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Введение 

Актуальность работы 

Задача моделирования динамики финансовых активов является одной из актуальных 

задач финансовой математики [1]. Данная задача возникает как при оценке справедливой 

стоимости производных финансовых инструментов [2-4], так и оценке ценовых рисков [5-7] 

(а также их хеджировании [8-10]. На данный момент существует множество моделей, 

решающих поставленную задачу, все они делятся на два подхода. Первый подход основан 

на использовании физической вероятностной меры, а второй – риск-нейтральной 

(равновесной) [11;12]. Проблема первого подхода заключается в том, что физическая 

вероятностная мера является ретроспективной, что затрудняет прогнозирование будущих 

цен финансовых активов. Поэтому все большую актуальность приобретает использование 

моделей на основе риск-нейтральной меры. Риск-нейтральная вероятностная мера – это 

такая мера, что стоимость финансового инструмента на текущий момент времени равна 

математическому ожиданию стоимости цены в будущем, дисконтированному к текущему 

моменту времени (по безрисковой ставке процента) [11].  

Теория расчета премии опционов европейского типа на одномерном полном рынке 

включает огромное количество публикаций, среди которых в целях диссертации следует 

выделить работы Блэка Ф. и Шоулза М. [13], Харрисона Дж. и Крепса Д. [14], Кокса Дж., 

Росса Р., Рубинштейна М. [15], Ширяева А. Н., Кабанова Ю. М., Крамкова Д. О., 

Мельникова А. В. [16], Фёльмера Г. и Шида А. [17], Волкова С. Н., Крамкова Д. О. [18]. В 

данных исследованиях доказывается, что в полных рынках риск-нейтральная 

(мартингальная) мера существует и она единственна, также приводится ее явный вид, что, 

в свою очередь, позволяет найти стоимость опциона и построить совершенный 

хеджирующий портфель. 

Однако, в случае неполного рынка, риск-нейтральная мера не единственна. Существует 

несколько основных методов выбора риск-нейтральной меры, большинство из которых 

основаны на следующих принципах:  

1. Максимум индивидуальной функции полезности инвестора [19;20]; 

2. Минимум энтропии мартингальной вероятностной меры [21];  

3. Минимум затрат при несовершенном хеджировании портфеля инвестором [22].  

В работе “Option pricing in incomplete markets” [19] выводится локальная риск-

нейтральная мера, которая отвечает стратегии максимизации индивидуальной функции 

полезности инвестора, однако в работе рассматривается только случай нормального 
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распределения. В работе “A Discrete Time Equivalent Martingale Measure” [22] доказывается, 

что расширенный принцип Гирсанова отвечает единственной риск-нейтральной мере, 

которая получается (в результате несовершенного хеджирования) минимизацией условного 

математического ожидания квадрата затрат по физической мере 

min
ηt−1

𝔼ℙ[с̃𝑡
2(𝑆̃𝑡)|ℱ𝑡−1], 

где 𝔼ℙ[∗ |ℱ𝑡] − условное математическое ожидание по мере ℙ относительно 𝜎 −

алегры ℱ𝑡, с̃𝑡(𝑆̃𝑡) − скорректированные на риск затраты хеджирования портфеля активов,  

𝑆̃𝑡 −приведенная стоимость базового актива 𝑆𝑡, ηt−1 −количество базового актива 𝑆𝑡 в 

момент времени 𝑡 − 1. 

Если функцию полезности представить в виде прибыли инвестора, то задача 

минимизации затрат будет соответствовать двойственной задаче, отвечающей максимуму 

функции полезности. Таким образом, инвестору будет невыгодно отклоняться от 

оптимальной стратегии, которой будет соответствовать единственная мера, а 

соответственно и премия опционного контракта.  

В работе Ширяева А.Н. [16] также описывается случай неполного рыка, для которого 

характерно то, что стоимость портфеля может оказаться как выше, так и ниже функции 

обязательств инвестора. Оптимальной стратегией для инвестора будет та, которая 

соответствует минимальному отклонению стоимости портфеля 𝑋𝑇
𝜋(𝑋0

𝜋)
 от функции 

обязательств 𝑓𝑇 , 

min
𝑋0
𝜋
𝔼ℙ [(

𝑓𝑇
𝐵𝑇
− 𝑋𝑇

𝜋(𝑋0
𝜋)
)
2

], 

где 𝑋𝑡
𝜋 − капитал портфеля в момент времени 𝑡 состоящего из 𝜂𝑡 единиц базового актива 

𝑆𝑡, 𝐵𝑇 − стоимость безрискового актива в момент времени 𝑇. Данной стратегии 

соответствует значение начального капитала инвестора 

𝑋0
𝜋 =

𝔼ℚ[𝑓𝑇]

(1 + 𝑟)𝑇
. 

Таким образом, премия опциона должна оцениваться как математическое ожидание 

функции обязательств по риск-нейтральной мере, дисконтированное по безрисковой ставке 

процента (𝑟).  

Объединяя результаты вышеупомянутых работ, можно заключить, что оптимальной, с 

точки зрения инвестора, будет являться мера, получаемая с помощью расширенного 
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принципа Гирсанова, и, в условиях неполного рынка, стоимости премий опционных 

контрактов будут оцениваться с помощью, данной риск-нейтральной меры. Однако, во всех 

работах, посвященных расширенному принципу Гирсанова [23], не рассматриваются 

случаи, когда производящая функция моментов для распределения не определена, что 

сильно ограничивает применение расширенного принципа Гирсанова для оценки премий 

опционов. Существуют работы [24] в которых используются подходы построения риск-

нейтральной меры, включающие использование приближения производящей функции 

моментов (до 4-го порядка). Недостатком данных методов является их неточность, из-за 

чего требуется проводить дополнительные исследования оценки точности приближения 

функции степенным рядом (оценка остатка ряда) и устойчивости метода трансформации 

вероятностной меры.  

В работе, посвященной расширенному принципу Гирсанова [22], рассматривается 

случай многомерного случайного процесса, что позволяет находить риск-нейтральную 

меру для моделирования динамики базовых активов. На практике оценивание параметров 

таких моделей как ARIMA-GARCH для многомерного случайного процесса сопряжено с 

большими вычислительными сложностями. Это связано с тем, что приходится решать 

оптимизационную задачу для параметров всех уравнений моделей базовых активов, а также 

моделей их ковариаций. Данная проблема решается с помощью применения одного из 

методов сокращения размерности – метода главных компонент, либо метода независимых 

компонент [25].  

Метод главных компонент позволяют выражать каждый случайный процесс через 

линейную комбинацию независимых компонент. В силу того, что в новой системе 

координат компоненты получаются статистически независимыми, оценку параметров 

можно проводить отдельно для каждой компоненты. В результате возникает вопрос о 

возможности построения риск-нейтральной динамики для базовых активов через линейную 

комбинацию динамик главных компонент. При выводе риск-нейтральной динамики в 

случае одного актива, используют понятие безрисковой процентной ставки базового 

актива, которая лежит в основе безарбитражности, однако главные компоненты не имеют 

экономического смысла, поэтому для них не существует безрисковая ставка. На данный 

момент, в современной литературе не представлены методы объединяющие методы 

декомпозиции случайных процессов и нахождение риск-нейтральных мер.  

Целью диссертационного исследования является построение риск-нейтральной меры 

для ARIMA-GARCH случайного процесса с ошибками, имеющими распределение 𝑆𝑢 

Джонсона, и использование этой меры для расчета стоимости опционов. При помощи 
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метода главных компонент данный результат обобщается на случай многомерного 

распределения базовых активов. 

Для достижения поставленной цели необходимо было решить следующие задачи: 

1. Найти производящую функцию моментов для распределения 𝑆𝑢 Джонсона в виде 

степенного ряда, провести анализ данного ряда на сходимость. 

2. Модифицировать расширенный принцип Гирсанова для получения моментов 

случайного процесса относительно риск-нейтральной меры.  

3. Найти коэффициенты модели ARIMA-GARCH, обеспечивающие риск-

нейтральную динамику случайного процесса (одномерный случай). 

4. Применить метод главных компонент и модификацию расширенного принципа 

Гирсанова для нахождения коэффициентов моделей ARIMA-GARCH, 

обеспечивающих риск-нейтральную динамику случайного многомерного 

процесса. 

5. Разработать пакет компьютерных программ для численной оценки справедливой 

стоимости опционов относительно физической и риск-нейтральной меры. 

6. Разработать пакет компьютерных программ для численной оценки VaR (value at 

risk, стоимостная мера риска) портфеля опционов относительно физической и 

риск-нейтральной меры. 

7. Провести численные эксперименты для оценки эффективности полученной 

теории.  

Методы исследования 

Основные результаты получены методами теории рядов, теории меры, теории 

оптимизации, теории вероятностей, эконометрики.  

Научная новизна: 

Основные результаты диссертации являются новыми и заключаются в следующем: 

1. Осуществлена модификация расширенного принципа Гирсанова, в которой 

вместо логарифмических приращений рассматриваются относительные 

приращения случайного процесса. 

2. На основе модификации расширенного принципа Гирсанова получена новая 

риск-нейтральная вероятностная мера позволяющая совершать переход от 

физической меры случайных процессов к их риск-нейтральным аналогам. Данная 

мера обобщает результаты расширенного принципа Гирсанова на случай 

распределений, не имеющих производящей функции моментов.  



8 

3. Показано, что полученная вероятностная мера на основе модификации 

расширенного принципа Гирсанова дает возможность оценивать моменты 

любого порядка относительно риск-нейтральной меры для случайных процессов, 

функции плотности распределения которых не имеют производящей функции 

моментов.  

4. На основе модификации расширенного принципа Гирсанова получена 

аналитическая форма ARIMA-GARCH модели случайного процесса, с ошибками, 

распределенными по закону 𝑆𝑢 Джонсона, обеспечивающая риск-нейтральную 

динамику процесса.  

5. На основе модификации расширенного принципа Гирсанова и метода главных 

компонент получен метод, позволяющий моделировать совместную риск-

нейтральную динамику случайных процессов.  

Основные положения, выносимые на защиту: 

1. Модификация расширенного принципа Гирсанова. Риск-нейтральная мера, полученная 

на основе модификации расширенного принципа Гирсанова. Аналитический вид 

модели ARIMA-GARCH на основе риск-нейтральной меры для одномерного и 

многомерного случайного процесса. Результаты опубликованы в [26].  

2. Модификация численного метода Монте-Карло (на основе метода главных компонент) 

для поиска цен/мер риска на основе риск-нейтральной динамики базовых активов. 

Результаты опубликованы в [28]. 

3. Программный комплекс “Калькулятор расчета стоимости и риск-метрик опционов на 

основе риск-нейтральной динамики базовых активов” для численного решения задачи 

поиска цен/ мер риска опционных контрактов на основе риск-нейтральных цен базовых 

активов. Результаты экспериментов сравнения оценки премий опционов с рыночными 

ценами. Результаты экспериментов бэк-тестирования оценки однодневного VaR 

портфеля опционных контрактов Результаты опубликованы в [27; 28].  

Эти положения соответствуют областям исследования 2,5,6 из паспорта специальности 

1.2.2 – Математическое моделирование, численные методы и комплексы программ. 

Интерпретация и практическая значимость полученных результатов: 

• На основании работ других авторов, посвященных риск-нейтральному 

моделированию цен базовых активов и оценке стоимости европейских опционов, 

сделан вывод о применимости полученной модификации расширенного принципа 

Гирсанова для моделирования цен базовых активов с распределениями, не 
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имеющими производящей функции моментов. Полученные ARIMA-GARCH модели 

на основе риск-нейтральной меры позволяют более точно производить оценку 

справедливой стоимости производных финансовых инструментов; 

• Результаты, полученные для вектора случайных величин базовых активов, 

позволяют проводить риск-нейтральное моделирование портфеля базовых активов 

на основе метода главных компонент, что с одной стороны позволяет сократить 

размерность исходной задачи, с другой – учитывать линейные связи базовых 

активов друг с другом. Все это дает возможность оценивать меры риска (VaR (value 

at risk, стоимостная мера риска), CVaR (expected shortfall, ожидаемые потери)), 

необходимые для современного риск-менеджмента при принятии управленческих 

решений.  

Апробация работы. Основные результаты работы докладывались на: 

• Научном семинаре кафедры Исследования операций ВМК МГУ. 

• Научном семинаре кафедры теории вероятностей механико-математического 

факультета МГУ. 

• Ломоносов-2020 секция «Вычислительная математика и кибернетика». 

• Научная конференция «Тихоновские чтения 2020». 

• Ломоносовские чтения 2020. «Секция вычислительной математики и кибернетики». 

Личный вклад. Личный вклад автора состоит в получении производящей функции 

моментов для распределения 𝑆𝑢 Джонсона в виде степенного ряда, анализе его на 

сходимость, изменении предположений расширенного принципа Гирсанова, 

доказательстве основных теорем расширенного принципа Гирсанова при новых 

предположениях, получении случайного процесса ARIMA-GARCH на основе риск-

нейтральной меры. Также автором рассматривается случай совместного моделирования 

портфеля базовых активов, в результате чего строится алгоритм получения коэффициентов 

ARIMA-GARCH системы базовых активов на основе риск-нейтральной вероятностной 

меры. В Главе 4 и Приложении А представлены программные реализации, описанных в 

Главе 2 моделей ARIMA-GARCH случайных процессов на основе риск-нейтральной меры. 

Программный код позволяет оценивать параметры моделей и проводить оценку 

справедливой стоимости опционных контрактов европейского типа. В Главе 5 и 

Приложении Б представлены программные реализации, описанного в Главе 3 метода 

моделирования риск-нейтральной динамики портфеля базовых активов. Программный код 

позволяет оценивать меру риска VaR (однодневный) и проводить процедуру бэк-

тестирования с целью валидации построенной модели. Постановка задач и проведение 
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научных исследований в рамках первых трех глав осуществлялись под руководством д.т.н. 

Голембиовского Д.Ю. Все основные результаты Глав 2-4 опубликованы с статьях [26;27] в 

соавторстве с проф. Голембиовским Д.Ю. Результаты Глав 3, 5 опубликованы в статье [28] 

без соавторства. В работах, опубликованных с соавтором, вклад диссертанта был 

определяющим. 

Публикации. Основные результаты по теме диссертации изложены в 7 печатных 

изданиях ([26-32]). Первые две статьи опубликованы в журнале, входящем в список 

SCOPUS, третья статья - в журнале, входящем в список ВАК. Получено Свидетельство о 

государственной регистрации программы для ЭВМ. 

Объем и структура работы. Диссертация состоит из введения, пяти глав, заключения и 

двух приложений. Полный объем диссертации составляет 126 страниц с 54 рисунками и 38 

таблицами. Список литературы содержит 91 наименование. 
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ГЛАВА 1 Расширенный принцип Гирсанова и его применение к ARIMA-GARCH 

моделям 

Расширенный принцип Гирсанова является одним из основных методов получения риск-

нейтральной меры из физической. Данный подход исходит из предположений, что 

инвестор, в ходе динамического хеджирования собственного портфеля, минимизирует 

математическое ожидание квадрата затрат на его хеджирование. Таким образом, данную 

задачу, с экономической точки зрения, можно рассматривать как двойственную задаче 

максимизации индивидуальной функции полезности. В ходе динамического хеджирования, 

с учетом минимизации затрат, естественным способом получается мера, которая обладает 

свойством риск-нейтральности. Согласно доказанной в работе [22] теореме, данная мера 

единственна, что позволяет говорить об однозначности определения справедливой 

стоимости опциона для неполного рынка в условиях расширенного принципа Гирсанова. 

1.1 Расширенный принцип Гирсанова 

 

В рамках модели расширенного принципа Гирсанова, рассматриваются логарифм 

отношения цен базового актива во времени (логарифмическая доходность) 

𝑌𝑡 = ln (
𝑆𝑡
𝑆𝑡−1

), 
(1.1) 

где 𝑆𝑡 – стоимость базового актива в момент времени 𝑡, выраженная в единицах валюты 

рассматриваемого финансового инструмента (опциона). При переходе к дисконтированным 

ценам базового актива (𝑆𝑡̃ = 𝑒
−𝑟𝑡𝑆𝑡), где 𝑟 − безрисковая процентная ставка по базовому 

активу, условие риск-нейтральности примет следующий вид:  

𝔼ℙ[𝑆𝑡̃|ℱ𝑡−1] = 𝑆̃𝑡−1, (1.2) 

где 𝔼ℙ − математическое ожидание относительно меры ℙ, ℱ𝑡−1 − фильтрация 

относительно меры ℙ.  

Динамика дисконтированных цен базового актива описывается следующим образом: 

𝑆𝑡̃ = 𝑆̃0𝐴𝑡𝑀𝑡 ,   𝐴𝑡 =∏𝔼ℙ[

𝑡

𝑘=1

𝑆̃𝑘

𝑆̃𝑘−1
|ℱ𝑡−1],   𝑀𝑡 =

𝑆̃𝑡

𝑆̃0𝐴𝑡
, 

 

(1.3) 

где процесс 𝑀𝑡 является мартингалом: 

𝔼ℙ[𝑀𝑡|ℱ𝑡−1] = 𝔼
ℙ [

𝑆̃𝑡
𝑆̃0𝐴𝑡

|ℱ𝑡−1] =

𝑆̃𝑡−1𝔼
ℙ [
𝑆̃𝑡
𝑆̃𝑡−1

|ℱ𝑡−1]

𝑆̃0𝐴𝑡
=
𝑆̃𝑡−1

𝐴𝑡
𝐴𝑡−1

𝑆̃0𝐴𝑡
=

𝑆̃𝑡−1

𝑆̃0𝐴𝑡−1
= 𝑀𝑡−1. 
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Поделив левую и правую части выражения (1.3) на 𝑆̃𝑡−1, получим  

 𝑆𝑡̃ = 𝑆̃𝑡−1𝔼
ℙ [

𝑆̃𝑡

𝑆̃𝑡−1
|ℱ𝑡−1]

𝑀𝑡

𝑀𝑡−1
= 𝑆̃𝑡−1𝑒

ln(𝔼ℙ[
𝑆̃𝑡

𝑆̃𝑡−1
|ℱ𝑡−1])

𝑊𝑡 = 𝑆̃𝑡−1𝑒
𝑣𝑡𝑊𝑡, где 𝑊𝑡 =

𝑀𝑡

𝑀𝑡−1
. 

Учитывая, что ln (𝔼ℙ [
𝑆̃𝑡

𝑆̃𝑡−1
|ℱ𝑡−1]) = −𝑟 + ln(𝔼

ℙ[𝑒𝑌𝑡|ℱ𝑡−1]) получим 
𝑆̃𝑡

𝑆̃𝑡−1
=

𝑆𝑡

𝑆𝑡−1
𝑒−𝑟  ⟹

ln (𝔼ℙ [
𝑆̃𝑡

𝑆̃𝑡−1
|ℱ𝑡−1]) = −𝑟 + ln (𝔼

ℙ [
𝑆𝑡

𝑆𝑡−1
|ℱ𝑡−1]) = − 𝑟 + ln(𝔼

ℙ[𝑒𝑌𝑡|ℱ𝑡−1]). В итоге 

окончательный вид динамики базового актива примет следующий вид: 

𝑆𝑡̃ = 𝑆̃𝑡−1𝑒
−𝑟+ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])𝑊𝑡 = 𝑆̃𝑡−1𝑒

𝑣𝑡𝑊𝑡. 
(1.4) 

Как видно из выражения (1.4), условие (1.2) выполняется когда −𝑟 + ln(𝔼ℙ[𝑒𝑌𝑡|ℱ𝑡−1]) = 0, 

то есть условие риск-нейтральности можно записать следующим образом: 

𝔼ℙ[𝑒𝑌𝑡|ℱ𝑡−1] = 𝑒
𝑟 . (1.5) 

Расширенный принцип Гирсанова опирается на понятия эквивалентности мер и 

производной Радона-Никодима [33,34]. Напомним, что вероятностная мера ℚ называется 

эквивалентной мартингальной мерой (equivalent martingale measure EMM) относительно 

меры ℙ (обозначение ℚ ≈ ℙ), если ∀𝐵 ∈ ℱ:ℚ(𝐵) = 0 ⟺ ℙ(𝐵) = 0. Процесс 𝑆𝑡̃ является 

мартингальным относительно меры ℚ, если он согласован, интегрируем и (𝔼ℚ[𝑆𝑡̃|ℱ𝑡−1] =

𝑆̃𝑡−1,   (𝔼
ℚ[𝑆𝑡̃|ℱ𝑘] = 𝑆𝑘̃, 𝑘 ≤ 𝑡),   𝑡 = 0,… , 𝑇). Понятие производной Радона-Никодима 

вытекает непосредственно из понятия об эквивалентности мер. Пусть ℚ и ℙ две меры на 

(Ω, ℱ). Если ℚ ≈ ℙ, тогда существует неотрицательная борелевская функция 𝑓 на Ω, такая, 

что ℚ(𝐵) = ∫𝑓𝑑ℙ , 𝐵 ∈ ℱ. Более того, 𝑓 единственна, т.к. если ℚ(𝐵) = ∫𝑔𝑑ℙ , ∀𝐵 ∈ ℱ, то 

𝑓 = 𝑔. Функция 𝑓 =
𝑑ℚ

𝑑ℙ
 называется производной Радона-Никодима. В расширенном 

принципе Гирсанова утверждается, что случайный процесс 𝑍𝑡, соответствующий 

производной Радона-Никодима 
𝑑ℚ

𝑑ℙ
|ℱ𝑡−1, 

𝑑ℚ

𝑑ℙ
|ℱ𝑡−1 = 𝑍𝑡 =∏

𝑔𝑊𝑘
ℙ (

𝑆̃𝑘
𝑆̃𝑘−1

) 𝑒𝑣𝑘

𝑔𝑊𝑘
ℙ (𝑒−𝑣𝑘

𝑆̃𝑘
𝑆̃𝑘−1

)

𝑡

𝑘=1

, 

 

(1.6) 

где 𝑔𝑊𝑘
ℙ  − условная (относительно ℱ𝑘−1)  плотность распределения величины 𝑊𝑘 по 

мере ℙ, обеспечивает риск-нейтральную динамику для 𝑆̃𝑡 в новой мере ℚ. Таким 

образом, процесс 𝑆̃𝑡 в новой мере ℚ относительно старой ℙ должен являться 

мартингалом. Или, беря во внимание, что процесс Mt является мартингалом 
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относительно меры ℙ, закон распределения случайного процесса 𝑆̃𝑡  новой мере ℚ 

должен совпадать с законом распределения 𝑀t по мере ℙ: ℒℚ(𝑆̃𝑡|ℱ𝑡−1) = ℒ
ℙ(𝑀𝑡|ℱ𝑡−1).  

Для случайного процесса 𝑌𝑘 с условной плотностью распределения 𝑓𝑌𝑘
ℙ , 

производная Радона-Никодима примет следующий вид [23] 

𝑑ℚ

𝑑ℙ
|ℱ𝑡−1 = 𝑍𝑡 =∏

𝑓𝑌𝑘
ℙ (𝑌𝑘 − 𝑟 + ln (𝑀𝑌𝑘|ℱ𝑘−1(1)))

𝑓𝑌𝑘
ℙ (𝑌𝑘)

𝑡

𝑘=1
, 

(1.7) 

где 𝑀𝑌𝑘|ℱ𝑘−1(1) – значение условной производящей функции моментов в точке 1. Для 

перехода к распределению по мере ℚ используется производящая функция моментов 

𝑀𝑌𝑡
ℚ(𝑐) = 𝑒

−𝑐(−𝑟+ln(𝑀𝑌𝑘|ℱ𝑡−1
(1)))

𝑀𝑌𝑡
ℙ(𝑐). 

(1.8) 

В условиях неполного рынка цена опциона определяется исходя из соображений 

потенциального выигрыша экономического агента. Одним из способов подобного 

определения является максимизация индивидуальной функции полезности. Данный 

способ описан в статье “ The GARCH option pricing model” [35], где выведена локальная 

риск-нейтральная мера. Данная метрика соответствует максимальному значению 

функции полезности экономического агента. Другой способ поиска цены 

финансового инструмента – минимизация издержек [22]. Рассмотрим портфель 

стоимости 𝑉𝑡, состоящий из 𝜂𝑡  единиц базового актива 𝑆̃𝑡, которые агент динамически 

меняет каждый день, затрачивая на это капитал в размере 𝑐𝑡(𝑆̃𝑡), 

𝑉𝑡 = 𝜂𝑡𝑆̃𝑡 = 𝜂𝑡−1𝑆̃𝑡 + 𝑐𝑡(𝑆̃𝑡) ⟹ 𝑐𝑡(𝑆̃𝑡) = 𝜂𝑡𝑆̃𝑡 − 𝜂𝑡−1𝑆̃𝑡. (1.9) 

Изменение стоимости портфеля за один промежуток времени составит 

𝑉𝑡 − 𝑉𝑡−1 = 𝜂𝑡−1𝑆̃𝑡 + 𝑐𝑡(𝑆̃𝑡) − 𝜂𝑡−2𝑆̃𝑡−1 − 𝑐𝑡−1(𝑆̃𝑡−1)

= 𝜂𝑡−1𝑆̃𝑡 + 𝑐𝑡(𝑆̃𝑡) − 𝜂𝑡−2𝑆̃𝑡−1 − 𝜂𝑡−1𝑆̃𝑡−1 + 𝜂𝑡−2𝑆̃𝑡−1

= 𝜂𝑡−1(𝑆̃𝑡 − 𝑆̃𝑡−1) + 𝑐𝑡(𝑆̃𝑡). 

То есть изменение стоимости портфеля состоит из прироста капитал и капитальных 

затрат. Перепишем выражение изменения стоимости портфеля в следующем виде: 

𝑉𝑡 = 𝑉𝑡−1 + 𝜂𝑡−1(𝑆̃𝑡 − 𝑆̃𝑡−1) + 𝑐𝑡(𝑆̃𝑡). 

Можно сделать вывод, что если процессы 𝑉𝑡 и 𝑆̃𝑡 в новой мере ℚ является мартингалами, то 

средние затраты по новой мере должны быть нулевые, то есть 

𝔼ℚ[𝑐𝑡(𝑆̃𝑡)|ℱ𝑡−1] = 0. 
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Расширенный принцип Гирсанова определяет стоимость хеджа с использованием 

скорректированных на риск цен активов (𝑆̃𝑡𝑒
ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟) 

с̃𝑡(𝑆̃𝑡) = 𝑉𝑡 (𝑆̃𝑡𝑒
ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟) − 𝜂𝑡−1𝑆̃𝑡𝑒

ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟 ⟹ с̃𝑡 (𝑆̃𝑡𝑒
− ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])+𝑟)

= 𝑐𝑡(𝑆̃𝑡). 

Согласно расширенному принципу Гирсанова, экономический агент действует так, чтобы 

минимизировать квадрат условного математического ожидания, скорректированной на 

риск стоимости хеджирующей позиции. В соответствии с этим утверждением 

формулируется утверждение об эквивалентности задачи минимизации стоимости 

хеджирующей позиции и меры расширенного принципа Гирсанова.  

Утверждение 1.  

Стратегия хеджирования 𝜋 = (𝜂𝑡 , 𝑡 = 1,… , 𝑇), реализующая 

min
ηt−1

𝔼ℙ[с̃𝑡
2(𝑆̃𝑡)|ℱ𝑡−1] , ∀𝑡 = 1,… , 𝑇 (1.10) 

соответствует выбору замены меры с плотностью 

∏

𝑔𝑊𝑘
ℙ (

𝑆̃𝑘
𝑆̃𝑘−1

) 𝑒𝑣𝑘

𝑔𝑊𝑘
ℙ (𝑒−𝑣𝑘

𝑆̃𝑘
𝑆̃𝑘−1

)

𝑇

𝑘=1

. 

(1.11) 

 

 

𝜕с̃𝑡
2(𝑆̃𝑡)

𝜕ηt−1
= −2𝑐̃𝑡(𝑆̃𝑡)𝑆̃𝑡𝑒

ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟 = 0 ⟹ min
ηt−1

𝔼ℙ[с̃𝑡
2(𝑆̃𝑡)|ℱ𝑡−1] =

= 𝔼ℙ [𝑐̃𝑡(𝑆̃𝑡)𝑆̃𝑡𝑒
ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟|ℱ𝑡−1] = 0. 

Пусть ℎ𝑡(𝑆̃𝑡) – условная плотность распределения 𝑆̃𝑡 по фильтрации ℱ𝑡−1, тогда 

∫ 𝑐̃𝑡(𝑠̃𝑡)𝑠̃𝑡𝑒
ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟 ℎ𝑡(𝑠̃𝑡)𝑑𝑠̃𝑡 = 0. 

Так как 𝑆̃𝑡 = 𝑆̃𝑡−1𝑒
ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟𝑊𝑡 = 𝑆̃𝑡−1𝑒

v𝑡𝑊𝑡, то 
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ℎ𝑡(𝑆̃𝑡) = 𝑃(𝑆̃𝑡 < 𝑎)𝑎=𝑆̃𝑡

′
= 𝑃 (

𝑆̃𝑡

𝑆̃𝑡−1
𝑒
− ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])+𝑟 <

𝑎

𝑆̃𝑡−1
𝑒
−ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])+𝑟)

𝑎=𝑆̃𝑡

′

=

=

𝑔𝑊𝑡
ℙ (

𝑆̃𝑡
𝑆̃𝑡−1

𝑒− ln(𝔼
ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])+𝑟) 𝑒−ln(𝔼

ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])+𝑟

𝑆̃𝑡−1
=

𝑔𝑊𝑡
ℙ (

𝑆̃𝑡
𝑆̃𝑡−1

𝑒−𝑣𝑡) 𝑒−𝑣𝑡

𝑆̃𝑡−1
, 

∫ 𝑐̃𝑡(𝑠̃𝑡)𝑠̃𝑡𝑒
ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟 ℎ𝑡(𝑠̃𝑡)𝑑𝑠̃𝑡 = [𝑈𝑡 = 𝑆̃𝑡𝑒

ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])−𝑟] =

= ∫
𝑐̃𝑡 (𝑢𝑡𝑒

𝑟−ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])) 𝑢𝑡𝑔𝑊𝑡
ℙ (

𝑢𝑡
𝑠̃𝑡−1

)

𝑠̃𝑡−1
𝑑𝑢𝑡 = [𝑈𝑡 = 𝑆̃𝑡] =

= ∫
𝑐̃𝑡 (𝑠̃𝑡𝑒

𝑟−ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])) 𝑠̃𝑡𝑔𝑊𝑡
ℙ (

𝑠̃𝑡
𝑠̃𝑡−1

)

𝑠̃𝑡−1
𝑑𝑠̃𝑡 =

= [с̃𝑡 (𝑠̃𝑡𝑒
𝑟−ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])) = 𝑐𝑡(𝑠̃𝑡)] = ∫

𝑐𝑡(𝑠̃𝑡)𝑠̃𝑡𝑔𝑊𝑡
ℙ (

𝑠̃𝑡
𝑠̃𝑡−1

)

𝑠̃𝑡−1
𝑑𝑠̃𝑡 =

= ∫𝑐𝑡(𝑠̃𝑡)𝑠̃𝑡

𝑔𝑊𝑡
ℙ (

𝑠̃𝑡
𝑠̃𝑡−1

)

𝑠̃𝑡−1ℎ𝑡(𝑠̃𝑡)
ℎ𝑡(𝑠̃𝑡)𝑑𝑠̃𝑡 = 0. 

В результате получаем, что минимум квадрата условного математического ожидания, 

скорректированной на риск, стоимости хеджирующей позиции по мере ℙ, равен минимуму 

квадрата условного ожидания стоимости хеджирующей позиции по мере ℚ, где 

𝑑ℚ

𝑑ℙ
=

𝑔𝑊𝑡
ℙ (

𝑆̃𝑡
𝑆̃𝑡−1

)

𝑆̃𝑡−1ℎ𝑡(𝑆̃𝑡)
ℎ𝑡(𝑆̃𝑡)𝑑𝑆̃𝑡

ℎ𝑡(𝑆̃𝑡)𝑑𝑆̃𝑡
=

𝑔𝑊𝑡
ℙ (

𝑆̃𝑡
𝑆̃𝑡−1

)

𝑆̃𝑡−1ℎ𝑡(𝑆̃𝑡)
. 

Подставляя в полученное выражение ℎ𝑡(𝑆̃𝑡) и беря во внимание, что условие 

min
ηt−1

𝔼ℙ[с̃𝑡
2(𝑆̃𝑡)|𝐺𝑡−1] должно выполняться для ∀𝑡 = 1, … , 𝑇, получим 

𝑑ℚ

𝑑ℙ
=∏

𝑔𝑊𝑘
ℙ (

𝑆̃𝑘
𝑆̃𝑘−1

) 𝑒𝑣𝑘

𝑔𝑊𝑘
ℙ (𝑒−𝑣𝑘

𝑆̃𝑘
𝑆̃𝑘−1

)

𝑇

𝑘=1

. 
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Утверждение 2. 

Замена меры 
𝑑ℚ

𝑑ℙ
 Утверждения 1 является единственной заменой меры, соответствующей 

хеджирующей стратегии, при которой инвестор следует условию min
ηt−1

𝔼ℙ[с̃𝑡
2(𝑆̃𝑡)|𝐺𝑡−1]. 

Доказательство можно найти в [22]. Таким образом, найденная мера, соответствует случаю, 

когда инвестор минимизирует свои затраты на динамическое хеджирование позиции 

активов. Это условие соответствует единственной мере, найденной согласно расширенному 

принципу Гирсанова.  

Для неполного рынка характерны случаи, когда стоимость портфеля может 

оказаться меньше функции обязательств и инвестор не сможет погасить их, либо стоимость 

портфеля может оказаться слишком высокой по сравнению с величиной обязательств, что 

приведет к лишним затратам на начальный капитал. Таким образом предлагается 

воспользоваться методом хеджирования в среднеквадратическом, то есть стратегией 

𝜋∗,минимизирующей среднеквадратичную ошибку: [36] 

𝔼 [(
𝑓𝑇
𝐵𝑇
− 𝑉𝑇

𝜋∗)
2

] ≤ 𝔼 [(
𝑓𝑇
𝐵𝑇
− 𝑉𝑇

𝜋)
2

]. 
(1.12) 

Пусть 𝐺𝑇
𝜋 = 𝑉𝑇

𝜋 − 𝑉0
𝜋, тогда 

𝔼 [(
𝑓𝑇
𝐵𝑇
− 𝑉0

𝜋∗ − 𝐺𝑇
𝜋∗)

2

] ≤ 𝔼 [(
𝑓𝑇
𝐵𝑇
− 𝑉0

𝜋 − 𝐺𝑇
𝜋)
2

]. 

