

 Случай 1. Уравнение (1.2.14) имеет решение. На рисунке 1.2.3 графики пересекаются во 

внутренней точке A  интервала непрерывности функции ( )fτ ⋅ . Координаты точки A  являются 

искомыми величинами попуска tRi  и прогноза объема ˆ tWi . Отметим, что в рассмотренном 

случае изменение параметров правила управления (1.2.12), а также краткосрочного прогноза 

приточности ˆ t
iQ , начального объема воды 1tWi

−  и попуска вышележащего водохранилища 

1
tRi −  на достаточно малую величину не приводит к изменению ординаты точки A . 
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Рис. 1.2.3 Графики функций 1 ˆ
1

t
i

t ty W Q R xi i
−= + + −−  и ( )( )ty f xτ=  пересекаются 

Таким образом, попуск tRi  в данном случае не зависит от параметров (1.2.12) правила 

управления при их малом изменении. Это свойство решения уравнения (1.2.14) существенно 

усложняет задачу оптимизации правил управления с использованием градиентных методов. 

Отметим, что при этом прогноз объема ˆ tWi  не зависит от параметров (1.2.12) правила 

управления, растет с ростом 1tWi
−  и непрерывно зависит от величин 1tWi

− , ˆ t
iQ  и 1

tRi − . 

 Случай 2. Уравнение (1.2.14) не имеет решения. Этот случай показан рис. 1.2.4. В этом 

случае специалистами по водному хозяйству предлагается следующий  

Алгоритм расчета tRi  и ˆ tWi  

1. Из набора (k)Lτ , выбирается такая величина 0(k )Lτ , что ( )( )
1 ˆ

1
t
i t

t tW Q R x f xi i τ
− + + − >−  при 

0(k )x Lτ<  и ( )( )
1 ˆ

1
t

t i
t tf x W Q R xi iτ
−> + + −−  при 0(k )x Lτ> ; 

2. Вычисляются искомые величины: 0(k )ˆ tW Li τ=  и 0(k )1 ˆ
1

t
i

t t tR W Q R Li i i τ
−= + + −− . 
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Рис. 1.2.4 Графики функций 1 ˆ
1

t
i

t ty W Q R xi i
−= + + −−  и ( )( )ty f xτ=  не пересекаются  

Как и в случае 1, попуск и объем воды в конце интервала задаются координатами точки 

А, приведенной на рисунке 1.2.4. При этом, в отличие от случая 1, малое изменение параметра 

правила управления 0(k )Lτ  приводит к изменению и попуска tRi , и прогноза объема воды в 

водохранилище:  величина ˆ tWi  совпадает с параметром 0(k )Lτ  и не зависит от величин 1tWi
− , ˆ t

iQ  

и 1
tRi − , а величина попуска tRi  непрерывно зависит от этих величин и параметра 0(k )Lτ .  

В силу строгого монотонного убывания линейной функции 1 ˆ
1

t
i

t ty W Q R xi i
−= + + −− , 

неубывания ( )fτ ⋅ , а также f(0)=0 и 1 ˆ 01
t
i

t tW Q Ri i
− + + >− , имеется единственная точка A, 

определяемая описанным выше образом. Поэтому в обоих случаях для i-го водохранилища при 

заданной функции (W)ifτ , т. е. при заданных значениях параметров (k)
( )tLτ , 1,...,K 1k = − , для 

интервала времени t оказывается алгоритмически задана зависимость попуска t
iR  от 1tWi

− , ˆ t
iQ  

и 1
tRi − , которую обозначим  

 1
( ) 1 0

ˆ( ), 1,...,t i t t t
i t i i iR U W Q R i nτ

−
−= + + = . (1.2.15) 
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При этом попуск t
iR , как было показано выше, зависит непрерывно как от величин 1tWi

− , ˆ t
iQ  и 

1
tRi − , так и параметров (1.2.12) правила управления, причем, как легко заметить, попуск t

iR  не 

убывает при возрастании 1tWi
− . При данном попуске t

iR  и реализовавшейся приточности t
iQ  

величина tWi  может быть найдена согласно балансу (1.2.1), т.е. она также непрерывно зависит 

от 1tWi
− , t

iQ  и 1
tRi − , причем tWi  не убывает при возрастании 1tWi

− . 

1.3 Методика расчета траекторий системы 

Описанная выше модель каскада и правил попуска используется в исследовании для 

оценки качества управления, соответствующего тому или иному набору параметров 

управления. При этом сначала по значениям параметров рассчитывается последовательность 

значений объемов воды в водохранилищах для 01,...,t t=  (траектория системы), а затем уже по 

попуску и объемам воды в водохранилищах находятся те характеристики системы, для которых 

сформулированы требования. В данном разделе остановимся на проблеме расчета траектории 

системы, а критерии качеств а управления рассмотрим в разделе 1.4. 

Для того чтобы рассчитать объемы воды и попуски i-го водохранилища на достаточно 

продолжительный период времени, кроме параметров правил управления для этого 

водохранилища (k)
( )tLτ , 1,...,K 1k = − , требуется задать  

1. начальное значение объема воды в этом водохранилище 0
iW ,  

2. сценарий приточности к i-му водохранилищу на этот период времени,  

3. попуски вышележащего водохранилища на этот период времени,  

4. связь используемого в правилах (1.2.15) прогноза приточности на текущий интервал ˆ t
iQ  

с той величиной приточности t
iQ , которая реализуется на этом интервале в 

используемом сценарии.   

 Начнем с последнего вопроса. В данной работе считается, что ˆ t
iQ = t

iQ . Это означает, что 

прогнозирование приточности на ближайший интервал времени осуществляется точно. Такое 

предположение выглядит вполне естественным, поскольку речь идет не о прогнозе осадков, а о 

стоке воде, которая уже находится в реках или болотах. При достаточном числе постов 

наблюдения такая информация может быть спрогнозирована достаточно уверенно.  
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1.3.1  О формировании сценариев приточности 

Теперь обратимся к вопросу о формировании сценариев боковой приточности к 

водохранилищам (для озера Байкал – сценарий общей приточности). Для их построения 

используется информация о приточности, собранная организациями гидрометеослужбы в 

форме многолетних гидрологических рядов наблюдений. В частности, для Байкала и бассейна 

Ангары собран ряд большой продолжительности (более сотни лет). Построенный 

гидрологический ряд можно использовать либо непосредственно как сценарий приточности, 

либо на его основе каким-либо образом можно построить другие ряды. В последнем случае с 

исходным рядом допускаются различные операции перестановки данных (см., например, [78]). 

Можно рассчитать искусственный гидрологический ряд любой продолжительности, 

сгенерированный на основе реализации случайного процесса, построенного с использованием 

исходного ряда [60]. Более того, в сгенерированном ряду можно учесть гипотезы об изменении 

приточности как следствия изменения климата на Земле.  

 Для нашего исследования не имеет значения, какой сценарий приточности используется: 

либо это исходный ряд наблюдений, либо каким-то образом модифицированный исходный ряд, 

либо искусственный гидрологический ряд. Методы, развиваемые в данной работе, пригодны 

для сценариев любого типа. Поэтому мы не останавливаемся на проблеме подготовки таких 

данных по приточности и считаем, что для каждого из водохранилищ подготовлен многолетний 

сценарий приточности достаточной продолжительности, пригодный для расчета динамики 

каскада водохранилищ при различных вариантах параметров правил управления.  

Считается, что сценарии боковой приточности, используемые для оценки правил 

управления, для всех водохранилищ имеют одинаковую продолжительность в 0P  лет. Пусть, 

по-прежнему, I – число интервалов, на которые разбит год. Тогда число рассматриваемых 

интервалов, по-прежнему, задается равенством 0 0t I P= ⋅ . причем для всех интервалов известны 

величины боковой приточности водохранилищ 0
1{ }tt

i tQ = , 01,...,i n= . Для проведения вариантного 

расчета остается задать начальные объемы воды в водохранилищах 0
0, 1,...,iW i n= . Тогда, 

используя правило управления с заданными параметрами, имеем  

 1
( ) 1 0 0( ), 1,..., , 1,..., ,t i t t t

i t i i iR U W Q R i n t tτ
−

−= + + = = . (1.3.1) 

На основе этого соотношения (с заданными значениями параметров) и водных балансов можно 

для водохранилища с 1i = , для которого 0 0tR ≡ , рассчитать величины попусков для всех 

интервалов. Затем, на основе попусков первого водохранилища, соотношения (1.3.1) и балансов 

воды можно рассчитать попуски для второго водохранилища для всех интервалов и т.д. Затем 

на основе полученных объемов и попусков для всех водохранилищ можно рассчитать 
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показатели функционирования (1.2.4)-(1.2.8) и другие, а по ним – значения критериев для 

рассматриваемых значений параметров. 

 

1.3.2 Проблема выбора начальных объемов 

Рассмотрим вопрос о том, откуда взять значения 0
0, 1,..., ,iW i n= . Дело в том, что при 

произвольных значениях начальных объемов результаты расчета не могут быть использованы 

для сравнения различных правил управления. Это связано с тем, что полученные конечные 

величины объемов воды в водохранилищах 0
0, 1,..., ,t

iW i n=  будут, вообще говоря, отличаться от 

начальных величин 0
iW , причем это различие будет зависеть от параметров правила 

управления. Поскольку отличие начальных и конечных объемов воды в водохранилищах 

означает использование дополнительного водного ресурса (или его экономию), то значения 

критериев, полученные в таких расчетах, не могут быть использованы для сравнения правил 

управления. Специалисты-водохозяйственники предлагают повторить вариантный расчет, взяв 

в качестве начальных полученные конечные объемы воды в водохранилищах. Как показывает 

опыт, при этом обычно удается уменьшить различие между начальными и конечными 

объемами. В данной работе эта идея модифицируется, обосновывается и используется для 

построения начальных условий 0
0, 1,...,iW i n= , подходящих для сравнения вариантов. Точнее 

говоря, строится сходящийся итеративный процесс, приводящий (для заданных параметров 

правил управления (1.3.1)) к таким начальным значениям объемов 0
0, 1,..., ,iW i n=  при которых 

конечные значения 0
0, 1,..., ,t

iW i n=  удовлетворяют соотношению 

 0 0
0, 1,...,t

i iW W i nε− < = , (1.3.2) 

где 0ε >  - задаваемая экспертами величина допустимого несовпадения начального и конечного 

объемов воды в водохранилищах. Выполнение требования (1.3.2) означает, что различием 

начальных и конечных объемов можно пренебречь.  

 

1.3.3 Поиск подходящих начальных объемов 

Далее предлагается способ поиска таких начальных объемов воды в водохранилищах 
0

0, 1,..., ,iW i n=  что при заданных параметрах правил управления (1.3.1) и краткосрочном 

прогнозе приточности выполняется требование (1.3.2). Как уже говорилось, использована 

простейшая гипотеза о краткосрочном прогнозе, а именно ˆ t t
i iQ Q= . В связи с этим мы далее не 

будем различать краткосрочный прогноз и реализовавшуюся приточность.  
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Расчет значения 0
iW  осуществляется с помощью итеративного процесса. Рассмотрим, 

например, водохранилище с номером 0 0{1,..., }i n∈ . Если это не самое верхнее водохранилище, 

то перед началом этого итерационного процесса должны быть найдены удовлетворяющие 

(1.3.2) значения начальных объемов воды 
0

0 0
1 1,..., iW W −  для водохранилищ, лежащих выше по 

реке, и рассчитаны значения попуска вышележащего водохранилища 
0 1 0, 1,...,t
iR t t− = .  

Рассмотрим балансовое уравнение (1.2.1) при 0i i=  

 0

0 0 0 0 0 0 0 0 0

1 1
1 ( ) 1 0, ( ), 1,..., tit t t t t t t t t

i i i i i i t i i iW W Q R R где R U W Q R tτ
− −

− −= + + − = + + = . (1.3.3) 

Величины 0
0
, 1,...,tQ t ti =  и 

0 1 0, 1,...,t
iR t t− =  заданы, поэтому по величине 

0

0
iW  с помощью (1.3.3) 

можно вычислить величину 0

0

t
iW . Зависимость конечного объема воды 0

0

t
iW  от начального 

объема воды 
0

0
iW  (при заданных 0

0
, 1,...,tQ t ti =  и 

0 1 0, 1,...,t
iR t t− =  и правиле попуска) обозначим 

через 0

0 0 0

0( )t
i i iW h W= . Поиск величины 

0

0
iW , удовлетворяющие (1.3.2), осуществляется на основе 

следующего итеративного процесса 
0 1( )k i kw h w −= , где где k=1,2…. – номер итерации. Берем 

произвольную величину 0 0w ≥ . Для очередного k рассчитываем 
0 1( )k i kw h w −= . Если 

1k kw w ε−− < , расчет завершается, в противном случае начинаем новую итерацию. 

Рассмотрим полученную последовательность 0 1, ,...w w , где 0 0w ≥ . Покажем, что при 

выполнении некоторых условий при любом 0 0w ≥  эта последовательность сходится к одной из 

неподвижных точек отображения 
0
( )ih ⋅ . Предварительно докажем теорему о сходимости 

итерационных процессов, которая служит основой для анализа модели водохранилища. 

 

1.3.4 Теорема о сходимости итерационных процессов 

Рассмотрим отображение : R Rϕ + +→  и семейство последовательностей 0{ }k kx +∞
= , 

порождаемых 0x R+∈  и рассчитываемых согласно формуле 

 1 ( ), 0,...k kx x kϕ+ = = . (1.3.4) 

Введем обозначение { | ( ) }B x R x xϕ+= ∈ > . 

Теорема 1.3.1 (о сходимости). Пусть ( )ϕ ⋅  - непрерывная функция, не убывающая по своему 

аргументу. Для того чтобы последовательность 0{ }k kx +∞
=  для любого 0x R+∈  сходилась к 

некоторой (может быть, зависящей от 0x ) неподвижной точке *x  отображения : R Rϕ + +→ , 
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необходимо и достаточно, чтобы множество В имело следующее свойство: для любого числа 

0y ≥   бесконечный отрезок [ , )y +∞  не принадлежит B . 

Доказательство. 1) Необходимость. Предположим обратное: пусть для любого 0x R+∈  

существует *x  - предел последовательности 0{ }k kx +∞
= , заданной (1.3.4), причем * *( )x xϕ= , но 

найдется такое число 0y B∈ , что 0[ , )y B+∞ ⊂ . Рассмотрим последовательность 0{ }k kx +∞
=  при 

0 0x y= . В силу 0x B∈  имеем 1 0x x> . Отсюда 1 0[ , )x y B∈ +∞ ⊂ . Аналогичным образом 

показывается, что для всех 1,...k =  из kx B∈  следует, что 1k kx x+ > , откуда 1kx B+ ∈ .  
По условию леммы последовательность 0{ }k kx +∞

=  имеет предел *x , причем * *( )x xϕ = . В 

силу того, что 01 , 1,...k kx x x k+ > > = , имеем 0*x x> . Следовательно, 0* [ , )x y∈ +∞ , откуда 

*x B∈ , что противоречит * *( )x xϕ = . Необходимость доказана. 

2) Достаточность. Итак, пусть для любого 0y ≥  бесконечный отрезок [ , )y +∞  не 

принадлежит B . Рассмотрим последовательность 0{ }k kx +∞
=  для некоторого 0x R+∈  и покажем,  

что она сходится к неподвижной точке ( )ϕ ⋅ . 

Случай 1. 0x B∈ . По условию теоремы найдется такая точка 0[ , )x x∈ +∞ , что x B∉ , т.е. 

( )x xϕ ≤ . В силу непрерывности ( )ϕ ⋅  и с учетом того, что 0 0( )x xϕ > , найдется 0 **x x x< ≤  

такая, что ** **( )x xϕ = . Применяя k раз неотрицательную неубывающую функцию ( )ϕ ⋅  к обеим 

частям неравенств 0 **x x<  и 0 0( )x xϕ > , получим **kx x≤  и 1k kx x+ ≥  , где 1,...k = . Таким 

образом, последовательность 0{ }k kx +∞
=  является неубывающей и ограниченной, и следовательно 

сходится. Обозначим предел 0{ }k kx +∞
=  через *x . Поскольку 1( )k kx xϕ += , то *lim ( )kk

x xϕ
→+∞

= . С 

другой стороны, в силу непрерывности ( )ϕ ⋅ , имеем *lim ( ) ( )kk
x xϕ ϕ

→+∞
= . Поэтому *x  - 

неподвижная точка ( )ϕ ⋅ . 

Случай 2. Теперь рассмотрим случай, когда 0x B∉ . Это означает, что 0 0( )x xϕ ≤ . 

Поскольку 1 ( )k kx xϕ+ = , то в силу неубывания ( )ϕ ⋅  имеем 1k kx x+ ≤ , где 0,...k = . Таким 

образом, последовательность 0{ }k kx +∞
=  является невозрастающей. Она ограничена снизу в силу 

: R Rϕ + +→ . Далее утверждение получаем аналогично случаю 1. Теорема доказана.  

 

1.3.5 Анализ алгоритма поиска начальных значений объемов воды  
Вернемся к рассмотрению модели каскада водохранилищ. Для доказательства 

сходимости последовательности 0 1, ,...w w , изучим некоторые свойства модели. Пусть для 
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водохранилища i0 заданы параметры правила управления (1.2.15), а также боковая приточность 

и приточность сверху. 

Условие безопасности правил попуска. Будем говорить, что для правила управления (1.2.15) 
выполняется условие безопасности правил попуска, если для любого момента времени 

{ }01, 1,..., ( 1) 1I I Pξ ∈ + ⋅ − +  и для любых физически возможных 
0

t
iQ  и 

0 1
t
iR − , найдется такой 

зависящий от момента ξ  объем водохранилища ( )
0

ˆ
iW ξ , что при всех ( )

0 0

1 ˆ
i iW Wξ ξ− ≥  выполнено 

неравенство 

{ }0 0 0

1 1

1  
I I

t t t
i i i

t t
R R Q

ξ ξ

ξ ξ

+ − + −

−
= =

+≥∑ ∑ . 

Физический смысл условия безопасности правил попуска заключается в следующем: класс 

правил попуска через плотину для любого набора параметров должен обеспечивать попуск 

любой возможной годовой приточности { }0 0

1

1  
I

t t
i i

t
R Q

ξ

ξ

+ −

−
=

+∑ . Точнее говоря, правило (1.2.15) 

таково, что при превышении объема воды в водохранилище некоторой критической величины 

( )
0

ˆ
iW ξ  должен осуществляться попуск, компенсирующий физически возможный приток воды в 

водохранилище. Таким образом, сформулированное свойство рассматриваемого правила 

попуска должно обеспечивать безопасную эксплуатацию водохранилища, не допуская его 

переполнения при всех физически возможных 
0

t
iQ  и 

0 1
t
iR − . 

Рассмотрим семейство функций  

 ( ) { } ( )0

0 0 0 0 0

1 1

1 ( ) 1  
I I

it t t t
i i i t i i

t t
w w R Q U w Q R

ξ ξ
ξ

τ
ξ ξ

γ
+ − + −

− −
= =

= + −+ + +∑ ∑ , (1.3.5) 

где 
0

1
iW wξ − =  ,  { }01, 1,..., ( 1) 1I I Pξ ∈ + ⋅ − + , определенные при 0w ≥ . 

Лемма 1.3.1. Функции 
0
( )i wξγ , { }01, 1,..., ( 1) 1I I Pξ ∈ + ⋅ − +  непрерывны и не убывают по w. 

Доказательство. Обозначим функции ( )0

0 0 0 01 ( ) 1
it t t t

i i t i iw R Q U w Q Rτ− −+ + − + +   аргумента w  через 

0
( )t

i wψ , где { },..., 1t Iξ ξ∈ + − . Из (1.2.1) следует, что функция 
0
( )i

ξγ ⋅  является суперпозицией 

функций 
0
( )t

i wψ , { },..., 1t Iξ ξ∈ + − , т.е. 
0 0 0 0

1 2( ) ( (... ( )), 0I I
i i i iw w wξ ξ ξ ξγ ψ ψ ψ+ − + −= ≥ . В силу свойств 

правила управления (1.2.15)  функции 
0
( )t

iψ ⋅ , { },..., 1t Iξ ξ∈ + − , являются непрерывными и 

неубывающими. Таким образом, функция 
0
( )i

ξγ ⋅  - непрерывная и неубывающая при каждом 

{ }01, 1,..., ( 1) 1I I Pξ ∈ + ⋅ − + . Лемма доказана. 
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Теорема 1.3.2. Если для правила (1.2.15) выполняется условие безопасности правил попуска, то 

последовательность 
0 1( ), 1,2,...ik kw h w k−= =  сходится к неподвижной точке функции 

0
( )ih ⋅  при 

любом 0 0w ≥ . 

Доказательство. Функция 
0
( )ih ⋅  является суперпозицией функций 

0

( ) ( )j
i
ξγ ⋅ , где

( ) 1 ( 1)j j Iξ = + − ⋅ , 01,...,j P= , точнее 0 0

0 0 0 0

( ) ( 1) (1)( ) ( (... ( )), 0P P
i i i ih w w wξ ξ ξγ γ γ−= ≥ . Из свойств 

суперпозиции функций с учетом леммы 1.3.1 следует, что функция 
0
( )ih ⋅  является непрерывной 

и неубывающей, при этом 
0
( ) 0ih w ≥  при 0w ≥ . Покажем, что множество 

0
{ 0 | ( ) }iw h w w≥ >  

ограничено.  

По определению условия безопасности правила попуска найдется число ( )
0

ˆ 0iW ξ ≥  

такое, что { }0 0 0

1 1

1  
I I

t t t
i i i

t t
R R Q

ξ ξ

ξ ξ

+ − + −

−
= =

+≥∑ ∑  при всех ( )
0 0

1 ˆ
i iW Wξ ξ− ≥ . С учетом (1.3.5) получим, что 

0
( )i w wξγ ≤  для любого ( )

0
ˆ

iw W ξ≥ . Пусть ( )
0

01,...,
ˆmax ( )ij P

c W jξ
=

= . Тогда при w c≥  имеем 

0

( ) ( )j
i w wξγ ≤  для всех 01,...,j P= . Последовательно применяя неубывающие функции 

0

( )
0( ), 2,...,j

i j Pξγ ⋅ = , к обеим частям неравенства 
0

(1) ( )i w wξγ ≤ , с учетом неравенств 

0

( )
0( ) , 1,...,j

i w w j Pξγ ≤ = , получим, что 
0
( )ih w w≤  при всех  w c≥ . Это доказывает 

ограниченность множества 
0

{ 0 | ( ) }iB w h w w= ≥ >  . 

Таким образом, все условия теоремы 1.3.1 о сходимости выполнены, следовательно, 

последовательность 
01 ( ), 0,1,...k i kw h w k+ = =  сходится к неподвижной точке функции 

0
( )ih ⋅  при 

любом 0 0w ≥ . Теорема доказана. 

При проектировании водохранилища максимальный попуск выбирают так, чтобы 

используемые правила управления обеспечивали отсутствие аварийных ситуаций при любой 

возможной годовой приточности. Это означает, что для правила управления (1.2.15) 

выполняются условия безопасности правил попуска. Таким образом, возвращаясь к 

последовательности 0{ }k kw +∞
= , где 1 ( )k kw h w+ = , видим, что все условия теоремы 1.3.2 выполнены, 

следовательно, последовательность 1 ( ), 0,1,...k kw h w k+ = =  сходится к неподвижной точке 

функции ( )h ⋅  при любом 0 0w ≥ . В силу сходимости 0{ }k kw +∞
=  найдется элемент 

последовательности 
0kw  такой, что 

0 01k kw w ε+ − < . Возвращаясь к прежним обозначениям, 
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получим 0

0 0

0t
i iW W ε− <  при 

0 0

0
i kW w= . Следовательно, на каком-то шаге итерации будет 

получена искомая величина 
0

0
iW , удовлетворяющая условию (1.3.2) при 0i i= . 

Отметим, что неподвижная точка функции ( )h ⋅  может быть не единственной. В общем 

случае она зависит от выбора начального объема воды в водохранилище 0w . Таким образом, 

возникает неопределенность, связанная с выбором значения 0w  в итерационном процессе 

поиска неподвижной точки. Для того чтобы разрешить неопределенность, предлагается 

выбирать 0 0w = , что соответствует уровню минимального управляемого объема воды в 

водохранилище, во всех дальнейших расчетах. В силу того, что функция ( )h ⋅  является 

непрерывной и неубывающей, такой выбор позволит находить минимальную неподвижную 

точку среди всех неподвижных точек отображения ( )h ⋅ . 

Выводы. Проведенный анализ модели показывает, что алгоритм позволяет находить 

такие значения начальных объемов воды в водохранилищах 0
0, 1,..., ,iW i n=  что при заданных 

правилах управления (1.3.1) и краткосрочном прогнозе приточности выполняется требование 

(1.3.2). На основе найденных значений начальных объемов воды в водохранилищах можно 

получить сравнимые показатели качества правил управления, а с учетом требований на основе 

этих показателей – критерии выбора правил управления. Вопрос об используемых критериях 

выбора управления рассмотрен в следующем параграфе. 

1.4 Критерии, характеризующие нарушение требований к каскаду 

В исследовании выбор параметров (k)
( )tLτ , 1,...,K 1k = − , правил управления определяется 

величинами, характеризующими нарушение экономических, экологических и коммунальных 

требований, сформулированных экспертами. Эти требования состоят в следующем: 

• производство электроэнергии в единицу времени (отдаваемая мощность) должно быть 

достаточно велико; 

• уровни нижних и верхних бьефов должны находиться в определенном диапазоне; 

• попуски должны быть ограничены снизу и сверху определенными величинами и т.д. 

Таким образом, величины, характеризующие нарушение требований экспертов, являются 

критериями выбора параметров. Рассмотрим основные типы используемых критериев.  

 

1.4.1 Типы критериев  
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Обозначим через 
1, 0

( )
0, 0

z
z

z
>

Θ =  ≤
 , т.е. функцию Хэвисайда от z. К первому типу 

критериев относятся критерии, отражающие долю интервалов, в течение которых нарушены 

требования к производству электроэнергии за период 0{1,..., }t . Например, величина 

 
0

, , *

10

1 ( ),
t

i i t i t t
N N N i i

t
y z z N N

t =

= Θ = −∑ , (1.4.1) 

где ,i t
Nz  - отклонение от желаемой выработки электроэнергии *

iN  в единицу времени в интервал  

t, является долей интервалов времени, в течение которых нарушены требования к 

гарантированной мощности i-ого водохранилища. 

Критерии второго типа характеризуют долю интервалов, в течение которых нарушены 

требования к уровню бьефов. Например, величина  

 
0

, , max min
, ,

10

1 ( ), max( , )
t

i i t i t t t
H H H i i t i t i

t
y z z H H H H

t =

= Θ = − −∑   (1.4.2) 

является долей интервалов времени, в течение которых нарушены требования к уровню бьефов 

i-ого водохранилища, где ,i t
Hz  - величина отклонения уровня верхнего ( i iH H= ) или нижнего (

i iH H= ) бьефа i-го водохранилища. Отметим, что значения min
,i tH  и max

,i tH  определяются 

экспертами с учетом требований лесопромышленного комплекса, водного транспорта, 

коммунального хозяйства и др. 

К еще одному типу относятся критерии, характеризующие долю интервалов, в течение 

которых нарушены границы допустимого диапазона попусков. Например, величина 

 
0

, , max min
, ,

10

1 ( ), max( , )
t

i i t i t t t
R R R i i t i t i

t
y z z R R R R

t =

= Θ = − −∑ ,  (1.4.3) 

является долей интервалов времени, в течение которых нарушены границы допустимого 

диапазона попусков через плотину i-ого водохранилища,  где ,i t
Rz  - величина отклонения 

попуска i-го водохранилища от заданного диапазона значений min max
, ,[ , ]i t i tR R . Отметим, что 

значения величин min
,i tR  и max

,i tR  эксперты выбирают, учитывая требования нормального режима 

работы гидроузла, противодействие заиливанию, требования отсутствия наводнений и др. 

 

1.4.2 Критерии Ангарского каскада водохранилищ 

Для Ангарского каскада водохранилищ экспертами были предложены 26 критериев, 

каждый из которых характеризует долю интервалов нарушения требований за некоторую 

последовательность интервалов 0{1,..., }t . Рассмотрим эти критерии более подробно. Обозначим 
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моменты времени, приходящиеся на месяцы с октября по апрель, через 0{1,..., }зT t⊂ , моменты 

времени, приходящиеся на месяцы с мая по сентябрь, через  0{1,..., }лT t⊂ . Отдельно выделим 

моменты времени, приходящиеся на апрель ( 0{1,..., }апрT t⊂ ) и сентябрь ( 0{1,..., }сенT t⊂ ).  

Первый критерий равен доле интервалов нарушения требований к уровню озера Байкал  

 
0

max min
1 1 1 1 1 1 1

10

1 ( ), max( , )
t

t t t t

t
y z z H H H H

t =

= Θ = − −∑ , (1.4.4) 

где 1
tz  – величина отклонения от требуемых границ уровня озера Байкал, 1

tH  – уровень озера 

Байкал в момент t , min max
1 1H H<  – заданные требования. Критерий равен доле шагов, на 

которых нарушалось постановления правительства РФ от 26.03.2001 N 234 о допустимых 

границах изменения уровня озера Байкал. 

Следующие два критерия относятся к ограничениям на санитарные попуски Иркутского 

водохранилища. Критерий 2y  равен доле интервалов нарушения неравенства 0
1 1
tR R≥  с мая по 

сентябрь, т.е. лt T∈ : 

 
( )

0 0
1 1

2 2 2
1

,1 ( ),
0,

tt
t t л

tл л

R R при t T
y z z

card T при t T=

 − ∈= Θ = 
∉

∑ , (1.4.5) 

где 2
tz – величина отклонения от нижней границы 0

1R  попуска Иркутского водохранилища в 

летний период, ( )лcard T  – число шагов, приходящихся на период с октября по апрель. 

Критерий 3y  равен доле интервалов нарушения 1
1 1
tR R≥  с октября по апрель, т.е. зt T∈ : 

 
( )

0 1
1 1

3 3 3
1

,1 ( ),
0,

tt
t t з

tз з

R R при t T
y z z

card T при t T=

 − ∈= Θ = 
∉

∑ , (1.4.6) 

где 3
tz  - величина отклонения от нижней границы попуска Иркутского водохранилища в зимний 

период, 1
1R  - заданное граничное значение, ( )зcard T  – число интервалов, приходящихся на 

период с октября по апрель. 

Критерий 4y  равен доле интервалов превышения ограничения сверху на попуск 

Иркутского водохранилища: 

 
0

max
4 4 4 1 1

10

1 ( ),
t

t t t

t
y z z R R

t =

= Θ = −∑ , (1.4.7) 

где 4
tz  - нарушение ограничения на попуск Иркутского водохранилища, max

1R  - заданное 

ограничение на величину попуска Иркутского водохранилища.  

Критерий 5y  равен доле интервалов пониженной отдачи Иркутской ГЭС: 
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0

*
5 5 5 1 1

10

1 ( ),
t

t t t

t
y z z N N

t =

= Θ = −∑ , (1.4.8) 

где 5
tz  - отклонение от требуемого значения *

1N  выработки электроэнергии в единицу времени 

на Иркутской ГЭС.  

Критерий 6y  равен доле интервалов нарушения работы водозаборов Иркутского 

водохранилища: 

 
0

min
6 6 6 1 1

10

1 ( ),
t

t t t

t
y z z H H

t =

= Θ = −∑ , (1.4.9) 

где 6
tz  - отклонение уровня верхнего бьефа Иркутского водохранилища ниже критического 

значения уровня min
1H , при котором еще возможна работа водозаборов.  

Следующие два критерия 7y  и 8y  относятся к требованиям, направленным на 

сохранения рыбных запасов озера Байкал:  

 ( )
0

0 0
1 1 1

7 7 7
1

,1 ( ),
0,

tt
апрt t

tапр апр

H H H при t T
y z z

card T при t T=

 − − ∆ ∈= Θ = 
∉

∑ , (1.4.10) 

 
( )

0 1 1
1 1 1

8 8 8
1

,1 ( ),
0,

tt
сенt t

tсен сен

H H H при t T
y z z

card T при t T=

 − − ∆ ∈= Θ = 
∉

∑ , (1.4.11) 

где 7
tz  и 8

tz  - величины отклонения от требуемых специалистами по рыбному хозяйству уровней 

0
1H  и 1

1H  озера Байкал в апреле и сентябре, а 0
1H∆  и 1

1H∆  - допустимые отклонения. Критерии 

7y  и 8y  равны доле интервалов нарушения заданных уровней озера Байкал в апреле и сентябре, 

соответственно. 

Критерии с 9y  по 16y  отражают требования к показателям Братского водохранилища. 

Критерии 9y  и 10y  характеризуют требования нормальной работы водозаборов:  
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где 9
tz  - величина отклонения уровня верхнего бьефа Братского водохранилища ниже 

критического значения уровня 0
2H , при котором еще возможна работа водозаборов, а 10

tz  - 

величина отклонения уровня верхнего бьефа Братского водохранилища ниже уровня 1
2H , при 

котором водозаборы действуют в нормальном режиме.  
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Критерии 11y  и 12y  характеризуют навигационные требования: 
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t t л
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H H при t T
y z z

card T при t T=
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∉

∑ , (1.4.14) 
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∑ , (1.4.15) 

где 11
tz  - величина отклонения уровня верхнего бьефа Братского водохранилища ниже 

минимального значения 2
2H , при котором еще возможна навигация, а 12

tz  - величина 

отклонения верхнего бьефа Братского водохранилища ниже уровня, при котором 

обеспечивается навигация в нормальном режиме.  

Критерий 13y  отражает требования к транспортным попускам в нижний бьеф Братского 

водохранилища: 
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= Θ = −∑ , (1.4.16) 

где 13
tz  - величина отклонения попуска Братского водохранилища 2

tR  ниже 0
2R , минимально 

требуемого транспортного попуска в нижний бьеф Братского водохранилища.  

Требования к санитарным попускам отражает критерий 14y : 
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= Θ = −∑ , (1.4.17) 

где 14
tz  - величина отклонения попуска Братского водохранилища 2

tR  ниже min
2R , т.е. 

минимального санитарного попуска, обеспечивающего соблюдение нормативов качества воды 

и благоприятные условия водопользования в нижнем бьефе.  

Критерий 15y  равен доле интервалов пониженной отдачи электроэнергии Братской ГЭС: 
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где 15
tz  - величина отклонения вниз от уровня *

2N , требуемого значения выработки 

электроэнергии в единицу времени на Братской ГЭС.  

Критерий 16y  равен доле интервалов превышения желательного уровня 2
нпуH  верхнего 

бьефа Братского водохранилища: 
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где 16
tz  - величина превышения желательного уровня верхнего бьефа 2

нпуH .  
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Критерии с 17y  по 26y  описывают аналогичные требования к водным ресурсам Усть-

Илимского водохранилища. Требования к уровню верхнего бьефа Усть-Илимского 

водохранилища характеризуют критерии 17 18 19 20, , ,y y y y : 
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где 17
tz  - величина отклонения уровня верхнего бьефа ниже уровня мертвого объема 3

умоH , 18
tz  и 

19
tz  - величины отклонения уровня верхнего бьефа ниже минимального 0

3H  и нормального 1
3H  

навигационных уровней, 20
tz  - величина превышения уровня верхнего бьефа уровня 3

нпуH .  

Санитарные требования характеризуются величиной: 
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где 21
tz  - величина отклонения 3

tR   ниже минимального санитарного попуска min
3R  в нижний 

бьеф Усть-Илимского водохранилища. 

Требования лесопромышленного комплекса характеризуются величиной: 
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где 22
tz  - величина отклонения 3

tR  ниже минимального попуска 3
лпкR , при котором в нижнем 

бьефе Усть-Илимского водохранилища возможен лесосплав. 

В зимний период требуется, чтобы попуски были не ниже заданных. Критерий 23y  равен 

доле интервалов, в которых установленное требование не выполнялось:  
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Критерий 24y  равен доле интервалов пониженной отдачи электроэнергии на Усть-

Илимском гидроузле: 
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где 24
tz  - величина нарушения *

3N , требуемого значения выработки электроэнергии в единицу 

времени на Усть-Илимской ГЭС. 

