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Введение

Для современных суперкомпьютерных систем, систем распределенных вы­
числений, сетевых и производственных систем типичной является ситуация,
когда взаимодействие или работу с ними необходимо огранизовывать в услови­
ях неполного наблюдения (или, что то же, — частичного наблюдения, неполного
информационного описания и т. п.). Как отмечено, например, в [1], неполнота
эта может проявляться по-разному. Это и (частичное или полное) отсутствие
априорной информации о системе, и ограниченная возможность наблюдения со­
стояний системы. В подобных ситуациях для анализа и оптимизации системы
первостепенное значение приобретает умение воспользоваться теми сведения­
ми о ней, которые имеются в распоряжении.

Если от системы в процессе функционирования поступает какая–либо
дополнительная информация, то для достижения цели обычно используются
методы теории адаптации. Судя по публикациям в открытой печати (см. [1, Вве­
дение]), ее основополагающие идеи были заложены в середине прошлого века.
Становление же теории и ее развитие до конца 80-х годов проходило во многом
благодаря усилиям отечественных ученых [2;3]. С начала 90-х годов и по насто­
ящее время адаптивное направление переживает большой подъем, что косвенно
подтверждается неутихающим год от года потоком публикаций. Без сомнения,
такой углубленный интерес вызван как новыми потребностями практики, так
и прогрессом в области информационных технологий, который позволил по­
ставить на реальную почву практическую реализацию адаптивных алгоритмов
(см., например, [4–10]).

Если же дополнительная информация в ходе взаимодействия с системой
не приобретается, то это делает фактически невозможным приспособление или,
другими словами, применение адаптивных стратегий. Развиваемое в диссерта­
ционной работе направление связано с проблемами именно такого типа, т. е.
лежит в русле фундаментальных исследований не адаптивного характера1 в об­
ласти стохастическим систем (см. [11]) с частичной наблюдаемостью. Сейчас
эта проблематика является предметом постоянного внимания в научном сооб­

1Однако, в тех случаях, когда в диссертационной работе для получения решений приходится
привлекать имитационные модели, некоторые приемы адаптивного управления все-таки использу­
ются.
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ществе как в России, так и за рубежом2 (см., например, [12–22] и ссылки в них).
Ярким подтверждением этому является то обстоятельство, что в нее начали про­
никать идеи (см., например, [23;24]), тесно связанные с машинным обучением —
сегодня одной из наиболее активно развивающихся научных областей [25–28].
В целом, круг нерешенных и не вполне решенных здесь проблем остается широ­
ким. Связано это, во-первых, с большим, диктуемым практикой разнообразием
постановок. Во-вторых, зачастую к решениям не удается прийти исключительно
математическими методами. Поэтому для повышения эффективности, надеж­
ности и качества систем приходится обращаться к методам статистического
моделирования, искать эвристические идеи и разрабатывать инженерные под­
ходы. Таким образом, тематика диссертационной работы находится в одной
из актуальных областей современной науки, в которой необходим дальней­
ший прогресс.

Целью диссертационной работы является решение фундаментальной на­
учной проблемы — разработка комплекса вероятностных моделей и создание
на их основе методов анализа и алгоритмов управления для стохастических
систем обслуживания с частичной наблюдаемостью.

Для достижения поставленной цели в диссертации решаются следующие
задачи:

– разработка комплекса вероятностных моделей для анализа стацио­
нарных вероятностно-временных характеристик стохастических систем
обслуживания, в которых не наблюдаются необходимые для управления
очередями фактические времена обслуживания3;

– разработка метода оценки значений стационарных вероятностно-вре­
менных характеристик частично наблюдаемых стохастических систем

2Из зарубежных научных и научно–практических центров можно отметить: исследовательский
центр IBM T.J. Watson Research Center (США), национальный государственный исследовательский
институт по информатике и автоматике INRIA (Франция), европейский институт исследования опе­
раций EURANDOM (Нидерланды), гренобльская лаборатория компьютерных наук LIG (Франция),
департамент систем телекоммуникаций университета Аалто (Финляндия), департамент естествен­
ных наук и технологий университета Карнеги Меллон (США), центр математических разработок
для ключевых технологий немецких университетов Matheon (Германия).

3То обстоятельство, что вместо точных значений времен обслуживания при планировании оче­
редей могут быть доступны лишь некоторые оценки этих величин, хорошо известно как в практике
эксплуатации современных информационных, вычислительных и телекоммуникационных систем,
так и в научной литературе; например, суперкомпьютерные системы [29; 30], веб–серверы [31–34],
пиринговые сети [35], MapReduce системы [36–39], базы данных [40].
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обслуживания на основе доступной информации о прогнозных временах
обслуживания и исследование границ его применимости ;

– разработка алгоритмов централизованного4 квазиоптимального управ­
ления входящими потоками (диспетчеризации) в стохастических си­
стемах с параллельным обслуживанием при полной недоступности
динамической информации об их состоянии5;

– создание для частично наблюдаемых стохастических систем с парал­
лельным обслуживанием простых и эффективных алгоритмов центра­
лизованной диспетчеризации, позволяющих решать задачи большой
размерности.

Решаемые задачи поставлены в терминах6 теории массового обслужива­
ния (ТМО). Эта область математики, даже спустя 100 лет с момента зарож­
дения, продолжает развиваться7, и выделяется как разнообразием постановок
задач, так и обилием применяемых математических методов исследования. На

4Т. е. решающая функция закреплена за одним узлом — т. н. диспетчером.
5Отметим, что это ограничение характерно для некоторых реально функционирующих систем

и, в частности, систем добровольных вычислений (volunteer computing) [41, Section 2.3]. Типичная
система представляют собой совокупность параллельно и независимо друг от друга работающих об­
служивающих ресурсов, которые выполняют задания, направляемые на них диспетчером. При этом
диспетчер, осуществляя выбор ресурса для выполнения очередного задания, не имеет возможности
отложить решение. Ему также недоступна информация о состоянии ресурсов. Вопросы применения
таких систем на практике и примеры новейших экспериментальных исследований обсуждаются,
например, в работах [42–49].

6При этом, однако, в первой части удобно было придерживаться терминов “заявка”, “прибор”,
“система”, а во второй части — терминов “задание”, “процессор”, “сервер” (характерных скорее для
вычислительных систем [50]).

7ТМО была развита в фундаментальных работах Ф. Поллячека, К. Пальма, Д. Кендалла,
Д. Линдли, П. Морана, Л. Такача, Дж. Ф.С. Кингмана, Д. Кокса, Т.Л. Саати, Л. Клейнрока, В.Е. Бе­
неша, Н.К. Джейсуола, С. Карлина, С. Асмуссена, М. Ньютса и др. за рубежом и А.Я. Хинчина,
Б.В. Гнеденко, Б.А. Севастьянова, Ю.В. Прохорова, А.А. Боровкова, Г.П. Башарина, Г.П. Кли­
мова, А.Д. Соловьева, В.В. Калашникова, И.Н. Коваленко и многих других в нашей стране. Нет
никакой возможности здесь хоть сколько–нибудь полноценно охватить современную литературу
в области ТМО. Если сделанный в 1970 году достаточно полный обзор [51] содержит всего поряд­
ка тысячи наименований, то список литературы, например, диссертационного исследования [52]
2016 года, посвященного одной открытой проблеме в области ТМО (выработке нового неклассиче­
ского подхода к моделированию конфликтных управляющих систем массового обслуживания (см.
также [53–56])), содержит уже более 200 работ. Поэтому ограничимся ссылкой на спецвыкуск 1–2
тома 89 и том 100 журнала Queueing Systems [57; 58], которые могут дать некоторое представление
о текущем состоянии исследований в области ТМО.
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этот фундамент и опираются полученные в диссертации аналитические резуль­
таты8.

Перейдем к обзору содержания диссертации. Она состоит из двух боль­
ших частей. К частично наблюдаемым стохастическим системам — системам
массового обслуживания (СМО), — являющимся объектом внимания в первой
части диссертации (главы 1 и 2), относится любая система, для которой вы­
полнены, главным образом, два условия (подробнее см. стр. 106). Во-первых,
для каждой поступающей заявки становится известным некоторое положитель­
ное число; оно считается ее остаточным прогнозным временем обслуживания, и
имеет смысл работы, которую, как ожидается, необходимо совершить прибору
для завершения обработки заявки. Во-вторых, та работа, которую в действи­
тельности необходимо совершить прибору для завершения ее обработки (т. е.
фактическое время обслуживания заявки), хотя фиксируется в момент поступ­
ления заявки в систему, однако ненаблюдаема и не совпадает с указанным
для заявки прогнозным временем обслуживания. Из этого следует, что, гово­
ря о вероятностно–временных характеристиках частично наблюдаемых СМО,
необходимо отличать их прогнозные значения, от фактических. Поскольку для
задач практики значение имеют, вообще говоря, лишь последние, то возникает
задача оценки9 фактических значений только на основе доступной информа­

8Говоря более точно, аналитические результаты диссертации относятся к тому направлению
(см. [59, Введение]) исследований в ТМО, которое связано с изучением “неклассических” постано­
вок задач. Однако, если обычно исследования здесь мотивированы возможностью существенного
улучшения качества работы системы с помощью применения специальных дисциплин, то в диссер­
тации побудительным мотивом явилась обнаруженная экспериментально возможность уточнения
с их помощью характеристик стохастических систем обслуживания с частичной наблюдаемостью.

9Или, строго говоря, уточнения тех оценок, которые всегда могут быть получены на основе имею­
щейся прогнозной информации без применения каких-либо специальных методов. Необходимо здесь
добавить, что рассматриваемая задача примыкает к характеризационным задачам в теории массо­
вого обслуживания в том смысле, что речь здесь по сути идет о нахождении необходимых и/или
достаточных условий для выполнения того или иного свойства (к примеру (2.5)). Однако к извест­
ным задачам характеризации свести ее не удается. Поясним это обстоятельство, воспользовавшись
схемой характеризации, предложенной в [60] (это можно было также сделать, воспользовавшись
и схемой устойчивости стохастических моделей В.М. Золотарева [61], но, с учетом специфики задачи,
здесь удобнее схема [60]). Пусть стохастическая система трактуется (см. [60, c. 39]) как преобразо­
вание F исходных данных U ∈ U в выходные данные V ∈ B т.е. F : U → B. Вид преобрзования
F “диктуется” структурой системы. Назовем Z = (U,V) даными о системе, Z ∈ Z = U × B. Одним
из главных предположений в (прямых и обратных) задачах характеризации является предположе­
ние о том, что в полном объеме данные Z неизвестны. Вместо этого известна некоторая априорная
информация (т.е. что Z принадлежит некоторому фиксированному множеству Z* ⊂ Z), и наблю­
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ции о прогнозных временах обслуживания10. И в первой часте диссертации
(см. главу 2) впервые предложен метод, позволяющий получать такие оцен­
ки для стационарного режима при определенных, продиктованных практикой
ограничениях11. Выяснение условий, гарантирующих содержательность оценок,
является одним из центральных результатов главы. Идея метода заключается
в преобразовании остаточных прогнозных времен обслуживания заявок неко­
торым вероятностным механизмом, не сохраняющим работу, причем моменты
преобразований синхронизированы с моментами поступления новых заявок
в систему. Подмеченные в вычислительных экспериментах факты того, что, дей­
ствуя подобным образом, можно получать содержательные результаты, а также
отсутствие результатов в научной литературе, с помощью которых можно было
бы объяснить наблюдаемые эффекты12, послужили главным поводом для теоре­
дения — величины W(U,V), принимающие значения из известного подмножества W* простраства
наблюдений W. Тогда, в зависимости от вида W* различают прямые и обратные задачи характе­
ризации. В рассматриваемой задаче отсутствует необходимый компонент — наблюдения. Поэтому
находжение точных распределений (задача, укладывающаяся в схему прямых задач характериза­
ции) невозможно.

10И, разумеется, информации о структуре СМО, временах обслуживания заявок на приборах и
дисциплины обслуживания. Важно отметить, что решение сформулированной задачи оценки факти­
ческих значений вероятностно–временных характеристик СМО предназначено для использования
в задачах практики определенного рода. Воспользовавшись терминологией системного анализа
систем связи, таковыми задачами являются (см., например, [62; 63]): определение необходимости
разработки новых систем; выбор из нескольких систем, могущих решать одинаковые задачи, луч­
шей; выработка наилучших способов эксплуатации системы. Из сказанного следует, что искомые
решения не предназначены для внедрения в систему и изменения ее функционирования. Этим они
отличаются от тех (чаще всего оказывающихся предметом научных исследований), что разрабаты­
ваются для целей повышения производительности, выбора оптимальных решений и т. п.

11Примером одного из них (при поиске оценок сверху) является принадлежность прогнозных вре­
мен обслуживания классу случайных величин с убывающей функцией интенсивности. Отметим, что
идеи использования (обычно выявляемых экспериментально) особенностей распределений времен об­
служивания и распределений входящих потоков (для различных целей, в том числе и оптимизации
работы систем) встречаются в научной литературе (см., например, [64–69]).

12Доступные из литературы результаты либо получены в отличных от рассматриваемых в дис­
сертации предположениях, либо предназначены для, так сказать, исправления положения дел (см.
сноску на предыдущей странице). Так в [70; 71], отталкиваясь от идей стратегий SRPT и PSJF,
предложен класс правил (называнный ε-SMART) для однолинейных систем, способных справляться
с ошибками в прогнозных временах обслуживания. При этом предполагается, что в точности (!) из­
вестны максимальные погрешности. Подходящая дисциплина для некоторых многолинейных систем
предложена в [72]. Дисциплины обслуживания, которые, опираются на (возможно неточные) дан­
ные о прошедших временах обслуживания, предлагаются в [73]. Задача оценки (условного) среднего
времени пребывания поступающей заявки в системе 𝑀 |𝐺𝐼 | 1 |∞ |PS, в зависимости от объема до­
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тических исследований, результаты которых изложены в главе 1. Связаны они,
главным образом, с развитием аналитического аппарата анализа стационарных
характеристик ранее не изучавшихся классов СМО инверсионного типа13.

Упомянутый выше вероятностный механизм является разновидностью
предложенной в параграфе 1.1 специальной дисциплины обслуживания — ин­
версионный порядок обслуживания с обобщенным вероятностным приоритетом
(далее — LIFOGPP) — и его содержание посвящено выводу основных стационар­
ных характеристик СМО14 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 с этой дисциплиной. Не останавливаясь
здесь на ее описании ввиду его громоздкости (см. стр. 37), отметим, что
отличительной особенностью СМО этого класса является их возможная некон­
сервативность. С одной стороны она приводит к неприятным последствиям:
ступной информации, решается в [74]. Однако случай отсутствия наблюдений не рассматривается:
минимум, известный всегда — это общее число заявок в системе и остаточное время обслужива­
ния поступившей заявки. Необходимо здесь отметить [75, С. 72], где говорится о классе задач,
возникающих, когда функция распределения времени обслуживания неизвестна. Однако, в отли­
чие от диссертационной проблематики, здесь для того, чтобы воспользоваться аналитическими
результатами, необходимо иметь оценки функции распределения по результатам наблюдений за
функционированием системы (такие, как, например, в [76]). Тот же способ моделирования прогноз­
ных времен обслуживания, что рассмотрен в диссертации (см. сноску на стр. 113), взят за основу
в [77]; здесь предложена новая дисциплина обслуживания (модифицирующая известное правило
FSP [78–80]), реализация которой в однолинейной системе позволяет обеспечить (в том числе и)
справедливость обслуживания (см. [81–83], [84, Figure 1] и [73, Figure 4]). В [23], в предположении,
что в однолинейной системе реализован алгоритм (машинного обучения), предсказывающий (по
наблюдениям!) для поступающей заявки ее фактическое время обслуживания, дан вероятностный
анализ ошибок предсказания при дисциплинах SRPT и SJF. В [85] предложен метод определения
границ изменения основных характеристик систем 𝐺𝐼 |𝐺𝐼 | 1 |∞ |FIFO, в условиях недостаточной
информации о распределениях входящего потока и времен обслуживания. Специальный случай
ненаблюдаемых систем рассмотрен в [86]: здесь информация о (некоторых) заявках становится из­
вестной в моменты их (предполагаемого) начала обслуживания. Наконец, отметим работы [87; 88],
посвященные игровым постановкам для ненаблюдаемых СМО.

13Несмотря на то, что эта тематика (входящая в направление исследований, связанное с изучени­
ем “неклассических” постановок задач в теории массового обслуживания, см. [59, С. 8–9]) является
предметом исследований уже на протяжении более полувека, интерес к ней не ослабевает (см., на­
пример, [89–93]). Связано это, в частности, с тем, что разновидности дисциплины LIFO позволяют
изучать как системы со сложными зависимостями (общие многолинейные СМО [94]), так и системы,
функционирующие в особых условиях (например, когда времена обслуживания зависят от размера
очереди [95], когда входящий поток — нерекуррентный (и не фазового типа) [96], когда система
в переходном режиме [97]). Однако общий вариант инверсионного обслуживания, что изучается
в диссертации, в научной литературе, по-видимому, ранее не освещался.

14Здесь обозначение 𝑀𝑘 указывает на тот факт, что параметр входящего пуассоновского потока
зависит от числа 𝑘 заявок в системе.
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например, нельзя сформулировать критерий существования стационарного ре­
жима (см. стр. 40). С другой стороны она (в некоторым смысле) вбирает
в себя ту неопределенность, которая характерна для рассматриваемых ча­
стично наблюдаемых СМО. Опираясь на известную, развитую в ряде работ
других авторов (см. [59; 98–109]) теорию систем со специальными дисципли­
нами обслуживания, в параграфе 1.1 доказаны теоремы, решающие в общем
вопросы расчета стационарного распределения очереди, а также нахожде­
ния (в терминах преобразований [110]) стационарных распределений основных
временных характеристик поступающих в систему заявок. Параграф 1.2 по­
священ более подробному изучению важнейшего частного случая дисциплины
LIFOGPP — инверсионный порядок обслуживания без прерывания и обслу­
живанием заново с новой реализацией длительности обслуживания (далее —
LIFORe). Привлекая развитый аналитический аппарат, а также другие из­
вестные приемы анализа, удалось существенно продвинуться в понимании
работы СМО 𝑀 |𝐺𝐼 | 1 |∞ с таким не сохраняющим работу обслуживанием (см.
стр. 51), и выявить ряд ее неожиданных свойств15. Например, в этой СМО для
любого распределения длины16 заявки при достаточно малой интенсивности
входного потока существует стационарный режим; стационарное распределение
общего числа заявок в системе является геометрическим17; справедлив закон
Литтла. В параграфе 1.3, используя аппарат матрично–аналитических методов,
доказано, что аналогичым образом обстоит дело и в случае поступления в си­
стему 𝑟 > 1 пуассоновских потоков заявок различных типов. Отличительной

15Эта система относится к однолинейным СМО с прерываниями, которые исследованы в на­
учной литературе очень хорошо; с подробным обзором можно ознакомиться по [111]. Поэтому
неудивительно, что часть из представленных для нее результатов могут получаться как следствия
уже известных. В частности, ПЛС (1.17) распределения времени пребывания заявки на приборе
встречается в [112, Section 4.4]. В [93] исследована (отличными от использоваными в диссертации
методами) система 𝑀 |𝐺𝐼 | 1 |∞ | LIFOPRD, критерий стационарности которой, как видно из [93,
Theorem 5], совпадает с критерием в Теореме 3. В [93, Theorem 6] авторами получен более общий
результат: критерий существования стационарного режима при рекуррентном входном потоке. Ме­
тодика, использованная при изучении выходящего потока, следует [113].

16Следуя устоявшейся традиции (см. [59]), всюду в первой главе диссертации понятие “время
обслуживания” заменено понятием “длина заявки”. Напомним, что связано это с тем, что в нестан­
дартных СМО общее время обслуживания заявки из-за прерываний, обслуживания с отличной
от единицы скоростью и т.п. может не совпадать с собственно временем ее обслуживания.

17Но не является нечувствительным к виду функции распределения длины заявки; в связи с этим
вопросом см., например, [114;115].
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особенностью СМО18 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe является отсутствие в ней при­
оритетов для входящих потоков (см. стр. 69), т.е. она не относится к хорошо
известному классу приоритетных СМО [117–123]. Однако предположение о том,
что в системе реализована дисциплина LIFORe оказывается настолько сильным,
что позволяет в итоге прийти и к совместному стационарному распределению
общего числа заявок в системе, остаточной длины (и типа) каждой заявки,
в том числе и заявки на приборе19. Удивительным на этом фоне выглядит
то небольшое20 число результатов, которое удается получить для аналогичных
систем, но с несколькими приборами. Например, стационарное распределение
общего числа заявок в системе (с двумя приборами) остается геометрическим,
но невыясненным остается даже критерий его существования. Обобщениям по­
лученных теоретических результатов на случаи более общих входящих потоков,
посвящен параграф 1.4. Здесь развит аналитический аппарат [132] расчета ста­
ционарных характеристик (в терминах преобразований) однолинейных СМО
с произвольным обслуживанием и либо неординарным пуассоновским потоком
разнородных заявок21, либо двумя конкурирующими потоками — основным

18Здесь и всюду в первой главе используется классификация СМО, принятая в книге [116, С. 25].
19Несмотря на огромный объем уже накопленных знаний по приоритетным СМО, представ­

ленные результаты стационарного анализа СМО 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe в научной литературе
не отмечались и, по-видимому, являются новыми. В связи с этим важно сделать два замечания.
Эта система доставляет новый пример СМО, которая может быть исследована (в стационарном
режиме) без теоремы Руше [124]. Примечательно и условие ее стационарности (см. Теорему 9 на
стр. 77). Оно подсказывает, что эта СМО относится к типу развиваемому в работах [125], и, су­
дя по всему, связана со специальный понятием баланса, рассмотренным в [126; 127], или понятием
позиционного баланса в [75, С. 85].