Введем также ℎ̂ =
𝑓𝑇

𝐵𝑇
−

𝑥

𝐵0
, где 𝑥 = 𝑉0

𝜋, тогда 

𝔼 [(ℎ̂ − 𝐺𝑇
𝜋∗)

2
] ≤ 𝔼 [(ℎ̂ − 𝐺𝑇

𝜋)
2
], 

𝔼ℚ[𝑉𝑇
𝜋] = 𝔼ℙ[𝑍𝑇𝑉𝑇

𝜋] = 𝑉0
𝜋⟹ 𝔼ℚ[𝐺𝑇

𝜋∗] = 0 = 𝔼ℙ[𝑍𝑇𝐺𝑇
𝜋∗] ⟹ 𝑍𝑇 ⊥ 𝐺𝑇

𝜋∗ . 

𝐺𝑇
𝜋∗ = ℎ̂ − 𝑍𝑇

𝔼ℙ[𝑍𝑇ℎ̂]

𝔼ℙ[𝑍𝑇
2]

 
(1.13) 

Так как вектор 𝑍𝑇 перпендикулярен 𝐺𝑇
𝜋∗, то 𝐺𝑇

𝜋∗ удовлетворяющий выражению (1.13), будет 

являться ближайшим вектором к ℎ̂. 

Рассмотрим функции 

𝑅(𝑥, 𝜋) = 𝔼ℙ [(
𝑓𝑇
𝐵𝑇
− 𝑉𝑇

𝜋(𝑥))
2

] ⟹ 𝑅(𝑥∗, 𝜋∗) = 𝔼ℙ [(
𝑓𝑇
𝐵𝑇
− 𝑉𝑇

𝜋∗(𝑥))
2

] ≤ 𝔼ℙ [(
𝑓𝑇
𝐵𝑇
− 𝑉𝑇

𝜋(𝑥))
2

]

= 𝑅(𝑥, 𝜋), 
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𝑟(𝑥) = 𝑅(𝑥, 𝜋∗(𝑥)) = 𝔼ℙ [(
𝑓𝑇
𝐵𝑇
− 𝑉𝑇

𝜋∗(𝑥)
)
2

] = 𝔼ℙ [(ℎ̂ − 𝐺𝑇
𝜋∗(𝑥)

)
2

] = 𝔼ℙ [(−𝑍𝑇
𝔼ℙ[𝑍𝑇ℎ̂]

𝔼ℙ[𝑍𝑇
2]
)

2

]

=
(𝔼ℙ[𝑍𝑇ℎ̂])

2

𝔼ℙ[𝑍𝑇
2]

= [ℎ̂ =
𝑓𝑇
𝐵𝑇
−
𝑥

𝐵0
] =

(𝔼ℙ [
𝑓𝑇
𝐵𝑇
𝑍𝑇] − 𝔼

ℙ [
𝑥
𝐵0
𝑍𝑇])

2

𝔼ℙ[𝑍𝑇
2]

=
(𝔼ℚ [

𝑓𝑇
𝐵𝑇
] −

𝑥
𝐵0
𝔼ℚ[1])

2

𝔼ℙ[𝑍𝑇
2]

=
(𝔼ℚ [

𝑓𝑇
𝐵𝑇
] −

𝑥
𝐵0
)
2

𝔼ℙ[𝑍𝑇
2]

. 

Минимум функции 𝑟(𝑥), очевидно, будет достигаться в точке 

𝑥∗ = 𝐵0𝔼
ℚ [
𝑓𝑇
𝐵𝑇
] =

𝔼ℚ[𝑓𝑇]

(1 + 𝑟)𝑇
. 

Таким образом, начальный капитал 𝑉0
𝜋 обеспечивает оптимальное соотношение между 

начальными затратами инвестора и возможностями обеспечения его обязательств. 

Использование меры, полученной на основе расширенного принципа Гирсанова, позволяет 

оптимизировать затраты с точки зрения начальных вложений и минимальной стоимости 

хеджирующей позиции. Другими словами, портфель инвестора аппроксимирует 

самофинансируемый портфель (такой инвестиционный портфель, изменения цены 

которого определяются только начальным вложением  𝑉0
𝜋 и колебаниями курса (без каких- 

либо дополнительных вложений) [36].  

В качестве метода оценки математического ожидания 𝔼ℚ[𝑓𝑇] в работе используется 

метод Монте-Карло [37], суть которого заключается в многократном моделировании 

случайного процесса при помощи генератора случайных величин с последующим 

использованием полученной статистики для вычисления оценки математического 

ожидания.  

1.2 ARIMA(p,d,q)-GARCH(P,Q) модели временных рядов  

 

В соответствии с разделом 1.1, в качестве объекта моделирования выступает 

логарифмическая доходность 𝑌𝑡 = ln (
𝑆𝑡

𝑆𝑡−1
). Это удобно в том плане, что разные цены 

имеют разные шкалы, в то время как доходность не зависит от масштаба, что значительно 

облегчает анализ сравнения активов. Временной ряд 𝑌𝑡 рассматривается как дискретный 

случайный процесс (𝑌𝑡, 𝑡 ∈ ℤ) [38;39]. Как правило, временной ряд разбивается на две 

составляющие [40;41] 
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𝑌𝑡 = 𝑚𝑡 + 𝜖𝑡, 

𝜖𝑡 = √ℎ𝑡𝜀𝑡, 

(1.14) 

где 𝑚𝑡 −предсказуемый процесс, 𝜖𝑡 −недетерминированный процесс, описываемый белым 

шумом 𝜀𝑡. Рассмотрим фильтрацию, ассоциированную с моделью (1.14), 

ℱ𝑡 −последовательность возрастающих 𝜎 − алгебр ℱ, представляющая всю информацию 

рынка к моменту времени 𝑡. Тогда 𝑚𝑡 и ℎ𝑡 определяются как условные математическое 

ожидание и дисперсия случайного процесса 𝑌𝑡,  

𝑚𝑡 = 𝔼[𝑌𝑡|ℱ𝑡−1], (1.15) 

ℎ𝑡 = 𝑉𝑎𝑟[𝑌𝑡|ℱ𝑡−1]. (1.16) 

Модель 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) является комбинацией моделей 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) – 

(autoregressive integrated moving average) интегрированная модель авторегрессии и 

скользящего среднего) [42-44] и 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) – обобщенной авторегрессионной условной 

гетероскедастичности [41]. Рассмотрим отдельно каждую из них. 

ARIMA модель находит свое применение в математической статистике и эконометрике 

благодаря своей простоте интерпретации и обширному кругу описываемых процессов. 

Модель представляет собой временной ряд в виде суммы предсказуемой компоненты, 

условного среднего с учетом накопленной информации к предыдущему моменту времени 

и непрогнозируемой ошибки. Модель 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) является обобщением модели 

𝐴𝑅𝑀𝐴(𝑝, 𝑞), которая имеет вид 

𝑌𝑡 = 𝑚𝑡 + 𝜀𝑡,   𝜀𝑡~𝑖𝑖𝑑(0, ℎ), ℎ > 0, 

𝑚𝑡 = 𝔼[𝑌𝑡|ℱ𝑡−1] =

= 𝜙0 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 +⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1

+ 𝜃2𝜀𝑡−2+. . +𝜃𝑞𝜀𝑡−𝑞, 

 

 

(1.17) 

где временной ряд 𝑌𝑡 − стационарный процесс в широком смысле [45], случайные ошибки 

𝜀𝑡 являются независимыми белыми шумами [46;47] (с одинаковыми законами 

распределения, нулевыми средними и дисперсиями ℎ), 𝜙𝑘, 𝑘 = 0, … , 𝑝 и 𝜃𝑙 , 𝑙 = 0,… , 𝑞 −

 параметры модели, принадлежащие области действительных чисел, которые 

характеризуют вклад предшествующих моментов времени в значение 𝑌𝑡. Параметры 𝑝, 𝑞 

характеризуют порядок модели, то есть количество предшествующих моментов времени, 

которые влияют на текущее значение 𝑌𝑡. Зачастую, на практике, данные значения выбирают 

не больше 3.  

 Стационарность в широком смысле предполагает, что среднее, дисперсия и ковариация 

𝑌𝑡 не зависят от момента времени 𝑡, то есть  



19 

𝔼[𝑌𝑡] = 𝜇 < ∞,   𝑉𝑎𝑟[𝑌𝑡] = 𝛾0,   𝐶𝑜𝑣[𝑌𝑡, 𝑌𝑡−𝑘] = 𝛾𝑘. (1.18) 

С помощью оператора запаздывания 𝐿 можно привести ряд 𝑌𝑡 = 𝑐 + ∑ 𝛼𝑖𝑌𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1  к виду 

(1 − ∑ 𝛼𝑖𝐿
𝑖𝑝

𝑖=1 )𝑌𝑡 = 𝑐 + 𝜀𝑡⟹ 𝑌𝑡 = (1 − ∑ 𝛼𝑖𝐿
𝑖𝑝

𝑖=1 )
−1
(𝑐 + 𝜀𝑡) = (1 − 𝜆1𝐿)

−1 ×…× (1 −

𝜆𝑝𝐿)
−1
(𝑐 + 𝜀𝑡). Из данного выражения видно, что для выполнения условия (1.18), 

необходимо чтобы существовали обратные множители (1 − 𝜆𝑖𝐿)
−1 = [𝜆𝑖𝐿 < 1] =

∑ (𝜆𝑖𝐿)
𝑘∞

𝑘=1 , для этого необходимо, чтобы корни 𝜇𝑖 =
1

𝜆𝑖
 уравнения 1 − ∑ 𝛼𝑖𝐿

𝑖𝑝
𝑖=1  были по 

модулю больше 1, то есть лежали вне единичного круга. В случае если имеется 𝑘 

единичных корней по модулю равных единице, то 𝑌𝑡(1 − 𝐿)
𝑘∏ (1 − 𝜆𝑖𝐿)

𝑝−𝑘
𝑖=1 = 𝑐 + 𝜀𝑡. Так 

как 𝑌𝑡(1 − 𝐿)
𝑘 = 𝑌𝑡 ∑ 𝐶𝑘

𝑖𝐿𝑖𝑘
𝑖=0 = ∆𝑘𝑌𝑡, где ∆𝑘 −разностный оператор порядка 𝑘, 

определяемый рекуррентно по формулам ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1, … , ∆
𝑘𝑌𝑡 = ∆

𝑘−1𝑌𝑡 − ∆
𝑘−1𝑌𝑡−1 и 

|𝜆𝑖| < 1, ∀𝑖 = 1,… , 𝑝 − 𝑘, полученный случайный процесс ∆𝑘𝑌𝑡 будет являться 

стационарным. Модель 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) получается из подели 𝐴𝑅𝑀𝐴(𝑝, 𝑞) если в качестве 

𝑌𝑡 взять разность 𝑌𝑡 порядка 𝑑 [48], 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)[𝑌𝑡] = 𝐴𝑅𝑀𝐴(𝑝, 𝑞)[∆
𝑑𝑌𝑡]. (1.19) 

Обобщая результаты, можно сказать, что любой нестационарный ряд можно привести к 

стационарному последовательно производя дифференцирование [48] (беря разности), 

которое последовательно убирает все единичные корни характеристического многочлена. 

𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) модель применяется в эконометрике для описания случайных процессов, 

у которых условная дисперсия ряда зависит от прошлых значений дисперсий и значений 

самого ряда. Данные модели предназначены для описания эффекта кластеризации 

волатильности на финансовых рынках (смена периодов высокой волатильности периодами 

низкой волатильности, при условии, что средняя (долгосрочная) волатильность стабильна) 

[40;41]. Модель GARCH с ненулевым средним значением случайного процесса  𝑌𝑡 

записывается в следующем виде: 

𝑌𝑡 = 𝑐 + 𝜖𝑡, 

𝜖𝑡 = 𝜎𝑡𝜀𝑡, 

𝜎𝑡
2 = 𝛼0 +∑ 𝛼𝑖

𝑃

𝑖=1
𝜖𝑡−𝑖
2 +∑ 𝛽𝑗

𝑄

𝑗=1
𝜎𝑡−𝑗
2 , 

 

(1.20) 

где 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑃, 𝛽𝑗 > 0, 𝑗 = 1,… , 𝑄, 𝑐 = 𝑐𝑜𝑛𝑠𝑡, 𝜀𝑡~𝐹(0,1). Так как 𝔼[𝑌𝑡] = 𝑐, 

дисперсия равна 𝑉𝑎𝑟[𝑌𝑡] = 𝔼[𝑌𝑡 − 𝔼[𝑌𝑡]]
2
= 𝔼[𝜎𝑡

2𝜀𝑡
2] = 𝔼[𝜎𝑡

2] = 𝔼[𝛼0 + ∑ 𝛼𝑖
𝑃
𝑖=1 𝜖𝑡−𝑖

2 +

∑ 𝛽𝑗
𝑄
𝑗=1 𝜎𝑡−𝑗

2 ] = 𝛼0 + ∑ 𝛼𝑖
𝑃
𝑖=1 𝔼[𝜎𝑡−𝑖

2 ]𝔼[𝜀𝑡−𝑖
2 ] + ∑ 𝛽𝑗

𝑄
𝑗=1 𝔼[𝜎𝑡−𝑗

2 ], предположим, что случайный 

процесс 𝑌𝑡 стационарен, тогда 𝑉𝑎𝑟[𝑌𝑖] = 𝑉𝑎𝑟[𝑌𝑗], ∀𝑖, 𝑗 ⟹ 𝔼[𝜎𝑡−𝑖
2 ] = 𝔼[𝜎𝑡−𝑗

2 ], ∀𝑖, 𝑗 ⟹
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𝑉𝑎𝑟[𝑌𝑡] =
𝛼0

1−∑ 𝛼𝑖
𝑃
𝑖=1 −∑ 𝛽𝑗

𝑄
𝑗=1

 . Из последнего выражения вытекает необходимое условие 

стационарности процесса: ∑ 𝛼𝑖
𝑃
𝑖=1 + ∑ 𝛽𝑗

𝑄
𝑗=1 < 1. Таким образом, GARCH модель имеет 

характеристику волатильности, именуемую как возвратность к среднему значению [48].  

Следующим характеристикой GARCH процесса является показатель эксцесса (острота 

пика распределения случайной величины): 𝑘 =
𝜇4

𝜎4
=

𝔼[(𝑌𝑡−𝔼[𝑌𝑡])
4]

(𝔼[(𝑌𝑡−𝔼[𝑌𝑡])2])2
. Для наглядности 

рассмотрим модель 𝐺𝐴𝑅𝐶𝐻(1,1) со средней 𝑐 = 0. Как известно, для нормального 

распределения (в данном случае – Гауссова) 𝔼[𝜀𝑡
4] = 3, тогда  

𝔼[(𝑌𝑡 − 𝔼[𝑌𝑡])
4] = 𝔼[(𝑌𝑡)

4] = 𝔼[(𝜎𝑡𝜀𝑡)
4] = 𝔼[𝜎𝑡

4]𝔼[𝜀𝑡
4] = 3𝔼[𝜎𝑡

4] = [𝔼[𝜎𝑡
4] = 𝔼[(𝛼0 +

+𝛼1𝜎𝑡−1
2 𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2 )2] = 𝔼[𝛼0

2 + 2𝛼0𝛼1𝑌𝑡−1
2 + 2𝛼0𝛽1𝜎𝑡−1

2 + 2𝛼1𝛽1𝑌𝑡−1
2 𝜎𝑡−1

2 + 𝛼1
2𝑌𝑡−1
4 +

+𝛽1
2𝜎𝑡−1
4 ] = 𝛼0

2 + 2𝛼0𝔼[𝑌𝑡
2](𝛼1 + 𝛽1) + 2𝛼1𝛽1𝔼[𝜎𝑡

4] + 3𝛼1
2𝔼[𝜎𝑡

4] + 𝛽1
2𝔼[𝜎𝑡

4] ⟹ 𝔼[𝜎𝑡
4] =

𝛼0
2+2𝛼0𝔼[𝑌𝑡

2](𝛼1+𝛽1)

1−𝛽1
2−2𝛼1𝛽1−3𝛼1

2 ] = 3𝛼0
2 (1 + 2

𝛼1+𝛽1

1−𝛼1−𝛽1
) (1 − 𝛽1

2 − 2𝛼1𝛽1 − 3𝛼1
2)−1 = 3𝛼0

2(1 + 𝛼1 +

+𝛽1)((1 − 𝛼1 − 𝛽1)(1 − 𝛽1
2 − 2𝛼1𝛽1 − 3𝛼1

2))
−1
⟹ 𝑘 =

𝜇4

𝜎4
− 3 + 3 =

3𝛼0
2(1+𝛼1+𝛽1)(1−𝛼1−𝛽1)

1−𝛽1
2−2𝛼1𝛽1−3𝛼1

2 = 3 +
6𝛼1
2

1−𝛽1
2−2𝛼1𝛽1−3𝛼1

2. 

При выводе формулы для расчета эксцесса, имели место два знаменателя, которые не 

должны обращаться в нуль: 1 − 𝛼1 − 𝛽1 и 1 − 𝛽1
2 − 2𝛼1𝛽1 − 3𝛼1

2. Первое выполняется в 

силу необходимого условия стационарности временного ряда 𝑌𝑡, второе условие, для того, 

чтобы показатель эксцесса был больше чем эксцесс нормального распределения 

(𝑘𝑛𝑜𝑟𝑚 = 3), объединяют c условием неотрицательности 1 − 𝛽1
2 − 2𝛼1𝛽1 − 3𝛼1

2, но так как 

𝛽1
2 + 2𝛼1𝛽1 + 3𝛼1

2 = (𝛼1 + 𝛽1)
2 + 2𝛼1

2 < 1 ⟹ (𝛼1 + 𝛽1)
2 < 1 ⟹ 𝛼1 + 𝛽1 < 1, условие 

𝛽1
2 + 2𝛼1𝛽1 + 3𝛼1

2 < 1 обеспечивает стационарность случайного процесса 𝑌𝑡 и конечность 

показателя эксцесса.  

Модель 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) является комбинацией вышеописанных моделей 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) и 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄). В общем виде модель ARIMA-GARCH модель 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) имеет следующий вид 

{
 
 

 
 Δ𝑑𝑌𝑡 = 𝑚𝑡 +√ℎ𝑡𝜀𝑡, 𝜀𝑡~𝑖𝑖𝑑(0,1);

𝑚𝑡 = 𝔼[Δ
𝑑𝑌𝑡|ℱ𝑡−1] = 𝜙0 + 𝜙1Δ

𝑑𝑌𝑡−1 +⋯+ 𝜙𝑝Δ
𝑑𝑌𝑡−𝑝 + 𝜃1√ℎ𝑡−1𝜀𝑡−1 +⋯+ 𝜃𝑞√ℎ𝑡−𝑞𝜀𝑡−𝑞;

ℎ𝑡 = 𝑉𝑎𝑟[Δ
𝑑𝑌𝑡|ℱ𝑡−1] = 𝛼0 + 𝛼1ℎ𝑡−1 +⋯+ 𝛼𝑃ℎ𝑡−𝑃 + 𝛽1ℎ𝑡−1𝜀𝑡−1

2 +⋯+ 𝛽𝑄ℎ𝑡−𝑄𝜀𝑡−𝑄
2 .
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1.3 Применение расширенного принципа Гирсанова к ARIMA(p,d,q)-GARCH(P,Q) 

модели временных рядов  

 

В рамках данной работы рассматриваются нормальное распределение (N) [49], 

обобщенное экспоненциальное бета распределение второго типа (EGB2, BETTA) [50] и 

распределение 𝑆𝑢 Джонсона (JSU) [51;52]. Для первых двух распределений известны 

преобразования, приводящие к риск-нейтральным ARIMA-GARCH моделям [23]. 

Приведем, в качестве примера, применение расширенного принципа Гирсанова для первых 

двух распределений. В силу того, что 𝜀𝑡 имеет нулевое математическое ожидание и 

дисперсию равную единице, в случае ARIMA-GARCH модели с ошибкой, распределенной 

нормально, следует выбрать Гауссово распределение, которое уже имеет нужные значения 

параметров. В случае распределения EGB2 следует провести репараметризацию, то есть 

необходимо так подобрать параметры распределения, чтобы 𝜀𝑡~𝐸𝐺𝐵2(0,1). Для этого 

напомним формулы плотности и производящей функции моментов распределения 

𝐸𝐺𝐵2(𝛼, 𝛽, 𝛿, 𝜇). 

𝑓(𝑥, 𝛼, 𝛽, 𝛿, 𝜇) =
1

𝛿𝐵(𝛼, 𝛽)

(exp (
𝑥 − 𝜇
𝛿
))
𝛼

(1 + exp (
𝑥 − 𝜇
𝛿
))
𝛼+𝛽
, 

 

(1.21) 

𝑀𝜀𝑡(𝑐) =
𝐵(𝛼 + 𝛿𝑐, 𝛽 − 𝛿𝑐)

𝐵(𝛼, 𝛽)
𝑒𝜇𝑐, 

(1.22) 

где 𝐵(𝛼, 𝛽) =
Г(𝛼)Г(𝛽)

Г(𝛼,𝛽)
, Г(𝛼) − гамма-функция [53], 𝑥, 𝜇 ∈ ℝ, 𝛼, 𝛽, 𝛿 > 0. Математическое 

ожидание и дисперсия выводятся непосредственно из производящей функции моментов 

[54;55]: 

𝔼[𝜀𝑡] =
𝑑𝑀𝜀𝑡(𝑐)

𝑑𝑐
|
𝑐=0

=
𝑑

𝑑𝑐
(
Г(𝛼 + 𝛿𝑐)Г(𝛽 − 𝛿𝑐)

Г(𝛼)Г(𝛽)
𝑒𝜇𝑐)|

𝑐=0

= 𝛿

(

 
 
𝑑Г(𝑐)
𝑑𝑐

|
𝑐=𝛼

Г(𝛼)
−

𝑑Г(𝑐)
𝑑𝑐

|
𝑐=𝛽

Г(𝛽)

)

 
 
+ 𝜇

= 𝜇 + 𝛿 (
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

−
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

) =

= [𝜛(𝛼, 𝛽) =
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

−
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

] = 𝜇 + 𝛿𝜛(𝛼, 𝛽), 
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𝑉𝑎𝑟[𝜀𝑡] =
𝑑2𝑀𝜀𝑡(𝑐)

𝑑𝑐2
|
𝑐=0

− (
𝑑𝑀𝜀𝑡(𝑐)

𝑑𝑐
|
𝑐=0

)

2

=

=
𝑑

𝑑𝑐
(𝛿𝑒𝜇𝑐

𝑑Г(𝛼 + 𝛿𝑐)

𝑑𝑐

Г(𝛽 − 𝛿𝑐)

Г(𝛼)Г(𝛽)
− 𝛿𝑒𝜇𝑐

𝑑Г(𝛽 − 𝛿𝑐)

𝑑𝑐

Г(𝛼 + 𝛿𝑐)

Г(𝛼)Г(𝛽)

+ 𝜇𝑒𝜇𝑐
Г(𝛼 + 𝛿𝑐)Г(𝛽 − 𝛿𝑐)

Г(𝛼)Г(𝛽)
)|
𝑐=0

− (𝜇 + 𝛿 (
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

−
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

))

2

=

= 𝛿2
𝑑2Г(𝑐)

𝑑𝑐2
|
𝑐=𝛼

1

Г(𝛼)
+ 𝛿2

𝑑2Г(𝑐)

𝑑𝑐2
|
𝑐=𝛽

1

Г(𝛽)

+ 𝜇𝛿 (
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

1

Г(𝛼)
−
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛽

1

Г(𝛽)
) − 2𝛿

𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛽

1

Г(𝛼)Г(𝛽)

+ 𝜇2 + 𝜇𝛿 (
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

1

Г(𝛼)
−
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛽

1

Г(𝛽)
) − 𝜇2

− 2𝜇𝛿 (
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

1

Г(𝛼)
−
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛽

1

Г(𝛽)
) − 𝛿2 (

𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

1

Г(𝛼)
)

2

− 𝛿2 (
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

1

Г(𝛼)
)

2

+ 

+2𝛿
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛽

1

Г(𝛼)Г(𝛽)
=

= [
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛼

=
𝑑2Г(𝑐)

𝑑𝑐2
|
𝑐=𝛼

1

Г(𝛼)
− (
𝑑Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

1

Г(𝛼)
)

2

] =

= 𝛿2 (
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛼

+
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛽

) =

= [𝑙(𝛼, 𝛽) =
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛼

+
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛽

] = 𝛿2𝑙(𝛼, 𝛽). 

В итоге получим, что 𝑉𝑎𝑟[𝜀𝑡] = 𝛿
2𝑙(𝛼, 𝛽) = 1 ⟹ 𝛿̅ = 1/√𝑙(𝛼, 𝛽), 𝔼[𝜀𝑡] = 𝜇 + 𝛿𝜛(𝛼, 𝛽) =

0 ⟹ 𝜇̅ = −𝜛(𝛼, 𝛽)/√𝑙(𝛼, 𝛽). Тогда 𝜀𝑡|ℱ𝑡−1~𝐸𝐺𝐵2(𝛼, 𝛽, 𝛿
̅, 𝜇̅). Далее по распределению 

случайного процесса 𝜀𝑡 необходимо найти распределение 𝑌𝑡 = 𝑚𝑡 + 𝛿𝑡𝜀𝑡.  
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𝑓𝑌𝑡(𝑦𝑡) = 𝑓𝜀𝑡(ℎ(𝑦𝑡)) (
𝑑ℎ(𝑦𝑡)

𝑑𝑦𝑡
) = [𝜀𝑡 = ℎ(𝑌𝑡) =

𝑌𝑡 −𝑚𝑡
𝛿𝑡

] =

= [

𝑦𝑡 −𝑚𝑡
𝛿𝑡

 − 𝜇̅

𝛿̅
=
𝑦𝑡 −𝑚𝑡 − 𝜇̅𝛿𝑡

𝛿𝑡𝛿̅
] = [

𝑑ℎ(𝑦𝑡)

𝑑𝑦𝑡
=
1

𝛿𝑡
] =

=
1

𝛿𝑡𝛿̅𝐵(𝛼, 𝛽)

(exp (
𝑦𝑡 −𝑚𝑡 − 𝜇̅𝛿𝑡

𝛿𝑡𝛿̅
))
𝛼

(1 + exp (
𝑦𝑡 −𝑚𝑡 − 𝜇̅𝛿𝑡

𝛿𝑡𝛿̅
))
𝛼+𝛽

⟹

⟹ 𝑌𝑡|ℱ𝑡−1~𝐸𝐺𝐵2(𝛼, 𝛽, 𝛿𝑡𝛿
̅, 𝑚𝑡 + 𝜇̅𝛿𝑡). 

Пользуясь вышеописанным соотношением, запишем производящую функцию моментов 

𝑀𝜀𝑡(𝑐) =
𝐵(𝛼 + 𝛿𝑡𝛿̅𝑐, 𝛽 − 𝛿𝑡𝛿̅𝑐)

𝐵(𝛼, 𝛽)
𝑒(𝑚𝑡+𝜇̅𝛿𝑡)𝑐. 

(1.23) 

Используя формулу (1.8) получим производящую функцию моментов в риск-нейтральной 

мере ℚ 

M𝑌𝑡|ℱ𝑡−1
ℚ (𝑐) = 𝑒−𝑐(−𝑟+ln(𝑀𝑌𝑡

(1))) 𝐵(𝛼 + 𝛿𝑡𝛿̅𝑐, 𝛽 − 𝛿𝑡𝛿̅𝑐)

𝐵(𝛼, 𝛽)
𝑒(𝑚𝑡+𝜇̅𝛿𝑡)𝑐 =

=
𝐵(𝛼 + 𝛿𝑡𝛿̅𝑐, 𝛽 − 𝛿𝑡𝛿̅𝑐)

𝐵(𝛼, 𝛽)
𝑒
(𝑟−𝑙𝑛

𝐵(𝛼+𝛿𝑡𝛿̅,𝛽−𝛿𝑡𝛿̅)

𝐵(𝛼,𝛽)
)𝑐
⟹

⟹ 𝑌𝑡
ℚ|
ℱ𝑡−1

~𝐸𝐺𝐵2(𝛼, 𝛽, 𝛿𝑡𝛿̅, 𝑟 − 𝑙𝑛
𝐵(𝛼 + 𝛿𝑡𝛿̅, 𝛽 − 𝛿𝑡𝛿̅)

𝐵(𝛼, 𝛽)
). 

Пользуясь производящей функцией моментов (1.23) можно найти новые параметры 

ARIMA-GARCH модели, выпишем их: 

𝔼ℚ[𝑌𝑡|ℱ𝑡−1] = 𝑟 − 𝑙𝑛
𝐵(𝛼 + 𝛿𝑡𝛿̅, 𝛽 − 𝛿𝑡𝛿̅)

𝐵(𝛼, 𝛽)
+ 𝛿𝑡𝛿̅𝜛(𝛼, 𝛽), 

Varℚ[𝑌𝑡|ℱ𝑡−1] = 𝛿𝑡𝛿̅𝑙(𝛼, 𝛽) = 𝛿𝑡 . 

Таким образом, ARIMA-GARCH модель примет вид [23] 

Yt = 𝑟 − 𝑙𝑛
𝐵(𝛼 + 𝛿𝑡𝛿̅, 𝛽 − 𝛿𝑡𝛿̅)

𝐵(𝛼, 𝛽)
+ 𝛿𝑡𝛿̅𝜛(𝛼, 𝛽) + 𝛿𝑡𝜀𝑡, 

𝜀𝑡|ℱ𝑡−1~𝐸𝐺𝐵2(𝛼, 𝛽, 𝛿
̅, 𝜇̅), 

𝛿̅ = 1/√𝑙(𝛼, 𝛽), 

𝜇̅ = −𝜛(𝛼, 𝛽)/√𝑙(, 𝛽). 

 

 

(1.24) 
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Подобным же образом находятся риск-нейтральные коэффициенты для нормального 

(Гауссова) распределения [23],  

𝑓𝑌𝑡(𝑦𝑡) =
1

𝛿𝑡√2𝜋
𝑒
(
𝑦𝑡−𝑚𝑡
𝛿𝑡

)
2

⟹M𝑌𝑡|ℱ𝑡−1
ℙ (𝑐) = 𝑒𝑚𝑡𝑐+

1
2
𝛿𝑡
2𝑐2 ⟹M𝑌𝑡|ℱ𝑡−1

ℚ (𝑐) =

= 𝑒−𝑐(−𝑟+ln(𝑀𝑌𝑡
(1)))𝑒𝑚𝑡𝑐+

1
2
𝛿𝑡
2𝑐2 = [ln (𝑀𝑌𝑡(1)) = 𝑚𝑡 +

1

2
𝛿𝑡
2] =

= 𝑒𝑐(𝑟−
1
2
𝛿𝑡
2)+

1
2
𝛿𝑡
2𝑐2 . 

Yt = 𝑟 −
1

2
𝛿𝑡
2 + 𝛿𝑡𝜀𝑡, 

𝜀𝑡|ℱ𝑡−1~𝑁(0,1). 

 

(1.25) 

Вышеописанные формулы показывают, что преобразование меры при использовании 

расширенного принципа Гирсанова приводит к разным нейтральным к риску 

спецификациям, однако для них характерны две особенности, а именно, не меняются 

распределение случайного процесса и его переменная волатильность (условная дисперсия).   
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ГЛАВА 2 Модификация расширенного принципа Гирсанова 

 

Особенностью расширенного принципа Гирсанова является то, что он требует 

существования производящей функции моментов распределения ошибки ARIMA-GARCH 

модели (1.8). Однако существует множество распределений, для которых данная функция 

не определена, одним из таких распределений является распределение 𝑆𝑢 Джонсона [51;52]. 

Данное распределение является нелинейным преобразованием стандартного нормального 

распределения и, в силу свойств данного преобразования характеризуется наличием 

“тяжелых хвостов” [56;57] и асимметричностью [54], что позволяет достаточно хорошо 

приближать реальные цены базовых активов.  

2.1 Введение. Постановка задачи 

 

Рассматривается следующая постановка задачи обобщения результатов расширенного 

принципа Гирсанова на случай распределений не имеющих производящей функции 

моментов на примере распределения 𝑆𝑢 Джонсона:  

1. Оценить производящую функцию моментов распределения 𝑆𝑢 Джонсона; 

2. Проанализировать возможность использования полученной оценки производящей 

функции моментов к расширенному принципу Гирсанова; 

3. В случае ограниченной применимости оценки производящей функции моментов, 

предложить возможность модификации расширенного принципа Гирсанова. 

Задача может осложниться тем, что использование оценки производящей функции 

моментов влечет отклонение от оптимальной стратегии инвестора, сформулированной в 

Главе 1. Поэтому необходимо найти возможность построения риск-нейтральной меры, не 

нарушая принципа оптимальности инвестора.  

2.2 Производящая функция моментов распределения 𝑺𝒖 Джонсона 

 

Ниже приводится краткий обзор распределения 𝑆𝑢 Джонсона - 𝐽𝑆𝑈(𝜉, 𝜆, 𝛾, 𝛿) [51;52]. 

Данное распределение представляет собой четырехпараметрическое вероятностное 

распределение, которое образуется нелинейным преобразованием нормально 

распределенной случайной величины 𝑋~𝑁(0,1), 

𝑌 = 𝜉 + 𝜆 sinh (
𝑋 − 𝛾

𝛿
) = 𝑔(𝑋), 

(2.1) 
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где −∞ < 𝜉 < ∞− параметр сдвига местоположения, 0 < 𝜆 < ∞− параметр 

масштабирования, −∞ < 𝛾 < ∞− параметр асимметрии, 0 < 𝛿 < ∞− показатель 

эксцесса. Функция плотности распределения легко получается из формулы (2.1),  

𝑃(𝑌 < 𝑦) = 𝑃(𝑔(𝑋) < 𝑦) = 𝑃(𝑋 < 𝑔−1(𝑦)) ⟹ 𝑓𝑌(𝑦) = 𝑓𝑁(𝑔
−1(𝑦)) |

𝑑𝑔−1(𝑦)

𝑑𝑦
|, 

где 𝑓𝑁 −функция плотности Гауссова распределения, 𝑔−1(𝑦) = 𝛾 + 𝛿 sinh−1 (
𝑦−𝜉

𝜆
) ⟹

𝑑𝑔−1(𝑦)

𝑑𝑦
=
𝛿

𝜆

1

√1+(
𝑦−𝜉

𝜆
)
2
, окончательно, функция плотности распределения 𝑆𝑢 Джонсона примет 

следующий вид: 

𝑓𝑌(𝑦) =
𝛿

𝜆√2𝜋

1

√1 + (
𝑦 − 𝜉
𝜆
)
2

𝑒
−
1
2
(𝛾+𝛿 sinh−1(

𝑦−𝜉
𝜆
))
2

 . 
(2.2) 

Из выражения (2.2) также легко получается функция распределения 𝑆𝑢 Джонсона 

𝐹𝑌(𝑦) = Ф(𝛾 + 𝛿 sinh
−1 (

𝑦 − 𝜉

𝜆
)). 