Критерии 25y  и 26y  отражают транспортные требования к попускам в нижний бьеф 

Усть-Илимского водохранилища: 
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где 25
tz  - величина нарушения 1

3R , минимального навигационного попуска в нижний бьеф Усть-

Илимского водохранилища, а 26
tz  - величина нарушения попуска 2

3R , при котором возможна 

навигация в нормальном режиме. 

В процессе работы с моделью выяснилось, что критерии y7 и  y8 не принимаются во 

внимание экспертами в связи с их нелогичностью и плохой обоснованностью. Поэтому в 

дальнейшем рассматривались критерии yj, j=1,…,26; j≠7, 8. 

 

1.4.3 Альтернативные критерии в задаче управления каскадом водохранилищ 

Кроме критериев, описанных выше, специалисты по водному хозяйству часто 

рассматривают альтернативные критерии, характеризующие долю бесперебойных лет, т.е. 

таких лет, в течение которых не нарушалось соответствующее требование водопользователей 

[3]. Критерий такого типа называется годовой обеспеченностью требований 

водопользователей. Для построения критериев годовой обеспеченности используется разбиение 

множества интервалов времени 0{1,..., }t  на подмножества, составляющих один 

водохозяйственный год (период с мая текущего года по апрель следующего), т.е.  
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= ,  (1.4.30) 

где lT  - совокупность интервалов одного водохозяйственного года. Число интервалов в году, 

как уже говорилось, равно I. Обозначим число нарушений требований при использовании 

параметров правила управления в течение года с номером l  через ( )( )
l

j j
l t

t T
r z

∈

= Θ∑ , где 

01,...,j m= Если в течение года l  требование j  не нарушалось, то 0j
lr = , в противном случае 
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эта величина больше нуля. Тогда критерии обеспеченности, характеризующие долю 

бесперебойных лет, можно выразить формулой: 

 
( )( )
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0

1
P

j
l

l
j

r

P
µ =

−Θ
=
∑

, (1.4.31) 

Очевидно, что критерии jµ  неотрицательны и не превосходят единицы. Представляет интерес 

увеличение значений этих критериев. 

 

Рис. 1.4.1 Блок-схема расчета значений критериев для некоторого варианта параметров 

 

1.4.4 Блок-схема расчета значений критериев 

Расчет значений критериев по модели (1.2.1)-(1.2.15) для некоторого варианта 

параметров (k)Lτ , 1,..., Iτ = , 1,...,K 1k = − , для всех водохранилищ можно представить блок-

схемой, изображенной на рисунке 1.4.1. Пусть заданы параметры правил попуска (k)Lτ , 1,..., Iτ =

, 1,...,K 1k = − , сценарии приточности t
iQ  и начальные объемы (уровни) воды 0

iW  для всех 

водохранилищ каскада. По параметрам правила попуска верхнего водохранилища, а также по 

сценарию его приточности и начальным объемам воды в нем на основе балансовых 

соотношений модели можно рассчитать попуски и объемы (или уровни) воды в верхнем 

водохранилище на t0 шагов. C помощью приведенного в разделе 1.3 алгоритма поиска 

начальных значений объемов можно найти подходящие значения 0
1W , а по ним -- попуски и 

объемы (или уровни) воды на все моменты времени. Далее, по аналогичным данным для 

водохранилища, лежащего ниже по течению, дополненным информацией о попусках верхнего 
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водохранилища, можно рассчитывать попуски и объемы (или уровни) воды в следующем 

водохранилище и найти подходящие начальные значения 0
2W , и так далее. В итоге оказываются 

найдены подходящие начальные значения и рассчитаны попуски и объемы (уровни) воды во 

всех водохранилищах каскада на t0 шагов. Далее можно рассчитать характеристики (показатели 

качества) управления, соответствующие рассматриваемому набору параметров, а по ним – 

величины критериев (1.4.4)-(1.4.29). 

1.5 Проблема многокритериальной оптимизации правил управления 

динамической системой с критериями типа обеспеченности 

1.5.1 Общая формулировка проблемы 

Обобщением задачи построения правил управления водохранилищами является 

следующая задача многокритериальной оптимизации правил управления динамической 

системой. Пусть рассматривается динамическая многошаговая система  

 1 0( , , ), 1,...,t t tx f t x u t t−= = , (1.5.1) 

где 0, 0,...,n
tx R t t∈ = , – состояние, 0, 1,...,r

tu R t t∈ = , – управление, причем значение tu  задается 

правилом управления, содержащим параметры: 

 1 0( , , ), 1,...,t
t tu h t x t tα−= = , (1.5.2) 

где 0( , , ) :{1,..., } n rh t R R⋅ ⋅ ⋅ × ×Ξ→  – заданная вектор-функция, 0( , 1,.., )t t tα α= =  – вектор 

параметров правила управления, lRα ∈Ξ ⊂ , где Ξ  – непустое компактное множество, 0t  – 

число шагов (достаточно большая величина). Если задать вектор параметров α ∈Ξ  и начальное 

состояние динамической системы 0x , то с помощью (1.5.2) и (1.5.1) можно последовательно 

вычислить все управления и состояния динамической системы. Будем предполагать, что 

критерии оптимизации строятся на основе значений скалярных характеристик (показателей 

функционирования) ( )j
ts , которые задаются непрерывными функциями  

 ( ) ( ) ( , )j j
t t t ts s x u= ,  (1.5.3) 

где j – номер характеристики, 0 01,..., , 1,...,j m t t= = . 

Можно также рассмотреть динамические системы, для которых соотношения (1.5.1), 

(1.5.2) и (1.5.3) не заданы в явном виде, а вместо них используется черный ящик (неизвестный 

алгоритм), который по входным параметрам α ∈Ξ  находит выходы – траектории и значения 

характеристик ( )j
ts , 0 01,..., , 1,...,j m t t= = . Методы аппроксимации ОЭП, предлагаемые в данной 

работе, не используют особенности расчета траекторий и управлений на основе 
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математической модели, поэтому можно считать, что расчет характеристик динамической 

системы задается  черным ящиком (см. рис. 1.5.1).  

 
Рис. 1.5.1 Схема расчета характеристик   

Предпочтительные значения параметров α ∈Ξ  должны быть найдены при решении 

задачи многокритериальной оптимизации, критерии которой строятся на основе требований к 

показателям функционирования (характеристикам) динамической системы. Совокупность 

требований для j-ого показателя функционирования задается замкнутым односвязным 

одномерным множеством (точкой, отрезком или полупрямой) ( )j
tG . При ( ) ( )j j

t ts G∉  отклонение 

(невязка) ( )j
tz  – это расстояние значения j-ого показателя функционирования до множества ( )j

tG , 

т.е. 

 { }( ) ( ) ( )inf :j j j
t t tz s s s G= − ∈ , (1.5.4) 

Особенность рассматриваемой задачи состоит в том, что j-й частный критерий выбора равен 

доле интервалов (моментов) нарушения требований, т.е. доле интервалов (моментов), при 

которых ( ) 0j
tz > . Такой критерий jy  имеет вид 

 
0

( )

10

1 ( )
t

j
j t

t
y z

t =

= Θ∑ . (1.5.5) 

Критерии  (1.5.5), являющиеся функциями невязок (1.5.4), являются обобщением критериев, 

описание которых приведено в разделе 1.4.  

После того как управления и состояния, а также характеристики ( ) ( , )j
t t ts x u  

динамической системы вычислены (согласно соотношениям модели (1.5.1),(1.5.2) и (1.5.3) или 

по неизвестному алгоритму черного ящика), на основе (1.5.4) по ним можно найти значения 

отклонений (невязок) ( )
0 0, 1,..., ; 1,...,j

tz t t j m= = . После этого на основе (1.5.5) можно найти 

значения частных критериев 0, 1,...,jy j m= . В связи с этим величины ( )j
tz  и критерии 

0, 1,...,jy j m= , можно рассматривать как функции вектора α , заданные некоторыми 

формулами или алгоритмом черного ящика, т.е. при α ∈Ξ  можно писать 
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( )
0 0( ), 1,..., ; 1,...,j

tz t t j mα = = , и 0( ), 1,...,jy j mα = . В итоге рассматриваемая система (1.5.1)-

(1.5.5) приобретает вид, приведенный во Введении. 

 

1.5.2 Свойства границы Парето и ОЭП 

Рассмотрим свойства границы Парето и ОЭП в задаче МКО, в которой рассматривается 

проблема выбора некоторого вектора параметров α ∈Ξ , причем критерии задаются 

соотношениями (1.5.4) и (1.5.5). В этой задаче множеством достижимых критериальных 

векторов является множество ( ) ( )( ){ }01 ,..., |mY y yα α α= ∈Ξ . Поскольку каждая из функций 

( )jy ⋅ , где 01,...,j m= , может принимать конечное число значений, а именно t0+1 значение, то 

множество достижимых критериальных векторов Y  состоит из конечного числа точек, которое 

не превосходит 0
0( 1)mt + . Так как множество Y  конечно и не пусто, то не пусто и множество 

максимальных элементов определенного на нем бинарного отношения строгого порядка, в 

частности, бинарного отношения Парето, т.е. множество P(Y). Более того, имеет место так 

называемая внешняя устойчивость, т.е. для любого y из Y  имеет место утверждение: либо y 

принадлежит P(Y), либо найдется y0 из P(Y), доминирующий y по Парето [13]. Отсюда следует, 

что можно ограничиться только критериальными точками из P(Y), которые могут быть изучены 

на основе аппроксимации и визуализации ОЭП. 

В модели (1.5.1) – (1.5.5) значения критериев, вообще говоря, зависят не только от 

параметров правила управления α ∈Ξ , но и от входных данных, например, от приточности 

водохранилищ в случае Ангарского каскада. Таким образом, имеет место зависимость ( )Y β , 

где β  – совокупность входных данных. Пусть известно, что β  принадлежит множеству B  

некоторого топологического пространства, причем имеется такая точка 0 int Bβ ∈ , что 

( )0Y Y β= . Соответствующим образом, имеются зависимости ( )( )P Y β  и ( )*Y β , причем 

( ) ( )( )0P Y P Y β=  и ( )* *
0Y Y β= .  

Рассмотрим вопрос об устойчивости ( )0Y Y β=  по отношению к возмущениям 

параметров модели в случае критериев (1.5.5), являющихся разрывными функциями невязок. 

Предварительно заметим, что множество Y  достижимых критериальных векторов, задаваемых 

соотношением (1.5.5), является образом множества Z  достижимых значений векторов невязок, 

рассчитываемых по формуле (1.5.4). Точнее говоря, ( )Y Zψ= , где отдельные частные критерии 

описываются соотношением (1.5.5), т.е. можно сказать, что ( )j jy zψ= . Вектор невязок  z  

составлен из  0m   векторов ( )jz  невязок j–й характеристики, т.е. ( )0( )(1) ,..., mz z z= , а каждый 
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вектор ( )jz  состоит из невязок j–й характеристики в определенные моменты времени, т.е. 

( )0

( ) ( ) ( )
1 ,...,j j j

tz z z= . Таким образом, вектор ( )jz  имеет размерность 0t , а вектор невязок z  имеет 

размерность 0 0m t⋅ , т.е. множество Z( β ) принадлежит линейному пространству 0 0m tR , т.е. 

0 0 0: m t mR Rψ → . 

Подчеркнем, что определение устойчивости множеств Y  и *Y , а также границы Парето, 

приведенное, например, в работе [22] и основанное на понятии непрерывного изменения 

множества в метрике Хаусдорфа в зависимости от входных данных, применимо к вопросу об 

устойчивости множества Z , но не применимо по отношению к устойчивости множества Y, 

поскольку каждый из критериев (1.5.5) принимает дискретный набор значений 
0

10, ,...,1
t

 
 
 

. 

Поэтому для Y  и *Y  требуется альтернативное определение устойчивости.  

Определение. Множество ( )0Y Y β=  назовем устойчивым по отношению к 

возмущениям входных данных  из B  в точке 0 int Bβ ∈ , если ( ) ( )0Y Yβ β=  в некоторой 

отрытой окрестности β0. Соответственно, множества ( ) ( )( )0P Y P Y β=  и ( )* *
0Y Y β=  назовем 

устойчивыми по отношению к возмущениям в точке 0 int Bβ ∈ , если ( )( ) ( )( )0P Y P Yβ β=  и 

( ) ( )* *
0Y Yβ β=  соответственно, в некоторой отрытой окрестности 0β . 

Критерии (1.5.5) в случае присутствия возмущений приобретают вид 

 ( )
0

( )

10

1( , ) ( , )
t

j
j t

t
y z

t
α β α β

=

= Θ∑ ,  (1.5.6) 

где 01,...,j m= . Рассмотрим один пример. Предположим, что среди решений α ∈Ξ  оказалось 

такое 0α α= , что ( )
0 0( , ) 0j

tz α β =  для некоторых j и t. Рассмотрим функцию ( )
0( , )j

tz α β  

переменной β . Предположим, что в сколь угодно малой окрестности 0β  найдется точка β̂ , 

такая что ( )
0

ˆ( , ) 0j
tz α β > . В таком случае в одном из частных критериев (1.5.6) функция 

( )( ) ( , )j
tz α βΘ  будет претерпевать разрыв в точке 0β , поскольку ( )( )

0
ˆ( , ) 1j

tz α βΘ =  и 

( )( )
0 0( , ) 0j

tz α βΘ = . Следовательно, в окрестности точки 0β  значение этого критерия может 

существенно изменяться, что может привести к неустойчивости множества Y  в 

рассматриваемой задаче. 
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Вернемся к проблеме устойчивости множества Y . Перенумеруем каким-то образом все 
0 02m tK =  ортантов пространства 0 0m tR ⋅ . Введем индикаторные функции ( ) , 1,...,k k Kχ β = , 

определенные следующим образом: 

• ( ) 1kχ β = , если множество Z( β ) имеет непустое пересечение с множеством внутренних 

точек ортанта номер k;  

• ( ) 0kχ β = , если множество Z( β ) не имеет общих точек с множеством внутренних точек 

ортанта номер k.  

Теорема 1.5.1. Достаточным условием устойчивости множества Y относительно возмущений 

входных данных в точке 0 int Bβ ∈  является наличие такой открытой окрестности ( )0O β  точки 

0β , что ( ) ( )0 , 1,...,k k k Kχ β χ β= = , при всех β  из ( )0O β .  

Доказательство. Обратим внимание на то, что согласно (1.5.5) имеем 0 0

0

1: 0, ,...,1m t
j R

t
ψ ⋅  

→  
 

. 

При этом совокупность внутренних точек каждого ортанта переводится в единственную точку 

пространства 0mR , принадлежащую его множеству 
0

0

10, ,...,1
m

t
 
 
 

. Если пересечение множества 

Z  с множеством внутренних точек какого-то ортанта пространства 0 0m tR ⋅  непусто, то 

соответствующая точка множества 
0

0

10, ,...,1
m

t
 
 
 

 принадлежит множеству Y . Таким образом, 

задание индикаторных функций ( ) , 1,...,k k Kχ β = , в точке 0β  задает множество Y . То же самое 

можно сказать и про другие значения входных данных β  из множества B , т.е. задание 

( ) , 1,...,k k Kχ β = , в некоторой точке β  из множества B  задает ( )Y β . Поэтому наличие такой 

открытой окрестности ( )0O β  точки 0β , что ( ) ( )0 , 1,...,k k k Kχ β χ β= = ,  при всех β  из ( )0O β  

означает, что ( ) ( )0Y Yβ β=  в ( )0O β , т.е. устойчивость множества ( )0Y Y β=  по отношению к 

возмущениям входных данных β  в точке 0 int Bβ ∈ . 

Замечание. Доказанная теорема позволяет выписать различные условия устойчивости 

множества ( )0Y Y β= , основанные на достаточных условиях устойчивости отдельных 

индикаторных функций.  

Как и всегда, оболочка Эджворта-Парето устойчива по отношению к возмущениям 

входных данных при устойчивости множества Y . Как уже говорилось, граница Парето, вообще 

говоря, может быть неустойчива по отношению к возмущениям входных данных и других 

параметров задачи МКО даже при устойчивом множестве Y . В данной задаче МКО это не так – 
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при выполнении условий теоремы множество ( )P Y  устойчиво по отношению к возмущениям 

одновременно с Y  в связи с дискретностью множества Y . 

 

 

1.5.3 Модифицированная формулировка задачи 

В связи с тем, что условие теоремы 1.5.1 трудно проверить в прикладных исследованиях 

требуется несколько переформулировать задачу МКО. В данной работе используется подход, 

используемый на практике при решении задач оптимизации правил управления 

водохранилищами специалистами в области управления водным хозяйством. В рамках этого 

подхода при расчете значений критериев учитываются лишь достаточно большие нарушения 

ограничений, т.е. нарушения учитываются только тогда, когда 

 ( ) ( )
0 0( ) , 1,..., , 1,...,j j

t tz t t j mα δ> = = , (1.5.7) 

где ( ) 0j
tδ >  - некоторая «малая» величина, задаваемая экспертами. Тогда критерий jy  имеет 

вид 

 
0

( ) ( )
0

10

1( ) ( ( ) ), 1,...,
t

j j
j t t

t
y z j m

t
α α δ

=

= Θ − =∑ . (1.5.8) 

Важно, что при этом, однако, не предполагается использовать дополнительные возможности, 

возникающие при заданных положительных величинах ( )j
tδ , для улучшения качества 

управления. Это связано с тем, величины ( )j
tδ  субъективны и их величины могут быть 

оспорены критиками предлагаемых решений. Поэтому задача ставится несколько по-другому: 

требуется решить задачу многокритериальной минимизации (1.5.1)-(1.5.4), (1.5.8), стараясь 

одновременно удовлетворить «мягкие» ограничения ( )
0 0( ) 0, 1,..., , 1,...,j

tz t t j mα ≤ = = , которые 

можно и нарушить, но желательно, чтобы это делалось по возможности на малую величину. В 

данной работе стремление не слишком нарушать условие ( ) ( ) 0j
tz α ≤  учитывается в численных 

алгоритмах поиска эффективных вариантов решения (1.5.1)-(1.5.4), (1.5.8). При этом благодаря 

присутствию положительных величин ( )j
tδ  найденные решения, как правило, не 

характеризуются нулевыми значениями модифицированных невязок и, таким образом, 

являются устойчивыми по отношению к возмущениям входных данных. 
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1.6 Программное обеспечение расчета критериев для Ангарского каскада 

Для расчета значений критериев по заданным параметрам правила управления 

Ангарским каскадом водохранилищ разработано программное обеспечение, реализованное 

средствами алгоритмического языка С++. Это программное обеспечение представляет собой 

комплекс вложенных программных модулей, входом которого являются значения параметров 

правил управления (k)
( )tLτ , 1,..., Iτ = , 1,...,K 1k = − , для всех водохранилищ, а выходом – значения 

критериев (1.4.4)-(1.4.29). Программное обеспечение состоит из трех модулей: модуля расчета 

попусков и объемов Ангарского каскада, модуля расчета характеристик Ангарского каскада и 

модуля расчета критериев. Блок-схемы модулей даны на рисунке 1.6.1-1.6.3. 

Рассмотрим модуль расчета попусков и объемов Ангарского каскада (рисунок 1.6.1). 

Параметрами этого модуля являются: 

• сценарии приточности ко всем водохранилищам каскада; 

• число ε  – критерий остановки процесса поиска подходящих начальных значений  

• объемов водохранилищ; 

• исходные объемы 0 , 1,..,3iW i = . 
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Рис. 1.6.1 Блок-схема модуля расчета значений попусков и объемов Ангарского каскада 

Рассмотрим модуль расчета характеристик Ангарского каскада (рисунок 1.6.2). 

Параметрами этого модуля являются: 

• параметры табличных функций (1.2.7) блока расчета средней выработки 

электроэнергии в единицу времени для всех водохранилищ каскада; 

• параметры табличной батиметрической функции блока расчета уровня озера Байкал; 

• параметры табличных функций (1.2.4)-(1.2.6) блока расчета уровней верхних и 

нижних бьефов водохранилищ. 

 

Обратим внимание на то, что модуль расчета значений попусков и объемов Ангарского каскада 

входит как блок в модуль расчета характеристик.  
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Рис. 1.6.2 Блок-схема модуля расчета характеристик Ангарского каскада 

 

Теперь рассмотрим модуль расчета критериев Ангарского каскада (рисунок 1.6.3). 

Параметрами этого модуля являются: 

• требования к характеристикам каскада водохранилищ; 

• значения констант ( ) ( )j
tδ ⋅ 0 01,..., , 1,...,t t j m= = . 

Модуль расчета характеристик водохранилищ Ангарского каскада входит как блок в модуль 

расчета критериев.  
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Рис. 1.6.3 Блок-схема программы расчета значений критериев 

 

Таким образом, рассмотренный комплекс программ рассчитывает значения критериев 

оптимизации по значениям параметров правил управления, т.е. по величинам (k)
( )tLτ , 1,..., Iτ = , 

1,...,K 1k = − , для всех водохранилищ. 
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Глава 2 Оптимизация критериев типа обеспеченности и ее 

применение 

Одна из сложностей задачи многокритериальной оптимизации правил управления 

динамической системой (в том числе задачи разработки правил управления каскадом 

водохранилищ) состоит в том, что критерии принятия решения (1.5.8) в этой задаче являются 

суммой нескольких тысяч функций Хэвисайда от невязок (нарушений требований), которые, в 

свою очередь, являются функциями нескольких сотен непрерывных переменных (параметров 

правил управления). Поэтому критерии являются разрывными функциями параметров, 

принимают конечное число значений и являются постоянными в окрестностях точек 

непрерывности. В связи с этим для оптимизации значений таких критериев (и, тем более, их 

сверток) не удается применить градиентные методы и основанные на их использовании методы 

мультистарта. Поскольку методы оптимизации градиентного типа показали себя эффективным 

средством аппроксимации границы Парето в нелинейных задачах с большим числом 

переменных и непрерывными критериями, в частности, в рамках двухфазных методов, разумно 

попытаться применить этот опыт в задачах, рассматриваемых здесь. Для этого в данной работе 

используются вспомогательные функции, в процессе оптимизации которых применимы 

градиентные методы.  

Вспомогательные функции широко используются при решении сложных задач 

оптимизации, особенно в случае трудоемких вычислений значений оптимизируемых функций 

(см., например, обзоры [79] [80]). Основная идея метода вспомогательных функций состоит в 

выборе (случайном или с помощью методов теории планирования эксперимента) конечного 

числа допустимых решений, для которых рассчитывается значение оптимизируемой функции. 

Вспомогательная функция строится с использованием методов регрессионного анализа с 

использованием полиномов различной степени, сплайнов и т.д. Находится точка оптимума 

вспомогательной функции, в этой точке рассчитывается значение оптимизируемой функции, 

после чего вспомогательная функция корректируется и т.д.  

В задачах построения границы Парето такая методика несколько модифицируется (обзор 

методов вспомогательных функций в задачах многокритериальной оптимизации дан в [81]). 

Основная идея состоит в стремлении построить такие вспомогательные критериальные 

функции, граница Парето для которых окажется близка к истинной границе Парето. Сначала 

каким-то образом выбираются допустимые точки пространства решений, для которых 

рассчитываются значения исходных критериев. По этой информации строятся вспомогательные 

критериальные функции. Далее каким-то методом (например, с использованием генетического 

алгоритма) строится совокупность недоминируемых решений для задачи с вспомогательными 
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критериальными функциями, для которой рассчитываются значения исходных критериальных 

функций. Если расхождения между значениями вспомогательных и исходных функций в этих 

решениях велики, вспомогательные критериальные функции уточняют на основе полученной 

информации и осуществляется построение совокупности недоминируемых решений для задачи 

с уточненными вспомогательными критериальными функциями. Если расхождения малы, то 

полученная совокупность недоминируемых решений объявляется решением задачи МКО [82]. 

В альтернативном варианте подхода граница Парето аппроксимируется для упрощенной 

модели с помощью двухфазного метода, а затем в области критериальной точки, выбранной 

ЛПР, она уточняется с помощью метода скалярной оптимизации, примененного к исходной 

модели [83]. Другие варианты такого подхода рассмотрены, например, в [84] [85] [86].  

Предлагаемый в данной работе метод вспомогательных функций отличается от методов, 

описанных выше. В нем используется конкретный вид критериев, а именно наличие в них сумм 

функций Хэвисайда от z. Функции Хэвисайда в работе заменяются непрерывными функциями – 

нулем при 0z ≤  и степенными функциями pz  при z > 0. При этом 0.2 2p≤ ≤ . Надо отметить, 

что замена функций типа функции Хэвисайда или знака выражения вспомогательными 

непрерывными функциями встречается при решении задач обработки данных (распознавания) 

(см., например, [87], [88]). Особенность проблемы, рассматриваемой в данной работе, состоит в 

том, что аргументами функций Хэвисайда являются не некоторые известные данные, а 

нарушения требований, предъявляемых к показателям функционирования системы, причем 

невязки рассчитываются с помощью сложной математической модели, связывающей значения 

показателей с параметрами правил управления. Таким образом, в отличие от задач 

распознавания, в нашем случае речь идет о построении непрерывных вспомогательных 

функций, используемых вместо исходных разрывных критериальных функций, описывающих 

зависимость критериев от параметров правил управления. Чтобы избежать путаницы, функции, 

используемые вместо функций Хэвисайда, будем называть эрзац-функциями, а предлагаемый 

далее метод приближенного поиска глобального оптимума в задачах скалярной оптимизации с 

использованием вспомогательных функций, построенных таким образом – методом эрзац-

функций.  

В разделе 2.1 главы 2 описан предлагаемый метод эрзац-функций. В разделе 2.2 свойства 

метода эрзац-функций изучаются экспериментально с использованием модели Ангарского 

каскада водохранилищ. Точнее говоря, изучается вопрос об использовании вместо функции 

Хэвисайда степенных функций с показателями степени от 0.2 до 2. Показывается, что 

использование степени от 0.5 до единицы позволяет найти достаточно хорошее решение задачи 

глобальной оптимизации отдельных (частных) критериев. В то же время, эксперименты 

показывают, что получить хорошее решение задачи глобальной оптимизации свертки 
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критериев за разумное время не удается, т.е. аппроксимировать ОЭП с помощью оптимизации 

достаточного числа сверток критериев в данной задаче невозможно. Поэтому далее в данной 

главе предлагается использовать метод эрзац-функций для решения задачи оптимизации правил 

управления каскадом с использованием альтернативного подхода к задачам МКО – на основе 

нахождения некоторого единственного эффективного набора параметров правила управления, 

предпочтительного для ЛПР. Для этого предлагается новая, основанная на использовании 

метода эрзац-функций диалоговая человеко-машинная многокритериальная процедура, 

отличающаяся от классических процедур. 

В классических диалоговых итеративных процедурах выбора решения в задачах МКО от 

итерации к итерации осуществляется вариация параметров некоторой неизменной свертки 

критериев. Роль ЛПР в таком случае состоит в оценке результатов оптимизации свертки при 

некотором наборе параметров свертки и в выработке рекомендаций по их изменению в целях 

дальнейшего улучшения решения. Большинство диалоговых процедур построено в 

предположении, что задачи скалярной оптимизации сверток критериев удается решать 

достаточно точно: для получения решения, оптимального по Парето, достаточно 

оптимизировать свертку, монотонную по значениям критериев задачи [37].  

В простейшем виде итерация классической диалоговой процедуры состоит из двух 

шагов, на которых используется заранее заданная свертка критериев, содержащая параметры, 

значения которых определены на предыдущих итерациях. 

Шаг 1. Решается задача оптимизации свертки при этих значениях параметров, в 

результате чего находится новое оптимальное по Парето решение и соответствующий 

недоминируемый вектор критериев. 

Шаг 2. ЛПР изучает найденный недоминируемый критериальный вектор (возможно, 

сравнивая его с критериальными векторами, найденными ранее, или некоторыми другими 

величинами). Если критериальный вектор удовлетворяет ЛПР, то процедура завершается. В 

противном случае ЛПР предлагает новые значения параметров свертки, способствующие 

улучшению значений не удовлетворяющих его критериев. Осуществляется переход к 

следующей итерации. 

В силу недоминируемости найденных критериальных векторов, рассматриваемых в 

процедуре, на каждой итерации улучшаются значения одних критериев за счет ухудшения 

значений других. В силу того, что ЛПР целенаправленно варьировал параметры свертки, то 

найденный критериальный вектор, скорее всего, будет более предпочтителен для него, чем 

полученный на предыдущей итерации. Если это не так, предпочтительное решение может быть 

получено варьированием параметров свертки на следующих итерациях. 
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Диалоговая итеративная процедура поддержки принятия решения, предлагаемая в 

данной главе, предназначена для тех случаев, когда математическая модель изучаемой системы 

настолько сложна, что описанная выше классическая схема диалоговой процедуры не 

реализуема из-за того, что достаточно точное решение большого числа задач глобальной 

оптимизации свертки критериев невозможно, либо требует слишком больших затрат 

вычислительных ресурсов. Именно этот случай встретился в задаче разработки правил 

управления ангарским каскадом. Эксперимент показывает, что использование непрерывных 

вспомогательных функций позволяет приближенно находить локальные экстремумы сверток 

критериев, но находить глобальный оптимум сверток достаточно точно не удается: 

приближенное решение, найденное за разумное время, часто уступает решениям, известным 

ЛПР, участвующему в процедуре. Поэтому при разработке многокритериальной диалоговой 

процедуры пришлось отказаться от решения задачи глобальной оптимизации сверток и 

использовать альтернативную процедуру, в которой решение, найденное на итерации, уже 

нельзя считать эффективным: решение должно улучшаться от итерации к итерации с точки 

зрения ЛПР, но не более того. Для этого, во-первых, в процессе диалога с ЛПР в соответствии с 

его пожеланиями изменяются не только параметры, но и форма свертки, и, во вторых, 

градиентное улучшение значения свертки начинается из точек достаточно узкого подмножества 

множества допустимых решений, наследуемого из предыдущей итерации. Благодаря последней 

особенности процедуры, многие положительные качества решения остаются без изменения, что 

позволяет в итоге на основе локальной оптимизации постепенно переходить к решению, более 

предпочтительному для ЛПР. Поэтому предложенная процедура получила название «Метод 

наследуемого решения». 

Новая диалоговая человеко-машинная многокритериальная процедура  рассматривается 

разделах 2.3-2.5. В общем виде процедура описывается в разделе 2.3, а в разделах 2.4 и 2.5 

описывается и анализируется опыт применения такой диалоговой процедуры для решения 

задачи выбора правил управления ангарским каскадом и обсуждаются содержательные 

результаты решения задачи. В разделе 2.6 дается описание программного обеспечения, 

используемого для решения задач локальной оптимизации методом эрзац-функций. 

2.1 Метод эрзац-функций для критериев типа обеспеченности  

В данном разделе рассматривается вопрос о приближенном поиске экстремума 

отдельных (частных) критериев или сверток критериев в задаче многокритериальной 

минимизации системы (1.5.1)-(1.5.3) с критериями типа обеспеченности (1.5.7). Точнее говоря, 
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требуется приближенно решать задачи минимизации функций, совпадающих либо с частными 

критериями, т.е.  

 ( ) min, l
jy Rα α→ ∈Ξ ⊂ , (2.1.1)  

либо с их свертками, т.е. 

 
01( ( ),..., ( )) min, l

my y Rϕ α α α→ ∈Ξ ⊂ , (2.1.2) 

где функция 0: mR Rϕ →  – непрерывная функция своих аргументов. Напомним, что частные 

критерии имеют вид 

 
0

( ) ( )
0

10

1( ) ( ( ) ), 1,...,
t

j j
j t t

t
y z j m

t
α α δ

=

= Θ − =∑ , (2.1.3) 

где ( ) ( )j
tz α  – нарушения ограничений, наложенных на показатели функционирования системы, 

число шагов 0t  велико (порядка нескольких тысяч). Как уже говорилось, частные критерии 

(2.1.3) являются разрывными функциями параметров, причем критерии принимают конечное 

число значений и являются постоянными в окрестностях точек непрерывности этих функций. 

Для решения указанных задач используется подход, в основе которого лежит замена разрывных 

критериев как функций параметров правил управления на вспомогательные непрерывные 

функции, которые строятся на основе замены функций Хэвисайда на непрерывные функции. 

Постановка задач дополнительно усложняется следующим неформальным требованием: 

хотя допустимо, чтобы правила управления приводили к небольшим нарушениям требований к 

показателям функционирования, не превышающим некоторой приближенно заданной 

величины δ, в получаемом решении эти нарушения должны быть, по возможности, малыми. 

Для того чтобы реализовать это желание, величина δ в эрзац-функцию не включается. Точнее 

говоря, при расчете значения вспомогательной функции, используемой вместо j-ого частного 

критерия (2.1.3), 01,...,j m= , в данной работе ( ) ( )( ( ) )j j
t tz α δΘ −  заменяется на эрзац-функцию  

 ( )( )( ) ( )j j
t tzν α , (2.1.4) 

где каждая эрзац-функция ( )j
tν , является непрерывной функцией, равной нулю при ( ) 0j

tz ≤  и 

монотонно возрастающей при ( ) 0j
tz ≥ . Предполагая непрерывную зависимость нарушений ( )j

tz  

от параметров правил управления, получим непрерывность вспомогательных функций и 

возможность использовать градиентные методы для поиска их локального экстремума. Итак, 

вместо разрывного критерия (2.1.3) рассматривается непрерывная вспомогательная функция 
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( ) ( )
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1( ) ( ( )),
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j j
j t t

t
c z

t
α ν α α

=

= ∈Ξ∑ . (2.1.5) 

В случае минимизации свертки ( )ϕ ⋅  частных критериев 0( ), 1,...,jy j mα =  в качестве 

вспомогательной функции предлагается использовать свертку вспомогательных функций ( )jc α  

 
01( ( ),..., ( )),mc cϕ α α α ∈Ξ . (2.1.6) 

Описываемый далее метод эрзац-функций предназначен для приближенного решения 

задачи глобальной оптимизации критериев типа обеспеченности. В методе эрзац-функций 

используются идеи обычного мультистарта [36], примененного для оптимизации 

вспомогательной функции, построенной на основе описанного выше способа замены функции 

Хэвисайда на непрерывную функцию. Поиск локального оптимума вспомогательной функции 

осуществляется на основе метода сопряженного градиента, причем вектор градиента 

приближенно рассчитывается с использованием вариантных расчетов с моделью (1.5.1)-(1.5.5). 
 

Метод эрзац-функций 

Поиск приближенного глобального минимума функции (2.1.1) на множестве Ξ . 

1. На множестве Ξ  генерируется случайная выборка объемом N  (используется 

равномерное распределение). Обозначим эту выборку через NH . 

2. Для каждой начальной точки из NH  решается задача локальной минимизации 

вспомогательной функции (2.1.5) на множестве Ξ . Множество локально-оптимальных 

точек вспомогательной функции обозначим через min
NH .  

3. В качестве приближенного решения задачи глобальной минимизации функции (2.1.1)  на 

множестве Ξ  берем точку, на которой достигается минимум (2.1.1) на множестве точек 
min
N NH H . 

Отметим, что для приближенного решения задачи глобальной минимизации свертки 

критериев можно использовать этот же метод. 
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2.2 Экспериментальное исследование влияния показателя степенной эрзац-

функции на качество решения задачи глобальной оптимизации 

Ограничимся одним важным классом эрзац-функций – степенными функциями pz  с 

показателем p>0. На рисунке 2.2.1 изображены функция ( ) ( )f z z δ= Θ −  (красным цветом) и 

степенные эрзац функции c 0.5p = , 1p =  и 2p = . 

 
Рис. 2.2.1 Примеры эрзац-функций 

На рис. 2.2.2 и 2.2.3 приведены графики изменения кусочно-постоянного критерия ( )jy α  (дан 

красным) и нескольких вспомогательных функций ( )jc α , использующих степенные эрзац-

функции с различными показателями p, вдоль некоторого отрезка прямой в пространстве 

параметров задачи оптимизации правил управления Ангарским каскадом. Для примера взят 

критерий 15 ( )y α  (доля перебоев в выработке электроэнергии на Братской ГЭС) и 

соответствующие ему вспомогательные функции 15 ( )c α . При этом ( )1 2 1α β λ β β= + ⋅ − , где 

[ ]0,1λ∈ , а точки 1β ∈Ξ  и 2β ∈Ξ  случайно выбраны из окрестности радиуса 0.1  точки 0β ∈Ξ , 

предложенной ранее экспертами в качестве решения задачи выбора правил управления. Таким 

образом, построены графики функции ( )( )15 1 2 1y β λ β β+ ⋅ −  и функций ( )( )15 1 2 1c β λ β β+ ⋅ −  

одной переменной λ . На рис. 2.2.2 черным цветом нарисован график вспомогательной 

функции ( )( )15 1 2 1c β λ β β+ ⋅ −  при эрзац-функции с 2p = , а на рис. 2.2.3 – графики 

вспомогательной функции при эрзац-функции с 0.5p =  и 1p = . Поскольку нас интересуют не 

значения функций, а их минимумы, при построении графиков вспомогательных функций 
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каждая из функций нормировалась ее средним значением, приближенно вычисленным по 

равномерной выборке из 1000 точек на отрезке [ ]0,1 . 