20И это косвенно служит еще одним подтверждением известному факту, что СМО
𝑀 |𝐺𝐼 | 2 |∞ [128–131] являются чрезвычайно сложными для вероятностного анализа.

21Как было продемонстрировано еще в [108], для однолинейных систем с инверсионным по­
рядком обслуживания и вероятностным приоритетом, возможны содержательные обобщения на
случай потоков фазового типа, которые не являются рекуррентными и считаются более привле­
кательными при моделировании процессов в реальных технических системах [133; 134]. Несмотря
на свою общность, модель потока фазового типа не подразумевает, что процесс поступления заявок
в систему зависит от состояния самой системы. Не останавливаясь на возможных практических
интерпретациях связей между входящим потоком и состоянием системы (см. [135]), отметим лишь,
что исследованию СМО с такими зависимостями посвящено достаточно много работ (см., напри­
мер, [136–138] и ссылки в них). Обычно предполагается, что в систему поступает пуассоновский
поток второго рода (т. е. интенсивность потока зависит от общего числа заявок, находящихся в си­
стеме). Если же допускается поступление групп заявок, то обычно предполагается, что размеры
(остаточные времена обслуживания) заявок в группе являются независимыми случайными вели­
чинами (не зависящими также и от размера группы). В исследованной в параграфе 1.4 СМО эти
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групповым пуассоновским и потоком насыщения22. В обоих случаях предпо­
лагается, что в системе реализован частный случай дисциплины LIFOGPP —
инверсионный порядок обслуживания с вероятностным приоритетом.

Имея теперь некоторое представление об основных теоретических ре­
зультатах первой главы, вернемся к методу получения оценок для частично
наблюдаемых СМО, речь о котором шла выше. Он заключается в следующем.
Для имеющейся частично наблюдаемой стохастической системы обслуживания
сначала фиксируется интересующая характеристика, стационарное распреде­
ление которой существует, и вычисляется ее значение. Затем, исходя из
имеющейся о системе информации, выбирается СМО с некоторой разновид­
ностью дисциплины23 LIFOGPP, в которой значение искомой (или, возможно,
другой) характеристики лучше рассчитанного прогнозного значения и близко
к (неизвестному!) фактическому. Совершенно ясно, что приблизиться к фак­
тическому значению, не зная его, можно не всегда. В главе 2, имея в виду
получение оценок сверху24, формулируется соответствующее достаточное усло­
вие (см. стр. 109) в виде принадлежности частично наблюдаемой СМО
некоторому множеству (оно обозначается M*), и показывается, что оно непусто
(одним из его элементов является система 𝑀 |𝐺𝐼 | 1 |∞ |PS). Вопрос исчерпы­
вающего описания M* остается открытым. Однако не приходится рассчитывать
на то, что его мощность велика. В оставшейся части главы 2 (см. стр. 121
и далее) показывается, что расширение области применения предложенного
метода возможно (по крайней мере) в том случае, когда интересующей харак­
теристикой частично наблюдаемой СМО является стационарное среднее время
предположения ослаблены принципиально новым образом: рассмотрен неординарный пуассонов­
ский поток, интенсивность которого может зависеть от общего числа заявок, находящихся в системе
в момент поступления группы, причем размер поступающей группы и размеры заявок в ней имеют
совместное произвольное распределение.

22Т. н. поток фоновых заявок (см., например, [139; 140]). Заметим, что такая СМО может быть
трактована как система с прогулками (отключением прибора) при опустошении системы от заявок
основного потока (см., например, [141;142]). Таким образом, полученные результаты обобщают неко­
торые из тех, что известны для этого типа систем в научной литературе и, в частности, позволяют
находить стационарное распределение вероятностей состояний при прямом порядке обслуживания.

23В том, что СМО со специальными дисциплинами обслуживания могут быть полезны при ана­
лизе СМО с классическими дисциплинами нет ничего нового. Такие случаи известны в научной
литературе; см., например, [143;144].

24Если же для частично наблюдаемых систем выполняются сформулированные условия, в ко­
торых неравенства заменены на противоположные (но, по-прежнему, нестрогие), то получаемые
по методу оценки являются оценками снизу.
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пребывания заявки в системе (или стационарное среднее число заявок в ней).
Достаточное условие формулируется прежним способом и предъявляется еще
один элемент из M* (система 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ |PS). Полученные аналитические
результаты подсказывают условия25, при которых метод пригоден, по-видимо­
му, для весьма широкого класса частично наблюдаемых СМО (включающего,
например, даже неконсервативные системы). Обсуждению, в связи с этим обсто­
ятельством, наиболее интересных случаев посвящен параграф 2.3 (см. стр. 127).

Основным объектом исследований во второй части диссертации (гла­
вы 3 и 4) является следующая математическая модель. В функционирующую
в непрерывном времени частично наблюдаемую систему из 𝑀 > 2 параллельно
работающих серверов поступает рекуррентный поток заданий. Задания по­
ступают по одному и имеют случайные объемы (размеры), причем размеры
заданий являются независимыми одинаково распределенными случайными ве­
личинами (сл. в.). Каждое поступившее задание должно быть немедленно26

направлено на один из серверов. Серверы работают независимо, без обмена за­
даниями и являются абсолютно надежными. В каждом сервере имеется очередь
неограниченной емкости для хранения заданий и один процессор для обработ­
ки. Производительность по крайней мере одного процессора из 𝑀 отличается
от остальных. Наконец, выбор на обслуживание в каждом сервере происходит
в соответствии с некоторой консервативной дисциплиной обслуживания.

Частичная наблюдаемость подразумевает, что при принятии очередного
решения диспетчеру доступна только27

– априорная информация о системе (функция распределения интерва­
ла между поступлениями заданий, функция распределения их объема,
производительности серверов), включая исчерпывающую информацию
о состоянии серверов в момент начала функционирования, и

– информация о предыдущих моментах поступлений28 заданий в систему
и принятых им решениях.

25Это условия на загрузку системы и на распределение(я) прогнозных времен обслуживания; см.
Теорему 17 и Теорему 18, начиная со стр. 123.

26Т. е. диспетчер, осуществляющий этот выбор в автоматическом или ручном режиме в реальной
системе, не имеет очереди для хранения заданий.

27Другими словами, недоступна динамическая информация о состоянии системы (например, о
числе заданий на серверах, об остаточных временах обслуживания, о размерах заданий и т. п.).

28Поскольку момент принятия решения совпадает с моментом поступления очередного задания,
то этот момент также считается известным диспетчеру.
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Решаемая задача — построение (квази)оптимальной процедуры выбора
сервера (диспетчеризации) для выполнения очередного задания. Во многих си­
стемах, включая распределенные компьютерные системы передачи и обработки
данных, наиболее популярным критерием оптимальности является минимум
стационарного среднего времени пребывания задания в системе (или, по-друго­
му, стационарное среднее время отклика). В диссертации этот критерий взят
за основной29.

Более строго рассматриваемая задача диспетчеризации может быть
сформулирована так. Обозначим через 𝐹 (𝑥) функцию распределения (ф. р.)
длины интервала между последовательными поступлениями заданий. Че­
рез 𝐵(𝑥) = P{𝑆 < 𝑥} обозначим ф. р. размера задания. Индексируя серверы
числами, начиная с единицы, будем обозначать производительность серве­
ра 𝑚 через 𝑣(𝑚), предполагая ее конечной. Кроме того, по крайней мере,
для одного 𝑚 значение 𝑣(𝑚) отличается от остальных30. Относительно дис­
циплины обслуживания будем считать, что она выбрана из множества31

{FIFO, LIFO,RANDOM, SJF,PS,PLIFO,FB,PSJF, SPRT}. Условимся обозначать
последовательность моментов поступления заданий в систему через 𝑡𝑛 (причем
𝑡1 — момент поступления первого задания и 0 6 𝑡1 < · · · < 𝑡𝑛 < . . .), а решение
(действие, правило), принимаемое в момент 𝑡𝑛 относительно вновь поступивше­
го задания — через 𝑦𝑛. Пусть задание, поступившее в момент 𝑡𝑛 и обслуженное
согласно правилу 𝑦𝑛, проведет в системе время, равное 𝑉𝑛. Требуется найти

29Из научной литературы и практики хорошо известны и другие функционалы: минимум ста­
ционарного среднего времени ожидания начала обслуживания, минимум стационарного среднего
значения slowdown (см. сноску на стр. 46), минимум квантилей стационарных распределений вре­
мен ожидания или пребывания и др. Для некоторых из них полученные в диссертации результаты
(как будет видно из численных примеров) также приводят к близким к оптимальным правилам дис­
петчеризации. Принцип функционирования систем подобных описанной и алгоритмы управления
потоками в них служат единственной цели — обеспечению заданных характеристик обслуживания
заданий. Это и определяет характер целевых функционалов.

30И это предположение является существенным. Интуиция подсказывает, что в однородной
системе (т. е. при 𝑣(1) = · · · = 𝑣(𝑀)) оптимальной (в рассматриваемых условиях частичной наблюда­
емости) диспетчеризацией является та, что максимизирует время между двумя последовательными
поступлениями в каждый сервер. Следовательно, по крайней мере, при рекуррентном входном по­
токе и рекуррентном обслуживании, оптимальной является циклическая стратегия (Round Robin),
предписывающая направлять задание с номером 𝑛 на сервер с номером (𝑛mod𝑀) + 1. Обсуждение
этого факта (и доказательства) можно найти, например, в [145–147] и [148, Theorem 4.1]. Поэтому
однородные системы из рассмотрения исключены.

31Конкретное множество выбрано здесь лишь для определенности и, в принципе, допускается
любая консервативная дисцпилина обслуживания.
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такую стратегию32 𝑦 = {𝑦1, 𝑦2, . . . }, которая минимизировала бы предельное
среднее время пребывания задания в системе33, определяемое как

E𝑉 = lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑛=1

E𝑦𝑉𝑛, (1)

где E𝑦 — интегрирование по мере, порождаемой последовательностью 𝑦. В таком
виде формулировка задачи остается неполной, поскольку не указано множество
допустимых диспетчеризаций на котором осуществляется минимизация. В свою
очередь задание множества допустимых диспетчеризаций можно интерпретиро­
вать с точки зрения возможностей наблюдения за системой. Поэтому его можно
задать (и далее это будет сделано; см. (4)) из того условия, что рассматрива­
емые в диссертации стохастические системы с параллельным обслуживанием
являются частично наблюдаемыми. Однако не будем пока этого делать и по­
смотрим на задачу с разных точек зрения, а именно — в зависимости от того,
на каком множестве допустимых диспетчеризаций осуществляется минимиза­
ция. С такой позиции сразу будет видно и место, которое занимают результаты
диссертационного исследования на общей картине.

Обозначим через ℎ𝑛 совокупность наблюдаемых параметров системы до
момента принятия решения 𝑡𝑛. Тогда допустимое правило диспетчеризации
имеет вид 𝑦𝑛 = 𝑓(ℎ𝑛), где 𝑓 — рандомизированная или детерминированная
функция со значениями в множестве {1,2, . . . ,𝑀}, а ℎ𝑛 принимает значения из
некоторого множества наблюдений (далее — 𝐻𝑛).

Вариант 1. Крайний случай, приводящий к наиболее бедному множе­
ству допустимых стратегий — это отсутствие вообще каких-либо наблюдений,
𝐻𝑛 = ∅. В этом случае допустимая стратегия описывается (𝑀 − 1) параметра­
ми — вероятностями 𝑝𝑚 выбора для очередного задания сервера 𝑚, т. е.

𝑦𝑛 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, если 𝑈 < 𝑝1,

...

𝑗, если
𝑗−1∑︀
𝑚=1

𝑝𝑚 6 𝑈 <
𝑗∑︀

𝑚=1
𝑝𝑚,

...

𝑀, если 𝑈 >
𝑀−1∑︀
𝑚=1

𝑝𝑚,

(2)

32Всюду в диссертации слова стратегия, диспетчеризация, правило и алгоритм используются как
синонимы.

33Предполагая, что оно существует.
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где 𝑈 — равномерно распределенная на [0,1] сл.в. Известен ряд результатов,
касающихся оптимальности рандомизированных стратегий, используя которые
можно численно находить значения вероятностей 𝑝𝑚 (см., например, [149–155]).
Наиболее полно задача решается для полностью марковских систем и систем с
входящим пуассоновским потоком заданий и серверов типа 𝑀 |𝐺𝐼 | 1 |∞. В об­
щих случаях (например, когда система состоит из серверов типа 𝐺𝐼 |𝐺𝐼 |𝑛 |∞
или когда входящий поток — коррелированный (см. [133;134])) известны различ­
ные приближенные (и эвристические) решения, которые чаще всего получаются
методами математического программирования. Далее всюду семейство таких
стратегий обозначается RND34. Важным обстоятельством, которое позволяет
упростить решение оптимизационной задачи в случае рандомизированной стра­
тегии является то, что если поток поступающих в систему заданий является
рекуррентным, то и “прореженный” поток на каждый сервер также является
рекуррентным. Тогда система из нескольких серверов распадается на независи­
мые системы из одного сервера, для которых можно использовать известные
точные или приближенные формулы.

Вариант 2. Большее по сравнению с Вариантом 1 разнообразие в вы­
боре диспетчеризации получается, если допустить возможность наблюдения за
траекторией принятых решений, что приводит к допустимым правилам вида

𝑦𝑛 = 𝑓(𝑦𝑛−𝑘𝑛, . . . ,𝑦𝑛−1), 1 6 𝑘𝑛 6 𝑛− 1, (3)

В этом случае предыстория к моменту 𝑡𝑛 определяется значением из множе­
ства 𝐻𝑛 = {1,2, . . . ,𝑀}𝑘𝑛, где число 𝑘𝑛 характеризует глубину предыстории,
используемую в момент 𝑡𝑛. Центральное место здесь занимают программные
стратегии (далее всюду — PROG), т. е. стратегии, параметризуемые бесконеч­
ными последовательностями {𝑎1,𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛, . . . }, в которых 𝑎𝑛 означает,
что 𝑛-е задание направляется на сервер с номером 𝑎𝑛. Внимание к ним свя­
зано с интуитивным представлением о том, что входящий поток на каждый
сервер при программной стратегии является более регулярным (т. е. “менее”
случайным), чем при вероятностной, что (как доказано для ряда случаев) при­
водит к уменьшению значения стационарного среднего времени пребывания
задания в системе [160–163]. Для произвольного числа серверов нахождение

34От англ. random. В литературе, однако, встречаются и другие обозначания: PAP (Probabilistic
Allocation Policy), BS (Bernoulli Splitting), RS (Random Splitting). Заметим, что подобные стратегии
“появляются” не только в проблемах диспетчеризации; см., например, [156–158] и [159, Глава 5].
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оптимальной программной стратегии является сложной задачей, решение ко­
торой за приемлемое время обычно найти не удается. Если стратегия PROG

предписывает направлять на каждый из 𝑀 серверов задания в соответствии
с вероятностным распределением {𝑑1, . . . ,𝑑𝑀}, то из [148; 164] известно, что
оптимальными являются так называемые сбалансированные последователь­
ности35. Однако и сбалансированные последовательности для произвольного
вероятностного распределения {𝑑1, . . . ,𝑑𝑀} существуют лишь в редких случа­
ях. Такими случаями являются система из произвольного числа одинаковых
серверов36 (здесь оптимальной является упоминавшаяся выше циклическая
стратегия37) и случай двух серверов (здесь при рациональном значении 𝑑1 оп­
тимальной является так называемая последовательность Битти38). Заметим,
что в последнем случае оптимальность стратегии зависит от значения 𝑑1 и
способа нахождения точного значения до сих пор не предложено (см., напри­
мер, [168; 169]). Тем не менее, простой эвристический подход к нахождению
значения 𝑑1 приводит к значениям целевой функции, которые не удается
уменьшить, не привлекая при диспетчеризации дополнительную информацию
о системе. При 𝑀 > 3 сбалансированную последовательность удается постро­
ить лишь в частных случаях (см., подробнее в [148; 170]). Поэтому действуют
по-другому: для заданного вероятностного распределения {𝑑1, . . . ,𝑑𝑀} ищут
детерминированную последовательность, расстояние39 которой от сбаланси­
рованной последовательности было бы минимальным. Эта задача является
комбинаторной, и для нее известно несколько численных алгоритмов решения
(см. [166; 171; 172]). В наиболее важном случае — случае рациональных зна­
чений 𝑑𝑚 — результаты работы этих алгоритмов приводят к периодическим
последовательностям и последовательностям специального вида — так называ­

35Например, если последовательность состоит только из нулей и единиц, то она называется сба­
лансированной, если число единиц в любых двух произвольно выделенных подпоследовательностях
фиксированной длины отличается не более, чем на единицу. Вообще говоря, понятие сбаланси­
рованной последовательности было введено еще в середине прошлого века (см. [165]), но не в
контексте задач управления.

36Например, серверов типа · |𝐺 | 1.
37Т. е. 𝑛-ое задание направляется на сервер с номером (𝑛mod𝑀) + 1.
38В литературе встречаются и другие названия: последовательность Штурма, бильярдная по­

следовательность (см. подробнее в [166;167]). Заметим, что для реализации такой диспетчеризации
вообще не требуются наблюдения за траекторией принятых решений, а для определения нужного
сервера необходимо знать лишь порядковый номер поступающего задания

39Подробнее о том, как задается расстояние между последовательностями см. [166].
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емым бильярдным последовательностям (обладающих хорошими свойствами,
например, минимальным дисбалансом; см. [173]).

Вариант 3. Появление возможности наблюдения за состоянием серверов
или очередей в них, позволяет пополнить множество допустимых диспетчери­
заций, описанное в Варианте 2. В новых условиях обычно рассматриваются
правила вида

𝑦𝑛 = 𝑓
(︁
𝑁 (1)

𝑛 , . . . , 𝑁 (𝑀)
𝑛

)︁
где 𝑁 (𝑚)

𝑛 — число заданий в сервере 𝑚 к моменту принятия решения в момент 𝑡𝑛.
Таким образом, 𝐻𝑛 = {0,1,2, . . . }. Наиболее известным примером здесь являет­
ся диспетчеризация по наикратчайшей очереди (далее JSQ), предписывающая
направлять поступающее задание на сервер с минимальной очередью. Она
является оптимальной в случае пуассоновского входящего потока, экспоненци­
альных времен обслуживания с одинаковыми параметрами и с дисциплинами
FIFO в серверах (подробнее см., например, обзоры [174; 175]).

Вариант 4. Наиболее полный вариант наблюдений предполагает возмож­
ность использования при выборе сервера в момент 𝑡𝑛 значений незаконченной
работы (по каждому заданию) в каждом сервере (пусть 𝑊⃗ (1)

𝑛 , . . . , 𝑊⃗
(𝑀)
𝑛 ) и разме­

ра 𝑆𝑛 нового задания. В этом случае оптимальная диспетчеризация находится
в множестве стратегий вида

𝑦𝑛 = 𝑓
(︁
𝑁 (1)

𝑛 , . . . , 𝑁 (𝑀)
𝑛 ,𝑊⃗ (1)

𝑛 , . . . , 𝑊⃗ (𝑀)
𝑛 ,𝑆𝑛

)︁
.

Среди диспетчеризаций такого вида простым и в то же время достаточно эффек­
тивным решением является стратегия40, известная в зарубежной литературе
как Myopic, когда вновь поступающее задание посылается на тот сервер, ко­
торый минимизирует время, необходимое для освобождения от заданий всей
системы целиком, в предположении, что в дальнейшем задания в систему не
поступают. Известны более сложные и менее универсальные алгоритмы (на­
пример, Deep из [191]), основанные на теории марковских процессов принятия
решений. Упомянутая стратегия41 Deep, возможно, вообще является квазиоп­
тимальной в том смысле, что она дает значение целевой функции, близкое

40 Упомянутая здесь по той единственной причине, что она еще встретится в диссертации. Вообще
число работ, посвященных диспетчеризациям такого вида, огромно. Поскольку для диссертации они
не представляют интереса, ограничимся упоминанием лишь нескольких: [176–188]. Некоторый обзор
методов динамического распределения нагрузки до 2014 г. можно найти в [189]. См. также [190].

41Требующая, однако, чтобы входящие потоки заданий были простейшими [192].
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к (неизвестному) оптимальному значению. Однако, несмотря на достигнутые
успехи формального сведения задачи диспетчеризации при полном наблюде­
нии к марковскому процессу принятия решений, до сих пор не известно, как
находить оптимальное значение функционала (1).