(2.3) 

На рисунках 2.1, 2.2 приведены примеры зависимостей плотности распределения 𝑆𝑢 

Джонсона от параметров масштабирования и асимметрии.  

 

Рисунок 2.1 - Плотность распределения 𝑆𝑢 Джонсона (для разных параметров lambda) 
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Рисунок 2.2 - Плотность распределения 𝑆𝑢 Джонсона (для разных параметров gamma) 

Выпишем выражения для математического ожидания и дисперсии распределения 𝑆𝑢 

Джонсона, 

𝔼[𝑌] = 𝜉 − 𝜆𝑒
1
2𝛿2 sinh (

𝛾

𝛿
), 

(2.4) 

𝑉𝑎𝑟[𝑌] =
𝜆2

2
(𝑒

1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1). 

(2.5) 

Найдем производящую функцию моментов [54;55], для этого преобразуем выражение 

(2.1) и распишем гиперболическую функцию синуса, 

𝑌 − 𝜉

𝜆
= sinh

𝑋 − 𝛾

𝛿
=
1

2
(𝑒
𝑋−𝛾
𝛿 − 𝑒−

𝑋−𝛾
𝛿 ). 

(2.6) 

Учитывая, что случайная величина 𝑋 имеет стандартную нормальную плотность  𝑓𝑁(𝑥), 

найдем момент степени 𝑛 для выражения (2.6): 

𝔼 [(
𝑌 − 𝜉

𝜆
)
𝑛

] =
1

2𝑛
∫ (𝑒

𝑥−𝛾
𝛿 − 𝑒−

𝑥−𝛾
𝛿 )

𝑛

𝑓𝑁(𝑥)𝑑𝑥
∞

−∞

=
1

2𝑛
∫ ∑ (−1)𝑛−𝑗𝐶𝑛

𝑗
𝑒−
(𝑥−𝛾)(𝑛−2𝑗)

𝛿

𝑛

𝑗=0
𝑓𝑁(𝑥)𝑑𝑥

∞

−∞

=
1

2𝑛
∑ (−1)𝑛−𝑗𝐶𝑛

𝑗
𝑛

𝑗=0
𝑒
𝛾
𝛿
(𝑛−2𝑗)

∫ 𝑒
−
𝑥
𝛿
(𝑛−2𝑗)

𝑓𝑁(𝑥)𝑑𝑥
∞

−∞

=
1

2𝑛
∑ (−1)𝑛−𝑗𝐶𝑛

𝑗
𝑛

𝑗=0
𝑒
(𝑛−2𝑗)2

2𝛿2
+
𝛾(𝑛−2𝑗)

𝛿 . 
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Здесь мы воспользовались тем, что ∫ 𝑒−
𝑥

𝛿
(𝑛−2𝑗)𝑓𝑁(𝑥)𝑑𝑥 = 𝑀𝑋 (−

𝑛−2𝑗

𝛿
) = 𝑒

(𝑛−2𝑗)2

2𝛿2
∞

−∞
. 

Пользуясь общим видом производящей функции моментов, получим 

𝑀𝑌−𝜉
𝜆

(𝑐) = ∑
𝑐𝑛

𝑛!

∞

𝑛=0

𝔼 [(
𝑌 − 𝜉

𝜆
)
𝑛

] = ∑
𝑐𝑛

𝑛!

∞

𝑛=0

1

2𝑛
∑ (−1)𝑛−𝑗𝐶𝑛

𝑗
𝑛

𝑗=0
𝑒
(𝑛−2𝑗)2

2𝛿2
+
𝛾(𝑛−2𝑗)

𝛿 . 
(2.7) 

  

𝑀𝑌−𝜉
𝜆

(𝑐) = ∫ 𝑒
𝑦−𝜉
𝜆
𝑐𝑓𝑌(𝑦)

∞

−∞

𝑑𝑦 = 𝑒−
𝜉𝑐
𝜆 ∫ 𝑒𝑦

𝑐
𝜆𝑓𝑌(𝑦)𝑑𝑦

∞

−∞

= 𝑒−
𝜉𝑐
𝜆𝑀𝑌 (

𝑐

𝜆
) ⟹ 𝑀𝑌 (

𝑐

𝜆
) =

= 𝑀𝑌−𝜉
𝜆

(𝑐)𝑒
𝜉𝑐
𝜆 . 

Делая замену переменной 𝑐 = 𝜆𝑢, получаем 

𝑀𝑌 (
𝜆𝑢

𝜆
) = 𝑀𝑌−𝜉

𝜆

(𝜆𝑢)𝑒
𝜉𝜆𝑢
𝜆 ⟹𝑀𝑦(𝑢) = 𝑀𝑌−𝜉

𝜆

(𝜆𝑢)𝑒𝜉𝑢. 

Переходя вновь к аргументу 𝑐, 𝑀𝑌(𝑐) = 𝑀𝑌−𝜉

𝜆

(𝜆𝑐)𝑒𝜉𝑐. В конечном итоге производящая 

функция моментов примет следующий вид 

 [26]: 

𝑀𝑌(𝑐) = 𝑒
𝜉𝑐∑(

𝑐𝜆

2
)
𝑛∞

𝑛=0

1

𝑛!
∑ (−1)𝑛−𝑗𝐶𝑛

𝑗
𝑛

𝑗=0
𝑒
(𝑛−2𝑗)2

2𝛿2
+
𝛾(𝑛−2𝑗)

𝛿 . 
(2.8) 

 

2.3 Исследование возможности использования полученной производящей 

функции моментов к расширенному принципу Гирсанова 

 

Исследуем на сходимость полученный ряд, для этого отметим, что данный ряд является 

степенным и имеет вид ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0 , где 𝑥 =
с𝜆

2
,   𝑎𝑛 =

1

𝑛!
∑ (−1)𝑛−𝑗𝐶𝑛

𝑗𝑛
𝑗=0 𝑒

(𝑛−2𝑗)2

2𝛿2
+
𝛾(𝑛−2𝑗)

𝛿 . 

Найдем радиус сходимости степенного ряда [58]: 
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𝑅 = lim
𝑛→∞

|
𝑎𝑛
𝑎𝑛+1

| = lim
𝑛→∞

(𝑛 + 1)

𝜆/2
|

∑ (−1)𝑛−𝑗𝐶𝑛
𝑗𝑛

𝑗=0 𝑒
(𝑛−2𝑗)2

2𝛿2
+
𝛾(𝑛−2𝑗)

𝛿

∑ (−1)𝑛+1−𝑗𝐶𝑛+1
𝑗𝑛+1

𝑗=0 𝑒
(𝑛+1−2𝑗)2

2𝛿2
+
𝛾(𝑛+1−2𝑗)

𝛿

| =

= lim
𝑛→∞

(𝑛 + 1)

𝜆/2

𝑒
𝑛2

2𝛿2
+
𝛾𝑛
𝛿

𝑒
(𝑛+1)2

2𝛿2
+
𝛾(𝑛+1)
𝛿

|
∑ (−1)𝑛−𝑗𝐶𝑛

𝑗
𝑒
−
2𝑗𝑛
𝛿2
+
2𝑗2

𝛿2
−
2𝑗𝛾
𝛿𝑛

𝑗=0

∑ (−1)𝑛+1−𝑗𝐶𝑛+1
𝑗𝑛+1

𝑗=0 𝑒
−
2𝑗(𝑛+1)
𝛿2

+
2𝑗2

𝛿2
−
2𝑗𝛾
𝛿

| =

= [0 ≤ lim
𝑛→∞

𝐶𝑛
𝑗
𝑒
−
2𝑗𝑛
𝛿2
+
2𝑗2

𝛿2
−
2𝑗𝛾
𝛿 ≤ lim

𝑛→∞

𝑛𝑗

𝑗!
𝑒
−
2𝑗𝑛
𝛿2
+
2𝑗2

𝛿2
−
2𝑗𝛾
𝛿 = 0] =

= lim
𝑛→∞

(𝑛 + 1)

𝜆/2

𝑒
𝑛2

2𝛿2
+
𝛾𝑛
𝛿

𝑒
(𝑛+1)2

2𝛿2
+
𝛾(𝑛+1)
𝛿

= lim
𝑛→∞

(𝑛 + 1)

𝜆/2

1

𝑒
𝑛
𝛿2
+
1
2𝛿2

+
𝛾
𝛿

= 0. 

Учитывая, что 𝜆 ≠ 0, 𝛿 < ∞, получим, что ряд имеет нулевой радиус сходимости, то есть 

значение производящей функции моментов не существует для любого значения не равному 

нулю. Таким образом, использование основной формулы расширенного принципа 

Гирсанова 𝑀𝑌𝑡
ℚ(𝑐) = 𝑒

−𝑡(−𝑟+ln(𝑀𝑌𝑡
ℙ (1)))

𝑀𝑌𝑡
ℙ(𝑐) не представляется возможным по причине 

отсутствия конечного значения ln (𝑀𝑌𝑡
ℙ(1)). Однако данный степенной ряд, как 

производящая функция моментов, имеет информацию о всех моментах случайной 

величины. Находить соответствующие моменты, используя свойства производящей 

функции моментов некорректно. Напомним, что для получения математического ожидания 

и дисперсии через производящую функцию моментов необходимо знать значения первых 

двух производных в точке нуль, то есть,  

𝔼[𝑌] =
𝑑𝑀𝑌(𝑐)

𝑑𝑐
|
𝑐=0

, 
(2.9) 

𝑉𝑎𝑟[𝑌] =
𝑑2𝑀𝑌(𝑐)

𝑑𝑐2
|
𝑐=0

− (
𝑑𝑀𝑌(𝑐)

𝑑𝑐
|
𝑐=0

)

2

. 
(2.10) 

Но в случае распределения 𝑆𝑢 Джонсона, получить значение производной не 

представляется возможным по причине того, что производящая функция моментов не 

определена в окрестности нуля. Поэтому найдем математическое ожидание и дисперсию 

используя производящую функцию моментов в виде степенного ряда и беря 

соответствующие множители перед степенями разложения функции. Для удобства введем 

обозначения 

𝐴𝑛 =∑ (−1)𝑛−𝑗𝐶𝑛
𝑗

𝑛

𝑗=0
𝑒
(𝑛−2𝑗)2

2𝛿2
+
𝛾(𝑛−2𝑗)

𝛿 ,   𝐴0 = 1, 
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тогда 𝑀𝑌(𝑐) = 𝑒
𝜉𝑐 ∑ (

𝑐𝜆

2
)
𝑛

∞
𝑛=0

1

𝑛!
𝐴𝑛. Напомним, что производящая функция моментов в 

разложении имеет следующий вид [54;55]: 

𝑀𝑌(𝑐) = 1 + 𝑐𝔼[𝑌] +
𝑐2𝔼[𝑌2]

2
+
𝑐3𝔼[𝑌3]

3!
+ ⋯+

𝑐𝑛𝔼[𝑌𝑛]

𝑛!
+ ⋯. 

(2.11) 

 

Соответственно, необходимо найти коэффициенты разложения производящей функции при 

𝑐 и 𝑐2. Как легко убедиться, раскладывая 𝑒𝜉𝑐 = 1 + 𝜉𝑐 +
(𝜉𝑐)2

2
+⋯ до степени не выше 

второй, что данные коэффициенты равны 𝜉 + 𝐴1
𝜆

2
, 𝜉2 + 𝜉𝜆𝐴1 + 𝐴2

𝜆2

4
. Математическое 

ожидание совпадает с первым коэффициентом, дисперсия находится как 𝔼[𝑌2] − 𝔼[𝑌]2, 

таким образом 

𝔼[𝑌] = 𝜉 + 𝐴1
𝜆

2
, 

(2.12) 

𝑉𝑎𝑟[𝑌] =
𝜆2

4
(𝐴2 − 𝐴1

2), 
(2.13) 

где 𝐴1 и 𝐴2 получаются из соответствующей подстановки 𝐴1 = 𝑒
1

2𝛿2
−
𝛾

𝛿 − 𝑒
1

2𝛿2
+
𝛾

𝛿 =

−𝑒
1

2𝛿2 (𝑒
𝛾

𝛿 − 𝑒−
𝛾

𝛿) = −2𝑒
1

2𝛿2 sinh (
𝛾

𝛿
), 𝐴2 = 𝑒

2

𝛿2
+
2𝛾

𝛿 + 𝑒
2

𝛿2
−
2𝛾

𝛿 − 2. Преобразуем полученные 

для 𝐴1и 𝐴2 выражения: 

𝐴1 = 𝑒
1
2𝛿2

−
𝛾
𝛿 − 𝑒

1
2𝛿2

+
𝛾
𝛿 = −𝑒

1
2𝛿2 (𝑒

𝛾
𝛿 − 𝑒−

𝛾
𝛿) = −2𝑒

1
2𝛿2 sinh (

𝛾

𝛿
), 

𝐴2 = 𝑒
2
𝛿2
+
2𝛾
𝛿 + 𝑒

2
𝛿2
−
2𝛾
𝛿 − 2 = 𝑒

2
𝛿2 (𝑒

2𝛾
𝛿 + 𝑒−

2𝛾
𝛿 ) − 2 = 2𝑒

2
𝛿2 cosh (

2𝛾

𝛿
) − 2, 

Тогда математическое ожидание (2.4) получается прямой подстановкой полученного 

выражения для 𝐴1 в выражение (2.12), а дисперсия (2.5) после подстановки 𝐴1и 𝐴2 в (2.13) 

и использования свойства двойного угла для гиперболических функций: 

𝑉𝑎𝑟[𝑌] =
𝜆2

4
(𝐴2 − 𝐴1

2) =
𝜆2

4
(2𝑒

2
𝛿2 cosh (

2𝛾

𝛿
) − 2 − 4𝑒

1
𝛿2 sinh2 (

𝛾

𝛿
)) =

=
𝜆2

2
(𝑒

2
𝛿2 cosh (

2𝛾

𝛿
) − 1 − 2𝑒

1
𝛿2 sinh2 (

𝛾

𝛿
)) = [−2 sinh2 (

𝛾

𝛿
) = 1 − cosh (

2𝛾

𝛿
)]

=
𝜆2

2
(𝑒

2
𝛿2 cosh (

2𝛾

𝛿
) − 1 + 𝑒

1
𝛿2 − 𝑒

1
𝛿2 cosh (

2𝛾

𝛿
)) =

=
𝜆2

2
(𝑒

1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1), 
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что подтверждает правильность полученной производящей функции моментов для 

распределения 𝑆𝑢 Джонсона.   

2.4 Модификация расширенного принципа Гирсанова. Риск нейтральная 

динамика для ARIMA-GARCH модели с ошибками, распределенными по 

закону 𝑺𝒖 Джонсона 

 

В основе расширенного принципа Гирсанова лежит моделирование динамики логарифма 

отношения цен базового актива, которое приводит к уравнению динамики 𝑆𝑡̃ =

𝑆̃𝑡−1𝑒
−𝑟+ln(𝔼ℙ[𝑒𝑌𝑡 |ℱ𝑡−1])𝑊𝑡, где в показателе степени находится ln(𝔼ℙ[𝑒𝑌𝑡|ℱ𝑡−1]), то есть 

логарифм производящей функции моментов в точке 1, который, как было доказано в 

разделе 2.3, не существует. В рамках данной работы, для модели ARIMA-GARCH с 

ошибками, распределенными по закону 𝑆𝑢 Джонсона, предлагается моделировать 

доходность цен базовых активов: 

𝑌𝑡̃ =
𝑆𝑡
𝑆𝑡−1

− 1. 
(2.14) 

Заменим также выражение (𝑆𝑡̃ = 𝑒
−𝑟𝑡𝑆𝑡) на дискретный аналог (𝑆𝑡̃ = (1 +

𝑟

𝑛
)
−𝑛𝑡

𝑆𝑡), где 

n – количество начислений безрисковой ставки в году. Согласно разделу 1.1, динамика 

дисконтированных цен базовых активов имеет вид 

𝑆𝑡̃ = 𝑆̃𝑡−1𝔼
ℙ [
𝑆̃𝑡
𝑆̃𝑡−1

|ℱ𝑡−1]
𝑀𝑡
𝑀𝑡−1

= 𝑆̃𝑡−1𝔼
ℙ [
𝑆̃𝑡
𝑆̃𝑡−1

|ℱ𝑡−1]𝑊𝑡. 
(2.15) 

Преобразуем выражение (2.15) следующим образом: 

𝑆𝑡̃

𝑆̃𝑡−1
= (1 +

𝑟

𝑛
)
−𝑛

𝔼ℙ [
𝑆𝑡
𝑆𝑡−1

|ℱ𝑡−1]𝑊𝑡 =
𝔼ℙ[𝑌𝑡̃ + 1|ℱ𝑡−1]

(1 +
𝑟
𝑛)
𝑛 𝑊𝑡 ⟹ 𝑆𝑡̃ = 𝑆̃𝑡−1(1 + 𝜇𝑡)𝑊𝑡, 

где 𝜇𝑡 =
𝔼ℙ[𝑌𝑡̃ + 1|ℱ𝑡−1]

(1+
𝑟

𝑛
)
𝑛 − 1. 

 

Теорема 2.1.  

Процесс 𝑍𝑡 обеспечивает риск-нейтральную динамику для 𝑆𝑡̃ по новой мере ℚ 

относительно старой ℙ [26], 
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𝑑ℚ

𝑑ℙ
|ℱ𝑡−1 = 𝑍𝑡 =∏

𝑔𝑊𝑘
ℙ (

𝑆̃𝑘
𝑆̃𝑘−1

) (1 + 𝜇𝑘)

𝑔𝑊𝑘
ℙ ((1 + 𝜇𝑘)−1

𝑆̃𝑘
𝑆̃𝑘−1

)

𝑡

𝑘=1

. 

 

(2.16) 

 

Для доказательства теоремы необходимо показать, что ℒℚ(𝑆̃𝑡|𝐺𝑡−1) = ℒ
ℙ(𝑀𝑡|𝐺𝑡−1), то 

есть условный закон распределения дисконтированных цен базового актива в новой (риск-

нейтральной) мере ℚ совпадает с законом распределения случайного процесса 𝑀𝑡, который 

является мартингалом относительно физической меры ℙ.  

𝑍𝑡 = 𝑍𝑡−1

𝑔𝑊𝑡
ℙ (

𝑆̃𝑡
𝑆̃𝑡−1

) (1 + 𝜇𝑡)

𝑔𝑊𝑡
ℙ ((1 + 𝜇𝑡)−1

𝑆̃𝑡
𝑆̃𝑡−1

)

= 𝑍𝑡−1
𝑔𝑊𝑡
ℙ ((1 + 𝜇𝑡)𝑊𝑡)(1 + 𝜇𝑡)

𝑔𝑊𝑡
ℙ (𝑊𝑡)

, 

𝔼ℙ[𝑍𝑡|ℱ𝑡−1] = 𝑍𝑡−1 ∫ 𝑔𝑡
ℙ((1 + 𝜇𝑡)𝑤𝑡)(1 + 𝜇𝑡)𝑑𝑤𝑡

∞

−∞

= [(1 + 𝜇𝑡)𝑤𝑡 = 𝑞𝑡] =

= 𝑍𝑡−1 ∫ 𝑔𝑡
ℙ(𝑞𝑡)𝑑𝑞𝑡

∞

−∞

= 𝑍𝑡−1. 

Обозначим условную плотность распределения случайного процесса 𝑀𝑡 для меры ℙ как 

𝜌𝑡(𝑀𝑡), тогда 

𝜌𝑡(𝑀𝑡) = 𝑃(𝑀𝑡 < 𝑎)𝑎=𝑀𝑡
′ = 𝑃 (

𝑀𝑡
𝑀𝑡−1

<
𝑎

𝑀𝑡−1
)
𝑎=𝑀𝑡

′

= 𝑃 (𝑊𝑡 <
𝑎

𝑀𝑡−1
)
𝑎=𝑀𝑡

′

=
𝑔𝑊𝑡
ℙ (

𝑀𝑡
𝑀𝑡−1

)

𝑀𝑡−1
. 

Введем обозначение 𝑊̃𝑡 = (1 + 𝜇𝑡)𝑊𝑡, тогда структура уравнений описывающих динамики 

𝑀𝑡 и 𝑆̃𝑡 будут совпадать, 𝑀𝑡 = 𝑀𝑡−1𝑊𝑡, 𝑆̃𝑡=𝑆̃𝑡−1𝑊̃𝑡. Далее обозначим условную плотность 

случайного процесса 𝑆̃𝑡 по метрике ℚ как 𝜌̃𝑡(𝑆̃𝑡), тогда 

𝜌̃𝑡(𝑆̃𝑡) = 𝑄(𝑆̃𝑡 < 𝑎)𝑎=𝑆̃𝑡

′
= 𝑄 (

𝑆̃𝑡

𝑆̃𝑡−1
<

𝑎

𝑆̃𝑡−1
)
𝑎=𝑆̃𝑡

′

= 𝑄 (𝑊̃𝑡 <
𝑎

𝑆̃𝑡−1
)
𝑎=𝑆̃𝑡

′

=

𝑔̃
𝑊̃𝑡

ℚ (
𝑆̃𝑡
𝑆̃𝑡−1

)

𝑆̃𝑡−1
, 

где 𝑔̃
𝑊̃𝑡

ℚ − условная плотность распределения случайного процесса 𝑊̃𝑡 по мере ℚ. Таким 

образом осталось показать, что закон распределения случайного процесса 𝑊𝑡 совпадает с 

законом распределения случайного процесса 𝑊̃𝑡, 

𝑄(𝑊̃𝑡 < 𝑎|𝐺𝑡−1) = 𝔼
ℚ[𝐼{𝑊̃𝑡<𝑎}|ℱ𝑡−1]. 

Определим функцию распределения 𝐺̃𝑡
ℚ

 для 𝑊̃𝑡,  
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𝐺̃
𝑊̃𝑡

ℚ (𝑎) =
𝔼ℙ[𝑍𝑡𝐼{𝑊̃𝑡<𝑎}|ℱ𝑡−1]

𝔼ℙ[𝑍𝑡|ℱ𝑡−1]
= ∫ 𝑔𝑊𝑡

ℙ ((1 + 𝜇𝑡

∞

−∞

)𝑤𝑡)(1 + 𝜇𝑡)𝐼{𝑊̃𝑡<𝑎}𝑑𝑤𝑡 = [𝑊̃𝑡 = (1 + 𝜇𝑡)𝑊𝑡] =

= ∫ 𝑔𝑊𝑡
ℙ (𝑤̃𝑡)𝐼{𝑊̃𝑡<𝑎}𝑑𝑤̃𝑡

∞

−∞

= ∫𝑔𝑊𝑡
ℙ (𝑤̃𝑡)

𝑎

−∞

𝑑𝑤̃𝑡 = 𝐺𝑊𝑡
ℙ (𝑎),

откуда следует, что 𝑔̃
𝑊̃𝑡

ℚ
= 𝑔𝑊𝑡

ℙ . 

 

Теорема 2.2. 

Случайный процесс 𝑍𝑡, выраженный через условную плотность распределения 𝑔𝑊𝑡
ℙ  

случайного процесса 𝑊𝑡, можно представить через условную плотность распределения 𝑓𝑌̃𝑡
ℙ  

по фильтрации ℱ𝑡−1 случайного процесса 𝑌̃𝑡 [26], 

∏

𝑔𝑊𝑘

ℙ (
𝑆̃𝑘
𝑆̃𝑘−1

) (1 + 𝜇𝑘)

𝑔𝑊𝑘

ℙ ((1 + 𝜇𝑘)
−1 𝑆̃𝑘
𝑆̃𝑘−1

)

𝑡

𝑘=1

=∏
𝑓𝑌̃𝑘
ℙ (𝑌̃𝑘(1 + 𝜇𝑘)+ 𝜇𝑘)(1 + 𝜇𝑘)

𝑓
𝑌̃𝑘
ℙ (𝑌̃𝑘)

𝑡

𝑘=1

. 

 

(2.17) 

 

𝑔𝑊𝑘
ℙ (

𝑆̃𝑘

𝑆̃𝑘−1
) = 𝑃(𝑊𝑘 < 𝑎)

𝑎=
𝑆̃𝑘
𝑆̃𝑘−1

′ = 𝑃 (
𝑆̃𝑘

𝑆̃𝑘−1
(1 + 𝜇𝑘)

−1 < 𝑎)
𝑎=

𝑆̃𝑘
𝑆̃𝑘−1

′

=

= 𝑃 (
𝑆𝑘
𝑆𝑘−1

< 𝑎(1 + 𝜇𝑘) (1 +
𝑟

𝑛
)
𝑛

)
𝑎=

𝑆̃𝑘
𝑆̃𝑘−1

′

=

= 𝑃 (
𝑆𝑘
𝑆𝑘−1

− 1 < 𝑎(1 + 𝜇𝑘) (1 +
𝑟

𝑛
)
𝑛

− 1)
𝑎=

𝑆̃𝑘
𝑆̃𝑘−1

′

=

= 𝑓𝑌̃𝑘
ℙ (

𝑆̃𝑘

𝑆̃𝑘−1
(1 + 𝜇𝑘) (1 +

𝑟

𝑛
)
𝑛

− 1) (1 + 𝜇𝑘) (1 +
𝑟

𝑛
)
𝑛

=

= 𝑓𝑌̃𝑘
ℙ (𝑌̃𝑘(1 + 𝜇𝑘) + 𝜇𝑘)(1 + 𝜇𝑘) (1 +

𝑟

𝑛
)
𝑛

, 
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𝑔𝑊𝑘
ℙ ((1 + 𝜇𝑘)

−1
𝑆̃𝑘

𝑆̃𝑘−1
) = 𝑃(𝑊𝑘 < 𝑎)

𝑎=(1+𝜇𝑘)
−1 𝑆̃𝑘
𝑆̃𝑘−1

′ =

= 𝑃 (
𝑆̃𝑘

𝑆̃𝑘−1
(1 + 𝜇𝑘)

−1 < 𝑎)
𝑎=(1+𝜇𝑘)

−1 𝑆̃𝑘
𝑆̃𝑘−1

′

=

= 𝑃 (
𝑆𝑘
𝑆𝑘−1

< 𝑎(1 + 𝜇𝑘) (1 +
𝑟

𝑛
)
𝑛

)
𝑎=(1+𝜇𝑘)

−1 𝑆̃𝑘
𝑆̃𝑘−1

′

=

= 𝑃 (
𝑆𝑘
𝑆𝑘−1

− 1 < 𝑎(1 + 𝜇𝑘) (1 +
𝑟

𝑛
)
𝑛

− 1)
𝑎=(1+𝜇𝑘)

−1 𝑆̃𝑘
𝑆̃𝑘−1

′

=

= 𝑓𝑌̃𝑘
ℙ ((1 + 𝜇𝑘)

−1
𝑆̃𝑘

𝑆̃𝑘−1
(1 + 𝜇𝑘) (1 +

𝑟

𝑛
)
𝑛

− 1) (1 + 𝜇𝑘) (1 +
𝑟

𝑛
)
𝑛

=

= 𝑓𝑌̃𝑘
ℙ (𝑌𝑘)(1 + 𝜇𝑘) (1 +

𝑟

𝑛
)
𝑛

, 

𝑔𝑊𝑘
ℙ (

𝑆̃𝑘
𝑆̃𝑘−1

) (1 + 𝜇𝑘)

𝑔𝑊𝑘
ℙ ((1 + 𝜇𝑘)−1

𝑆̃𝑘
𝑆̃𝑘−1

)

=
𝑓𝑌̃𝑘
ℙ (𝑌̃𝑘(1 + 𝜇𝑘) + 𝜇𝑘)(1 + 𝜇𝑘) (1 +

𝑟
𝑛)
𝑛

(1 + 𝜇𝑘)

𝑓𝑌̃𝑘
ℙ (𝑌̃𝑘)(1 + 𝜇𝑘) (1 +

𝑟
𝑛)
𝑛

=
𝑓𝑌̃𝑘
ℙ (𝑌̃𝑘(1 + 𝜇𝑘) + 𝜇𝑘)(1 + 𝜇𝑘)

𝑓𝑌̃𝑘
ℙ (𝑌̃𝑘)

. 

 

 

Для того, чтобы понять, как изменяются параметры распределения 𝑆𝑢 Джонсона при 

переходе к новой (риск-нейтральной) мере ℚ, найдем производящую функцию моментов в 

новой мере. 

Утверждение 2.1 [26]. 

𝑀𝑌̃𝑡
ℚ(𝑐) = 𝑒

−
𝜇𝑡𝑐
1+𝜇𝑡𝑀𝑌̃𝑡

ℙ (
𝑐

1 + 𝜇𝑡
). 

 

(2.18) 

 

𝑀𝑌̃𝑡
ℚ(𝑐) = 𝔼ℚ[𝑒𝑌̃𝑡𝑐|ℱ𝑡−1] = 𝔼

ℙ [𝑒𝑌̃𝑡𝑐
𝑓𝑌̃𝑡
ℙ(𝑌̃𝑡(1 + 𝜇𝑡) + 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ(𝑌̃𝑡)

𝑍𝑡−1|ℱ𝑡−1]

= 𝔼ℙ [𝑒𝑌̃𝑡𝑐
𝑓𝑌̃𝑡
ℙ(𝑌̃𝑡(1 + 𝜇𝑡) + 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ(𝑌̃𝑡)

|ℱ𝑡−1] 𝔼
ℙ[𝑍𝑡−1|ℱ𝑡−1] 
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𝔼ℙ[𝑍𝑡−1|ℱ𝑡−1] = 𝔼
ℙ[𝑍𝑡−1]

= ∫ … ∫∏
𝑓𝑌̃𝑘
ℙ (𝑦̃𝑘(1 + 𝜇𝑘) + 𝜇𝑘)(1 + 𝜇𝑘)

𝑓𝑌̃𝑘
ℙ (𝑦̃𝑘)

𝑓𝑌̃𝑘
ℙ (𝑦̃𝑘)𝑑𝑦̃𝑘

𝑡−1

𝑘=1

∞

−∞

∞

−∞

= ∫ … ∫∏𝑓𝑌̃𝑘
ℙ (𝑦̃𝑘(1 + 𝜇𝑘) + 𝜇𝑘)(1 + 𝜇𝑘)𝑑𝑦̃𝑘 =

𝑡−1

𝑘=1

∞

−∞

∞

−∞

[𝑦̃𝑘(1 + 𝜇𝑘) + 𝜇𝑘 = 𝑢𝑘

⟹ 𝑑𝑦̃𝑘 =
𝑑𝑢𝑘
1 + 𝜇𝑘

] = ∫ … ∫∏𝑓𝑌̃𝑘
ℙ (𝑢𝑘)𝑑𝑢𝑘 =

𝑡−1

𝑘=1

∞

−∞

∞

−∞

1 

𝔼ℙ [𝑒𝑌̃𝑡𝑐
𝑓𝑌̃𝑡
ℙ(𝑌̃𝑡(1 + 𝜇𝑡) + 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ(𝑌̃𝑡)

|ℱ𝑡−1]

= ∫ 𝑒𝑦̃𝑡𝑐
𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡(1 + 𝜇𝑡) + 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡)

𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡)𝑑𝑦̃𝑡

∞

−∞

= ∫ 𝑒𝑦̃𝑡𝑐𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡(1 + 𝜇𝑡) + 𝜇𝑡)(1 + 𝜇𝑡)𝑑𝑦̃𝑡 =

∞

−∞

∫ 𝑒
(
𝑢𝑡−𝜇𝑡
1+𝜇𝑡

)𝑐
𝑓𝑌̃𝑡
ℙ(𝑢𝑡)𝑑𝑢𝑡

∞

−∞

=𝑒
−
𝜇𝑡𝑐
1+𝜇𝑡 ∫ 𝑒

𝑢𝑡(
𝑐

1+𝜇𝑡
)
𝑓𝑌̃𝑡
ℙ(𝑢𝑡)𝑑𝑢𝑡 =

∞

−∞

𝑒
−
𝜇𝑡𝑐
1+𝜇𝑡𝑀𝑌̃𝑡

ℙ (
𝑐

1 + 𝜇𝑡
) 

 

Найдем выражение плотности распределения 𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡) случайного процесса 𝑌̃𝑡 при 

условии равенства нулю математического ожидания и единице дисперсии случайного 

процесса 𝜀𝑡: 

𝔼[𝜀𝑡|ℱ𝑡−1] = 𝜉 − 𝜆𝑒
1
2𝛿2 sinh (

𝛾

𝛿
) = 0 ⟹ 𝜉 = 𝜆̃𝑒

1
2𝛿2 sinh (

𝛾

𝛿
), 

𝑉𝑎𝑟[𝜀𝑡|ℱ𝑡−1] =
𝜆2

2
(𝑒

1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1) = 1 ⟹ 𝜆̃ =

= √2((𝑒
1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1))

−
1
2

, 

𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡) = 𝑓𝜀𝑡(ℎ(𝑦𝑡)) (

𝑑ℎ(𝑦𝑡)

𝑑𝑦𝑡
) = [

𝑦𝑡 −𝑚𝑡
𝛿𝑡

 − ξ̃

𝜆̃
=
𝑦𝑡 −𝑚𝑡 − ξ̃𝛿𝑡

𝛿𝑡𝜆̃
] = [

𝑑ℎ(𝑦𝑡)

𝑑𝑦𝑡
=
1

𝛿𝑡
] ⟹ 

𝑓𝑌̃𝑡
ℙ(𝑦̃𝑡) =

𝛿

𝜆̃𝛿𝑡√2𝜋

1

√1 + (
𝑦𝑡 − (𝑚𝑡 + ξ̃𝛿𝑡)

𝛿𝑡𝜆̃
)

2
𝑒
−
1
2
(𝛾+𝛿 sinh−1(

𝑦𝑡−(𝑚𝑡+ξ̃𝛿𝑡)

𝛿𝑡𝜆̃
))

2

. 

 

 

(2.19) 

Сравнивая выражения (2.2) с выражением (2.19) приходим к выводу, что распределение 

случайного процесса имеет распределение 𝑆𝑢 Джонсона 𝐽𝑆𝑈(𝑚𝑡 + ξ̃𝛿𝑡, 𝜆̃𝛿𝑡, 𝛾, 𝛿). Ранее было 
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показано, что производящая функция моментов распределения 𝑆𝑢 Джонсона, как степенной 

ряд, имеет нулевой радиус сходимости, поэтому использовать выражение (2.18) не 

представляется возможным. Однако можно посчитать условное математическое ожидание 

и условную дисперсию относительно риск-нейтральной вероятностной меры.  