 

 
Рис. 2.2.2 Графики критерия (красным) и вспомогательной функции при 2p = . 

 

На рис. 2.2.2 видно, что глобальный минимум вспомогательной функции при 2p =  не имеет 

никакого отношения к глобальному минимуму критерия. Отметим, что специалисты в области 

водного хозяйства при поиске удовлетворительного решения задачи управления каскадом 

водохранилищ обычно предпочитают минимизировать сумму квадратов нарушений требований 

к показателям функционирования системы, являющуюся дифференцируемой функцией. Опыт 

использования этого подхода на практике показал, что в тех случаях, когда невозможно 

одновременно удовлетворить все требования к показателям функционирования системы, 

решение задачи минимизации квадратичной функции приводит к решению, характеризуемому 

значительным числом нарушений требований. 
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Рис. 2.2.3 Графики критерия (красным) и вспомогательных функций при 0.5p =  и 1p =  

В то же время, при 1p =  и 0.5p =  (рис. 2.2.3) глобальные минимумы вспомогательной 

функции близки к глобальному минимуму критерия. Этот факт говорит о том, что требуется 

детальное изучение вопроса о влиянии показателя p на связь минимума вспомогательных 

функций с минимумом критериев и их сверток.  

Целью экспериментов, проводимых в данном разделе, является изучение влияния 

показателя степени эрзац-функции на значения критериев (т.е. на число нарушений) и их 

сверток в решениях, найденных методом эрзац-функций. Эксперименты проводились на основе 

модели Ангарского каскада водохранилищ. Локальные минимумы вспомогательной функции 

находились с использованием модуля локальной оптимизации, реализованного в рамках 

диалоговой системы оптимизации ДИСО [37] и адаптированного под среду Windows. Этот 

модуль, разработанный в ВЦ РАН А.И. Голиковым и Н.И. Грачевым, основан на 

комбинировании метода сопряженного градиента с предложенным разработчиками методом 

оптимизации шага с использованием параболических функций. 

 

2.2.1 Эксперименты с эрзац-функциями отдельных критериев 

В данном подразделе описаны результаты экспериментов по глобальной минимизации 

отдельных (частных) критериев. Для минимизации каждого критерия 0( ), 1,...,jy j m⋅ = , было 

использовано семейство эрзац-функций вида  

 ( )
0

( )

1

t pj
t

t
z

=
∑ , (2.2.1) 
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где 0p > . Эрзац-функции вида (2.2.1) изучались при различных p  из конечного набора 

положительных значений от 0.2p =  до 2p = . Эксперименты проводились на основе одной и 

той же заранее построенной на всем множестве допустимых решений Ξ  случайной 

равномерной выборки объемом 100N =  начальных точек. Указанное число начальных точек 

было взято исходя из того, что проведенные контрольные испытания показали, что выборка 

большего объема не приводила к существенному улучшению результатов оптимизации. Кроме 

того, решение задачи локальной оптимизации из одной начальной точки занимает в среднем 

около 200 секунд, так что значительное увеличение числа начальных точек потребовало бы 

недопустимо больших затрат времени. 

Эксперимент 2.1. В эксперименте сравнивались приближенные значения частных 

критериев задачи управления Ангарским каскадом, найденные при трех показателях степени 

эрзац-функции, а именно при 0.5p = , 1p =  и 2p = . Для всех критериев, кроме 1y , при всех p  

получены минимально возможные нулевые значения. Зависимость найденных значений 

критерия 1y  от p  представлена в таблице 2.1. 

Таблица 2.1. 

0.5p =  1p =  2p =  

0.0247 0.0305 0.0485 

При 0.5p =  и 1p =  получены значения, которые относительно близки между собой. При 2p =  

результат оказался значительно хуже, он почти в два раза превышает значение, полученное при 

0.5p = . Таким образом, показатель 2p =  не подходит для минимизации этого критерия.  

Кроме расчета минимальных значений критериев, в рамках эксперимента изучалось 

число итераций, требуемых для минимизации вспомогательной функции. Под итерацией, как 

обычно, понимается процесс вычисления новой точки в пространстве решений с помощью 

метода сопряженного градиента [37]. На каждой итерации потребовалось затратить в среднем 

500 расчетов критериальной функции. В таблице 2.2 приведено усредненное по исходным 

точкам число итераций процесса нахождения локального минимума для каждого из критериев. 

Серым выделены критерии, при которых было достигнуто нулевое значение. 

Таблица 2.2. 

Номер критерия 0.5p =  1p =  2p =  

1 401 513 502 

2 246 174 123 

3 75 29 23 

4 289 332 150 
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5 177 176 254 

6 156 216 468 

9 422 611 461 

10 422 611 461 

11 232 542 483 

12 321 590 462 

13 111 47 40 

14 422 611 461 

15 374 428 368 

16 422 611 461 

17 422 611 461 

18 179 240 427 

19 371 365 570 

20 383 627 448 

21 422 611 461 

22 389 606 461 

23 390 603 461 

24 438 348 395 

25 419 391 767 

26 411 398 581 

 

Усреднив число итераций по всем критериям, получаем 332 итерации для 0.5p = , 444 итерации 

для 1p =  и 412 итераций для 2p = . Таким образом, при 0.5p =  в среднем потребовалось 

меньшее число итераций по сравнению с 1p =  и 2p = . Сравним теперь результаты 

применения эрзац-функций с показателями степени 1p =  и 0.5p =  для критериев, полученные 

значения которых равны нулю. Заметим, что для критериев 2y , 3y , 13y , 19y , 24y , 25y и 26y  при 

0.5p =  потребовалось больше итераций, чем при 1p = . В то же время, для остальных 

критериев, полученные значения которых равны нулю, наблюдается обратная ситуация. Таким 

образом, хотя значение p  может оказывать существенное влияние на среднее число итераций, 

определенного преимущества какого-либо значения не обнаружено. 

Рассмотрим теперь критерий 1y , полученные значения которого отличны от нуля. При 

0.5p =  потребовалось меньшее число итераций, чем при 2p = ; при этом достигнуты меньшие 

значения критерия. Сравнив результаты применения эрзац-функций с 1p =  и 0.5p = , получим, 
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что в случае 1y  наилучшее значение 0.0247 достигается при 0.5p = , причем число итераций 

потребовалось на 20% меньше. Таким образом, результаты эксперимента для критерия 1y  

показывают, что наилучшие результаты достигаются при 0.5p =  и 1p = . Близость найденных 

значений позволяет надеяться на то, что при использовании промежуточных значений 

показателя степени могут быть найдены лучшие значения. Поэтому в следующем эксперименте 

минимизация критерия 1y  изучается для большего числа значений p. 

Эксперимент 2.2. В исследовании сравнивались найденные значения критерия 1y  и среднее 

число итераций для 0.2, 0.5, 0.8,1.0,1.2,1.5,1.8, 2.0p = . При решении задач локальной 

оптимизации в рамках данного эксперимента использовалась та же выборка исходных точек, 

что и в эксперименте 2.1. На рисунке 2.2.5 на плоскости изображены точки, информирующие о 

среднем числе итераций (горизонтальная ось) и найденном значении критериев (вертикальная 

ось) для различных значений p. Около каждой точки указано соответствующее значение p. 

На рисунке видно, что при 0.2p =  и 0.5p =  одновременно достигаются наилучшие 

значения и критерия 1y , и среднего числа итераций. При 0.8p =  и 1.0p =  значения 1y  

оказались примерно на 25% больше наилучшего достигнутого значения. При этом число 

итераций увеличилось при 0.8p =  на 18%, а при 1.0p =  - на 26%. Дальнейший рост значения p 

приводит либо к значительному ухудшению результата оптимизации, либо к росту среднего 

числа итераций метода. Таким образом, подтверждается неэффективность часто применяемой 

эрзац функции с показателями, близкими к 2p = . 
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Рис. 2.2.5 Результаты минимизации критерия 1y  

2.2.2 Сравнение со случайным поиском 

В данном разделе оценивается вероятность того, что полученное в эксперименте 

наилучшее значение критерия 1y , равное 0.0243, было найдено случайно. Для сравнения на 

множестве допустимых значений α ∈Ξ  модели управления Ангарским каскадом сгенерируем 

случайную равномерную выборку объемом, например, N=106 и вычислим значение 1y  в каждой 

точке выборки. Оказалось, что все 106 значений находятся в интервале [0.115, 0.479], т.е. 

решение 1y =0.0243 оказалось значительно лучше, чем значение 1y =0.115, найденное с 

помощью случайного поиска. Теперь, используя результаты случайного поиска, дадим оценку 

оптимального значения критерия на основе метода, предложенного в [89]. Обозначим через 
1 2 1
1 1 1... ky y y +≤ ≤ ≤  наименьшие (наилучшие) k+1 значений критерия 1y  для полученной 

случайной выборки, состоящей из 106 точек. Согласно [89] [90] для k , малого по сравнению с 

N, доверительный интервал для минимума функции 1( )y ⋅  имеет вид 

 1 1 1 1
1 1 1 1( , )( ),ky r k y y yχ + − −  , где 

( )
1

1/

1( , )
1 (1 ) 1k

r k
α

χ
χ

−
=

− − −
, (2.2.2) 

причем интервал (2.2.2) асимптотически (N→∞) имеет доверительный уровень χ, 0<χ<1. С 

помощью формулы (2.2.2) можно оценить вероятность того, что значение 1y = 0.0243 может 

попасть в этот интервал. Найдем максимальную величину уровня 1 χ− , при которой отрезок 

1 1 1 1
1 1 1 1( , )( ),ky r k y y yχ + − −   будет включать 1y =0.0243.  

Отметим, что в соответствии с [89], для оценки параметра α  можно использовать  
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6 1
1 1
2 1
1 1

ln 5

ln y y
y y

α =
 −
 − 

, (2.2.3) 

т.е. 1.465α = . Рассмотрим при некотором k уравнение  

 1 1 1
1 1 1 0.02, )( 3( ) 4ky r k y yχ +− − = . (2.2.4) 

Разрешая уравнение, (2.2.4) относительно 1 χ− , получим формулу для вычисления вероятности 

того, что найденное нами значение 1y =0.0243 принадлежит доверительному интервалу:  

 
1
1

1
1

0.0243
0.0243

1 1
k

k

y
y

α

χ +

  − − = −  −   
. (2.2.5) 

В соответствии с рекомендациями, приведенными в [89] (стр. 156), при достаточно большом 

(более 100 точек) объеме выборки можно взять величину k , примерно равную 10. Вычислим 

значение 1 χ− , варьируя параметр k от k=9 до k=11 (см. таблицу 2.3). 

Таблица  2.3 

k 1 χ−  

9 82.6 10−⋅  

10 95.4 10−⋅  

11 91.2 10−⋅  

 

Из таблицы видно, что 81 2.6 10χ −− ≤ ⋅  при всех выбранных k . Следовательно, можно оценить, 

что вероятность того, что значение 1y =0.0243 достижимо, не превышает 82.6 10−⋅ . Таблица 

показывает, что величина 1 χ−  устойчива относительно изменения параметра k  в 

рассмотренном диапазоне. Таким образом, из полученных результатов можно сделать вывод, 

что применение метода эрзац-функций позволило нам найти достаточно хорошее решение 

задачи минимизации критерия 1y , которое не может рассматриваться как найденное случайно.  

2.2.3 Эксперименты со сверткой критериев 

Теперь рассмотрим вопрос о влиянии показателя степени на решение задачи глобальной 

минимизации свертки критериев. Было проведено большое число экспериментов с различными 

свертками, результаты которых представим на основе задачи минимизации простейшей свертки 

– линейной свертки частных критериев ( ), 1,..., 26jy j⋅ = , j≠7,8 с единичными весами, т.е. 

 
26

1
( ),j

j
y α α

=

∈Ξ∑ . j≠7,8 (2.2.6) 
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Для решения этой задачи воспользуемся первым методом эрзац-функций. Для этого заменим 

каждый критерий ( )jy ⋅  в свертке (2.2.6) на параметрическую вспомогательную функцию 

( ) ( )p
jc α , порожденную семейством эрзац-функций (2.2.1), где 0.2,0.5, 0.8,1.0,1.2,1.5,1.8, 2.0p = . 

В итоге получим свертку параметрических вспомогательных функций вида 

  
26

( )

1
( ),p

j
j

c α α
=

∈Ξ∑ . j≠7,8, (2.2.7) 

При решении задачи глобальной минимизации (2.2.7) в рамках метода эрзац-функций 

использовалась та же выборка исходных точек, что и в эксперименте 2.1.  

 
Рис. 2.2.6 Граница Парето в задаче выбора показателя степенной эрзац-функции (число 

итераций по оси абсцисс и значение критерия по оси ординат)  

Рассмотрим границу Парето в двухкритериальной задаче минимизации числа итераций и 

достигнутого значения свертки (рис. 2.2.6). По оси абсцисс отложены значения среднего числа 

итераций, по оси ординат отложены достигнутые значения свертки. Рядом с точками указаны 

соответствующие значения параметра p. Точки границы Парето выделены черным. Как видно, 

граница Парето состоит из точек с p=0.2, 0.5, 0.8, 1.0. Наименьшее среднее число итераций, 

равное 323, потребовалось при 0.2p = . Наименьшее значение свертки получено при 1.0p = , 

это значение оказалось почти на 30% меньше значения, полученного при 0.2p = . В то же 

время, при 1.0p =  потребовалось в два раза больше итераций, чем при 0.2p = .  



76 
 

Проведенные эксперименты показывают, что в качестве показателя эрзац-функции для 

свертки (2.2.7), в зависимости от быстродействия компьютера, разумно использовать величины 

в диапазоне от 0.5p =  до 1.0p = . Важно также учитывать, что расчет значения степенной 

функции при 1.0p =  занимает значительно меньше времени, чем при других значениях 

степени. Отметим также, что использовать значение 1.0p =  рекомендовал O. Mangasarian [11] 

при поиске разреженного решения многомерной системы линейных неравенств, т.е. такого 

решения, в котором содержится минимальное число ненулевых компонент, что близко по 

смыслу к задаче минимизации числа нарушений. Поэтому в дальнейшем в большинстве случаев 

будем использовать показатель 1.0p = . 

Результатом проведенного эксперимента являются рекомендации по выбору параметров 

эрзац-функции. В то же время большая величина найденного значения свертки не позволяет 

утверждать, что удалось найти решение, близкое к оптимальному. Для проверки этого 

предположения используем экспертное решение задачи выбора правил управления (точку 

0β ∈Ξ ). Проведем еще один эксперимент, в котором, в отличие от предыдущего эксперимента, 

в качестве исходных точек процесса локальной оптимизации использовалась случайная 

равномерная выборка того же объема в окрестности точки 0β ∈Ξ  радиуса 0.01. В результате 

применения метода эрзац-функций c параметром 1p =  наилучшее значение свертки (2.2.7) 

оказалось равным 0.968, что почти на 20% меньше значения, полученного в предыдущем 

эксперименте. С одной стороны, это также подтверждает, что использование параметра 1p =  

вполне разумно. С другой стороны, из полученного результата можно сделать вывод о том, что 

использование метода эрзац-функций для решения задачи глобальной оптимизации линейной 

свертки критериев, т.е. для решения этой задачи с помощью поиска локальных минимумов 

вспомогательной функции на основе старта из случайных точек множества Ξ , не позволяет 

находить решения из множества допустимых решений Ξ , близкие по значению свертки к ее 

глобальному минимуму. Тем более такое утверждение верно для более сложных сверток 

критериев, что, конечно, сильно затрудняет аппроксимацию ОЭП для задачи 

многокритериальной оптимизации правил управления Ангарским каскадом. В связи с этим 

было решено (еще до разработки методов аппроксимации ОЭП) найти единственное 

эффективное решение в этой задаче МКО, предпочтительное для ЛПР. Ясно, что классические 

диалоговые процедуры МКО, основанных на возможности достаточно точного решения задачи 

глобальной оптимизации свертки критериев, в данном случае не подходят. Поэтому для 

решения этой задачи предлагается использовать альтернативную процедуру, описанную в 

следующем разделе. 
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2.3 Многокритериальная диалоговая процедура «Метод наследуемого 

решения»  

Обсудим возможность применения классического метода уточнения весов критериев 

(см., например, [15]) для поиска предпочтительного решения системы (1.5.1)-(1.5.5). Как уже 

говорилось во введении к главе 2, итерация классического метода состоит из двух фаз: фазы 

глобальной оптимизации свертки и фазы анализа человеком полученного недоминируемого 

вектора критериев. На фазе оптимизации используется информация, полученная от ЛПР на 

предыдущей итерации. Это информация о весах критериев 00, 1,...,j j mλ ≥ = , 
0

1
1

m

j
j
λ

=

=∑ . На ее 

основе требуется рассчитать недоминируемый критериальный вектор и соответствующее 

решение, минимизирующее линейную свертку критериев 

 ( )
0

1
,

m

j j
j

yλ α α
=

⋅ ∈Ξ∑ .  (2.3.1) 

На фазе анализа ЛПР оценивает полученный недоминируемый критериальный вектор и 

определяет, является ли решение удовлетворительным с точки зрения его предпочтений; если 

да, то работа завершается; в противном случае ЛПР меняет значения весов критериев и 

начинается следующая итерация. 

Таким образом, в классическом методе уточнения весов критериев на каждой итерации 

требуется найти глобальный минимум свертки критериев на всем множестве допустимых 

значений переменных. Поскольку в задаче (1.5.1)-(1.5.5) такая свертка представляет собой 

сложную многоэкстремальную разрывную функцию большого числа (порядка нескольких 

сотен) непрерывных переменных, решение даже одной задачи глобальной минимизации 

свертки (2.3.1) представляет собой крайне сложную проблему. В изучаемой нами задаче 

управления Ангарским каскадом, как следует из проведенных экспериментов со свертками, 

оптимальное значение свертки обычно не находится. Поэтому недоминируемость полученного 

критериального вектора не гарантируется, что предопределяет невозможность использования в 

задаче (1.5.1)-(1.5.5) описанного выше метода уточнения весов и других диалоговых методов 

решения задачи многокритериальной оптимизации, основанных на получении на каждой 

итерации недоминируемого критериального вектора, и требует модификации диалоговых 

итерационных методов многокритериальной оптимизации. 

Предлагаемая в данной работе диалоговая человеко-машинная процедура «Метод 

наследуемого решения» может быть использована в различных задачах МКО. Для 

определенности будем предполагать, что рассматривается задача многокритериальной 
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оптимизации правила управления нелинейной динамической системой (1.5.1)-(1.5.5). Будем 

предполагать, что для каждого из критериев 0: , 1,...,jy R j mΞ→ = , с использованием эрзац-

функции (с некоторым значением параметра p) построена вспомогательная функция 

0: , 1,...,jc R j mΞ→ = . 

Процедура «Метод наследуемого решения» состоит из двух этапов, предварительного и 

основного. На предварительном этапе происходит глобальная минимизация частных критериев, 

результаты которой используются для содержательного анализа и структуризации задачи. На 

основном этапе процедуры выполняется диалоговый процесс поиска решения задачи МКО. При 

этом значительно большую роль, чем в классическом методе, играет ЛПР, который использует 

свои знания о возможностях управления рассматриваемой системой для оценки качества 

предлагаемых ему решений. При этом на основном этапе процедуры используется 

модифицированный метод эрзац-функций,  отличающийся от основного варианта метода тем, 

что процедуры локальной оптимизации вспомогательной функции на множестве Ξ  стартуют из 

некоторой принадлежащей Ξ  окрестности текущего решения 1kα − ∈Ξ . Рассмотрим 

Модифицированный метод эрзац-функций 

Заданы свертка критериев ( )( )yϕ α  и окрестность 1( )
kr kO α − ⊂ Ξ  текущего решения 1kα − ∈Ξ . 

1. На 1( )
kr kO α − ⊂ Ξ генерируется случайная выборка NH  объемом N  (используется 

равномерное распределение).  

2. С использованием градиентных процедур решается серия задач локальной минимизации 

вспомогательной функции на множестве Ξ , в которых процесс локальной оптимизации 

стартует из точек NH . Найденное множество локально-оптимальных точек 

вспомогательной функции обозначим через min
NH .  

3. В качестве новой точки берется точка kα , на которой достигается минимум ( )( )yϕ α  на 

объединении множеств { 1kα − }, NH  и min
NH  . 

Этот метод позволяет улучшить значение свертки критериев в текущем решении  1kα −  путем 
использования градиентных процедур локальной оптимизации вспомогательной функции. 

Отметим, что поскольку в задачах минимизации доли интервалов нарушения требований 

желательное (нулевое) значение каждого критерия известно, естественно использовать 

параметрическую свертку Чебышева, ранее использованную, например, в [13] [14]. В данной 

работе используются различные гладкие аппроксимации свертки Чебышева, что позволяет 

ускорить расчеты. 
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Предварительный этап 

ЛПР выделяет из всех частных критериев наиболее важные. Для каждого из таких 

критериев методом эрзац-функций решается задача глобальной минимизации функции вида 

 ( ) ( )
0

1
,

k

k

m

j j
j
j j

y yα ε α α
=
≠

+ ⋅ ∈Ξ∑ , (2.3.2) 

где 0ε >  - малая константа. Как обычно в МКО [22], малое слагаемое используется для того, 

чтобы получить недоминируемую критериальную точку и соответствующее решение. В нашем 

случае, когда задача глобальной оптимизации решается неточно, часть функции (2.3.3) с малым 

множителем 0ε >  должна позволить найти решение, для которого значение рассматриваемого 

критерия 
kj

y  близко к минимальному, но в то же время решение является не слишком плохим с 

точки зрения значений остальных критериев.  

ЛПР анализирует полученные значения критериев и соответствующие решения. 

Учитывая некоторые известные ему из прошлого опыта свойства и допустимые решения 

рассматриваемой задачи, ЛПР формирует некоторое исходное решение 0α , назначает его 

некоторую окрестность 
1 0( )rO α ⊂ Ξ , в которой будут генерироваться случайные начальные 

точки процесса локальной оптимизации, которая будет осуществляться на всем допустимом 

множестве. Таким образом, здесь будет использован модифицированный метод эрзац-функций.  

Кроме того, ЛПР рекомендует свертку критериев 1( )ϕ ⋅  для первой итерации основного 

этапа диалоговой процедуры. Мы здесь не уточняем способы построения 0α , 
1 0( )rO α ⊂ Ξ  и 

1( )ϕ ⋅ , поскольку они определяются спецификой изучаемой проблемы. Пример 

предварительного этапа приведен при описании приложения метода к задаче построения 

правила управления ангарским каскадом.  

Основной этап  

Итерация k, где 1k ≥ . Считается, что в конце предыдущей итерации для текущего 

решения 1kα − ∈Ξ  указана окрестность 1( )
kr kO α − ⊂ Ξ , которой должны принадлежать стартовые 

точки процесса локальной оптимизации, и назначена свертка критериев ( )kϕ ⋅ .  

Шаг 1. С помощью модифицированного метода эрзац-функций находится решение kα , 

для которого ( )( )k kyϕ α  < ( )1( )k kyϕ α − . ЛПР сравнивает критериальные векторы в решениях kα  

и 1kα − . Если решение kα  оказалось хуже 1kα − , эксперт по оптимизации и ЛПР пытаются 

построить альтернативную свертку критериев; для ее построения могут потребоваться 
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многочисленные эксперименты с различными свертками. Если решение kα  предпочтительнее 

решения 1kα − , новое решение становится текущим.  

Шаг 2. Если значения всех критериев признаны ЛПР удовлетворительными, то работа 

завершается. В противном случае в качестве свертки критериев следующей итерации 1( )kϕ + ⋅  

предлагается свертка, способствующая улучшению значений тех критериев, которые имели 

недостаточно удовлетворительные для ЛПР значения в точке kα . Кроме того, ЛПР с помощью 

эксперта должен указать окрестность 
1
( )

kr kO α
+

⊂ Ξ , в которой на следующей итерации будут 

выбираться начальные точки процессов локальной оптимизации. Далее осуществляется переход 

к следующей итерации. 

Отметим, что ЛПР обычно признает критериальную точку удовлетворительной после 

нескольких попыток найти более предпочтительную критериальную точку с помощью 

различных сверток критериев, в той или иной степени отражающих его предпочтения. Поэтому 

найденное решение можно считать локально оптимальным с точки зрения предпочтений ЛПР. 

Подчеркнем, что ЛПР всегда имеет возможность возвратиться к любому из решений, 

полученных на предыдущих итерациях. В том случае, когда через какое-то число итераций ЛПР 

не удается отыскать решения с удовлетворяющими его значениями критериев, то бывает 

разумно возвратиться к предварительному этапу и выбрать другое начальное решение 0α . 

Сразу заметна важная особенность нового диалогового метода – увеличение роли ЛПР, 

который теперь также должен оценить качество решения, полученного в результате 

приближенной локальной оптимизации свертки критериев. В методе наследуемого решения эту 

оценку ЛПР может осуществить на основе своих неформализованных знаний, априорной 

информации о возможных решениях задачи выбора правила управления и информации, 

полученной на предыдущих итерациях диалогового человеко-машинного метода. Если 

полученный критериальный вектор неприемлем в силу неудачно выбранной свертки критериев 

или недостаточно точного решения задачи оптимизации, ЛПР может потребовать более точного 

ее решения за счет изменения параметров метода оптимизации свертки (скажем, за счет поиска 

локального минимума из дополнительных начальных точек или расширения их подмножества) 

или даже качественной модификации свертки. Таким образом, новизна разработанной 

диалоговой процедуры решения многокритериальных задач состоит в том, что модификация 

свертки и подмножества начальных точек осуществляется на основе метода проб и ошибок, 

который уже применялся ранее в диалоговых системах скалярной оптимизации, например, в 

системе ДИСО [37].  
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В разделе 2.4 описывается опыт применения предлагаемой процедуры при выборе 

правил управления Ангарским каскадом водохранилищ. За 11 итераций процедуры найдено 

эффективное решение 11α  задачи с критериями типа (1), которое позволяет существенно 

улучшить значения большинства критериев. Эксперименты с диалоговой человеко-машинная 

процедурой в рамках задачи управления ангарским каскадом позволили не только найти 

эффективное решение, использующееся в гл. 3 для контроля точности аппроксимации ОЭП, но 

и сформулировать идею метода стартовой площадки, развиваемого в гл. 3. 

В заключительном разделе данной главы кратко описывается программное обеспечение, 

реализующее локальную оптимизацию свертки критериев типа обеспеченности на основе 

использования вспомогательных функций, построенных с использованием эрзац-функций. В 

дальнейшем в диссертации при обсуждении градиентных методов локальной оптимизации 

критериев типа уровня обеспеченности или их сверток имеется в виду использование 

вспомогательных функций такого типа.  

2.4 Решение задачи построения правил управления на основе диалоговой 

процедуры 

В данном разделе описанная выше диалоговая процедура с изменяемыми сверткой 

критериев и областью поиска используется для решения многокритериальной задачи синтеза 

правил управления каскадом водохранилищ (1.2.1)-(1.2.9) на основе минимизации критериев 

(1.4.4)-(1.4.29), представляющих собой доли перебоев , 1,..., 26jy j = , 7,8j ≠ . В эрзац-функциях 

(2.2.1), используемых в данном разделе, бралось 1p = .  

Предварительный этап 

Рассмотрим предварительный этап диалоговой процедуры в применении к модели 

ангарского каскада. Среди критериев , 1,..., 26jy j = , 7,8j ≠ , особо важными, по мнению ЛПР, 

являются: критерий 1y  (доля перебоев в уровне озера Байкал); критерий 4y  (доля перебоев в 

безопасных попусках Иркутского водохранилища); критерии 5y , 15y , 24y  (доли перебоев в 

выработке электроэнергии на Иркутской, Братской и Усть-Илимской ГЭС, соответственно); 

критерии 11y , 12y  (доли перебоев в навигационных уровнях Братского водохранилища); 

критерии 18y , 19y  (доли перебоев в навигационных уровнях Усть-Илимского водохранилища); 

критерии 25y , 26y  (доли перебоев в навигационных попусках Усть-Илимского водохранилища). 

Обозначим подмножество важных критериев через 0S . Для каждого из критериев 
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подмножества 0S  методом эрзац-функций приближенно решалась задача глобальной 

минимизации функции вида (2.3.2), где 0.0001ε = . Результаты приведены в таблице 2.1,  при 

1p =  для всех критериев из 0S , кроме критерия 1y , достигаются нулевые значения.  

Далее была сделана попытка выделить из 0S  подмножество критериев, одновременно 

близких к своему минимальному значению. Хорошо известно и понятно, что увеличение 

попуска воды из оз. Байкал через Иркутскую плотину улучшает ситуацию с навигационными 

попусками и выработкой электроэнергии. Поэтому набор критериев 5y , 15y , 24y , 11y , 12y , 18y , 

19y , 25y , 26y , обозначаемый через G0, может оказаться искомым подмножеством критериев. Для 

проверки этой гипотезы в качестве пробной свертки критериев была взята свертка 

 ( )( ) ( )
0 0

2
,j j

j G j G
y yα ε α α

∈ ∉

+ ⋅ ∈Ξ∑ ∑ , (2.4.1) 

где 0 {5,11,12,15,18,19,24,25,26}G = , 0.0001ε = . Задача глобальной минимизации (2.4.1) 

решалась приближенно с помощью первого метода эрзац-функций. Для решения задачи 

использовалась выборка начальных точек объемом 100N = . В таблице 2.6. приведены значения 

критериев для полученного решения. Хотя, конечно, нельзя утверждать, что полученное 

решение является оптимальным (или даже близким к нему), оно дает информацию о связи 

критериев между собой. В таблице цветом выделены 9 транспортно-энергетических критериев 

ангарского каскада, принадлежащих G0. Такое выделение будет использоваться и далее. 

Таблица 2.4  

Номер 

критерия 

Название Значение 

 Иркутская ГЭС  
1 Доля перебоев в уровне озера Байкал 0.527 
2 Доля перебоев в санитарных попусках летом 0.007 
3 Доля перебоев в санитарных попусках зимой 0 
4 Доля перебоев в безопасных попусках 0.006 
5 Доля перебоев в выработке электроэнергии 0.015 
6 Доля перебоев в работе водозаборов 0 
 Братская ГЭС  
9 Доля перебоев в работе водозаборов 0 
10 Доля перебоев в нормальной работе водозаборов 0 
11 Доля перебоев в минимальном навигационном 

уровне верхнего бьефа 
0 

12 Доля перебоев в нормальном навигационном 
уровне верхнего бьефа 

0 

13 Доля перебоев в сокращенных навигационных 
попусках 

0 

14 Доля перебоев в санитарных попусках 0 
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15 Доля перебоев в выработке электроэнергии 0.005 
16 Доля перебоев в нормальном подпорном уровне 0 
 Усть-Илимская ГЭС  
17 Доля перебоев в нормальной работе водозаборов 0 
18 Доля перебоев в минимальном навигационном 

уровне верхнего бьефа 
0 

19 Доля перебоев в нормальном навигационном 
уровне верхнего бьефа 

0.013 

20 Доля перебоев в нормальном подпорном уровне 0 

21 Доля перебоев в санитарных попусках 0 
22 Доля перебоев в санитарных попусках (сбросов 

сточных вод лесопромышленного комплекса) 
0 

23 Доля перебоев в минимальных энергетических 
попусках 

0 

24 Доля перебоев в выработке электроэнергии 0.005 
25 Доля перебоев в минимальных навигационных 

попусках 
0 

26 Доля перебоев в нормальных навигационных 
попусках 

0 

Из таблицы 2.4. видно, что значения критериев 5y , 15y , 19y , 24y  оказались одновременно 

близкими к оптимальным нулевым значениям, а значения остальных транспортно-

энергетических критериев равны нулю. Это можно объяснить тем, что большие объемы 

попусков воды из оз. Байкал через иркутскую плотину позволяют значительно сократить число 

нарушений требований к навигационным попускам и выработке электроэнергии. Таким 

образом, гипотеза о непротиворечивости критериев оказалась верной.  

Недостатком полученного решения является то, что значение доли перебоев в уровне 

озера Байкал 1y  оказалось равным 0.527, что недопустимо, особенно если сравнить с 

найденным ранее возможным значением 1y =0.025 (см. Таблицу 2.1). Полученное решение 

можно, однако, использовать в качестве исходного, обозначенного 0α . Поскольку главный 

недостаток исходного решения 0α  состоит в недопустимо большой величине критерия 1y , в 

качестве начальной свертки критериев 1( )ϕ ⋅  на первой итерации основного этапа диалоговой 

процедуры использовалась свертка, являющаяся композицией критерия 1y  и свертки (2.4.1), 

которую обозначим 0 1 26(y ( ),..., y ( ))ϕ ⋅ ⋅ , а точнее 

 ( ) ( ) ( )2 2
1 1 0 1 26( ) ( ) (y ( ),..., y ( )) ,y yϕ α α ϕ α α α= + ∈Ξ . (2.4.2) 

Основной этап 

В процессе локальной оптимизации сверток критериев полученные решения часто 

оказывались неудовлетворительным для ЛПР, поэтому пробовались различные варианты 
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сверток критериев, отличающиеся комбинированием линейных и квадратичных функций 

критериев, а также свертки (2.4.1). На всех итерациях кладется 0.01r =  и 100N = . 

Итерация 1. Для решения задачи улучшения значения свертки ( )1 ( )yϕ α  использовался 

модифицированный метод эрзац-функций с начальными точками из окрестности точки 0α . В 

итоге было получено решение, которое обозначим 1α . Для него в таблице 2.5 приведены 

значения критериев. 

Таблица 2.5.  

Номер критерия (j) 1( )jy α  0( )jy α  
1 0.064 0.527 
2 0.022 0.007 
3 0.001 0 
4 0.091 0.006 
5 0.139 0.015 
6 0.101 0 
11 0.003 0 
12 0.009 0 
15 0.034 0.005 
18 0.001 0 
19 0.025 0.013 
24 0.030 0.005 
25 0.064 0 
26 0.022 0 
Остальные 0  

 

Как видно из таблицы 2.5, уменьшение значения критерия 1y  почти в десять раз вызвало 

значительное увеличение значений транспортно-энергетических критериев. Например, 

значение критерия 5y  возросло с 0.004 до 0.139, значение критерия 15y  возросло с 0.002 до 

0.034. Хотя ЛПР признал, что решение 1α  лучше, чем 0α , он потребовал уменьшить значения 

транспортно-энергетических критериев на следующей итерации. Для этого в качестве ( )2 ( )yϕ ⋅  

была взята модификация функции ( )1 ( )yϕ ⋅ , а именно 

 ( ) ( )2
2 1 0 1 26( ) ( ) (y ( ),..., y ( )) ,y yϕ α α ϕ α α α= + ∈Ξ . (2.4.3) 

Вместо квадрата критерия 1y  взята его первая степень. Тем самым было уменьшено влияние 

значения первого критерия на результат. При этом исходные точки генерировались в 

окрестности 1α , что гарантировало сохранение достаточно малого значения критерия 1y . 

Итерация 2. Для решения задачи улучшения значения свертки ( )2 ( )yϕ α  использовался 

модифицированный метод эрзац-функций с начальными точками из окрестности точки 1α . В 
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результате применения метода получено решение 2α . В таблице 2.6 для сравнения приведены 

значения критериев для 2α α=  и 1α α= . 

Таблица 2.6 

Номер критерия (j) 2( )jy α  1( )jy α  

1 0.067 0.064 
2 0.008 0.022 
3 0.001 0.001 
4 0.071 0.091 
5 0.068 0.139 
6 0.072 0.101 
11 0.001 0.003 
12 0.008 0.009 
15 0.028 0.034 
18 0 0.001 
19 0.021 0.025 
24 0.023 0.030 
25 0.002 0.064 
26 0.008 0.022 
Остальные 0 0 

 

Как видно из таблицы 2.6, значение критерия 1y  возросло незначительно, при этом 

существенно уменьшились значения остальных критериев. Например, значение критерия 5y   

уменьшилось с 0.139 до 0.068, значение критерия 25y  − с 0.064 до 0.002, значение критерия 26y  

− с 0.022 до 0.008. ЛПР был удовлетворен улучшением, сделанным на этой итерации.  