Разумеется описанные выше четыре варианта наблюдений системы не ис­
черпывают все возможные постановки. Однако обычно встречающиеся задачи
“укладываются”, по крайней мере, в один из них. Не является исключением и
рассматриваемая в диссертации задача диспетчеризации в частично наблюда­
емых стохастических системах с параллельным обслуживанием (см. стр. 13).
В ней недоступны наблюдения, отражающие состояния серверов (число зада­
ний в очередях, объем незаконченной работы, моменты начала и окончания
непосредственного выполнения заданий и т. п.). Неизвестным также считается
размер поступающего задания. Однако информация о совершенных действиях
понимается несколько более широко, чем выше в Варианте 2. Побудительный
мотив можно выразить такими словами: зная, “что было сделано”, естественно
допустить, что известно также, “когда было сделано”. Точнее говоря, помимо
самих решений 𝑦𝑛, считается известной информация о моментах времени 𝑡𝑛,
в которые эти решения принимались. Таким образом, допустимыми являются
диспетчеризации, правила которых основываются на предыстории принятых
решений и моментов поступления заданий или, другими словами, правила, пред­
ставимые (детерминированной или рандомизированной) функцией вида

𝑦𝑛 = 𝑓 (𝑦1, . . . ,𝑦𝑛−1,𝑡1, . . . ,𝑡𝑛) , (4)

а множество доступных наблюдений к моменту поступления 𝑛-го задания есть
𝐻𝑛 = {1,2, . . . ,𝑀}𝑛−1 × (0,∞)𝑛.

Итак, в рассматриваемых частично наблюдаемых стохастических систе­
мах с параллельным обслуживанием диспетчеризация осуществляется в услови­
ях, когда не наблюдаемы традиционно важные для решения задач оптимизации
характеристики42. Более того, не наблюдается даже показатель, подлежащий
минимизации. Поэтому большинство как диспетчеризаций43, так и приемов ре­
шения, известных из научной литературы, неприменимы для достижения цели

42В частности, это не позволяет пользоваться мощным правилом — индексом Гиттинса (см.,
например, [193, Глава 9] и [194]): не наблюдаются прошедшие времена обслуживания!

43Отметим наиболее известные из научной литературы стратегии: JSQ, HJSQ(d), MEST, MERL,
LWL, Myopic, SITA-E, SITA-V, VITA, C-MU, LAVA, TDP, FPI, TAGS, TAPTF. Более подробный список
можно составить, например, по обзорам [174;175].
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— минимизации (1) на множестве стратегий (4). Строго говоря, известных на
данный момент решений всего два44: использовать либо раномизированную
стратегию (см. Вариант 1 ), либо программную стратегию (см. Вариант 2 ).
Остановимся на них подробнее45.

Проблема нахождения оптимального46 набора (𝑝1, . . . ,𝑝𝑀) для страте­
гии RND хорошо известна (см., например, обзор в [149, Section 1, 2] или
книгу [152]). Например, при пуассоновском потоке заданий (пусть со сред­
ним λ−1) значение (1) совпадает со значением суммы

𝑀∑︁
𝑚=1

𝑝𝑚E𝑉 (𝑚), (5)

где E𝑉 (𝑚) — стационарное среднее время пребывания задания в серве­
ре 𝑚, который теперь представляет собой классическую СМО 𝑀 |𝐺𝐼 | 1 |∞
с интенсивностью входящего потока λ𝑝𝑚 и распределением времени обслу­
живания 𝐵(𝑥𝑣(𝑚)). Поэтому искомые вероятности 𝑝𝑚 суть решения задачи
минимизации (5) при котором

∑︀𝑀
𝑚=1 𝑝𝑚 = 1, а также загрузка каждого сервера

44Ср. (2) и (3) с (4).
45Отметим доступные в литературе работы, близко примыкающие к рассматриваемой задаче.

В [195] минимизируется стационарное среднее время пребывания задания в системе, однако предпо­
лагается, что диспетчеру известны моменты окончания выполнения заданий. В работе [196], хотя
и не предполагается наличия очереди для хранения заданий, но считается, что диспетчеру известен
их размер. Экспоненциальная система из двух однопроцессорных серверов рассмотрена в [197]: ана­
литически исследуются свойства пороговой стратегии в предположении, что диспетчер наблюдает
точное состояние одного из серверов. Свойства программной стратегии в двухсерверной систе­
ме с произвольным входным потоком (но экспоненциальным обслуживанием) изучаются в [198].
Многосерверная частично наблюдаемая система рассмотрена в [199]: здесь предполагается, что
имеется несколько независимых диспетчеров, каждый из которых использует рандомизированную
стратегию. Результаты асимптотической оптимальности некоторых программных стратегий для
рассматриваемых частично наблюдаемых систем получены в [200]. Вопрос построения периодиче­
ской стратегии для заданий фиксированного размера, поступающих через одинаковые промежутки
времени изучается в [201] (однако, например, полученно решение неприменимо в случаях, когда
все серверы имеют различные производительности). В [202] сделано предположение, что точное со­
стояние системы становится ивестным через некоторое, фиксированное заранее число поступлений
(пусть 𝑁). Тогда исходная задача сводится к нахождению алгоритма диспетчеризации 𝑁 заявок
по 𝑀 серверам при известном начальном состоянии последних. В предположениях экспоненци­
ального обслуживания и дисцилипны FIFO, предложен алгоритм градиентного типа (основанный
на принципе максимума Понтрягина), который дает близкое к оптимальному решение задачи.

46С разных точек зрения, в том числе и с точки зрения минимизации (1), и, конечно, не только
для систем с одним пуассоновским потоком заданий (см., например, работы [203; 204] и ссылки
в них).
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меньше единицы47. Если же входящий в систему поток заданий — рекуррентный
(пусть со средним λ−1 и коэффициентом вариации 𝐶𝐹 ), то сервер 𝑚 (при прочих
равных) представляет собой СМО 𝐺𝐼 |𝐺𝐼 | 1 |∞ со средним временем между
поступлениями (λ𝑝𝑚)

−1 и коэффициентом вариации
√︀

1 + (𝐶2
𝐹 − 1)𝑝𝑚. В этом

случае остается надежда только на приближенные методы нахождения близко­
го к оптимальному набора (𝑝1, . . . ,𝑝𝑀). Сформулированная задача насколько
хорошо известна в научной литературе48, что вне сомнений для большинства
классических дисциплин обслуживания49 уже известны приемы ее решения.
Для целей диссертации интерес представляют, главным образом, две50 из них:
обслуживание в порядке поступления (FIFO) и обслуживание при справедливом
разделении процессора (PS). При пуассоновском входящем потоке и дисциплине
FIFO оптимальные с точки зрения минимума (1) вероятности 𝑝𝑚 находятся чис­
ленно, как решение модифицированной задачи PA1 из51 [149]; например, при
дисциплине PS решение может быть выписано в явном виде52:

𝑝𝑚 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, если 0 < λ 6 𝑟𝑚,

1
λ

⎛⎝𝑣(𝑚)

E𝑆 −
√︁

𝑣(𝑚)

E𝑆

𝑀*∑︀
𝑖=1

√︁
𝑣(𝑖)

E𝑆

(︂
𝑀*∑︀
𝑖=1

𝑣(𝑖)

E𝑆 −λ
)︂⎞⎠ , иначе,

(6)

где

𝑟𝑚 =
𝑚∑︁
𝑖=1

(︃
𝑣(𝑖)

E𝑆
−
√︂

𝑣(𝑖)

E𝑆

𝑣(𝑚)

E𝑆

)︃
, 𝑟𝑀+1 =

𝑀∑︁
𝑖=1

𝑣(𝑖)

E𝑆
,

и 𝑀 * = argmin16𝑚6𝑀(𝑟𝑚 < λ 6 𝑟𝑚+1). При рекуррентном потоке, как уже
было сказано выше, приходится пользоваться аппроксимациями (см., напри­
мер, обсуждение на стр. 216). В диссертации, впрочем, они использовались

47Т. е. 0 6 𝑝𝑚λE(𝑆/𝑣
(𝑚)) < 1 для каждого 𝑚. Чтобы решение “получилось” и E𝑉 (𝑚) долж­

ны существовать. Дополнительные ограничения зависят от принятой в сервере 𝑚 дисциплины
обслуживания.

48Под разными именами, например: проблема распределения потоков в [205, Раздел 5.8] и [206],
проблема динамической маршрутизации в [207].

49И, по крайней мере, простейших входящих потоках.
50Хотя речь зайдет и о более экзотической, но хорошо известной дисциплине — дисциплине

преимущественного обслуживания наикратчайшего задания с прерыванием обслуживания (SRPT);
см. стр. 207.

51Можно было бы сослаться и на другие источники (например, [208, Раздел 4.3.2]), но здесь
удобен этот т. к. в нем указан явный вид вероятностей 𝑝𝑚, минимизирующих родственный (1) функ­
ционал — стационарное среднее время ожидания заданием начала обслуживания (см. соотношение
(2.8) в [149]).

52По соотношению (28) из [150]; см. также [184;209;210].
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лишь для контроля результатов, так или иначе получаемых с помощью метода
Монте–Карло, и во всех вычислительных экспериментах уступали последним.

Проблема нахождения оптимальной программной стратегии53 т. е. беско­
нечной последовательности {𝑎1,𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛, . . . }, 𝑎𝑛 ∈ {1, . . . ,𝑀}, известна
в научной литературе почти так же хорошо54, как и проблема поиска опти­
мальных параметров диспетчеризации RND. Решают ее обычно в два этапа55.
Сначала находится наилучшее (с точки зрения выбранного критерия) веро­
ятностное распределение {𝑑1, . . . ,𝑑𝑀}, где, напомним, 𝑑𝑚 — доля заданий
направляемых на сервер 𝑚. Затем ищется детерминированная последователь­
ность, сохраняющая доли 𝑑𝑚 и обеспечивающая максимальное расщепление
потока по серверам. Известно (см. [218–220]), что в случае двух серверов (каж­
дый из которых представляет собой СМО56 𝐺𝐼 |𝐺𝐼 | 1 |∞ с дисциплиной FIFO)
при рациональном 𝑑1 оптимальной в классе стратегий (3) является последо­
вательность Битти:

𝑎𝑛 = ⌊(𝑛+ 1)𝑑1 +ϕ⌋ − ⌊𝑛𝑑1 +ϕ⌋. (7)

Здесь ϕ ∈ (−∞,∞) — произвольное число, обусловливающее только сдвиг
детерминированной последовательности, и в рассматриваемых проблемах
не влияет на значение целевого функционала. По-другому обстоит дело со
значением 𝑑1. Здесь имеет место сильная зависимость и, как уже упоминалось
выше, универсального способа нахождения его точного значения до сих пор не
предложено. В общем случае при 𝑀 > 3 оптимальных правил, подобных (7),
в научной литературе нет. Однако имеется ряд процедур для порождения хо­
роших последовательностей {𝑎1,𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛, . . . }. Судя по вычислительным
экспериментам, из доступных в научной литературе программных стратегий57,

53Отметим, например, что в [207, С. 29–31] она названа лучшим детерминированным алгоритмом.
Там же дается обзор работы [211], в которой его предлагается искать путем максимизации некоторой
функции (энтропии); см. также [212].

54Помимо упомянутых ранее работ, см., например, [198;213–217] и ссылки в них.
55См., например, [207, С. 30].
56На самом деле допускается любая модель сервера, чье поведение (например, динамика процесса

незаконченной работы) линейно в терминах (max ,+) алгребры (см. [219;221] и [148, Section 3.1]).
57См. алгоритм в [211], алгоритмы GRR, CGRR, and mBS в [171; 172], GR в [222], GG в [166].

Отметим, что некоторые нижние границы для значений целевых функционалов при использовании
программных стратегий даны в [160;166;223].
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имеющих широкую область применения, наилучшие результаты58 удается
достичь с помощью так называемого “жадного” алгоритма из [166, С. 184]:

𝑎𝑛 = argmin16𝑚6𝑀

(︂
𝑥𝑚 + κ𝑚(𝑛− 1)

𝑑𝑚

)︂
, (8)

где κ𝑚(𝑛−1) обозначает суммарное число заданий (из первых 𝑛− 1), направлен­
ных на сервер 𝑚, 𝑥1, . . . , 𝑥𝑀 — произвольные59 числа из [0,1], а неоднозначность
при нахождении минимума (здесь и всюду далее) разрешается в пользу самого
быстрого сервера и, если их несколько, — равновероятным выбором. Еще раз от­
метим, что нахождение оптимальной программной диспетчеризации является
трудной оптимизационной задачей, пока не имеющей решения60. И известные
приемы нахождения оптимального набора для стратегии RND не облегчают по­
ложение, поскольку оптимальные с точки зрения одного и того же критерия
наборы {𝑝1, . . . ,𝑝𝑀} и {𝑑1, . . . ,𝑑𝑀} могут отличаться (см., например, таблицу 4
на стр. 143.). Вместе с тем, выбор стратегии PROG в классе стратегий (3), даже
при условии использования эвристических приемов для нахождения значений
неизвестных параметров, приводит к таким значениям целевых функций, кото­
рые не удается уменьшить, не привлекая при диспетчеризации дополнительную
информацию о системе61.

Итак частичная наблюдаемость является весьма жестким ограничени­
ем на допустимые стратегии диспетчеризации, которое влечет существенный
проигрыш в целевой функции по сравнению со стратегиями, использующими
максимальную информацию. Оба описанных выше подхода к диспетчеризации
в частично наблюдаемых системах с параллельным обслуживанием являются
плодотворными, однако обладают и рядом недостатков. Во-первых, качество
предоставляемых ими решений сильно зависит от предположений о характерах
потоков и процессах обслуживания, и избираемых приемов для преодоления

58Что именно так, по-видимому, обстоит дело подчеркивается и в других исследованиях; см.,
например, [201, С. 189–190].

59Как показано в [224], большего можно добиться, наведя здесь порядок, а именно — положив
𝑥𝑚 = 1, если сервер 𝑚 является самым производительным, и 𝑥𝑚 = 0 иначе.

60И трудность, главным образом, связана с тем, что малое изменение значений в наборе
{𝑑1, . . . ,𝑑𝑀} может привести к большому изменению периода последовательности; см. пример на
стр. 9 в [225]. Там же предложен алгоритм эволюционной оптимизации для преодоления этой труд­
ности. В диссертации, однако, он рассматривается т. к. (по крайней мере, в рамках рассматриваемой
задачи) получаемые с его помощью результаты либо совпадают, либо уступают тем, что получаются
с помощью более простого и универсального правила (8).

61Этот эффект хорошо известен в научной литературе (см., например, [161]).
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возникающих трудностей. Во-вторых, не ясно приводят ли они к оптималь­
ным в классе стратегий (4) результатам. Наконец, обе стратегии RND и PROG,
ввиду своей универсальности, не дают глубокого понимания того, как долж­
на управляться именно частично наблюдаемая система. Главная цель второй
части диссертации — сформировать такое понимание. Идея, благодаря ко­
торой это стало возможным, состоит в использовании при диспетчеризации
всей доступной предыстории наблюдаемых компонент (ср. (3) с (4)). Однако
не является ни очевидным, ни интуитивно понятным дает ли такая незначи­
тельная дополнительная информация (учет моментов поступления заданий)
возможность улучшить (по сравнению с RND и PROG) значения целевых функ­
ционалов по типу (1). Оказывается, что такая возможность принципиально
есть. В главах 3 и 4 впервые показано, что соответствующие стратегии суще­
ствуют (далее они всюду обозначается AA от англ. Arrival Aware) и предложено
несколько конструктивных способов для их порождения. Интуитивная пред­
посылка для положительного ответа заключается в следующем соображении:
большие промежутки времени между поступлениями заданий повышают веро­
ятность того, что серверы находятся в состояниях с меньшей незаконченной
работой и наоборот. Чтобы воспользоваться этим довольно расплывчатым со­
ображением, необходимо уметь на основании доступной информации в момент
поступления очередного задания получать хотя бы приближенную оценку ли­
бо целевого функционала, либо связанных с ним величин (в случае (1) —
это, например, E𝑉𝑛). Эта необходимость определила и структуру второй части
диссертации. В главе 3 сначала описывается аналитический подход к вопло­
щению идеи диспетчеризации по предыстории (параграфы 3.1 и 3.2). Затем
излагается более универсальный, аналитико–имитационный подход, значитель­
но расширяющий тот круг систем, который очерчен результатами предыдущих
параграфов. Наконец, в главе 4 речь идет о принципиально другом, простом и
универсальном подходе к диспетчеризации по предыстории, свободном от тех
вычислительных недостатков, которые присущи предыдущим двум подходам.
Если судить только по значениям целевых функционалов, то с увеличением
номера параграфа убывает эффективность предложенных в нем решений. Ал­
горитмы параграфа 3.1 являются наилучшими в сравнении с ранее известными
в научной литературе алгоритмами62 для частично наблюдаемых стохастиче­
ских систем с параллельным обслуживанием во всем диапазоне изменения

62Т. е., как следует из данного выше обзора, в сравнении с RND и PROG.
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значений исходных параметров, а алгоритмы главы 4 — главным образом
в области низкой загрузки. С точки же зрения вычислительной сложности,
дело обстоит с точностью до наоборот: результаты главы 4 являются самы­
ми простыми и универсальными. Обычно новые диспетчеризации получаются
параметрическими63. Из-за предположения о ненаблюдаемости целевого функ­
ционала, для оценки их параметров (и параметров стратегий RND и PROG),
необходимо привлекать компьютерную модель исходной системы. Будучи ос­
нованными на принципиально иной идее, новые диспетчеризации применимы
при общих предположениях о распределениях входящих потоков и размерах
заданий, в случае наличия нескольких потоков, многопроцессорных серверов и
т.п. Кроме того, в наиболее типичных условиях они гарантируют выигрыш, а
в наихудших — паритет с наилучшей из ранее известных в научной литературе
стратегией (PROG). Забегая вперед отметим, что такое преимущество дается
не бесплатно: теряется простота реализации, свойственная стратегиям RND

и PROG. Тем не менее, результаты глав 3 и 4 диссертации дают основание утвер­
ждать, что диспетчеризация по предыстории — это именно то, как должны
управляться рассматриваемые частично наблюдаемые стохастические системы
с параллельным обслуживанием.

Посмотрим подробнее на результаты второй части диссертации. В первом
параграфе главы 3 (параграф 3.1) изложено решение задачи диспетчеризации
в стохастических системах с параллельным обслуживанием, в которых для ве­
личин, связанных с целевым функционалом, можно получить вычислительно
реализуемые точные или хорошие приближенные формулы расчета. Наиболее
простой, но вместе с тем и наиболее часто встречающейся в научных исследо­
ваниях и задачах практики, является система с дисциплиной FIFO на серверах.

63Однако диспетчеризацию практически без параметров можно предложить. Например, см. (3.2)
и Алгоритм I на стр. 137. Задавшись малым значением Δ, Алгоритм I можно реализовать в дис­
петчере и (без предварительных экспериментов на компьютерной модели!) быть вполне уверенным
в эффективности принимаемых решений (в данном случае, с точки зрения минимизации (1)). При­
менить ранее известные стратегии (RND и PROG) без предварительной оценки параметров тоже
можно. Для этого достаточно установить им такие значения, чтобы нагрузка балансировалась меж­
ду серверами пропорционально их производительности т. е. 𝑝𝑚 = 𝑑𝑚 = 𝑣(𝑚)/

∑︀𝑀
𝑚=1 𝑣

(𝑚) (см. также
обсуждение на стр. 215). Однако здесь уже нет никаких оснований расчитывать на хорошее каче­
ство решений, поскольку, например, значения параметров не зависят от целевого функционала (см.
таблицу 24 на стр. 205).
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Она и была выбрана64 полигоном65 для демонстрации возможностей нового
подхода к управлению в частично наблюдаемых системах с параллельным об­
служиванием. Одним из вариантов диспетчеризации по полной предыстории66

здесь является правило (см. стр. 135): отправить задание, поступившее в мо­
мент 𝑡𝑛+1, на сервер с номером 𝑦𝑛+1, где

𝑦𝑛+1 = argmin16𝑚6𝑀

(︂
E𝑊

(𝑚)
𝑛+1 +

E𝑆

𝑣(𝑚)

)︂
, 𝑛 > 0,

а сл. в. 𝑊
(𝑚)
𝑛+1 обозначает время, необходимое для выполнения всех заданий,

имеющихся на сервере 𝑚 в момент 𝑡𝑛+1, без учета задания, поступившего
в этот момент67. Будучи избранными для удобства, обозначения скрывают тот
факт, что математические ожидания сл. в. 𝑊 (𝑚)

𝑛+1 являются условными и зави­
сят от распределений размеров первых 𝑛 заданий и моментов их поступлений.
Хотя изучению процессов незаконченной работы в СМО и СеМО посвящено
огромное число работ, проблема вычисления68 моментов сл. в. 𝑊 (𝑚)

𝑛+1 практиче­
ски не освещена. Известные в научной литературе результаты (см. [226–249],
[250, § 7] и ссылки в них) не позволяют прийти к ее решению, посколь­
ку задающие 𝑊

(𝑚)
𝑛+1 сл. в. являются зависимыми. Бесплодными оказываются

и попытки воспользоваться известными неравенствами для функций от сл. в.
(см., например, [251–262]): получаемые на их основе оценки математических
ожиданий оказываются настолько грубыми, что стратегия {𝑦1,𝑦2, . . . } пере­
стает различать серверы. Фактически единственным выходом из положения
является использование основного рекуррентного соотношения, связывающего
величины 𝑊

(𝑚)
𝑛−1 и 𝑊

(𝑚)
𝑛 — хорошо известной в литературе рекурсии Линдли69.

И в подразделе 3.1 предложен рекуррентный алгоритм (см. стр. 136) при­
ближенного расчета значений E𝑊

(𝑚)
𝑛+1, требующий при каждом 𝑛 конечного

64При несколько более общих (чем те, что сделаны выше) предположениях о распределениях
размеров заданий.