𝔼ℚ[𝑌̃𝑡|ℱ𝑡−1] = 𝔼
ℙ
[𝑌̃𝑡
𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡)

𝑍𝑡−1|ℱ𝑡−1] =

= 𝔼ℙ [𝑌̃𝑡
𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡)

|ℱ𝑡−1]𝔼
ℙ[𝑍𝑡−1|ℱ𝑡−1] =

= ∫ 𝑌̃𝑡
𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡)𝑑𝑦̃𝑡 =

∞

−∞

= ∫ 𝑌̃𝑡𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)𝑑𝑦̃𝑡 =

∞

−∞

∫ (
𝑢𝑡 − 𝜇𝑡
1 + 𝜇𝑡

)𝑓𝑌̃𝑡
ℙ
(𝑢𝑡)𝑑𝑢𝑡 =

∞

−∞

−
𝜇𝑡

1 + 𝜇𝑡

+
1

1 + 𝜇𝑡
∫ 𝑢𝑡𝑓𝑌̃𝑡

ℙ
(𝑢𝑡)𝑑𝑢𝑡 =

∞

−∞

−
𝜇𝑡

1 + 𝜇𝑡
+

1

1 + 𝜇𝑡
𝔼ℙ[𝑌̃𝑡|ℱ𝑡−1] = 

=
𝑚𝑡 + 𝛿𝑡𝜉̃ − 𝜇𝑡
1 + 𝜇𝑡

−
𝜆̃𝛿𝑡
1 + 𝜇𝑡

𝑒
1

2𝛿2 sinh (
𝛾

𝛿
) = [𝜉̃ = 𝜆̃𝑒

1

2𝛿2 sinh (
𝛾

𝛿
)] =

𝑚𝑡 − 𝜇𝑡
1 + 𝜇𝑡

=

= [𝑚𝑡 − 𝜇𝑡 =
𝑚𝑡 (1 +

𝑟
𝑛
)
𝑛

(1 +
𝑟
𝑛
)
𝑛 −

𝑚𝑡 + 1 − (1 +
𝑟
𝑛
)
𝑛

(1 +
𝑟
𝑛
)
𝑛 =

= −
(1 − (1 +

𝑟
𝑛)
𝑛
) (𝑚𝑡 + 1)

(1 +
𝑟
𝑛)
𝑛 ; 1+ 𝜇𝑡 =

𝑚𝑡 + 1

(1 +
𝑟
𝑛)
𝑛] = (1 +

𝑟

𝑛
)
𝑛

− 1 

𝔼ℚ [𝑌̃𝑡
2
|ℱ𝑡−1] = 𝔼

ℙ
[𝑌̃𝑡

2 𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡)

𝑍𝑡−1|ℱ𝑡−1] =

= 𝔼ℙ [𝑌̃𝑡
2 𝑓𝑌̃𝑡

ℙ
(𝑌̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑌̃𝑡)

|ℱ𝑡−1]𝔼
ℙ[𝑍𝑡−1|ℱ𝑡−1] =

= ∫ 𝑌̃𝑡
2 𝑓𝑌̃𝑡

ℙ
(𝑦̃𝑡(1 + 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡)

𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡)𝑑𝑦̃𝑡 =

∞

−∞

= ∫ 𝑌̃𝑡
2
𝑓𝑌̃𝑡
ℙ
(𝑦̃𝑡(1+ 𝜇𝑡)+ 𝜇𝑡)(1 + 𝜇𝑡)𝑑𝑦̃𝑡 =

∞

−∞

∫ (
𝑢𝑡 − 𝜇𝑡
1 + 𝜇𝑡

)

2

𝑓𝑌̃𝑡
ℙ (𝑢𝑡)𝑑𝑢𝑡 =

∞

−∞

=
𝜇𝑡
2

(1 + 𝜇𝑡)
2
−

2𝜇𝑡

(1 + 𝜇𝑡)
2
∫ 𝑢𝑡𝑓𝑌̃𝑡

ℙ (𝑢𝑡)𝑑𝑢𝑡

∞

−∞

+
1

(1 + 𝜇𝑡)
2
∫ 𝑢𝑡

2𝑓𝑌̃𝑡
ℙ (𝑢𝑡)𝑑𝑢𝑡

∞

−∞

=

=
𝜇𝑡
2

(1 + 𝜇𝑡)
2
−

2𝜇𝑡

(1 + 𝜇𝑡)
2
𝔼ℙ[𝑌̃𝑡|ℱ𝑡−1]+

1

(1 + 𝜇𝑡)
2
𝔼ℙ [𝑌̃𝑡

2
|ℱ𝑡−1] 
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(𝔼ℚ[𝑌̃𝑡|ℱ𝑡−1])
2
=

𝜇𝑡
2

(1 + 𝜇𝑡)
2
−

2𝜇𝑡

(1 + 𝜇𝑡)
2
𝔼ℙ[𝑌̃𝑡|ℱ𝑡−1]+

1

(1 + 𝜇𝑡)
2
(𝔼ℙ[𝑌̃𝑡|ℱ𝑡−1])

2
 

 

𝑉𝑎𝑟ℚ[𝑌̃𝑡|ℱ𝑡−1] = 𝔼
ℚ [𝑌̃𝑡

2
|ℱ𝑡−1] − (𝔼

ℚ[𝑌̃𝑡|ℱ𝑡−1])
2

=
1

(1 + 𝜇𝑡)2
(𝔼ℙ [𝑌̃𝑡

2
|ℱ𝑡−1] − (𝔼

ℙ[𝑌̃𝑡|ℱ𝑡−1])
2
) =

1

(1 + 𝜇𝑡)2
𝑉𝑎𝑟ℙ[𝑌̃𝑡|ℱ𝑡−1]

=
𝛿𝑡
2𝜆̃2

2(1 + 𝜇𝑡)2
(𝑒

1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1) =

= [𝜆̃2 =
2

(𝑒
1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾
𝛿
) + 1)

] =
𝛿𝑡
2

(1 + 𝜇𝑡)2
= 𝛿𝑡

2(
(1 +

𝑟
𝑛
)
𝑛

1 +𝑚𝑡
)

2

 

 

Модель ARIMA-GARCH для ошибок, имеющих распределение 𝑆𝑢 Джонсона примет вид 

[26] 

𝑌̃𝑡 = (1 +
𝑟

𝑛
)
𝑛

− 1 + 𝛿𝑡
(1 +

𝑟
𝑛
)
𝑛

1 +𝑚𝑡
𝜀𝑡,   𝜀𝑡|ℱ𝑡−1~𝐽𝑆(𝜉̃,𝜆̃,𝛾,𝛿), 

𝜉 = 𝜆̃𝑒
1
2𝛿2 sinh (

𝛾

𝛿
), 

𝜆̃ = √2((𝑒
1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1))

−
1
2

. 

 

 

 

(2.20) 

 

2.5 Выводы 

 

В рамках данной главы рассматривалась задача поиска риск-нейтральных 

коэффициентов ARIMA-GARCH модели с ошибками, распределенными по закону 𝑆𝑢 

Джонсона. Сложность заключалась в том, что данное распределение не имеет 

производящей функции моментов, вследствие чего применение расширенного принципа 

Гирсанова не представлялось возможным.  

В качестве первого результата была найдена производящая функция моментов 

распределения 𝑆𝑢 Джонсона в виде степенного ряда, который имеет нулевой радиус 

сходимости. Использовать данный степенной ряд в рамках расширенного принципа 

Гирсанова не представляется возможным, так как необходимо знать значение 

производящей функции моментов в точке 1.  
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Следующим важным результатом является модификация расширенного принципа 

Гирсанова, которая позволила избавиться от необходимости существования производящей 

функции моментов. Вместе с тем найден новый закон перехода к риск-нейтральной 

вероятностной мере, который позволяет, не нарушая принципов оптимальности Гирсанова 

находить риск-нейтральные ARIMA-GARCH модели. В качестве примера применения 

полученного закона (2.17) (2.18) были получены риск-нейтральные коэффициенты ARIMA-

GARCH модели с ошибками, имеющими распределение 𝑆𝑢 Джонсона.  
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ГЛАВА 3 Риск нейтральная динамика портфеля активов 

 

Оценка рисков портфеля опционных контрактов на различные базовые активы 

предполагает моделирование динамики цен этих активов. Если число активов велико, то 

для сокращения размерности часто используется метод главных компонент [59], который 

позволяет перейти от цен базовых активов к относительно небольшому числу 

некоррелированных компонент, каждая из которых может затем моделироваться отдельно. 

Метод главных компонент решает две проблемы: с одной стороны, уменьшает количество 

моделируемых объектов, позволяя сократить выборку, генерируемую при помощи метода 

Монте-Карло, с другой – оптимизационная задача нахождения статистических оценок 

параметров многомерной модели, описывающей динамику поведения цен базовых активов, 

сводится к серии независимых оптимизационных задач с меньшим числом неизвестных. В 

данной главе разрабатывается метод, позволяющий применить модификацию 

расширенного принципа Гирсанова для моделирования портфеля активов на основе метода 

главных компонент.   

3.1 Введение. Постановка задачи 

 

Рассматривается следующая постановка задачи моделирования динамики портфеля 

базовых активов: 

1. Пусть имеется портфель базовых активов 𝑆𝑡
𝑗
, где 𝑗 = 1,… , 𝑙 – номер базового актива 

в портфеле активов. 𝑌𝑡
𝑗
 – доходность базового актива 𝑗. Требуется перейти от 

доходностей базовых активов 𝑌𝑡
𝑗
 к главных компонентам 𝑋𝑡

𝑖, где 𝑖 = 1,… ,𝑚 – 

количество независимых компонент; 

2. На основе полученных компонент найти коэффициенты ARIMA-GARCH моделей 

на основе риск-нейтральной меры используя расширенный / модифицированный 

принципа Гирсанова. 

Сложность данной задачи заключается в том, что при переходе от физической метрики 

к риск-нейтральной необходимо знать безрисковую ставку базового актива. Поэтому 

элементарное применение расширенного принципа Гирсанова к некоррелируемым 

ARIMA-GARCH моделям главных компонент не представляется возможным, так как 

понятия безрисковой ставки для независимых компонент не определено. 
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3.2 Метод главных компонент 

 

Метод главных компонент [59;60] заключается в разложении случайного вектора 𝑋 =

(𝑋1, 𝑋2, … , 𝑋𝑙)
𝑇 размерности 𝑙 по линейно независимой системе векторов, отвечающей 

собственным значениям ковариационной матрицы вектора 𝑋.  

Рассмотрим центрированный вектор 𝑋̆ = 𝑋 − 𝔼[𝑋], тогда линейная модель главных 

компонент для 𝑋̆ примет вид 

𝑋̆ = 𝐴𝐹, (3.1) 

где 𝐹 = (𝐹1, 𝐹2, … , 𝐹𝑙)
𝑇 −нормированный и центрированный случайный вектор 

некоррелированных главных компонент 𝐹𝑗  (𝑗 = 1,… , 𝑙), 𝐴 = 𝑎𝑖𝑗 ∈

ℝ𝑙×𝑙 −детерминированная матрица коэффициентов разложения случайных величин 𝑋𝑖 на 

главные компоненты 𝐹𝑗. Далее излагается алгоритм нахождения случайного вектора 𝐹 и 

построения матрицы 𝐴.  

Пусть Σ = 𝔼[𝑋̆𝑋̆𝑇] −ковариационная матрица случайного вектора 𝑋. Ковариационная 

матрица является симметричной и неотрицательно определенной, поэтому имеет 𝑛 

вещественных неотрицательных собственных значений 𝜆1, 𝜆2, … , 𝜆𝑙. Введем матрицу Λ при 

условии, что 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑙: 

Λ = (
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑙

). 
(3.2) 

Рассмотрим 𝑣𝑗 = (𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑙𝑗)
𝑇
−нормированные собственные векторы матрицы Σ, 

соответствующие собственным значениям 𝜆𝑗  (𝑖 = 1,… , 𝑙). Тогда для ∀𝑗 = 1,… , 𝑙 следует, 

что 𝑑𝑒𝑡|Σ − λj𝐼| = 0, (𝑗 = 1, … , 𝑙), где 𝐼 −единичная матрица размерности 𝑙.  

Σ𝑣𝑗 = 𝜆𝑗𝑣𝑗 , 𝑗 = 1,… , 𝑙, (3.3) 

𝑣𝑖
𝑇𝑣𝑗 =∑𝑣𝑝𝑖𝑣𝑝𝑗

𝑙

𝑝=1

= 𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

, 𝑖, 𝑗 = 1,… , 𝑙 . 
(3.4) 

Введя матрицу 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑙), с учетом соотношений (3.3) и (3.4) получим 

𝑣𝑖
TΣ𝑣𝑗 = 𝜆𝑗𝑣𝑖

𝑇𝑣𝑗 = {
𝜆𝑗 , 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
, 𝑖, 𝑗 = 1,… , 𝑙 , 

(2.5) 

тогда  
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𝑉𝑇ΣV =  (
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑙

) = Λ. 
(3.6) 

Пусть 𝐹̆ = 𝑉𝑇𝑋̆, при этом, так как 𝔼[𝐹̆] = 𝔼[𝑉𝑇𝑋̆] = 𝑉𝑇𝔼[𝑋̆] = 0, то 𝐹̆ −центрированный 

вектор, а поскольку 𝔼[𝐹̆𝐹̆𝑇] = 𝔼[𝑉𝑇𝑋̆𝑋̆𝑇𝑉] = 𝑉𝑇𝔼[𝑋̆𝑋̆𝑇]𝑉 = 𝑉𝑇ΣV, то в силу (3.6) получаем, 

что компоненты случайного вектора 𝐹̆ некоррелированы и 𝑉𝑎𝑟[𝐹̆𝑗] = 𝜆𝑗  (𝑗 = 1,… , 𝑙). 

Поэтому нормированный и центрированный вектор 𝐹 равен 

𝐹 = Λ−
1
2𝐹̆ = Λ−

1
2𝑉𝑇𝑋̆. 

(3.7) 

Из Λ = 𝑉𝑇ΣV, то det(𝛬 − 𝑡𝐸) = det(𝑉𝑇𝛴𝑉 − 𝑡𝐸) = det(𝑉𝑇(𝛴 − 𝑡𝐸)𝑉) = det(𝑉𝑇) det(𝛴 −

𝑡𝐸) det(𝑉) = det(𝛴 − 𝑡𝐸), и того, что у характеристического многочлена матрицы 𝑙 −го 

порядка коэффициент при мономе 𝑡𝑙−1 равен следу матрицы, следует, что 𝑡𝑟(Σ) = 𝑡𝑟(Λ) 

(след матрицы является инвариантом относительно данного линейного преобразования). Из 

равенства следов матриц Σ и Λ получим, что 

∑𝑉𝑎𝑟[𝑋̆𝑖]

𝑙

𝑖=1

=∑𝑉𝑎𝑟[𝑋𝑖]

𝑙

𝑖=1

= 𝑡𝑟(Σ) = 𝑡𝑟(Λ) =∑𝜆𝑖

𝑙

𝑖=1

=∑𝑉𝑎𝑟[𝐹̆𝑖]

𝑙

𝑖=1

. 
(3.8) 

То есть дисперсия исходных случайных величин 𝑋1, 𝑋2, … , 𝑋𝑙 полностью описывается 

дисперсией компонент 𝐹̆1, 𝐹̆2, … , 𝐹̆𝑙, при этом, в силу сделанного предположения 𝜆1 > 𝜆2 >

⋯ > 𝜆𝑙, имеем 𝑉𝑎𝑟[𝐹̆1] > 𝑉𝑎𝑟[𝐹̆2] > ⋯ > 𝑉𝑎𝑟[𝐹̆𝑙], таким образом дисперсия каждой 

следующей компоненты будет описывать меньшую долю дисперсии исходных случайных 

величин, чем дисперсия предыдущей главной компоненты.  

Из того, что 𝔼[𝐹𝑇𝐹] = 𝐼, то Σ = 𝔼[𝑋̆𝑋̆𝑇] = 𝔼[𝐴𝐹𝑇𝐹𝐴𝑇] = 𝐴𝔼[𝐹𝑇𝐹]𝐴𝑇 = 𝐴𝐴𝑇 следует 

𝑐𝑜𝑣(𝑋𝑖, 𝑋𝐽) = 𝑐𝑜𝑣(𝑋̆𝑖, 𝑋̆𝑗) = ∑𝑎𝑖𝑝𝑎𝑗𝑝

𝑙

𝑝=1

, 𝑖, 𝑗 = 1,… , 𝑙 
(3.9) 

В частности, 𝑉𝑎𝑟[𝑋̆𝑖] = 𝑉𝑎𝑟[𝑋𝑖] = ∑ 𝑎𝑖𝑗
2𝑙

𝑗=1 , 𝑖 = 1,… , 𝑙, то есть ковариационная матрица 

случайного вектора 𝑋 полностью воспроизводится матрицей коэффициентов 𝐴. Так как 

𝔼[𝑋̆𝐹𝑇] = 𝔼[𝐴𝐹𝐹𝑇] = 𝐴𝔼[𝐹𝐹𝑇] = 𝐴, то 𝑐𝑜𝑣(𝑋𝑖, 𝐹𝑗) = 𝑎𝑖𝑗, 𝑖, 𝑗 = 1,… , 𝑙 (ковариация 

случайной величины 𝑋𝑖 и компоненты 𝐹𝑗 равна элементу матрицы коэффициентов 𝑎𝑖𝑗).  

Найдем матрицу коэффициентов 𝐴. Из того, что 𝐹̆ = 𝑉𝑇𝑋̆ следует 𝑉𝐹̆ = 𝑉𝑉𝑇𝑋̆ = 𝑋̆. 

Тогда с учетом (3.7) получим 𝑋̆ = 𝑉𝐹̆ = 𝑉Λ
1

2𝐹, откуда следует, что  

𝐴 = 𝑉Λ
1
2, 

(3.10) 
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𝐹 = Λ−
1
2𝑉𝑇𝑋̆ =

∑ 𝑣𝑖𝑗
𝑙
𝑖=1 𝑋̆𝑖

√𝜆𝑗
=
∑ 𝑎𝑖𝑗
𝑙
𝑖=1 𝑋̆𝑖

𝜆𝑗
, 𝑗 = 1,… , 𝑙. 

(3.11) 

Как правило, при моделировании случайных векторов используют 𝑘 первых главных 

компонент, которыми описывается не менее 70% дисперсии исходных случайных величин 

(𝑘 < 𝑙) [60].  

Далее приводится пример применения метода главных компонент к статистическим 

данным. В среде R Studio существует библиотека “HSAUR” [61] с набором статистических 

данных, которые использовались в качестве примера. В качестве данных были взяты 

результаты соревнований спортсменов разных стран мира в разных соревновательных 

категориях (бег с препятствиями, прыжок в высоту/длину, стрельба, бег на 200/800 метров, 

метание копья) и соответствующий общий результат. Таблица 3.1 представляет часть 

данных, полная выборка составляет 25 спортсменов.  

  hurdles highjump shot run200m longjump javelin run800m score 

Joyner (USA) 12.69 1.86 15.80 22.56 7.27 45.66 128.51 7 291.00 

John   (GDR) 12.85 1.80 16.23 23.65 6.71 42.56 126.12 6 897.00 

Behmer (GDR) 13.20 1.83 14.20 23.10 6.68 44.54 124.20 6 858.00 

Sabl   (URS) 13.61 1.80 15.23 23.92 6.25 42.78 132.24 6 540.00 

Choub  (URS) 13.51 1.74 14.76 23.93 6.32 47.46 127.90 6 540.00 

Schulz (GDR) 13.75 1.83 13.50 24.65 6.33 42.82 125.79 6 411.00 

Таблица 3.1 - Статистические данные результатов соревнований спортсменов. 

По имеющимся данным можно составить корреляционную матрицу, которая отражает 

степень взаимосвязи результатов той или иной категории (таблица 3.2).  

  hurdles highjump shot run200m longjump javelin run800m 
hurdles 1.00 -0.81 -0.65 0.77 -0.91 -0.01 0.78 
highjump -0.81 1.00 0.44 -0.49 0.78 0.00 -0.59 
shot -0.65 0.44 1.00 -0.68 0.74 0.27 -0.42 

run200m 0.77 -0.49 -0.68 1.00 -0.82 -0.33 0.62 
longjump -0.91 0.78 0.74 -0.82 1.00 0.07 -0.70 
javelin -0.01 0.00 0.27 -0.33 0.07 1.00 0.02 
run800m 0.78 -0.59 -0.42 0.62 -0.70 0.02 1.00 

Таблица 3.2 - Корреляционная таблица результатов по разным категориям спортивных 

дисциплин. 

Далее, используя полученные выше формулы, производится разделение данных на главные 

компоненты (таблица 3.3).  
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  PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Joyner (USA) -4.12 -1.24 -0.37 -0.02 0.43 -0.34 0.35 
John   (GDR) -2.88 -0.52 -0.90 0.48 -0.70 0.24 0.14 
Behmer (GDR) -2.65 -0.68 0.46 0.68 0.11 -0.24 -0.13 
Sabl   (URS) -1.34 -0.69 -0.60 0.14 -0.45 0.09 -0.49 
Choub  (URS) -1.36 -1.75 0.15 0.84 -0.69 0.13 0.24 
Schulz (GDR) -1.04 0.08 0.67 0.21 -0.74 -0.36 -0.10 

Таблица 3.3 - Данные главных компонент статистических данных таблицы 3.1. 

Как было ранее сказано, каждая следующая компонента вносит меньший вклад в 

дисперсию, рисунок 3.1 отображает данный факт, из него видно, что первая компонента 

описывает 63.718% всей дисперсии начальных данных, две компоненты уже описывают 

80.78% дисперсии, что дает возможность компактифицировать исходную размерность 

пространства 𝑙 = 7 в подпространство размерности 𝑘 = 2, то есть плоскость. На рисунке 

3.2 видно, что первая компонента позволяет узнать количество результирующих очков 

спортсмена при отсутствии информации об изначальном способе подсчета данных. 

Корреляция между первой компонентой и суммой баллов составляет -0.9912.  

 

 

Рисунок 3.1 - Доли дисперсии, объясняемые главными компонентами. 



44 

 

Рисунок 3.2 - График разброса между суммой полученных баллов и первой главной 

компонентой. 

На рисунке 3.3 представлена упомянутая выше компактификация, из нее видно, что 

векторы longjump и hurdles имеют практически разнонаправленное положение 

относительно первой компоненты, таким образом можно сделать вывод, что данные 

дисциплины коррелированы с коэффициентом корреляции близком к -1, в 

действительности данный коэффициент (таблица 3.2) составляет -0.91. Таким образом 

можно восстановить ковариационную матрицу исходных данных (7-ми дисциплин), 

которая несет в себе информацию о исходных случайных величинах.  

 

Рисунок 3.3 - Результат компактификации 7 −ми мерного исходного пространства на 

плоскость. 
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3.3 Риск нейтральная динамика портфеля активов при использовании метода 

главных компонент 

 

Описанный выше метод главных компонент позволяет существенно упростить процесс 

моделирования случайного вектора. Первым существенным преимуществом является то, 

что полученные компоненты являются некоррелированными случайными величинами. 

Поэтому каждую компоненту можно моделировать независимо, используя 𝐴𝑅𝐼𝑀𝐴 −

𝐺𝐴𝑅𝐶𝐻 модель. Это позволяет свести задачу поиска оптимальных параметров многомерной 

𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 модели к ряду оптимизационных задач по поиску оптимальных 

одномерных 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 процессов. Таким образом отпадает необходимость 

моделировать ковариации случайных процессов. Также, при помощи компактификации 

исходного пространства (см. рис. 3.3) можно избавиться от необходимости моделирования 

части компонент, что дополнительно облегчает исходную задачу. В данном разделе 

предлагается объединить результаты Главы 2 и аппарат метода главных компонент для 

получения риск-нейтральных коэффициентов 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 модели главных 

компонент портфеля активов.  

Как и ранее, рассматривается случайный процесс 𝑌𝑡
𝑗
= ln (

𝑆𝑡
𝑗

𝑆𝑡−1
𝑗 ), где 𝑗 = 1,… , 𝑙 −номер 

базового актива в общем портфеле активов. Используя метод главных компонент, можно 

получить компоненты 𝑋𝑡
𝑖, которые при помощи матрицы коэффициентов 𝐴 = (𝛼𝑗

𝑖) 

восстанавливают динамику исходного случайного процесса: 𝑌𝑡
𝑗
= ∑ 𝛼𝑗

𝑖𝑋𝑡
𝑖𝑚

𝑖=1 , где 𝑚 −общее 

количество компонент 𝑋𝑡
𝑖 в случае сокращения размерности исходного случайного вектора 

𝑚 < 𝑙. Каждая компонента (случайный процесс) описывается моделью 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) −

𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄). 

{
 
 

 
 

𝑋𝑡
𝑖 = 𝑚𝑡

𝑖 + ϵ𝑡
𝑖

ϵ𝑡
𝑖 = √ℎ𝑡

𝑖𝜀𝑡
𝑖 ,    𝜀𝑡

𝑖|~𝑖𝑖𝑑(0,1)

𝑚𝑡
i = 𝜙0

i + 𝜙1
𝑖𝑋𝑡−1
i +⋯+ 𝜙𝑝

𝑖𝑋𝑡−𝑝
i + 𝜃1

𝑖ϵ𝑡−1
i +⋯+ 𝜃𝑞

𝑖ϵ𝑡−𝑞
𝑖

ℎ𝑡
i = 𝛼0

i + 𝛼1
𝑖ℎ𝑡−1
i +⋯+ 𝛼𝑃

𝑖 ℎ𝑡−𝑃
i + 𝛽1

𝑖ϵ𝑡−1
i 2

+⋯+ 𝛽𝑄
𝑖 ϵ𝑡−𝑄
i 2

 

 

 

(3.12) 

В Главе 1 было описано, что переход к риск-нейтральной динамике случайного 

процесса 𝑌𝑡
𝑗
 происходит согласно выражению (1.8): 𝑀

𝑌𝑡
𝑗
ℚ (𝑐) = 𝑒−Λt

𝑗
𝑐𝑀

𝑌𝑡
𝑗
ℙ (𝑐), где Λt

𝑗
= −𝑟𝑗 +

ln (𝑀
𝑌𝑡
𝑗
ℙ (1)). Найдем математическое ожидание и дисперсию случайного процесса 𝑌𝑡

𝑗
 

относительно риск-нейтральной меры ℚ с помощью производящей функции моментов: 
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𝔼ℚ[𝑌𝑡
𝑗
|ℱ𝑡−1] =

𝑑𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑𝑐
|

с=0

= (−Λt
𝑗
𝑒−Λt

𝑗
с𝑀

𝑌𝑡
𝑗
ℙ (𝑐) + 𝑒−Λt

𝑗
с
𝑑𝑀

𝑌𝑡
𝑗
ℙ (с)

𝑑𝑐
)|

с=0

=

= −Λt
𝑗
+ 𝔼ℙ[𝑌𝑡

𝑗
|ℱ𝑡−1], 

 

 

(3.13) 

 

𝑑2𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑с2
|

с=0

= (−Λt
𝑗
𝑒−Λt

𝑗
с𝑀

𝑌𝑡
𝑗
ℙ (𝑐) + 𝑒−Λt

𝑗
с
𝑑𝑀

𝑌𝑡
𝑗
ℙ (с)

𝑑𝑐
)

𝑐

′

=

= Λt
𝑗2
− 2Λt

𝑗
𝔼ℙ[𝑌𝑡

𝑗
|ℱ𝑡−1] +

𝑑2𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑𝑐2
|

с=0

, 

 

 

(3.14) 

 

𝑉𝑎𝑟ℚ[𝑌𝑡
𝑗
|ℱ𝑡−1] =

𝑑2𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑с2
|

𝑡=0

− (

𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑с
|

с=0

)

2

=

= Λt
𝑗2
− 2Λt

𝑗
𝔼ℙ[𝑌𝑡

𝑗
|ℱ𝑡−1] +

𝑑2𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑𝑐2
|

с=0

− (−Λt
𝑗
+
𝑑𝑀

𝑌𝑡
𝑗
ℙ (с)

𝑑𝑐
|

с=0

)

2

=

𝑑2𝑀
𝑌𝑡
𝑗
ℚ (с)

𝑑𝑐2
|

с=0

−
𝑑𝑀

𝑌𝑡
𝑗
ℙ (с)

𝑑𝑐
|

с=0

2

= 𝑉𝑎𝑟ℙ[𝑌𝑡
𝑗
|ℱ𝑡−1]. 

 

 

(3.15) 

 

Из 𝑌𝑡
𝑗
= ∑ 𝛼𝑗

𝑖𝑋𝑡
𝑖𝑚

𝑖=1  и некоррелированности компонент, очевидны следующие соотношения 

𝔼ℙ[𝑌𝑡
𝑗
|ℱ𝑡−1] = 𝔼

ℙ[∑ 𝛼𝑗
𝑖𝑋𝑡
𝑖𝑚

𝑖=1 |ℱ𝑡−1] = ∑𝛼𝑗
𝑖𝔼ℙ[𝑋𝑡

𝑖|ℱ𝑡−1]

𝑚

𝑖=1

=∑𝛼𝑗
𝑖𝑚𝑡

𝑖

𝑚

𝑖=1

, 

𝑉𝑎𝑟ℙ[𝑌𝑡
𝑗
|ℱ𝑡−1] = 𝑉𝑎𝑟

ℙ[∑ 𝛼𝑗
𝑖𝑋𝑡
𝑖𝑚

𝑖=1 |ℱ𝑡−1] = ∑𝛼𝑗
𝑖2𝑉𝑎𝑟ℙ[𝑋𝑡

𝑖|ℱ𝑡−1]

𝑚

𝑖=1

=∑𝛼𝑗
𝑖2ℎ𝑡

𝑖

𝑚

𝑖=1

. 

 

 

(3.16) 

Из выражений (1.24, 1.25) Главы 1 видно, что случайная ошибка 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 модели 

при преобразовании расширенного принципа Гирсанова не меняется, таким образом можно 

получить закон линейного преобразования ошибки базового актива через ошибки 

компонент. Для этого заметим, что из того, что 𝑌𝑡
𝑗
= ∑ 𝛼𝑗

𝑖𝑋𝑡
𝑖𝑚

𝑖=1 , следует, что базовый актив 

будет также описываться 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 процессом 

𝑌𝑡
𝑗
= 𝑀𝑡

𝑗
+ Ω𝑡

𝑗
𝐸𝑡
𝑗
, (3.17) 

где 𝑀𝑡
𝑖 и Ω𝑡

𝑖  соответствуют выражениям (3.13). Тогда очевидно, что случайная ошибка 

модели динамики базового актива имеет вид 
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𝐸𝑡
𝑗
=∑

𝛼𝑗
𝑖√ℎ𝑡

𝑖𝜀𝑡
𝑖

√∑ 𝛼𝑗
𝑖2ℎ𝑡

𝑖𝑚
𝑖=1

𝑚

𝑖=1

. 

 

(3.18) 

Легко убедиться, что полученная ошибка имеет нулевое математическое ожидание и 

дисперсию равную единице. Таким образом выполняется условие ошибок 𝐴𝑅𝐼𝑀𝐴 −

𝐺𝐴𝑅𝐶𝐻 модели (см. (3.12)). Объединяя выражения (3.13, 3.15 - 3.18), получим риск-

нейтральную 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) модель динамики базовых активов 𝑌𝑡
𝑗
, 

𝑌𝑡
𝑗
= −Λt

𝑗
+∑𝛼𝑗

𝑖𝑚𝑡
𝑖

𝑚

𝑖=1

+√∑𝛼𝑗
𝑖2ℎ𝑡

𝑖

𝑚

𝑖=1

𝐸𝑡
𝑗
,    𝐸𝑡

𝑗
=∑

𝛼𝑗
𝑖√ℎ𝑡

𝑖𝜀𝑡
𝑖

√∑ 𝛼𝑗
𝑖2ℎ𝑡

𝑖𝑚
𝑖=1

𝑚

𝑖=1

||

ℱ𝑡−1

~𝑖𝑖𝑑(0,1). 

 

(3.19) 

Подставляя в выражение (3.19) Λt
𝑗
= −𝑟𝑗 + ln (𝑀𝑌𝑡

𝑗
ℙ (1)), можно получить динамику 

базового актива по динамикам компонент. Остается открытым вопрос нахождения 𝑀
𝑌𝑡
𝑗
ℙ (1), 

получить аналитическое выражение можно было бы, если компоненты были независимыми 

случайными процессами, тогда производящая функция моментов 𝑌𝑡
𝑗
 сводилась бы к 

выражению  

𝑀
𝑌𝑡
𝑗
ℙ (1) =∏𝑀

𝑋𝑡
𝑖
ℙ (𝛼𝑗

𝑖)

𝑚

𝑖=1

. 
 

(3.20) 

Однако компоненты являются линейно независимыми, что не дает возможности вывести 

аналитический вид производящей функции моментов 𝑌𝑡
𝑗
, так как требуется знать 

совместную плотность распределения компонент. Первым способом решения возникшей 

проблемы является статистическая оценка производящей функции моментов по 

полученным реализациям 𝑌𝑡
𝑗
 относительно физической метрики. Другим способом 

является использование полученных в Главе 2 результатов модификации расширенного 

принципа Гирсанова. Напомним, что переход от физической меры к риск-нейтральной для 

предложенной модификации расширенного принципа Гирсанова имеет вид 

𝑀𝑌̃𝑘
ℚ (𝑐) = 𝑒

−
𝜇𝑡𝑐
1+𝜇𝑡𝑀𝑌̃𝑘

ℙ (
𝑐

1 + 𝜇𝑡
), 

где 𝜇𝑡 =
𝔼ℙ[𝑌𝑡̃ + 1|ℱ𝑡−1]

(1+
𝑟

𝑛
)
𝑛 − 1, 𝑛 − количество начислений за год безрисковой ставки 

процента, 𝑌̃𝑡
𝑗
=

𝑆𝑡

𝑆𝑡−1
− 1. Тогда, проводя аналогичные вычисления, сделанные в выражениях 

(3.13 – 3.15), получим условные математическое ожидание и дисперсию в риск-

нейтральной мере [28]:   
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𝔼ℚ [𝑌̃𝑡
𝑗
|ℱ𝑡−1] = (1 +

𝑟𝑗

𝑛
)
𝑛

− 1, 

𝑉𝑎𝑟ℚ[𝑌̃𝑡
𝑗
|ℱ𝑡−1] = (

(1 +
𝑟𝑗
𝑛
)
𝑛

1 + ∑ 𝛼𝑗
𝑖𝑚𝑡

𝑖𝑚
𝑖=1

)

2

∑𝛼𝑗
𝑖2ℎ𝑡

𝑖

𝑚

𝑖=1

. 

 

(3.21) 

Тогда уравнение динамики базового актива (3.19) примет вид [28] 

𝑌̃𝑡
𝑗
= (1 +

𝑟𝑗

𝑛
)
𝑛

− 1+ (
(1 +

𝑟𝑗
𝑛
)
𝑛

1 + ∑ 𝛼𝑗
𝑖𝑚𝑡

𝑖𝑚
𝑖=1

)√∑𝛼𝑗
𝑖2ℎ𝑡

𝑖

𝑚

𝑖=1

𝐸𝑡
𝑗
. 