На следующем шаге была сделана еще одна попытка уменьшить значение критерия  

1( )y ⋅ , сохранив, по возможности, значения остальных критериев. Для этого была сделана 

модификация функции ( )2 ( )yϕ ⋅ , а именно 

 ( )3 1 0 1 26( ) 100 ( ) 0.01 (y ( ),..., y ( )),y yϕ α α ϕ α α α= ⋅ + ⋅ ∈Ξ . (2.4.4) 

Таким образом, было усилено влияние значения первого критерия на результат оптимизации. 

Итерация 3. Рассмотрим задачу улучшения значения свертки ( )3 ( )yϕ α . Для решения задачи 

минимизации ( )3 ( )yϕ α  использовался метод эрзац-функций с начальными точками из 

окрестности точки 2α . В результате получено решение 3α . В таблице 2.7 для сравнения 

приведены значения критериев для 3α α=  и 2α α= . 

Таблица 2.7 

Номер критерия (j) 3( )jy α  2( )jy α  
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1 0.052 0.067 
2 0.011 0.008 
3 0.001 0.001 
4 0.095 0.071 
5 0.083 0.068 
6 0.091 0.072 
11 0.003 0.001 
12 0.008 0.008 
15 0.033 0.028 
18 0 0 
19 0.025 0.021 
24 0.027 0.023 
25 0.004 0.002 
26 0.010 0.008 
Остальные 0 0 

 

Как видно из таблицы 2.7, значение критерия 1y  уменьшилось с 0.067 до 0.052, при этом 

несколько увеличились значения транспортно-энергетических критериев. Например, значение 

критерия 5y  увеличилось с 0.068 до 0.083, значение критерия 24y  увеличилось  с 0.023 до 0.027. 

ЛПР обратил внимание на критерий 4y , который равен числу нарушений требований к 

уровню Иркутского водохранилища во время паводков. Его значение в решении 3α  составляет 

0.095. По мнению экспертов, это значение слишком велико, поэтому на следующем шаге была 

сделана попытка уменьшить значение критерия 4y , сохранив, по возможности, значения 

остальных критериев. Для этого была предложена свертка  

 ( )4 4 1 0 1 26( ) 0.01 ( ) 100 ( ) (y ( ),..., y ( )),y y yϕ α α α ϕ α α α= ⋅ + ⋅ + ∈Ξ . (2.4.5) 

В отличие от функции ( )3 ( )yϕ ⋅ , в свертке ( )4 ( )yϕ ⋅  критерий 4y  учитывается с весовым 

множителем 0.01, а также был изменен весовой множитель при функции ( )0 ( )yϕ ⋅  с 0.01 до 1. 

Итерация 4. Рассмотрим задачу улучшения значения свертки ( )4 ( )yϕ α . С помощью метода 

эрзац-функций с начальными точками из окрестности точки 3α , было получено решение 4α . В 

таблице 2.8 для сравнения приведены значения критериев для 4α α=  и 3α α= . 

Таблица 2.8 

Номер критерия (j) 4( )jy α  3( )jy α  

1 0.056 0.052 
2 0.008 0.011 
3 0 0.001 
4 0.067 0.095 
5 0.069 0.083 
6 0.068 0.091 



87 
 

11 0.001 0.003 
12 0.007 0.008 
15 0.030 0.033 
18 0 0 
19 0.023 0.025 
24 0.025 0.027 
25 0.003 0.004 
26 0.008 0.010 
Остальные 0 0 

 

Как видно из таблицы 2.8, значение критерия 4y  уменьшилось с 0.095 до 0.067, при этом 

увеличилось значение первого критерия со 0.052 до 0.056, а значения транспортно-

энергетических критериев несколько уменьшились.  

Следующие несколько итераций были посвящены дальнейшему уменьшению величины 

4y . Итерации продолжались до тех пор, пока величина 4y  не достигла нулевого значения 

(Итерация 7). Значение 1y  при этом возросло до 0.088. На Итерации 8 была сделана 

малоуспешная попытка уменьшить значение 1y . Перейдем к описанию девятой итерации. 

Итерация 9. ЛПР выразил желание наряду с 1y  уменьшать значение важного критерия 3y  

(доля перебоев в санитарных попусках зимой), который уже имел малое, но все-таки не нулевое 

значение. В результате решения задач локальной оптимизации с исходными точками из 

окрестности 8α  свертки 

 ( ) ( ) { }2 2
9 1 3 0 1 26( ) ( ) ( ) (y ( ),..., y ( )) ,y y yϕ α α α ϕ α α α= + + ∈Ξ . (2.4.6) 

было получено решение 9α . В таблице 2.9 приведены значения критериев для текущего 

решения и решения, полученного на предыдущем шаге. 

Таблица 2.9 

Номер критерия (j) 9( )jy α  8( )jy α  

1 0.068 0.083 
2 0.010 0.008 
3 0.001 0.002 
4 0 0 
5 0.054 0.033 
6 0.015 0.020 
11 0 0 
12 0.007 0.004 
15 0.025 0.023 
18 0 0 
19 0.022 0.019 
24 0.021 0.019 
25 0.004 0.002 
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26 0.009 0.009 
Остальные 0 0 

 

Как видно из таблицы 2.9 значение критерия 1y  уменьшилось с 0.083 до 0.068. При этом 

значение энергетического критерия 5y  возросло с 0.033 до 0.054. Остальные критерии в целом 

сохранили свои значения. По мнению ЛПР, значение критерия 5y  было слишком велико. 

Поэтому свертка (2.4.6) была модифицирована так, чтобы усилить влияние свертки 

транспортно-энергетических критериев 0 1 26(y ( ),..., y ( ))ϕ ⋅ ⋅ :  

 ( ) ( ) { }2 2
10 1 3 0 1 26( ) ( ) ( ) 10 (y ( ),..., y ( )) ,y y yϕ α α α ϕ α α α= + + ⋅ ∈Ξ . (2.4.7) 

Итерация 10. Для решения задачи улучшения значения свертки ( )10 ( )yϕ α  применялся подход, 

аналогичный предыдущим итерациям, с начальными точками из окрестности точки 9α . В 

результате получили решение 10α . В таблице 2.10 приведены значения критериев для текущего 

решения и решения, полученного на предыдущем шаге. 

Таблица 2.10 

Номер критерия (j) 10( )jy α  9( )jy α  

1 0.063 0.068 
2 0.010 0.010 
3 0.001 0.001 
4 0 0 
5 0.040 0.054 
6 0.015 0.015 
11 0 0 
12 0.007 0.007 
15 0.027 0.025 
18 0 0 
19 0.024 0.022 
24 0.022 0.021 
25 0.004 0.004 
26 0.009 0.009 
Остальные 0 0 

 

Как видно из таблицы 2.10 значение критерия 1y  уменьшилось с 0.068 до 0.063 и 

значение критерия 5y  уменьшилось с 0.054 до 0.04. Остальные критерии в целом сохранили 

свои значения. На следующей итерации снова сделана попытка уменьшить значения 

транспортно-энергетических критериев и критерия 1y . Для этого воспользуемся сверткой 

(2.4.3), сформулированной на первой итерации. Имеет смысл попытаться воспользоваться этой 
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сверткой еще раз, поскольку множество начальных точек кардинально изменилось и можно 

надеяться на получение полезного эффекта. 

Итерация 11. Для решения задачи улучшения значения свертки ( )2 ( )yϕ α  применялся подход, 

аналогичный предыдущим итерациям, с начальными точками из окрестности точки 10α . В 

результате получили решение 11α . В таблице 2.11 приведены значения критериев для текущего 

решения и решения, полученного на предыдущем шаге. 

Таблица 2.11 

Номер критерия (j) 11( )jy α  10( )jy α  

1 0.058 0.063 
2 0.004 0.010 
3 0 0.001 
4 0 0 
5 0.043 0.040 
6 0.029 0.015 
11 0 0 
12 0.004 0.007 
15 0.011 0.027 
18 0 0 
19 0.017 0.024 
24 0.004 0.022 
25 0.005 0.004 
26 0.011 0.009 
Остальные 0 0 

 

Как видно из таблицы 2.11 значение критерия 1y  уменьшилось с 0.063 до 0.058. 

Одновременно значение критерия 15y  (доля перебоев в выработке электроэнергии на Братской 

ГЭС) уменьшилось с 0.027 до 0.011, а значение критерия 24y  (доля перебоев в выработке 

электроэнергии на Усть-Илимской ГЭС) уменьшилось с 0.022 до 0.004. Значения критериев 12y  

и 19y  также несколько уменьшилось. К сожалению, несколько ухудшились значения критериев 

5y , 25y  и 26y . При этом почти в два раза увеличилось значение критерия 6y , равного доле 

перебоев в работе водозаборов города Иркутск. Все же, ЛПР посчитал, что решение 11α  

предпочтительнее решения 10α . 

Дальнейшее улучшение значений транспортно-энергетических критериев может 

привести к значительному увеличению доли перебоев в работе водозаборов города Иркутск, 

поэтому по предложению ЛПР итерационная процедура многокритериальной оптимизации 

остановлена. Для того чтобы объективно оценить полученное решение 11α , сравним его с 
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решением 0β , предложенным экспертами задолго до данного исследования в качестве решения 

задачи синтеза управления. В таблице 2.12 приведены значения критериев в этих точках. 

Таблица 2.12 

j Название 11( )jy α  0( )jy β  

 Иркутская ГЭС   
1 Доля перебоев в уровне озера Байкал 0.058 0.052 
2 Доля перебоев в санитарных попусках летом 0.004 0.004 
3 Доля перебоев в санитарных попусках зимой 0 0 
4 Доля перебоев в безопасных попусках 0 0.001 
5 Доля перебоев в выработке электроэнергии 0.043 0.188 
6 Доля перебоев в работе водозаборов 0.029 0.004 
 Братская ГЭС   
9 Доля перебоев в работе водозаборов 0 0 
10 Доля перебоев в нормальной работе водозаборов 0 0 

11 Доля перебоев в минимальном навигационном уровне 
верхнего бьефа 

0 0.014 

12 Доля перебоев в нормальном навигационном уровне 
верхнего бьефа 

0.004 0.118 

13 Доля перебоев в сокращенных навигационных попусках 0 0 

14 Доля перебоев в санитарных попусках 0 0 
15 Доля перебоев в выработке электроэнергии 0.011 0.074 
16 Доля перебоев в нормальном подпорном уровне 0 0 

 Усть-Илимская ГЭС   
17 Доля перебоев в нормальной работе водозаборов 0 0 

18 Доля перебоев в минимальном навигационном уровне 
верхнего бьефа 

0 0.001 

19 Доля перебоев в нормальном навигационном уровне 
верхнего бьефа 

0.017 0.177 

20 Доля перебоев в нормальном подпорном уровне 0 0 

21 Доля перебоев в санитарных попусках 0 0 
22 Доля перебоев в санитарных попусках (сбросов сточных 

вод лесопромышленного комплекса) 
0 0 

23 Доля перебоев в минимальных энергетических попусках 0 0 

24 Доля перебоев в выработке электроэнергии 0.004 0.026 
25 Доля перебоев в минимальных навигационных попусках 0.005 0.078 

26 Доля перебоев в нормальных навигационных попусках 0.011 0.108 

 

Рассмотрим сначала критерии, характеризующие выполнение требований транспорта и 

энергетики. В таблице 2.12 такие критерии выделены коричневым цветом. Из таблицы 2.12 
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видно, что в точке 11α  доли нарушений транспортно-энергетических требований к каскаду 

водохранилищ значительно меньше, чем в точке 0β . Так, доля перебоев в выработке 

электроэнергии на Иркутской ГЭС (критерий 5y ) оказалась почти в четыре раза меньше, а на 

Братской (критерий 15y ) и Усть-Илимской ГЭС (критерий 24y ) почти в семь раз меньше, чем в 

точке 0β . В точке 11α  значение транспортного критерия 11y  равно нулю, это означает, что 

полученное решение обеспечивает минимальный навигационный уровень верхнего бьефа 

Братской ГЭС. Это выгодно отличает точку 11α  от точки 0β , в которой значение критерия 11y  

составляет около 1.5%. В случае критерия 12y (доля перебоев нормального навигационного 

уровня верхнего бьефа Братской ГЭС) удалось уменьшить значение критерия почти в 30 раз и 

достичь значения в 0.4%, что вполне удовлетворило ЛПР. Таким образом, построенное решение 

позволяет существенно сократить долю нарушений требований транспорта на Братском 

водохранилище. Аналогичная ситуация наблюдается с критериями 18y , 19y , характеризующими 

выполнение транспортных требований к уровню верхнего бьефа Усть-Илимского 

водохранилища. Значение критерия 18y  в точке 11α  равно нулю, что означает полное отсутствие 

перебоев в минимальном навигационном уровне верхнего бьефа водохранилища. Долю 

перебоев в нормальном навигационном уровне (критерий 19y )  удалось сократить в 10 раз по 

сравнению со значением в точке 0β .  Почти в 10 раз удалось уменьшить значения критериев 

25y , 26y  (доли перебоев в навигационных попусках Усть-Илимского водохранилища).   

Рассмотрим теперь критерий 1y , равный доле нарушений требования к уровню озера 

Байкал. Из таблицы 2.12 видно, что хотя значение критерия 1y  в точке 11α  превосходит 

значение в точке 0β , эти величины отличаются незначительно. Таким образом, при 

практически равных долях нарушения требований к уровню озера, найденное решение 

позволяет существенно более рационально использовать водные ресурсы. Также важно, что, в 

отличие от точки 0β , в которой значение критерия 4y  хотя и мало, но все-таки отлично от нуля, 

удалось полностью обеспечить безопасный режим эксплуатации Иркутского водохранилища. 

Итак, по мнению ЛПР, решение, найденное в результате применения диалоговой 

процедуры с изменяемыми свертками и областью поиска, оказалось существенно лучше 

решения, полученного от экспертов, и может быть использовано в качестве основы при 

разработке правил управления каскадом. 
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2.5 Программное обеспечение решения задач локальной оптимизации 

критериев типа обеспеченности 

Для решения задач локальной оптимизации сверток критериев типа обеспеченности с 

использованием вспомогательных функций (2.1.5), (2.1.6) и (2.2.1) разработано программное 

обеспечение, реализованное средствами алгоритмического языка С++. Блок-схема 

программного обеспечения приведена на рис. 2.5.1. В его состав входит блок локальной 

оптимизации функции многих переменных, разработанный А.И.Голиковым и Н.И.Грачевым (на 

схеме блок обозначен как «Метод сопряженного градиента»). Блок основан на методе 

сопряженного градиента с параболической оптимизацией шага, реализация которого взята из 

системы ДИСО [37]. Уточним, что при расчете градиента используется его разностная 

аппроксимация. 

 
Рис. 2.5.1 Блок-схема модуля локальной оптимизации свертки вспомогательных функций 

Блок «Расчет невязок» в настоящее время использует модуль расчета невязок для модели 

бассейна реки Ангара, описание которой дано в главе 1. Модуль расчетов по модели бассейна 

является примером вычислительного модуля, который может быть использован в рамках 

данного программного обеспечения. Параметрами программного обеспечения являются: 

• параметры блока метода сопряженного градиента; 

• параметры программного обеспечения расчета невязок для каскада водохранилищ; 

• параметры блока расчета значений вспомогательных функций; 

• свертка вспомогательных функций, 

• исходное решение процедуры локальной оптимизации. 

Отметим, что модуль локальной оптимизации вспомогательных функций используется как для 

решения задач глобальной оптимизации отдельных критериев, так и в программном 

обеспечении аппроксимации ОЭП. 
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Глава 3 Аппроксимация оболочки Эджворта-Парето в задаче 

построения правил управления динамической системой с 

критериями типа обеспеченности 

В данной главе предлагаются численные методы аппроксимации оболочки Эджворта-

Парето множества достижимых критериальных векторов в задаче многокритериальной 

оптимизации правил управления динамической системой с критериями типа уровня 

обеспеченности априорных требований. Эксперименты проводились на основе задачи 

управления каскадом водохранилищ, постановка которой дана в главе 1. Можно указать 

несколько особенностей данной задачи. Во-первых, эта задача основана на использовании 

нелинейной модели и содержит большое число переменных (порядка 300) и более 20 частных 

критериев. Во-вторых, частные критерии являются разрывными функциями невязок 

ограничений, причем функции принимают большое конечное число значений и постоянны в 

окрестности точек непрерывности (например, кусочно-постоянны). В-третьих, 

рассматриваемый класс правил управления таков, что сами невязки являются непрерывными 

кусочно-дифференцируемыми функциями параметров правил с большим значением 

постоянной Липшица. Таким образом, даже не возникает вопрос об аналитическом расчете 

градиента критериев, который в данном случае приходится приближенно оценивать на основе 

вариантных расчетов. Наконец, самое главное состоит в том, что хотя трудности, связанные с 

разрывностью критериев типа уровня обеспеченности, преодолеваются на основе метода эрзац-

функций, порожденные таким подходом задачи скалярной оптимизации вспомогательных 

функций являются многоэкстремальными с очень большим числом экстремумов. 

Обратим внимание на то, что задача состоит не только в том, чтобы разработать методы 

и программное обеспечение для аппроксимации ОЭП в задаче МКО с конкретным набором 

исходных данных, но и в том, чтобы дать возможность пользователям в дальнейших 

прикладных исследованиях многократно аппроксимировать ОЭП для различных исходных 

данных и модификаций модели. Таким образом, требуется разработать метод, требующий 

разумных затрат вычислительных ресурсов (в рассматриваемой задаче – порядка 10-15 

миллионов расчетов критериальной функции). 

Обзор, сделанный во введении, показывает, что для аппроксимации ОЭП в 

многокритериальных задачах оптимизации динамических систем с критериями типа уровня 

обеспеченности, в принципе, можно использовать лишь двухфазный метод и генетические 

алгоритмы. Действительно, опыт применения двухфазного метода [39] [40] показал, что он 

позволяет достаточно точно аппроксимировать ОЭП для задач МКО с сотнями переменных 
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[38]. В то же время, эксперименты, описанные далее, говорят о том, что используемая в 

двухфазном методе локальная оптимизация сверток критериев, начинаемая из случайных 

равномерно распределенных точек допустимого множества, не позволяет найти точки границы 

Парето в рассматриваемой задаче при разумном числе расчетов критериальной функции.  

Альтернативным подходом к построению аппроксимации границы Парето является 

использование генетических методов. Описанные далее эксперименты показывают, что хотя 

один из наиболее известных генетических методов аппроксимации границы Парето NSGA-II 

[91] более эффективен в рассматриваемой задаче, чем двухфазный метод, его эффективность 

также недостаточна в случае задачи построения правил управления Ангарским каскадом. 

Поэтому в разделах 3.2-3.5 данной главы предлагается новый метод, метода стартовой 

площадки (МСП), предназначенный для аппроксимации ОЭП в задачах с большим числом 

локальных экстремумов свертки критериев, в частности, типа обеспеченности.  

Главной особенностью МСП является предварительное построение «стартовой 

площадки» (launch pad), т.е. множества таких стартовых точек процесса локальной 

оптимизации сверток критериев, что найденные локальные экстремумы позволяют 

аппроксимировать границу Парето. В разделе 3.2 для решения задачи построения стартовой 

площадки предлагается использовать гибридизацию генетических алгоритмов аппроксимации 

границы Парето с глобальной оптимизацией частных критериев в форме метода инжекции 

оптимумов (ИО), который может и сам по себе быть использован для предварительной грубой 

аппроксимации ОЭП.  

В разделе 3.3 описывается схема варианта МСП, основанного на использовании метода 

ИО для построения стартовой площадки. Описывается теоретическое исследование 

упрощенного варианта МСП, в котором используется идеализированный метод ИО, и 

приводятся результаты экспериментального изучения МСП. В разделе 3.4 предлагается 

дополненный вариант МСП, в котором полученная аппроксимация дополнительно улучшается 

с помощью генетического алгоритма NSGA-II. Экспериментально показывается, что качество 

аппроксимации ОЭП резко улучшается. В разделе 3.5 рассматриваются альтернативные 

критерии – критерии годовой обеспеченности требований к управлению. Теоретически и 

экспериментально показывается, что в задаче с альтернативными критериями можно 

использовать другой вариант МСП, в котором в качестве стартовой площадки берется 

совокупность эффективных решений, полученных при аппроксимации ОЭП для исходного 

набора критериев. В разделе 3.6 приводятся примеры использования визуализации ОЭП в 

задаче оптимизации правил управления Ангарским каскадом, а в разделе 3.7 рассматриваются 

вопросы распараллеливания методов аппроксимации ОЭП. Описание программного 

обеспечения аппроксимации ОЭП приведено в разделе 3.8. 
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3.1 Использование известных методов 

Рассмотрим вопрос о возможности использования в случае модели Ангарского каскада 

двух методов, пригодных для аппроксимации ОЭП в нелинейных задачах МКО с сотнями 

переменных и расчетом критериев с использованием черного ящика. Это двухфазный метод 

аппроксимации ОЭП [35] и генетический метод, предназначенный для аппроксимации границы 

Парето [91]. Эти методы годятся и в случае многоэкстремальных критериев. Вопрос состоит в 

том, позволят ли такие методы достичь приемлемого качества аппроксимации ОЭП в задаче 

построения правил управления водохранилищами Ангарского каскада при минимизации 

критериев типа (1.4.4)-(1.4.29). В дальнейшем в разделах 3.1-3.4 данной главы задача МКО 

формулируется как 

 miny → , ( )y y α= , 0nRα ∈Ξ ⊂ , (3.1.1) 

где α – вектор параметров правил, 0: my RΞ→  – вектор критериев, каждый из которых 

представляет собой долю временных интервалов, в течение которых нарушается некоторое 

ограничение. Проблема состоит в построении такой базы аппроксимации T, чтобы множество 

{ }0* :mT y R y T+= + ∈  давало удовлетворительную аппроксимацию ОЭП задачи (3.1.1).  

Методика экспериментов 

Для оценки качества аппроксимации ОЭП двухфазным и генетическим методами 

использовалась точка 11α ∈Ξ , построенная с помощью диалоговой процедуры МКО (см. раздел 

2.4). Напомним, что эта точка является решением задачи выбора параметров правил управления 

каскадом водохранилищ, полученным ЛПР в результате итеративного улучшения исходного 

решения. Поскольку ( )11y α  заведомо принадлежит ОЭП и неулучшаема, она годится для 

оценки качества аппроксимации ОЭП: на каждой итерации изучаемых методов рассчитывалось 

отклонение точки ( )11y α  от текущей аппроксимации. Также для оценки качества 

аппроксимации использовались точка 0β ∈Ξ  (экспертное решение) и некоторые другие точки. 

 

3.1.1 Эксперимент с двухфазным методом 

В двухфазном методе аппроксимации ОЭП [35] улучшение полученной ранее 

аппроксимации на каждой итерации осуществляется на основе генерирования выборки H из N 

случайных равномерно распределенных точек множества допустимых решений Ξ  и 
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дальнейшего приближения критериальных образов этих точек к границе Парето с помощью 

отображения Φ, которое в двухфазных методах задается с помощью градиентной локальной 

оптимизации некоторой адаптивно выбранной свертки критериев. По существу, реализуется 

некоторый вариант метода мультистарта, распространенного на задачи многокритериальной 

оптимизации на основе адаптивного выбора свертки критериев. В экспериментах с задачами 

МКО, использующими критерии типа обеспеченности, вместо градиентной локальной 

оптимизации сверток критериев используется градиентная локальная оптимизация 

вспомогательных функций, рассмотренных в главе 2. 

В нелинейных невыпуклых задачах МКО теоретически обоснованным является 

использование сверток Чебышева и Гермейера [22]. Семейство сверток Чебышева имеет вид 

 ( )
0

0

*
0

0 *1,..., 1
, max

m
i i

i ii m ii i

y yy y y
y y

ϕ δ
=

=

 −
= + ⋅ − 

∑ , (3.1.2) 

где 0y – стартовая точка оптимизации, *y – вектор минимальных значений частных критериев 

(идеальная точка), δ – малое число, 0δ > . Для улучшения решения требуется уменьшать 

значение функции (3.1.2). Благодаря весам 0 *

1

i iy y−
, определяемым стартовой точкой, 

уменьшение значения функции происходит при движении точки y из 0y  в направлении точки 
*y , что способствует ее смещению в сторону границы Парето. 

Семейство сверток Гермейера задается в виде 

 ( )
0

0

0
01,..., 1

, min
m

i i
i ii m ii i

y yy y y
y y

ϕ δ
=

=

 −
= − + ⋅ − 

∑


, (3.1.3) 

где 0y – стартовая точка оптимизации, iy – некоторая такая точка, что iy y  для всех ( )y P Y∈

, δ – малое число, 0δ > . Требуется уменьшать значение функции (3.1.3). Благодаря 

индивидуальному выбору весов в свертке (3.1.3), уменьшение значения функции происходит 

при движении точки y из 0y  в направлении, противоположном y .  

Заметим, что поверхности уровня сверток из семейств (3.1.2) и (3.1.3) совпадают с 

границей конусов доминирования в пространстве критериев, что обеспечивает улучшение (по 

Парето) качества решения в процессе минимизации свертки. Корректирующее слагаемое 

служит для того, чтобы глобальный оптимум функций принадлежал множеству Парето. В 

двухфазном методе могут быть использованы и другие свертки, близкие к рассмотренным, но 

более удобные для градиентной оптимизации, например, квадратичные функции, близкие по 

смыслу к функции Чебышёва.  
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Правило остановки процесса аппроксимации ОЭП, используемое в двухфазном методе 

[35], выглядит следующим образом. Пусть построено множество *T – внутренняя 

аппроксимация множества *Y . Используется понятие обобщенной (оптимизационной) полноты 

аппроксимации, которое является развитием понятия полноты аппроксимации, предложенного 

в [92] для аппроксимации компактных множеств и детально изученного в [90]. Рассмотрим 

отображение Φ: Ξ  → Ξ , ставящее в соответствие точке α ∈Ξ  некоторую «улучшенную» точку 

'α ∈Ξ  в том смысле, что вектор ( )'y α  «более близок» к ( )P Y , чем ( )y α  (например, 

( ) ( )'y yα α≤ ). Под обобщенной (оптимизационной) полнотой аппроксимации множества *Y  

множеством *T  понимается вероятность попадания точки ( )( )0y y α= Φ  в множество *T  при 

равномерном распределении точек 0α  на Ξ . отображение Φ: Ξ  → Ξ  обычно реализуется с 

помощью локальной оптимизации какой-либо свертки критериев.  

Пусть теперь 0ε ≥ . Тогда можно рассмотреть понятие обобщенной полноты 

аппроксимации множества *Y  для ε -окрестности множества *T , т.е. вероятность попадания 

точки ( )( )0y y α= Φ  в множество ( )*T
ε

. Зависимость от ε  этой вероятности, обозначаемой 

( )η εΦ  и заданной при 0ε ≥ , принято называть функцией обобщенной полноты аппроксимации 

множества *Y  множеством ( )*T
ε

. Функция ( )η εΦ  является неубывающей. Она имеет некоторое 

неотрицательное значение при 0ε =  и достигает единицы при достаточно больших величинах 

ε , в частности, при таких ε , что ( )* *Y T
ε

⊆ . Функция ( )η εΦ  может служить некоторой 

характеристикой качества аппроксимации множества *Y  множеством *T , поскольку 

показывает, на сколько далеко точки *Y  отстоят от *T . Эта характеристикой качества 

аппроксимации, однако, недостаточно объективна, поскольку зависит от отображения Φ. На 

основе понятия обобщенной полноты можно строить различные конкретные правила остановки 

процесса для заданного отображения Φ. 

Для приближенного нахождения функции ( )η εΦ  используется выборочное значение 

обобщенной полноты аппроксимации [35] [40] [92], которое в задаче аппроксимации *Y  

рассчитывается следующим образом. На Ξ  генерируется равномерная выборка H  из  N  

случайных точек { }0 jα , 1,...,j N= . Далее находится совокупность точек ( )( )0j jy y α= Φ , 

1,...,j N= , которую обозначим ФH . Для 0ε ≥  под выборочной функцией обобщенной полноты 

аппроксимации множества *Y  множеством ( )*T
ε
 понимается функция  
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( ),

( )
Ф

N n H
N

ε
η εΦ = , (3.1.4) 

где ( ),Фn H ε  – число точек множества ФH , принадлежащих ( )*T
ε

. Функция ( )Nη εΦ  является 

неубывающей функцией ε , причем существует конечное число min{ : ( ) 1}N
полнε ε η εΦ= = . 

Поскольку при полнε ε=  множество ( )*T
ε
 полностью покрывает совокупность точек ФH , число 

полнε  называется выборочным радиусом полного покрытия. 

Вопрос о близости величин )(εηΦ  и )(εη N
Φ  рассмотрен в [41]. Показано, что при 

выполнении некоторых условий для любого 0>β  справедлива вероятностная оценка 

 )2exp(1))()(P( 2ββεηεη NN −−≥−> ΦΦ . (3.1.5)  

Эта оценка характеризует близость функций )(εηΦ  и )(εη N
Φ , что позволяет использовать 

график )(εη N
Φ  для изучения оптимизационной полноты аппроксимации. На основе анализа 

графика специалист может контролировать процесс аппроксимации и, зная трудоемкость 

улучшения качества аппроксимации, остановить процесс в подходящий момент. Часто 

используется автоматическая остановка метода, т.е. остановка без привлечения человека. В 

этом случае в качестве правила остановки метода обычно используется проверка требования к 

величине выборочного радиуса полного покрытия. Если требуемая величина полнε  не 

достигнута, то путем объединения исходной базы аппроксимации и совокупности 

критериальных точек, полученных при оценке полноты, формируется промежуточное 

множество, из которого путем выделения недоминируемых точек создается новая база 

аппроксимации ОЭП. Отметим, что такой метод построения правила остановки применим и в 

других итеративных методах аппроксимации ОЭП. 

В простейшем случае автоматической проверки условий остановки алгоритм 

двухфазного метода имеет следующий вид. Заранее должны быть заданы 0N  – достаточно 

большой объём случайной выборки и желаемый радиус полного покрытия  0 0ε > , а также тип 

свертки критериев (например, семейство (3.1.2), либо (3.1.3) или какое-нибудь другое). 

Приведем краткое формальное описание итерации алгоритма двухфазного метода. 

 

Итерация k двухфазного метода (k≥1). Считается, что на предыдущих итерациях уже 

построены некоторое множество 1kS −  допустимых решений и соответствующая база 

аппроксимации 1kT − , т.е. ( )1 1k kT y S− −= . 

Шаг 1. В Ξ  генерируется случайная равномерная выборка H  объемом 0N ; 
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Шаг 2. Осуществляется решение 0N  задач локальной оптимизации адаптивно (с учетом 

стартовых точек оптимизации) выбранных сверток критериев, где точки 0x H∈  служат 

стартовыми точками процесса локальной оптимизации свертки, то есть находятся решения 

( )0Ф x  для 0x H∈ ; 

Шаг 3. Рассчитывается требуемая характеристика выборочной функции оптимизационной 

полноты аппроксимации, например, выборочный радиус полного покрытия *Y  множеством 

( )*
1kT −  на k–й итерации, который обозначим kε ; 

Шаг 4. Проверяется условие остановки алгоритма 0
kε ε≤ ;  

Шаг 5. В том случае, когда остановки алгоритма не происходит, новая база аппроксимации kT  

строится на основе объединения 1kT −  и ( )( )y HΦ , после чего следует исключение 

доминируемых точек этого множества. 

Нами была проведена большая серия экспериментов по аппроксимации ОЭП для задачи 

оптимизации правил управления Ангарским каскадом двухфазным методом с различными 

типами сверток критериев. Все они дали качественно одинаковый результат. Приведем 

описание одного из этих экспериментов, в котором использовалось семейство сверток 

критериев 

 ( )
0

0

0
01,..., 10

, max
m

i
ii m ii

yy y y
y

ϕ δ
δ=

=

 
= + ⋅ + 

∑ , (3.1.6) 

где 0.0001δ = , 0 0.0001δ = , 0y – стартовая точка оптимизации. Напомним, что значения 

критериев (1.4.4)-(1.4.29) меняются в диапазоне от нуля до единицы. Свертка (3.1.6) является 

модификацией чебышевской свертки (3.1.2) с y*=0 и поправочными параметром 0δ , который 

введен для того, чтобы веса существовали и в том случае, когда 0 0iy =  для одной из координат. 

Для решения задачи локальной скалярной оптимизации свертки (3.1.6) использовались 

вспомогательные функции с эрзац-функциями, изученными в гл. 2. На первой итерации в 

качестве множества 0S  была взята совокупность решений задач глобальной оптимизации для 

всех частных критериев. В двухфазном методе бралось 0 0.01ε =  и 0 100N = . В экспериментах 

расстояние между точками y1 и y2 в пространстве 0mR   вычислялось по формуле 

 ( )
0

1 2 1 2

1
,

m

i i
i

y y y yρ
=

= −∑ . (3.1.7) 
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Поскольку значения каждого критерия лежат в диапазоне от нуля до единицы, на момент 

остановки алгоритма величина радиуса полного покрытия не должна превосходить 1% 

диапазона значений критерия. 

В проведенном эксперименте правило остановки оказалось выполнено на 15-ой 

итерации, т.е. все новые критериальные точки на этой итерации оказались внутри 0ε -

окрестности текущей аппроксимации. Для построения аппроксимации понадобилось 

выполнить чуть более 110 миллионов расчетов (точнее, 111 620 тысяч расчетов) критериальной 

функции, из которых около 10 миллионов расчетов потрачено на решение 26 задач глобальной 

оптимизации частных критериев, т.е. на построение 0S . Таким образом, на проведение одной 

итерации (k≥1) в среднем требовалось около 7 миллионов расчетов критериальной функции. 

Весь процесс занял около 90 часов ноутбука среднего класса. Обозначим полученную 

двухфазным методом базу аппроксимации через 2 fT , а аппроксимацию ОЭП – через *
2 fT .  

За 15 проведенных итераций наблюдалось постепенное уменьшение радиуса полного 

покрытия до 0.01, причем числа точек в базе аппроксимации выросло до 650.  Рассмотрим 

поведение графика выборочной обобщенной полноты ( )N
Фη ε  в зависимости от номера 

итерации. Напомним, что величина ( )N
Фη ε  показывает, какую долю составляют точки, 

принадлежащие ε -окрестности аппроксимации, в общем числе найденных двухфазным 

методом локально-оптимальных критериальных точек. В качестве ε  возьмем величину 0ε ε= . 

 

Рис. 3.1.1 График выборочной оптимизационной полноты ( )0.01N
Фη  

Видно, что в целом с ростом номера итерации происходит увеличение полноты. На последних 

итерациях алгоритма значение полноты превосходит 0.95 и достигает 1 на 15-й итерации. Это 

означает, что более 95% новых точек остаются внутри текущей аппроксимации, а в конце 



101 
 
процесса ( )N

Фη ε =1 при 0ε ε= . Таким образом, учитывая малую величину радиуса полного 

покрытия на последних итерациях, т.е. отсутствие прогресса в процессе аппроксимации, 

продолжать процесс аппроксимации, по-видимому, не имеет смысла. Этот факт подтверждает 

правильность остановки в соответствии с величиной радиуса полного покрытия.  

На рисунке 3.1.2 и 3.1.3 приведены графики зависимости от номера итерации отклонения 

от аппроксимации ОЭП точек ( )0y β  и ( )11y α , заведомо принадлежащих ОЭП. 

 

Рис. 3.1.2 Отклонение точки ( )0y β  от аппроксимации ОЭП 

На рисунке 3.1.2 видно, что уже к началу первой итерации отклонение точки ( )0y β  от 

аппроксимации ОЭП оказалось менее 0.014. Это можно объяснить тем, что эта точка оказалась 

близкой к аппроксимации ОЭП, задаваемой совокупностью образов решений, оптимальных по 

частным критериям. Поэтому в дальнейшем не будем рассматривать  при оценке 

качества аппроксимации ОЭП.  