65Но и о системах с другими дисциплинами обслуживания тоже пойдет речь.
66С целью минимизации (1).
67Другими словами, 𝑊 (𝑚)

𝑛+1 — незаконченная работа на сервере 𝑚 к моменту 𝑡𝑛+1.
68И, в целом, подобных характеристик, зависящих от всей (или хотя бы части) предыстории

функционирования системы.
69См., например, [263, С. 449]. В связи с этой конструкцией в научной литературе имеется мно­

го результатов. Помимо упомянутых выше работ отметим еще [264], где (дан некоторый обзор и)
для дискретной СМО 𝐺𝐼 |𝐺𝐼 | 1 |∞ предложен матрично–аналитический метод расчета некоторых
стационарных распределений, не предполагающий конечных носителей у распределений.



27

числа операций сложения и умножения, даже в случае распределений, со­
средоточенных на всей положительной полуоси. Сам по себе этот результат
не является новым и, по-видимому, похоронен глубоко в литературе70. Но
основные успехи диспетчеризации по предыстории, связаны не с ним, а с най­
денной его новой модификацией (см. стр. 140), имеющей заметно меньшую
вычислительную сложность. Первая часть параграфа 3.2 посвящена изложе­
нию результатов вычислительных экспериментов71, которые свидетельствуют
о том, что для рассматриваемых частично наблюдаемых систем с параллель­
ным обслуживанием алгоритмы диспетеризации по предыстории являются
равномерно наилучшими. Почти во всем диапазоне изменений значений исход­
ных параметров системы они позволяют уменьшить значения функционалов
(типа (1)) по сравнению со всеми ранее известными из научной литературы
стратегиями (т. е. RND и PROG). Когда условия таковы, что оптимизация невоз­
можна, новые алгоритмы приводят к тем же значениям, что и наилучшие
из ранее известных. Обсуждению и всевозможным дополнениям, расширяющим
круг систем для которых применим аналитический подход к диспетчеризации
по предыстории, посвящена оставшаяся часть параграфа 3.2. В частности, здесь
показано как может быть видоизменено управление, если в серверах реализо­
вана принципиально отличная от FIFO дисциплина обслуживания. Например,
при дисциплине PS относительно поступившего в момент 𝑡𝑛+1 задания, следу­

70Впрочем недавно он появился в [265] в связи с некоторыми приложениями теории массового об­
служивания, но без ссылок на источник. Отметим также, что работа Л. Такача [266] является, судя
по всему, единственной в литературе, которая содержит в явном виде результат, позволяющий (хотя
бы теоретически) рассчитывать необходимые для диспетчеризации величины (см. Theorem 4). Од­
нако для целей диссертации он малопригоден т. к. требует при каждом 𝑛 обращения производящих
функций.

71Значения целевых функций, указанные в таблицах, были получены, в основном, путем ими­
тационного моделирования и являются арифметическими средними из результатов наблюдений.
Хотя можно было бы действовать и по-другому (см., например, [267] и [268, Section 7]), поскольку
во всех случаях выполнялся закон Литтла. Для принятия решения о прекращении моделирования
использовался инженерный подход: моделирование продолжалось до тех пор, пока не перестава­
ла меняться третья значащая цифра арифметического среднего. Для целей диссертации такой путь
представляется ничем не уступающим другим, известным из литературы (например, основанным на
центральной предельной теореме, или неравенстве Чебышева или [269]). По накопленным к момен­
ту окончания имитации наблюдениям вычислялись и встречающиеся в некоторых таблицах оценки
стандартного отклонения. При наличии обоих значений можно составить некоторое представление
о доверительных границах для среднего. Наконец отметим, что при моделировании использовались
стандартные генераторы (пседво)случайных последовательностей. Методы понижения дисперсии не
применялись.
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ет принять решение

𝑦𝑛+1 = argmin16𝑚6𝑀

(︁
θ · E𝑁 (𝑚)

𝑛+1

)︁
, 𝑛 > 0,

где сл. в. 𝑁
(𝑚)
𝑛+1 — число заданий в сервере 𝑚 в момент 𝑡𝑛+1 (но до прибав­

ления задания к какому-либо серверу), а θ ∈ (0,1] — наперед заданное число.
Наличие, вообще говоря, неизвестного постоянного коэффициента (θ) в пра­
виле 𝑦𝑛+1 неслучайно. Как уже было сказано ранее, все новые алгоритмы,
реализующие управление по предыстории, являются параметрическими. Цель
же введения постоянного коэффициента (который далее будем называть поро­
гом72) — компенсация тех изменений в исходной задаче, которые вызываются
различного рода аппроксимациями, необходимыми для расчета величин E𝑁

(𝑚)
𝑛+1,

E𝑊
(𝑚)
𝑛+1 и др. Поскольку, судя по вычислительным экспериментам, в каждой

задаче существует единственное оптимальное значение порога, то наличие хоро­
шего (хотя бы в каком-то смысле) начального приближения заметно упрощает
поиск. Например, за такое начальное значение можно взять оптимальное зна­
чение порога в какой–нибудь аналогичной задаче, но с полным наблюдением.
Завершает параграф 3.2 одна из таких задач, решение которой может слу­
жить (и в параграфе 3.4 служит) начальным приближением для значений
порогов в алгоритмах диспетчеризации по полной предыстории. Речь идет о вы­
числении оптимальных73 значений параметров пороговых стратегий в одном
классе полностью наблюдаемых систем с параллельным обслуживанием. По­
роговое управление74 — одна из самых известных и популярных стратегий
в прикладных задачах теории вероятностей75. Ее популярность связана как
с простотой реализации, так и с тем обстоятельством, что в ряде случаев она яв­
ляется оптимальной (см., например, [277; 278]). В большинстве случаев задача
нахождения значений параметров управления (порогов) не поддается анали­
тическому решению: необходимо прибегать к приближенным методам76 или

72Правомочность использования здесь этого термина придется отложить до стр. 161.
73С точки зрения минимума стационарного среднего времени пребывания задания в системе. До­

пускается и варьирование (не в очень широких диапазонах) целевой функции. Например, очевидные
изменения в (3.18) позволяют говорить об оптимальности с точки зрения минимума стационарного
среднего времени ожидания начала обслуживания.

74Или, по-другому, переключающая стратегия.
75Например, задачи распределения ресурсов (см. [270–275]), задачи о разладке (см. [276] и [193,

С. 290]).
76Например, решать уравнения динамического программирования, произведя предварительно

дискретизацию множества состояний.
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статистическому моделированию. В последнем случае, при пологих графиках
целевой функции вблизи оптимальных значений порогов, для достижения вы­
сокой точности может потребоваться очень большое время имитации. В связи
с этим возникает следующий вопрос. Предположим, что в полностью наблюда­
емой системе с параллельным обслуживанием следует использовать пороговую
стратегию. Можно ли в этом случае предложить алгоритм нахождения (хо­
тя бы приближенно) значений оптимальных порогов, который основан только
на вероятностных соображениях и свойствах пороговой стратегии, и не исполь­
зует какие-либо результаты имитационного моделирования? Ограничившись
классом полностью наблюдаемых систем с параллельным обслуживанием, для
которого в настоящее время известно мало результатов, касающихся вопро­
сов оптимальности, в конце параграфа 3.2 описан итерационный алгоритм
(см. стр. 161), обладающий требуемыми свойствами. Опишем вкратце поста­
новку задачи, идею и особенности предложенного решения. Пусть имеется
полностью наблюдаемая система, в которую поступает один рекуррентный
поток заданий одинакового размера. В системе имеется 𝑀 > 2 серверов77,
работающих параллельно и независимо друг от друга, перед каждым из ко­
торых есть очередь неограниченной емкости для хранения заданий, которые
предназначаются для обработки именно на этом сервере т. е. переход между
очередями невозможен. Очередное задание при поступлении в систему направ­
ляется на один из серверов в соответствии со следующей пороговой стратегией
с параметрами ξ(1), . . . , ξ(𝑀): 𝑛-е задание направляется в очередь к серве­
ру argmin16𝑚6𝑀

(︀
𝑥𝑚 + ξ(𝑚)

)︀
, где 𝑥𝑚 — незаконченная работа на сервере 𝑚

в момент поступления 𝑛-го задания. После окончания обслуживания задания
покидают систему. Дисциплина выбора на обслуживание из очереди — в поряд­
ке поступления. Задача — найти значения порогов ξ(1), . . . , ξ(𝑀), при которых
достигается минимум стационарного среднего времени пребывания задания в
системе. Отметим, что производительности серверов предполагаются фиксиро­
ванными и различными78. Известно, что при 𝑀 = 2 рассматриваемая задача
эквивалентна известной задаче о медленном приборе [281;282], для которой по­

77Занумерованных числами от 1 до 𝑀 без повторений.
78Случай серверов одинаковой производительности исключается, поскольку здесь ответ изве­

стен [146; 279; 280]: ξ(1) = · · · = ξ(𝑀) = 0 т. е. оптимальной с точки зрения стационарного среднего
времени пребывания в системе является стратегия LWL, предписывающая направлять очередное
задание в сервер с наименьшей незаконченной работой. Таким образом, система с параллельным
обслуживанием оказывается эквивалентной СМО 𝐺𝐼 |𝐷 |𝑁 |∞.
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роговая стратегия является оптимальной79 (см. [272, Лемма 1] или [277; 284]).
При этом оптимальные значения порогов для этих двух задач связаны простым
соотношением [272, Лемма 2]. Даже в случае двух серверов не удается найти
значение оптимального порога в явном виде. Отсутствуют аналитические ре­
зультаты о зависимости целевой функции от значения порога, что не позволяет
применять, как стандартные приемы нахождения минимума, так и известные
эффективные градиентные методы в сочетании со статистическим моделирова­
нием [4; 5]. Судя по публикациям в открытой научной печати, последний шаг
вперед в этой задаче удалось сделать в [272]: предложен аналитически–имита­
ционный метод, использующий некоторые результаты из теории марковских
процессов принятия решений, а также методы Монте–Карло для оценки зна­
чений входящих в уравнения величин80. Предложенный в диссертации прием
нахождения параметров оптимальной пороговой стратегии не использует ка­
кие-либо результаты имитационного моделирования, и основан на следующем
рассуждении. Пусть ξopt > 0 — (неизвестное) оптимальное значение порога.
Тогда, если текущее значение порога, пусть ξ0 > 0, является оптимальным, то
решение, которое принимается в момент времени (пусть это будет момент 0),
когда состояние системы находится на границе (которая естественно определя­
ется пороговым значением), не должно влиять на значение целевой функции.
Таким образом, если ввести величины 𝑔

(𝑚)
𝑛 , 𝑚 = 1,2, — стационарное среднее

время пребывания задания в системе в 𝑛-й момент принятия решения, при
условии, что в момент 0 было принято решение направить задание на сервер
с номером 𝑚, то знак суммы

∞∑︁
𝑛=0

(︁
𝑔(1)𝑛 − 𝑔(2)𝑛

)︁
будет говорить о том, насколько текущее значение порога ξ0 находится близ­
ко к оптимальному значению ξopt. Если знак суммы больше нуля, то значение
порога ξ0 необходимо уменьшить, в противном случае увеличить. Таким об­
разом, с помощью данной итерационной процедуры можно находить ξopt с

79Для систем, состоящих из более, чем двух серверов структура оптимальной стратегии неиз­
вестна: она совершенно необязательно должна быть пороговой (см., например, [283]).

80Необходимо отметить, что этот оригинальный метод (в зарубежной литературе — First Policy
Iteration) применим для нахождения хороших (и иногда практически неулучшаемых!) стратегий во
многих задачах распределения ресурсов, когда есть возможность провести декомпозицию системы
(как, например, при пуассоновском потоке заданий). См. подробнее, например, в [191; 285–287] и
сноску на стр. 175.



31

заданной степенью точности. Для расчета значений 𝑔
(𝑚)
𝑛 приходится ограничи­

вать множество состояний системы, которое в данном случае совпадает с R2
+,

а также проводить его дискретизацию81. Экспериментально было установле­
но, что сумма разностей 𝑔

(1)
𝑛 − 𝑔

(2)
𝑛 является очень чувствительной к тому, как

вводится сетка на непрерывном множестве состояний. При этом удовлетвори­
тельные результаты удается достигнуть на неравномерной сетке специального
(косоугольного) вида; см. соответствующие построения на стр. 165. Псевдокод
итерационного алгоритма, реализующего изложенные идеи, дается на стр. 170,
после чего на численных примерах демонстрируется его эффективность82.
Здесь же описывается схема применения алгоритма для нахождения прибли­
женных значений порогов в системе с произвольным числом серверов.

Несмотря на успех аналитического пути воплощения идеи диспетчериза­
ции по предыстории, который был продолжен в параграфе 3.1, круг систем,
для которых таким образом можно прийти к рабочему83 алгоритму, нельзя счи­
тать широким. Во-первых, фактически неохваченными оказываются системы
с серверами, использующими сложные и полезные дисциплины обслужива­
ния (например, SRPT). Во-вторых, можно указать условия, в которых выбор
очередного действия по трудоемкости выйдет за рамки всякого разумного пред­
ставления о времени выполнения. Поэтому параграф 3.3 посвящен изложению
более универсального, аналитико–имитационного подхода к задаче диспетчери­
зации, применимого в любой частично наблюдаемой системе с параллельным
обслуживанием. Такое расширения области применения достигается путем за­
мены ранее рассчитываемых значений величин, необходимых диспетчеру для
выбора очередного действия, на их статистические оценки, получаемые посред­
ством имитационной модели. В основу новых алгоритмов диспетчеризации по

81Другими словами, не удалось избежать аппроксимации исходной марковской цепи с непрерыв­
ным множеством состояний некоторой конечной цепью. Однако в отличие от уравнений Беллмана,
которые теперь (после введения разбиения пространства состояний) также можно применить для
получения ответа, предложенное решение использует специальный способ вычисления вероятностей
перехода, не требующий использования матрицы переходных вероятностей.

82Предложенный прием не только свободен от недостатков имитационных методов, но и позволя­
ет аналитически “подступиться” к задаче управления в случае непрерывного множества состояний.
Но необходимо отметить, что в более общих постановках надежды на успехи, по-видимому, связаны
с использованием метода Монте–Карло в сочетании с адаптивными алгоритмами для управления
частично наблюдаемыми марковскими цепями (см. [178] и сноску на стр. 175).

83Возникает либо то, что принято называть “проклятием размерности”, либо необходимые вели­
чины вовсе не поддаются ни прямому, ни косвенному расчету.
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предыстории положен прием, используемый в теории адаптивного управления
и известный под названием идентификационный подход (см. стр. 177): задав­
шись какой-нибудь хорошей стратегией, идентифицируются (на компьютерной
модели) необходимые для ее реализации, но недоступные для наблюдения,
динамические характеристики серверов. Действенность аналитико–имитацион­
ного подхода показывается в параграфе 3.4 на тех же постановках, что были
рассмотрены в параграфе 3.2. И результаты вычислительных экспериментов
свидетельствуют о том, что, даже несмотря на замену вычислений по формулам
вероятностной процедурой, новые алгоритмы диспетчеризации по предыстории
позволяют уменьшить значения функционалов в сравнении со всеми ранее из­
вестными из научной литературы стратегиями (т. е. RND и PROG) почти во всем
диапазоне изменений значений исходных параметров системы84. Кроме того,
они являются достаточно чувствительными, чтобы подтвердить установленный
в параграфе 3.1 контринтуитивный факт, характерный для диспетчеризаций
по предыстории: при определенных значениях исходных параметров системы,
стратегии, опирающиеся на (некоторые) наблюдения (например, JSQ) уступают
новым стратегиям, вовсе не использующим информацию о текущем состоянии
системы (далее см. обсуждение на стр. 185).

Заключительная глава диссертации (глава 4) посвящена изложению ре­
зультатов поиска способов реализации идеи диспетчеризации по предыстории,
во-первых, в еще более широком, чем в главе 3, классе систем с параллельным
обслуживанием85 и, во-вторых, свободных от вычислительных недостатков86.
В основе нового подхода –– идея использования для порождения действий вир­
туальных вспомогательных процессов, зависящих от неизвестных параметров и
синхронизованных по моментам поступления заданий с основной системой. Вви­
ду того, что априорная информация дает возможность осуществлять имитацию
траектории системы, значение неизвестных параметров может быть подобра­
но. Вычислительные эксперименты показывают, что новые алгоритмы (см.
описание основной версии алгоритма на стр. 202) успешно конкурируют87 со
всеми ранее известными в научной литературе диспетчеризациями (т. е. RND

84Традиционно исключения составляют случаи загрузки, близкой к критической, где наблюда­
ется совпадение результатов с наилучшей из ранее известных стратегий.

85Например, с ненадежными серверами.
86Другими словами, таких же простых, как и правила (5) и (8).
87Но уже не являются, в отличие от алгоритмов главы 3, наилучшими во всем диапазоне изме­

нений значений исходных параметров систем.
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и PROG), а в сбалансированных системах88 часто и превосходят их. Эти свой­
ства, вкупе с тем обстоятельством, что новые алгоритмы требуют для своей
настройки оценки существенно меньшего числа параметров, дают основания
назвать их лучшими для ненаблюдаемых систем с параллельным обслужива­
нием. Рассмотренные серии экспериментов охватывают различные варианты
входного потока заданий, различные распределения длины заданий, разное
число серверов, различные дисциплины обслуживания89. Качественная карти­
на такова. При фиксированной дисциплине обслуживания в серверах наличие
выигрыша от применения новой стратегии зависит, главным образом, от каче­
ства доступных оценок параметров наилучшей из ранее известных стратегий
— стратегии PROG. Если нет возможности получить близкие к оптималь­
ным значения или приходится исходить при их выборе из здравого смысла
(например, балансируя нагрузку), то, как показывают вычислительные экспе­
рименты, предложенный алгоритм следует признать равномерно наилучшим.
В противном случае результат сравнения зависит от соотношений между90

коэффициентом вариации 𝐶𝐵 размера заданий, загрузкой системы ρ и ее
размером 𝑀 . Так, при фиксированном ρ, эффективность нового алгоритма
снижается с увеличением числа серверов; при этом, начиная с некоторого 𝑀 ,
относительный выигрыш стабилизируется. При фиксированном 𝑀 соотно­
шение между стратегиями зависит от случайности распределения размера
заданий. При 𝐶𝐵 ≪ 1 равномерно наилучшей по ρ является новая стратегия.
С увеличением 𝐶𝐵 стабильного выигрыша удается добиться только в области
малой загрузки (при 𝐶𝐵 = 1 граница проходит, по-видимому, в районе сред­
ней загрузки). То, что новый алгоритм, осуществляющий диспетчеризацию по
предыстории, не является лучшим во всем диапазоне загрузки является ожи­
даемым следствием его преимуществ — универсальности и простоты. Другой
важной отличительной особенностью новых алгоритмов является возмож­

88По этому поводу см. сноску на стр. 203.
89Поскольку каждый сервер представляет собой однолинейную СМО с неограниченной

очередью, то приведены примеры с двумя “крайними” случаями обобщенной дисциплины пре­
имущественного обслуживания наикратчайшей заявки с прерыванием обслуживания: наиболее
употребительная — FIFO и оптимальная с точки зрения минимизации среднего времени пребывания
заявки в системе — SRPT. Отметим, что хотя первые результаты об оптимальности последней дисци­
плины появились более 50 лет назад (см. [288]), ее изучение остается предметом активных научных
исследований [289–292].

90При рекуррентном входном потоке, его случайность т. е. значение коэффициента вариации 𝐶𝐹 ,
судя по экспериментам, оказывает незначительное влияние.



34

ность естественным образом отражения в них структуры и функциональных
особенностей системы. Наиболее показательным и важным для практики при­
мером является ситуация с частичной доступностью серверов (см. обсуждение
на стр. 212): при наличии точной информации о моментах выключения/включе­
ния серверов, новый алгоритм может быть наилучшим уже во всем диапазоне
загрузки; в то же время для других известных стратегий такая информация
является бесполезной. Оставшаяся часть главы 4 посвящена обсуждению одно­
го вопроса, связанного с теоретической основой продуктивности столь простой
в реализации, но интуитивно совершенно не очевидной конструкции. В за­
ключении к диссертации перечисляются задачи, представляющие интерес при
дальнейшей разработке темы, и кратко подводятся итоги выполенного исследо­
вания, из которых складываются выносимые на защиту положения:

– метод получения оценок значений стационарных вероятност­
но–временных характеристик изолированно функционирующих
стохастических систем обслуживания на основе доступной информации
о прогнозных временах обслуживания.

– доказательство эффективности предложенного метода для некоторых
классов частично наблюдаемых стохастических систем обслуживания,
моделируемых немарковскими системами массового обслуживания с
пуассоновскими входящими потоками.

– методы диспетчеризации по полной предыстории в стохастических
системах с параллельным обслуживанием в условиях, когда не наблю­
даемы традиционно важные для решения задач оптимизации характе­
ристики, включая показатель, подлежащий минимизации.

– алгоритмы квазиоптимальной диспетчеризации в частично наблюдае­
мых стохастических системах, составленных из параллельно работаю­
щих систем массового обслуживания с классическими дисциплинами
обработки очередей.

– метод создания стратегий управления входящими потоками для неко­
торых классов стохастических систем с параллельным обслуживанием
при отсутствии информации об их динамическом состоянии, осно­
ванный на использовании виртуальных вспомогательных процессов и
экспериментальное обоснование его эффективности.