 

(3.22) 

Выражение (3.22) уже не зависит от производящей функции моментов, что дает 

возможность, зная оценки параметров 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 моделей главных компонент, 

безрисковые процентные ставки базовых активов, частоту их начисления и коэффициенты 

матрицы перехода от базовых активов к компонентам, получить риск-нейтральную 

динамику цен базовых активов. 

3.4 Алгоритм численного решения задачи генерации риск-нейтрального процесса 

изменения цены базового актива 

1. Для доходностей базовых активов 𝑌̃𝑡
𝑗
, 𝑗 = 1: 𝑙̅̅ ̅̅  найти матрицу перехода 𝛼𝑗

𝑖 от 

доходностей 𝑌̃𝑡
𝑗
 к главным компонентам 𝑋𝑡

𝑖, 1: 𝑙̅̅ ̅̅ . Выбрать количество компонент 

𝑚 ≤ 𝑙, которые описывают не менее 𝑘% исходной дисперсии.  

2. Для каждой из 𝑚 моделей главных компонент оценить коэффициенты ARIMA-

GARCH модели. 

3. Сгенерировать 𝑁 траекторий главных компонент до момента экспирации каждого из 

опционных контрактов. 

4. Используя формулу (3.22) перейти от сценариев главных компонент к сценариям 

доходностей базовых активов. 

5. Используя сценарии доходностей базовых активов, восстановить риск-нейтральные 

цены базовых активов вплоть до момента экспирации соответствующих опционных 

контрактов. 

 

3.5 Выводы 

 

В данной главе приведены теоретические выкладки, позволяющие находить риск-

нейтральную динамику портфеля активов, а также понижать размерность исходной задачи. 

За основу были взяты метод главных компонент и расширенный принцип Гирсанова. 

Разложение исходного вектора случайных процессов на главные компоненты позволяет 
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проводить моделирование главных компонент независимо друг от друга. Однако прямое 

применение расширенного принципа Гирсанова к ARIMA-GARCH процессам главных 

компонент невозможно, в силу отсутствия понятия риск-нейтральной ставки для главных 

компонент. Однако из полученных формул (3.19) видно, что после восстановления 

исходного вектора случайных процессов вновь получаются ARIMA-GARCH процессы 

базовых активов, со взвешенными условными математическими ожиданиями и условными 

дисперсиями главных компонент. Ошибки базовых активов ARIMA-GARCH процессов 

также, как и ошибки ARIMA-GARCH процессов главных компонент удовлетворяют 

условиям нормировки (нулевое математическое ожидание и дисперсию равную единице). 

Таким образом расширенный принцип Гирсанова можно применить к ARIMA-GARCH 

процессам базовых активов. Однако возникает сложность вычисления производящей 

функции моментов базовых активов, так как главные компоненты не независимы, а лишь 

некоррелированны. Применение модификации расширенного принципа Гирсанова решает 

данную проблему, и позволяет получить окончательную формулу для нахождения риск-

нейтральных коэффициентов базовых активов (3.22), необходимых для применения метода 

Монте-Карло для решения задачи оценки стоимости/риск метрик опционных контрактов. 

Оценка стоимостей портфеля опционных контрактов классическим методом Монте-Карло 

потребовала бы построения для каждого базового актива (портфеля опционных контактов) 

риск-нейтральной ARIMA-GARCH модели, что привело бы к необходимости решения 

серии из 𝑙 оптимизационных задач калибровки параметров. Модификация метода 

(алгоритм численного решения задачи генерирования риск-нейтральных цен базовых 

активов) позволяет снизить количество оптимизационных задач до 𝑚 ≤ 𝑙. При большом 

количестве базовых активов 𝑙 величина 𝑚 может быть сильно меньше, что дает 

значительный прирост в скорости работы алгоритма.  
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ГЛАВА 4 Численные эксперименты оценки справедливой стоимости опционов 

 

На финансовых рынках одним из главных принципов ценообразования финансового 

инструмента выступает безарбитражность [62], т.е. отсутствие возможности получения 

безрисковой прибыли при нулевых затратах. Свойству безарбитражности рынка отвечает 

существование риск-нейтральной вероятностной меры. Полный рынок характеризуется 

наличием единственной риск-нейтральной меры, неполный рынок имеет множество 

подобных мер [63-65]. Основным методом оценки справедливой стоимости опционных 

контрактов европейского типа является формула Блэка – Шоулза [13]. Данная формула 

отвечает полному рынку и имеет единственную риск-нейтральную меру. Альтернативным 

способом является метод Монте-Карло [37], который предполагает моделирование 

динамики базового актива на основе риск-нейтральной меры, и на основе полученных 

реализаций, статистическую оценку опционного контракта.  

 

4.1 Введение. Постановка задачи 

 

В рамках данной главы рассматривается задача реализации комплекса программ, 

предназначенных для решения ряда задач: 

1. Калибровка параметров риск-нейтральных коэффициентов ARIMA-GARCH 

моделей на основе квази-максимального правдоподобия для моделей с ошибками, 

имеющими нормальное распределение и обобщенное экспоненциальное бета 

распределения второго типа (согласно формулам 1.24, 1.25), распределение 𝑆𝑢 

Джонсона (2.22); 

2. Оценка справедливой стоимости опционных контрактов (на разные базовые активы 

и разные сроки) европейского типа методом Монте-Карло; 

3. Сравнение полученных результатов. 

 

4.2 Калибровка параметров ARIMA-GARCH моделей и статистические тесты 

 

В диссертационной работе рассматриваются три распределения ошибок ARIMA-

GARCH моделей: нормальное распределение, обобщенное экспоненциальное бета 

распределение второго типа и распределение 𝑆𝑢 Джонсона. В данном разделе для 

указанных распределений приводятся оценки параметров 𝐴𝑅𝑀𝐴(𝑝, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) 
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моделей. В качестве метода калибровки параметров был выбран метод квази-

максимального правдоподобия (Quasi-Maximum Likelihood method, QML) [66-68], 

являющийся условным методом, так как решение зависит от начальных значений 

оптимизируемых параметров моделей.  Напомним, что модель 𝐴𝑅𝑀𝐴(𝑝, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) 

имеет вид 

{
 
 

 
 

𝑌𝑡 = 𝑚𝑡 + ϵ𝑡

ϵ𝑡 = √ℎ𝑡𝜀𝑡,    𝜀𝑡|~𝑖𝑖𝑑(0,1)

𝑚𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 +⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝜃1ϵ𝑡−1 +⋯+ 𝜃𝑞ϵ𝑡−𝑞

ℎ𝑡 = 𝛼0 + 𝛼1ℎ𝑡−1 +⋯+ 𝛼𝑃ℎ𝑡−𝑃 + 𝛽1ϵ𝑡−1
2 +⋯+ 𝛽𝑄ϵ𝑡−𝑄

2

 

Рассмотрим случай нормального распределения (𝜀𝑡~𝑁(0,1)). Пусть имеется реализация 

случайного процесса ϵ𝑡, на основе данных реализации необходимо подобрать параметры 

𝜐 = (𝜙0, 𝜙1, … , 𝜙p, 𝜃1, … , 𝜃𝑞 , 𝛼0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄), обеспечивающие максимум функции 

правдоподобия случайного процесса ϵ𝑡. Функция правдоподобия случайного процесса ϵ𝑡 

является произведением функции плотности распределения в каждой точке реализации 

процесса ϵ𝑡. Так как 𝜀𝑡 имеет нормальное распределение с параметрами 0, 1, случайный 

процесс будет также иметь нормальное распределение с параметрами 0, ℎ𝑡. Тогда функция 

правдоподобия примет вид 

𝐿𝑛(𝜐) = 𝐿𝑛(𝜐, ϵ1, … , ϵ𝑇) =∏
1

√2𝜋ℎ𝑡
𝑒
−
ϵ𝑡
2

2ℎ𝑡

𝑇

𝑡=1

, 

ℎ𝑡 = 𝛼0 + 𝛼1ℎ𝑡−1 +⋯+ 𝛼𝑃ℎ𝑡−𝑃 + 𝛽1ϵ𝑡−1
2 +⋯+ 𝛽𝑄ϵ𝑡−𝑄

2 , 

𝛼0 > 0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄 ≥ 0. 

 

 

(4.1) 

В силу монотонности функции натурального логарифма вместо функции правдоподобия 

обычно рассматривают натуральный логарифм данной функции (ln(𝐿𝑛(𝜐)) =

∑ ln(
1

√2𝜋ℎ𝑡
𝑒
−
ϵ𝑡
2

2ℎ𝑡)𝑇
𝑡=1 = −∑ (

ϵ𝑡
2

ℎ𝑡
+ ln(ℎ𝑡))

𝑇
𝑡=1 ), тогда задачу поиска параметров 𝜐̂𝑛 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) модели можно сформулировать следующим образом: 

𝜐̂𝑛 = argmin
𝜐∈Θ

− ln(𝐿𝑛(𝜐)) = argmin
𝜐∈Θ

∑(
ϵ𝑡
2

ℎ𝑡
+ ln(ℎ𝑡))

𝑇

𝑡=1

, 

∑𝛼𝑖

𝑃

𝑖=1

+∑𝛽𝑗

𝑄

𝑗=1

< 1, 

𝛼0 > 0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄 ≥ 0. 

 

 

 

(4.2) 
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Рассмотрим случай обобщенного Бетта распределения второго типа. Как описывалось 

выше, если случайная величина 𝜀𝑡~𝐸𝐺𝐵2(𝜀𝑡, 𝛼, 𝛽, 𝛿̅, 𝜇̅), то случайная величина ϵ𝑡 =

√ℎ𝑡𝜀𝑡~𝐸𝐺𝐵2(ϵ𝑡, 𝛼, 𝛽, 𝛿̅𝜎𝑡, 𝜇̅𝜎𝑡). Выпишем натуральный логарифм функции плотности 

распределения случайного процесса ϵ𝑡: 

ln (𝑓 (ϵ𝑡, 𝛼, 𝛽, 𝛿̅√ℎ𝑡, 𝜇̅√ℎ𝑡)) = ln

(

 
 
 1

𝛿̅√ℎ𝑡𝐵(𝛼,𝛽)

(exp(
ϵ𝑡 − 𝜇̅√ℎ𝑡
𝛿̅√ℎ𝑡

))

𝛼

(1 + exp(
ϵ𝑡 − 𝜇̅√ℎ𝑡
𝛿̅√ℎ𝑡

))

𝛼+𝛽

)

 
 
 
=

= − ln (𝛿̅√ℎ𝑡) − ln(𝐵(𝛼, 𝛽)) + 𝛼 (
ϵ𝑡 − 𝜇̅√ℎ𝑡

𝛿̅√ℎ𝑡
)

− (𝛼+ 𝛽) ln(1 + exp(
ϵ𝑡 − 𝜇̅√ℎ𝑡

𝛿̅√ℎ𝑡
)) ;𝔼[ϵ𝑡] = 0,𝑉𝑎𝑟[ϵ𝑡] = ℎ𝑡⟹

⟹ 𝜇̅√ℎ𝑡 + 𝛿̅√ℎ𝑡𝜛(𝛼, 𝛽) = 0⟹ 𝜇̅ = −
𝜛(𝛼,𝛽)

√𝑙(𝛼,𝛽)
;  𝛿̅

2
ℎ𝑡𝑙(𝛼,𝛽) = ℎ𝑡⟹ 𝛿̅ =

=
1

√𝑙(𝛼, 𝛽)
, 

ln(𝐿𝑛(𝜐)) =∑

(

 
 
ln (√𝑙(𝛼, 𝛽)) − ln(√ℎ𝑡) − ln(𝐵(𝛼, 𝛽)) + 𝛼

(

 
 
ϵ𝑡 +

√ℎ𝑡𝜛(𝛼, 𝛽)

√𝑙(𝛼, 𝛽)

√ℎ𝑡

√𝑙(𝛼, 𝛽) )

 
 

𝑇

𝑡=0

− (𝛼 + 𝛽) ln

(

 
 
1 + exp

(

 
 
ϵ𝑡 +

√ℎ𝑡𝜛(𝛼, 𝛽)

√𝑙(𝛼, 𝛽)

√ℎ𝑡

√𝑙(𝛼, 𝛽) )

 
 

)

 
 

)

 
 
=

=∑(ln (√𝑙(𝛼, 𝛽)) − ln(𝐵(𝛼, 𝛽)) + 𝛼𝜛(𝛼, 𝛽) +
𝛼ϵ𝑡√𝑙(𝛼, 𝛽)

√ℎ𝑡
− ln(√ℎ𝑡)

𝑇

𝑡=0

− (𝛼 + 𝛽) ln(1 + exp(
ϵ𝑡√𝑙(𝛼, 𝛽)

√ℎ𝑡
+𝜛(𝛼, 𝛽) ))). 

В конечном итоге задача поиска параметров 𝜐 =

(𝛼, 𝛽, 𝜙0, 𝜙1, … , 𝜙p, 𝜃1, … , 𝜃𝑞 , 𝛼0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄) для распределения 𝐸𝐺𝐵2 принимает 

вид [27] 
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𝜐𝑛 = argmin
𝜐∈Θ

− ln(𝐿𝑛(𝜐)) =

= argmin
𝜐∈Θ

∑(− ln (√𝑙(𝛼, 𝛽)) + ln(𝐵(𝛼, 𝛽)) − 𝛼𝜛(𝛼, 𝛽)

𝑇

𝑡=0

−
𝛼ϵ𝑡√𝑙(𝛼, 𝛽)

√ℎ𝑡
+ ln(√ℎ𝑡)

+ (𝛼 + 𝛽) ln(1 + exp(
ϵ𝑡√𝑙(𝛼, 𝛽)

√ℎ𝑡
+𝜛(𝛼, 𝛽) ))), 

𝜛(𝛼, 𝛽) =
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

−
𝑑𝑙𝑛Г(𝑐)

𝑑𝑐
|
𝑐=𝛼

, 

𝑙(𝛼, 𝛽) =
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛼

+
𝑑2𝑙𝑛Г(𝑐)

𝑑𝑐2
|
𝑐=𝛽

, 

∑𝛼𝑖

𝑃

𝑖=1

+∑𝛽𝑗

𝑄

𝑗=1

< 1, 

𝛼, 𝛽, 𝛼0 > 0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄 ≥ 0. 

 

 

 

 

 

 

 

 

 

 

 

 (4.3) 

Сформулируем оптимизационную задачу поиска параметров 𝐴𝑅𝑀𝐴(𝑝, 𝑞) − 𝐺𝐴𝑅𝐶𝐻(𝑃, 𝑄) 

модели для распределения 𝑆𝑢 Джонсона: 

𝜀𝑡~𝐽𝑆𝑈(𝜀𝑡, 𝜉̅, 𝜆̅, 𝛾, 𝛿) ⟹ ϵ𝑡 = √ℎ𝑡𝜀𝑡~𝐽𝑆𝑈(ϵ𝑡, 𝜉̅√ℎ𝑡 , 𝜆̅√ℎ𝑡, 𝛾, 𝛿) ⟹ ln (𝑓(ϵ𝑡, 𝜉̅√ℎ𝑡 , 𝜆̅√ℎ𝑡 , 𝛾, 𝛿))

= ln(𝛿) − ln(𝜆̅√ℎ𝑡) −
1

2
ln(1 + (

ϵ𝑡 − 𝜉̅√ℎ𝑡

𝜆̅√ℎ𝑡
)

2

)

−
1

2
(𝛾 + 𝛿 sinh−1 (

ϵ𝑡 − 𝜉̅√ℎ𝑡

𝜆̅√ℎ𝑡
))

2

;𝔼[ϵ𝑡] = 0, 𝑉𝑎𝑟[ϵ𝑡] = ℎ𝑡 ⟹

⟹ 𝜉̅√ℎ𝑡 − 𝜆̅√ℎ𝑡𝑒
1
2𝛿2 sinh (

𝛾

𝛿
) = 0 ⟹ 𝜉̅ =

= 𝜆̅𝑒
1
2𝛿2 sinh (

𝛾

𝛿
) ,
𝜆̅2ℎ𝑡
2
(𝑒

1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1) = ℎ𝑡. 

Пусть 𝐴 = (𝑒
1

𝛿2 − 1) (𝑒
1

𝛿2 cosh (
2𝛾

𝛿
) + 1) , 𝐵 = 𝑒

1

2𝛿2 sinh (
𝛾

𝛿
) ⟹ ℎ𝑡 =

𝜆̅2ℎ𝑡

2
(𝑒

1

𝛿2 −

−1) (𝑒
1

𝛿2 cosh (
2𝛾

𝛿
) + 1) =

𝜆̅2ℎ𝑡

2
𝐴 ⟹ 𝜆̅ = √

2

𝐴
 , 𝜉̅ = 𝜆̅𝑒

1

2𝛿2 sinh (
𝛾

𝛿
) = √

2

𝐴
𝐵, 
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ln(𝐿𝑛(𝜐)) =∑(ln(𝛿) − ln(𝜆̅√ℎ𝑡) −
1

2
ln(1 + (

ϵ𝑡 − 𝜉̅√ℎ𝑡

𝜆̅√ℎ𝑡
)

2

)

𝑇

𝑡=0

−
1

2
(𝛾 + 𝛿 sinh−1 (

ϵ𝑡 − 𝜉̅√ℎ𝑡

𝜆̅√ℎ𝑡
))

2

) =

=∑

(

 
 
ln(𝛿) − ln(√ℎ𝑡√

2

𝐴
) −

1

2
ln

(

 
 
1 +

(

 
ϵ𝑡 −√ℎ𝑡√

2
𝐴
𝐵

√ℎ𝑡√
2
𝐴 )

 

2

)

 
 

𝑇

𝑡=0

−
1

2

(

 𝛾 + 𝛿 sinh−1

(

 
ϵ𝑡 −√ℎ𝑡√

2
𝐴
𝐵

√ℎ𝑡√
2
𝐴 )

 

)

 

2

)

 
 
. 

Задача поиска параметров 𝜐 = (𝛾, 𝛿, 𝜙0, 𝜙1, … , 𝜙p, 𝜃1, … , 𝜃𝑞 , 𝛼0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄) для 

распределения 𝑆𝑢 Джонсона примет следующий вид [27]: 

 

𝜐̂𝑛 = argmin
𝜐∈Θ

− ln(𝐿𝑛(𝜐)) =

= argmin
𝜐∈Θ

∑

(

 −ln(𝛿) + ln(√
2ℎ𝑡
𝐴
) +

1

2
ln

(

 1 +

(

 
ϵ𝑡

√2ℎ𝑡
𝐴

− 𝐵

)

 

2

)

 
𝑇

𝑡=0

+
1

2

(

 𝛾 + 𝛿 sinh−1

(

 
ϵ𝑡

√2ℎ𝑡
𝐴

− 𝐵

)

 

)

 

2

)

 , 

𝐴 = (𝑒
1
𝛿2 − 1) (𝑒

1
𝛿2 cosh (

2𝛾

𝛿
) + 1), 

𝐵 = 𝑒
1
2𝛿2 sinh (

𝛾

𝛿
), 

∑𝛼𝑖

𝑃

𝑖=1

+∑𝛽𝑗

𝑄

𝑗=1

< 1, 

𝛿, 𝛼0 > 0, 𝛼1, … , 𝛼𝑃, 𝛽1, … , 𝛽𝑄 ≥ 0. 

 

 

 

 

 

 

 

 

(4.4) 

Перечислим основные статистические тесты, которые будут использованы для анализа 

спецификаций моделей.  

1. Тест Дики-Фуллера[69] - тест на стационарность временного ряда (наличие единичного 

корня). Суть теста заключается в преобразовании начального временного ряда Y𝑡 = 𝑎𝑌𝑡−1 +



55 

𝜖𝑡 к виду Δ𝑌𝑡 = (𝑎 − 1)𝑌𝑡−1 + 𝜖𝑡 = 𝑏𝑌𝑡−1 + 𝜖𝑡 с последующим тестированием гипотезы 

𝐻0: 𝑏 = 0 (ряд не стационарен). Предполагается, что процесс не является взрывным, 

поэтому альтернативной гипотезой является 𝐻1: 𝑏 < 0. Статистика теста - 𝑡 −статистика 

проверки значимости для коэффициентов линейной регрессии, однако его распределение 

отличается от распределения Стьюдента, так как выражается через винеровский процесс 

(распределение Дики-Фуллера). Критические значения статистики Дики-Фуллера 

отличаются друг от друга в зависимости от выбранных моделей регрессий: а. Без константы 

и тренда, б. С константой, но без тренда, в. С константой и линейным трендом. При 

значении статистики меньшем чем критическое значение для выбранного уровня 

значимости нулевая гипотеза отвергается и ряд признается стационарным. В противном 

случае нулевая гипотеза не отвергается и ряд признается нестационарным 

(интегрированным).  

 

Размер выборки  AR-модель  
AR-модель с 

константой  

AR-модель с 

константой и 

трендом  

100  -2,60  -3,51  -4,04  

∞ -2,58  -3,43  -3,96  

Таблица 4.1 - Критические значения статистики Дики-Фуллера (1% уровень значимости). 

Также, в случае большего количества лагов зависимости будет использован расширенный 

тест Дики-Фуллера, который, по аналогии с обычным тестом Дики-Фуллера, основывается 

на преобразовании исходного ряда к первым разностям, т.е. 𝑌𝑡 = 𝑎1𝑌𝑡−1 + 𝑎2𝑌𝑡−2 + 𝜖𝑡 →

∆𝑌𝑡 = (𝑎1 + 𝑎2 − 1)𝑌𝑡−1 − 𝑎2∆𝑌𝑡−1 + 𝜖𝑡, тогда по причине предполагаемого наличия 

единичного корня, ряд из первых разностей должен быть стационарен, отсюда вытекает 

необходимое равенство  𝑎1 + 𝑎2 − 1 = 0. Таким образом, гипотеза о наличие единичного 

корня в случае двух лагов примет вид 𝐻0: 𝑎1 + 𝑎2 − 1 = 0 (ряд не стационарен).  

2. Q-тест Льюнга-Бокса [70] – статистический тест для нахождения автокорреляции 

временных рядов. Нулевая гипотеза 𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑚 = 0 (данные являются 

случайными, т.е. белым шумом), альтернативная гипотеза 

𝐻1: данные не являются случайными. Статистика находится по формуле  

𝑄 = 𝑛(𝑛 + 2)∑
𝜌̂𝑘
2

𝑛 − 𝑘

𝑚

𝑘=1

, 
 

(4.5) 
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где 𝑛 −число наблюдений, 𝜌̂𝑘 −автокорреляция 𝑘 −го порядка, 𝑚 −число проверяемых 

лагов. Данная статистика имеет распределение хи-квадрат с 𝑚 степенями свободы (χ1−𝛼,𝑚
2 ). 

В случае 𝑄 > χ1−𝛼,𝑚
2  нулевая гипотеза отвергается и делается вывод о возможном (с 

вероятностью 1 − 𝛼) наличии автокорреляции до 𝑚 −го порядка в исходном временном 

ряду. Для анализа был выбран именно тест Льюнга-Бокса, а не тест Бокса-Пирса, так как 

первый остается состоятельным в случае, если случайный процесс не имеет нормального 

распределения (при условии конечности дисперсии).  

3. Информационные критерии Акайке (AIC) [71;72] и Байеса (BIC) [73]. Оба критерия 

позволяют делать выбор между несколькими статистическими моделями. Основной 

предпосылкой к созданию критерия послужила задача оценки качества прогноза моделей 

по тестовой выборке при уже известном наборе обучающих данных (предполагается, что 

модель оценивается по методу максимального правдоподобия). Таким образом, критерий 

призван оценивать эффект переобучения модели (в основе критерия лежит расстояние 

Кульбака-Лейблера), 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿𝑛(𝜐̂)), 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑁) − 2 ln(𝐿𝑛(𝜐)), 

 

(4.6) 

где 𝑁 −объем выборки, 𝑘 −количество параметров, 𝐿𝑛(𝜐) −значение функции правдоподобия 

для найденных оптимальных параметров 𝜐. 

В качестве пакетных средств реализации оптимизационных задач 4.2, 4.3, 4.4 и 

статистических тестов Дики-Фуллера, Q-теста Льюнга-Бокса и информационного критерия 

Акайке / Байеса использовался язык программирования для статистической обработки 

данных R. Пакет “Rsolnp” [74] предназначен для решения нелинейных оптимизационных 

задач методом множителей Лагранжа [75]: 

𝑚𝑖𝑛𝑓(𝑥) 

𝑔(𝑥) = 0, 𝑙ℎ ≤ ℎ(𝑥) ≤ 𝑢ℎ , 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥, 

пакет “MASS” [76] - для решения задач прикладной статистики. Основной код программы 

оценки параметров риск-нейтральных аналогов ARIMA-GARCH моделей и оценки 

стоимостей опционов был реализован также в среде R.  (исходных код доступен в 

приложении A).  
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4.3 Спецификация моделей ARIMA-GARCH. Оценка стоимости опционов. 

Сравнение эффективности моделей 

 

Данные для проведения численных экспериментов состоят из шести однотипных 

наборов цен опционов. Все расчеты проводились на 03 июня 2019 года. По дате экспирации, 

опционы были поделены на самые ближние и дальние, имеющиеся на рынке.  

Первый набор данных представлен опционами на фондовый индекс DAX (Deutscher 

Aktienindex). Индекс DAX является важнейшим фондовым индексом Германии, данный 

индекс вычисляется как средневзвешенное по капитализации значение цен акций 

(находящихся в свободном обращении) крупнейших компаний Германии. Индекс отражает 

суммарный доход по капиталу, поэтому при его расчете учитываются полученные 

дивидендные доходы по акциям, которые, как предполагается, реинвестируются в акцию, 

по которой был получен дивиденд. Рассматривается 19 call и put опционов, величина 

страйка которых варьируется от 9 400 до 13 000 пунктов с шагом 200. Базовым активом 

выступает фьючерс с датой экспирации, соответствующей дате экспирации самого 

опциона. Дата экспирации ближайших опционов - 22 июня 2019 года, а дальних – 22 

декабря 2023 года. Валюта – евро. Данные были взяты с сайта 

https://www.eurexchange.com/exchange-en/products/idx/dax/DAX-Options-139884. 

Второй набор данных состоит из 20 call/put опционов на фондовый индекс SMI (Swiss 

Market Index). SMI является ключевым фондовым индексом Швейцарии. Данный индекс 

включает в себя 20 крупнейших компаний, акции которых торгуются на Швейцарской 

бирже. Страйк находится в диапазоне от 2 400 до 2 590 пунктов с шагом 10. Базовый актив 

также является фьючерс на индекс с соответствующей датой экспирации. Дата погашения 

коротких опционов – 22 июня 2019 года, длинных – 22 декабря 2020 года. Валюта – 

швейцарский франк. Данные брались с сайта https://www.eurexchange.com/exchange-

en/products/idx/smi/SMIM-Options-253576. 

Третий набор данных – 10 put/call опционов на курс британского фунта к американскому 

доллару (British Pound / US Dollar). Страйк находится в диапазоне от 124 до 133 (величина 

лота составляет 100). Базовый актив – фьючерсный контракт на курс британского фунта к 

американскому доллару. Ближайшая дата экспирации – 22 июня 2019 года, самая дальняя 

дата экспирации 22 марта 2020 года. Валюта – доллар США. Источник данных – 

https://derivatives.euronext.com/en/products/currency-options/PDX-DAMS/contract-specification. 
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Четвертый набор данных представлен 9 put/call опционами на курс британского фунта к 

евро (British Pound / Euro). Страйк лежит в диапазоне от 111 до 119 (величина лота 

составляет 100) с шагом 1. Базовым активом выступает фьючерс на курс британского фунта 

к евро. Ближайшая дата – 22 июня 2019 года, дальняя – 22 марта 2020 года. Валюта – евро. 

Данные были взяты с сайта https://derivatives.euronext.com/en/products/currency-options/PEX-

DAMS/contract-specification. 

В пятый набор данных входят 10 put/call опционов на фьючерс, базовым активом 

которого выступает нефть (Light Sweet Crude Oil). Величина страйка варьируется от 51.0 до 

55.5 USD за баррель нефти с шагом 0.5. Дата экспирации коротких опционов – 20 июля 

2019 года, длинных – 22 июня 2020 года. Валюта – доллар США. Источник данных: 

http://www.cmegroup.com/trading/energy/natural-gas/natural-

gas_contractSpecs_options.html?optionProductId=1352#optionProductId=1352. 

Шестой набор данных состоит из 8 put/call опционов на фьючерсный контракт, базовым 

активом которого является природный газ (Natural Gas). Страйк находится в диапазоне от 2 

250 до 2 500 USD/БТЕ с переменным шагом. Ближайшая дата экспирации 20 июля 2019 

года, дальняя – 22 июля 2020 года. Валюта – доллар США. Данные были взяты с сайта 

http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-

crude_contractSpecs_options.html?optionProductId=1353#optionProductId=1353 

В представленных данных фигурируют три вида валют (доллар США, евро и 

швейцарский франк), соответственно, при расчете справедливой стоимости опционов 

используются три безрисковые процентные ставки LIBOR (London Interbank Offered Rate). 

LIBOR – средневзвешенная процентная ставка по межбанковским кредитам, 

представляемым банками лондонском межбанковском рынке. Ставка LIBOR зависит от 

валюты и срока, на который представляется кредит одним банком другому, при этом срок 

варьируется от 1 дня (overnight) до 12 месяцев. Так как исходные данные базовых активов 

брались с дневным тиком, то ставка либор была выбрана сроком на день. На дату расчета 

(03 июня 2019 года) ставка CHF LIBOR составляла -0,80560%, USD LIBOR 2,36075%, EUR 

LIBOR -0,46614%.  

Напомним, что в рамках диссертации оценка справедливой стоимости опционов 

проводится по методу Монте-Карло. Как упоминалось ранее, европейские call и put 

опционы с ценой исполнения 𝑋 и стоимостью базового актива в день экспирации 𝑇 

характеризуются функциями выплат 𝑏𝑐(𝑆𝑇 , 𝑋) = max(𝑆𝑇 − 𝑋, 0) , 𝑏𝑝(𝑆𝑇 , 𝑋) = max(𝑋 −

𝑆𝑇 , 0) [77]. Тогда стоимость опционов определяется как среднее значение соответствующей 
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функции выплаты относительно риск-нейтральной меры ℚ, приведенное к текущему 

моменту времени [78], 

𝑐𝑎𝑙𝑙/𝑝𝑢𝑡 =
𝔼ℚ[𝑏𝑐/𝑝(𝑆𝑇 , 𝑋)]

(1 + 𝑟)𝑇
=
𝔼ℙ [𝑏𝑐/𝑝(𝑆𝑇 , 𝑋)

𝑑ℚ
𝑑ℙ
]

(1 + 𝑟)𝑇
 , 

 

(4.7) 

где 
𝑑ℚ

𝑑ℙ
−производная Радона-Никодима риск-нейтральной меры (в рамках данной работы 

это мера, полученная на основе расширенного принципа Гирсанова) относительно 

физической меры ℙ. Метод Монте-Карло позволяет по реализациям построенного 

𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 процесса произвести оценку среднего значения относительно 

физической меры ℙ [78]: 

1

𝑀
∑ 𝑏𝑐/𝑝(𝑆𝑇, 𝑋)

𝑑ℚ

𝑑ℙ
(𝑚)

𝑀

𝑚=1

                𝑃                 
→            

𝑀→∞
𝔼ℙ [𝑏𝑐/𝑝(𝑆𝑇 , 𝑋)

𝑑ℚ

𝑑ℙ
] . 

(4.8) 

Число траекторий реализации 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 процесса 𝑀 = 100 000 для ближайшей 

даты экспирации и 𝑀 = 10 000 для дальней даты. Эффективность каждой 𝐴𝑅𝐼𝑀𝐴 −

𝐺𝐴𝑅𝐶𝐻 модели оценивается по абсолютной ошибке (AE) 

𝐴𝐸(𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠) = |𝑐𝑎𝑙𝑙𝑚/𝑝𝑢𝑡𝑚(𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠) − 𝑐𝑎𝑙𝑙/𝑝𝑢𝑡(𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠)|, (4.9) 

где 𝑐𝑎𝑙𝑙𝑚/𝑝𝑢𝑡𝑚 −рыночные котировки опциона call или put, 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 =
𝑋

𝑆0
−денежность 

опциона.  

 Опционы на индекс DAX 

Исходные данные представлены значениями фондового индекса от 02 июня 2017 года до 

03 июня 2019 года (объем выборки 𝑁 = 503). На рисунке 4.1 на графике “Daily Return 1” 

отображены значения 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1), на графике “Daily Return 2” значения 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 −

1. Оба графика показывают, что данные ряды стационарны, данный факт подтверждается и 

расширенным тестом Дики-Фуллера (ADF): 

Данные Значение статистики Критическое значение 

статистики (1%) 

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) -8.3588 -3.96 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 -8.373 -3.96 

Таблица 4.2 - Результаты Расширенного теста Дики-Фуллера (DAX). 
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Рисунок 4.1 - Графики стоимости и доходностей 𝑌𝑡 (1), 𝑌̃𝑡 (2) фондового индекса DAX 

на конец дня (06.06.2017-03.06.2019). 

Видно, что поведение 𝑌𝑡 и 𝑌̃𝑡 схожи, это связано с тем, что в первом приближении данные 

функции близки друг другу.  

Для определения спецификации ARIMA-GARCH модели проанализируем графики 

автокорреляции ACF и частной автокорреляции PACF. Графический анализ по рисунку 4.2 

позволяет сделать вывод об отсутствии автокорреляции, также приведем данные Q-теста 

Льюнга-Бокса (табл. 4.3). 

Данные Значение статистики χ99%,30
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) 30.123 50.892 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 30.251 50.892 

Таблица 4.3 - Результаты Q-теста Льюнга-Бокса для 30 лагов (DAX). 
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Значение статистики для 𝑌𝑡 и 𝑌̃𝑡 меньше критического значения, следовательно, с 

вероятностью 99% автокорреляция меньше 30 −го порядка в исходных временных рядах 

отсутствует. Преобразуем исходные временные ряды к виду 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2)  и 𝑌̃𝑡 =

𝑆𝑡/𝑆𝑡−2 − 1, то есть проверим зависимость не дневных доходностей, а доходностей за два 

дня. Причем, если в первом случае объем выборки составлял 𝑁 − 1, то в данном случае, 

объем выборки составит уже 𝑁 − 2: 

 

Рисунок 4.2 - Графики ACF и PACF для 𝑌𝑡 (DAX). 

На рисунке 4.3 изображены графики ACF и PACF для 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2), данные графики 

характерны для модели 𝐴𝑅𝐼𝑀𝐴(0,0,1), то есть 𝑌𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1 + 𝜀𝑡. Результаты Q-теста 

Льюнга-Бокса для 5 лагов (табл. 4.4) также подтверждают сделанное предположение.