На рисунке 3.1.3 видно, что за пять итераций двухфазный метод улучшил 

аппроксимацию настолько, что отклонение точки ( )11y α  от аппроксимации ОЭП уменьшилось 

до 0.128, однако на следующих итерациях отклонение перестало уменьшаться. Расстояние 

точки  до начала координат (т.е. идеальной точки y*) составляет 0.191. Таким образом, 

отклонение точки от построенной аппроксимации сопоставимо с расстоянием от этой 

точки до идеальной точки y*. Это означает, что неточность построения ОЭП имеет порядок 

значений критериев в точке , поэтому граница полученной аппроксимации не дает 

представления о границе Парето.  

 

( )0y β

( )11y α

( )11y α

11α
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Рис. 3.1.3 Отклонение точки ( )11y α  от аппроксимации ОЭП 

Теперь оценим качество аппроксимации на основе визуализации расположения точек 

 и  на различных двумерных проекциях аппроксимации ОЭП. 

 
Рис. 3.1.4 Проекция аппроксимации ОЭП на плоскость 5 15( , )y y

 

На рисунке 3.1.4 и 3.1.5 изображены наиболее выразительные проекции этих точек и 

построенной аппроксимации ОЭП (заштрихована) на плоскости  и . Хотя 

возможная принадлежность проекций точки проекции аппроксимации на некоторую плоскость 

не доказывает ее принадлежность аппроксимации, большое отклонение говорит о 

недостаточном качестве аппроксимации. Итак, можно сделать вывод о том, что двухфазный 

метод, который исчерпал свои возможности в данной задаче (см. рис. 3.1.1), не смог построить 

( )0y β ( )11y α

5 15( , )y y 1 19( , )y y
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аппроксимацию ОЭП удовлетворительного качества даже за огромное число (110 миллионов) 

расчетов критериальной функции.  

 

Рис. 3.1.5 Проекция аппроксимации ОЭП на плоскость 1 19( , )y y  

Вывод. Как выяснилось на основе этого и других экспериментов, направленных на 

аппроксимацию ОЭП в задаче построения правил управления Ангарским каскадом с помощью 

двухфазного метода, процессы локальной оптимизации сверток критериев, начинающиеся в 

случайных точках множества допустимых решений, обычно приводят к локальным 

экстремумам, векторы критериев в которых далеки от границы Парето. Именно это приводит к 

построению недостаточно качественной аппроксимации ОЭП. 

 

3.1.2 Эксперименты с генетическим методом аппроксимации границы Парето 

Многокритериальные генетические методы [46] [91] [93] предназначены для 

аппроксимации границы Парето в виде конечного числа недоминируемых критериальных 

точек. Если эти точки использовать как базу аппроксимации ОЭП, то генетический метод даст 

некоторую аппроксимацию ОЭП. Целью проводимого далее эксперимента является сравнение 

генетического метода с двухфазным методом и анализ вопроса о том, можно ли использовать 

генетический метод для решения задачи построения аппроксимации ОЭП в задаче разработки 

правил управления каскадом. 

Многокритериальные генетические алгоритмы основаны на эволюционных концепциях 

[46]. В частности, происходит скрещивание разумных решений, мутации в получаемых 

решениях и отбор перспективных решений. Главным достоинством таких методов являются 
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простота реализации, отсутствие каких-либо требований к непрерывности и существованию 

производных критериальных функций, гибкость и возможность применения к задачам типа 

«черного ящика», в которых критериальные функции заданы вычислительным модулем. 

Недостатком является медленная сходимость генетических методов. 

Обычно генетический метод является итерационным. Перед первой итерацией метода 

строится начальная популяция точек. В качестве таких точек обычно берут случайную выборку 

на всем множестве допустимых решений или специально подготовленные точки [45] [94]. На 

каждой итерации генетического метода для каждой точки из популяции рассчитывается вектор 

значений критериев. Затем по некоторому правилу осуществляется отбор родительских пар 

точек из популяции. Для каждой отобранной пары применяются операторы кроссовера и 

мутации, результатом которых являются новые точки – потомки. Далее с помощью 

специального правила создается новая популяция точек, состоящая из части точек объединения 

популяции предыдущего поколения и потомков. В конце итерации проверяется правило 

остановки метода, основанное, например, просто на ограничении числа итераций. Если правило 

остановки не выполняется, то осуществляется переход на следующую итерацию.  

В данной работе для аппроксимации ОЭП в задаче построения правил управления 

каскадом ГЭС используется итерационный метод многокритериальной оптимизации NSGA-II 

[91], считающийся одним из наиболее популярных современных генетических методов. Во 

время построения новой популяции применяются генетические операторы (кроссовер и 

мутация) и, кроме того, точки, близкие по значениям критериев к другим точкам, удаляются из 

популяции. Эти принципы позволяют методу NSGA-II, с одной стороны, удерживать число 

точек в популяции на заданном уровне, а с другой – обеспечивать их относительную 

равномерность в пространстве критериев.  

Приведем краткое описание алгоритма NSGA-II. Заранее должны быть заданы itN  – 

число итераций алгоритма и – желаемое достаточно большое число точек в выходном 

множестве. В качестве исходной популяции 0P  берется случайная выборка объема popN  на Ξ . 

Итерация k 

Считается, что на предыдущих итерациях уже построена популяция точек 1kP −  из Ξ .  

Шаг 1. Из 1kP −  на основе некоторого алгоритма выбирается подмножество точек, которые будут 

использованы для генерации новых точек (потомков). Обозначим такое подмножество 1kQ − ; 

Шаг 2. Генерируются потомки, на основе применения генетических операторов мутации и 

кроссовера к множеству 1kQ − . Обозначим множество потомков через 1kС − ; 

Шаг 3. 1 1 1k̂ k kP P С− − −=  . Точки множества 1k̂P −   упорядочиваются по убыванию качества; 

popN
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Шаг 4. Если число точек 1k̂P −  меньше popN , то 1

ˆ
k kP P −=  . В противном случае, в множество kP  

включаются только первые popN  точек из 1k̂P − ; 

Шаг 5. Проверяется правило остановки алгоритма: если itk N= , то алгоритм останавливается, 

иначе, осуществляется переход на следующую итерацию. 

В описываемом далее эксперименте в качестве popN  бралось максимально допустимое 

значение в реализации [95] алгоритма, т.е. 10000popN = . В качестве правила остановки 

генетического метода использовалось число расчетов критериальной функции, которое бралось 

тем же, что и в эксперименте с двухфазным методом (т.е. 111620 тысяч). Это число расчетов 

критериальной функции оказалось достаточно для 11162 итераций метода NSGA-II, так как на 

одну итерацию NSGA-II требуется около 10 тысяч расчетов критериальной функции. При этом 

было потрачено около 120 часов работы компьютера, что почти на 30% больше, чем в случае 

двухфазного метода (дополнительные затраты времени нужны на шаге 3 метода NSGA-II).  

Обозначим полученное множество решений через gP . Отобрав недоминируемые точки 

из множества ( )gy P , получим базу аппроксимации, которую обозначим через gT . Объем базы 

аппроксимации составляет 9113 точек. На рисунке 3.1.6 и 3.1.7 приведены графики отклонения 

точек ( )0y β  и ( )11y α  от аппроксимации ОЭП в зависимости от номера итерации. На рисунке 

3.1.6 видно, что около 400 итераций потребовалось генетическому методу, чтобы отклонение 

точки  от аппроксимации ОЭП оказалось менее 0.03, около 700 итераций – для 

отклонения порядка 0.014 и около 3000 итераций – для отклонения порядка 0.01. Напомним, 

что двухфазный метод дал отклонение 0.014 после нулевой итерации (10 миллионов расчетов), 

а генетическому методу потребовалось для этого около 700 итераций по 10000 расчетов, т.е. 

только 7 миллионов расчетов. Отклонение в 0.01 в двухфазном методе было достигнуто за 7 

итераций по 7 миллионов расчетов на итерацию (всего потребовалось 59 миллионов расчетов), 

что значительно больше, чем генетическом методе (3000 итераций по 10000 расчетов = 30 

миллионов расчетов). Таким образом, для точки  генетический метод потребовал 

значительно меньшего числа расчетов, чем двухфазный метод. 

( )0y β

( )0y β
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Рис. 3.1.6 Отклонение точки ( )0y β  от аппроксимации, построенной генетическим алгоритмом 

 

Рис. 3.1.7 Отклонение ( )11y α  от аппроксимации, построенной генетическим алгоритмом 

Перейдем к точке . На рисунке 3.1.7 видно, что за первые 1000 итераций 

отклонение точки  от аппроксимации ОЭП сократилось почти в 6 раз с 0.85 до 0.14. 

Последующие десять с лишним тысяч итераций метода позволили сократить отклонение с 0.14 

до 0.02. Сравнивая это отклонение с результатом работы двухфазного метода (около 0.13), 

( )11y α

( )11y α
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видим, что при том же числе расчетов критериальной функции полученный результат 

существенно лучше. 

Теперь сравним базу аппроксимации, полученную генетическим методом, с базой 

аппроксимации двухфазного метода с использованием метода функций включения [96]. Этот 

метод основан на использовании функции включения, определенной для двух баз 

аппроксимации А и В  при 0ε ≥ :  
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т.е. νA(ε, B*) – доля точек базы A, попавших в ε-окрестность множества B*.  

Рисунок 3.1.8 содержит графики функций включения 2( , *)
gT fTν ε  и 

2
( , *)

fT gTν ε , где 2 fT  

и gT  - базы аппроксимации, полученные по завершении работы двухфазного и генетического 

методов соответственно. 

 

Рис. 3.1.8 Графики функций включения   2( , *)
gT fTν ε  и 

2
( , *)

fT gTν ε   

График функции 
2

( , *)
fT gTν ε  лежит выше графика функции 2( , *)

gT fTν ε . При этом 

множество *gT  содержит 95% точек 2 fT , а ε-окрестность *gT  содержит почти 99% точек 2 fT  

уже при ε=0.01. Наоборот, ни 2 *fT , ни ( )*
2 fT

ε
 при ε от 0 до 0.1 не содержат точек gT , а при ε 

порядка 0.13 в ( )*
2 fT

ε
 содержится не более 5% точек gT . Это означает, что значительная часть 
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точек gT  сильно отклоняется от 2 *fT  (на рисунке 3.1.8 видно, что более 80% точек gT  

отклоняется более, чем на ε=0.14). При этом радиус полного покрытия gT  множеством 2 *fT  

составляет 0.16, а радиус полного покрытия 2 fT  множеством *gT  составляет 0.02.  

Таким образом, можно сделать вывод о том, что аппроксимация ОЭП, задаваемая 

множеством точек gT , значительно лучше аппроксимации, задаваемой множеством 2 fT . Итак, 

при том же числе расчетов критериальной функции качество аппроксимации ОЭП, построенной 

генетическим методом, оказалось в целом лучше аппроксимации ОЭП, построенной 

двухфазным методом. Этот эффект можно объяснить спецификой рассматриваемой задачи 

МКО, т.е. тем, что двухфазный метод не предназначен для того, чтобы использоваться в случае 

функций с большим числом локальных экстремумов, а для генетического метода наличие 

изломов, разрывов и локальных экстремумов не приводит к затруднениям. 

Для визуальной оценки качества аппроксимации *gT , полученной с помощью 

генетического метода, на рисунке 3.1.9 изображены проекции множества  и точек ( )11y α , 

( )0y β , 0
1y  и 0

19y  на плоскость 1 19( , )y y  (т.е., на ту же плоскость, что и на рисунке 3.1.5). 

Напомним, что 0
1y  и 0

19y  являются образами решений задач глобальной оптимизации для этих 

критериев.  

 
Рис. 3.1.9 Проекция аппроксимации, полученной генетическим методом, на плоскость 1 19( , )y y   

На рисунке 3.1.9 видно, что, в отличие от двухфазного метода (см. рис. 3.1.5), 

отклонение точки ( )11y α  от проекции аппроксимации ОЭП оказалось существенно меньше 

*gT



109 
 
расстояния от начала координат до точки ( )11y α . Напомним, что, в то же время, близость точки 

( )11y α  к проекции еще не означает ее принадлежности ей (это доказывает график на рисунке 

3.1.7). К тому же, наблюдаются значительные (около 0.02) отклонения точек 0
1y  и 0

19y , заведомо 

принадлежащих ОЭП, от проекции аппроксимации. Поэтому аппроксимацию ОЭП, 

построенную генетическим методом, также нельзя считать удовлетворительной.  

Для оценки того, сколько итераций генетического метода может потребоваться для того, 

чтобы отклонение точки ( )11y α  от аппроксимации составляла требуемую величину 0.01, 

изобразим график зависимости отклонения δ точки ( )11y α  от номера итерации k в 

логарифмических координатах. Точнее говоря, на рисунке 3.1.10 по горизонтальной оси 

откладывается десятичный логарифм числа итераций, а по вертикальной оси – десятичный 

логарифм отклонения. Для оценки асимптотического поведения графика была построена 

линейная зависимость lg lga b kδ = + ⋅ , график которой изображен пунктирной линией. Как 

видно, линейная зависимость хорошо приближает экспериментальный график при lg k > 3.25. 

Таким образом, имеет место степенная асимптотика зависимости отклонения от числа 

итераций. Для линейной зависимости имеем a=1.97, b=–0.91, поэтому получаем приближенную 

асимптотическую формулу зависимости отклонения от числа итераций  

 δ = 102 k –1.  (3.1.9) 

 

Рис. 3.1.10 Логарифм отклонения точки ( )11y α  от аппроксимации ОЭП, построенной 

генетическим алгоритмом, как функция логарифма номера итерации 
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На рисунке 3.1.10 видно, что на линейной зависимости lg δ достигает значения –2 (т.е. 

отклонение равно 0.01), когда логарифм числа итераций приближенно равен 4.35. Это означает, 

что для достижения требуемого отклонения точки  от аппроксимации ОЭП понадобится 

около 22000 итераций генетического алгоритма или около 220 миллионов расчетов 

критериальной функции. Если учесть то, что в прикладных исследованиях задачу 

аппроксимации ОЭП потребуется решать многократно, а также то, что вместо 

рассматриваемого в данной работе периода в 103 года планируется использовать ряды 

приточности в 10 000 лет, становится ясно, что генетический алгоритм NSGA-II не подходит 

для решения данной задачи.  

Отметим, что в эксперименте обнаружено интересное свойство генетического метода – 

полиномиальная асимптотическая зависимость отклонения точки ( )11y α  от аппроксимации 

ОЭП от числа итераций. Теоретическое обоснование этого результата требует дополнительных 

исследований. Зачастую утверждают, что генетические методы оптимизации не имеют 

преимущества над методами случайного поиска. Для изучения этого вопроса мы сравнили 

эффективность генетического метода и случайного поиска в данной задаче. Точнее говоря, был 

проведен эксперимент по аппроксимации ОЭП, направленный на сравнение генетического 

алгоритма со случайным поиском. 

 

Сравнение генетического алгоритма с методом случайного поиска 

В рамках эксперимента была сгенерирована такая случайная выборка из Ξ , что число 

расчетов критериальной функции в выборке совпало с числом расчетов функции в 

эксперименте с генетическим алгоритмом. Таким образом, было получено около 112 миллионов 

критериальных точек. Отобрав недоминируемые точки (их оказалось 1640), получили базу 

аппроксимации, которую обозначили через rndT . Для построения этой базы аппроксимации 

понадобилось около 90 часов работы компьютера. 

Сравним аппроксимацию rndT * с аппроксимацией *gT , полученной с использованием 

генетического метода. На рисунке 3.1.11 изображены проекции rndT * (темно-серый цвет) и *gT  

(светло-серый цвет), а также точек ( )11y α , ( )0y β , 0
1y  и 0

19y  на плоскость 1 19( , )y y  (т.е., на ту же 

плоскость, что и на рисунке 3.1.5 и 3.1.9).  

( )11y α
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Рис. 3.1.11 Проекция аппроксимаций ОЭП, полученных на основе случайного выбора и 

генетическим методом, на плоскость 1 19( , )y y   

Как видно, проекция *gT  значительно шире проекции rndT *, что доказывает явное 

преимущество генетического метода при аппроксимации ОЭП в рассматриваемой задаче.  

Сравнение аппроксимаций rndT  и *gT  на основе функции включения [96] дает простой 

ответ: множество *gT  содержит все точки rndT . Таким образом, генетический метод явно 

превосходит метод случайного выбора решения.  

Наоборот, радиус полного покрытия gT  множеством *
rndT  составляет 1.26, т.е. точки gT  

сильно отклоняются от  *
rndT . Таким образом, графики функций включения не требуются и 

можно сразу утверждать, что аппроксимация ОЭП, задаваемая множеством точек gT , 

значительно лучше аппроксимации, полученной методом случайного поиска. Этот эффект 

можно объяснить тем, что большая размерность пространства решений не позволяют методу 

случайного поиска эффективно строить аппроксимацию ОЭП. 

Вывод. Эксперименты показали, что при аппроксимации ОЭП в задаче построения 

правил управления Ангарским каскадом генетический алгоритм превосходит и случайный 

поиск, и двухфазный метод. В то же время, генетический алгоритм не позволяет построить 

аппроксимацию ОЭП достаточно эффективно.  
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3.2 Метод инжекции оптимумов 

3.2.1 Описание методов 

Напомним, что нам требуется разработать метод, предназначенный для аппроксимации 

ОЭП в нелинейных задачах большой размерности (несколько сотен переменных) с 

существенным числом критериев (более 20) при наличии большого числа локальных 

экстремумов сверток критериев. Предыдущие исследования (например, глава 2) показали, что в 

изучаемой нами задаче методы многокритериального мультистарта (в частности, двухфазный 

метод), опирающиеся на градиентные алгоритмы оптимизации сверток, сами по себе дают 

возможность найти решения, близкие к оптимальным по частным критериям, взятым по 

отдельности, но обычно не позволяют найти эффективные решения, оптимальные для сверток 

критериев. В то же время, результаты гл. 2 показывают, что достаточно хорошие решения 

найти можно, если процедуры локальной оптимизации стартуют из точек, принадлежащих 

области притяжения локальных экстремумов, близких по значению к глобальному оптимуму 

свертки. Другими словами, стартовые точки должны быть такими, чтобы ловушки в виде 

неэффективных локальных экстремумов не мешали нахождению критериальной точки, близкой 

к границе Парето. В методах, описываемых далее, предлагаются способы построения множеств 

стартовых точек, обладающих таким свойством. Подмножество допустимого множества, 

обладающее таким свойством, будем называть стартовой площадкой (launch pad). На основе 

использования стартовой площадки можно попытаться найти хорошую аппроксимацию ОЭП. 

Сформулированная идея является главной составляющей предлагаемых далее методов 

аппроксимации ОЭП, поэтому будем именовать их методами стартовой площадки (МСП). 

Такой метод состоит из двух основных шагов: 1) построения стартовой площадки и 2) 

выполнения итерационной процедуры улучшения аппроксимации ОЭП с использованием 

градиентных методов локальной оптимизации вспомогательных функций, стартующих из 

случайных точек стартовой площадки. 

Главный вопрос, который необходимо решить при реализации МСП, состоит в том, как 

построить требуемое подмножество стартовых точек. В следующих трех разделах данной главы 

в качестве средства формирования стартовой площадки применяется метод, составной частью 

которого является генетический алгоритм аппроксимации границы Парето, для которого 

наличие локальных экстремумов критериальных функций не является помехой. Основная идея 

предлагаемого метода –  включение в популяцию генетического алгоритма множества решений, 

получаемых при глобальной оптимизации частных критериев (так называемых оптимумов). 

Такой метод получил название метода инжекции оптимумов (ИО). Хотя основной целью 
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разработки метода ИО было его использование для построения стартовой площадки в МСП, он 

оказался достаточно эффективным и для того, чтобы использоваться отдельно для 

предварительной грубой аппроксимации ОЭП.  

В общем случае, метод ИО основан на многократном использовании заранее 

полученных решений задач глобальной оптимизации частных критериев (оптимумов) в 

процессе аппроксимации ОЭП с помощью какого-либо генетического алгоритма: совокупность 

оптимумов включается в начальную популяцию, а затем периодически включается в 

популяции, получаемые генетическим алгоритмом на промежуточных итерациях. При этом 

генетический алгоритм модифицируется – в него добавляется новое правило остановки. 

Надо отметить, что идея комбинации глобальной скалярной оптимизации и генетических 

методов аппроксимации границы Парето не нова – она была предложена в еще 1984 г. в работе 

[44], где, однако, задачи глобальной скалярной оптимизации решались также с помощью 

генетических методов. Экспериментальные исследования показали, что такой подход «обычно 

не находит хорошие компромиссы между значениями критериев» [15]. По-видимому, 

нахождению «хороших компромиссов» помешало недостаточно точное решение задач 

глобальной оптимизации с помощью генетических методов и использование популяций 

слишком малых объемов. В данном разделе диссертации мы показываем, что достаточно 

точное решение задач глобальной оптимизации с помощью классических градиентных методов 

мультистарта, примененных к вспомогательным функциям (метод эрзац-функций), и 

использование популяций максимально возможных объемов позволяет принципиально 

улучшить ситуацию и хорошо аппроксимировать границу Парето по крайней мере для одного 

класса сложных нелинейных прикладных задач МКО, а именно задач построения правил 

управления каскадом водохранилищ. 

Как уже было сказано, генетический алгоритм модифицируется – в нем используется 

правило остановки, аналогичное правилу остановки двухфазного метода, которое основано на 

расчете выборочного радиуса полного покрытия ОЭП окрестностью аппроксимации. Дадим 

точное последовательное описание метода ИО, в котором в качестве генетического алгоритма 

используется модифицированный алгоритм NSGA-II. 

 

Описание метода инжекции оптимумов 

Заранее должны быть заданы параметры: popN  – желаемое число точек в выходном 

множестве, 0genε >  – параметр правила остановки и K – периодичность инжекции оптимумов. 

Шаг 1. Строится исходное множество (популяция) 0P . 
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С помощью метода эрзац-функций достаточно точно решаются задачи глобальной 

минимизации частных критериев. Обозначим совокупность найденных оптимумов через yX . 

Дополним эту совокупность случайными точками из множества допустимых решений Ξ . 

Полученное множество обозначим через 0P . 

Шаг 2. Выполняются итерации модифицированного генетического алгоритма NSGA, 

дополненные периодической инжекцией оптимумов. 

Итерация k шага 2 метода ИО 

Считается, что на предыдущих итерациях уже построена популяция точек 1kP −  из Ξ . Если 

k=nK, где n=1,2,3,…, то в популяцию 1kP −  включаем совокупность оптимумов yX . При этом 

осуществляется замещение оптимумов базы аппроксимации точками из yX . 

Далее, кроме пунктов 5 и 6, алгоритм не отличается от NSGA:  

1. Из 1kP −  на основе некоторого алгоритма ( [45]) выбирается подмножество точек, которые 

будут использованы для генерации новых точек (потомков). Обозначим такое 

подмножество через 1kQ − ; 

2. Генерируются потомки, на основе применения генетических операторов  [45]),  мутации 

и кроссовера к множеству 1kQ − . Обозначим множество потомков через 1kС − ; 

3. 1 1 1k̂ k kP P С− − −=  . Точки множества 1k̂P −   упорядочиваются по убыванию качества ( [45]); 

4. Если число точек 1k̂P −  меньше popN , то 1
ˆ

k kP P −=  . В противном случае, в множество kP  

включаются только первые popN  точек из 1k̂P − ; 

5. Рассчитывается требуемая характеристика выборочной функции полноты 

аппроксимации, например, выборочный радиус полного покрытия kε , т.е. наименьший 

радиус окрестности аппроксимации, полученной на предыдущем шаге, которая 

полностью покрывает совокупность точек ( )ky P ; 

6. Проверяется правило остановки алгоритма: если k
genε ε≤ ,то алгоритм останавливается, 

иначе, осуществляется переход на следующую итерацию. 

Обозначим результирующую популяцию через . Работа алгоритма завершена.  

Если требуется строить аппроксимацию ОЭП, объединим  с множеством yX , 

отбросив при этом доминируемые решения. Обозначим полученную совокупность решений 

через eimX . Построенная база аппроксимации – это множество ( )eim eimT y X= .   

lpX

lpX
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3.2.2 Исследование метода инжекции оптимумов 

Экспериментальное сравнение метода ИО с генетическим алгоритмом 

Сравним метод ИО экспериментально с генетическим алгоритмом аппроксимации 

границы Парето NSGA-II на основе эксперимента по аппроксимации ОЭП. Методы 

сравнивались между собой при одном и том же числе расчетов критериальной функции. 

На шаге 1 метода ИО должно быть найдено множество оптимумов yX . Обсудим 

некоторые особенности используемой нами реализации шага 1 для модели Ангарского каскада. 

Рассмотрим способ решения этой задачи для некоторого критерия ],...,1[ mj∈ , имеющего вид  
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t

t
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На основе первого метода эрзац-функций задача сводится к задаче локальной минимизации 

вспомогательной функции, которая решается с использованием метода сопряженного градиента 

с параболической оптимизацией шага из системы ДИСО [37]. Поскольку значения критериев 

неотрицательны, факт нахождения решения со значением критерия, достаточно близким к 

нулю, означает, что задача глобальной оптимизации этого критерия решена. Этот факт 

используется при расчете оптимумов yX . 

Итак, перед началом шага 1 должны быть заданы N1 – число элементов выборки NH  и 

величина 0ε  – допустимое отклонение от нуля критериев оптимизации. Шаг 1 для некоторого 

критерия ],...,1[ mj∈  состоит из следующих пунктов: 

1. Проверяем, не выполняется ли условие 0)( εα <rjy  на решениях Ξ∈rα , найденных при 

минимизации уже рассмотренных критериев 1,...,1 −= jr . Если условие выполняется, то 

решение для критерия j найдено и переходим к следующему критерию; 

2. На множестве Ξ  генерируется выборка { })()1( 1,..., N
jjNH αα=  объемом N1; 

3. Выполняется N1 итераций, на каждой из которых решается задача локальной минимизации 

на множестве Ξ  вспомогательной функции 

 
0

1
( )

t
t t
j j

t
z z

=

⋅Θ∑ , (3.2.2) 

стартующая на q-й итерации из точки N
q

j H∈)(α . Подчеркнем, что вместо критерия (3.2.1)

используется непрерывная вспомогательная функция (3.2.2), полученная путем замены 

функций Хэвисайда ( )t
jzΘ  на непрерывные эрзац-функции ( )t t

j jz z⋅Θ , равные t
jz  при 0t

jz >  и 
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равные нулю при 0t
jz ≤ . Для стартовой точки N

q
j H∈)(α  найденную точку локального 

минимума обозначим через ( )ˆ q
jα . Если выполняется условие  

 ( )
0ˆ( )q

j jy α ε< , (3.2.3) 

то задача минимизации критерия jy  решена, причем локальный оптимум – это текущая 

точка ( )ˆ q
j jα α= . Переходим к следующему критерию. Если условие (3.2.3) не выполняется, 

переходим к следующей итерации; 

4. Если для всех локальных оптимумов функции (3.2.2), т.е. 1( )(1)ˆ ˆ,..., N
j jα α , условие (3.2.3) не 

выполняется, то в качестве приближенного решения задачи глобальной минимизации 

критерия на множестве Ξ  берем точку, на которой достигается минимум критерия (3.2.1) на 

множестве 1( )(1)ˆ ˆ,..., N
j jα α .  

Шаг 1 метода ИО завершается после проведения описанных расчетов для всех критериев.  

Вычислительные затраты шага 1 метода ИО при N1=100 составили около 10 миллионов 

расчетов. Интересно, что поиск минимального значения одного из 24-х критериев потребовал 

около 7 миллионов расчетов, в то время как затраты на остальные 23 критерия уложились в 3 

миллиона. Такое различие возникло из-за того, что для многих критериев условие (3.2.3) 

выполнялось на первых итерациях пункта 3 шага 1. Более того, сразу несколько критериев 

могло удовлетворять условию (3.2.3) в этом решении.  

На шаге 2 метода ИО выполнялись итерации генетического алгоритма с параметрами 

10000=popN  и остановкой по отклонению с порогом genε = 0.01 без инжекции в популяцию 

множества yX  на промежуточных шагах (т.е. величина K на шаге 2 была взята достаточно 

большой). Процесс аппроксимации на шаге 2 был завершен за 545 итераций, что потребовало 

около 5.5 миллионов расчетов критериальной функции. На рисунке 3.2.1, на котором приведена 

зависимость отклонения точки )( 11αy  от аппроксимации в зависимости от номера итерации, 

видно, что достигнутое отклонение δ превосходило 0.075, что не соответствует требованиям к 

точности аппроксимации. Поэтому величина genε  была уменьшена в четыре раза, до 0.005. 

Условие остановки алгоритма при таком genε  было выполнено на шаге 2 только после 3269-й 

итераций, для чего потребовалось провести около 32.7 миллионов расчетов критериальной 

функции. При этом оказалось (см. рис. 3.2.1), что δ = 0.005, т.е. точка практически принадлежит 

аппроксимации. Всего методом ИО было использовано 42.7 миллионов расчетов критериальной 

функции, что достаточно для 4270 итераций алгоритма NSGA-II. За такое число итераций 
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алгоритм NSGA-II достиг отклонения δ = 0.05 (см. рис. 3.2.2). Таким образом, по этому 

показателю метод ИО превзошел алгоритм NSGA-II примерно в 10 раз.  

Отметим, что попутно в эксперименте методом ИО была достигнута требуемая величина 

δ = 0.01, для чего потребовалось 2300 итераций шага 2 (см. рис. 3.2.1). Число расчетов 

критериальной функции для обоих шагов метода ИО, требуемых для получения такой 

точности, близко к 33 миллионам, что позволяет осуществить 3300 итераций генетического 

алгоритма. Как видно на рисунке 3.2.2, при таком числе расчетов критериальной функции 

величина отклонения δ, достигнутая алгоритмом NSGA-II, равна 0.06. Таким образом, при 

таком числе расчетов критериальной функции метод ИО превосходит генетический алгоритм 

по рассматриваемому показателю в шесть раз. Как видно, с ростом точности аппроксимации 

превосходство метода ИО увеличивается. Этот эффект основан на том, что затраты шага 1 

являются постоянными, их доля которых в общих затратах падает с ростом затрат шага 2. 

 

Рис. 3.2.1 Отклонение точки ( )11y α  от аппроксимации ОЭП, построенной методом ИО  
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Рис. 3.2.2 Отклонение точки ( )11y α  от аппроксимации ОЭП, построенной методом NSGA-II 

 

Рис. 3.2.3 Логарифм отклонения точки ( )11y α  от аппроксимации ОЭП, построенной методом 

ИО, как функция логарифма номера итерации 

Проанализируем асимптотическую скорость сходимости метода ИО. На рисунке 3.2.3, 

аналогично рис. 3.1.12, по горизонтальной оси откладывается десятичный логарифм числа 

итераций k, а по вертикальной оси – десятичный логарифм отклонения δ. Так же как и в случае 

генетического алгоритма, асимптотическое поведение графика экспериментальной зависимости 

может быть при 25.3lg >k  приближенно описано линейным соотношением kba lglg +=δ . 
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На основании экспериментальных данных получаем a = 5.2, b = – 2.2, поэтому приближенная 

асимптотическая зависимость отклонения от числа итераций имеет вид 

 δ = 105 k – 2.  (3.2.4)  

Сравнивая эту зависимость с зависимостью (3.1.9), видим, что имеет место значительно более 

быстрая, квадратичная скорость сходимости метода ИО, а не линейная, как в случае 

генетического алгоритма. Этот факт подтверждает вывод о предпочтительности метода ИО при 

достаточно большом числе итераций. 

Проведем теперь прямое сравнение двух полученных аппроксимаций ОЭП с 

использованием метода, предложенного в [96]. Обозначим базу аппроксимации, построенную 

методом ИО за 3270 итераций шага 2 метода через eimT . Базу аппроксимации, построенную 

генетическим алгоритмом за то же число расчетов критериальной функции, обозначим  nsgaT . 

Рис. 3.2.4 содержит графики функций включения *( , )
nsgaT eimTν ε  и *( , )

eimT nsgaTν ε . Напомним, 

что *( , )
nsgaT eimTν ε согласно (3.1.8) имеет смысл доли точек nsgaT , попавших в ε-окрестность *

eimT .  

 

Рис. 3.2.4 Графики функций включения  *( , )
nsgaT eimTν ε   и *( , )

eimT nsgaTν ε  

Из рисунка 3.2.4 видно, что график функции *( , )
nsgaT eimTν ε  лежит выше графика функции 

*( , )
eimT nsgaTν ε . В частности, множество *eimT  содержит 70% точек nsgaT , а ε-окрестность *eimT   

при ε=0.003 содержит уже более 95% точек nsgaT . Это означает, что точки nsgaT  

сконцентрированы в окрестности множества *eimT . 
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Наоборот, *nsgaT  не содержит точек eimT , а при ε порядка 0.03 в ( )*nsgaT
ε

 содержится не 

более 20% точек eimT , т.е. точки eimT  далеки от *nsgaT . Учитывая также то, что радиус полного 

покрытия eimT  множеством *nsgaT  составляет 0.077, а радиус полного покрытия nsgaT  

множеством *eimT  составляет менее 0.01. Таким образом, аппроксимация ОЭП, задаваемая 

множеством точек eimT , существенно лучше аппроксимации, задаваемой множеством nsgaT . 

Для визуальной оценки качества полученных аппроксимаций на рисунке 3.2.5 и 3.2.6 

изображены проекции аппроксимаций ОЭП, задаваемых базами eimT  и nsgaT , на плоскость  

1 19( , )y y , уже использовавшуюся в предыдущем разделе. 

 
Рис. 3.2.5 Проекция аппроксимации ОЭП, порождаемой базой eimT , на плоскость 1 19( , )y y   
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Рис. 3.2.6 Проекция аппроксимации  ОЭП, порождаемой базой nsgaT , на плоскость 1 19( , )y y   

На рисунке 3.2.5 и 3.2.6 видно, что база аппроксимации eimT  оказалось существенно 

лучше базы аппроксимации nsgaT , поскольку включение оптимальных точек в множество 0P  

привело к значительно меньшему отклонению точки ( )11y α   от аппроксимации ОЭП. 

Вывод. Эксперимент показал, что применяемое в методе ИО построение оптимумов и их 

использование в начальной популяции генетического алгоритма позволяет качественно 

улучшить аппроксимацию ОЭП при тех же затратах вычислительных ресурсов. Даже 

простейший вариант метода ИО (без периодической инжекции yX ) дает такой результат. 

Теперь оценим влияние периодической инжекции на работу метода ИО. 

 

Влияние периодической инжекции на метод ИО. 

Периодическая инжекция в методе ИО – это периодический процесс замещения точек 

базы аппроксимации точками из yX . В эксперименте промежуточная инжекция проводилась 

каждые 100 итераций, т.е. K=100. Для сравнения с простейшим вариантом метода ИО метод с 

периодической инжекцией был остановлен при достижении того же числа расчетов 

критериальной функции, т.е. сразу после завершения 3269 итерации метода. Желаемое число 

точек в выходном множестве алгоритма бралось тем же, что и в предыдущем варианте метода 

ИО, т.е. 10000eimN = . Полученную в результате базу аппроксимации обозначим через K
eimT . Для 

сравнения вариантов алгоритма ИО рассчитывалось отклонение образа точки 11α  от 



122 
 
аппроксимации ОЭП как функция номера итерации. Кроме того, базы итоговой аппроксимации 

ОЭП вариантов метода ИО сравнивались с помощью метода функций включения [96]. 

На рисунке 3.2.7 приведены два графика отклонения точки ( )11y α  от аппроксимации 

ОЭП в зависимости от номера итерации. Красным цветом обозначен график в случае 

периодической инжекции, а черным – в простейшем случае.  

 

Рис. 3.2.7 Графики отклонений точки ( )11y α  от аппроксимаций ОЭП, построенной двумя 

вариантами метода ИО, в зависимости от номера итерации  

На рисунке 3.2.7 видно, что графики оказались близкими, однако, начиная с итерации 

2100 величина отклонения в случае метода с периодической инжекцией оказалась несколько 

меньше. К концу процесса аппроксимации эта величина стала равной 0.003, что почти на 40% 

меньше значения, полученного простейшим вариантом метода ИО и равного 0.005. 