Основные результаты работы докладывались на Европейской конферен­
ции по математическому и имитационному моделированию (Олесунн, 2013 г.;
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Регенсбург, 2016 г.; Вильгельмсхафен, 2018 г.; Вильдау, 2020 г.; Эль–Кувейт,
2021 г.), на Европейском симпозиуме по вопросам системной инженерии
(Берлин, 2017 г.; Милан, 2019 г.), на Первой европейской конференции по тео­
рии массового обслуживания (Гент, 2014 г.), на Международном конгрессе
по ультрасовременным телекоммуникациям и системам управления (Санкт­
Петербург, 2010 г., 2012 г., 2014 г.; Лиссабон, 2016 г.), на Международной
конференции по матрично-аналитическим методам в стохастических моделях
(Будапешт, 2016 г.), на Международном семинаре по проблемам устойчивости
стохастических моделей (Светлогорск, 2012 г.; Тампере, 2015 г.), на Междуна­
родной конференции “Распределенные компьютерные и телекоммуникационные
сети: управление, вычисление, связь” (Москва, 2016–2020 гг.), на Международ­
ной конференции по стохастическим методам (Геленджик, 2019 г.), на XVII
и XVIII Международной конференции имени А.Ф. Терпугова “Информацион­
ные технологии и математическое моделирование” (Томск, 2018 г.; Саратов,
2019 г.), на II–IV школе молодых ученых ИПИ РАН (Москва, 2011–2013 гг.),
на научном семинаре по теории массового обслуживания кафедры теории ве­
роятностей механико–математического факультета МГУ им. М.В. Ломоносова
под руководством проф. Л.Г. Афанасьевой.

Результаты диссертации опубликованы в работах91 [174; 178; 293–317], ис­
пользуются в учебном процессе Российского университета дружбы народов на
факультете физико–математических и естественных наук при преподавании

91В совместно опубликованных работах вклад автора состоит в следующем. В [293–297]
автором предложены методы получения оценок фактических значений стационарных вероят­
ностно–временных характеристик частично наблюдаемых систем; доказана их состоятельность
и получены соответствующие условия. В [298;299] автором развит аналитический аппарат решения
задач стационарного анализа введенного нового класса систем массового обслуживания инвер­
сионного типа. В [300–302] автор предложил методы порождения диспетчеризаций при полном
отсутствии динамической информации о состоянии систем и получил экспериментальные обос­
нования их состоятельности. В [303–307] автором разработаны алгоритмы диспетчеризации для
частично наблюдаемых систем с параллельным обслуживанием и классическими дисциплинами
обработки очередей, и получено экспериментальное обоснование их эффективности. В [178; 308] ав­
тором предложены квазиградиентные алгоритмы определения оптимальных значений параметров
дисцпетчеризаций по наблюдениям за фазовой траекторией. В [309] автору принадлежит подход
к диспетчеризации по полной предыстории. В [174] автор описал основные отмеченные в мировой
научной литературе и используемые на практике алгоритмы диспетчеризации, и их ключевые свой­
ства. В [310;311] автором получены основные аналитические результаты и на их основе разработаны
алгоритмы расчета оптимальных значений порогов. В [312] автором предложена “имитационно–адап­
тивная” технология решения задач планирования ресурсов и схема ее реализации.
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курсов «Имитационное моделирование», «Дискретные вероятностные модели»,
«Дискретные математические модели» и в Межведомственном Суперкомпью­
терном Центре РАН при эксплуатации и развитии ряда суперкомпьютерных
систем коллективного пользования.
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Глава 1. Основные стационарные характеристики систем
инверсионного типа с пуассоновским входящим потоком и

некоторыми неконсервативными дисциплинами обслуживания

1.1 Дисциплина обобщенного вероятностного приоритета

Рассмотрим систему массового обслуживания с одним обслуживающим
прибором и (𝑛 − 1)-м местом ожидания (𝑛 6 ∞), на вход которой поступает
пуассоновский поток заявок с переменным параметром λ𝑘, зависящим от числа
заявок 𝑘, находящихся в системе. Каждой приходящей заявки соответствует
некоторая случайная величина, которую будем трактовать как исходное вре­
мя обслуживания и назовем исходной длиной заявки, подразумевая, что длина
измеряется в единицах времени. Будем считать, что обслуживающий прибор,
работающий с единичной скоростью, не портится и способен немедленно после
окончания обслуживания одной заявки приступить к обслуживанию следую­
щей. Прибор одновременно может обслуживать только одну заявку. Кроме того,
допустим, что прерывание обслуживания, смена заявки на приборе и удаление
заявок из системы происходит мгновенно.

В случае, когда в системе нет свободных мест ожидания, каждая
приходящая заявка теряется. В противном случае, определим дисциплину
обслуживания следующим образом. Вне зависимости от предыстории функ­
ционирования системы в момент очередного поступления исходная длина 𝑢

новой заявки сравнивается с (остаточной) длиной 𝑣 заявки на приборе. С
вероятностью 𝐷(𝑥,𝑦|𝑢,𝑣), зависящей только от 𝑢 и 𝑣, обслуживавшаяся ранее
заявка продолжает обслуживаться, причем ее длина становится меньше 𝑦, а
вновь поступившая становится на первое место в очереди и ее длина становится
меньше 𝑥. Кроме того, с вероятностью 𝐷*(𝑥,𝑦|𝑢,𝑣), зависящей только от 𝑢 и 𝑣,
вновь поступившая заявка занимает прибор, вытесняя обслуживавшуюся ранее
на первое место в очереди, причем длина заявки, бывшей ранее на приборе,
становится меньше 𝑦, а вновь поступившей — меньше 𝑥.

Если на приборе находится заявка остаточной длины 𝑣 и в систему по­
ступает заявка длины 𝑢, то с вероятностью 𝐷0(𝑥|𝑢,𝑣) заявка, находящаяся на
приборе, покидает систему, а поступившая заявка становится на прибор, причем



38

ее длина становится меньше 𝑥. Кроме того, с вероятностью 𝐷*
0(𝑦|𝑢,𝑣) посту­

пившая заявка сразу же покидает систему, а заявка, находящаяся на приборе,
продолжает обслуживаться, причем ее длина становится меньше 𝑦. Введем так­
же обозначение

𝐷(𝑥|𝑢,𝑣) = 𝐷0(𝑥|𝑢,𝑣) +𝐷*
0(𝑥|𝑢,𝑣).

Здесь 𝐷(𝑥|𝑢,𝑣) — вероятность того, что одна из двух заявок покинет систему, а
вторая встанет на прибор и примет длину меньше 𝑥. Наконец, предполагается,
что с вероятностью 𝑑0(𝑢,𝑣) обе заявки покидают систему, а на прибор становит­
ся первая заявка из очереди. Если длина заявки на приборе становится равной
нулю, то она мгновенно покидает систему и на прибор переходит первая заявка
из очереди. Остальная очередь сдвигается на единицу.

Будем считать, что все ф. р. 𝐷(𝑥,𝑦|𝑢,𝑣), 𝐷*(𝑥,𝑦|𝑢,𝑣), 𝐷0(𝑥|𝑢,𝑣), 𝐷*
0(𝑦|𝑢,𝑣),

𝐷(𝑦|𝑢,𝑣) и 𝐷0(𝑢,𝑣) имеют непрерывные ограниченные плотности

𝑑(𝑥,𝑦|𝑢,𝑣) =
𝜕2𝐷(𝑥,𝑦|𝑢,𝑣)

𝜕𝑥 𝜕𝑦
, 𝑑*(𝑥,𝑦|𝑢,𝑣) = 𝜕2𝐷*(𝑥,𝑦|𝑢,𝑣)

𝜕𝑥 𝜕𝑦
,

𝑑0(𝑥|𝑢,𝑣) =
𝜕𝐷0(𝑥|𝑢,𝑣)

𝜕𝑥
, 𝑑*0(𝑦|𝑢,𝑣) =

𝜕𝐷*
0(𝑦|𝑢,𝑣)
𝜕𝑦

,

𝑑(𝑥|𝑢,𝑣) =
𝜕𝐷(𝑥|𝑢,𝑣)

𝜕𝑥
.

Естественно, для любых 𝑢 и 𝑣 выполнено условие

∞∫︁
0

∞∫︁
0

(𝑑(𝑥,𝑦|𝑢,𝑣) + 𝑑*(𝑥,𝑦|𝑢,𝑣)) 𝑑𝑥 𝑑𝑦 +
∞∫︁
0

𝑑(𝑥|𝑢,𝑣) 𝑑𝑥+ 𝑑0(𝑢,𝑣) =

= 𝐷(∞,∞|𝑢,𝑣) +𝐷*(∞,∞|𝑢,𝑣) +𝐷(∞|𝑢,𝑣) + 𝑑0(𝑢,𝑣) = 1. (1.1)

Поскольку описанная дисциплина обслуживания обобщает правило об­
работки очереди, изученное в [318; 319], будем называть ее инверсионным
порядком обслуживания с обобщенным вероятностным приоритетом1 (далее —
LIFOGPP, Last–In–First–Out with Generalized Probabilistic Priority).

1Частным случаем дисциплины LIFOGPP являются известные правила обработки очереди: пря­
мой порядок обслуживания (с точки зрения стационарного распределения очереди), инверсионный
порядок обслуживания с абсолютным и относительным приоритетами [320], инвариантная дисци­
пилна обслуживания [98].
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Длины заявок являются независимыми одинаково распределенными сл. в.
с произвольной ф. р. 𝐵(𝑥) и средним значением

∫︀∞
0 𝑥 𝑑𝐵(𝑥) = E𝑆. Всюду да­

лее предполагается, что существует2 непрерывная ограниченная плотность
𝑏(𝑥) = 𝐵′(𝑥). Поскольку в пределах всей главы это нигде не вызовет недоразу­
мений, будем называть длиной и остаточную длину заявки.

Условимся кодировать описанную систему как 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP,
где обозначение 𝑀𝑘 указывает на тот факт, что параметр входящего пуассо­
новского потока зависит от числа 𝑘 заявок в системе.

Введем 𝑛-мерный случайный процесс η(𝑡), описывающий функциониро­
вание системы, как вектор длин заявок, находящихся в системе в момент 𝑡

и расположенных в порядке, обратном очереди, т. е. если в момент 𝑡 в систе­
ме находится ν(𝑡) заявок, то ξ1(𝑡) — длина заявки, находящейся на последнем
месте в очереди, ξ2(𝑡) — длина заявки на предпоследнем месте в очереди, . . . ,
ξν(𝑡)(𝑡) — длина обслуживаемой заявки, ξν(𝑡)+1(𝑡) = · · · = ξ𝑛(𝑡) = 0.

Положим

𝑃0(𝑡) = P{ν(𝑡) = 0},
𝑃𝑘(𝑡;𝑥1, . . . ,𝑥𝑘) = P{ν(𝑡) = 𝑘, ξ𝑘(𝑡) < 𝑥1, . . . ,ξ1(𝑡) < 𝑥𝑘}, 1 6 𝑘 6 𝑛− 1,

и введем совместные и маргинальные стационарные распределения процес­
са η(𝑡):

𝑃𝑘(𝑥1, . . . ,𝑥𝑘) = lim
𝑡→∞

𝑃𝑘(𝑡;𝑥1, . . . ,𝑥𝑘),

𝑃𝑘(𝑥) = 𝑃𝑘(𝑥,∞, . . . ,∞), 𝑃𝑘 = 𝑃𝑘(∞),

𝑝𝑘(𝑥1, . . . ,𝑥𝑘) =
𝜕𝑘

𝜕𝑥1 · · · 𝜕𝑥𝑘
𝑃𝑘(𝑥1, . . . ,𝑥𝑘),

𝑝𝑘(𝑥) = 𝑃 ′
𝑘(𝑥),

𝑄𝑛(𝑡;𝑥1, . . . ,𝑥𝑛) = P{ν(𝑡) = 𝑛, ξ𝑛(𝑡) < 𝑥1, . . . ,ξ1(𝑡) < 𝑥𝑛},
𝑄𝑛(𝑥1, . . . ,𝑥𝑛) = lim

𝑡→∞
𝑄𝑛(𝑡;𝑥1, . . . ,𝑥𝑛),

𝑄𝑛(𝑥) = 𝑄𝑛(𝑥,∞, . . . ,∞), 𝑄𝑛 = 𝑃𝑛(∞),

𝑞𝑛(𝑥1, . . . ,𝑥𝑛) =
𝜕𝑛

𝜕𝑥1 · · · 𝜕𝑥𝑛
𝑄𝑛(𝑥1, . . . ,𝑥𝑛),

𝑞𝑛(𝑥) = 𝑄′
𝑛(𝑥).

При 𝑛 = ∞ величины 𝑄𝑛(𝑡;𝑥1, . . . ,𝑥𝑛), 𝑄𝑛(𝑥1, . . . ,𝑥𝑛) и 𝑞𝑛(𝑥1, . . . ,𝑥𝑛) не опре­
деляются. Относительно плотностей 𝑝𝑘(𝑥1, . . . ,𝑥𝑘), 𝑞𝑛(𝑥1, . . . ,𝑥𝑛), 𝑝𝑘(𝑥) и 𝑞𝑛(𝑥)

2Для доказательства некоторых утверждений от функции 𝑏 потребуется большее, но каждый
раз это будет оговорено особо.
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будем предполагать3, что они существуют, являются ограниченными и непре­
рывными.

Если не накладывать никаких дополнительных ограничений на функции
𝑑, 𝑑*, 𝑑0 и 𝑑*0 дисциплина LIFOGPP не является консервативной4. Поэтому про­
извольных 𝑑, 𝑑*, 𝑑0 и 𝑑*0 не удается выписать общее необходимое и достаточное
условие существования стационарного режима5: оно зависит от конкретных
параметров системы и в каждом отдельном случае нуждается в специальном
исследовании. Однако из сравнения суммарной имеющейся работы в рассмат­
риваемой системе и суммарной работы в стандартной СМО 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 |FIFO
можно получить достаточное условие. Оно заключается в выполнении следу­
ющих соотношений6:

1. E𝑆 < ∞;
2. 𝑑(𝑥,𝑦|𝑢,𝑣) = 0 при всех 𝑢,𝑣 и 𝑦 > 𝑣 или 𝑥 > 𝑢;
3. 𝑑*(𝑥,𝑦|𝑢,𝑣) = 0 при всех 𝑢,𝑣 и 𝑦 > 𝑣 или 𝑥 > 𝑢;
4. 𝑑(𝑥|𝑢,𝑣) = 0 при всех 𝑢,𝑣 и 𝑥 > 𝑢;
5. 𝑑*(𝑦|𝑢,𝑣) = 0 при всех 𝑢,𝑣 и 𝑦 > 𝑣,

и lim𝑛→∞ λ𝑛E𝑆 < 1 при 𝑛 = ∞.
3Доказательство этого для произвольных (но удовлетворяющих ряду свойств) консервативных

дисциплин обслуживания основывается на известных методах (теории регенерирующих процессов и
теории восстановления) [321; 322]. При дисциплине LIFOGPP моменты прихода заявок в свободную
систему, по-прежнему, являются точками регенерации. Однако времена обслуживания заявок уже
зависят от входящего потока. Поэтому, по крайней мере напрямую, доказательство на основе из­
вестной теории не проходит. Это же обстоятельство затрудняет применение известных специальных
методов [323;324] нахождения условий стационарности.

4Напомним (см., например, [75, С. 49]), что свойство консервативности дисциплины означает,
что длительность обслуживания заявки не зависит от дисциплины обслуживания и нет искусствен­
ных простоев прибора.

5Забегая вперед, приведем пример. Пусть 𝑛 < ∞. Положим 𝑑(𝑥,𝑦|𝑢,𝑣) = 𝑒−𝑣𝑏(𝑥)𝑏(𝑦𝑒−𝑣),
𝑑*(𝑥,𝑦|𝑢,𝑣) = 𝑑(𝑥|𝑢,𝑣) = 𝑑0(𝑢,𝑣) = 0, 𝑢, 𝑣 > 0. Воспользовавшись рассуждениями, приведенными
в начале доказательства Теоремы 2, сталкиваемся со следующей ситуацией: среднее время до того
момента, когда в системе останется (𝑛− 2) заявки, при условии, что в начальный момент в системе
было (𝑛− 1) заявок (без дополнительных ограничений на плотность 𝑏(𝑥)) может быть равно беско­
нечности. При этом, учитывая пуассоновость входящего потока, с ненулевой вероятностью система
переходит в состояние (𝑛− 2) и, вообще говоря, с ненулевой вероятностью может успеть выполнить
до прихода очередной заявки любой конечный объем находящейся в ней работы, т. е. полностью
опустошиться.

6Соотношения 2–5 соответствуют тому факту, что после поступления новой заявки измененные
длины заявок не превышают те длины, которые были до поступления. Отметим также, что параметр
lim𝑛→∞ λ𝑛E𝑆 не является загрузкой системы в традиционном смысле и может существенно от нее
отличаться.
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Теорема 1. Для СМО 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP (𝑛 6 ∞) стационарные ве­
роятности состояний определяются рекуррентно из следующей системы
уравнений:

− 𝑝′1(𝑥) = λ0𝑏(𝑥)𝑃0 − λ1𝑝1(𝑥) + λ1

(︃ ∞∫︁
0

∞∫︁
0

𝑑(𝑥|𝑢,𝑣)𝑏(𝑢)𝑝1(𝑣) 𝑑𝑢 𝑑𝑣

+

∞∫︁
0

∞∫︁
0

∞∫︁
0

(𝑑(𝑥,𝑦|𝑢,𝑣) + 𝑑*(𝑦,𝑥|𝑢,𝑣))𝑏(𝑢)𝑝1(𝑣) 𝑑𝑦 𝑑𝑢 𝑑𝑣

)︃
, (1.2)

− 𝑝′𝑘(𝑥1, . . . ,𝑥𝑘) = −λ𝑘𝑝𝑘(𝑥1, . . . ,𝑥𝑘)

+ λ𝑘−1

(︃ ∞∫︁
0

∞∫︁
0

(𝑑(𝑥2,𝑥1|𝑢,𝑣) + 𝑑*(𝑥1,𝑥2|𝑢,𝑣))𝑏(𝑢)𝑝𝑘−1(𝑣,𝑥3 . . . ,𝑥𝑘) 𝑑𝑢 𝑑𝑣

)︃

+ λ𝑘

(︃ ∞∫︁
0

∞∫︁
0

𝑑(𝑥1|𝑢,𝑣)𝑏(𝑢)𝑝𝑘(𝑣,𝑥2, . . . ,𝑥𝑘) 𝑑𝑢 𝑑𝑣

+

∞∫︁
0

∞∫︁
0

∞∫︁
0

(𝑑(𝑥1,𝑦|𝑢,𝑣) + 𝑑*(𝑦,𝑥1|𝑢,𝑣))𝑏(𝑢)𝑝𝑘(𝑣,𝑥2, . . . ,𝑥𝑘) 𝑑𝑦 𝑑𝑢 𝑑𝑣

)︃
, (1.3)

при 1 6 𝑘 6 𝑛 − 1, и

− 𝑞′𝑛(𝑥1, . . . ,𝑥𝑛) = λ𝑛−1

(︃ ∞∫︁
0

∞∫︁
0

(𝑑(𝑥2,𝑥1|𝑢,𝑣)𝑏(𝑢)𝑞𝑛−1(𝑣,𝑥3, . . . ,𝑥𝑛)

+ 𝑑*(𝑥1,𝑥2|𝑢,𝑣)𝑏(𝑢)𝑞𝑛−1(𝑣,𝑥3, . . . ,𝑥𝑛)) 𝑑𝑢 𝑑𝑣

)︃
, (1.4)

с граничными условиями

𝑝1(∞) = 0, 𝑝𝑘(∞,𝑥2, . . . ,𝑥𝑘) = 0, 1 6 𝑘 6 𝑛−1, 𝑞𝑛(∞,𝑥2, . . . ,𝑥𝑛) = 0. (1.5)

Постоянная 𝑃0 определяется из условия нормировки
∑︀𝑛−1

𝑘=0 𝑃𝑘+𝑄𝑛=1.

Доказательство. То обстоятельство, что рекуррентное вычисление стационарно­
го распределения исследуемой системы возможно, следует из (развитой ранее
в ряде работ других авторов [59;98–109]) теории систем со специальными дисци­
плинами обслуживания, которые объединяет следующее свойство, наследуемое
также и дисциплиной LIFOGPP.
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Пусть 𝑚 > 0 — произвольное целое число. Рассмотрим систему
𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP при любом 𝑚 < 𝑛 + 1. Выделим для процесса η(𝑡)
те интервалы времени, когда число заявок в системе будет больше 𝑚. Тогда,
несмотря на наличие функций 𝑑, 𝑑*, 𝑑0 и 𝑑*0, с того момента, как в системе
впервые появится (𝑚 + 1)-ая заявка и до того момента, как в системе снова
будет 𝑚 заявок, 𝑚 компонент ξ1(𝑡), ξ2(𝑡), . . . , ξ𝑚(𝑡) процесса η(𝑡) не меняются.
Кроме того, пока ν(𝑡) 6 𝑚, процессы η(𝑡) для 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP при
любом 𝑚 < 𝑛 + 1 будут идентичны. Таким образом, если для процесса η(𝑡)
исключить все те интервалы времени, когда ν(𝑡) > 𝑚, и оставшиеся куски
склеить, то вероятностные характеристики получившегося после склейки про­
цесса будут одинаковыми для всех 𝑚 < 𝑛+1. Отсюда делается вывод: для всех
систем 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP при 𝑛 > 𝑚 − 1 стационарные распределения
𝑃𝑘(𝑥1, . . . ,𝑥𝑘), 0 6 𝑘 6 𝑛, совпадают с точностью до постоянного множителя,
не зависящего от 𝑘. В качестве этого множителя удобно выбрать 𝑃0.