 

Рисунок 4.3 - Графики ACF и PACF для 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) (DAX). 

 

Данные Значение статистики χ99%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) 132.33 15.086 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 132.13 15.086 

Таблица 4.4 - Результаты Q-теста Льюнга-Бокса для 5 лагов (DAX). 
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Приведем результаты калибровки параметров моделей 𝐴𝑅𝐼𝑀𝐴(0,0,1) −

𝐺𝐴𝑅𝐶𝐻(1,1) для разных распределений ошибок (таблица 4.5). Полученные данные для 

разных видов распределения ошибок имеют сходство в виде статистической незначимости 

параметров 𝜙0 и 𝛼0 (высокие значения 𝑃 − 𝑣𝑎𝑙𝑢𝑒). В современной литературе 

оговаривается, что константу в моделях типа ARIMA необходимо сохранять даже в 

случаях, если она является статистически незначимой, это связано с тем, что ее удаление 

может привести к смещению оценок других параметров. Однако, для финансовых данных 

с достаточно высокой частотой (дневные и внутридневные) довольно часто получается 

незначительный средний доход. В данном контексте предположение о средней доходности 

равной нулю не может испортить прогноз и данное предположение является обычной 

практикой.  

Таким образом, полученные значения 𝜙0 ≈ 0 можно оставить. По-другому дело 

обстоит с коэффициентом 𝛼0, его следует сохранить по причине того, что в уравнении 

дисперсии 𝛼0 = 𝛾𝑉𝐿, где 𝑉𝐿 −долговременный уровень волатильности, 𝛾 + ∑ 𝛼𝑖
𝑃
𝑖=1 +

∑ 𝛽𝑗
𝑄
𝑗=1 = 1. Тогда из условия 𝛼0 = 0 будет следовать, что либо 𝑉𝐿 = 0, что невозможно на 

реальных рынках, либо 𝛾 = 0, что влечет за собой нестационарность процесса, так как 

∑ 𝛼𝑖
𝑃
𝑖=1 + ∑ 𝛽𝑗

𝑄
𝑗=1 = 1.  
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 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 1652.609 1658.26 1658.657 

𝜙0 
Std. Error 

t-value 

Pr(>|t|) 

-0.000100 

(0.000798) 

-0.12480 

0.900685 

-0.00006 

(0.000786) 

-0.076381 

0.939116 

- 0.000074 

(0.000792) 

- 0.093104 

0.925821 

𝜃1 

Std. Error 

t-value 

Pr(>|t|) 

0.950806 

(0.013106) 

72.54849 

0.000000 

0.948445 

(0.015226) 

62.292279 

0.000000 

0.949900 

(0.013229) 

71.806222 

0.000000 

𝛼0 
Std. Error 

t-value 

Pr(>|t|) 

0.000003 

(0.000005) 

0.55453 

0.579215 

0.000003 

(0.000004) 

0.687438 

0.491807 

0.000003 

(0.000004) 

0.718274 

0.472588 

𝛼1 
Std. Error 

t-value 

Pr(>|t|) 

0.071761 

(0.031491) 

2.27881 

0.022678 

0.067895 

(0.027377) 

2.480017 

0.013138 

0.067271 

(0.030275) 

2.222013 

0.026282 

𝛽1 
Std. Error 

t-value 

Pr(>|t|) 

0.894232 

(0.050380) 

17.74964 

0.000000 

0.902903 

(0.037822) 

23.872549 

0.000000 

0.900226 

(0.041630) 

21.624622 

0.000000 

𝐴𝐼𝐶 -6.5773 -6.5919 -6.5934 

𝐵𝐼𝐶 -6.5352 -6.5369 -6.5385 

𝜉 - - 0.224916 -0.543876 

𝜅 - 2.897165 2.298773 

Таблица 4.5 - Результаты оценивания 𝐴𝑅𝐼𝑀𝐴(0,0,1) − 𝐺𝐴𝑅𝐶𝐻(1,1) моделей для 𝑌𝑡 =

ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 фондового индекса DAX. 

Остальные коэффициенты моделей статистически значимы. Также стоит отметить, что 

коэффициенты всех моделей одинаковы по знаку и порядку. Информационный критерий 

Байеса (BIC) и Акайке (AIC) показывают лучшие результаты для асимметричных 

распределений, что согласуется с большими значениями функций правдоподобий 

соответствующих моделей. В конце таблицы приведены значения коэффициентов 

асимметрии 𝜉 (skewness) и эксцесса 𝜅 (excess kurtosis) для нормированных ошибок 𝜖𝑡. 

Отрицательные значения коэффициента эксцесса для асимметричных распределений 

соответствуют вытянутости распределения ошибок влево (𝑀𝑒𝑑𝑖𝑎𝑛 > 𝑀𝑒𝑎𝑛). 

Положительные значения 𝜅 соответствуют более островершинным распределениям 

ошибок, чем нормальное. Графики эмпирических плотностей распределений 

стандартизированных ошибок отображены на рисунке 4.4. Таким образом, распределения 
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ошибок 𝐸𝐺𝐵2 и 𝐽𝑆𝑈 имеют тяжелые хвосты (fat-tailed distribution). 

  

Рисунок 4.4 - Плотности распределений нормированных ошибок 𝜖𝑡 распределений 

𝐸𝐺𝐵2 и 𝐽𝑆𝑈. 

Таблицы 4.6, 4.7 и рисунки 4.5, 4.6 отображают значения стоимостей опционов call/put 

на индекс DAX с датой экспирации 22 июня 2019 года. По рисункам 3.5, 3.6 видно, что для 

опционов call и put, лежащих глубоко вне денег стоимости практически совпадают.  

На рисунках 4.7, 4.8 приведены графики абсолютных ошибок расчета цен опционов 

call/put на индекс DAX с датой экспирации 22 июня 2019 года. Легко видеть, что в обоих 

случаях меньшую ошибку дает 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 модель с остатками, распределенными по 

закону 𝑆𝑢 Джонсона, однако стоит отметить, что модель с остатками 𝐸𝐺𝐵2 не сильно 

уступает первой, так, для опциона call, при значении 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 = 0,81 разница в ошибках 

между 𝐽𝑆𝑈 и 𝐸𝐺𝐵2 составляет 1,18, в то время как разница между 𝐽𝑆𝑈 и 𝑁 составляет 5,98. 

Для опциона put при 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 = 1,12 разницы составляют 1,13 и 5,86. Также на графиках 

представлена кривая абсолютных ошибок цен опционов построенной на основе модификации 

расширенного принципа Гирсанова для ARIMA-GARCH модели с ошибками, распределенными 

нормально (ARIMA-GARCH-N-mod). Видно, что ее значения практически совпадают со 

значениями кривой ARIMA-GARCH-N, что говорит о том, что модификация расширенного 

принципа Гирсанова дает результаты не хуже, чем классический расширенный принцип Гирсанова. 
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𝑃𝑟𝑖𝑐𝑒 𝐴𝐸 

 

𝑆𝑡𝑟𝑖𝑘𝑒 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝑚𝑎𝑟𝑘𝑒𝑡 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 
9400 2 706.27 2 701.47 2 700.29 2 633.30 72.97 68.17 66.99 0.81 

9600 2 506.23 2 501.43 2 500.24 2 433.30 72.93 68.13 66.94 0.82 

9800 2 306.18 2 301.38 2 300.19 2 233.40 72.78 67.98 66.79 0.84 

10000 2 106.13 2 101.33 2 100.15 2 033.50 72.63 67.83 66.65 0.86 

10200 1 906.08 1 901.28 1 900.10 1 833.60 72.48 67.68 66.50 0.88 

10400 1 706.05 1 701.25 1 700.07 1 633.80 72.25 67.45 66.27 0.89 

10600 1 506.08 1 501.29 1 500.10 1 434.10 71.98 67.19 66.00 0.91 

10800 1 306.24 1 301.47 1 300.27 1 234.70 71.54 66.77 65.57 0.93 

11000 1 106.86 1 102.12 1 100.90 1 035.80 71.06 66.32 65.10 0.94 

11200 908.50 903.83 902.57 837.90 70.60 65.93 64.67 0.96 

11400 713.05 708.52 707.19 643.10 69.95 65.42 64.09 0.98 

11600 524.32 520.10 518.66 456.20 68.12 63.90 62.46 1.00 

11800 350.43 346.74 345.22 286.50 63.93 60.24 58.72 1.01 

12000 205.38 202.52 201.06 147.80 57.58 54.72 53.26 1.03 

12200 102.38 100.52 99.36 55.70 46.68 44.82 43.66 1.05 

12400 43.18 42.15 41.42 14.30 28.88 27.85 27.12 1.06 

12600 15.27 14.81 14.46 2.90 12.37 11.91 11.56 1.08 

12800 4.91 4.72 4.59 0.60 4.31 4.12 3.99 1.10 

13000 1.57 1.50 1.45 0.10 1.47 1.40 1.35 1.12 
Таблица 4.6 - Цены опционов call на индекс DAX (дата экспирации 22 июня 2019 года) и 

их абсолютные ошибки.  

Рисунок 4.5 - Цены опционов call на индекс DAX (дата экспирации 22 июня 2019 года). 
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𝑃𝑟𝑖𝑐𝑒 𝐴𝐸 

 

𝑆𝑡𝑟𝑖𝑘𝑒 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝑚𝑎𝑟𝑘𝑒𝑡 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 
9400 0.00 0.00 0.00 0.40 0.40 0.40 0.40 0.81 

9600 0.00 0.00 0.00 0.40 0.40 0.40 0.40 0.82 

9800 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.84 

10000 0.00 0.00 0.00 0.60 0.60 0.60 0.60 0.86 

10200 0.00 0.00 0.00 0.80 0.80 0.80 0.80 0.88 

10400 0.02 0.02 0.02 1.00 0.98 0.98 0.98 0.89 

10600 0.10 0.11 0.10 1.40 1.30 1.29 1.30 0.91 

10800 0.31 0.34 0.32 2.00 1.69 1.66 1.68 0.93 

11000 0.98 1.03 1.00 3.10 2.12 2.07 2.10 0.94 

11200 2.66 2.79 2.71 5.30 2.64 2.51 2.59 0.96 

11400 7.26 7.54 7.39 10.50 3.24 2.96 3.11 0.98 

11600 18.58 19.16 18.91 23.60 5.02 4.44 4.69 1.00 

11800 44.74 45.85 45.51 54.00 9.26 8.15 8.49 1.01 

12000 99.73 101.67 101.40 115.30 15.57 13.63 13.90 1.03 

12200 196.79 199.73 199.75 223.20 26.41 23.47 23.45 1.05 

12400 337.64 341.41 341.86 381.80 44.16 40.39 39.94 1.06 

12600 509.78 514.12 514.94 570.50 60.72 56.38 55.56 1.08 

12800 699.46 704.08 705.12 768.20 68.74 64.12 63.08 1.10 

13000 896.17 900.90 902.03 967.80 71.63 66.90 65.77 1.12 
Таблица 4.7 - Цены опционов put на индекс DAX (дата экспирации 22 июня 2019 года) и 

их абсолютные ошибки. 

Рисунок 4.6 - Цены опционов put на индекс DAX (дата экспирации 22 июня 2019 года). 
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Рисунок 4.7 - Абсолютные ошибки цен опционов call на индекс DAX (дата экспирации 22 

июня 2019 года). 

 

Рисунок 4.8 - Абсолютные ошибки цен опционов put на индекс DAX (дата экспирации 22 

июня 2019 года). 
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Рисунок 4.9 - Абсолютные ошибки цен опционов call на индекс DAX (дата экспирации 22 

декабря 2023 года). 

 

Рисунок 4.10 - Абсолютные ошибки цен опционов put на индекс DAX (дата экспирации 22 

декабря 2023 года). 
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Рисунки 4.9, 4.10 демонстрируют результаты оценки справедливой стоимости опционов 

с датой экспирации 22 декабря 2023 года. Как видно, графики ошибок показывают схожие 

результаты с результатами оценки опционов с датой экспирации 22 июля 2019 года, однако 

расхождение в ошибках больше. Это связано с тем, что бралась стандартная оценка 

математического ожидания 
∑ 𝑋𝑖
𝑀
𝑖=1

𝑀
, где 𝑋𝑖 − независимые, одинаково распределенные 

случайные величины с математическим ожиданием 𝑚 и дисперсией 𝐷. В диссертации для 

опционов с ближней датой экспирации бралось значение 𝑀 = 100 000, а с дальней - 𝑀 =

10 000, где 𝑀 −количество траекторий реализации 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 модели, 

соответственно, ошибка между этими двумя наборами оценок справедливой стоимости 

опционов будет отличаться на порядок, что и наблюдается на рисунках 4.7, 4.8 и 4.9, 4.10.  

Опционы на индекс SMI 

Аналогичные рассуждения для опционов на индекс SMI позволяют определить, что 

наилучшей моделью является 𝐴𝑅𝐼𝑀𝐴(2,0,2) − 𝐺𝐴𝑅𝐶𝐻(1,1) и убедиться в стационарности 

случайного процесса (таблицы 4.8, 4.9, рисунок 4.12). Исходные данные представляют 

собой значения индекса SMI на конец дня с 06 июня 20117 года по 03 июня 2019 года (рис. 

4.11).  

 

Рисунок 4.11 - График стоимости фондового индекса SMI на конец дня (06.06.2017-

03.06.2019). 
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Данные Значение статистики Критическое значение 

статистики (1%) 

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) -7.4471 -3.96 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 -7.4677 -3.96 

Таблица 4.8 - Результаты Расширенного теста Дики-Фуллера (SMI). 

 

Данные Значение статистики χ95%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) 11.332 11.0705 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 11.231 11.0705 

Таблица 4.9 - Результаты Q-теста Льюнга-Бокса для 5 лагов (SMI). 

 

 

 

Рисунок 4.12 - Графики ACF и PACF для 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) (SMI). 
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 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 1524.498 1534.513 1534.853 

𝜙1 
Std. Error 

t-value 

Pr(>|t|) 

0.692672 

(0.105087) 

6.5914  

0 

0.648521 

(0.117605) 

5.5144 

0 

0.646306 

(0.119164) 

5.42365 

0 

𝜙2 
Std. Error 

t-value 

Pr(>|t|) 

-0.713626 

(0.107419) 

-6.6434  

0 

-0.793825 

(0.109211) 

-7.2688 

0 

-0.79122 

(0.108597) 

-7.28586 

0 

𝜃1 

Std. Error 

t-value 

Pr(>|t|) 

-0.704832 

(0.082404) 

-8.5534  

0 

-0.685102 

(0.093569) 

-7.3219 

0 

-0.683143 

(0.094874) 

-7.20049 

0 

𝜃2 

Std. Error 

t-value 

Pr(>|t|) 

0.833996 

(0.082199) 

10.146  

0 

0.877989 

(0.084859) 

10.3464 

0 

0.87657 

(0.08418) 

10.41299 

0 

𝛼0 
Std. Error 

t-value 

Pr(>|t|) 

0.000005 

(0.000001) 

3.1699 

0.001525 

0.000004 

(0.000001) 

2.707 

0.006789 

0.000004 

(0.000001) 

2.87693 

0.004016 

𝛼1 
Std. Error 

t-value 

Pr(>|t|) 

0.129061 

(0.024278) 

5.3159 

0 

0.136098 

(0.032412) 

4.199 

0.000027 

0.137356 

(0.032574) 

4.21674 

0.000025 

𝛽1 
Std. Error 

t-value 

Pr(>|t|) 

0.809151 

(0.028029) 

28.8689 

0 

0.815933 

(0.025771) 

31.6613 

0 

0.814786 

(0.025875) 

31.48923 

0 

𝐴𝐼𝐶 -6.7444 -6.7801 -6.7816 

𝐵𝐼𝐶 -6.6805 -6.6979 -6.6994 

𝜉 - -0.684247 -0.599973 

𝜅 - 4.403636 4.552354 

Таблица 4.10 - Результаты оценивания 𝐴𝑅𝐼𝑀𝐴(2,0,2) − 𝐺𝐴𝑅𝐶𝐻(1,1) моделей для 𝑌𝑡 =

ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 индекса SMI. 
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Рисунок 4.13 - Абсолютные ошибки цен опционов call на индекс SMI (дата экспирации 03 

июня 2019 года). 

 

Рисунок 4.14 - Абсолютные ошибки цен опционов put на индекс SMI (дата экспирации 03 

июня 2019 года). 
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Рисунок 4.15 - Абсолютные ошибки цен опционов call на индекс SMI (дата экспирации 22 

декабря 2020 года). 

 

Рисунок 4.16 - Абсолютные ошибки цен опционов put на индекс SMI (дата экспирации 22 

декабря 2020 года). 
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Из таблицы 4.10 следует, что уровень значимости всех коэффициентов больше, чем 99%, 

также видно, что из модели была убрана константа 𝐴𝑅𝐼𝑀𝐴 части, так как она была 

статистически незначима. Знаки коэффициентов совпадают, а для моделей с ошибками 

𝐸𝐺𝐵2 и 𝐽𝑆𝑈 характерны совпадения коэффициентов вплоть до второго знака после запятой. 

Также видно, что для данного временного ряда (SMI) характерно наличие “тяжелых 

хвостов”.  

Абсолютные ошибки представлены на рисунках 4.13 – 4.16, на них можно видеть, что во 

всех экспериментах модель с ошибками 𝐽𝑆𝑈 показала самые близкие результаты оценок 

стоимостей опционов к рыночным ценам. Среди моделей 𝐸𝐺𝐵2 и 𝑁 утверждать какая 

лучше однозначно нельзя, так, для оценки цен опционов call модель 𝐸𝐺𝐵2 дает близкие к 

𝐽𝑆𝑈 значения, однако для put хорошо показывает себя модель с нормальным 

распределением. Также следует отметить, что для опционов call с датой экспирации 03 

июня 2019 года и put с датой экспирации 22 декабря 2020 года и  значениями 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 

от 1,04 до 1,06, модель с нормальным распределением ошибок дает лучшие результаты. 

 

Опционы на курс британского фунта к американскому доллару (British Pound / US 

Dollar) 

Рисунок 4.18 отображает поведение коррелограмм (ACF, PACF), а проведенные Q-тесты 

Льюнга-Бокса показывают, что ряды 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1, полученные из 

исходного временного ряда 𝑆𝑡 (рис. 4.17) значений курса британского фунта к 

американскому доллару не имеют автокорреляционных связей вплоть до 20 лага (таблица 

4.11).  
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Рисунок 4.17 - График курса британского фунта к доллару США на конец дня 

(06.06.2017-03.06.2019). 

Данные Значение статистики χ99%,20
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) 12.975 15.08627 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 12.885 15.08627 

Таблица 4.11 - Результаты Q-теста Льюнга-Бокса для 20 лагов (British Pound / US Dollar). 

Исходный ряд 𝑆𝑡, как и в случае фондового индекса DAX, преобразован к виду 𝑌𝑡 =

𝑙𝑛 (𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1. На рисунке 4.18 видно, что коррелограммы ACF и PACF 

практически идентичны коррелограмам на рисунке 4.3, что позволяет делать вывод о 

схожей спецификации модели: A𝑅𝐼𝑀𝐴(0,0,1) − 𝐺𝐴𝑅𝐶𝐻(1,1). Таблицы 4.12 и 4.13 также 

позволяют убедиться в стационарности и автокоррелируемости полученных временных 

рядов (статистическая значимость первого лага на графике ACF и затухающее поведение 

графика PACF). 
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Рисунок 4.18 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−1) (British Pound / US Dollar). 

 

 

Рисунок 4.19 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−2) (British Pound / US Dollar). 

 

Данные Значение статистики χ99%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) 122.54 15.08627 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 122.54 15.08627 

Таблица 4.12 - Результаты Q-теста Льюнга-Бокса для 5 лагов (British Pound / US Dollar). 

 

Данные Значение статистики Критическое значение 

статистики (1%) 

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) -7.741 -3.96 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 -7.7371 -3.96 

Таблица 4.13 - Результаты расширенного теста Дики-Фуллера (British Pound / US Dollar). 
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 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 2010.074 2018.786 2018.925 

𝜃1 

Std. Error 

t-value 

Pr(>|t|) 

0.960904 

(0.005945) 

161.6327 

0 

0.960766 

(0.006427) 

149.4896 

0 

0.958651 

(0.007069) 

135.6167 

0 

𝛼0 
Std. Error 

t-value 

Pr(>|t|) 

0.000001 

(0) 

3.1783 

0.001481 

0.000001 

(0) 

8.4803 

0 

0.000001 

(0) 

8.786 

0 

𝛼1 
Std. Error 

t-value 

Pr(>|t|) 

0.006402 

(0.000519) 

12.326100 

0.000000 

0.028848 

(0.002913) 

9.9024 

0 

0.028444 

(0.003057) 

9.3035 

0 

𝛽1 
Std. Error 

t-value 

Pr(>|t|) 

0.976852 

(0.002829) 

345.2703 

0 

0.914257 

(0.012017) 

76.0784 

0 

0.912049 

(0.01224) 

74.5162 

0 

𝐴𝐼𝐶 -7.7009 -7.7266 -7.7272 

𝐵𝐼𝐶 -7.6682 -7.6776 -7.6781 

𝜉 - 0.195656 0.092051 

𝜅 - 2.885524 2.19142 

Таблица 4.14 - Результаты оценивания 𝐴𝑅𝐼𝑀𝐴(0,0,1) − 𝐺𝐴𝑅𝐶𝐻(1,1) моделей для 𝑌𝑡 =

ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 (British Pound / US Dollar). 

Исследование параметров, полученных в результате калибровки моделей, позволяет 

говорить о статистической значимости всех коэффициентов с уровнем значимости 99%. 

Порядок и знаки всех коэффициентов конкурирующих моделей совпадают. Значения 

функций правдоподобия и информационные критерии AIC и BIC показывают, что 

наилучшие результаты с точки зрения предсказательных возможностей модели имеет 

модель с ошибками распределенными по закону 𝑆𝑢 Джонсона, однако результаты 

проведенных экспериментов по оценке справедливой стоимости опционов (рисунки 4.20 – 

4.23) показывают, что модель с остатками, распределенными нормально, для опционов с 

ближайшей датой экспирации и для опционов call с датой экспирации 22 марта 2020 года, 

имеет схожие результаты с моделью имеющей ошибки распределенные по закону 𝑆𝑢 

Джонсона. Это связано с тем, что параметры калибровки моделей с ошибками, 

распределенными по закону 𝑆𝑢 Джонсона и нормальному закону, практически совпадают. 

Из таблицы 4.14 следует, что значение параметра 𝜉 (skewness) в модели с ошибками, 

распределенными по закону 𝐽𝑆𝑈 (𝜉 = 0.092051) на порядок меньше, чем у модели с 

ошибками распределенными по закону 𝐸𝐺𝐵2 (𝜉 = 0.195656), что говорит о большей 

асимметрии последней модели. Этот же результат дает критерий Шапиро-Уилка [79] – 

формальный тест для проверки нормальности распределения выборки.  
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Рисунок 4.20 - Абсолютные ошибки цен опционов call British Pound / US Dollar (дата 

экспирации 22 июня 2019 года). 

 

Рисунок 4.21 - Абсолютные ошибки цен опционов put British Pound / US Dollar (дата 

экспирации 22 июня 2019 года). 
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Рисунок 4.22 - Абсолютные ошибки цен опционов call British Pound / US Dollar (дата 

экспирации 22 марта 2020 года). 

 

Рисунок 4.23 - Абсолютные ошибки цен опционов put British Pound / US Dollar (дата 

экспирации 22 марта 2020 года). 
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Нулевая гипотеза 𝐻0: случайная величина распределена нормально. В таблице 4.15 

видно, что значения 𝑝 − 𝑣𝑎𝑙𝑢𝑒 показывают, что модель ARIMA-GARCH с ошибками 𝐽𝑆𝑈 

больше приближена к нормальному распределению чем модель с ошибками 𝐸𝐺𝐵2. 

Модель Значение статистики p-value 

𝐽𝑆𝑈 0.99317 0.209 

𝐸𝐺𝐵2 0.99146 0.09152 

Таблица 3.15 - Результаты теста Шапиро-Уилка (British Pound / US Dollar). 

 

Отдельно стоит отметить результаты оценки стоимости цен опционов put British Pound / 

US Dollar с датой экспирации 22 марта 2020 года. Нельзя однозначно сделать вывод о том, 

какая модель является наилучшей. К примеру, для значений 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 < 1.034 модель 

𝐸𝐺𝐵2 дает наилучшие результаты, однако при увеличении показателя  𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 

значения ошибок также возрастают. Похожая ситуация наблюдается и в случае сравнения 

моделей с распределениями ошибок 𝑁 и 𝐽𝑆𝑈,  ошибки оценок справедливой стоимости 

опционов по модели с распределением 𝐽𝑆𝑈 меньше чем по модели с распределением 𝑁, 

однако при превышении значения  𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 = 1.055, ошибки модели с распределением 

𝐽𝑆𝑈 начинают расти, в то время как модель с нормальным распределением наоборот, 

характеризуется более устойчивым поведением, то есть значения ошибок уменьшаются при 

удалении значений 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 от единицы. Рисунок 4.23 также подтверждает сделанные 

выше предположения о схожести моделей с ошибками 𝐽𝑆𝑈 и 𝑁 (схожее значения цен 

опционов). 

Опционы на курс британского фунта к евро (British Pound / Euro) 

Как и в случае с опционами на курс британского фунта к американскому доллару, 

исходный ряд 𝑆𝑡 (рис. 4.24), из-за  отсутствия автокорреляционных связей (таблица 4.16), 

приводится к виду 𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1. Полученные в результате 

преобразования ряды являются стационарными и автокоррелированными на 99% уровне 

значимости. Полученные графики ACF и PACF могут натолкнуть на мысль о схожей 

модели поведения случайного процесса ARIMA с моделью, описанной для опционов на 

курс британского фунта к американскому доллару (𝐴𝑅𝐼𝑀𝐴(0,0,1)), однако коррелограмма 

ACF имеет три первых статистически значимых значения корреляции, поэтому существует 

несколько возможных моделей, к примеру: A𝑅𝐼𝑀𝐴(0,0,1), 𝐴𝑅𝐼𝑀𝐴(0,0,3), 𝐴𝑅𝐼𝑀𝐴(2,0,0), 

𝐴𝑅𝐼𝑀𝐴(4,0,0). Выбор между моделями делался на основе информационных критериев 

Акайке (AIC) и Байеса (BIC). Результаты для перечисленных моделей представлены в 
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таблице 4.19, которые позволяют сделать вывод о большей предсказательной способности 

модели 𝐴𝑅𝐼𝑀𝐴(4,0,0), так как у данной модели самое большое значение функции 

правдоподобия и соответственно наименьшие значения показателей AIC и BIC. 

 

Рисунок 4.24 - График курса британского фунта к доллару евро на конец дня 

(06.06.2017-03.06.2019). 

 

Данные Значение статистики χ95%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−1) 7.3956 11.0705 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−1 − 1 7.3453 11.0705 

Таблица 4.16 - Результаты Q-теста Льюнга-Бокса для 5 лагов (British Pound / Euro). 
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Рисунок 4.25 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−2) (British Pound / Euro). 

 

Данные Значение статистики χ99%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) 120.19 15.08627 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 120.12 15.08627 

Таблица 4.17 - Результаты Q-теста Льюнга-Бокса для 5 лагов (British Pound / Euro). 

 

Данные Значение статистики Критическое значение 

статистики (1%) 

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) -7.5007 -3.96 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 -7.4901 -3.96 

Таблица 4.18 - Результаты Расширенного теста Дики-Фуллера (British Pound / Euro). 

 

𝐴𝑅𝑀𝐴(2,0) 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝐴𝑅𝑀𝐴(4,0) 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 1988.945 2003.607 2004.062 𝐿𝑛(𝜐̂) 1992.198 2004.33 2004.517 

𝐴𝐼𝐶 -8.0281 -8.0794 -8.0812 𝐴𝐼𝐶 -8.0494 -8.0904 -8.0912 

𝐵𝐼𝐶 -7.9771 -8.0113 -8.0132 𝐵𝐼𝐶 -8.0154 -8.0394 -8.0401 

𝐴𝑅𝑀𝐴(0,1) 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝐴𝑅𝑀𝐴(0,3) 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 1973.877 1978.603 1978.832 𝐿𝑛(𝜐̂) 1959.586 1963.319 1963.522 

𝐴𝐼𝐶 -7.9631 -7.9741 -7.975 𝐴𝐼𝐶 -7.9133 -7.9203 -7.9211 

𝐵𝐼𝐶 -7.9035 -7.8975 -7.8985 𝐵𝐼𝐶 -7.8708 -7.8608 -7.8616 
Таблица 4.19 - Значения информационных критериев AIC и BIC (British Pound / Euro). 
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 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 2070.443 2078.092 2078.471 

𝜙1 
Std. Error 

t-value 

Pr(>|t|) 

0.781865 

(0.048817) 

16.0161 

0 

0.793585 

(0.047103) 

16.84775 

0 

0.794423 

(0.047041) 

16.88805 

0 

𝜙2 
Std. Error 

t-value 

Pr(>|t|) 

-0.625868 

(0.057821) 

-10.8242 

0 

-0.619403 

(0.056606) 

-10.94226 

0 

-0.620009 

(0.056504) 

-10.97276 

0 

𝜙3 
Std. Error 

t-value 

Pr(>|t|) 

0.272836 

(0.057292) 

4.762200 

0.000002 

0.283295 

(0.055983) 

5.06039 

0 

0.284061 

(0.055874) 

5.08396 

0 

𝜙4 

Std. Error 

t-value 

Pr(>|t|) 

-0.167018 

(0.045119) 

-3.7017  

0.000214 

-0.16278 

(0.043355) 

-3.75455 

0.000174 

-0.162989 

(0.043283) 

-3.76566 

0.000166 

𝛼0 
Std. Error 

t-value 

Pr(>|t|) 

0.000003 

(0.000000) 

11.834100 

0.000000 

0.000003 

(0) 

8.41049 

0 

0.000003 

(0 

7.9096 

0 

𝛼1 
Std. Error 

t-value 

Pr(>|t|) 

0.117312 

(0.017913) 

6.5492 

0 

0.13444 

(0.025818) 

5.20714 

0 

0.134804 

(0.02581) 

5.22299 

0 

𝛽1 
Std. Error 

t-value 

Pr(>|t|) 

0.740557 

(0.029631) 

24.9923 

0 

0.710272 

(0.038925) 

18.24705 

0 

0.710097 

(0.039382) 

18.03113 

0 

𝐴𝐼𝐶 -7.9172 -7.9389 -7.9404 

𝐵𝐼𝐶 -7.8519 -7.8572 -7.8587 

𝜉 - -0.095154 -0.098226 

𝜅 - 3.490707 2.353444 

Таблица 4.20 - Результаты оценивания 𝐴𝑅𝐼𝑀𝐴(4,0,0) − 𝐺𝐴𝑅𝐶𝐻(1,1) моделей для 𝑌𝑡 =

ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 (British Pound / Euro). 
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Рисунок 4.26 - Абсолютные ошибки цен опционов call British Pound / Euro (дата 

экспирации 22 июня 2019 года). 

 

Рисунок 4.27 - Абсолютные ошибки цен опционов put British Pound / Euro (дата 

экспирации 22 июня 2019 года). 
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Рисунок 4.28 - Абсолютные ошибки цен опционов call British Pound / Euro (дата 

экспирации 22 марта 2020 года). 

 

Рисунок 4.29 - Абсолютные ошибки цен опционов put British Pound / Euro (дата 

экспирации 22 марта 2020 года). 
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Результаты калибровки моделей (таблица 4.20) свидетельствуют о статистической 

значимости всех коэффициентов на уровне 99%, также коэффициенты близки друг к другу, 

а коэффициент асимметрии близок к нулю для распределений 𝐸𝐺𝐵2 и 𝐽𝑆𝑈, что 

свидетельствует о близости моделей к нормальному распределению.  

Анализ рисунков 4.26 – 4.29 показывает, что стоимости, полученные при помощи 

моделей с ошибками, имеющими распределения 𝐸𝐺𝐵2 и 𝐽𝑆𝑈 , практически совпадают, 

причем для опционов с датой экспирации 22 июня 2019 года оценки дают меньшие ошибки, 

чем полученные при помощи модели 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 с нормальным распределением. Для 

опционов с датой экспирации 22 марта 2020 года графики практически совпадают, поэтому 

ниже приводятся табличные результаты абсолютных ошибок.  

𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 
𝐶𝐴𝐿𝐿 𝑃𝑈𝑇 

𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝑁𝑚𝑜𝑑 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 𝑁𝑚𝑜𝑑 

0.986 0.2140 0.2055 0.2048 0.2068 0.2703 0.2544 0.2562 0.2686 

0.995 0.3307 0.3238 0.3226 0.3235 0.3754 0.3612 0.3625 0.3745 

1.004 0.3294 0.3287 0.3256 0.3230 0.3726 0.3647 0.3641 0.3732 

1.013 0.2368 0.2365 0.2341 0.2322 0.2586 0.2510 0.2510 0.2611 

1.022 0.1271 0.1264 0.1250 0.1244 0.1474 0.1412 0.1405 0.1484 

1.030 0.0550 0.0545 0.0538 0.0537 0.0638 0.0577 0.0578 0.0651 

1.039 0.0189 0.0188 0.0185 0.0182 0.0163 0.0111 0.0111 0.0175 

1.048 0.0097 0.0098 0.0097 0.0094 0.0144 0.0217 0.0193 0.0156 

1.057 0.0099 0.0100 0.0099 0.0098 0.0257 0.0330 0.0305 0.0244 

Таблица 4.21 - Абсолютные ошибки цен опционов call/put British Pound / Euro (дата 

экспирации 22 июня 2019 года). 

 

𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 
𝐶𝐴𝐿𝐿 𝑃𝑈𝑇 

𝑁 𝐸𝐺𝐵 𝐽𝑆𝑈 𝑁𝑚𝑜𝑑 𝑁 𝐸𝐺𝐵 𝐽𝑆𝑈 𝑁𝑚𝑜𝑑 

0.959 0.9593 5.9704 5.9848 5.9436 5.5791 5.7015 5.5738 5.5725 

0.977 0.9771 5.0263 5.0285 5.0060 6.9730 7.1076 6.9612 6.9694 

0.995 0.9948 4.1065 4.1099 4.0944 8.3526 8.4860 8.3326 8.3500 

1.013 1.0126 3.2699 3.2725 3.2645 9.6390 9.7731 9.6124 9.6345 

1.030 1.0304 2.5477 2.5511 2.5464 10.8210 10.9543 10.7902 10.8132 

1.048 1.0481 1.9507 1.9521 1.9507 11.8781 12.0131 11.8457 11.8669 

1.066 1.0659 1.4558 1.4569 1.4551 12.8125 12.9481 12.7791 12.8005 

1.084 1.0837 1.0786 1.0789 1.0785 13.6599 13.7959 13.6265 13.6458 

Таблица 4.22 - Абсолютные ошибки цен опционов call/put British Pound / Euro (дата 

экспирации 22 марта 2020 года). 