Теперь сравним базы аппроксимаций двух вариантов метода ИО, а именно eimT  и K
eimT , с 

использованием метода функций включения [96]. Рисунок 3.2.8 содержит графики функций 

включения ( )*,K
eim

eimT
Tν ε  и ( )( )*

,
eim

K
T eimTν ε . Напомним, что функция ( )*,K

eim
eimT

Tν ε  согласно (3.1.8) 

имеет смысл доли точек K
eimT , попавших в ε-окрестность *

eimT .  
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Рис. 3.2.8 Графики функций включения  ( )*,K
eim

eimT
Tν ε   и ( )( )*

,
eim

K
T eimTν ε  

Как видим, график функции включения ( )*,K
eim

eimT
Tν ε  представляет собой график 

( )( )*
,

eim

K
T eimTν ε , сдвинутый вправо примерно на 0.001, что показывает отсутствие существенного 

эффекта. 

Вывод. Применение периодической инжекции улучшает качество аппроксимации ОЭП, 

но это улучшение не слишком значительно. Учитывая то, что множество yX  в любом случае 

требуется рассчитывать заранее, т.е. его инжекция практически не требует дополнительных 

затрат, следует признать, что инжекция оптимумов на промежуточных шагах метода может 

быть полезной, но она не обязательна  (в отличие от инжекции перед первой итерацией, польза 

которой крайне велика). 

3.3 Метод стартовой площадки (с использованием инжекции оптимумов) 

3.3.1 Описание метода 

Как было показано в предыдущем разделе, аппроксимация ОЭП, построенная методом 

ИО, значительно лучше аппроксимации ОЭП, построенной генетическим алгоритмом NSGA-II 

при том же числе расчетов критериальной функции. Поэтому можно надеяться, что найденное с 

помощью метода ИО множество допустимых решений можно использовать в качестве 
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стартовой площадки. Как показал описанный в данном разделе эксперимент с моделью 

Ангарского каскада, такое предположение оказалось правильным.  

Заметим, что генетические алгоритмы генерируют большое число точек, не 

доминирующих одна другую. Такое свойство генетических алгоритмов заставляет их авторов 

разрабатывать способы отбрасывания большей части недоминируемых точек. Наоборот, в МСП 

эта особенность генетических алгоритмов удачно используется – стартовые точки 

многокритериального мультистарта отбираются случайным образом среди большого числа 

точек стартовой площадки, благодаря чему можно строить правила остановки итерационного 

алгоритма многокритериального мультистарта аналогично тому, как это делалось в двухфазных 

методах аппроксимации ОЭП (см. раздел 3.1). 

В проведенных ранее исследованиях (см., например, [35], [39]) работа алгоритмов 

многокритериального мультистарта (а именно, двухфазного метода) обычно дополнялась 

применением полугенетического алгоритма «оштукатуривания», который позволял уточнить 

аппроксимацию ОЭП и одновременно пополнить базу аппроксимации большим числом 

недоминируемых точек, что приводило к большей выразительности двумерных сечений 

границы Парето. В МСП аппроксимация ОЭП, основанная на локальной оптимизации, также 

может быть дополнена уточнением ОЭП на основе пополнения базы аппроксимации с 

использованием алгоритма «оштукатуривания». В разделе 3.4 показывается, что эффективным 

методом дополнения МСП также является генетический алгоритм NSGA-II. В данном разделе 

3.3 мы остановимся на изучении базового варианта МСП, не дополненного генетическим 

алгоритмом. 

В завершение работы МСП может также оказаться разумным попытаться улучшить 

отдельные наиболее интересные точки базы построенной аппроксимации ОЭП. Такая 

деятельность может оказаться полезной в связи тем, что, в силу сложности модели, эти точки 

получены лишь приближенно. Для такого улучшения может быть использован трехфазный 

метод аппроксимации ОЭП [35], основанный на генерировании случайной выборки в малой 

окрестности наиболее интересных решений и последующем использовании локальной 

скалярной оптимизации свертки критериев. 

 

Схема метода стартовой площадки (с использованием метода ИО) 

Шаг 1.1. Исходное множество (популяция) 0P  строится так же, как и в методе ИО, т.е. с 

помощью достаточно точного решения задач глобальной минимизации частных критериев. 

Обозначим совокупность найденных решений задач глобальной минимизации частных 
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критериев через yX , дополним ее случайными точками из множества допустимых решений Ξ   

и обозначим полученное множество через 0P . 

Шаг 1.2. Выполняются итерации генетического алгоритма NSGA-II, дополненные 

периодической или одноразовой инжекцией оптимумов и остановкой по отклонению 

построенного множества. Заранее должны быть заданы параметры: eimN  – желаемое число точек 

в выходном множестве этого шага, 0eimε >  – параметр правила остановки для шага 2 и 

периодичность инжекции оптимумов K. Опишем итерацию этого шага, которая совпадает с 

итерацией шага 2 метода ИО. 

Итерация k шага 1.2 

Считается, что на предыдущих итерациях уже построена популяция точек 1kP −  из Ξ . Если 

k=nK, где n=1,2,3,…, то в популяцию 1kP −  включаем совокупность оптимумов yX .  

Из 1kP −  на основе некоторого алгоритма ( [45]) выбирается подмножество точек, которые будут 

использованы для генерации новых точек (потомков). Обозначим такое подмножество 1kQ − . 

1. Генерируются потомки на основе применения генетических операторов мутации и 

кроссовера к множеству 1kQ − (см. [45]). Обозначим множество потомков через 1kС − ; 

2. 1 1 1k̂ k kP P С− − −=  . Точки множества 1k̂P −   упорядочиваются по убыванию качества  [45]); 

3. Если число точек 1k̂P −  меньше eimN , то 1
ˆ

k kP P −= . В противном случае, в множество kP  

включаются только первые eimN  точек из 1k̂P − ; 

4. Рассчитывается требуемая характеристика выборочной функции полноты 

аппроксимации, например, выборочный радиус полного покрытия kε , т.е. наименьший 

радиус окрестности ( )( )*1ky P − , которая полностью покрывает совокупность точек ( )ky P ; 

5. Проверяется правило остановки алгоритма: если k
eimε ε≤ ,то алгоритм останавливается, 

иначе, осуществляется переход на следующую итерацию. 

Множество, полученное после завершения шага 2, обозначим через lpX . Это множество 

является стартовой площадкой для локальной оптимизации. 

Шаг 2. Выполняется итерационная процедура многокритериального мультистарта, причем 

стартовые точки берутся случайным образом из стартовой площадки lpX . Здесь заранее 

должны быть заданы объём случайной выборки точек на каждой итерации optN  и параметр 
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правила остановки алгоритма 0optε > , а также используемое параметрическое семейство 

сверток критериев. Рассмотрим итерацию процедуры. 

 

Итерация k шага 2, где 1k ≥ . Считается, что на предыдущих итерациях процедуры уже 

построено множество решений 1kH − . При этом в качестве 0H  берется множество .  

1) С использованием вспомогательных функций и градиентных методов для каждой точки 

случайной равномерной выборки из множества  осуществляется решение задачи 

локальной оптимизации адаптивно выбранной свертки. Пусть 2X  – множество решений; 

2) Проверяется условие остановки алгоритма, например, максимальное отклонение )( 2Xy от 

( )1 1k kT y H− −=  не должно превышать ε0; 

3) Множество kH  строится путем исключения доминируемых решений 1kH − ∪ 2X ; 

4) Если условие остановки алгоритма выполняется, кладем kopt HX =  и )( optopt XyT = , а также 

строим совокупность optX̂  недоминируемых решений множества ylpopt XXX ∪∪  и 

соответствующую базу аппроксимации )ˆ(ˆ
optopt XyT = . В противном случае переходим к 

следующей итерации. 

 

3.3.2 Теоретическое исследование метода стартовой площадки  

Рассмотрим свойства идеализированного варианта МСП, в рамках которого для 

построения стартовой площадки используется идеализированный метод ИО, включающий 

идеализированный генетический алгоритм аппроксимации границы Парето, ставящий 

случайным образом в соответствие любому конечному подмножеству из eimN  точек Ξ  конечное 

подмножество множества Ξ , обозначаемое lpX  и состоящее также из  точек.  

Пусть множество оптимумов yX  содержит 0m  точек. Пусть 
eimNΛ  – совокупность всех 

подмножеств множества Ξ , состоящих из m0 точек множества yX  и 0( )eimN m−  произвольных 

точек множества Ξ . Пусть 
eimNΘ  – совокупность всех множеств lpX ⊂ Ξ , которые можно 

получить с помощью генетического алгоритма из множеств 
eimNΛ . Тогда генетический алгоритм 

является стохастическим отображением 
eim

:
eimN NG Λ →Θ . Далее рассмотрим множество 

eimlp N

lp
X

X X
∈Θ

′ =  . Поскольку X ′ ⊆ Ξ , в силу компактности Ξ  множество X ′  ограничено. 

yX

lpX

eimN
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Пусть одно из множеств  выбрано случайно. Множество , реализовавшееся с 

помощью отображения G, используется на втором шаге МСП в качестве стартовой площадки 

для построения базы  аппроксимации  множества . 

Предположение 3.1. На множестве , построенном выше описанном образом, 

существуют –алгебра  и вероятностная мера , характеризующая вероятность 

получения измеримых подмножеств .  

Сделанное предположение позволили перенести на второй шаг МСП часть результатов, 

полученных в [41] для двухфазного метода. Пусть ,  – полный прообраз 

 и  – полный прообраз точки , принадлежащей . Предполагается, что 

множество  

 ))()*( ( 11 XYTf ′ΦΦ Φ−−    (3.3.1) 

измеримо. Пусть, кроме того,  

 )()( XXP ′Φ⊂ . (3.3.2) 

Отметим, что условие (3.3.2) означает, что множество X ′  достаточно «хорошее» в том смысле, 

что отображение Φ  переводит его в подмножество X , содержащее )(XP . При этом из (3.3.2) 

следует Φ⊂ YYP )( .  

Наличие вероятностной меры )(X ′µ  позволяет рассмотреть вероятность P того, что 

величина ),( εη TΦ  окажется больше выборочной оценки ( , )optN Tη εΦ , уменьшенной на некоторую 

положительную величину β. Точнее говоря, имеет место следующая теорема. 

 

Теорема 3.3.1. Пусть выполняется Предположение 3.1, множество (3.3.1) измеримо. Тогда для 

любого 0>β  справедлива вероятностная оценка 

 2P( ( , ) ( , ) ) 1 exp( 2 )optN
optT T Nη ε η ε β βΦ Φ> − ≥ − − . (3.3.3) 

Приведенное утверждение является следствием утверждения, доказанного в [40] (теорема 2). 

Оно говорит о близости величин ),( εη TΦ  и ( , )optN Tη εΦ  для достаточно больших optN , что 

позволяет использовать график функции ( , )optN Tη εΦ  для изучения оптимизационной полноты 

аппроксимации и построения правил остановки типа 1( , *)optN
kTη ε ηΦ − >   или  εε ~

max
<k .  

eimNΛ lpX

T * T * Y

X ′

σ )'( XB )(X ′µ

X ′

)) (( XfY ′Φ=Φ )( 1 yf −

Φ∈Yy )(1 x−Φ x ) ( X ′Φ
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Рассмотрим теперь вопрос о числе итераций процесса локальной оптимизации. 

Полученный в [41] (теорема 7) результат можно перенести на метод стартовой площадки в 

случае использования в нем идеализированного генетического метода.  

Теорема 3.3.2. Пусть выполняются условия Теоремы 3.3.1 и, кроме того, выполняется (3.3.2). 

Тогда для любого 00 >ε  найдется такой номер итерации )( 0εK , что 0
)(

max
0 εε ε ≤K , причем для 

любого )1,0(∈η  имеет место вероятностная оценка 

 
0

2
( ) 0P( ( , ) ) 1 exp( 2 (1 ) )K optT Nεη ε η ηΦ > ≥ − − − , (3.3.4) 

где )( 0
 εKT  – совокупность точек базы аппроксимации после выполнения итерации )( 0εK .  

Таким образом, в результате работы предлагаемого алгоритма оказывается построено 

такое конечное множество точек )( 0
 εKT , что 

• множество *
)( )( 

0εKT  является внутренней аппроксимацией * Y ; 

• для любого числа )1,0(∈η  множество *
)( 00
)( εεKT  покрывает * Y  с оптимизационной 

полнотой η с надежностью оценки не меньше ))1(2exp(1 2η−−− optN . 

 
3.3.3 Экспериментальное исследование метода стартовой площадки 

Проанализируем эффективность базового варианта МСП в рамках изучаемой нами 

модели. МСП экспериментально сравнивался с NSGA-II и с методом ИО с периодической 

инжекцией оптимумов. Дополнительные уточняющие шаги в описанных далее экспериментах 

не использовались. Как видно из схемы МСП, этот метод отличается от ИО наличием 

многокритериального мультистарта. Методы сравнивались между собой при одном и том же 

числе расчетов критериальной функции. 

Множество yX  бралось из предыдущих экспериментов с методом ИО, вычислительные 

затраты этого шага учитывались при сравнении методов. На шаге 1.2 МСП выполнялись 

итерации простейшего варианта метода ИО с одноразовой инжекцией вначале и без 

дополнительной инжекции на промежуточных шагах с параметрами: 10000eimN = , 0.01eimε = . 

Метод ИО построил стартовую площадку за 545 итераций генетического алгоритма. На втором 

шаге МСП выполнялась процедура локальной скалярной минимизации взвешенной 

квадратичной свертки 

    ( ) ( ) ( )
0 20 0

1
,

m

i i
i

y y y yϕ λ
=

= ⋅∑ , (3.3.5) 
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с весами ( )
0

000

0
0

1 ,

1,

i
ii

i

y
yy

y

δ
λ

δ

 ≥= 
 <

, где 0y - стартовая точка оптимизации, 0δ  - малое число. 

Относительно больший вес имеют критерии с меньшими (но превышающими 0δ !) значениями 

в стартовой точке. Такие веса использовались потому, что в противном случае из-за большого 

веса критериев с большими значениями текущее решение может оказаться в области локальных 

экстремумов свертки, что будет препятствовать ее минимизации. В силу того, что минимизация 

критериев, не превышающих 0δ  в стартовой точке, особого смысла не имеет (напомним, что 0 – 

идеальное значение критерия), то в свертке (3.3.5) кладем ( )0 1iyλ =  при 0
0iy δ< . В 

экспериментах с МСП полагалось 0 0.0001δ = .  

При решении задач локальной скалярной оптимизации свертки (3.3.5) использовались 

вспомогательные функции, построенные на основе эрзац-функций. Для уменьшения затрат 

вычислительных ресурсов в процедуре многокритериального мультистарта (шаг 2) бралось 

50optN = . На первой итерации 1 0.22ε = , на второй итерации величина 2ε  оказалась равной 

0.02. При этом к началу второй итерации отклонение точки ( )11y α  от аппроксимации ОЭП 

достигло значения 0.01. Учитывая этот факт, а также большую размерность пространства 

критериев, равную 24, было принято решение не следовать формальной схеме правила 

остановки шага 2, а остановить процедуру шага 2 после второй итерации. 

В конце шага 2 решения lpX  были присоединены к решениям из  optX   и соответственно, 

точки ( )lpy X  к базе optT  (с отбрасыванием доминируемых точек). Результирующую базу 

аппроксимации обозначим через ôptT   и соответствующее множество решений через ˆ
optX . 

 

Сравнение базового варианта МСП с алгоритмом NSGA-II.  

Для построения аппроксимации ОЭП при указанных параметрах МСП потребовалось 18 

миллионов расчетов критериальной функции. При этом 10 миллионов расчетов пришлось на 

решение задач глобальной оптимизации 26 критериев, 5 миллионов – на построение стартовой 

площадки генетическим методом и 3 миллиона расчетов – на две итерации шага 2. Это число 

расчетов критериальной функции оказалось достаточно для 1800 итераций NSGA-II (около 

10000 расчетов на итерацию). Результирующую базу аппроксимации NSGA-II обозначим через 

nsgaT . На каждой итерации обоих методов рассчитывалось отклонение критериальной точки 

( )11y α  от построенных аппроксимаций ОЭП. Сравнение методов осуществлялось на основе 
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сравнения отклонений точки ( )11y α  от аппроксимаций, и, кроме того, итоговые аппроксимации 

ОЭП сравнивались с помощью метода функций включения. 

Результаты аппроксимации ОЭП, с помощью МСП и NSGA-II приведены на рисунке 

3.3.1-3.3.3. На рисунке 3.3.1 и 3.3.2 приведены графики отклонения точки ( )11y α  от 

аппроксимации ОЭП в зависимости от шага и номера итерации (шаги 1 и 2 метода МСП) и в 

зависимости номера итерации алгоритма NSGA-II.  

 

Рис. 3.3.1 Отклонение точки ( )11y α  от аппроксимации ОЭП, построенной МСП, в зависимости 

от шага и номера итерации. 
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Рис. 3.3.2 Отклонение точки ( )11y α  от аппроксимации ОЭП, построенной NSGA-II, в 

зависимости от номера итерации 

На рисунке 3.3.1 можно видеть, что шаг 2 МСП имеет высокую эффективность: за 

первую итерацию удалось значительно уменьшить отклонение с 0.08 до 0.01. В случае NSGA-II 

отклонение в конце процесса оказалось равно 0.1, т.е. примерно на порядок больше. Таким 

образом, оказалось, что МСП существенно лучше приближает аппроксимацию к точке ( )11y α . 

Теперь сравним базу аппроксимации ôptT  с базой аппроксимации nsgaT , полученной 

NSGA-II при том же числе расчетов критериальной функции, используя метод функций 

включения. Рисунок 3.3.3 содержит графики функций включения ( )*ˆ,
nsgaT optTν ε  и ( )*

ˆ ,
opt nsgaT Tν ε . 

Пунктирной линией нарисован график функции ( )*,
optT nsgaTν ε , сплошной линией – график 

функции ( )*ˆ,
nsgaT optTν ε . Напомним, что функция ( )*,

optT nsgaTν ε  имеет смысл доли точек ôptT , 

попавших в ε-окрестность ( )*
nsgaT

ε
, т.е. характеризует отклонение точек ôptT  от *

nsgaT . И 

наоборот, функция ( )*ˆ,
nsgaT optTν ε  имеет смысл доли точек nsgaT , попавших в ε-окрестность *

ôptT , 

т.е. характеризует отклонение nsgaT   от *
ôptT . 
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Рис. 3.3.3 Графики функций включения  ( )*ˆ,
nsgaT optTν ε   (сплошная линия) и ( )*

ˆ ,
opt nsgaT Tν ε  

(пунктирная линия) 

Из рисунка 3.3.3 видно, что график функции ( )*ˆ,
nsgaT optTν ε  лежит выше графика функции 

( )*
ˆ ,
opt nsgaT Tν ε . В частности, множество *

ôptT  содержит 17% точек nsgaT , а ε-окрестность *
ôptT  при 

ε=0.01 содержит уже более 85% точек nsgaT , а при ε=0.015 – около 100%. Это означает, что точки 

nsgaT  сосредоточены в окрестности множества *
ôptT . Наоборот, *

nsgaT  содержит менее 0.4% точек 

ôptT , а в ( )*
nsgaT

ε
 при ε порядка 0.01 содержится менее 20% точек ôptT , т.е. точки ôptT  

относительно далеки от *
nsgaT . Учитывая также то, что радиус полного покрытия nsgaT  

множеством *
ôptT  составляет менее 0.02, а радиус полного покрытия ôptT  множеством *

nsgaT  

составляет 0.105, делаем вывод о том, что точки ôptT  значительно улучшают аппроксимацию, 

задаваемую множеством nsgaT . Таким образом, метод функций включения также подтверждает, 

что аппроксимация ОЭП, задаваемая множеством точек ôptT , значительно лучше 

аппроксимации, задаваемой множеством nsgaT . 
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Сравнение базового варианта МСП с методом ИО  

В исследовании использовался вариант метода ИО с периодической инжекцией 

оптимумов, в котором оптимумы включаются в популяцию генетического метода каждые 100 

итераций. Поскольку метод ИО, также как и МСП, требует 10 миллионов расчетов на решение 

задач глобальной оптимизации 26 критериев, оставшиеся 8 миллионов расчетов критериальной 

функции позволили провести только 800 итераций метода ИО (около 10000 расчетов на 

итерацию). Параметры метода ИО на шаге 2 брались теми же, что и в экспериментах с 

вариантами методов ИО в разделе 3.2, т.е. 10000eimN = и K=100. Результирующую базу 

аппроксимации метода ИО обозначим через 800
eimT . Как и во всех предыдущих экспериментах, на 

каждой итерации рассчитывалось отклонение критериальной точки ( )11y α  от аппроксимации 

ОЭП, и, кроме того, построенные базы аппроксимации ОЭП сравнивались с помощью метода 

функций включения [96]. 

Результаты аппроксимации ОЭП методом ИО для 800 итераций шага 2 приведены на 

рисунке 3.3.4-3.3.6. На рисунке 3.3.4 приведен график отклонения точки ( )11y α  от 

аппроксимации ОЭП в зависимости от номера итерации метода ИО.  

 

Рис. 3.3.4 Отклонение точки ( )11y α  от аппроксимации ОЭП, построенной методом ИО, в 

зависимости от номера итерации 

Сравнивая графики на рисунке 3.3.1 и 3.3.4 можно видеть, что для метода ИО 

отклонение оказалось равным 0.058, что примерно в 5 раз больше, чем для  МСП. 
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Объективную оценку дает метод функций включения [96]. Сравним базы аппроксимации 

ôptT  и 800
eimT , используя этот метод. Рисунок 3.3.5 содержит графики функций включения 

( )
800

*ˆ,eim optT
Tν ε  и ( )( )*

ˆ 800,
opt

eim
T Tν ε . Пунктирной линией нарисован график функции ( )( )*

ˆ 800,
opt

eim
T Tν ε , 

сплошной линией – график функции ( )
800

*ˆ,eim optT
Tν ε . На рисунке 3.3.6 отображается часть 

графиков в окрестности точки их пересечения в увеличенном виде. Напомним, что функция 

( )( )*
ˆ 800,
opt

eim
T Tν ε  имеет смысл доли точек ôptT , попавших в ε-окрестность ( 800

eimT )*, т.е. 

характеризует отклонение точек ôptT  от ( 800
eimT )*. И наоборот, функция ( )

800

*ˆ,eim optT
Tν ε  имеет смысл 

доли точек 800
eimT , попавших в ε-окрестность ( ôptT )*, т.е. характеризует отклонение 800

eimT  от ( ôptT )*. 

 

Рис. 3.3.5 Графики функций включения  ( )
800

*ˆ,eim optT
Tν ε  (сплошная линия) и ( )( )*

ˆ 800,
opt

eim
T Tν ε  

(пунктирная линия) 
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Рис. 3.3.6 Графики функций включения в увеличенном виде  

На рисунке 3.3.5 и 3.3.6 видно, что при ε<0.014 график функции ( )( )*
ˆ 800,
opt

eim
T Tν ε  лежит 

выше графика функции ( )
800

*ˆ,eim optT
Tν ε , при ε=0.014 графики функций пересекаются, а при ε>0.014 

график ( )
800

*ˆ,eim optT
Tν ε  лежит выше. На рисунке 3.3.6 хорошо видно, что значение функций 

включения в точке пересечения равно 99.2%. Это означает, что более 99% точек ôptT  находятся 

в окрестности радиуса 0.014 множества ( )*

800
eimT , и такой же процент точек 800

eimT  находится в 

окрестности радиуса 0.014 множества ( ôptT )*. При этом при ε<0.014 ε-окрестность ( )*

800
eimT  

содержит большую долю точек множества ôptT , чем ε-окрестность ( ôptT )* содержит точек 800
eimT . 

Этот факт легко понять, поскольку около 99% точек ôptT  являются точками стартовой 

площадки и были порождены на шаге 1 на 545-й итерации МСП, совпадающего с простейшим 

методом ИО до этого момента, и только 1% точек optT  порождены на оптимизационном шаге 

МСП. Ясно, что точки ôptT  первого типа в совокупности хуже, чем точки 800
eimT , которые были 

построены путем улучшения точек первого типа на дополнительных 255 итерациях метода ИО. 

Наоборот, точки, которые получены в результате процесса оптимизации (около 1%), имеют 
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значительное отклонение от ( )*

800
eimT , что и определяет более медленный рост при ε>0.014 

функции ( )( )*
ˆ 800,
opt

eim
T Tν ε , которая достигает единицы только при ε =0.058 (в отличие от функции 

( )
800

*ˆ,eim optT
Tν ε , которая достигает единицы уже при ε =0.026).  

Вывод. Таким образом, хотя аппроксимация ОЭП, полученная базовым вариантом 

метода стартовой площадки, в целом несколько уступает аппроксимации ОЭП, полученной 

методом инжекции оптимумов при том же числе расчетов критериальной функции, она 

содержит значительное число критериальных точек, весьма удаленных от аппроксимации, 

полученной методом инжекции оптимумов, что может сделать ее более предпочтительной для 

пользователя, особенно при целенаправленном подборе свертки критериев. В то же время 

описанный факт заставляет задуматься о совершенствовании МСП с целью «подтягивания» 

остальных точек базы аппроксимации к точкам базы, полученным на шаге 2. Такой 

дополненный вариант МСП изучен в следующем разделе. 

 

3.4 Дополненный метод стартовой площадки  

3.4.1 Описание метода 

 Из результатов раздела 3.2 следует, что включение оптимумов, т.е. решений задач 

оптимизации частных критериев, в начальную популяцию генетического алгоритма позволяет 

качественно улучшить аппроксимацию ОЭП при тех же затратах вычислительных ресурсов: 

добавление в исходную популяцию относительно небольшого числа оптимумов приводит через 

сотню итераций к резкому улучшению всей популяции. С другой стороны, в разделе 3.3 

показано, что метод многокритериального мультистарта со стартовыми точками, 

принадлежащими стартовой площадке, позволяет найти относительно небольшое число 

критериальных точек, качественно улучшающих аппроксимацию, полученную с помощью 

генетического алгоритма. Возникает идея об использовании генетического алгоритма для 

решения сформулированной выше задачи «подтягивания» большинства точек базы 

аппроксимации к точкам базы, полученным с помощью многокритериального мультистарта. На 

этой идее основан метод аппроксимации ОЭП, получивший название Дополненный МСП 

(ДМСП). Метод отличается от базового МСП наличием третьего шага, на котором 

выполняются итерации генетического алгоритма. Дадим точную схему метода. 
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Схема ДМСП  

Выполняется метод стартовой площадки. Для этого заранее должны быть заданы 

параметры процедур глобальной оптимизации частных критериев, генетического алгоритма и 

многокритериального мультистарта. В результате получим множество решений optX  и базу 

аппроксимации ( )opt optT y X= . 

Шаг 3. Выполняются итерации генетического алгоритма NSGA-II. Заранее должны быть 

заданы параметры алгоритма: popN – желаемое число точек в выходном множестве этого шага и 

itN  – число итераций алгоритма. В качестве начальной популяции NSGA-II берется множество 

решений optX , дополненное случайными точками из множества допустимых решений  

(основной вариант), либо множество optX̂ , состоящее из недоминируемых решений множества 

ylpopt XXX ∪∪ , дополненного случайными точками множества допустимых решений 

(альтернативный вариант). 

Пусть  – совокупность решений, найденных NSGA-II. Результат ДМСП – множество 

 недоминируемых точек объединения supX , optX  и yX . Результирующая база 

аппроксимации – это множество точек . 

3.4.2 Исследование метода 

Сравнение ДМСП с МСП 

Проанализируем эффективность ДМСП в рамках изучаемой нами модели Ангарского 

каскада ГЭС. Прежде всего, нас будет интересовать ответ на  вопрос о том, смог ли 

генетический алгоритм качественно улучшить совокупность решений optX , полученную в 

результате работы МСП. Для того чтобы экспериментально сравнить ДМСП с базовым МСП, 

ограничимся тем же числом расчетов критериальной функции, что и в разделе 3.3, т.е. 18 

миллионами расчетов. 

Начнем с изучения основного варианта ДМСП. На шаге 1.1 на построение множества 

yX  было, по-прежнему, затрачено 10 миллионов расчетов критериальной функции. На шаге 1.2 

выполнялся генетический алгоритм NSGA-II с параметрами 10000popN =  и 100itN = . Меньшее 

число итераций NSGA-II на шаге 2 (в разделе 3.3 их было 545) позволило сэкономить 

вычислительные ресурсы для дополнительного, четвертого шага ДМСП. В качестве начальной 

популяции на шаге 1.2 бралось множество yX , дополненное случайными точками из 

множества допустимых решений. В результате была получена стартовая площадка lpX . На ее 

Ξ

supX

aaX

( )aa aaT y X=
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построение потребовалось около 1 миллиона расчетов критериальной функции итераций 

(примерно 10000 расчетов критериальной функции на каждую из 100 итераций). 

На шаге 2 выполнялась процедура многокритериального мультистарта, в рамках которой 

осуществлялась локальная оптимизация взвешенной свертки (3.3.5), т.е. свертки из 

эксперимента с методом МСП. Число генерируемых точек в мультистарте и число итераций 

брались теми же, что и в эксперименте с МСП. Как и в эксперименте с МСП, было выполнено 

две итерации процедуры локальной скалярной оптимизации, потребовавших 2.7 миллионов 

расчетов критериальной функции. В результате были построены множество optX  и база 

аппроксимации ( )opt optT y X=  . В связи с тем, что на построение стартовой площадки было 

потрачено всего 100 итераций алгоритма NSGA-II и она была значительно хуже стартовой 

площадки в эксперименте с МСП, отклонение точки ( )11y α  от множества ( )*optT  составило 

0.04, что почти в 4 раза больше величины, достигнутой методом МСП. 

На шаге 3 выполнялся генетический алгоритм NSGA-II с начальной популяцией, 

состоящей из множества optX , дополненного случайными точками исходного множества. В 

качестве параметров генетического алгоритма брались 10000popN =  и 430itN =  (такое число 

итераций было выбрано для того, чтобы общее число расчетов критериальной функции 

совпадало с этим числом в эксперименте с МСП, т.е. 18 миллионов). В результате шага 3 были 

получены множество   и база аппроксимации . 

 

Рис. 3.4.1 Отклонение точки ( )11y α  от аппроксимации ОЭП в зависимости от шага и номера 

итерации ДМСП 

aaX ( )aa aaT y X=
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Результаты применения ДМСП для аппроксимации ОЭП приведены на рисунке 3.4.1-

3.4.2. На рисунке 3.4.1 приведен график отклонения точки  от аппроксимации ОЭП в 

зависимости от номера итерации внутри второго и третьего шагов ДМСП. На рисунке видно, 

что благодаря процедуре многокритериального мультистарта удалось значительно уменьшить 

отклонение точки  (с 0.15 до 0.04). Дальнейшее применение генетического алгоритма 

позволило уменьшить эту величину до желаемой величины 0.01, т.е. удалось достичь той же 

величины отклонения, что и в случае МСП. Таким образом, оказалось, что за 18 миллионов 

расчетов критериальной функции ДМСП приближает аппроксимацию к точке ( )11y α  с той же 

точностью, что и МСП.  

Проанализируем теперь асимптотическую скорость сходимости метода ДМСП. На 

рисунке 3.4.2 по горизонтальной оси откладывается десятичный логарифм числа итераций k, а 

по вертикальной оси – десятичный логарифм отклонения δ. 

  

Рис. 3.4.2 Логарифм отклонения точки ( )11y α  от аппроксимации ОЭП, построенной методом 

ДМСП, как функция логарифма номера итерации 

Как видно, асимптотическое поведение графика экспериментальной зависимости может 

быть при lg 2.75k >  приближенно описано линейным соотношением kba lglg +=δ . На 

основании экспериментальных данных получаем a = 6.7, b = – 3.2, т.е. приближенная 

асимптотическая зависимость отклонения от числа итераций имеет вид  

( )11y α

( )11y α
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 δ = 107 k – 3.  (3.4.1) 

Сравнивая эту зависимость с зависимостью (3.2.4), видим, что скорость сходимости 

значительно более быстрая, чем квадратичная скорость сходимости метода ИО. Этот факт 

подтверждает вывод об эффективности шага ДМСП, на котором выполняются итерации 

генетического алгоритма, при построении аппроксимации высокой точности. 

Был проведен еще один эксперимент, в котором изучался альтернативный вариант 

ДМСП, т.е. в качестве начальной популяции на шаге 3 бралось множество optX̂ , состоящее из 

недоминируемых решений множества ylpopt XXX ∪∪ , дополненное, в случае необходимости, 

случайными точками множества допустимых решений. Несмотря на кажущуюся разумность 

такого подхода, в котором вместо случайных точек использованы точки стартовой площадки, 

результат оказался неудовлетворительным: отклонение точки  от построенной 

аппроксимации в этот раз оказалось равным 0.035, т.е. не удалось достичь величины 

отклонения, полученной в основном варианте метода ДМСП, которая была равна 0.01.  

Используя метод функций включения [96], сравним базу аппроксимации aaT  , 

полученную в основном варианте ДМСП, с базой аппроксимации ôptT , полученной с помощью 

МСП при том же числе расчетов критериальной функции.  

 

Рис. 3.4.3 Графики функций включения ( )*
ˆ ,
opt aaT Tν ε  (сплошная) и  ( )*ˆ,

aaT optTν ε  (пунктирная) 

Рис. 3.4.3 содержит графики функций включения  и . Пунктирной 

линией нарисован график функции , сплошной линией – график функции 

( )11y α

( )*
ˆ ,
opt aaT Tν ε ( )*ˆ,

aaT optTν ε

( )*ˆ,
aaT optTν ε ( )*

ˆ ,
opt aaT Tν ε
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Напомним, что функция  , согласно (3.1.8), имеет смысл доли точек , попавших в 

ε-окрестность , а функция  – доли точек , попавших в ε-окрестность . 

Видно, что график функции ( )*
ˆ ,
opt aaT Tν ε  лежит выше и левее графика функции ( )*ˆ,

aaT optTν ε . В 

частности, множество *
aaT  содержит 90% точек ôptT , а ε-окрестность *

aaT  уже при ε=0.001 

содержит уже более 95% точек ôptT , а при ε=0.01 – почти все 100% точек ôptT . Это означает, что 

точки ôptT  сосредоточены в малой окрестности множества *
aaT . Наоборот, функция ( )*ˆ,

aaT optTν ε  

растет достаточно медленно, так что множество *
ôptT  содержит менее 0.1% точек aaT , а при ε 

порядка 0.01 в ( )*
ôptT

ε
 содержится не более 45% точек aaT , т.е. более половины точек aaT  

отклоняются от *
ôptT  более чем на 0.01. При этом радиус полного покрытия aaT  множеством *

ôptT  

составляет 0.035 и превосходит радиус полного покрытия ôptT  множеством *
aaT  почти в три раза. 

Все сказанное позволяет сделать вывод о том, что аппроксимация ОЭП, задаваемая множеством 

точек aaT , гораздо лучше аппроксимации, задаваемой множеством ôptT .  

Вывод. Как показал эксперимент, решение перенести часть ресурсов, затрачиваемых на 

генетический метод на первом шаге МСП, на вновь образованный третий шаг ДМСП оказалось 

правильным. Это позволило «подтянуть» большинство точек базы аппроксимации к точкам 

базы, полученным с помощью многокритериального мультистарта. Кроме того, стало ясно, что 

слишком точное построение стартовой площадки на шаге 1 совсем не требуется – достаточно 

100 итераций генетического алгоритма.  

 

Сравнение ДМСП с методом ИО  

Используя метод функций включения [96], сравним базу аппроксимации aaT  с базой 

аппроксимации 800
eimT , полученной методом ИО при том же числе расчетов критериальной 

функции. Рис. 3.4.4 содержит графики функций включения ( )
800

*,eim aaT
Tν ε  и ( )( )*

800,
aa

eim
T Tν ε . 

Пунктирной линией нарисован график функции ( )( )*

800,
aa

eim
T Tν ε , сплошной – график функции 

( )
800

*,eim aaT
Tν ε . Согласно (3.1.8) функция ( )

800

*,eim aaT
Tν ε  имеет смысл доли точек 800

eimT , попавших в ε-

окрестность *
aaT , а функция ( )( )*

800,
aa

eim
T Tν ε  – доли точек aaT , попавших в ε-окрестность ( )*

800
eimT . 