Выпишем уравнения, которым удовлетворяют стационарные плотности
𝑝𝑘(𝑥1, . . . ,𝑥𝑘). Рассмотрим моменты времени 𝑡 и 𝑡 + Δ. Для того чтобы в мо­
мент времени 𝑡 + Δ в системе находилось 𝑘, 2 6 𝑘 6 𝑛 − 1, заявок, причём
на приборе заявка длины 𝑥1, а в очереди заявки длин 𝑥2, . . . ,𝑥𝑘, нужно, чтобы
произошло одно из следующих событий:

– в момент 𝑡 в системе находилось (𝑘 − 1) заявок, причём заявка на
приборе имела длину 𝑣, первая заявка в очереди имела длину 𝑥3, . . . , по­
следняя заявка в очереди имела длину 𝑥𝑘 (с плотностью вероятностей
𝑝𝑘−1(𝑡; 𝑣,𝑥3, . . . ,𝑥𝑘)), и за время Δ поступила заявка (с вероятностью
λ𝑘−1Δ) длины 𝑢 (с плотностью вероятностей 𝑏(𝑢)). Поступившая за­
явка продолжает обслуживаться, но её длина становится равной 𝑥1, а
вновь поступившая заявка занимает первое место в очереди и её длина
становится равной 𝑥2 (с плотностью вероятностей 𝑑(𝑥2,𝑥1|𝑢,𝑣));

– в момент 𝑡 в системе находилось (𝑘 − 1) заявок, причём заявка на
приборе имела длину 𝑣, первая заявка в очереди имела длину 𝑥3, . . . , по­
следняя заявка в очереди имела длину 𝑥𝑘 (с плотностью вероятностей
𝑝𝑘−1(𝑡; 𝑣,𝑥3, . . . ,𝑥𝑘)), и за время Δ поступила заявка (с вероятностью
λ𝑘−1Δ) длины 𝑢 (с плотностью вероятностей 𝑏(𝑢)). Поступившая заявка
занимает прибор и её длина становится равной 𝑥1, а заявка, обслу­
живавшаяся до поступления новой заявки, занимает первое место в
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очереди и её длина становится равной 𝑥2 (с плотностью вероятностей
𝑑*(𝑥1,𝑥2|𝑢,𝑣));

– в момент 𝑡 в системе находилось 𝑘 заявок, причём заявка на приборе
имела длину 𝑥1 + Δ, первая заявка в очереди имела длину 𝑥2, . . . , по­
следняя заявка в очереди имела длину 𝑥𝑘 (с плотностью вероятностей
𝑝𝑘(𝑡;𝑥1 +Δ,𝑥2, . . . ,𝑥𝑛)), и за время Δ не поступили заявки (с вероятно­
стью (1− λ𝑘Δ));

– в момент 𝑡 в системе находилось 𝑘 заявок, причём заявка на приборе
имела длину 𝑣, первая заявка в очереди имела длину 𝑥2, . . . , послед­
няя заявка в очереди имела длину 𝑥𝑘 (с плотностью вероятностей
𝑝𝑘(𝑡; 𝑣, . . . ,𝑥𝑘)), и за время Δ поступила заявка (с вероятностью λ𝑘Δ),
имеющая длину 𝑢 (с плотностью вероятностей 𝑏(𝑢)). Заявка, находяща­
яся на приборе, покидает систему, а поступившая заявка становится на
прибор, причём её длина становится равной 𝑥1, или, наоборот, посту­
пившая заявка сразу же покидает систему, а заявка, находящаяся на
приборе продолжает обслуживаться, причём её длина становится рав­
ной 𝑥1 (с плотностью вероятностей 𝑑(𝑥1|𝑢,𝑣));

– в момент 𝑡 в системе находилось 𝑘 заявок, причём заявка на приборе
имела длину 𝑣, первая заявка в очереди имела длину 𝑥2, . . . , послед­
няя заявка в очереди имела длину 𝑥𝑛 (с плотностью вероятностей
𝑝𝑘(𝑡; 𝑣,𝑥2, . . . ,𝑥𝑘)), и за время Δ поступила заявка (с вероятностью λ𝑘Δ)
длины 𝑢 (с плотностью вероятностей 𝑏(𝑢)). Заявка, находившаяся на
приборе, покинула систему, а на прибор встала поступившая заявка,
длина которой стала 𝑥1 (с плотностью вероятностей 𝑑(𝑥1,𝑦|𝑢,𝑣));

– в момент 𝑡 в системе находилось 𝑘 заявок, причём заявка на приборе
имела длину 𝑣, первая заявка в очереди имела длину 𝑥2, . . . , послед­
няя заявка в очереди имела длину 𝑥𝑘 (с плотностью вероятностей
𝑝𝑘(𝑡; 𝑣,𝑥2, . . . ,𝑥𝑘)), и за время Δ поступила заявка (с вероятностью λ𝑘Δ)
длины 𝑢 (с плотностью вероятностей 𝑏(𝑢)). Вновь поступившая заяв­
ка покидает систему, на приборе продолжает обслуживаться заявка,
находящаяся на приборе до поступления новой заявки, но длина её ста­
новится равной 𝑥1 (с плотностью вероятностей 𝑑*(𝑦,𝑥1|𝑢,𝑣)).
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Вероятности других событий равны 𝑜(Δ). Применяя формулу полной вероят­
ности, имеем

𝑝𝑘(𝑡+Δ;𝑥1, . . . ,𝑥𝑘) = λ𝑘−1Δ

(︃ ∞∫︁
0

∞∫︁
0

(𝑑(𝑥2,𝑥1|𝑢,𝑣)𝑏(𝑢)𝑝𝑘−1(𝑡; 𝑣,𝑥3 . . . ,𝑥𝑘)+

+ 𝑑*(𝑥1,𝑥2|𝑢,𝑣)𝑏(𝑢)𝑝𝑘−1(𝑡; 𝑣,𝑥3, . . . ,𝑥𝑘)) 𝑑𝑢 𝑑𝑣

)︃
+

+ (1− λ𝑘Δ)𝑝𝑘(𝑡;𝑥1 +Δ,𝑥2, . . . ,𝑥𝑘)+

+ λ𝑘Δ

(︃ ∞∫︁
0

∞∫︁
0

𝑑(𝑥1|𝑢,𝑣)𝑏(𝑢)𝑝𝑘(𝑡; 𝑣,𝑥2, . . . ,𝑥𝑘) 𝑑𝑢 𝑑𝑣+

+

∞∫︁
0

∞∫︁
0

∞∫︁
0

(𝑑(𝑥1,𝑦|𝑢,𝑣)𝑏(𝑢)𝑝𝑘(𝑡; 𝑣,𝑥2, . . . ,𝑥𝑘)+

+ 𝑑*(𝑦,𝑥1|𝑢,𝑣)𝑏(𝑢)𝑝𝑘(𝑡; 𝑣,𝑥2, . . . ,𝑥𝑘)) 𝑑𝑦 𝑑𝑢 𝑑𝑣

)︃
+ 𝑜(Δ), 𝑘 > 2,

откуда, перенося слагаемое 𝑝𝑘(𝑡;𝑥1+Δ,𝑥2, . . . ,𝑥𝑘) в левую часть равенства, деля
на Δ, устремляя Δ к нулю и учитывая стационарный режим функционирова­
ния системы, получаем (1.3). Уравнения (1.2) для 𝑝1(𝑥) и (если имеется в виду
случай 𝑛 < ∞) уравнение (1.4) для 𝑞𝑛(𝑥1, . . . ,𝑥𝑘) получаются аналогичным
образом.

Интегрируя равенство (1.2) в пределах от 0 до некоторого 𝑎 > 0, получаем

𝑝1(𝑎) = 𝑝1(0)− λ0𝐵(𝑎)𝑝0 + λ1𝑃1(𝑎)−

− λ1

∞∫︁
0

∞∫︁
0

𝑏(𝑢)𝑝1(𝑣)

𝑎∫︁
0

(︃
𝑑(𝑥|𝑢,𝑣) +

∞∫︁
0

(𝑑(𝑥,𝑦|𝑢,𝑣) + 𝑑*(𝑦,𝑥|𝑢,𝑣)) 𝑑𝑦

)︃
𝑑𝑢 𝑑𝑣𝑑𝑥.

С учётом (1.1) правая часть имеет конечный предел при 𝑎 → ∞. Поэтому 𝑝1(𝑎)

также стремится при 𝑎 → ∞ к пределу, который для плотности вероятностей не
может быть ни чем иным, кроме нуля, что доказывает справедливость первого
равенства в (1.5). Остальные равенства получаются аналогичным образом.
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Если для функций 𝑑, 𝑑*, 𝑑0 и 𝑑*0 известны сепарабельные аппроксимации7

𝑑(𝑥,𝑦|𝑢,𝑣) =
𝑛1∑︁
𝑖=1

α̃1𝑖(𝑥)β̃1𝑖(𝑦)γ̃1𝑖(𝑢)δ̃1𝑖(𝑣),

𝑑*(𝑥,𝑦|𝑢,𝑣) =
𝑛2∑︁
𝑖=1

α̃2𝑖(𝑥)β̃2𝑖(𝑦)γ̃2𝑖(𝑢)δ̃2𝑖(𝑣),

𝑑0(𝑥|𝑢,𝑣) =
𝑛3∑︁
𝑖=1

α̃3𝑖(𝑥)γ̃3𝑖(𝑢)δ̃3𝑖(𝑣),

𝑑*0(𝑥|𝑢,𝑣) =
𝑛4∑︁
𝑖=1

α̃4𝑖(𝑥)γ̃4𝑖(𝑢)δ̃4𝑖(𝑣),

где 𝑛1, 𝑛2, 𝑛3, 𝑛4 — некоторые натуральные числа, а функции α̃𝑖𝑗(𝑥), β̃𝑖𝑗(𝑥),
γ̃𝑖𝑗(𝑥), δ̃𝑖𝑗(𝑥) являются неотрицательными и таковыми, что выполнено условие
нормировки (1.1), то уравнения (1.2)—(1.4) можно упростить (см. [338, пара­
граф 1.2.3]).

Система (1.2)—(1.4) решается рекуррентным образом. Сначала определя­
ется 𝑝1(𝑥), затем через 𝑝𝑘−1(𝑥1, . . . ,𝑥𝑘−1) вычисляется значение 𝑝𝑘(𝑥1, . . . ,𝑥𝑘).
Наконец, в случае 𝑛 < ∞, 𝑞𝑛(𝑥1, . . . ,𝑥𝑘) определяется из последнего уравнения
системы. Необходимо отметить, что практическое применение такого подхода
невозможно, поскольку при 𝑛 → ∞ число аргументов 𝑥𝑖 стационарных плот­
ностей вероятностей 𝑝𝑘(𝑥1, . . . ,𝑥𝑘) стремится к бесконечности. Поэтому методы
решения необходимо искать каждый раз, отталкиваясь от конкретных парамет­
ров системы. В [299] подробно исследован случай нахождения маргинальных
плотностей вероятностей 𝑝𝑘(𝑥) при 𝑛 = ∞ и λ𝑘 = λ. В частности, показано, по­
сле интегрирования (1.2)—(1.3) по 𝑥2,...,𝑥𝑘 в пределах от нуля до бесконечности,
заменой 𝑝𝑘(𝑥) = 𝑒−λ𝑥𝑞𝑘(𝑥) получаются интегральные уравнения Фредголь­
ма 2-го рода для 𝑞𝑘(𝑥) со свободным членом и ядром — неотрицательными
функциями. Их решения могут быть найдены известными методами [339–342].
Например, хорошие результаты дает итерационный метод, когда в качестве на­
чальной итерации берется нулевое приближение 𝑞𝑘(𝑥) ≡ 0; при этом итерации

7 Из научных работ, в которых освещаются вопросы подобной аппроксимации, можно отме­
тить [325–334]. В практических расчетах зачастую приходится иметь дело с функциями 𝑑(𝑥,𝑦|𝑢,𝑣) и
др., определенными в некоторой ограниченной замкнутой области. Для функции двух переменных
удобны разложения по многочленам Чебышева. Соответствующая процедура описана, например,
в [335]. В случае трех переменных можно воспользоваться результатами работы [336]. Процедура
для функций трех и четырех переменных описана в [337].
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будут возрастающими, что позволяет контролировать сходимость к точному
решению. В тех же предположениях для численного нахождения, например,
моментов стационарного распределения общего числа заявок в системе можно
использовать и метод производящих функций.

Предполагая8, что решения каждого из уравнений (1.2)—(1.4) единственно
в классе ограниченных неотрицательных суммируемых функций, полученные
в Теореме 1 соотношения позволяют последовательно по 𝑘 найти стационарное
распределение системы, а через него и основные вероятностные характеристи­
ки [299]; например:

– вероятность того, что заявка не будет потеряна при поступлении, (не)
будет обслужена до конца и за время пребывания в системе сменит
длину 𝑖 > 0 раз, при условии, что ее исходная длина равнялась 𝑥;

– распределение отношения времени пребывания заявки в системе к ее
длине или времени обслуживания9;

– вероятность того, что заявка будет потеряна при поступлении, при усло­
вии, что ее исходная длина равна 𝑥.

Заметим, что, поскольку входящий поток — пуассоновский, значения по­
следней характеристики могут быть рассчитаны по формуле

π(𝑥) =

𝑛−1∑︀
𝑘=1

λ𝑘
∞∫︀
0

(︂
𝑑0(𝑥,𝑦)+

∞∫︀
0

𝑑*0(𝑤|𝑥,𝑦)𝑑𝑤
)︂
𝑑𝑃𝑘(𝑦) + λ𝑛𝑄𝑛

𝑛−1∑︀
𝑘=0

λ𝑘𝑃𝑘 + λ𝑛𝑄𝑛

.

Широкие возможности выбора функций 𝑑, 𝑑*, 𝑑0 и 𝑑*0 приводят большому
разнообразию временных характеристик у поступающих в систему заявок, пол­
ный перечень которых составить не представляется возможным. Следующая
теорема указывает путь получения формул для расчета (в терминах преобра­
зований), по крайней мере, наиболее употребительных из них.

8Доказательство для одного частного случая дисциплины LIFOGPP дано, например, в [321,
С. 59].

9Если 𝑉 (𝑥) — время пребывания в системе заявки длины 𝑥, то 𝑉 (𝑥)/𝑥 показывает во сколько
раз время пребывания заявки в системе отличается от ее исходной длины. Поскольку вполне есте­
ственно считать, что более длинные заявки должны находиться в системе дольше, чем короткие,
моменты случайной величины 𝑉 (𝑋)/𝑋 используются в задачах оценки справедливости дисциплин
обслуживания. В зарубежной литературе отношение 𝑉 (𝑋)/𝑋 называется slowdown [343–345]; в оте­
чественной литературе общепринятый термин пока не выкристаллизовался (см., однако, п. 4 в [75, С.
88] и [205, С. 199]).
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Теорема 2. Для СМО 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP (𝑛 < ∞) ПЛС ϕ(𝑠;𝑥) ста­
ционарного распределения времени пребывания в системе заявки исходной
длины 𝑥, которая была обслужена до конца, равно

ϕ(𝑠;𝑥) =

(︃
𝑛−1∑︁
𝑘=0

λ𝑘𝑃𝑘 + λ𝑛𝑄𝑛

)︃−1(︂
λ0𝑃0ψ1(𝑠;𝑥)+

+
𝑛−1∑︁
𝑘=1

λ𝑘

∫︁ ∞

0

∫︁ ∞

0

(𝑑0(𝑣|𝑥,𝑦) +
∫︁ ∞

0

𝑑*(𝑣,𝑤|𝑥,𝑦) 𝑑𝑤)ψ𝑘+1(𝑠; 𝑣) 𝑑𝑣𝑑𝑃𝑘(𝑦)+

+
𝑛−1∑︁
𝑘=1

λ𝑘

∫︁ ∞

0

∫︁ ∞

0

∫︁ ∞

0

ψ𝑘(𝑠; 𝑣)𝑢𝑘+1(𝑠;𝑤)𝑑(𝑣,𝑤|𝑥,𝑦) 𝑑𝑣 𝑑𝑤 𝑑𝑃𝑘(𝑦)

)︂
, (1.6)

где ψ𝑘(𝑠;𝑥) — ПЛС распределения времени обслуживания (с учетом прерыва­
ний) заявки длины 𝑥, при условии, что в момент ее поступления на прибор в
системе находится 𝑘 заявок, а 𝑢𝑘(𝑠;𝑥) — ПЛС распределения времени до мо­
мента, когда в системе впервые окажется (𝑘 − 1) заявок, при условии, что
на приборе начала обслуживаться заявка длины 𝑥 и в системе находится
𝑘 заявок.

Доказательство. Обозначим через 𝑢𝑘(𝑠;𝑥), 1 6 𝑘 6 𝑛, преобразование Ла­
пласа–Стилтьеса распределения времени до момента, когда в системе впервые
окажется (𝑘 − 1) заявок, при условии, что на приборе начала обслуживаться
заявка длины 𝑥 и в системе находится 𝑘 заявок. Поскольку заявка, поступа­
ющая в заполненную систему, теряется и не оказывает на нее воздействия, то
𝑢𝑛(𝑠;𝑥) = 𝑒−𝑠𝑥. При 1 6 𝑘 6 𝑛 − 1 соотношение между 𝑢𝑘(𝑠;𝑥) получается по
свойству ПЛС и формуле полной вероятности:

𝑢𝑘(𝑠;𝑥) = 𝑒−(λ𝑘+𝑠)𝑥 +

𝑥∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡𝑑0(𝑦,𝑥− 𝑡)𝑑𝑡 𝑑𝐵(𝑦)+

+

𝑥∫︁
0

∞∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡𝑑𝑡𝑢𝑘(𝑠; 𝑣)𝑑(𝑣|𝑦,𝑥− 𝑡)𝑑𝑣 𝑑𝑡 𝑑𝐵(𝑦)+

+

𝑥∫︁
0

∞∫︁
0

∞∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡𝑢𝑘+1(𝑠;𝑤)𝑢𝑘(𝑠; 𝑣)𝑑(𝑣,𝑤|𝑦,𝑥− 𝑡)𝑑𝑤 𝑑𝑣 𝑑𝑡 𝑑𝐵(𝑦)+

+

𝑥∫︁
0

∞∫︁
0

∞∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡𝑢𝑘+1(𝑠; 𝑣)𝑢𝑘(𝑠;𝑤)𝑑

*(𝑣,𝑤|𝑦,𝑥− 𝑡)𝑑𝑣 𝑑𝑤 𝑑𝑡 𝑑𝐵(𝑦). (1.7)



48

Учитывая, что 𝑢𝑘(𝑠;𝑥) 6 1 при любом 1 6 𝑘 6 𝑛, по принципу сжимающих
отображений каждое из уравнений (1.7) имеет единственное решение [319, С.
93]. Решение системы может быть найдено рекуррентным образом: поставив
𝑢𝑘+1(𝑠;𝑥) в (1.7), определяем 𝑢𝑘(𝑠;𝑥), 𝑘 = 𝑛− 1,𝑛− 2, . . . ,1.

Вычислим теперь ψ𝑘(𝑠;𝑥) — ПЛС распределения полного (т. е. вклю­
чающего все времена, на которые обслуживание было прервано) времени
обслуживания заявки длины 𝑥, при условии, что в момент ее поступления на
прибор в системе находится 𝑘 заявок. Т. к. поступающая в заполненную систе­
му заявка теряется, ψ𝑛(𝑠;𝑥) = 𝑒−𝑠𝑥. Уравнения для ψ𝑘(𝑠;𝑥) при 1 6 𝑘 6 𝑛− 1

получаются путем следующих рассудений. За время 𝑥 с вероятностью 𝑒−λ𝑘𝑥

не поступит ни одной заявки, а с вероятностью
∫︀ 𝑥

0

∫︀∞
0 λ𝑘𝑒

−λ𝑘𝑡𝑑𝐵(𝑦)𝑑𝑡 на интер­
вале [𝑡,𝑡+𝑑𝑡] поступит заявка длины [𝑦,𝑦+𝑑𝑦]. Если осуществляется последнее,
то возвожны три случая: либо с плотностью вероятности 𝑑*0(𝑤|𝑦,𝑥 − 𝑡) новая
заявка изменит длину заявки на приборе на 𝑤, а сама покинет систему; либо
с плотностью вероятности 𝑑(𝑣,𝑤|𝑦,𝑥− 𝑡) новая заявка встанет на первое место
в очереди с новой длиной 𝑣, а заявка на приборе получит новую длину 𝑤; ли­
бо с плотностью вероятности 𝑑*(𝑣,𝑤|𝑦,𝑥 − 𝑡) новая заявка встанет на прибор,
получив новую длину 𝑣, а заявка с прибора будет вытеснена на первое место
в очереди с новой длиной 𝑤. В терминах ПЛС получаем:

ψ𝑘(𝑠;𝑥) = 𝑒−(λ𝑘+𝑠)𝑥 +

𝑥∫︁
0

∞∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡ψ𝑘(𝑠;𝑤)𝑑

*
0(𝑤|𝑦,𝑥− 𝑡)𝑑 𝑑𝑤 𝑑𝑡 𝑑𝐵(𝑦)+

+

𝑥∫︁
0

∞∫︁
0

∞∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡ψ𝑘+1(𝑠;𝑤)𝑑(𝑣,𝑤|𝑦,𝑥− 𝑡) 𝑑𝑣 𝑑𝑤 𝑑𝑡 𝑑𝐵(𝑦)+

+

𝑥∫︁
0

∞∫︁
0

∞∫︁
0

∞∫︁
0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡ψ𝑘(𝑠;𝑤)𝑢𝑘+1(𝑠; 𝑣)𝑑

*(𝑣,𝑤|𝑦,𝑥− 𝑡) 𝑑𝑣 𝑑𝑤 𝑑𝑡 𝑑𝐵(𝑦). (1.8)

По поводу решения этой системы уравнений справедливо то же само замечание,
что было дано к системе (1.7).