Из таблицы 4.21 видно, что модели 𝐸𝐺𝐵2 и 𝐽𝑆𝑈 дают меньшие ошибки по сравнению с 

нормальным распределением для опционов call и put (дата экспирации 22 июня 2019 года) 

на интервале 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 < 1.048. Для опционов с датой экспирации 22 марта 2020 года 
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лучшие результаты дают модели 𝑁 и 𝐽𝑆𝑈 (на всем рассматриваемом интервале 

𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠). Во всех случаях преимущество имеет модель, построенная на основе 

распределения 𝑆𝑢 Джонсона.  

Опционы на стоимость природного газа (Natural Gas) 

Ряд 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−1) (рисунок 4.30) для цен природного газа также не имеет 

автокорреляционных связей (рисунок 4.31), анализ показывает, что необходимо 

использовать модель 𝐴𝑅𝐼𝑀𝐴(0,0,1) − 𝐺𝐴𝑅𝐶𝐻(1,1) для преобразованного временного ряда 

𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−2). 

  

Рисунок 4.30 - График стоимости фьючерсного контракта на природный газ на конец 

дня (06.06.2017-03.06.2019). 
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Рисунок 4.31 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−1) (Natural Gas). 

 

 

Рисунок 4.32 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−2) (Natural Gas). 

 

Данные Значение статистики χ99%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) 147.34 15.08627 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 146.28 15.08627 

Таблица 4.23 - Результаты Q-теста Льюнга-Бокса для 5 лагов (Natural Gas). 

 

Данные Значение статистики Критическое значение 

статистики (1%) 

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) -7.2404 -3.96 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 -7.2589 -3.96 

Таблица 4.24 - Результаты Расширенного теста Дики-Фуллера (Natural Gas). 

 



89 

 

 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 1299.271 1313.38 1315.415 

𝜃1 

Std. Error 

t-value 

Pr(>|t|) 

0.886698 

(0.02495) 

35.5389 

0 

0.897053 

(0.02086) 

43.0032 

0 

0.893749 

(0.021673) 

41.2386 

0 

𝛼0 
Std. Error 

t-value 

Pr(>|t|) 

0.000014 

(0.000001) 

11.1229 

0 

0.000011 

(0.000001) 

12.0786 

0 

0.000011 

(0.000001) 

12.112 

0 

𝛼1 
Std. Error 

t-value 

Pr(>|t|) 

0.058728 

(0.007146) 

8.2182 

0 

0.044492 

(0.005855) 

7.5988 

0 

0.044999 

(0.005694) 

7.9022 

0 

𝛽1 
Std. Error 

t-value 

Pr(>|t|) 

0.900351 

(0.013811) 

65.1923 

0 

0.922502 

(0.012666) 

72.8336 

0 

0.921933 

(0.012823) 

71.8961 

0 

𝐴𝐼𝐶 -5.1502 -5.1983 -5.2064 

𝐵𝐼𝐶 -5.1166 -5.1480 -5.1561 

𝜉 - -0.295199 -0.576871 

𝜅 - 2.013086 1.974535 

Таблица 4.25 - Результаты оценивания 𝐴𝑅𝐼𝑀𝐴(0,0,1) − 𝐺𝐴𝑅𝐶𝐻(1,1) моделей для 𝑌𝑡 =

ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 (Natural Gas). 

 

Рисунок 4.33 - Абсолютные ошибки цен опционов call Natural Gas (дата экспирации 20 

июля 2019 года). 
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Рисунок 4.34 - Абсолютные ошибки цен опционов put Natural Gas (дата экспирации 20 

июля 2019 года). 

 

Рисунок 4.35 - Абсолютные ошибки цен опционов call Natural Gas (дата экспирации 22 

июля 2020 года). 
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Рисунок 4.36 - Абсолютные ошибки цен опционов put Natural Gas (дата экспирации 22 

июля 2020 года). 

 

Все модели показывают небольшие значения абсолютных ошибок цен опционов. Как для 

дальних так и для ближних опционных контрактов в большинстве случаев модель с 

распределением ошибок 𝑆𝑢 Джонсона показывает наименьшие ошибки. Для опционов с 

датой экспирации  22 июля 2020 года в интервале 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 от 1,016 до 1,081 

минимальные значения абсолютных ошибок показывает модель с нормальным 

распределением ошибок, однако стоит отметить, что разница в ошибках между 𝑁 и 𝐽𝑆𝑈 

небольшая - 0,0027.  

Опционы на стоимость нефти (Light Sweet Crude Oil) 

Коррелограммы ACF и PACF (рисунок 4.38, 4.39) временного ряда 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−2) 

(рисунок 4.37) указывают на то, что в качестве ARIMA части необходимо рассматривать 

𝐴𝑅𝐼𝑀𝐴(2,0,0) (сильно значимые первые два лага частной автокорреляции и затухающее 

поведение ACF графика).  
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Рисунок 4.37 - График стоимости фьючерсного контракта на нефть на конец дня 

(06.06.2017-03.06.2019). 

 

 

Рисунок 4.38 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−1) (Light Sweet Crude Oil). 
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Рисунок 4.39 - Графики ACF и PACF для 𝑌𝑡 = 𝑙𝑛 (𝑆𝑡/𝑆𝑡−2) (Light Sweet Crude Oil). 

 

 

Данные Значение статистики χ99%,5
2  

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) 92.039 15.08627 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 89.662 15.08627 

Таблица 4.26 - Результаты Q-теста Льюнга-Бокса для 5 лагов (Light Sweet Crude Oil). 

 

Данные Значение статистики Критическое значение 

статистики (1%) 

𝑌𝑡 = ln(𝑆𝑡/𝑆𝑡−2) -7.5108 -3.96 

𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 -7.5100 -3.96 

Таблица 4.27 - Результаты Расширенного теста Дики-Фуллера (Light Sweet Crude Oil). 
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 𝑁 𝐸𝐺𝐵2 𝐽𝑆𝑈 

𝐿𝑛(𝜐̂) 1261.086 1267.017 1268.022 

𝜙1 
Std. Error 

t-value 

Pr(>|t|) 

0.667116 

(0.043985) 

15.1668 

0 

0.657088 

(0.043122) 

15.2379 

0 

0.659745 

(0.043152) 

15.2888 

0 

𝜙2 
Std. Error 

t-value 

Pr(>|t|) 

-0.313186 

(0.043636) 

-7.1773 

0 

-0.323465 

(0.042236) 

-7.6585 

0 

-0.322464 

(0.042439) 

-7.5983 

0 

𝛼0 
Std. Error 

t-value 

Pr(>|t|) 

0.000015 

(0.000002) 

8.341500 

0.000000 

0.000013 

(0.000001) 

16.4056 

0 

0.000013 

(0.000001) 

16.1163 

0 

𝛼1 
Std. Error 

t-value 

Pr(>|t|) 

0.049707 

(0.007002) 

7.0988 

0 

0.042324 

(0.005701) 

7.424 

0 

0.041834 

(0.005506) 

7.5984 

0 

𝛽1 
Std. Error 

t-value 

Pr(>|t|) 

0.913128 

(0.013747) 

66.424300 

0.000000 

0.92728 

(0.011196) 

82.8231 

0 

0.928020 

(0.011169) 

83.0925 

0 

𝐴𝐼𝐶 -4.9944 1267.752 -5.0140 

𝐵𝐼𝐶 -4.9524 -4.9542 -4.9553 

𝜉  -0.70877 -0.27232 

𝜅  4.405384 2.663401 

Таблица 4.28 - Результаты оценивания 𝐴𝑅𝐼𝑀𝐴(2,0,0) − 𝐺𝐴𝑅𝐶𝐻(1,1) моделей для 𝑌𝑡 =

ln(𝑆𝑡/𝑆𝑡−2) и 𝑌̃𝑡 = 𝑆𝑡/𝑆𝑡−2 − 1 (Light Sweet Crude Oil). 
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Рисунок 4.40 - Абсолютные ошибки цен опционов call Light Sweet Crude Oil (дата 

экспирации 20 июня 2019 года). 

 

Рисунок 4.41 - Абсолютные ошибки цен опционов put Light Sweet Crude Oil (дата 

экспирации 20 июня 2019 года). 
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Рисунок 4.42 - Абсолютные ошибки цен опционов call Light Sweet Crude Oil (дата 

экспирации 22 июня 2020 года). 

 

Рисунок 4.43 - Абсолютные ошибки цен опционов put Light Sweet Crude Oil (дата 

экспирации 22 июня 2020 года). 
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Как и в случае с опционом на природный газ (товарный опцион), абсолютные ошибки 

цен опционов небольшие, в частности это характерно для модели с распределением 𝑆𝑢 

Джонсона. Второй по качеству моделью оказалась 𝐴𝑅𝐼𝑀𝐴 − 𝐺𝐴𝑅𝐶𝐻 с ошибками, 

распределенными нормально. Данный результат можно объяснить большей схожестью 

распределений 𝑁 и 𝐽𝑆𝑈, это видно по параметру асимметрии, для нормального 

распределения он составит нуль, а для 𝐽𝑆𝑈 = −0.27232 и 𝐸𝐺𝐵2 = −0.70877. 

4.5 Выводы 

 

В данной главе были рассмотрены четыре модели ARIMA-GARCH с ошибками, 

имеющими нормальное распределение, обобщенное экспоненциальное бета распределение 

второго типа, и распределение 𝑆𝑢 Джонсона. Первые две модели были реализованы по 

известным формулам, полученным применением расширенного принципа Гирсанова. 

Третья и четвертая модели реализовывались на основе результатов Главы 2. Эффективность 

конкурирующих моделей сравнивалась на основе оценивания абсолютной ошибки 

справедливой стоимости опционных контрактов относительно рыночной стоимости.  

Результаты эмпирических исследований показывают, что на небольших временных 

промежутках модели обеспечивают близкие значения справедливой стоимости опционов. 

Для опционов с дальней датой экспирации (больше года) модели показывают существенно 

разные результаты. Модель, построенная для распределения 𝑆𝑈 Джонсона, дает оценки 

стоимости, максимально близкие к ценам закрытия биржевых торгов для всех 

рассматриваемых опционных контрактов. Также необходимо отметить, что модель, 

построенная для нормального распределения на основе модификации расширенного 

принципа Гирсанова дает практически одинаковые результаты с моделью построенной на 

основе классического расширенного принципа Гирсанова.  
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ГЛАВА 5 Численные эксперименты оценки VaR портфеля опционов 

 

В современном риск-менеджменте существует множество мер риска [80;81], 

позволяющих ограничивать потенциальные потери от инвестиций в активы при 

повышенной волатильности цен. Одной из основных мер риска является VaR [77; 82] (Value 

at Risk). VaR – это уровень потерь в течении 𝑁 дней, вероятность превышения которого 

составляет (100 − 𝑋)%, где 𝑋 − уровень доверия (confidence level). VaR оценку риска, 

также называемую квантильной, в современном риск-менеджменте используют для 

решения задачи управления портфелем ценных бумаг. В своей статье [83] Кибзун А.И. и 

Кузнецов Е.А. показали, что замена критерия оптимальности среднего значения дохода на 

критерий гарантированного, с заданной вероятностью, значения капитала (квантильный 

критерий) позволяет преодолеть биржевой парадокс. Авторами использовался 

доверительный метод (т.к. известно, что наличие вероятностного ограничения не дает 

непосредственно применять метод динамического программирования), с помощью 

которого было найдено приближенное решение, однако оптимальная стратегия не обладала 

марковскими свойствами. Данную проблему разрешил Кан Ю.С. [84], показав, что 

квантильная задача управления с обратной связью сводится к задаче оптимального 

управления по вероятностному критерию, которую уже можно исследовать методом 

динамического программирования, в результате чего найденные стратегии уже являются 

марковскими. Вышеописанные результаты нашли множество применений в работах других 

авторов. В диссертационной работе [85] разработан алгоритм решения задач оптимизации 

квантильного критерия с линейными и квазилинейными по непрерывным случайным 

параметрам функциями потерь, основанных на использовании моделей ядра вероятностной 

меры. В другой диссертационной работе [86], автор использует свойства квантильного 

критерия для построения алгоритмов решения задач стохастического программирования с 

CVaR-критерием (интегральный квантиль). В своих работах авторы отвечают на важный 

вопрос о том, как инвестор должен себя вести с точки зрения оптимальности, где в качестве 

меры риска предпочтительней использовать VaR, т.к. данный критерий обладает рядом 

нужных свойств. Однако оценку риска, как и оценку справедливой стоимости 

рекомендуется проводить на основе риск-нейтральной вероятностной меры, в силу ее 

перспективности. Также для расчета VaR портфеля деривативов необходимо формальное 

описание совместной динамики цен базовых активов. Таким образом для решения задачи 

оценки VaR портфеля деривативов можно применить результаты Главы 4.  
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5.1 Введение. Постановка задачи 

 

В рамках данной главы ставится задача оценки однодневного VaR портфеля пяти 

опционных контрактов на пять различный базовых активов:  фондовые индексы DAX 

(Deutscher Aktienindex) и SMI (Swiss Market Index), курс британ-ского фунта к 

американскому доллару (British Pound / US Dollar), фьючерсы, базовыми ак-тивами которых 

выступают нефть (Light Sweet Crude Oil) и природный газ (Natural Gas). Необходимо: 

1. На основе исторических данных базовых активов провести разложение вектора 

случайных процессов в линейную комбинацию главных компонент 

(некоррелируемых друг с другом); 

2. Отобрать 𝑚 компонент, которые описывают не менее 70% дисперсии исходных 

данных случайных процессов; 

3. Оценить коэффициенты методом квази-максимального правдоподобия для каждой 

ARIMA-GARCH модели главных компонент; 

4. С помощью формулы (3.22) получить риск-нейтральные коэффициенты ARIMA-

GARCH моделей базовых активов; 

5. На основе метода Монте-Карло провести оценку VaR портфеля опционных 

контрактов; 

6. Провести бэк-тестирование и оценить эффективность модели на основе риск-

нейтральной меры в сравнении с моделью на основе физической меры. 

5.2 Описание данных и методика расчета VaR, бэк-тестирование 

 

Рассмотрим портфель опционных контрактов, представленный в таблице 5.1. Из 

таблицы видно, что в данных представлены три вида валют, соответственно, согласно 

формуле (3.22) использовались три безрисковые процентные ставки, в качестве таковых 

взяты ставки LIBOR (London Interbank Offered Rate) на соответствующие валюты.  
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Базовый актив 
Цена 

исполнения 

Дата 

исполнения 

опционного 

контракта 

Валюта 
Тип 

опционного 

контракта 
 

Индекс DAX 10750 19.06.2020 EUR CALL  

Индекс SMIM 2340 19.06.2020 CHF PUT  

GBP/USD 128 06.05.2020 USD PUT  

Natural Gas 2.25 25.06.2020 USD CALL  

Light Sweet Crude 

Oil 70 16.11.2022 USD CALL 
 

Таблица 5.1 – Состав портфеля опционных контрактов. 

Для наглядности необходимости применения метода главных компонент приведена 

таблица 5.2, из которой следует, что большинство базовых активов имеют сильную 

линейную связь (корреляция между индексом SMIM и индексом DAX составляет 0.95).  

  Индекс DAX Индекс SMIM GBP/USD NG1 CL1 

Индекс DAX 1.00         

Индекс SMIM 0.95 1.00       

GBP/USD 0.77 0.77 1.00     

NG1 0.48 0.27 0.05 1.00   

CL1 0.87 0.80 0.51 0.57 1.00 

Таблица 5.2 – Корреляционная таблица базовых активов. 

Результат применения метода главных компонент к доходностям базовых активов 

приведен в таблице 5.3. Так, например, индекс DAX будет иметь вид: 

𝐷𝐴𝑋 = 0.58𝑋1 − 0.3𝑋2 + 0.26𝑋3 + 0.04𝑋4 + 0.71𝑋5, 

где 𝑋𝑖 − главная компонента с номером 𝑖.  

  
Компонента 
1 

Компонента 
2 

Компонента 
3 

Компонента 
4 

Компонента 
5 

Индекс DAX 0.58 -0.30 0.26 0.04 0.71 

Индекс SMIM 0.59 -0.23 0.33 0.00 -0.70 

GBPUSD -0.05 -0.72 -0.52 -0.46 -0.05 

NG1 0.35 0.55 -0.15 -0.74 0.05 

CL1 0.44 0.18 -0.73 0.49 -0.04 
Таблица 5.3 – Матрица перехода от главных компонент к базовым активам. 
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Рисунок 5.1 - Доли дисперсии базовых активов, объясняемые главными компонентами. 

 

На рисунке 5.1 представлена гистограмма долей дисперсии, описываемых каждой 

компонентой. Из рисунка видно, что первые две компоненты описывают 67.4% дисперсии 

исходных данных, а три первые компоненты - 82.8%. Таким образом для задачи оценивания 

VaR портфеля будут использованы три первые главные компоненты.  

Однодневный VaR портфеля опционных контрактов оценивался по методу Монте-Карло 

[87;88]. Для этого необходимо: 

1. Сгенерировать траектории главных компонент на основе ARIMA-GARCH 

моделей начиная с момента времени 𝑡 (текущий момент времени) до момента 

экспирации опциона с базовым активом Light Sweet Crude Oil (16.11.2022); 

2. Согласно формуле (3.22) получить риск-нейтральные траектории базовых 

активов; 

3. По полученным траекториям посчитать справедливые стоимости опционных 

контрактов на момент времени 𝑡 + 1 и сложить их (в одной валюте); 

4. Пункт 1 выполнить 𝑁 = 10 000 раз. Полученную выборку отсортировать по 

возрастанию и в качестве значения VaR с уровнем значимости 𝛼 выбрать 

значение из выборки с номером 𝑁 × 𝛼 + 1; 

В качестве критерия состоятельности модели проводился тест Купика [89]. Суть теста 

заключается в проведении расчетов меры риска VaR портфеля активов для заданного 

исторического промежутка времени и сравнении полученных результатов с рыночными 

данными стоимости портфеля (бэк-тестирование [90]). В качестве примера был рассмотрен 
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временной промежуток с 19 августа 2019 года по 23 марта 2020 года (количество рабочих 

дней между ними составило 150). Тест Купика позволяет сравнить модельную и 

эмпирическую частоту событий, когда историческая стоимость портфеля активов 

опускалась ниже значения VaR (превышение). Если 𝑁 −объем выборки, 𝐾 −количество 

превышений кривой VaR, 𝛼0 = 𝐾/𝑁 −эмпирическая частота превышений кривой VaR, 

тогда нулевая гипотеза теста Купика: 

ℍ0: 𝛼0 = 𝛼, против ℍ1: 𝛼0 ≠ 𝛼. (5.1) 

Проверка гипотезы осуществляется при помощи статистики 

𝑆𝐶𝑢𝑝 = −2 ln((1 − 𝛼)
𝑁−𝐾𝛼𝐾) + 2 ln((1 − 𝛼0)

𝑁−𝐾𝛼0
𝐾), (5.2) 

которая, в случае истинности нулевой гипотезы имеет распределение 𝜒2(1). Так как 

проводился двусторонний тест, то статистика, для уровня значимости α̃ = 5% должно 

принимать значения 𝜒2((1 − 𝛼̃)/2, 1) < 𝑆𝐶𝑢𝑝 < 𝜒
2(1 − (1 − 𝛼̃)/2, 1). 

Значения базовых активов, безрисковых ставок (LIBOR) и рыночные стоимости 

опционных контрактов были взяты из системы Bloomberg. Вычисления проводились в 

среде программирования R. В качестве вспомогательного инструмента использовалась 

библиотека “rugarch” [91], которая позволяет проводить калибровку параметров моделей 

ARIMA-GARCH для разных типов моделей и разных распределений ошибок. В качестве 

оптимизатора, для решения задачи поиска максимального правдоподобия, библиотека 

“rugarch” использует оптимизатор “solnp”, описанный в Главе 4. В качестве распределения 

ошибок моделей ARIMA-GARCH главных компонент было рассмотрено распределение 𝑆𝑢 

Джонсона. Также была использована встроенная в среду R функция “prcomp”, 

позволяющая получать главные компоненты (согласно методу главных компонент), а также 

матрицу перехода от главных компонент к исходным данным (таблица 5.3). Исходный код 

доступен в приложении Б.  

 

5.3 Спецификация ARIMA-GARCH моделей главных компонент 

 

В данном разделе приводится выбор спецификаций ARIMA-GARCH моделей первых 

трех главных компонент. Первая калибровка параметров моделей главных компонент, 

необходимых для проведения бэк-тестирования, проводилась по историческим данным 

главных компонент, полученных на основе стоимостей базовых активов с 05 января 2015 

(рисунок 5.2) на дату 19 августа 2019 года. Объем выборки составил 1161 день.  
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Рисунок 5.2 – Динамика первых трех главных компонент с 05.01.15 по 18.08.19. 

Временные ряды главных компонент центрировались, поэтому значения константы 𝜙0 в 

уравнении (1.17) равен нулю. На основе анализа графиков ACF и PACF были выбраны две 

наилучшие альтернативные спецификации моделей ARIMA(2,0,2)-GARCH(1,1) и 

ARIMA(0,0,0)-GARCH(1,1). Результаты калибровки параметров моделей приведены в 

таблице 5.4. Из них видно, что в обеих моделях все коэффициенты ненулевые с уровнем 

значимости 95%. Используя обозначения Главы 4, в таблице также приведены значения 

коэффициента асимметрии 𝜉 (skewness) и эксцесса 𝜅 (excess kurtosis) для нормированных 

ошибок 𝜖𝑡. Видно, что значения коэффициента эксцесса в обеих моделях отрицательны, что 

свидетельствует о вытянутости распределения ошибок влево (𝑀𝑒𝑑𝑖𝑎𝑛 > 𝑀𝑒𝑎𝑛). 

Положительные значения 𝜅 соответствуют более островершинным распределениям 

ошибок, чем нормальное. Выбор в пользу модели 𝐴𝑅𝐼𝑀𝐴(2,0,2) − 𝐺𝐴𝑅𝐶𝐻(1,1) был сделан 

на основе информационных критериев Байеса (𝐵𝐼𝐶) и Акайке (𝐴𝐼𝐶).  
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𝑨𝑹𝑰𝑴𝑨(𝟐, 𝟎, 𝟐) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 

  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 

𝜙1 -0.469065 0.006973 -67.266000 0.000000 

𝜙2 -0.981200 0.004147 -236.592800 0.000000 

𝜃1 0.474867 0.002813 168.834800 0.000000 

𝜃2 0.997275 0.000136 7 328.623300 0.000000 

𝛼0 0.049622 0.020353 2.438000 0.014767 

𝛼1 0.094502 0.020491 4.611800 0.000004 

𝛽1 0.881088 0.025829 34.112900 0.000000 

𝜉 -0.678421 

𝜅 3.170168 

𝐴𝐼𝐶 -3.390200 

𝐵𝐼𝐶 -3.429400 

𝐿𝑛(𝜐̂) 1 957.32 

𝑨𝑹𝑰𝑴𝑨(𝟎, 𝟎, 𝟎) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 
  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 

𝛼0 0.112986 0.054405 2.076739 0.037826 

𝛼1 0.040253 0.019269 2.089021 0.036706 

𝛽1 0.860585 0.059483 14.467739 0.000000 

𝜉 -0.004828 

𝜅 2.041821 

𝐴𝐼𝐶 -2.942300 

𝐵𝐼𝐶 -2.964100 

𝐿𝑛(𝜐̂) 1 701.54 
Таблица 5.4 - Результаты калибровки параметров моделей ARIMA-GARCH PC1. 

Результаты калибровки ARIMA-GARCH модели второй главной компоненты приведены 

в таблице 5.5. Из нее видно, что во всех трех моделях коэффициенты ненулевые с уровнем 

значимости 95%. В отличие от первой главной компоненты, информационные критерии 

Байеса и Акайке не сильно отличаются для трех альтернативных моделей. В этом случае 

принято делать выбор в пользу модели с меньшим количеством параметров (отдавать 

предпочтение простой модели). Таким образом динамика второй главной компоненты 

будет описываться при помощи 𝐴𝑅𝐼𝑀𝐴(0,0) − 𝐺𝐴𝑅𝐶𝐻(1,1) случайного процесса. Также 

хотелось бы отметить, что для первой главной компоненты в таблице 5.4 не приведена 

модель 𝐴𝑅𝐼𝑀𝐴(1,1) − 𝐺𝐴𝑅𝐶𝐻(1,1), в отличие от второй главной компоненты (таблица 5.5), 

по причине статистической незначимости коэффициентов 𝜙1 и 𝜃1. Значения 𝑡 𝑣𝑎𝑙𝑢𝑒 для 

них составили − 1.0009 и 1.0157, значения 𝑃𝑟(> |𝑡|) − 0.316853, 0.309765. 
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𝑨𝑹𝑰𝑴𝑨(𝟎, 𝟎, 𝟎) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 

  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 

𝛼0 0.112986 0.054405 2.076739 0.037826 

𝛼1 0.040253 0.019269 2.089021 0.036706 

𝛽1 0.860585 0.059483 14.467739 0.000000 

𝜉 -0.004828 

𝜅 2.041821 

𝐴𝐼𝐶 -2.942500 

𝐵𝐼𝐶 -2.978300 

𝐿𝑛(𝜐̂) 1 701.54 

𝑨𝑹𝑰𝑴𝑨(𝟏, 𝟎, 𝟏) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 
  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 

𝜙1 -0.901054 0.064243 -14.025615 0.000000 

𝜃1 0.876338 0.070379 12.451660 0.000000 

𝛼0 0.111824 0.054154 2.064918 0.038931 

𝛼1 0.040005 0.019148 2.089293 0.036681 

𝛽1 0.861501 0.059343 14.517339 0.000000 

𝜉 0.001094 

𝜅 2.038466 

𝐴𝐼𝐶 -2.942300 

𝐵𝐼𝐶 -2.973000 

𝐿𝑛(𝜐̂) 1 699.65 

𝑨𝑹𝑰𝑴𝑨(𝟐, 𝟎, 𝟐) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 
  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 

𝜙1 1.867023 0.002409 775.144210 0.000000 

𝜙2 -0.989113 0.002429 -407.152970 0.000000 

𝜃1 -1.854926 0.000787 -2 357.379660 0.000000 

𝜃2 0.974964 0.000650 1 499.463060 0.000000 

𝛼0 0.107309 0.050653 2.118500 0.034133 

𝛼1 0.044694 0.020287 2.203090 0.027589 

𝛽1 0.860416 0.057386 14.993400 0.000000 

𝜉 -0.014636 

𝜅 2.042297 

𝐴𝐼𝐶 -2.939000 

𝐵𝐼𝐶 -2.964100 

𝐿𝑛(𝜐̂) 1 695.64 
Таблица 5.5 - Результаты калибровки параметров моделей ARIMA-GARCH PC2. 

Результаты калибровки моделей ARIMA-GARCH для последней главной компоненты 

приведены в таблице 5.6. Из нее видно, что коэффициент 𝛼0 модели 𝐴𝑅𝐼𝑀𝐴(1,1) −

𝐺𝐴𝑅𝐶𝐻(1,1) равен нулю с уровнем значимости 95%. Информационные критерии AIC и BIC 

для двух моделей практически совпадают. Поэтому на основании статистической 

незначимости коэффициента 𝛼0 и меньшего количества параметров модели 𝐴𝑅𝐼𝑀𝐴(0,0) −

𝐺𝐴𝑅𝐶𝐻(1,1), выбор делается в пользу последней.   



106 

𝑨𝑹𝑰𝑴𝑨(𝟏, 𝟎, 𝟏) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 
  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 
𝜙1 0.725211 0.148094 4.897000 0.000001 

𝜃1 -0.774282 0.135531 -5.713000 0.000000 

𝛼0 0.017772 0.012373 1.436300 0.051909 

𝛼1 0.034020 0.013713 1.480700 0.013111 

𝛽1 0.942294 0.026458 35.615000 0.000000 

𝜉 0.292678 

𝜅 2.586190 

𝐴𝐼𝐶 -2.536600 

𝐵𝐼𝐶 -2.559900 

𝐿𝑛(𝜐̂) 1 464.24 

𝑨𝑹𝑰𝑴𝑨(𝟎, 𝟎, 𝟎) − 𝑮𝑨𝑹𝑪𝑯(𝟏, 𝟏) 
  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟 𝑡 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟(> |𝑡|) 
𝛼0 0.019267 0.014932 1.290300 0.046959 

𝛼1 0.035771 0.015696 2.279000 0.022669 

𝛽1 0.938727 0.031941 29.389900 0.000000 

𝜉 0.285805 

𝜅 2.564011 

𝐴𝐼𝐶 -2.538100 

𝐵𝐼𝐶 -2.567100 

𝐿𝑛(𝜐̂) 1 467.11 
Таблица 5.6 - Результаты калибровки параметров моделей ARIMA-GARCH PC3. 

 

В ходе проведения бэк-тестирования, требуется, начина с момента времени 𝑡 =

 0 (19 августа 2019), проводить калибровку моделей, при этом для моментов времени 𝑡 =

1, 2, … , 𝑇, где 𝑇 −  23 марта 2020 года, будет поступать новая информация, которая может 

повлиять на спецификацию моделей. Поэтому был проведен аналогичный, описанному 

выше, статистический анализ определения спецификаций ARIMA-GARCH моделей 

главных компонент для моментов времени: 30.09.19, 12.11.19, 27.12.19, 11.02.20, 23.03.20. 

Результат показал, что спецификации моделей во времени не менялись. Поэтому для 

проведения бэк-тестирования, в качестве моделей ARIMA-GARCH для главных компонент 

были определены следующие спецификации: 

• PC1 - 𝐴𝑅𝐼𝑀𝐴(2,0,2) − 𝐺𝐴𝑅𝐶𝐻(1,1); 

• PC1 - 𝐴𝑅𝐼𝑀𝐴(0,0,0) − 𝐺𝐴𝑅𝐶𝐻(1,1); 

• PC1 - 𝐴𝑅𝐼𝑀𝐴(0,0,0) − 𝐺𝑅𝐶𝐻(1,1). 
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5.4 Результаты бэк-тестирования 

 

В данном разделе приводятся результаты бэк-тестирования двух конкурирующих 

моделей, на основе риск-нейтральной меры (рисунок 5.3, 5.4) и физической (рисунок 5.5, 

5.6). Бэк тестирование проводилось для 95% и 99% однодневного VaR портфеля опционов.  

  

Модель 
Количество 

превышений 
VaR 

Значение 
статистики 

Нижнее 
критическое 

значение 

Верхнее 
критическое 

значение 
P-Value 

 

 

VaR 
95% 

Риск-
нейтральная 

мера 7 0.0359 

0.0010 5.0239 

0.8498 

 

Физическая 
мера 8 0.0344 0.8529 

 

VaR 
99% 

Риск-
нейтральная 

мера 2 0.1524 0.6962 

 

Физическая 
мера 4 2.8890 0.0892 

 

Таблица 5.7 - Результаты теста Купика для уровня значимости 𝛼̃ =  95%. 

 

Рисунок 5.3 – Результаты оценки однодневного VaR 95% портфеля активов (риск-

нейтральная мера). 
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Рисунок 5.4 – Результаты оценки однодневного VaR 99% портфеля активов (риск-

нейтральная мера). 

 

 

Рисунок 5.5 – Результаты оценки однодневного VaR 95% портфеля активов (физическая 

мера). 
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Рисунок 5.6 – Результаты оценки однодневного VaR 99% портфеля активов (физическая 

мера). 

В таблице 5.7 представлены результаты теста Купика для уровня значимости 95%. Из 

таблицы видно, что обе модели проходят бэк-тестирование (значение статистики находится 

между критическими значениями). Для 95% однодневного VaR обе модели показывают 

примерно одинаковый результат. Однако в случае 99% VaR модель построенная на основе 

риск-нейтральной меры показывает результаты существенно лучше. Также стоит отметить, 

что понижение размерности исходной задачи дает прирост в скорости работы алгоритма на 

34,19%. 

5.5 Описание программы “Калькулятор расчета стоимости и риск-метрик 

опционов на основе риск-нейтральной динамики базовых активов” 

 

Программой осуществляется оценка справедливой стоимости и мер риска опционного 

контракта/портфеля опционных контрактов при помощи модификации численного метода 

Монте-Карло на основе метода главных компонент. Пользователь в качестве входных 

параметров может варьировать количество сценариев (регулировать точность расчетов), а 

также процент исходной дисперсии, который будет описываться методом главных 

компонент. Также пользователь может выбрать распределение ошибки, необходимое при 

моделировании базовых активов ARIMA-GARCH случайными процессами. В качестве 

параметров расчета мер риска задаются уровень надежности и период расчета. 
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На вход программа принимает CSV файл с данными об опционных контрактах, а также 

историей динамики базовых активов. Программа представляет собой консольное 

приложение для операционной системы Windows, написанное на языке программирования 

R. Результатом работы программы является txt файл, в котором отображается либо 

информация по работе с программой (если пользователем не введены входные параметры, 

либо в качестве параметра введен “help”: 

"C:\\Program Files\\R\\R-4.0.2\\bin\\Rscript" "source.R" help 

[1] "Please enter arguments ----------------------------------------------------> " 

[1] "1.File name with initial data" 

[1] "2.Number of scripts for the Monte Carlo method" 

[1] "3.The term for calculating risk indicators" 

[1] "4.Percentage of variance utilization for principal component analysis" 

[1] "5.Reliability level for calculating risk indicators" 

[1] "6.Distribution (available: norm, snorm, std, sstd, ged, sged, nig, ghyp, jsu)" 

[1] "Example: source.R inputPortfolio.csv 10000 1 0.8 0.05 norm", 

либо результаты вычислений (в качестве примера приведен расчет стоимости портфеля 

опционных контрактов, описанных в пункте 5.4 на дату 19/08/2019): 

"C:\\Program Files\\R\\R-4.0.2\\bin\\Rscript" "source.R" inputPortfolio.csv 10000 10 0.96 0.05 

norm 

[1] "Fair value of portfolio = 1446.84" 

[1] "VaR of portfolio for 10 days = 1437.56" 

[1] "CVaR of portfolio for 10 days = 1431.68". 