( )*
ˆ ,
opt aaT Tν ε ôptT

*
aaT ( )*ˆ,

aaT optTν ε aaT *
ôptT
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Рис. 3.4.4 Графики функций включения ( )
800

*,eim aaT
Tν ε  (сплошная) и ( )( )*

800,
aa

eim
T Tν ε  (пунктирная)

 
 

На рисунке 3.4.4 видно, что график функции ( )
800

*,eim aaT
Tν ε  лежит выше и левее графика функции 

( )( )*

800,
aa

eim
T Tν ε . В частности, множество *

aaT  содержит 80% точек 800
eimT , а ε-окрестность *

aaT  уже 

при  ε=0.005 содержит более 99% точек 800
eimT , а при ε=0.012 –все точки 800

eimT . Это означает, что 

точки 800
eimT  сосредоточены в окрестности множества *

aaT . Наоборот, ( )*

800
eimT  содержит менее 

0.1% точек aaT , а при ε порядка 0.012 в ( )*

800
eimT

ε
 содержится не более 15% точек aaT , т.е. более 

85% точек aaT  отклоняются от ( )*

800
eimT  более чем на 0.01. При этом радиус полного покрытия 

aaT  множеством ( )*

800
eimT  составляет 0.059 и превосходит радиус полного покрытия 800

eimT  

множеством *
aaT  почти в пять раз. Сказанное позволяет сделать вывод о том, что аппроксимация 

ОЭП, задаваемая множеством точек aaT , лучше аппроксимации, задаваемой 800
eimT . 

Общий вывод по методам аппроксимации ОЭП. Подводя итог проведенным 

экспериментам, можно утверждать, что по эффективности использования вычислений 

критериальной функции методы ИО и МСП оказались на порядок лучше генетического 

алгоритма NSGA-II, а ДМСП – гораздо лучше МСП и ИО. В то же время превосходство МСП 

над ИО было только относительным – появились новые критериальные точки, позволяющие 

качественно расширить аппроксимацию, но в то же время большая часть точек базы 

аппроксимации МСП уступала точкам базы, построенной методом ИО при том же числе 

вычислений. Поэтому пользователям метода стартовой площадки можно рекомендовать 

применять либо ИО, либо ДМСП. Подчеркнем, что хотя метод ИО уступает ДМСП по 

эффективности использования расчетов критериальной функции, он имеет определенное 
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преимущество перед ДМСП по простоте организации расчетов. А именно, в ДМСП на Шаге 2 

требуется подобрать подходящую свертку критериев, что может оказаться непростым делом, 

требующим определенной квалификации от пользователя. При использовании метода ИО такой 

квалификации не требуется. 

3.5 Аппроксимация ОЭП для критериев годовой обеспеченности 

Рассмотрим проблему аппроксимации ОЭП для альтернативного набора критериев, 

характеризующих годовую обеспеченность требований к управлению водными ресурсами 

Ангарского каскада водохранилищ. В этом разделе изучаются новые варианты МСП и ДМСП. 

Напомним, что критерии годовой обеспеченности 0, 1,...,j j mµ = , имеют смысл доли 

периодов (в данном случае, лет), в течение которых выполняются требования, рассмотренные в 

гл. 1, поэтому представляет интерес увеличение значений данных критериев. Задача 

многокритериальной оптимизации формулируется так 

 maxµ → , ( )µ µ α= , 0nRα ∈Ξ ⊂ , (3.5.1) 

где 0: mRµ Ξ→ , причем критерии jµ  задаются формулой: 

 
( )( )

0

1

0

1
( ) ,

P
j

l
l

j

r

P
µ α α=

−Θ
= ∈Ξ
∑

, (3.5.2) 

где l – номер года, , и ( ) ( )( ( ) )
l

j j j
l t t

t T
r z α δ

∈

= Θ −∑  – число нарушений требования j в году l. 

Требуется построить такую базу аппроксимации T, чтобы множество { }0* :mT R Tµ µ−= + ∈ , 

где 0 0m mR R− += − , давало удовлетворительную аппроксимацию ОЭП задачи МКО (3.5.1). 

Отметим, что задача максимизации критерия jµ  эквивалентна задаче минимизации функции 

 ( )
0

10

1 ,
P

j
l

l
r

P
α

=

Θ ∈Ξ∑ . (3.5.3) 

В дальнейшем используется, что ( )j
lrΘ  можно выразить через ( )j

tz , lt T∈ , двумя способами: 

 ( ) ( ) ( )( ( ) )
l

j j j
l t t

t T
r z α δ

∈

 
Θ = Θ Θ − 

 
∑  и (3.5.4) 

 ( ) { }( )( ) ( )max ( ( ) )
l

j j j
l t tt T

r z α δ
∈

Θ = Θ Θ − . (3.5.5) 

01,..,l P=
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Особенность предложенных здесь вариантов МСП и ДМСП состоит в том, что в 

качестве стартовой площадки берется подмножество совокупности решений, полученных в 

разделе 3.4. Прежде всего, оценивается возможность непосредственного использования 

стартовой площадки в качестве множества эффективных решений в задаче, рассматриваемой в 

данном разделе. Для этого сначала в подразделе 3.5.1 для критериев  с помощью 

метода ИО строится серия аппроксимаций ОЭП для 100, 200,…, 800 итераций второго шага 

метода. Построение стартовой площадки осуществляется в подразделе 3.5.2, после чего 

оценивается качество порождаемой ею базы аппроксимации ОЭП на основе сравнения с 

аппроксимациями ОЭП, полученными методом ИО. Далее, в подразделе 3.5.3 дается 

теоретическое обоснование разумности использования такой стартовой площадки при 

аппроксимации ОЭП для критериев годовой обеспеченности. Этот факт подтверждается 

вычислительным экспериментом, описанным в подразделе 3.5.4. Наконец, в подразделе 3.5.5 

описаны эксперименты с ДМСП, основанного на использовании такой стартовой площадки. 

 

3.5.1 Аппроксимация ОЭП методом ИО 

Шаг 1. Построение множества оптимумов. Для решения задачи минимизации функции (3.5.3) 

используется первый вариант метода эрзац-функций, в котором, благодаря наличию двух 

способов задания ( )j
lrΘ , можно использовать два варианта вспомогательных функций: 

 
0

( )

10

1( ) ( ),
l

P
j

j t
l t T

c z
P

α α α
= ∈

= ∈Ξ∑∑ ,  и (3.5.6) 

 { }
0

( )

10

1( ) max ( ) ,
l

P
j

j tt Tl
c z

P
α α α

∈
=

= ∈Ξ∑ . (3.5.7) 

Заметим, что первый вариант вспомогательных функций с точностью до множителя совпадает 

со вспомогательной функцией, которая использовалась при построении множества оптимумов 

yX  в задаче (3.1.1). Таким образом, множество yX  можно считать множеством оптимумов в 

задаче (3.5.1). Ниже приведена таблица с наилучшими полученными значениями критериев jµ . 

Таблица 3.5.1 

Номер критерия Значение 

1 0.835 

2-4 1 

5 0.961 

9-26 1 
 

0, 1,...,j j mµ =
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Заменим такую вспомогательную функцию (3.5.6) на альтернативную функцию (3.5.7) и 

попробуем улучшить результат оптимизации первого критерия. Эксперименты с 

альтернативной вспомогательной функцией проводились с использованием двух случайных 

равномерных выборок объемом 100N =  и 1000N =  стартовых точек на всем множестве 

допустимых решений Ξ . Результаты экспериментов таковы: при  найденное значение 

 равно 0.854, а при  равно 0.883. При этом в первом случае потребовалось 7 млн. 

расчетов критериальной функции, а во втором – 70 млн. расчетов. Таким образом, 

использование альтернативной вспомогательной функции позволило улучшить значение , 

причем увеличение объема выборки в десять раз позволило увеличить значение критерия 

только на 3%. Такое увеличение объема не представляется разумным. Поэтому в множестве 

оптимумов критериев , которое обозначим через X µ , для первого критерия 

возьмем решение, дающее 1 0.854µ = , для остальных критериев – решения из множества yX . В 

качестве числа расчетов критериальной функции при построении X µ  возьмем сумму числа 

расчетов, потребовавшихся для решения задачи максимизации критерия 1µ  и для поиска 

остальных оптимумов в рамках построения множества yX . Таким образом, для построения X µ  

потребовалось около 11 миллионов расчетов критериальной функции. 

Шаг 2. Построение аппроксимации ОЭП. Напомним, что инжекция в методе ИО – это 

периодический процесс замещения оптимумов базы аппроксимации точками из X µ . В данном 

случае инжекция проводилась каждые 100 итераций, т.е. K=100. Желаемое число точек в 

выходном множестве алгоритма бралось тем же, что и в предыдущих экспериментах с методом 

ИО, т.е. 10000eimN = . Базу аппроксимации, полученную после 800 итераций, обозначим через 

eimT µ , а промежуточные базы – через ( )eimT iµ , где 100,200,...,800i = . Всего, с учетом 

предварительного шага (11 миллионов расчетов), потребовалось 19 миллионов расчетов.  

 

3.5.2 Построение и анализ стартовой площадки 

В разделе 3.4 построена аппроксимация ОЭП для критериев 0, 1,...,jy j m=  с базой 

аппроксимации aaT  и множеством ее прообразов aaX . Исключим из варианты, 

доминируемые в смысле критериев 0, 1,...,j j mµ = . Пусть =μ( ). Рассмотрим вопрос о том, 

нельзя ли использовать T µ  как базу аппроксимации ОЭП с критериями 0, 1,...,j j mµ = . 

100N =

1µ 1000N =

1µ

0, 1,...,j j mµ =

aaX

T µ X µ
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Для ответа на этот вопрос сравним множество ( )*T µ  с восемью аппроксимациями 

( )( )*

eimT iµ , где 100,200,...,800i = , полученными методом ИО. Сравнение будем осуществлять на 

основе использования функций включения [96], графики которых приведены на рисунке 3.5.1-

3.5.8. На каждом графике пунктиром обозначена функция включения  точек 

T µ  соответствующей аппроксимацией ИО, а сплошной линией – функция включения точек 

( )eimT iµ , 100,200,...,800i = , аппроксимацией ( )*T µ , т.е. ( ) ( )( )*
,

eimT i
Tµ

µν ε . На рисунке 3.5.1 – 3.5.4 

видно, что для  графики функций ( ) ( )( )*
,

eimT i
Tµ

µν ε  (сплошная) лежат выше и 

левее графиков соответствующих функций ( )( )( )*
, eimT

T iµ
µν ε  (пунктирная). 

 

Рис. 3.5.1 Графики функций включения ( )( )( )*
, 100eimT

Tµ
µν ε   и ( ) ( )( )*

100
,

eimT
Tµ

µν ε  

( )( )( )*
, eimT

T iµ
µν ε

100,200,..., 400i =
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Рис. 3.5.2 Графики функций включения ( )( )( )*
, 200eimT

Tµ
µν ε   и ( ) ( )( )*

200
,

eimT
Tµ

µν ε  

 

Рис. 3.5.3 Графики функций включения ( )( )( )*
, 300eimT

Tµ
µν ε  и ( ) ( )( )*

300
,

eimT
Tµ

µν ε  
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Рис. 3.5.4 Графики функций включения ( )( )( )*
, 400eimT

Tµ
µν ε   и ( ) ( )( )*

400
,

eimT
Tµ

µν ε
 

Графики означают, что аппроксимация ОЭП, задаваемая точками , оказалась не хуже, чем 

 на первых 400 итерациях метода ИО. В то же время, ситуация становится обратной с 

дальнейшим ростом числа итераций метода ИО. 

 

 

Рис. 3.5.5 Графики функций включения ( )( )( )*
, 500eimT

Tµ
µν ε   и ( ) ( )( )*

500
,

eimT
Tµ

µν ε  

T µ

( )( )*

eimT iµ
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Рис. 3.5.6 Графики функций включения ( )( )( )*
, 600eimT

Tµ
µν ε   и ( ) ( )( )*

600
,

eimT
Tµ

µν ε  

 

Рис. 3.5.7 Графики функций включения ( )( )( )*
, 700eimT

Tµ
µν ε   и ( ) ( )( )*

700
,

eimT
Tµ

µν ε  
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Рис. 3.5.8 Графики функций включения ( )( )( )*
, 800eimT

Tµ
µν ε   и ( ) ( )( )*

800
,

eimT
Tµ

µν ε  

В частности, множество ( )( )*
800eimT µ  содержит 85% точек T µ , а ε-окрестность 

( )( )*
800eimT µ  при ε=0.01 содержит уже более 93% точек T µ , при ε=0.02 – более 97%, а при ε=0.04 

– почти 100% точек T µ . Это означает, что большинство точек T µ  сосредоточены в малой 

окрестности множества ( )( )*
800eimT µ . Наоборот, ( )*T µ  содержит менее 0.01% точек ( )800eimT µ , а 

при ε порядка 0.04 в окрестности ( )*T µ  содержится не более 5% точек ( )800eimT µ , т.е. многие 

точки ( )800eimT µ  далеки от ( )*T µ . Поэтому можно утверждать, что аппроксимация ОЭП, 

задаваемая множеством точек ( )800eimT µ , значительно лучше аппроксимации, задаваемой T µ .   

Вывод. Поскольку на первых 500 итерациях метода ИО аппроксимация ОЭП, задаваемая 

точками T µ , оказалась не хуже, чем ( )( )*

eimT iµ , а затраты на ее построение практически 

отсутствуют, можно сделать вывод о том, что точки полученные при аппроксимации ОЭП с 

критериями 0, 1,...,jy j m= , разумно использовать для грубой аппроксимации ОЭП в задаче с 

критериями обеспеченности, если требования к точности аппроксимации не слишком высоки. 

Возникает вопрос, о причинах такого свойства аппроксимации ОЭП. Этот вопрос 

изучается далее на основе анализа связи величин критериев ( )jµ ⋅  и ( )jy ⋅ .  
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3.5.3 Теоретическое обоснование стартовой площадки 

Далее проводится исследование взаимосвязи двух задач аппроксимации ОЭП – с 

критериями ( )jy ⋅  и с критериями  ( )jµ ⋅ . Пусть решения из множества Ξ  выбираются 

случайно. Точнее, пусть тройка ( , , )B PΞ ΞΞ  задает вероятностное пространство, где множество 

Ξ  является многомерным гиперкубом, BΞ  – борелевская σ -алгебра на множестве Ξ , 

:P B RΞ +→  – вероятностная мера, заданная на BΞ . Здесь будем предполагать, что функции 

( )
0 0( ), 1,..., , 1,...,j

tz t t j m⋅ = = , непрерывны на Ξ . Докажем вспомогательное утверждение. 

Лемма. Следующие функции измеримы относительно BΞ : 

1. ( )
0 0( ), 1,..., , 1,...,j

tz t t j m⋅ = = ; 

2. ( )( ) ( ) ( )
0 0( ) ( ) , 1,..., , 1,...,j j j

t t tz t t j mξ δ⋅ = Θ ⋅ − = = . 

Доказательство.  

п.1. Измеримость функций ( )
0 0( ), 1,..., , 1,...,j

tz t t j m⋅ = =  относительно BΞ , является 

следствием их непрерывности. 

п.2. По определению функции ( )
0 0( ), 1,..., , 1,...,j

t t t j mξ ⋅ = =  являются дискретными. 

Рассмотрим множество ( ){ }( ) ( )| 0j j
t tA α ξ α= ∈Ξ =  и множество ( ){ }( ) ( )| 1j j

t tA α ξ α= ∈Ξ = . По 

определению функции Хэвисайда множества ( )j
tA  и ( )j

tA  можно представить в виде 

{ }( ) ( ) ( )| ( )j j j
t t tA zα α δ= ∈Ξ ≤  и { }( ) ( ) ( )| ( )j j j

t t tA zα α δ= ∈Ξ > . В силу п.1 оба множества являются 

измеримыми относительно BΞ , а значит, функции ( )
0 0( ), 1,..., , 1,...,j

t t t j mξ ⋅ = = ,  также измеримы. 

Утверждение доказано. 

Таким образом, в силу измеримости относительно BΞ , функции 

( )
0 0( ), 1,..., , 1,...,j

t t t j mξ ⋅ = =  можно считать дискретными случайными величинами, 

определенными на множестве элементарных событий Ξ . Запишем выражения для функций 

( )jµ ⋅  и ( )jy ⋅ , используя функции ( )
0 0( ), 1,..., , 1,...,j

t t t j mξ ⋅ = =  

 
0

( )

10

1( ) ( ),
t

j
j t

t
y

t
α ξ α α

=

= ∈Ξ∑ , (3.5.8) 
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( )

1
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1 ( )
( ) ,l
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t
l t T

j P

ξ α

µ α α
= ∈

  
− Θ     = ∈Ξ

∑ ∑
. (3.5.9) 

В силу выражений (3.5.8), (3.5.9) функции ( )jµ ⋅  и ( )jy ⋅  можно считать дискретными 

случайными величинами, определенными на множестве элементарных событий Ξ . Перейдем к 

исследованию связи между случайными величинами ( )jµ ⋅  и ( )jy ⋅ . Для удобства опустим 

индекс j . Рассмотрим также класс событий { }0| ( ) , 1,...,t tA t tσ α ξ α σ= ∈Ξ = = , где 

01( ,..., )tσ σ σ=  – булевский вектор. Пусть вероятность { }P Aσ  зависит только от 
0

1

t

k
k
σ

=
∑ . 

Рассмотрим две случайные величины 
0

10

1 t

t
t

y
t

ξ
=

= ∑  и 

0

1

0

1
l

P

t
l t T

P

ξ

µ
= ∈

  
−Θ     =

∑ ∑
.  

Теорема 3.5.1. Для любых 1 2,d d , таких, что 1 2
0

0 1 Id d
t

≤ < < − , выполняется неравенство 

( ) ( )1 2| |E y d E y dµ µ= > = . 

Доказательство. Обозначим { }| ( ) 0,
lT t lt Tα ξ αΩ = ∈Ξ = ∈ , где 01,...,l P= . Обозначим 

индикаторную функцию множества 
lTΩ  через ( )

TlΩΙ ⋅ . Очевидно равенство 

0

1( ) 1 ( )
Ti

i

t
t Tt

α ξ αΩ
∈

 
Ι = −Θ 

 
∑  при всех α ∈Ξ  и  01,...,l P= . Поэтому выражение для случайной 

величины µ  можно переписать следующим образом: 

 

0

1

0

( )
( )

Tl

P

l

P

α
µ α

Ω
=

Ι
=
∑

 . (3.5.10) 

Рассмотрим подробнее ( )|E y dµ = . В силу свойств математического ожидания получим  

 ( )
( )0

1

0

|
|

Tl

P

l
E y d

E y d
P

µ
Ω

=

Ι =
= =

∑
. (3.5.11) 

Из определения условного математического ожидания 
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. (3.5.12) 
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Вычислим сначала { }{ }lTP y dΩ =  при некотором фиксированном i. Дискретная 

случайная величина ( )y dα =  в том и только в том случае, когда число моментов времени 

: ( ) 1tt ξ α =  равно 0d t⋅ , т.е ( )0 01,..., | ( ) 1tcard t t d tξ α∈ = = ⋅ . Следовательно, 

{ }
0

0
1

| ( ) |
t

k
k

y d A d tσ
σ

α α σ
=

 
∈Ξ = = = ⋅ 

 
∑ . По условию теоремы события Aσ , где 
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d tσ
=

= ⋅∑  

равновероятны, поэтому значение { }P Aσ  может зависеть только от величины d . Обозначим 

{ } dP A pσ = . В силу аддитивности вероятностной меры получим  
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0
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0
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:
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d t
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⋅
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. (3.5.13) 

Вычислим теперь { }{ }lTP y dΩ = . Из определений 
lTΩ  и ( )y ⋅  следует, что 
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T t k l
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y d d t k Tα α α ξ α ξ α
=

 
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 
∑ . 

Переписав это равенство в терминах событий Aσ , получим  
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0
1

| ( ) | , 0,
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T t k l
t

y d A d t k Tσ
σ

α α σ σ
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 
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Следует отметить, что в выражении (3.5.14) у вектора σ  должно быть нулевых компонент не 

менее, чем величина ( )lcard T I= . Это возможно, поскольку по условию теоремы 0 0d t t I⋅ < − .  

Для вычисления { }{ }lTP y dΩ =  воспользуемся комбинаторными формулами. 

Поскольку { } dP A pσ = , то 
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. Учитывая выражение (3.5.13), можно записать  равенство 
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. (3.5.15) 

Перепишем выражение (3.5.15) в виде  

 
{ }{ }
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Нетрудно видеть, что для любых 1 2,d d , таких, что 1 2
0

0 1 Id d
t

≤ < < −  выполняется 
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{ }{ }

{ }
{ }{ }

{ }
1 2

1 2

l lT TP y d P y d
P y d P y d
Ω = Ω =

>
= =

 
. (3.5.17) 

В силу (3.5.17) и с учетом (3.5.12) получим, что ( ) ( )1 2| |E y d E y dµ µ= > = . Теорема доказана.  

Эта теорема говорит о том, что, если переход от одного допустимого решения к другому 

приводит к уменьшению величины jy , то в среднем можно ожидать, что величина jµ  

увеличится. Таким образом, минимизируя значение критерия jy , мы в среднем можем ожидать, 

что значение критерия jµ  будет возрастать.  

Вывод. Теорема позволяет надеяться, что в процессе решения задачи ( ) min,jy α α→ ∈Ξ  

удастся найти достаточно хорошие приближенные решения задачи max ( )jα
µ α

∈Ξ
.  

 

3.5.4 Реализация МСП 

В отличие от раздела 3.3, в котором реализация метода стартовой площадки (МСП) 

основывалась на построении стартовой площадки с использованием метода ИО, в данном 

разделе предлагается строить стартовую площадку с использованием решений, полученных в 

разделе 3.4. Предлагаемый здесь метод построения базы аппроксимации ОЭП в задаче с 

критериями 0, 1,...,j j mµ = , основан на использовании совокупности X µ  в качестве стартовой 

площадки. Пусть =μ( ). Обозначим через . совокупность решений задач максимизации 

на множестве  частных критериев . Если положить  и , то 

предлагаемый метод полностью совпадает с шагом 2 метода стартовой площадки раздела 3.3. 

В проведенных экспериментах оптимизировалась взвешенная квадратичная свертка, 

образованная из свертки (3.3.5) путем подстановки 1 jµ−  вместо критериев jy . В качестве 

вспомогательной функции использовалась функция (3.5.7). Параметр optN  процедуры брался 

тем же, что и в эксперименте с МСП, т.е. 50optN = . Как и эксперименте с методом МСП, было 

проведено две итерации процедуры многокритериального мультистарта, потребовавших около 

2.8 миллионов расчетов критериальной функции. В результате была построена база 

аппроксимации, которую обозначим optT µ . 

Используя метод функций включения [96], сравним базу аппроксимации optT µ  с базой 

аппроксимации T µ . Поскольку база аппроксимации T µ  является подмножеством optT µ , то 

T µ X µ X̂ µ

X µ
0, 1,...,j j mµ = lpX X µ= 0

ˆH X µ=
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( )( )*
, 1optT

Tµ
µν ε = при любом 0ε ≥ . Рис. 3.5.9 содержит график функции ( )( )*

,
optT

Tµ
µν ε , которая 

согласно (3.1.8) имеет смысл доли точек optT µ , попавших в ε-окрестность ( )*T µ . 

 

Рис. 3.5.9 График функции включения  ( )( )*
,

optT
Tµ

µν ε  

Из рисунка 3.5.9 видно, что множество ( )*T µ  содержит более 97% точек optT µ . Это можно 

объяснить тем, что число новых точек, полученных в результате шага 3 МСП, невелико по 

сравнению с числом точек стартовой площадки. Заметим, что большинство новых точек 

сосредоточены вне окрестности ( )*T µ  радиуса 0.05, а отклонение наиболее удаленной от 

аппроксимации точки составляет неожиданно большую величину 0.24! 

Вывод. В данной задаче процедура многокритериального мультистарта позволила найти 

точки, качественно улучшающие исходную базу аппроксимации. Поэтому возникает 

естественное желание использовать ДМСП для получения значительного числа точек, 

качественно превосходящих исходную базу. 

 

3.5.5 Реализация ДМСП 

В данном подразделе в рамках задачи аппроксимации ОЭП для критериев 0, 1,...,j j mµ = , 

в качестве стартовой площадки также используется . Алгоритм состоит из двух шагов.  X µ
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Шаг 1. Выполняется итерационная процедура многокритериального мультистарта для 

задачи (3.5.1), совпадающая с процедурой второго шага МСП, в которой надо  положить lpX  = 

X µ  и 0
ˆH X µ= . Правило остановки алгоритма базируется либо на заданном пороге отклонения 

получаемых критериальных точек от текущей аппроксимации 0optε > , либо на задании числа 

итераций. В результате работы процедуры получается подмножество множества допустимых 

решений, которое обозначим optX µ . 

Шаг 2. Выполняется заданное число iterN  итераций генетического алгоритма NSGA-II. 

В качестве начальной популяции берется множество решений optX µ , дополненное случайными 

точками из множества допустимых решений Ξ . Пусть  – построенная популяция, 

полученная в результате работы NSGA-II, supT µ  – соответствующая база аппроксимации. 

Совокупность решений ДМСП, которую обозначим через aaX µ , получим на основе объединения 

optX µ  и supX µ  и дальнейшего исключения из этой совокупности доминируемых точек. 

Результирующая база аппроксимации – это множество точек ( )aa aaT Xµ µµ= . 

В эксперименте шаг 1 не выполнялся, в качестве optX µ  использовалось множество, 

полученное в разделе 3.5.4, на которое было затрачено 2.8 миллионов расчетов критериальной 

функции. На шаге 2 в качестве параметров NSGA-II брались 10000popN =  и 520iterN = . Это 

число итераций было выбрано так, чтобы общее число расчетов критериальной функции 

совпадало бы с числом расчетов, которые потребовались для проведения 800 итераций метода 

ИО. Итак, для построения базы аппроксимации aaT µ , потребовалось 8 миллионов расчетов 

критериальной функции. 

Используя метод функций включения [96], сравним базу аппроксимации aaT µ  с базой 

аппроксимации ( )800eimT µ , полученной с помощью ИО. Рисунок 3.5.10 содержит графики 

функций включения ( ) ( )( )*

800
,

eim
aaT

Tµ
µν ε  и ( )( )( )*

, 800
aa

eimT
Tµ

µν ε . Пунктирной линией нарисован 

график функции ( )( )( )*
, 800

aa
eimT

Tµ
µν ε , сплошной линией – график функции ( ) ( )( )*

800
,

eim
aaT

Tµ
µν ε .  

supX µ
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Рис. 3.5.10 Графики функций включения  ( ) ( )( )*

800
,

eim
aaT

Tµ
µν ε   и ( )( )( )*

, 800
aa

eimT
Tµ

µν ε   

Из рисунка 3.5.10 видно, что множество ( )*aaT µ  содержит 98% точек ( )800eimT µ , а при 

ε=0.01 – почти 100% точек ( )800eimT µ . Это говорит о том, что почти все точки ( )800eimT µ  

сосредоточены в окрестности множества ( )*aaT µ . В то же время,  ( )( )*
800eimT µ содержит менее 

0.1% точек aaT µ , а при ε порядка 0.06 в ( )( )*
800eimT µ  содержится не более 15% точек aaT µ . Радиус 

полного покрытия ( )800eimT µ  множеством ( )*aaT µ  составляет почти 0.06, а радиус полного 

покрытия aaT µ  множеством ( )*

(800)eimT µ  в три раза больше и составляет около 0.185.  

Таким образом, аппроксимация ОЭП, полученная с помощью ДМСП, когда стартовая 

площадка получается из множества эффективных решений задачи МКО с критериями 

0, 1,...,jy j m= , значительно лучше аппроксимации, полученной методом ИО для изучаемых 

критериев 0, 1,...,j j mµ =  при том же числе расчетов критериальной функции. 
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3.6 Использование аппроксимации и визуализации ОЭП при оптимизации 

правил управления каскадом 

Как уже говорилось в предисловии, методика поддержки принятия решений в условиях 

многокритериальности, предложенная в [97] и подробно изложенная, например, в [16] [22], 

основана на аппроксимации ОЭП и дальнейшей визуализации границы Парето в виде так 

называемых карт решений, представляющих собой наборы двумерных сечений многомерной 

аппроксимации ОЭП. Поскольку данная диссертация посвящена аппроксимации ОЭП, 

применение визуализации границы Парето в задаче выбора параметров правил управления 

Ангарским каскадом водохранилищ опишем кратко, для полноты картины.  

В выпуклом случае в многокритериальных задачах с m критериями принятия решений 

карта решений является набором обычных двумерных сечений ОЭП, каждое из которых 

является совокупностью таких точек плоскости двух критериев, которые принадлежат ОЭП 

вместе с фиксированными значениями остальных m-2 критериев. В невыпуклом случае при 

визуализации ОЭП используются «толстые» двумерные сечения, каждое из которых 

представляет собой объединение обычных сечений, получаемых при принадлежности значений 

остальных m-2 критериев некоторым заданным диапазонам [17]. Поэтому в нелинейном 

невыпуклом случае, рассматриваемом в диссертационной работе, для получения одного 

«толстого» сечения требуется  

• указать два критерия, в плоскости которых будет изображено сечение; 

• задать диапазоны значений остальных m-2 критериев. 

Поскольку аппроксимация ОЭП в нелинейных невыпуклых задачах строится в виде 

объединения конечного числа конусов доминирования с вершинами в точках базы 

аппроксимации, аппроксимация задается списком точек базы и указанием направлений 

улучшения значений критериев. В связи с таким заданием аппроксимации ОЭП задача 

построения одного «толстого» сечения может быть решена очень быстро [17]. 

Для того чтобы получить карту решений, требуется среди оставшихся m-2 критериев 

выделить еще один («третий», цветовой критерий), диапазон значений которого разбивается на 

несколько отрезков. Каждому отрезку значений третьего критерия соответствует одно 

«толстое» сечение, которое изображается своим цветом. Сечения накладываются одно на 

другое. Как известно [22], границы Парето двумерных сечений ОЭП при монотонном 

изменении третьего критерия не пересекаются, что делает удобным использование карты 

решений для изучения влияния третьего критерия на двумерное сечение. При этом становится 
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ясна связь недоминируемых значений всех трех критериев одновременно. Диапазон остальных 

критериев должен быть установлен заранее с помощью подвижных бегунков на прокрутках, 

расположенных под картой решений. Имеется также возможность заранее сжать диапазон 

любого из критериев на все время исследования. Использование этих средств позволяет 

изучить влияние расширения или сжатия диапазонов остальных m-3 критериев на карту 

решений. Программное обеспечение для диалогового анализа ОЭП в невыпуклом случае 

разработано В.Е. Березкиным [98]. 

В данном разделе такая визуализация ОЭП применяется сначала к задаче выбора 

параметров правил управления каскадом водохранилищ на основе критериев, представляющих 

собой долю интервалов нарушения каждого из требований (перебойных интервалов). Далее, в 

несколько сокращенном виде, описываются реальные действия ЛПР, направленные на поиск 

предпочтительных правил управления каскадом на основе максимизации годовой 

обеспеченности. 

 

3.6.1 Минимизация доли перебойных интервалов 

Прежде всего, анализ границы Парето в задаче выбора правил управления при 

минимизации доли перебойных интервалов был проведен на основе свободного анализа карт 

решений. Это дало общее представление о конфликте критериев. Далее, в связи с большим 

числом критериев, была использована процедура последовательная улучшения текущего 

решения на основе анализа подходящих карт решений.  

В качестве примера свободного анализа карт решений приведем рис. 3.6.1 и 3.6.2. На 

первом из них изображено единственное сечение, а именно максимальное сечение ОЭП для 

двух критериев: 1y  – доля временных интервалов нарушения установленных Совмином РФ 

ограничений на уровень Байкала и 19y  – доля перебоев в нормальном навигационном уровне 

верхнего бьефа Усть-Илимской ГЭС. Максимальное сечение соответствует неограниченным 

диапазонам остальных критериев. 
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Рис 3.6.1 На горизонтальной оси – критерий 1y , на вертикальной -- критерий 19y  

Как видно, сечение представляет собой невыпуклое множество с явным конфликтом 

между критериями: минимум 1y  достигается в точке А, а минимум 19y  – в точке В.  

 

Рис 3.6.2 На горизонтальной оси – критерий 1y , на вертикальной – критерий 19y  

Приведем теперь карту решений, на которой на осях находятся те же критерии, а сечения 

разного цвета получены при разбиении на отрезки диапазона значений критерия  – доли 

перебоев в выработке электроэнергии на Иркутской ГЭС (см. рис. 3.6.2). Связь между цветом и 

отрезком значений 5y  дана справа от карты решений. Как видно, большинство сечений карты 

решений является невыпуклыми множествами, причем на них ярко выражен конфликт между 

критериями 1y  и 19y . Точки А и В рис. 3.6.2 соответствуют точкам А и В рис. 3.6.1. Минимум 

5y
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критерия 5y  достигается на сечении, которое стянулось в точку и лежит в правом верхнем углу 

карты решений, т.е. тоже противоречит минимизации критериев 1y  и 19y . 

Свободное изучение полученной аппроксимации ОЭП позволило сделать практические 

выводы о некоторых вопросах, связанных с регулированием уровня Байкала. Как уже 

говорилось, в 2001 г. правительство РФ приняло решение ограничить колебания уровня 

Байкала, установив максимальный уровень в 457 м над уровнем океана, а минимальный – 456 

м, что вызвало возражения со стороны специалистов по водному хозяйству, поскольку мешало 

запасти воду в многоводные годы для использования ее в маловодные. В 2014-2018 годы 

крайне низкая приточность Байкала привела к падению уровня озера ниже 456 м. Федеральное 

агентство водных ресурсов РФ выделило средства на изучение этого вопроса. Информация, 

полученная нами в виде карт решений, продемонстрировала, что, во-первых, при выполнении 

требований безопасной эксплуатации ГЭС и санитарных норм нарушение постановления 

правительства от 2001 г. было неизбежным и, во-вторых, выполнение этого постановления 

связано с огромными потерями в надежности производства электроэнергии и обеспечения 

водного транспорта, а также в коммунальном водоснабжении. На основе этой информации 

(наряду с результатами других исследований) было подготовлена постановление правительства 

РФ о приостановке действия постановления 2001 г. и введении ручного управления уровнем 

Байкала. Были также выделены средства на дальнейшие исследования, в том числе и на основе 

методики, разработанной в данной диссертации.  

Обратимся теперь к структуризованной последовательной процедуре улучшения 

текущего решения на основе подходящих карт решений. В качестве исходного был взят вектор 

критериев, на котором достигается минимум критерия 1y , т.е. доли интервалов нарушения 

установленных правительством РФ ограничений на уровень Байкала. Значения критериев в 

этом решении (α ) приведены в таблице 3.6.1. 

Таблица 3.6.1 

Номер 
критерия 

Название критерия ( )jy α  

 Иркутская ГЭС  
1 Доля перебоев в уровне озера Байкал 0.030 
2 Доля перебоев в санитарных попусках 

летом 
0.286 

3 Доля перебоев в санитарных попусках 
зимой 

0 

4 Доля перебоев в безопасных попусках 0.041 
5 Доля перебоев в выработке 

электроэнергии 
0.314 

6 Доля перебоев в работе водозаборов 
Иркутска 

0.070 
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 Братская ГЭС  
9 Доля перебоев в работе водозаборов 

Братска  
0 

10 Доля перебоев в нормальной работе 
водозаборов 

0 

11 Доля перебоев в минимальном 
навигационном уровне верхнего бьефа 

0.001 

12 Доля перебоев в нормальном 
навигационном уровне верхнего бьефа 

0.010 

13 Доля перебоев в сокращенных 
навигационных попусках 

0 

14 Доля перебоев в санитарных попусках 0 
15 Доля перебоев в выработке 

электроэнергии 
0.071 

16 Доля перебоев в нормальном 
подпорном уровне 

0 

 Усть-Илимская ГЭС  
17 Доля перебоев в нормальной работе 

водозаборов 
0 

18 Доля перебоев в минимальном 
навигационном уровне верхнего бьефа 

0 

19 Доля перебоев в нормальном 
навигационном уровне верхнего бьефа 

0.102 

20 Доля перебоев в нормальном 
подпорном уровне 

0 

21 Доля перебоев в санитарных попусках 0 
22 Доля перебоев в попусках, 

обеспечивающих лесопромышленный 
комплекс в нижнем бьефе 

0 

23 Доля перебоев в минимальных 
энергетических попусках в зимний 

 

0 

24 Доля перебоев в выработке 
электроэнергии  

0.021 

25 Доля перебоев в минимальных 
навигационных попусках 

0.028 

26 Доля перебоев в нормальных 
навигационных попусках 

0.043 

 

Как видно, в критериальной точке ( )y α  желаемая нулевая величина критерия 1y  не 

достигается. Одновременно ненулевыми являются значения многих критериев, в том числе 

такого важного критерия как критерий 4y  (доля перебоев в безопасных попусках Иркутского 

водохранилища), значение которого является недопустимо большим, а именно 4 %. Поэтому в 

первую очередь был рассмотрен вопрос о связи недоминируемых значений критериев 1y  и 4y  

при любых достижимых значениях остальных критериев.  
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Рис. 3.6.3. На горизонтальной оси – критерий 1y , на вертикальной -- критерий 4y  

Для этого была найдена проекция ОЭП на плоскость ( , ). Эта проекция приведена на 

рисунке 3.6.3. На проекции отмечены точки А и В, связанные между собой ломаной – 

аппроксимацией границы Парето для этих двух критериев. Точка А соответствует 

минимальному значению , т.е. решению . В этой точке , . Точка В 

соответствует минимальному значению . В этой точке , . Рассмотрев 

границу Парето для этих двух критериев, ЛПР выбрал наиболее предпочтительную точку 

границы, которой оказалась точка В.  