Для заершения доказательства осталось заметить следующее. С вероятно­
стью 𝑃0 время пребывания в системе поступающей заявки совпадает с временем
ее пребывания на приборе (с учетом прерываний). Но, если поступающая заяв­
ка длины 𝑥 застает в системе 1 6 𝑘 6 𝑛− 1 заявок, причем на приборе — заявку
длины 𝑦 (с плотностью вероятности 𝑝𝑘(𝑦)), то возможны два варианта:
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– либо с плотностью вероятности 𝑑0(𝑣|𝑥,𝑦)+ 𝑑*(𝑣,𝑤|𝑥,𝑦) поступающая за­
явка встанет на прибор, причем ее длина станет равной 𝑣 и тогда время
ее пребывания в системе будет совпадать с временем ее пребывания на
приборе (с учетом прерываний);

– либо с плотностью вероятности 𝑑(𝑣,𝑤|𝑥,𝑦) поступающая заявка станет
на первое место в очереди, получит новую длину 𝑣, а заявка на приборе
– новую длину 𝑤; при этом время пребывания в системе поступившей
заявки будет равно сумме двух времен: времени до того момента, когда
в системе снова станет 𝑘 заявок, и времени пребывания на приборе (с
учетом прерываний) заявки длины 𝑣.

Применяя формулу полной вероятности, получаем (1.6).

Очевидно, ПЛС ϕ(𝑠) безусловного стационарного распределения вре­
мени пребывания в системе заявки, которая была обслужена до конца,
получается путем усреднения ϕ(𝑠;𝑥) по распределению длины заявки т. е.
ϕ(𝑠) =

∫︀∞
0 ϕ(𝑠;𝑥)𝑑𝐵(𝑥). Обратить в явном виде ПЛС, речь о которых идет

в Теореме 2, нет никакой возможности. Перейти от изображений к оригиналам
можно только численно, для чего можно воспользоваться известными, хорошо
разработанными методами10 (см., например, [348]).

В заключение этого параграфа сделаем несколько замечаний.

1. Исследуемую систему можно было бы незначительно обобщить на
случай, когда распределение длины заявки, поступающей в пустую систему,
отлично от 𝐵(𝑥).

2. Результаты Теоремы 2 справедливы и в случае 𝑛 = ∞. Однако здесь
придется столкнуться с системами с бесконечным числом уравнений, поиск
решения которых при произвольных функциях 𝑑, 𝑑*, 𝑑0 и 𝑑*0 является беспер­
спективным.

3. Рассуждения в доказательстве Теоремы 2 позволяют находить в терми­
нах преобразований и другие временные характеристики. Например, условное
стационарное распределение времени ожидания начала обслуживания заявки

10Отметим здесь недавно разработанный CME–метод (см. [346]) обращения ПЛ, в основе которо­
го — матрично–экспоненциальные распределения (см. [347, Раздел 3]) с маленьким коэффициентом
вариации.
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исходной длины 𝑥, застающей при поступлении 1 6 𝑘 6 𝑛− 1 заявок в системе,
имеет ПЛС∫︁ ∞

0

∫︁ ∞

0

(︂
𝑑0(𝑣|𝑥,𝑦) +

∫︁ ∞

0

(𝑑*(𝑣,𝑤|𝑥,𝑦) + 𝑢𝑘+1(𝑠;𝑤)𝑑(𝑣,𝑤|𝑥,𝑦)) 𝑑𝑤
)︂

𝑑𝑣𝑑𝑃𝑘(𝑦),

поскольку поступающая заявка длины 𝑥, застающая в системе 𝑘 заявок, с ве­
роятностью

∫︀∞
0

∫︀∞
0 (𝑑0(𝑣|𝑥,𝑦) +

∫︀∞
0 𝑑*(𝑣,𝑤|𝑥,𝑦) 𝑑𝑤) 𝑑𝑣𝑑𝑃𝑘(𝑦) сразу же поступает

на обслуживание, а с вероятностью
∫︀∞
0

∫︀∞
0

∫︀∞
0 𝑑(𝑣,𝑤|𝑥,𝑦) 𝑑𝑤) 𝑑𝑣𝑑𝑃𝑘(𝑦) оказыва­

ется на первом месте в очереди. Распределение периода занятости в терминах
ПЛС есть

∫︀∞
0 𝑢1(𝑠;𝑥)𝑑𝐵(𝑥). Заметим, что для этого результата не требуется

эргодичность системы; можно также отказаться от конечности средней длины
заявки и тогда длина периода занятости может принимать бесконечное значе­
ние с ненулевой вероятностью.

4. Все вышеизложенные результаты будут справедливы в случае про­
извольного распределения 𝐵(𝑥), не обязательно с плотностью, если под
производной 𝐵′(𝑥) понимать обобщенную функцию. Поскольку 𝐵′(𝑥) входит
линейно под интегралом, то вообще никаких затруднений при переписывании
формул не возникает. Также можно получить явные формулы в случае, когда
длина заявки есть сл. в., принимающая конечное число значений.
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1.2 Не сохраняющий работу инверсионный порядок обслуживания

Рассмотрим систему 𝑀 |𝐺𝐼 | 1 |∞, в которую поступает пуассонов­
ский поток заявок интенсивности λ. Длина заявки распределена по закону
𝐵(𝑥) с плотностью 𝑏(𝑥) = 𝐵′(𝑥) и средним

∫︀∞
0 𝑥 𝑏(𝑥)𝑑𝑥 = E𝑆. Преобразо­

вание Лапласа–Стилтьеса (ПЛС) ф. р. 𝐵(𝑥) обозначим через β(𝑠) т. е.
β(𝑠) =

∫︀∞
0 𝑒−𝑥𝑥𝑑𝐵(𝑥). В системе реализован инверсионный порядок обслу­

живания и следующее правило обработки заявки на приборе. В момент
поступления новой заявки становится известной ее длина и, если система непу­
ста, приостанавливается обслуживание. Вне зависимости от всей предыстории
функционирования системы заявке на приборе назначается новая (остаточная)
длина11 в соответствии с распределением 𝐵(𝑥), процесс ее обслуживания воз­
обновляется, а новая заявка помещается на первое место в очереди. Далее,
говоря об этой дисциплине обслуживания, вместо того, чтобы каждый раз
писать “дицсиплина инверсионный порядок обслуживания без прерывания
и обслуживанием заново с новой реализацией длительности обслуживания”,
будем писать просто — дисциплина LIFORe (Re — от англ. resampling).

Система 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe является частным случаем исследован­
ной в предыдущем параграфе СМО 𝑀𝑘 |𝐺𝐼 | 1 |𝑛 | LIFOGPP, причем 𝑛 = ∞,
λ𝑘 = λ и

𝑑(𝑥,𝑦|𝑢,𝑣) = 𝑏(𝑥)𝑏(𝑦), 𝑑*(𝑥,𝑦|𝑢,𝑣) = 0,

𝑑(𝑥|𝑢,𝑣) = 0, 𝑑0(𝑢,𝑣) = 0, 𝑢 > 0, 𝑣 > 0. (1.9)

Поэтому далее будем пользоваться введенными ранее обозначениями и, когда
это не вызывает недоразумений, будем опускать нижний индекс (например,
у ψ𝑘(𝑠;𝑥) и 𝑢𝑘(𝑠;𝑥)), указывавший ранее на зависимость той или иной харак­
теристики от числа заявок в системе.

11Смысл рассмотрения такой экзотической дисциплины обслуживания выяснится только в гла­
ве 2. Отметим, однако, что сама идея о назначении заявке новой длины (в момент поступления
и независимо от всей предыстории функционирования системы) не является чем-то новым. Еще
в [205, С. 362] упоминается, что такая идея оказывается плодотворной, например, при аналити­
ческом исследовании сетей связи: всякий раз, когда сообщение принимается в узле внутри сети,
независимо выбирается его новая длина (в действительности же сообщения сохраняют длину при
их прохождении по сети).
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Теорема 3. Необходимое и достаточное условие существования стационар­
ного режима системы 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe имеет вид12

1

2
< β(λ) < 1. (1.10)

Доказательство. Свяжем с рассматриваемой системой процесс Гальтона–Ватсо­
на [349; 350], в котором первоначально имеется одна частица, которая в конце
жизни производит случайное число потомков в соответствии с (пока еще
неизвестным) распределением {𝑔𝑘, 𝑘 > 0}. Заметим, что число заявок, обслу­
женных рассматриваемой системой за период занятости, равно общему числу
частиц, появившихся во введенном процессе Гальтона–Ватсона до его вырожде­
ния. Последнее же имеет место с вероятностью единица (за конечное среднее
время) тогда и только тогда, когда среднее число

∑︀∞
𝑘=1 𝑘𝑔𝑘 потомков от одной

частицы меньше единицы.
Покажем, что последнее условие равносильно (1.10). Обозначим че­

рез 𝑟𝑘(𝑥) плотность вероятности того, что длительность пребывания на приборе
заявки, которая только что на него поступила, будет равно 𝑥 и за время ее
пребывания на приборе в систему поступит 𝑘 новых заявок. Поскольку по­
ступающая на прибор заявка имеет длину 𝑥 с плотностью вероятности 𝑏(𝑥),
по формуле полной вероятности имеем

𝑟0(𝑥) = 𝑒−λ𝑥𝑏(𝑥), (1.11)

𝑟𝑘(𝑥) =

∫︁ 𝑥

0

λ𝑒−λ𝑢(1−𝐵(𝑢))𝑟𝑘−1(𝑥− 𝑢)𝑑𝑢, 𝑘 > 1. (1.12)

Для завершения доказательства осталось заметить, что 𝑔𝑘 =
∫︀∞
0 𝑟𝑘(𝑥)𝑑𝑥 =

β(λ)(1 − β(λ))𝑘 и
∑︀∞

𝑘=1 𝑘𝑔𝑘 = (1 − β(λ))/β(λ).

Отметим, что условие (1.10) не зависит от моментов длины заявки какого­
либо порядка, т. е. для любого распределения длины заявки при достаточно
малой интенсивности λ существует стационарный режим.

12Таким образом, роль загрузки в системе 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe играет величина β(λ).
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Теорема 4. В системе 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe стационарное распределение 𝑃𝑘,
𝑘 > 0, общего числа заявок в системе является геометрическим:

𝑃𝑘 =

(︂
2− 1

β(λ)

)︂(︂
1− β(λ)
β(λ)

)︂𝑘

; (1.13)

стационарные плотности вероятностей состояний 𝑝𝑘(𝑥1, . . . ,𝑥𝑘), 𝑘 > 1, опре­
деляются формулой:

𝑝𝑘(𝑥1, . . . ,𝑥𝑘) = (𝑃𝑘−1 + 𝑃𝑘)

∞∫︁
𝑥1

λ𝑒−λ(𝑢−𝑥1)𝑑𝐵(𝑢)𝑏(𝑥2) · · · 𝑏(𝑥𝑘); (1.14)

ПЛС 𝑢(𝑠) периода занятости имеет вид

𝑢(𝑠) =
λ+ 𝑠−

√︀
(λ+ 𝑠)2 − 4λ(1− β(𝑠+ λ))β(𝑠+ λ)(λ+ 𝑠)

2λ(1− β(𝑠+ λ))
; (1.15)

ПЛС ϕ(𝑠;𝑥) стационарного распределения времени пребывания в системе за­
явки длины 𝑥 задается выражением

ϕ(𝑠;𝑥) = 𝑃0ψ(𝑠;𝑥) + (1− 𝑃0)ψ(𝑠;𝑥)𝑢(𝑠), (1.16)

где ПЛС ψ(𝑠;𝑥) распределения времени пребывания заявки длины 𝑥 на приборе,
опредяется формулой

ψ(𝑠;𝑥) = 𝑒−(λ+𝑠)𝑥 +
λ
(︀
1− 𝑒−(λ+𝑠)𝑥

)︀
λ+ 𝑠

ψ(𝑠), и ψ(𝑠) =
β(λ+ 𝑠)(λ+ 𝑠)

𝑠+ λβ(λ+ 𝑠)
. (1.17)

Доказательство. Воспользуемся Теоремой 1. Интегрируя (1.3) по 𝑥2,...,𝑥𝑘 в пре­
делах от нуля до бесконечности, с учетом (1.9), получаем следующую систему13

дифференциальных уравнений для 𝑝𝑘(𝑥), 𝑘 > 1:

− 𝑝′𝑘(𝑥) = λ𝑏(𝑥)𝑃𝑘−1 − λ𝑝𝑘(𝑥) + λ𝑏(𝑥)𝑃𝑘. (1.18)

Определим ПФ

π(𝑧,𝑥) =
∞∑︁
𝑘=1

𝑧𝑘𝑝𝑘(𝑥), π(𝑧) =
∞∑︁
𝑘=1

𝑧𝑘𝑃𝑘.

13Доказательство единственности ее решения полностью повторяет доказательство единственно­
сти для системы в [321, С. 59–62].
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Вообще говоря, из Тоеремы 1.1.1 следует, что 𝑃0 зависит от 𝑛. Поэтому каждая
из введенных ПФ без дополнительной оговорки не имеет смысла обычной ПФ.
Но, если не связывать 𝑃0 с какой-то определенной системой (т. к. с каким-то
определенным значением 𝑛), а оставить как свободный параметр, то по анало­
гии с тем, как это сделано в [321, С. 48] (см. также [59, С. 89]), можно показать,
что ряды в определениях ПФ π(𝑧,𝑥) и π(𝑧) сходятся, по крайней мере, при
достаточно малых 𝑧. Умножая (1.18) на 𝑧𝑘 и суммируя, получаем

−π′(𝑧,𝑥) = λ𝑧𝑏(𝑥)𝑃0 + λ𝑏(𝑥)(1 + 𝑧)π(𝑧)− λπ(𝑧,𝑥).

Интегрируя это уравнение с учетом граничного условия π(𝑧,∞) = 0, имеем

π(𝑧,𝑥) =

∞∫︁
𝑥

𝑒−λ(𝑢−𝑥)(λ𝑧𝑏(𝑢)𝑃0 + λ(1 + 𝑧)𝑏(𝑢)π(𝑧))𝑑𝑢.

Осталось определить только π(𝑧), для чего предыдущую формулу проинтегри­
руем по 𝑥 от нуля до бесконечности и приведем подобные слагаемые:

π(𝑧) = 𝑃0

𝑧 1−β(λ)
β(λ)

1− 𝑧 1−β(λ)
β(λ)

. (1.19)

Вероятность 𝑃0, как обычно, находится из условия нормировки
∑︀∞

𝑘=0 𝑃𝑘 = 1 и
имеет вид 𝑃0 = 2− (β(λ))−1. Коэффициенты при 𝑧𝑘 в разложении в ряд по сте­
пеням 𝑧 функции π(𝑧) дают (1.13). Из формулы для π(𝑧,𝑥), с учетом найденного
вида π(𝑧), получается (1.14) при 𝑘 = 1. Методом14 математической индукции
можно убедиться, что (1.14) верно и при произвольном 𝑘 > 2. Покажем, что это
действительно возможно, на случае 𝑘 = 2. Плотность 𝑝1(𝑡;𝑥) вероятности того,
что в системе в момент времени 𝑡 находится одна заявка остаточной длины 𝑥

удовлетворяет, согласно формуле полной вероятности, соотношению

𝑝1(𝑡+Δ; 𝑥) = 𝑃0(𝑡)λΔ𝑏(𝑥)+𝑝1(𝑡;𝑥+Δ)(1−λΔ)+(1−λΔ)

∫︁ Δ

0

𝑝2(𝑡; 𝑦,𝑥)𝑑𝑦+𝑜(Δ).

Перенося 𝑝1(𝑡;𝑥+Δ) в левую часть, деля на Δ, утремляя Δ к нулю и учитывая
стационарным режим функционирования, получаем уравнение

−𝑝′1(𝑥) = 𝑃0λ𝑏(𝑥)− λ𝑝1(𝑥) + 𝑝2(0,𝑥),
14Или заметив, что длины заявок в очереди являются независимыми в совокупности случайными

величинами, каждая с ф. р. 𝐵(𝑥).
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решение которого, с учетом граничого условия 𝑝1(∞) = 0, имеет вид

𝑝1(𝑥) =

∫︁ ∞

𝑥

𝑒−λ(𝑢−𝑥) (𝑃0λ𝑏(𝑢) + 𝑝2(0,𝑢)) 𝑑𝑢. (1.20)

Выпишем уравнение для плотности 𝑝2(𝑡;𝑥,𝑦) вероятности того, что в системе в
момент времени 𝑡 находится две заявки, на приборе — остаточной длины 𝑥, в
очереди — остаточной длины 𝑦. Рассматривая моменты 𝑡 и 𝑡+Δ, получаем
соотношение

𝑝2(𝑡+Δ; 𝑥,𝑦) =

∫︁ ∞

0

𝑝1(𝑡;𝑢)𝑑𝑢λΔ𝑏(𝑥)𝑏(𝑦)+𝑝2(𝑡;𝑥+Δ,𝑦)(1−λΔ)+

+(1−λΔ)

∫︁ Δ

0

𝑝3(𝑡;𝑢,𝑥,𝑦)𝑑𝑢+𝑜(Δ),

из которого следует, что

𝑝2(𝑥,𝑦) =

∫︁ ∞

𝑥

𝑒−λ(𝑢−𝑥) (𝑃1λ𝑏(𝑢)𝑏(𝑦) + 𝑝3(0,𝑢,𝑦)) 𝑑𝑢. (1.21)

Подставляя в (1.20) вместо 𝑝1(𝑥) ее выражение по формуле (1.14) и дифферен­
цируя левую и правую части один раз по 𝑥, находим

𝑝2(0,𝑥) = λ𝑃1𝑏(𝑥).

Вернемся к (1.21), положим 𝑥 = 0 и подставим найденное выражение
для 𝑝2(0,𝑥). После приведения подобных слагаемых имеем∫︁ ∞

0

𝑒−λ𝑢𝑝3(0,𝑢,𝑦)𝑑𝑢 = λ𝑃1(1− β(λ))𝑏(𝑦).

Предположим, что 𝑝3(0,𝑢,𝑦) имеет вид 𝑝3(0,𝑢,𝑦) = 𝑓(𝑢)𝑏(𝑦), где 𝑓 — некоторая
неизвестная, но непрерывная и ограниченная функция при 𝑢 > 0. Тогда исполь­
зуя новый вид 𝑝3(0,𝑢,𝑦) в (1.21) и интегрируя по всем 𝑦 в пределах от 0 до ∞,
приходим к соотношению

𝑝2(𝑥) =

∫︁ ∞

𝑥

𝑒−λ(𝑢−𝑥) (𝑃1λ𝑏(𝑢) + 𝑓(𝑢)) 𝑑𝑢,

или, учитывая вид 𝑝2(𝑥) по формуле (1.14), —

λ (𝑃1 + 𝑃2)

∫︁ ∞

𝑥

𝑒−λ(𝑢−𝑥)𝑏(𝑢)𝑑𝑢 =

∫︁ ∞

𝑥

𝑒−λ(𝑢−𝑥) (𝑃1λ𝑏(𝑢) + 𝑓(𝑢)) 𝑑𝑢.



56

Приводя подобные слагаемые и дифференцируя левую и правую части один раз
по 𝑥, находим 𝑓(𝑥) = λ𝑃2𝑏(𝑥). Подставляя 𝑝3(0,𝑢,𝑦) = 𝑓(𝑢)𝑏(𝑦) = λ𝑃2𝑏(𝑢)𝑏(𝑦) в
(1.21), убеждаемся, что (1.14) справедливо при 𝑘 = 2.

Для нахождения указанных в формулировке теоремы временных харак­
теристик достаточно воспользоваться Теоремой 2, поскольку при дисциплине
LIFORe заявки не могут покинуть систему недообслуженными. Полагая в (1.7)
𝑘 = 1 и замечая, что 𝑢1(𝑠;𝑥) ≡ 𝑢2(𝑠;𝑥), получаем уравнение для ПЛС 𝑢(𝑠) рас­
пределения периода занятости:

𝑢(𝑠) =

∫︁ ∞

0

𝑢1(𝑠;𝑥)𝑑𝐵(𝑥) =
λ

λ+ 𝑠
𝑢2(𝑠) + β(𝑠+ λ)

(︂
1− λ

λ+ 𝑠
𝑢2(𝑠)

)︂
.