5.6 Выводы 

 

На основе метода, разработанного в Главе 3, был реализован программный продукт, 

разработанный в среде программирования R, позволяющий проводить оценку 

справедливой стоимости и мер риска VaR / CVaR портфеля опционных контрактов. Также 

дополнительно реализован программный код (приложение Б), позволяющий проводить 

проверку выбранных спецификаций ARIMA-GARCH моделей главных компонент 

(проводить бэк-тестирование). Программный продукт позволяет эффективно находить 

оценку однодневного VaR портфеля на основе риск-нейтральной меры, т.к. результаты 

теста Купика показывают, что эффективность использования риск-нейтральной меры выше 

по сравнению с использованием физической.  
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Заключение 

 

По итогам проведенных исследований можно сделать следующие выводы. Применение 

расширенного принципа Гирсанова к распределениям, не имеющим производящей 

функции моментов невозможно, так как требуется знание значения данной функции в точке 

1 (1.8). Однако изменение предпосылок расширенного принципа Гирсанова (модификация 

расширенного принципа Гирсанова) дает возможность получить формулу перехода от 

физической меры к риск-нейтральной (2.18), которая уже не требует знания значения 

производящей функции моментов. Выражение (2.18), применяемое к производящей 

функции моментов, как и выражение (1.8), показывает, как преобразуются параметры 

распределения при переходе от физической меры к риск-нейтральной. Выражение (2.17) 

позволяет находить условные моменты случайной величины всех порядков относительно 

риск-нейтральной вероятностной меры. Применение выражения (2.17) к распределению 𝑆𝑢 

Джонсона позволило найти ARIMA-GARCH риск-нейтральную модель, хотя производящая 

функция моментов для данного распределения не определена.  

Одной из основных задач современной финансовой математики является задача оценки 

справедливой стоимости производных финансовых инструментов. Для ее решения 

требуется моделировать динамику цен базовых активов. Это можно сделать двумя 

способами, на основе физической меры, либо на основе риск-нейтральной меры. Последний 

способ является более предпочтительным, т.к. учитывает экономические выгоды 

участников рыка. Мера, полученная на основе модификации расширенного принципа 

Гирсанова сохраняет все свойства меры, полученной на основе расширенного принципа 

Гирсанова (минимизация затрат при несовершенном хеджировании портфеля инвестором, 

риск-нейтральность, единственность). Однако преобразование к данной мере возможно для 

распределений как имеющих производящую функцию моментов, так и не имеющих.  

Правильность теоретических результатов, полученных в Главе 2, подтверждается 

результатами численных экспериментов, проведенных в Главе 4. Исходной задачей была 

оценка справедливой стоимости шести опционных контрактов на шесть разных базовых 

активов и сравнение полученной теоретической цены с рыночной. Оценка проводилась 

методом Монте-Карло. Рассматривались три альтернативные ARIMA-GARCH модели, 

имеющие распределения ошибок: нормальное распределение, обобщенное 

экспоненциальное бета распределение, распределение 𝑆𝑢 Джонсона. Риск-нейтральные 

меры для первых двух моделей были получены на основе классического расширенного 

принципа Гирсанова, для третьей модели использовалась модификация расширенного 
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принципа Гирсанова. Результаты показали, что практически во всех экспериментах, 

минимальное отклонение от рыночной цены показала ARIMA-GARCH модель с ошибками, 

распределенными по закону 𝑆𝑢 Джонсона.  

Для поиска справедливых стоимостей опционных контрактов был реализован 

программный код (приложение А), позволяющий находить оценки параметров моделей 

ARIMA-GARCH методом квази-максимального правдоподобия, совершать переход от 

физической меры к риск-нейтральной и получать риск-нейтральные цены базовых активов 

(на основе их доходностей), а также на основе найденных цен базисных активов находить 

справедливые стоимости опционных контрактов методом Монте-Карло.  

Другой важной задачей современной финансовой математики является оценивание 

рисков производных финансовых инструментов. На данный момент существует множество 

мер риска, позволяющих решать данную задачу, одной из таких мер риска является 

величина VaR. Для нахождения величины VaR портфеля производных финансовых 

инструментов, требуется моделировать совместную динамику базовых активов, так как 

практически всегда базовые активы имеют линейную связь. В статистике существует 

метод, позволяющий свести задачу совместного моделирования динамики коррелируемых 

активов к динамике компонент, некоррелируемых друг с другом (метод главных 

компонент). Данных метод также позволяет уменьшить размерность исходной задачи, 

исходя из величины дисперсии, описываемой 𝑘 первыми главными компонентами. Однако 

для оценивая величины VaR предпочтительней использовать, как упоминалось выше, риск-

нейтральную меру. В Главе 3 приводится теория, позволяющая получать ARIMA-GARCH 

модели на основе риск-нейтральной меры, исходя из оценок коэффициентов ARIMA-

GARCH моделей главных компонент, построенных на основе физической меры. Главный 

результат Главы 3 (формула 3.22) получен на основе модификации расширенного принципа 

Гирсанова, который позволил уйти от необходимости нахождения производящей функции 

моментов в заданной точке. В рамках Главы 3, возникла проблема, связанная уже не с 

возможностью существования производящей функции моментов, а с возможностью 

оценивая производящей функции моментов суммы случайных величин (взвешенной суммы 

главных компонент), так как требует знания маргинальной функции плотности 

распределения базовых активов. Применение результата Главы 2 (модификация 

расширенного принципа Гирсанова) позволила избавиться от необходимости поиска 

производящей функции моментов базовых активов.  

Применение метода главных компонент сокращает размерность исходной задачи 

моделирования сценариев риск-нейтральной динамики цен базовых активов. Полученные 
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теоретические результаты Главы 3 позволили описать алгоритм численного решения 

задачи генерирования риск-нейтральных цен базовых активов, используемых в методе 

Монте-Карло для нахождения цен и мер риска опционных контрактов. 

Результаты Главы 3 были применены для решения задачи оценивая однодневного VaR 

портфеля опционов. В качестве распределения было выбрано распределение 𝑆𝑢 Джонсона, 

которое дало лучшие результаты для оценивая справедливой стоимости опционных 

контрактов (Глава 4). В качестве конкурирующих моделей рассматривались модель на 

основе физической и риск-нейтральных мерах. Результаты бэк-тестирования и тест Купика 

показали, что модель, построенная на основе риск-нейтральной меры дала лучшие 

результаты, что свидетельствует в пользу правильности полученных теоретических 

результатов. Модификация численного метода Монте-Карло позволило увеличить скорость 

работы алгоритма на 34,19%. 

Для проведения процедуры бэк-тестирования был реализован программный код 

(приложение Б), в среде программирования R, позволяющий получать коэффициенты 

ARIMA-GARCH моделей на основе физической меры, а также риск-нейтральной, 

оценивать справедливую стоимость опционных контрактов методом Монте -Карло, и на 

основе найденных стоимостей строить оценку VaR портфеля опционных контрактов.  

Результаты исследования показали, что использование риск-нейтральной меры для 

решения задачи оценивания мер риска опционных контрактов эффективнее по сравнению 

с использованием физической меры. В результате был реализован программный продукт 

“Калькулятор расчета стоимости и риск-метрик опционов на основе риск-нейтральной 

динамики базовых активов”. 
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Приложение А 

Численное моделирование риск-нейтральных динамик базовых активов 

В данном разделе приведены детали реализации и отрывки из исходного кода 

программы, использовавшейся для численного моделирования риск-нейтральных динамик 

базовых активов, указанных в Главе 4 и оценки справедливых стоимостей опционных 

контрактов европейского типа на них. Реализация всех численных методов выполнена на 

языке программирования R. 

А.1 Моделирование риск-нейтральных цен (нормальное распределение) 
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# функция правдоподобия 

LLE_NORM = function(par,key=0){ 

  rezult      = array() 

  sigma_t2    = array() 

  xi          = array() 

  sigma_t2[1] = par["alpha0"] 

  xi[1]       = log_p[1] - par["phi0"] 

  rezult[1]   = xi[1]^2/sigma_t2[1] + log(sigma_t2[1]) 

  for(i in 2:length(log_p)){ 

    xi[i]       = log_p[i] - par["phi0"] - par["phi1"]*log_p[i-1] - ...  

    -par["theta1"]*xi[i-1] 

    sigma_t2[i] = par["alpha0"] + par["alpha1"]*sigma_t2[i-1] + ...  

    + par["betta1"]*xi[i-1]^2 

    rezult[i]   = xi[i]^2/sigma_t2[i] + log(sigma_t2[i]) 

  } 

  if(key==1){ 

    return(c(sigma_t2[length(sigma_t2)],xi[length(xi)])) 

  } else return(sum(rezult)) 

} 

# Функция ограничений для оптимизационной задачи оценки параметров 

equal = function(x) { 

  return(c(x[5] + x[6],x[6]^2-2*x[6]*x[5]+3*x[5]^2)) 

} 

# solnp – оптимизатор, который решает задачу максимизации  

# функции правдоподобия 

out           = solnp(par, LLE_NORM, ineqfun = equal, ... 

ineqLB = c(0,0), ... 

    ineqUB = c(0.999,0.999),LB = c(-100,-100,-100,0,0,0), 

    UB = c(100,0.999,100,1,1,1)) 

params_norm   = c(out$pars[1],out$pars[2],out$pars[3],... 

    out$pars[4],out$pars[5],out$pars[6]) 

last          = LLE_NORM(params_norm,key=1) 

model_norm_rn = array(data = NA, dim = c(deep,nmonte)) 

eps           = array(data = NA, dim = c(deep+1,nmonte)) 

for(i in 1:(deep+1)) eps[i,] = rnorm(nmonte,0,1) 

sigma_t2            = array(data = NA, dim = c(deep,nmonte)) 

# Процесс получения волатильностей и нахождения риск-нейтральных  

# доходностей цен базового актива 

sigma_t2[1,]        = params_norm[4] + params_norm[5]*last[1] + ... 

    params_norm[6]*last[2]^2 

model_norm_rn[1,]   = r - sigma_t2[1,]/2 + sqrt(sigma_t2[1,])*eps[1,] 

for(i in 2:deep){ 

  sigma_t2[i,]      = params_norm[4] + params_norm[5]*sigma_t2[i-1,] + ...  

  + params_norm[6]*sigma_t2[i-1,]*eps[i-1,]^2 
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  model_norm_rn[i,] = r - sigma_t2[i,]/2 + sqrt(sigma_t2[i,])*eps[i,] 

} 

prices_norm = array() 

# Восстановление цен базового актива по доходностям 

for(i in 1:nmonte){ 

  prices_norm[i] = ...  

  = prod(exp(model_norm_rn[,i]))*datas$DAX[length(datas$DAX)] 

} 

 

А.2 Моделирование риск-нейтральных цен (EGB2 распределение) 

Листинг А.2 
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# функция правдоподобия 

LLE_EGB2 = function(par,key=0){ 

  rezult      = array() 

  sigma_t2    = array() 

  xi          = array() 

  sigma_t2[1] = par["alpha0"] 

  xi[1]       = log_p[1] - par["phi0"] 

  omega       = trigamma(par["a"]) + trigamma(par["b"]) 

  delta       = digamma(par["a"]) - digamma(par["b"]) 

  rezult[1]   = -log(sqrt(omega)) + log(beta(par["a"],par["b"])) – ... 

-   par["a"]*delta - par["a"]*xi[1]*sqrt(omega)/... 

      / sqrt(sigma_t2[1]) + log(sqrt(sigma_t2[1])) + ... 

      + (par["a"]+par["b"])* ... 

      *log(1+exp(xi[1]*sqrt(omega)/sqrt(sigma_t2[1])+delta)) 

  for(i in 2:length(log_p)){ 

    xi[i]       = log_p[i] - par["phi0"] - par["phi1"]*log_p[i-1] – ... 

-   par["theta1"]*xi[i-1] 

    sigma_t2[i] = par["alpha0"] + par["alpha1"]*sigma_t2[i-1] + ... 

    + par["betta1"]*xi[i-1]^2 

    rezult[i]   = -log(sqrt(omega)) + log(beta(par["a"],par["b"]))-... 

    - par["a"]*delta - par["a"]*xi[i-1]*sqrt(omega)/... 

    / sqrt(sigma_t2[i-1])+... 

    + log(sqrt(sigma_t2[i-1])) + (par["a"]+par["b"])*... 

    *log(1+exp(xi[i-1]*sqrt(omega)/sqrt(sigma_t2[i-1])+delta)) 

  } 

  if(key==1){ 

    return(c(sigma_t2[length(sigma_t2)],xi[length(xi)])) 

  } else return(sum(rezult)) 

} 

# Функция ограничений для оптимизационной задачи оценки параметров 

equal = function(x) { 

  return(c(x[1]-x[2],x[7]+x[8],x[8]^2-2*x[8]*x[7]+3*x[7]^2)) 

} 

# solnp – оптимизатор, который решает задачу максимизации  

# функции правдоподобия 

out           = solnp(par, LLE_EGB2, ineqfun = equal,ineqLB = ... 

        = c(-1000,0,0), ineqUB = c(0,0.999,0.999), 

        LB = c(0.0001,0.0001,-100,-100,-100,0,0,0), 

        UB = c(100,100,100,0.999,100,1,1,1)) 

params_egb2   = c(out$pars[1],out$pars[2],out$pars[3],out$pars[4],... 

              out$pars[5],out$pars[6],out$pars[7],out$pars[8]) 

last          = LLE_EGB2(params_egb2,key=1) 

model_egb2_rn = array(data = NA, dim = c(deep,nmonte)) 

omega         = trigamma(params_egb2[1]) + trigamma(params_egb2[2]) 

delta         = digamma(params_egb2[1]) - digamma(params_egb2[2]) 

sigma_t2      = array(data = NA, dim = c(deep,nmonte)) 
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# Процесс получения волатильностей и нахождения риск-нейтральных  

# доходностей цен базового актива 

sigma_t2[1,]  = params_egb2[6] + params_egb2[7]*last[1] + ... 

              + params_egb2[8]*last[2]^2 

eps           = array(data = NA, dim = c(deep+1,nmonte)) 

for(i in 1:(deep+1)) eps[i,] = rEGB2(nmonte, mu = -delta/... 

  / sqrt(omega), sigma = 1/sqrt(omega), nu = params_egb2[1],... 

    tau = params_egb2[2]) 

model_egb2_rn[1,] = r + sqrt(last[1])*delta/sqrt(omega)-...                     

-   log(beta(params_egb2[1]+sqrt(last[1])/sqrt(omega), 

for(i in 2:deep){ 

  sigma_t2[i,] = params_egb2[6] + params_egb2[7]*sigma_t2[i-1,]+... 

  + params_egb2[8]*sigma_t2[i-1,]*eps[i-1,]^2 

  model_egb2_rn[i,] = r + sqrt(sigma_t2[i,])*delta/... 

  / sqrt(omega) - log(beta(params_egb2[1]+... 

  + sqrt(sigma_t2[i,])/sqrt(omega) 

} 

prices_EGB2 = array() 

# Восстановление цен базового актива по доходностям 

for(i in 1:nmonte){ 

  prices_EGB2[i] = prod(exp(model_egb2_rn[,i]))*... 

  * datas$DAX[length(datas$DAX)] 

} 

 

А.3 Моделирование риск-нейтральных цен (JSU распределение) 
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# функция правдоподобия 

LLE_JSU = function(par,key=0){ 

  delta       = par["delta"] 

  gamma       = par["gamma"] 

  rezult      = array() 

  sigma_t2    = array() 

  xi          = array() 

  m_t         = array() 

  sigma_t2[1] = par["alpha0"] 

  xi[1]       = returns[1] - par["phi0"] 

  A           = (exp(1/delta/delta)-1)*(exp(1/delta/delta)*... 

  * cosh(2*gamma/delta)+1) 

  B           = exp(1/2/delta/delta)*sinh(gamma/delta) 

  rezult[1]   = -log(delta)+log(sqrt(2*sigma_t2[1]/A))+... 

  + log(1+(xi[1]/sqrt(2*sigma_t2[1]/A)-B)^2)/2 + ... 

  +(gamma+delta*asinh((xi[1]/sqrt(2*sigma_t2[1]/A)-B)))^2/2 

  m_t[1]      = par["phi0"] 

  for(i in 2:length(returns)){ 

    xi[i]       = returns[i] - par["phi0"] - par["phi1"]*returns[i-1] -... 

    - par["theta1"]*xi[i-1] 

    sigma_t2[i] = par["alpha0"] + par["alpha1"]*sigma_t2[i-1] +... 

    + par["betta1"]*xi[i-1]^2 

    rezult[i]   = -log(delta)+log(sqrt(2*sigma_t2[i-1]/A))+... 

    + log(1+(xi[i-1]/sqrt(2*sigma_t2[i-1]/A)-B)^2)/2+... 

    +(gamma+delta*asinh((xi[i-1]/sqrt(2*sigma_t2[i-1]/A)-B)))^2/2 

    m_t[i]      = par["phi0"] + par["phi1"]*m_t[i-1] + ... 

    +(par["theta1"]+par["phi1"])*xi[i-1] 

  } 

  if(key==1){ 

    return(c(sigma_t2[length(sigma_t2)],xi[length(xi)],m_t[length(m_t)])) 

  } else return(sum(rezult)) 

} 
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# Функция ограничений для оптимизационной задачи оценки параметров 

equal = function(x) { 

  return(c(x[7]+x[8],x[8]^2-2*x[8]*x[7]+3*x[7]^2)) 

} 

# solnp – оптимизатор, который решает задачу максимизации  

# функции правдоподобия 

out           = solnp(par, LLE_JSU, ineqfun = equal,... 

       ineqLB = c(0,0), ineqUB = c(0.999,0.999),... 

       LB = c(0.0001,-100,-100,-100,-100,0,0,0),... 

       UB = c(100,100,100,0.999,100,1,1,1)) 

params_jsu    = 

c(out$pars[1],out$pars[2],out$pars[3],out$pars[4],out$pars[5],... 

  out$pars[6],out$pars[7],out$pars[8]) 

last          = LLE_JSU(params_jsu,key=1) 

model_jsu_rn  = array(data = NA, dim = c(deep,nmonte)) 

xi            = array(data = NA, dim = c(deep,nmonte)) 

sigma_t2      = array(data = NA, dim = c(deep,nmonte)) 

m_t           = array(data = NA, dim = c(deep,nmonte)) 

A = (exp(1/params_jsu[1]/params_jsu[1])-1)*(exp(1/params_jsu[1]/... 

    /params_jsu[1])*cosh(2*params_jsu[2]/params_jsu[1])+1) 

B = exp(1/2/params_jsu[1]/params_jsu[1])*sinh(params_jsu[2]/... 

    /params_jsu[1]) 

eps = array(data = NA, dim = c(deep+1,nmonte)) 

for(i in 1:(deep+1)) eps[i,] = rJSUo(nmonte, mu = B*sqrt(2/A), ... 

    sigma = sqrt(2/A), nu = params_jsu[2], tau = params_jsu[1]) 

# Процесс получения волатильностей и нахождения риск-нейтральных  

# доходностей цен базового актива 

sigma_t2[1,] = params_jsu[6] + params_jsu[7]*last[1] + ...  

    + params_jsu[8]*last[2]^2 

m_t[1,] = last[3] 

xi[1,]  = last[2] 

model_jsu_rn[1,] = ((1+r/k)^k) - 1 +sqrt(sigma_t2[1,])*... 

    *(((1+r/k)^k)/(1+m_t[1,]))*eps[1,] 

for(i in 2:deep){ 

  sigma_t2[i,] = params_jsu[6] + params_jsu[7]*... 

  * sigma_t2[i-1,] + params_jsu[8]*sigma_t2[i-1,]*eps[i-1,]^2 

  m_t[i,] = params_jsu[3] + params_jsu[4]*... 

  * m_t[i-1] + (params_jsu[4]+params_jsu[5])*xi[i-1] 

  model_jsu_rn[i,] = r + sqrt(sigma_t2[i,])*((1+r)/(1+m_t[i,]))*eps[i,] 

  xi[i,] = model_jsu_rn[i,] - params_jsu[3] - params_jsu[4]*... 

  model_jsu_rn[i-1,] - params_jsu[5]*xi[i-1] 

  } 

prices_jsu = array() 

# Восстановление цен базового актива по доходностям 

for(i in 1:nmonte){ 

  prices_jsu[i] = prod(model_jsu_rn[,i]+1)*datas$DAX[length(datas$DAX)] 

} 

 

А.4 Оценка справедливой стоимости опционов и визуализация результатов  

Листинг А.4 
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strikes         = c("Значения страйков опционов") 

true_val_call   = c("Значения рыночных стоимостей опционов call")           

true_val_put    = c("Значения рыночных стоимостей опционов put") 

table_call = array(data = NA, dim = c(length(strikes),5)) 

table_put  = array(data = NA, dim = c(length(true_val_put),5)) 

# Оценка стоимости опционов методом Монте-Карло 

for(i in 1:length(strikes)){ 

  table_call[i,1] = strikes[i] 
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  table_call[i,2] = mean(pmax(prices_norm - strikes[i],0))/... 

    ...((1+r)^(days/365)) 

  table_call[i,3] = mean(pmax(prices_EGB2 - strikes[i],0))/... 

    ...((1+r)^(days/365)) 

  table_call[i,4] = mean(pmax(prices_jsu - strikes[i],0))/... 

    ...((1+r)^(days/365)) 

    table_call[i,5] = true_val_call[i] 

} 

for(i in 1:length(true_val_put)){ 

  table_put[i,1]  = as.double(names(true_val_put)[i]) 

  table_put[i,2]  = mean(pmax(as.double(names(true_val_put)[i]) - ... 

    ...prices_norm,0))/((1+r)^(days/365)) 

  table_put[i,3]  = mean(pmax(as.double(names(true_val_put)[i]) - ... 

    ...prices_EGB2,0))/((1+r)^(days/365)) 

  table_put[i,4]  = mean(pmax(as.double(names(true_val_put)[i]) - ... 

    ...prices_jsu,0))/((1+r)^(days/365)) 

  table_put[i,5] = true_val_put[[i]] 

} 

# Визуализация значений теоретических и рыночных цен опционов 

plot(table_call[,1],table_call[,2],col="red",type="l", xlab="Strike", ... 

    ...ylab="Price",ylim=c(15,25)) 

lines(table_call[,1],table_call[,3],col="deepskyblue1") 

lines(table_call[,1],table_call[,4],col="chartreuse") 

lines(table_call[,1],table_call[,5],"black") 

legend(53,25,legend = c("ARIMA-GARCH-N","ARIMA-GARCH-BETTA","ARIMA-... 

    ...GARCH-JSU","MARKET"),col = c("red","deepskyblue1",... 

        ..."chartreuse","gray1"), lty=1:2, cex=0.7) 

plot(table_put[,1],table_put[,2],col="red",type="l", xlab="Strike",... 

    ...ylab="Price",ylim=c(0,1.5)) 

lines(table_put[,1],table_put[,3],col="deepskyblue1") 

lines(table_put[,1],table_put[,4],col="chartreuse") 

lines(table_put[,1],table_put[,5],"black") 

legend(51,1.5,legend = c("ARIMA-GARCH-N","ARIMA-GARCH-BETTA",... 

    ..."ARIMA-GARCH-JSU","MARKET"),col = c("red","deepskyblue1",... 

        ..."chartreuse","gray1"), lty=1:2, cex=0.8) 

moneyness = strikes/datas$DAX[length(datas$DAX)] 

# Вычисление абсолютной ошибки теоретических цен относительно рыночных 

table_call_err = array(data = NA, dim = c(length(moneyness),3)) 

table_put_err = array(data = NA, dim = c(length(true_val_put),3)) 

for(i in 2:4){ 

  table_call_err[,i-1] = abs(table_call[,i]-table_call[,5]) 

  table_put_err[,i-1] = abs(table_put[,i]-table_put[,5]) 

} 

# Визуализация результатов абсолютных ошибок теоретических цен опционов 

plot(moneyness,table_call_err[,1],col="red",type="l", xlab="Moneyness", ... 

    ...ylab="AE", ylim = c(0,1)) 

lines(moneyness,table_call_err[,2],col="deepskyblue1") 

lines(moneyness,table_call_err[,3],col="chartreuse") 

legend(1.015,1,legend = c("ARIMA-GARCH-N","ARIMA-GARCH-BETTA",... 

    ..."ARIMA-GARCH-JSU"),col = c("red","deepskyblue1","chartreuse"),... 

        ...lty=1:2, cex=0.55) 

 

plot(table_put[,1]/datas$DAX[length(datas$DAX)],table_put_err[,1],... 

    ...col="red",type="l",xlab="Moneyness", ylab="AE",ylim=c(0.4,1.5)) 

lines(table_put[,1]/datas$DAX[length(datas$DAX)],... 

    ...table_put_err[,2],col="deepskyblue1") 

lines(table_put[,1]/datas$DAX[length(datas$DAX)],... 

    ...table_put_err[,3],col="chartreuse") 

legend(1.015,1.45,legend = c("ARIMA-GARCH-N","ARIMA-GARCH-BETTA"... 

    ...,"ARIMA-GARCH-JSU"),col = c("red","deepskyblue1",... 

        ..."chartreuse"), lty=1:2, cex=0.55)  

 



124 

Приложение Б 

Бэк-тестирование однодневного VaR 

В данном разделе приведены детали реализации и исходных код программы, 

предназначенной для численного моделирования риск-нейтральных динамик портфеля 

базовых активов опционных контрактов, оценки справедливой стоимости портфеля 

опционных контрактов (методом Монте-Карло), а также процедуры бэк-тестирования 

(методом Монте-Карло), указанных в Главе 5. Реализация всех численных методов 

выполнена на языке программирования R. 

Б. Бэк тестирование однодневного VaR портфеля опционных контрактов 

Листинг Б 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

library('rugarch') 

# Уровень значимости VaR 

alpha = 0.95 

options_spec_inf = read.csv("Файл_со_спецификациями... 

     ..._опционных_контрактов", sep = ";") 

# Количество базовых активов 

q_assets = 3 

# Количество реализаций метоад Монте-Карло ... 

# для оценки справедливой стоимости портфеля опционных контрактов  

mc_inner = 10000 

n = 365 

# Количество главных компонент 

n_comp = 3 

# Количество реализаций метоад Монте-Карло ... 

# для оценки однодневного VaR портфеля  

simq = 10000 

input = read.csv("Файл_с_историческими_значениями_... 

      ... базовых_активов", sep = ";") 

input_quotes = read.csv("Файл_с_данными_стоимостей_опционных... 

      ..._контрактов_и_безрисковых_ставок", sep = ";") 

rezults = array(data = 0, dim = c(final_time,6)) 

colnames(rezults) = c("date", "VaR_rn", "VaR_ff", ... 

      ... "Portfolio", "Upper_rn", "Upper_ff") 

rn_rates = array(data = NA, dim = c(dim(input_quotes)[1], q_assets)) 

rn_rates[,1] = input_quotes[,13]/100; rn_rates[,2] = ... 

      ... input_quotes[,14]/100; rn_rates[,3:5] = input_quotes[,12]/100 

inner_result = array(data = 0, dim = c(final_time, mc_inner, 2)) 

for(mc_counter in 1:final_time){ 

  show(c("Промежуточный результат (номер дня бэк-тестирования) ----->"... 

      ... , mc_counter)) 

  for(monte in 1:mc_inner){ 

    calibration_datas = rbind(input[mc_counter:dim(input)[1],],... 

      ... input_quotes[1:mc_counter,c(1,7:11)]) 

    # День расчета VaR портфеля 

    today = as.Date(calibration_datas$Date[length(... 

      ...calibration_datas$Date)], format = "%d.%m.%Y") 

    rezults[mc_counter, 1] = mc_counter 

    # Массив количества дней до экспирации 

    days_to_exp = as.integer(as.Date(options_spec_inf$Expiration, ... 

      ...format = "%d.%m.%Y") - today) 

    expiration_in_days = max(days_to_exp) 

    calibration_datas_rep = array(data = 0, dim = c(dim(... 
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      ...calibration_datas)[1]-1, (dim(calibration_datas)[2]-1))) 

    # Преобразование базовых активов в доходности 

    for(i in 1:q_assets) 

      calibration_datas_rep[,i] = as.matrix(calibration_datas[2:... 

      ...dim(calibration_datas)[1],i+1]/calibration_datas[1:... 

      ...(dim(calibration_datas)[1]-1),i+1]-1) 

    colnames(calibration_datas_rep) = dimnames(calibration_datas)... 

      ...[[2]][2:dim(calibration_datas)[2]] 

    dat_m_d = array(data = 0, dim = c(2,dim(calibration_datas_rep)[2])) 

    # Нормирование доходностей 

    for (i in 1:dim(calibration_datas_rep)[2]){ 

      dat_m_d[1,i] = mean(calibration_datas_rep[,i]) 

      dat_m_d[2,i] =   sd(calibration_datas_rep[,i]) 

      calibration_datas_rep[,i]   = (calibration_datas_rep[,i]... 

      ... - dat_m_d[1,i])/dat_m_d[2,i] 

    } 

    # Применение метода главных компонент с выводом промежуточных 

    # результатов 

    hept.pca = prcomp(calibration_datas_rep[,1:q_assets]) 

    head(hept.pca$rotation) 

    summary(hept.pca) 

    # Спецификация моделей (распределение SU Джонсона) 

    simul = array(data = NA,dim=c(4,expiration_in_days,n_comp,simq)) 

    spec = ugarchspec(mean.model = list(armaOrder = c(1,1),include.mean... 

      ... = FALSE),variance.model = list(model="sGARCH",... 

      ...garchOrder=c(1,1)), distribution.model = "jsu") 

    # Оценка параметров модели (процесс калибровки) 

    for (i in 1:n_comp){ 

      fit = ugarchfit(spec = spec,data= hept.pca$x[,i],solver = 'solnp') 

      ttt = ugarchsim(fit, n.sim = expiration_in_days, n.start = 0, ... 

      ...m.sim = simq, startMethod= "sample") 

      simul[1,,i,] = ttt@simulation$seriesSim 

      simul[2,,i,] = ttt@simulation$seriesSim - ttt@simulation$residSim 

      simul[3,,i,] = ttt@simulation$sigmaSim 

      simul[4,,i,] = ttt@simulation$residSim/ttt@simulation$sigmaSim 

    } 

    out_assets_rn = array(data = 0, dim = c(expiration_in_days, ... 

      ...q_assets, simq)) 

    out_assets_ff = array(data = 0, dim = c(expiration_in_days, ... 

      ...q_assets, simq)) 

    temp_1 = array(data = 1, dim = c(expiration_in_days, simq)) 

    temp_2 = array(data = 0, dim = c(expiration_in_days, simq)) 

    # Восстановление динамики базовых активов (формула (3.22)) 

    for(i in 1:q_assets){ 

      temp_1 = array(data = 1, dim = c(expiration_in_days, simq)) 

      temp_2 = array(data = 0, dim = c(expiration_in_days, simq)) 

      for(j in 1:n_comp){ 

        out_assets_ff[,i,] = out_assets_ff[,i,] + hept.pca$rotation... 

      ...[i,j]*simul[1,,j,] 

        temp_1 = temp_1 + hept.pca$rotation[i,j]*simul[2,,j,] 

        temp_2 = temp_2 + hept.pca$rotation[i,j]*simul[3,,j,]*simul[4,,j,] 

      } 

      out_assets_rn[,i,] = out_assets_rn[,i,] + ((1+rn_rates... 

      ...[mc_counter,i]/n)^(n)) - 1 + (((1+rn_rates[mc_counter,i]/... 

      ...n)^(n))/(temp_1))*temp_2 

    } 

    # Процедура обратная нормировки 

    for (i in 1:q_assets){ 

      calibration_datas_rep[,i] = calibration_datas_rep[,i]*dat_m_d... 

      ...[2,i] + dat_m_d[1,i] 

      out_assets_rn[,i,]   = out_assets_rn[,i,]*dat_m_d[2,i] + 

dat_m_d[1,i] 
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      out_assets_ff[,i,]   = out_assets_ff[,i,]*dat_m_d[2,i] + 

dat_m_d[1,i] 

    } 

    mass_of_final_assets_rn = array(data = 0, dim = c(q_assets, simq)) 

    mass_of_final_assets_ff = array(data = 0, dim = c(q_assets, simq)) 

    temp_var = array(data = 0, c(2,q_assets)) 

    # Процедура поиска сценариев значений базовых активов в момент  

    # экспирации опционов 

    for(q in 1:q_assets){ 

      for(mc in 1:simq){ 

        mass_of_final_assets_rn[q,mc] = 

prod(out_assets_rn[1:days_to_exp[q],q,mc]+1)*as.double(calibration_... 

      ...datas[as.Date(calibration_datas[,1], format = "%d.%m.%Y")... 

      ...==today,][q+1]) 

        mass_of_final_assets_ff[q,mc] = prod(out_assets_ff... 

      ...[1:days_to_exp[q],q,mc]+1)*as.double(... 

      ...calibration_datas[as.Date(calibration_datas[,1],... 

      ... format = "%d.%m.%Y")==today,][q+1]) 

      } 

    } 

    # Оценка справедливой стоиости опционных контрактов (по  

    # методу Монте-Карло) 

    for(i in 1:q_assets){ 

      if(options_spec_inf$Type[i] == "CALL"){ 

        mass_of_final_assets_rn[i,] = pmax(mass_of_final_assets_rn[i,]-

options_spec_inf$Strike[i],0)/((1+rn_rates[mc_counter,i])^((days_to_... 

      ...exp[i]-1)/365)) 

        mass_of_final_assets_ff[i,] = pmax(mass_of_final_assets_ff[i,]-

options_spec_inf$Strike[i],0)/((1+rn_rates[mc_counter,i])^((days_to_... 

      ...exp[i]-1)/365)) 

      }else{ 

        mass_of_final_assets_rn[i,] = pmax(-mass_of_final_assets_rn... 

      ...[i,]+options_spec_inf$Strike[i],0)/((1+rn_rates[mc_... 

      ...counter,i])^((days_to_exp[i]-1)/365)) 

        mass_of_final_assets_ff[i,] = pmax(-mass_of_final_assets_ff... 

      ...[i,]+options_spec_inf$Strike[i],0)/((1+... 

      ...rn_rates[mc_counter,i])^((days_to_exp[i]-1)/365)) 

      } 

      inner_result[mc_counter, monte, 1] = inner_result[mc_counter,... 

      ... monte, 1] + mean(mass_of_final_assets_rn[i,]) 

      inner_result[mc_counter, monte, 2] = inner_result[mc_counter,...           

      ...monte, 2] + mean(mass_of_final_assets_ff[i,]) 

    } 

  } 

  # Заполнение таблицы превышений 

  rezults[mc_counter,2] = quantile(inner_result[mc_counter,,1], (1-alpha)) 

  rezults[mc_counter,3] = quantile(inner_result[mc_counter,,2], (1-alpha)) 

  rezults[mc_counter,4] = sum(input_quotes[mc_counter+1,2:6]) 

  if(rezults[mc_counter,4]<rezults[mc_counter,2]){ 

    rezults[mc_counter,5] = 1 

  }else{ 

    rezults[mc_counter,5] = 0 

  } 

  if(rezults[mc_counter,4]<rezults[mc_counter,3]){ 

    rezults[mc_counter,6] = 1 

  }else{ 

    rezults[mc_counter,6] = 0 

  } 

} 

 