Напомним, что в гл. 2 ЛПР затратил несколько итераций диалогового метода на поиск 

решения с 4 0y = .  Это соответствует нескольким неделям интенсивной работы специалистов 

по вычислениям, в течение которых преодолевались трудности, связанные с улучшением 

величины 4y  на основе оптимизации.  Здесь же такое решение было получено легко и с самого 

начала исследования ОЭП. Было решено сохранить это значение 4y  во всех последующих 

решениях, т.е. ограничиться рассмотрением только тех критериальных точек ОЭП, для которых 

выполняется 4 0y = . Поэтому было наложено соответствующее ограничение на карты решений, 

1y 4y

1y α 1 0.030y = 4 0.041y =

4y 1 0.052y = 4 0y =
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которые будут рассмотрены в дальнейшем. ЛПР также потребовал, чтобы в дальнейшем 

выполнялось 1 0.15y ≤ .  

 

Рис. 3.6.4. На горизонтальной оси – критерий y1, на вертикальной -- критерий y5 

Далее на осях были расположены критерии  и . С учетом ограничений, наложенных 

на  и , двумерное сечение приобретает вид, приведенный на рисунке 3.6.4. Под сечением 

расположены прокрутки, слайдеры которых позволяют изменять диапазон значений 

соответствующих критериев. В качестве критериев на прокрутках взяты , , , , , 

 и . На рисунке 3.6.4 выбраны исходные полные диапазоны возможных значений этих 

критериев на границе Парето. Поэтому множество на рисунке 3.6.4 представляет собой, по 

существу, проекцию ОЭП, дополненного ограничениями  и . В качестве точки, 

наиболее предпочтительной по критериям 1y  и 5y , была выбрана точка, помеченная на этом 

рисунке буквой C. Полный набор значений критериев в этой точке дан на рисунке 3.6.5. 

1y 5y

1y 4y

6y 12y 15y 19y 24y

25y 26y

1 0.15y ≤ 4 0y =
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Рис. 3.6.5. Значения критериев в точке C (см. рис. 3.6.4) 

Для того чтобы дополнительно уменьшить недостаточно низкие значения критериев 19y  

и 24y , были использованы слайдеры соответствующих прокруток. Оказалось, что при движении 

правого слайдера влево, т.е. при сжатии диапазона значений 19y  сверху, сначала изучаемое 

сечение практически не менялось, а затем, при каком-то значении критерия 19y  , начинало 

резко сжиматься, причем резко увеличивались достижимые значения критерия 1y . Такое же 

следствие имело сжатие диапазона критерия 24y  . Таким же образом было изучено влияние 

сжатия остальных критериев, расположенных на прокрутках, т.е. 6y , 12y , 15y , 19y , 24y , 25y  и 

26y . В результате проведенного исследования была получена достижимая критериальная точка 

*( )y α , которая приведена в таблице 3.6.2. Для сравнения приведены критериальные векторы 

11( )jy α  и 0( )jy β , 1,..., 26j = . 

Таблица 3.6.2 

j Название *( )jy α  11( )jy α
 0( )jy β

 

 Иркутская ГЭС    
1 Доля перебоев в уровне озера Байкал 0.059 0.058 0.052 
2 Доля перебоев в санитарных попусках летом 0 0.004 0.004 
3 Доля перебоев в санитарных попусках зимой 0 0 0 
4 Доля перебоев в безопасных попусках 0 0 0.001 
5 Доля перебоев в выработке электроэнергии 0.031 0.043 0.188 
6 Доля перебоев в работе водозаборов 0 0.029 0.004 
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 Братская ГЭС    
9 Доля перебоев в работе водозаборов 0 0 0 
10 Доля перебоев в нормальной работе 

б  
0 0 0 

11 Доля перебоев в минимальном навигационном 
уровне верхнего бьефа 

0 0 0.014 

12 Доля перебоев в нормальном навигационном 
уровне верхнего бьефа 

0.001 0.004 0.118 

13 Доля перебоев в сокращенных навигационных 
попусках 

0 0 0 

14 Доля перебоев в санитарных попусках 0 0 0 
15 Доля перебоев в выработке электроэнергии 0.004 0.011 0.074 
16 Доля перебоев в нормальном подпорном уровне 0 0 0 

 Усть-Илимская ГЭС    
17 Доля перебоев в нормальной работе 

 
0 0 0 

18 Доля перебоев в минимальном навигационном 
уровне верхнего бьефа 

0 0 0.001 

19 Доля перебоев в нормальном навигационном 
уровне верхнего бьефа 

0.017 0.017 0.177 

20 Доля перебоев в нормальном подпорном уровне 0 0 0 
21 Доля перебоев в санитарных попусках 0 0 0 
22 Доля перебоев в санитарных попусках (сбросов 

сточных вод лесопромышленного комплекса) 
0 0 0 

23 Доля перебоев в минимальных энергетических 
попусках 

0 0 0 

24 Доля перебоев в выработке электроэнергии 0.008 0.004 0.026 
25 Доля перебоев в минимальных навигационных 

попусках 
0.009 0.005 0.078 

26 Доля перебоев в нормальных навигационных 
попусках 

0.012 0.011 0.108 

 

При сравнении полученной критериальной точки *( )y α с точкой 11( )y α  видно, что в 

решении *α  за счет незначительного (на 1%) увеличения числа перебоев в требованиях к 

уровню озера удалось полностью ликвидировать перебои в летних санитарных попусках ( 2y ) и 

в работе водозаборов на Иркутском водохранилище ( 6y ), существенно уменьшить долю 

перебоев в производстве электроэнергии на Иркутской и Братской ГЭС. Что же касается 

сравнения с решением 0β , которое уступало 11α , то здесь, кроме того, удается качественно 

улучшить навигацию на Братском и Усть-Илимском водохранилищах. 

 

3.6.2 Максимизации годовой обеспеченности 

Теперь рассмотрим оптимизацию критериев годовой обеспеченности 1µ ,…, 26µ , j≠7,8. 

Значения этих критериев для решений *α , 11α , 0β  даны в таблице 3.6.3.  
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Таблица 3.6.3 

j Название *( )jµ α   11( )jµ α  0( )jµ β
 

 Иркутская ГЭС    
1 Обеспеченность требований к уровню 

озера Байкал 
0.71 0.74 0.72 

2 Обеспеченность требуемых 
санитарных попусков летом 

1 0.95 0.98 

3 Обеспеченность требуемых 
санитарных попусков зимой 

1 1 1 

4 Обеспеченность безопасных попусков 1 1 0.99 

5 Обеспеченность требований к 
выработке электроэнергии 

0.806 0.69 0.02 

6 Обеспеченность требований к работе 
водозаборов 

1 0.64 0.93 

 Братская ГЭС    
9 Обеспеченность требований к работе 

водозаборов 
1 1 1 

10 Обеспеченность нормальной работы 
водозаборов 

1 1 1 

11 Обеспеченность минимального 
навигационного уровня верхнего бьефа 

1 1 0.92 

12 Обеспеченность нормального 
навигационного уровня верхнего бьефа 

0.98 0.97 0.67 

13 Обеспеченность сокращенных 
навигационных попусков 

1 1 1 

14 Обеспеченность санитарных попусков 1 1 1 
15 Обеспеченность требований к 

выработке электроэнергии 
0.96 0.93 0.71 

16 Обеспеченность нормального 
подпорного уровня 

1 1 1 

 Усть-Илимская ГЭС    
17 Обеспеченность нормальной работы 

водозаборов 
1 1 1 

18 Обеспеченность минимального 
навигационного уровня верхнего бьефа 

1 1 0.99 

19 Обеспеченность нормального 
навигационного уровня верхнего бьефа 

0.87 0.93 0.02 

20 Обеспеченность нормального 
подпорного уровня 

1 1 1 

21 Обеспеченность требуемых 
санитарных попусков 

1 1 1 

22 Обеспеченность требуемых 
санитарных попусков для сбросов 
сточных вод лесопромышленного 

 

1 1 1 

23 Обеспеченность минимальных 
энергетических попусков 

1 1 1 
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24 Обеспеченность требуемой выработки 
электроэнергии 

0.94 0.94 0.79 

25 Обеспеченность минимальных 
навигационных попусков 

0.89 0.95 0.58 

26 Обеспеченность нормальных 
навигационных попусков 

0.87 0.91 0.52 

 

Сравнивая критериальную точку *( )µ α с точкой 11( )µ α , можно заметить, что в решении 

*α  за счет незначительного (на 0.03) уменьшения обеспеченности требований к уровню озера 

удалось на 0.12 повысить обеспеченность требований к выработке электроэнергии (критерий 

5µ ) и получить 100% обеспеченность требований к работе водозаборов на Иркутском 

водохранилище ( 6µ ). В то же время значения критериев 19µ , 25µ  и 26µ   уменьшились на 0.05. 

Отметим, что значения критериев  9µ , 10µ , 14µ , 16µ , 17µ , 20µ , 21µ , 22µ  и 23µ  равны 

единице во всех точках аппроксимации границы Парето. Поскольку выбор идет только среди 

точек границы Парето, эти критерии были, как имеющие оптимальные значения, исключены из 

рассмотрения. Что касается остальных критериев, ЛПР считал их имеющими 

удовлетворительные значения, если они достигали величины 0.85. 

 

Рис. 3.6.6. Проекция ОЭП на плоскость критериев 1µ  и 5µ . 

В процесс поиска удовлетворяющих его параметров правил попуска, ЛПР прежде всего 

захотел рассмотреть связь между критериями  (обеспеченность требований к уровню озера 

Байкал, горизонтальная ось) и  (обеспеченность требований к выработке электроэнергии на 

1µ

5µ
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Иркутской ГЭС, вертикальная ось). Соответствующая проекция ОЭП на плоскость этих 

критериев приведена на рисунке 3.6.6. 

Граница Парето для критериев 1µ  и 5µ  – ломаная, соединяющая точки А и В. 

Максимальное значение критерия 1µ  достигается в точке А, в которой оно равно 0.87. При этом 

значение критерия 5µ  равно нулю, т.е. требования не выполняются никогда! Ясно видно, что 

уменьшение 1µ  до 0.84 приводит к  резкому возрастанию критерия 5µ . В точке В, в которой 

достигается максимум 5µ , имеют место следующие значения критериев 1 0.02µ = , 5 0.96µ = . 

Очевиден конфликт между этими критериями. В точке С, лежащей в области сбалансированных 

сочетаний значений этих критериев, имеем 1 0.81µ = , 5 0.85µ = . Значения в точках А, В и С 

всех критериев (кроме равных единице во всех этих точках критериев   9µ , 10µ , 14µ , 16µ , 17µ , 

20µ , 21µ , 22µ  и 23µ ) приведены в таблице 3.6.4. 

Таблица 3.6.4 

j Название Точка B  Точка C Точка A 

 Иркутская ГЭС    
1 Обеспеченность требований к уровню 

озера Байкал 
0.02 0.81 0.87 

2 Обеспеченность требуемых 
санитарных попусков летом 

1 1 0.94 

3 Обеспеченность требуемых 
санитарных попусков зимой 

1 1 1 

4 Обеспеченность безопасных попусков 0.93 0.70 0.61 

5 Обеспеченность требований к 
выработке электроэнергии 

0.96 0.85 0 

6 Обеспеченность требований к работе 
водозаборов 

1 0.72 0.32 

 Братская ГЭС    
11 Обеспеченность минимального 

навигационного уровня верхнего бьефа 
1 0.99 0.97 

12 Обеспеченность нормального 
навигационного уровня верхнего бьефа 

0.98 0.98 0.94 

13 Обеспеченность сокращенных 
навигационных попусков 

1 1 0.99 

15 Обеспеченность требований к 
выработке электроэнергии 

0.77 0.93 0.38 

 Усть-Илимская ГЭС    
18 Обеспеченность минимального 

навигационного уровня верхнего бьефа 
1 1 0.99 

19 Обеспеченность нормального 
навигационного уровня верхнего бьефа 

0.50 0.86 0.17 
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24 Обеспеченность требуемой выработки 
электроэнергии 

0.71 0.89 0.43 

25 Обеспеченность минимальных 
навигационных попусков 

0.90 0.94 0.49 

26 Обеспеченность нормальных 
навигационных попусков 

0.85 0.94 0.47 

 

Как видно, в точке А многие критерии (в том числе 4µ , 5µ , 6µ , 19µ , 24µ , 25µ  и 26µ ) 

имеют чрезвычайно низкие значения. В точке В, наряду с критерием 1µ , недостаточно высокие 

значения имеют критерии 15µ , 19µ , 24µ . Даже в «сбалансированной» точке С недостаточно 

высокие значения имеют критерии 4µ  и 6µ . Таким образом, требуется дальнейшая работа по 

поиску удовлетворительного решения. В этих исследованиях ЛПР решил наложить 

ограничения 1 0.7µ > , 5 0.75µ > .  

Далее он рассмотрел карту решений для критериев  и  (обеспеченность требований 

к выработке электроэнергии Братской ГЭС), на которой двумерные сечения, соответствующие 

разным значениям , удовлетворяющим , отличаются цветом (см. рис. 3.6.7).  

 

Рис. 3.6.7. Карта решений для критериев 1µ  и 15µ ; значения 5µ , удовлетворяющие 

ограничению 5 0.75µ > , даны цветом 

Как видно, на карте решений присутствуют, в основном, только два цвета  -- темно-

синий (0.78 <  < 0.81) и цвета морской волны (0.84 <  < 0.87). Это означает, что значения 

, меньшие 0.78, неэффективны, а достижимых значений  > 0.87 не существует (при 

1µ 15µ

5µ 5 0.75µ >

5µ 5µ

5µ 5µ
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выбранном ограничении ). Ознакомившись по рисунку с информацией о том, при каких 

значениях ,  и  расположены недоминируемые точки, ЛПР назначил дополнительное 

ограничение, на этот  раз на величину , а именно . После этого ЛПР расположил на 

осях критерии 1µ  и 24µ  (обеспеченность минимальных энергетических попусков на Усть-

Илимской ГЭС), по-прежнему представив значения 5µ  цветом (см. рис. 3.6.8). 

 

Рис. 3.6.8. Карта решений для критериев 1µ  и 24µ ; значения 5µ  даны цветом 

Анализ расположения недоминируемых вершин сечений ОЭП на рисунке 3.6.8 позволил 

ЛПР потребовать, чтобы 24 0.9µ >  и перейти к анализу карты решений, приведенной на рисунке 

3.6.9, на которой на осях – критерии 4µ  (обеспеченность безопасных попусков) и 6µ  

(обеспеченность требований к работе водозаборов, расположенных на Иркутском 

водохранилище), а значения 1µ  даны цветом. 

1 0.7µ >

1µ 15µ 5µ

15µ 15 0.85µ >
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Рис. 3.6.9. Карта решений для критериев 4µ  и 6µ ; значения 1µ  даны цветом 

Как видим, при наложенных ограничениях 1 0.7µ > , 5 0.75µ > , 15 0.85µ > , 24 0.9µ > , 

между критериями 4µ  и 6µ  нет противоречий – их максимум достигается в одном и том же 

решении, порождающем единственную недоминируемую вершину сечения. Поэтому карта 

решений на рисунке 3.6.9 показывает лишь зависимость точки, доставляющей максимум 4µ  и 

6µ , от величины критерия 1µ . Здесь ЛПР заинтересовала точка H, достигаемая при 

10.73 0.75µ< < . 
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Рис. 3.6.10. Некоторые интересные недоминируемые критериальные точки 

В процессе рассмотрения последовательности карт решений на рисунке 3.6.7-3.6.9, ЛПР 

фиксировал некоторые интересные для него недоминируемые критериальные точки. Эти точки 

приведены на рисунке 3.6.10. Заметим, что при движении слева направо величина критерия 1µ  

уменьшается, а критерия 4µ  увеличивается. При этом критерий 5µ  сохраняет свое 

удовлетворительное значение. В точке 24 (точке H) критерии 4µ  и 6µ  равны 1, т.е. требования 

выполняются всегда. Поэтому ЛПР выбрал точку H в качестве решения задачи 

многокритериальной оптимизации годовой обеспеченности требований к управлению 

каскадом. Это решение обозначим через **α . 

В таблице 3.6.5 приведены значения критериев для решений **α , *α , 11α  и 0β . 

Таблица  3.6.5 

j Название **( )jµ α   
*( )jµ α

 11( )jµ α
 

0( )jµ β  

 Иркутская ГЭС     
1 Обеспеченность требований к уровню 

озера Байкал 
0.75 0.71 0.74 0.72 

2 Обеспеченность требуемых санитарных 
попусков летом 

1 1 0.95 0.98 

3 Обеспеченность требуемых санитарных 
попусков зимой 

1 1 1 1 
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4 Обеспеченность безопасных попусков 1 1 1 0.99 

5 Обеспеченность требований к 
выработке электроэнергии 

0.83 0.806 0.69 0.02 

6 Обеспеченность требований к работе 
водозаборов 

1 1 0.64 0.93 

 Братская ГЭС     
11 Обеспеченность минимального 

навигационного уровня верхнего бьефа 
1 1 1 0.92 

12 Обеспеченность нормального 
навигационного уровня верхнего бьефа 

0.98 0.98 0.97 0.67 

13 Обеспеченность сокращенных 
навигационных попусков 

1 1 1 1 

15 Обеспеченность требований к 
выработке электроэнергии 

0.96 0.96 0.93 0.71 

 Усть-Илимская ГЭС     
18 Обеспеченность минимального 

навигационного уровня верхнего бьефа 
1 1 1 0.99 

19 Обеспеченность нормального 
навигационного уровня верхнего бьефа 

0.87 0.87 0.93 0.02 

24 Обеспеченность требуемой выработки 
электроэнергии 

0.95 0.94 0.94 0.79 

25 Обеспеченность минимальных 
навигационных попусков 

0.91 0.89 0.95 0.58 

26 Обеспеченность нормальных 
навигационных попусков 

0.89 0.87 0.91 0.52 

 

Из таблицы видно, что **α  доминирует решения *α  и 0β . Сравнивая критериальную 

точку **( )µ α с точкой 11( )µ α , можно заметить, что при близких значениях критерия 1µ  в 

решении **α  удалось на 0.14 повысить обеспеченность требований к выработке электроэнергии 

(критерий 5µ ) и получить 100% обеспеченность требований к работе водозаборов на 

Иркутском водохранилище (критерий 6µ ). При этом несколько ухудшились обеспеченность 

нормального навигационного уровня верхнего бьефа (критерий 19µ ) и обеспеченность 

навигационных попусков (критерии 25µ  и 26µ ) Усть-Илимского водохранилища. 

На рисунке 3.6.11 приведена последовательность значений уровня озера Байкал при 

проверке решения **α  на сценарии, основанном на приточности за 1903-2005 гг. При этом 

отображены все 2266 точек, соответствующих году и номеру календарного интервала. 

Штрихами указаны требования к уровню озера Байкал согласно постановлению № 234 (от 456 

м до 457 м). Из графика видно, что нарушения требуемых границ уровня в некоторые годы 

имели продолжительный характер, например, с 1978 по 1983 год. Глубина отклонений вниз 

достигала 0.5 м, а отклонений вверх – до 0.75 м, причем последние случались значительно 



175 
 
чаще, чем отклонения вниз. Поэтому, имеет смысл ввести дополнительный критерий, 

характеризующий глубину отклонений вверх. 

 

Рис. 3.6.11. График уровня озера Байкал для решения **α  

 

3.6.3 Максимизации годовой обеспеченности с дополнительным критерием 
В данном подразделе рассматривается задача МКО для правил управления Ангарским 

каскадом, в которой, кроме 24-х критериев годовой обеспеченности 1µ ,…, 26µ , j≠7,8, 

учитывается дополнительный критерий – максимальное нарушение ограничения, наложенного 

сверху на уровень озера Байкал, за 103 года. Для аппроксимации ОЭП в этом случае также 

использован МСП, в котором роль стартовой площадки сыграла совокупность оптимальных 

решений задач минимизации значений частных критериев. Мы не будем подробно описывать 

процедуру аппроксимации ОЭП и последующий визуальный анализ, а только приведем карту 

решений (рис. 3.6.12), на которой максимальное отклонение уровня (в метрах) от требуемого 

диапазона вверх отложено по оси абсцисс, годовая обеспеченность требования [456 м, 457 м] – 

по оси ординат, годовая обеспеченность производства электроэнергии на Иркутской ГЭС – 

цветом. Видно, что при росте максимального отклонения от нуля до 0.52 м обеспеченность 

принадлежности уровня Байкала требуемому диапазону увеличивается от нуля до 0.75 при 

больших значениях обеспеченности производства электроэнергии (красное сечение) и даже до 

0.83 при низких значениях обеспеченности производства электроэнергии (фиолетовое сечение).  
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Рис. 3.6.12. Одна из карт решений в задаче с дополнительным критерием 

График уровня озера Байкал для решения ***a , полученного в результате визуального анализа и 

аналогичный графику рис. 3.6.11, приведен на рисунке 3.6.13. Как видим, отклонения от 

требуемого диапазона уровней озера не превосходили 0.5 м. При этом отклонения вниз 

встречаютсячаще, чем на рисунке 3.6.11. 

 

Рис. 3.6.13. График уровня озера Байкал для решения ***a  

Остальные показатели функционирования системы частично ухудшились по сравнению с **α : 

вместо 1µ  = 0.75 получили 1µ  = 0.66, вместо 4µ  = 1 получили 4µ  = 0.98, вместо 5µ  = 0.83 
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получили 5µ  = 0.78 и т.д. Отметим, что при желании можно было выбрать вариант с меньшими 

превышениями уровня в 457 м, но это приводит к дальнейшему ухудшению остальных 

показателей функционирования системы. 

3.7 Использование параллельных вычислений в задаче аппроксимации ОЭП 

3.7.1 Реализация параллельной формы МСП 

Для моделей с большой трудоемкостью расчета критериальных функций и с большой 

размерностью решений и критериев задача аппроксимации ОЭП требует существенных затрат 

вычислительных ресурсов. Поэтому для решения этой задачи разумно использовать 

многопроцессорные системы [99].  

Шаг 1.1, т.е. решение задач глобальной оптимизации отдельных  критериев по своей 

структуре с самого начала подготовлен к использованию распараллеливания процесса 

вычислений, поскольку эти задачи не связаны между собой. Далее, при применении метода 

мультистарта для оптимизации отдельного критерия, между собой не связаны процессы 

решения задач локальной оптимизации с различными стартовыми точками. Поэтому 

многопроцессорное программное обеспечение шага 1.1 может быть легко реализовано в рамках 

многопроцессорных систем, например, на основе Интерфейса передачи сообщений (Message 

Passing Interface, MPI), который более подробно рассмотрен чуть ниже, после обсуждения методов 

решения проблемы для других шагов МСП. Шаг 1.2 является модифицированной реализацией 

алгоритма NSGA, программное обеспечение которого общедоступно [95], так что его 

разработка не входила в задачу диссертанта. 

Остановимся на шаге 2. Описанные выше эксперименты показывают, что шаг 2 метода 

МПС является его наиболее трудоемким шагом, поскольку именно на этом шаге решается 

значительное число задач локальной скалярной оптимизации, каждая из которых требует 

приближенного расчета градиентов свертки критериев на основе вычисления значений 

критериальной функции. При этом в конце каждой итерации, после решения задач локальной 

скалярной оптимизации, требуется выделение недоминируемых точек из совокупности точек, 

полученных при решении всех задач локальной оптимизации. Таким образом, построение новой 

базы аппроксимации требует сбора информации на одном процессоре. Такое свойство МСП 

затрудняет эффективное использование процессоров, которые могут простаивать из-за того, что 

решение задач локальной оптимизации для различных стартовых точек может требовать 

различных затрат времени. Поэтому требуется исследование эффективности возможных 

процедур распараллеливания шага 2.  
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Использование многопроцессорной системы обычно требует выделения подмножеств 

операций, которые могут выполняться независимо на отдельных процессорах. В разработанном 

алгоритме второго шага МСП может быть выделено два таких подмножества:  

• генерирование выборки случайных точек и осуществление локальной скалярной 

оптимизации,  

• выделение недоминируемых точек из совокупности точек, полученной при решении 

всех задач локальной оптимизации, и оценка точности аппроксимации. 

Приведем описание параллельного алгоритма второго шага МСП. 

Шаг 2 (параллельный алгоритм). Пусть задано число p  процессоров не меньше двух, 

причем число optN  задач локальной оптимизации свертки, решаемых на каждой итерации 

процедуры многокритериального мультистарта, кратно 1p − . Как и требуется на шаге 2 метода, 

задано множество точек стартовой площадки lpX  и параметр правила остановки алгоритма 

0optε > , а также используемое семейство сверток критериев. Рассмотрим итерацию процедуры. 

 

Итерация k  шага 2  

Считается, что на предыдущих итерациях процедуры уже построены множество решений 1kH −  

и соответствующая база аппроксимации ( )1 1k kT y H− −= . Положим 0 yH X= . 

1. На процессоре p на lpX  генерируется случайная равномерная выборка объемом optN . 

Затем выборка распределяется поровну между остальными процессорами так, что 

каждый получает свою часть выборки, которую для l-го процессора обозначим через k
lS ; 

2. На каждом из процессоров с номерами от 1 до 1p −  для каждой точки 0
k
lx S∈  

рассчитывается совокупность параметров свертки критериев и осуществляется решение 

задачи локальной оптимизации полученной свертки, причем в качестве стартовой точки 

процесса оптимизации берется точка 0
k
lx S∈ . Обозначим соответствующий локальный 

минимум через Φ(x0). Рассчитывается требуемая характеристика выборочной функции 

оптимизационной полноты аппроксимации, например, выборочный радиус полного 

покрытия k
lε  множества ( )( )k

ly SΦ  ε-окрестностью множества ( )*
1kT − ;  

3. Процессор p собирает значения , 1,..., 1k
l l pε = − , и рассчитывает 

1,..., 1
maxk k

ll p
ε ε

= −
= . 

Проверяется условие остановки k
optε ε< . Если условие выполняется, шаг завершается.  
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4. В том случае, когда условие остановки алгоритма не выполняется, процессор p собирает 

множества ( )k
lSΦ . Множество kH  строится на основе исключения доминируемых 

решений из объединения 1kH −  и ( )
1,..., 1

k
l

l p
S

= −
Φ . Рассчитывается база ( )k kT y H= .  

5. Процессор p отсылает процессорам с номерами от 1 до 1p −  построенную базу kT . 

Переходим к следующей итерации. 

Шаг 2 метода МСП для многопроцессорной системы был реализован с использованием 

интерфейса MPI. MPI является библиотекой процедур, предназначенной для работы с 

многопроцессорной системой. С помощью вызовов процедур библиотеки MPI осуществляется 

взаимодействие и синхронизация в рамках многопроцессорной системы процессов 

распределенной программы, предварительно закодированных на обычном последовательном языке 

программирования. В настоящее время библиотека MPI стала стандартом и является развитой 

системой параллельного программирования с передачей сообщений, которая позволяет 

создавать эффективные, надежные и переносимые параллельные программы высокого уровня 

(см. [100]), т.е. программы могут выполняться на вычислительных машинах с различной 

архитектурой. 

 

3.7.2 Результаты экспериментов с параллельной формой шага 2 

Вычислительные эксперименты проводились с целью выяснить зависимость 

эффективности параллельной формы шага 2 от числа процессоров. Изучалась среднее время 

обработки одной точки из выборки, включающей локальную скалярную оптимизацию и другие 

операции, т.е. величина p
p

opt

t
N n

τ =
⋅

, где optN  – объем выборки на каждой итерации, n – число 

итераций алгоритма, pt  – время работы алгоритма на p процессорах. Эксперимент проводился с 

моделью, включающей наиболее важное из водохранилищ Ангарского каскада, а именно, 

Иркутского водохранилища. Эксперимент был проведен для , . 1000optN = 10n =



180 
 

 

Рис. 3.7.1 График зависимости величины pτ  от числа процессоров 

На рисунке 3.7.1 приведен график зависимости величины pτ  при увеличении числа 

используемых процессоров от 10 до 100. Как видно, при росте числа процессоров величина pτ  

падала с 1.1 с до 0.15 с. Для того, чтобы исключить влияние случайности на полученные 

результаты, перед началом расчетов использовался генератор псевдослучайных чисел с одной и 

той же стартовой точкой. 

Рассмотрим теперь масштабируемость (ускорение) и эффективность параллельной 

формы алгоритма. Ускорением параллельной формы алгоритма называют отношение времени 

выполнения последовательной формы к времени выполнения параллельной формы, т.е. 1
p

p

tS
t

=  

График зависимости ускорения pS  от числа процессоров приведен на рисунке 3.7.2. Как видно, 

алгоритм хорошо масштабируется для рассмотренного числа процессоров, т.е. время 

выполнения алгоритма уменьшается пропорционально числу используемых процессоров. 

 

Рис. 3.7.2 График зависимости ускорения от числа процессоров 
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Зависимость эффективности использования процессоров, определяемая соотношением 

pSE pp = , от числа процессоров приведена на рисунке 3.7.3.  

 
Рис. 3.7.3 График зависимости эффективности от числа процессоров 

Как видно на рисунке, при росте числа процессоров от 10 до 100 эффективность алгоритма 

уменьшается с 1 до 0.67. Падение эффективности можно объяснить большим разбросом затрат 

времени на решение одной задачи оптимизации в зависимости от стартовой точки, что 

приводит к неравномерной загрузке процессоров.  

Были также проведены эксперименты по использованию большего числа процессоров. В 

рамках этих экспериментов шаг 2 применялся для аппроксимации ОЭП в модели, построенной 

на основе использования известной функции пиков, многокритериальный вариант которой 

предложен в [27]. Была рассмотрена задача с двумерным вектором решений и пятью 

критериями. Для 2000 процессоров был построен график зависимости эффективности 

параллельной формы алгоритма от числа процессоров.  
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Рис. 3.7.4 График зависимости эффективности от числа процессоров 

Очевидно, что с ростом числа процессоров эффективность алгоритма начинает 

уменьшаться. Поэтому данная форма алгоритма не позволяет полностью использовать 

потенциал суперкомпьютеров при более чем нескольких сотнях процессоров. Таким образом, 

предложенная выше схема распараллеливания шага 2 при использовании более сотни 

процессоров нуждается в совершенствовании. Решение этой задачи выходит за пределы данной 

диссертации. 

3.8 Описание комплекса программ 

Как следует из экспериментов, описанных в данной главе, наиболее эффективными 

методами аппроксимации ОЭП в рассматриваемых задачах МКО являются методы ИО, МСП и 

ДМСП. В состав разработанного комплекса программ, реализованного средствами 

алгоритмического языка С++, входят три соответствующих программы аппроксимации ОЭП, 

реализующие эти методы, а также несколько вспомогательных модулей.  

Метод инжекции оптимумов 

Блок-схема программы аппроксимации ОЭП методом инжекции оптимумов дана на 

рисунке 3.8.1. Шаг 1 реализуется модулем глобальной мимнимизации частных критериев. 

Основу программы шага 2 метода ИО составляет модуль генетического алгоритма NSGA-II, 

взятый из [95] и дополненный модулем расчета значений критериев для варианта решения. 
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Рис. 3.8.1 Блок-схема программы аппроксимации ОЭП методом инжекции оптимумов 

Параметрами программы являются: 

• параметры модуля расчета значений критериев; 

• параметры модуля поиска глобальных оптимумов критериев; 

• параметры модуля генетического алгоритма NSGA-II; 

• периодичность инжекции оптимумов; 

• правило остановки алгоритма. 

Базовый вариант метода стартовой площадки 

Прежде чем переходить к блок-схеме МСП, рассмотрим использующуюся в нем блок-

схему вспомогательного модуля многокритериального мультистарта для сверток 

вспомогательных функций, которая дана на рисунке 3.8.2. 
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Рис. 3.8.2 Блок-схема модуля многокритериального мультистарта для сверток 

вспомогательных функций 

Основу модуля составляет «Модуль локальной оптимизации свертки вспомогательных 

функций», описанный в главе 2 и включающий связь с модулем расчета невязок для модели 

многошаговой системы (рис. 2.5.1). 

Параметрами модуля являются: 

• параметры модуля локальной оптимизации свертки вспомогательных функций; 

• параметрическое семейство сверток вспомогательных функций; 

• выборка начальных точек. 

Рассмотрим блок-схему программы аппроксимации ОЭП базовым вариантом метода 

стартовой площадки (рис. 3.8.3), в состав которой входит программа аппроксимации ОЭП 

методом инжекции рекордистов (рис. 3.8.1). Уточним, что на блок-схеме под блоком 

«Многокритериальный мультистарт» имеется в виду блок, реализующий многокритериальный 

мультистарт для сверток вспомогательных функций (рис. 3.8.2).  
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Рис. 3.8.3 Блок-схема программы аппроксимации ОЭП базовым вариантом метода 

стартовой площадки 

Параметрами программы являются: 

• параметры модуля расчета значений критериев; 

• параметры модуля инжекции оптимумов; 

• параметры модуля многокритериального мультистарта для сверток 

вспомогательных функций; 

• объем случайной выборки; 

• правило остановки алгоритма. 

Дополненный метод стартовой площадки 

На рисунке 3.8.4 дана блок-схема программы аппроксимации ОЭП дополненным 

методом стартовой площадки. В состав программы входит модуль базового варианта метода 

стартовой площадки (рис. 3.8.3).  
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Рис. 3.8.4 Блок-схема программы аппроксимации ОЭП дополненным методом стартовой 

площадки 

Параметрами программы являются: 

• параметры модуля расчета значений критериев; 

• параметры модуля базового метода стартовой площадки; 

• параметры блока генетического алгоритма NSGA-II; 

• число итераций генетического алгоритма. 

Обратим внимание на то, что также возможно распараллеливание всех алгоритмов, в том числе 

и генетического, за счет распараллеливания процессов расчета критериев по заданным 

параметрам правил управления. 

Программное обеспечение МСП, адаптированное к задаче оптимизации правил 

управления каскадом водохранилищ, было зарегистрировано в Федеральной службе по 

интеллектуальной собственности (Свидетельство о государственной регистрации программы 

для ЭВМ № 2020663645 от 30 октября 2020 г.) 
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Заключение. Основные результаты работы 

1. Разработаны и исследованы численные методы аппроксимации ОЭП для нелинейных 

динамических многошаговых систем с критериями типа уровня обеспеченности, 

характеризуемыми большим числом локальных экстремумов;  

2. На основе разработанных методов аппроксимации ОЭП реализована новая методика 

многокритериальной оптимизации управления многошаговой динамической системой с 

критериями типа уровня обеспеченности;  

3. Разработана и включена в многошаговую балансовую модель каскада водохранилищ 

математическая модель правила управления каскадом и обоснована процедура 

вариантного расчета траекторий по заданным параметрам правила управления; 

4. Разработаны и экспериментально исследованы численные методы оптимизации 

разрывных многоэкстремальных критериев типа уровня обеспеченности и их сверток; на 

основе этих методов предложена новая диалоговая итеративная человеко-машинная 

процедура решения задач многокритериальной оптимизации, не требующая глобальной 

оптимизации свертки критериев; 

5. Разработано программное обеспечение; реализующее предложенные методы, которое 

использовано для решения задачи многокритериальной оптимизации правил управления 

Ангарским каскадом водохранилищ, включая регулирование уровня озера Байкал. 
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