Традиционные рассуждения (см., например, [320, С. 64–66], [119, С. 14–15] или
[263, С. 300–301]) показывают, что из двух корней этого квадратного уравнения
подходит лишь тот, который задается формулой15 (1.15). Когда стационарный
решим существует (т. е. выполнено (1.10)), 0 < 𝑢(𝑠) 6 1 при каждом 𝑠 > 0,
причем 𝑢(0) = 1 и 𝑢(𝑠) → 1 при 𝑠 → 0. Дифференцируя (1.15) один раз в точке
𝑠 = 0, получаем выражение для средней длины E𝑈 периода занятости:

E𝑈 = −𝑢′(0) =
1− β(λ)

λ(2β(λ)− 1)
. (1.23)

15 Для 𝑢(𝑠) можно предложить и другую формулу, переписав (1.15) так:

𝑢(𝑠) =
𝑃 + 𝐿+𝑀 −

√︀
(𝑃 + 𝐿+𝑀)2 −𝑄2

2𝐿
, (1.22)

где 𝑃 = 𝑃 (𝑠) = 𝑠(1−β(𝑠+λ)), 𝐿 = 𝐿(𝑠) = λ(1−β(𝑠+λ)), 𝑀 = 𝑀(𝑠) = β(𝑠+λ)(λ+𝑠), 𝑄 = 𝑄(𝑠) = 2
√
𝐿𝑀 .

Для выражений вида (1.22) известно интегральное представление (см., например, [351]):

𝑃 + 𝐿+𝑀 −
√︀

(𝑃 + 𝐿+𝑀)2 −𝑄2

2𝐿
=

2𝑀

π

∫︁ 1

−1

√
1− 𝑡2

𝑃 + 𝐿+𝑀 −𝑄𝑡
𝑑𝑡.

Подставляя в него явный вид 𝑃 , 𝐿, 𝑀 и 𝑄, получаем

𝑢(𝑠) =
2β(𝑠+λ)

π

∫︁ 1

−1

√
1−𝑡2

1−2𝑡
√︁

λ(1−β(𝑠+λ))β(𝑠+λ)
λ+𝑠

𝑑𝑡 =

=
2β(𝑠+λ)

π

∫︁ 1

−1

√︀
1−𝑡2

∞∑︁
𝑚=0

(︀
4𝑡2λ(1−β(𝑠+λ))β(𝑠+λ)

)︀𝑚
2 (λ+ 𝑠)−

𝑚
2 𝑑𝑡 =

= β(𝑠+ λ)
∞∑︁

𝑚=0

𝑢𝑚 (λ(1− β(𝑠+ λ))β(𝑠+ λ))
𝑚
2 (λ+ 𝑠)−

𝑚
2 ,

где 𝑢𝑚 = 2𝑚+1

π

∫︀ 1
−1

√
1− 𝑡2𝑡𝑚𝑑𝑡.
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Таким образом, при 1/2 < β(λ) < 1 период занятости не только конечен с
вероятностью единица, но и имеет конечное среднее значение. Отметим, что
при 0 < β(λ) 6 1/2 период занятости конечен с вероятностью β(λ)/(1− β(λ)).

Для завершения доказательства осталось заметить, что формулы (1.16)
и (1.17) следуют соответственно из (1.6) и (1.8).

Дифференцируя (1.19) по 𝑧 необходимое число раз, можно получить16

моменты всех порядков стационарного распределения общего числа заявок в
системе. Обозначим через 𝑁 сл. в., распределенную как общее число заявок
в системе в стацинарном режиме. Тогда стационарное среднее E𝑁 и второй
момент E𝑁 2 определяются следующими формулами:

E𝑁 =
1− β(λ)
2β(λ)− 1

, (1.24)

E𝑁 2 =
1

2β(λ)− 1
E𝑁.

Аналогичным образом, но из (1.16) и (1.17), находятся и моменты времен­
ных характеристик. Например, дифференцируя (1.16) один раз по 𝑠 в точке
𝑠 = 0, получаем формулу17 для стационарного среднего времени E𝑉 (𝑥) пребы­
вания в системе заявки длины 𝑥:

E𝑉 (𝑥) = −ϕ′(0;𝑥) = 𝑒−λ𝑥
1− 2β(λ)

λβ2(λ)
+

3β2(λ)− 3β(λ) + 1

λβ(λ)(2β(λ)− 1)
.

Обозначим через 𝑉 сл. в., распределенную как время пребывания заявки в си­
стеме, находящейся в стацинарном режиме. Усредняя E𝑉 (𝑥) по распределению
длины заявки, находим стационарное среднее E𝑉 время пребывания в системе
произвольной заявки:

E𝑉 =
1− β(λ)

λ(2β(λ)− 1)
. (1.25)

Сравнивая (1.23), (1.24) и (1.25), приходим к следующим выводам:
16Для моментов высших порядков более полезными могут оказаться рекуррентные формулы

расчета; см., например, [352].
17Очевидно, что для консервативных СМО E𝑉 (𝑥)

𝑥 > 1. Отличительной особенностью исследуемой
системы является то, что E𝑉 (𝑥)

𝑥 → ∞ при 𝑥 → 0 и E𝑉 (𝑥)
𝑥 → 0 при 𝑥 → ∞. Такое положение дел

(вспоминая смысл, который можно придать отношению 𝑉 (𝑥)
𝑥 ; см. стр. 46) свидетельствует о том,

что в неконсервативных однолинейных СМО отношение 𝑉 (𝑥)
𝑥 может не иметь никакого отношения

к справедливости принятого правила обслуживания.
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– для исследуемой системы 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe, которая является
неконсервативной, справедлив закон Литтла18;

– средняя длина периода занятости системы 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe рав­
на среднему времени пребывания в системе произвольной заявки19.
В [294] показано, что это свойство системы может быть объяснено путем
сравнения (с помощью каплинг метода [355–357]) исследуемой системы
с классической однолинейной СМО с дисциплиной LIFO, абсолютным
приоритетом и дообслуживанием. Необходимо отметить, что при увели­
чении числа входящих потоков и/или числа обслуживающих приборов,
это свойство не сохраняется.

Еще одна характеристика, которую можно получить из Теоремы 4, — это
распределение незаконченной работы в системе в стационарном режиме. Обо­
значим через χ(𝑡) величину незаконченной работы в системе в момент 𝑡, т. е.
это20 та “работа”, которую должен совершить, начиная от момента 𝑡, прибор,
если после момента 𝑡 в системе не будут больше поступать заявки. Обозначим
через 𝑅(𝑥) = lim𝑡→∞ P{χ(𝑡) < 𝑥} стационарное распределение незаконченной

18Справедливо и другое соотношение, названное в [268, С. 263] считающим законом Литтла
(odrinary Little’s law): стационарное среднее число заявок в системе в момент поступления равно
среднему числу поступлений за время пребывания заявки в системе, находящейся в стационар­
ном режиме. Убедиться в этом можно, воспользовавшись аппаратом ПФ и методом коллективных
меток [353, С. 281–288] (метод “катастроф” [320, С. 13]). Действительно, обозначая через 𝑄0(𝑧)

и 𝑄1(𝑧) ПФ числа заявок, поступивших соответственно за время пребывания заявки на приборе
и за время ее пребывания в очереди, по формуле полной вероятности находим искомое среднее:
(𝑝0𝑄0(𝑧) + (1− 𝑝0)𝑄1(𝑧)𝑄0(𝑧))

′⃒⃒
𝑧=1

, где 𝑄0(𝑧) =
β(λ)

1−(1−β(λ))𝑧 , а 𝑄1(𝑧) — соответствующее решение
уравнения 𝑄1(𝑧) = β(λ) + (1− β(λ))𝑧𝑄2

1(𝑧). Вопрос справедливости считающего закона Литтла
в многолинейной системе остается невыясненным.

19Как известно (см., например, [354, С. 487]), также обстоит дело и в системе 𝑀 |𝐺𝐼 | 1 |∞ |PS.
20Не виртуальное время ожидания, т. к. время ожидания начала обслуживания поступившей в

момент 𝑡 заявки может быть как больше, так и меньше χ(𝑡).
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работы21. По свойству ПЛС из (1.14) немедленно получаем22:

𝜚(𝑠) =

∫︁ ∞

0

𝑒−𝑠𝑥𝑑𝑅(𝑥) = 𝑃0 +
λ𝑃0

β(λ)

β(𝑠)− β(λ)
λ− 𝑠

1

1− 1−β(λ)
β(λ) β(𝑠)

.

Дифференцируя последнюю формулу по 𝑠 необходимое число раз, можно полу­
чить моменты всех порядков незаконченной работы в системе в стационарном
режиме. Например, среднее значение равно

E𝑅 =
E𝑆
𝑃0

− 𝑃0
1− β(λ)

λ(2β(λ)− 1)
. (1.26)

где, напомним, E𝑆 =
∫︀∞
0 𝑥𝑏(𝑥) 𝑑𝑥 — среднее значение длины заявки.

Теорема 5. Если для системы 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe выполнено (1.10), то при
β(λ) ↑ 1

2

P
{︂

𝑁

E𝑁
< 𝑥

}︂
→ 1− 𝑒−𝑥, 𝑥 > 0. (1.27)

Доказательство. Положим π*(𝑠) = π(𝑒−𝑠/E𝑁) — преобразование Лапласа–Стил­
тьеса нормированной своим математическим ожиданием стационарной очереди
для системы 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe. Подставляя в формулу (1.19) 𝑒−𝑠/E𝑁 вместо
𝑧, получаем

π*(𝑠) =
β(λ)− 1

1− β(λ)
(︁
1 + 𝑒

2β(λ)−1
β(λ) 𝑠

)︁ (︂2− 1

β(λ)

)︂
.

Разлагая теперь 𝑒−𝑠/E𝑁 по степеням 𝑠/E𝑁 до первой степени, получаем, что
при β(λ) ↑ 1

2

π*(𝑠) → 1

1 + 𝑠
,

21Оно существует всегда, когда существует стационарное распределение длины очереди. Дей­
ствительно, условие 1/2 < β(λ) < 1 гарантирует, что средняя длина цикла регенерации системы,
состоящего из периода занятости и следующего за ним свободного периода, конечна. Значит, и число
раз, когда происходило изменение остаточной длины заявки на приборе, также конечно. Процесс
χ(𝑡) является регенерирующим относительно моментов окончения периодов регенерации системы.
Таким образом, выполнены условия теоремы Смита для регенерирюущих процессов (см. [263, Тео­
рема 3] или [358, С. 184]), из следствия из которой следует утверждение. См. также доказательство
Теоремы 2.2 в [75].

22Под значением 𝜚(𝑠) в точке 𝑠 = λ понимается lim𝑠→λ 𝜚(𝑠) = 𝑃0

(︁
1− λ β

′(λ)
β(λ)2

)︁
.
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т. е. при загрузке, стремящейся к единице, предельное распреление нормиро­
ванного числа заявок в системе является экспоненциальным и стационарное
распределение общего числа заявок в системе имеет вид

P{𝑁 = 𝑘} =
(︁
1− 𝑒−

2β(λ)−1
β(λ)

)︁
𝑒−

2β(λ)−1
β(λ) 𝑘, 𝑘 > 0.

Вопрос нахождения распределения, аппроксимирующего распределение
времени пребывания заявки в стационарной системе, но при загрузке близкой
к критической, является открытым. Его изучение традиционными метода­
ми [359–362] невозможно23. Выберем λ* так, чтобы β(λ*) = 1/2; такое λ*

существует, единственно и 0 < λ* < ∞. Предполагая, что в формуле для
ϕ(𝑠) =

∫︀∞
0 ϕ(𝑠;𝑥)𝑑𝐵(𝑥) можно положить λ = λ*, получаем, что на левой гра­

нице интервала стационарности (1.10) время пребывания заявки в системе есть
собственная случайная величина с распределением, имеющим ПЛС

ϕ*(𝑠) =
β(λ*+𝑠)(λ*+𝑠)

𝑠+λ*β(λ* + 𝑠)
𝑢*(𝑠), (1.28)

𝑢*(𝑠) =
λ*+𝑠−

√︀
(λ* + 𝑠)2 − 4λ*(1− β(𝑠+ λ*))β(𝑠+ λ*)(λ* + 𝑠)

2λ*(1− β(𝑠+ λ*))
,

и бесконечное среднее т. к. −(ϕ*(𝑠))′|𝑠=0 = ∞. Значит, нельзя подобрать та­
кую величину 𝑐 → ∞ одновременно с β(λ) → 1/2, что сл. в. 𝑉/𝑐 сходится (в
смысле слабой сходимости) к собственной ненулевой сл. в. Этот эффект24 не
является удивительным и известен для некоторых классических однолинейных
СМО (например, СМО с абсолютным приоритетом при обратном порядке об­
служивания [93; 363]).

Невыясненным остается и вопрос получения в этом направлении со­
держательных результатов на основе хорошо развитой теории случайного

23Отдельно отметим подход из работ [363; 364] для СМО с инверсионным порядком обслужива­
ния, попытка применить который к исследуемой системе не предпринималась.

24Исчезает, при замене в исследуемой системе дисциплины LIFO на FIFO (см. формулу (19) в
[294]).
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суммирования [365–375] (см. также [376–381]). Введем обозначения25: 𝑈 — сл. в.,
равная длительности ПЗ, 𝐾 — сл. в., равная времени пребывания на приборе
(только что поступившей на него) заявки при условии, что приход очередной
(новой) заявки случился раньше, чем закончилось обслуживание; 𝐷 — сл. в.,
равная времени пребывания на приборе (только что поступившей на него) заяв­
ки при условии, что ее обслуживание закончилось раньше прихода очередной
(новой) заявки; 𝐶 — сл. в., равную полному времени обслуживания (только что
поступившей на прибор) заявки; 𝐴 — сл. в., равную числу новых поступления за
время пребывания на приборе (только что поступившей на него) заявки. Тогда
время пребывания 𝑉 в системе произвольной заявки представимо в виде суммы
трех слагаемых: 𝐶, 𝐷 и безгранично делимой случайной суммы, а именно26:

𝑉 = 𝐶 +𝐷 +
𝐴−1∑︁
𝑖=1

(𝐾𝑖 + 𝑈𝑖),

где 𝑈𝑖 и 𝐾𝑖 — независимые копии 𝑈 и 𝐾. Однако E𝐴 → 2 и E𝑈𝑖 → ∞ при
β(λ) → 1/2.

Теорема 6. В системе 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe в установившемся режиме по­
ток заявок, покидающих систему, является пуассновским тогда и только
тогда, когда распределение 𝐵(𝑥) длины заявки имеет экспоненциальное рас­
пределение. ПЛС совместного стационарного распределения длительностей
двух последовательных интервалов времени между моментами окончания

25 Формулы для ПЛС распределений и числовых характеристик введенных сл. в. не требуют
пояснений:

P{𝐴 = 𝑘} = β(λ)(1− β(λ))𝑘−1, 𝑘 > 1, E𝑒−𝑠𝐷 =
β(λ+ 𝑠)

β(λ)
, E𝐷 = −β

′(λ)

β(λ)
, Var𝐷 =

β′′(λ)

β(λ)
−
(︂
β′(λ)

β(λ)

)︂2

,

E𝑒−𝑠𝐾 =
λ

λ+ 𝑠

1− β(λ+ 𝑠)

1− β(λ)
, E𝐾 =

1

λ
+

β′(λ)

1− β(λ)
, Var𝐾 =

1

λ2
− β′′(λ)

1− β(λ)
−
(︂

β′(λ)

1− β(λ)

)︂2

,

E𝐶 = E𝐷 + E𝐾
1− β(λ)
β(λ)

, E𝑈 = E𝐷
β(λ)

2β(λ)− 1
+ E𝐾

1− β(λ)
2β(λ)− 1

.

26Ввиду результатов изложенных в главе 2, полезным может оказаться изучение свойств распре­
деления сл. в. 𝑉 (и свойств распределений сл. в., связанных с ней). За основу могут быть взяты
известные результаты для классических СМО. Например (см. [382]), если времена обслуживания
в СМО 𝐺𝐼 |𝐺 | 1 |∞ |FIFO имеют убывающую функцию интенсивности, то в стационарном режиме
ф. р. времени ожидания начала обслуживания является вогнутой.
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обслуживания имеет вид27

η(𝑠1,𝑠2) = ψ(𝑠2)

⎛⎝ψ(𝑠1)−𝑃0

(︁
𝑠1ψ(𝑠1)+

λ𝑠2β(𝑠1+λ)
λ+𝑠2

)︁
λ+ 𝑠1

−𝑃1𝑠2β(𝑠1+λ)

λ+ 𝑠2

⎞⎠ . (1.29)

В установившемся режиме первый и второй моменты длины интервала вре­
мени между моментами выхода заявок из системы, а также ковариция
между длинами двух последовательных интервалов соответственно равны

1

λ
,

2

λ2β(λ)2
(β(λ)+λβ′(λ)) ,

𝑃0

λ2
(1+β(λ)−λβ′(λ)−λ(1−𝑃0)β

′(λ)) . (1.30)

Доказательство. Обозначим через τ1, τ2, . . . , τ𝑛, . . . моменты окончания обслу­
живания первой, второй, ..., 𝑛-й, ... заявки, и через ν𝑛 = ν(τ𝑛 + 0) — общее
число заявок в системе сразу после момента τ𝑛. Пусть 𝑃+

𝑘 = lim𝑛→∞ P{ν𝑛 = 𝑘},
— стационарная вероятность того, что число заявок в системе в момент окон­
чания обслуживания очередной заявки равно 𝑘, 𝑘 > 0. Для существования
𝑃+
𝑘 необходимо и достаточно выполнения28 (1.10). Матрица переходных веро­

ятностей P = (𝑝𝑖𝑗)𝑖,𝑗>0 вложенной по моментам окончания обслуживания цепи
Маркова {ν𝑛, 𝑛 > 1} имеет вид такой же, как и для СМО 𝑀 |𝐺𝐼 | 1 |∞ | FIFO,
а переходные вероятности равны:

𝑝𝑖𝑗 =

⎧⎨⎩0, 0 6 𝑗 < 𝑖− 1,

β(λ)(1− β(λ))𝑗−𝑖+1 = 𝑔𝑗−𝑖+1, 𝑗 > 𝑖− 1,
𝑖 > 1,

𝑝0𝑗 = 𝑝1𝑗, 𝑗 > 0,

Из системы уравнений равновесия 𝑃+ = 𝑃+P, 𝑃+1⃗ = 1, 𝑃+ = (𝑃0,𝑃2, . . . ),
1⃗ = (1,1, . . . )T, следует, что 𝑃+

𝑘 = 𝑃𝑘, 𝑘 > 0. Таким образом, для исследуе­
мой системы справедлив закон стационарной очереди Хинчина: стационарное
по времени распределение (1.13) числа заявок в системе совпадает со стацио­
нарным распределением 𝑃+

𝑘 , 𝑘 > 0, числа заявок в системе для вложенной цепи
Маркова, порожденной моментами ухода заявок из системы.

27Необходимо отметить схожесть вида (1.29) с ПЛС аналогичной характеристики в СМО
𝑀 |𝐺𝐼 | 1 |∞ |FIFO [383, (2.7)]. Кроме того, для последней СМО имеет место BRAVO–эффект [384];
не известно имеет ли он место в изучаемых здесь СМО.

28Достаточное условие следует из критерия Мустафы [263, С. 260]; необходимое — из того, что
вероятность 𝑃+

0 должна быть положительной, но, как будет видно далее, 𝑃+
0 = 𝑃0 = 2− 1/β(λ).
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Пусть 𝑙𝑛 длина интервала времени между моментами ухода 𝑛-й и (𝑛+1)-й
заявок из системы и пусть

ℎ𝑛+1(𝑡,𝑗)𝑑𝑡= P{ν𝑛+1 = 𝑗, 𝑡 < 𝑙𝑛 < 𝑡+ 𝑑𝑡}, 𝑗 > 0,

ℎ𝑛+1(𝑡)𝑑𝑡=
∞∑︁
𝑗=0

ℎ𝑛+1(𝑡,𝑗)𝑑𝑡 = P{𝑡 < 𝑙𝑛 < 𝑡+ 𝑑𝑡}.

Положим 𝑟(𝑥) =
∑︀∞

𝑘=0 𝑟𝑘(𝑥), где 𝑟𝑘(𝑥) задаются (1.11) и (1.12), и сразу
же заметим29, что

∫︀∞
0 𝑒−𝑠𝑢𝑟(𝑢)𝑑𝑢 = ψ(𝑠), где ψ(𝑠) задается (1.17). Восполь­

зовавшись теперь формулой полной вероятности, находим соотношение для
плотности ℎ𝑛+1(𝑡):

ℎ𝑛+1(𝑡) = (1− P{ν𝑛+1 = 0})𝑟(𝑡) + P{ν𝑛+1 = 0}
∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢.

Т. к. в установившемся режиме P{ν𝑛+1 = 𝑘} = 𝑃+
𝑘 , 𝑘 > 0, то существует предел

lim𝑛→∞ ℎ𝑛+1(𝑡), который обозначим ℎ(𝑡). Переходя в предыдущем соотношении
к пределу при 𝑛 → ∞, имеем

ℎ(𝑡) = (1− 𝑃+
0 )𝑟(𝑡) + 𝑃+

0

∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢. (1.31)

Соотношение для ℎ𝑛+1(𝑡,𝑗) получается из формулы полной вероятности
тем же самым образом:

ℎ𝑛+1(𝑡,𝑗) = P{ν𝑛 = 0}
∫︁ 𝑡

0

λ𝑒−λ𝑢𝑟𝑗(𝑡− 𝑢)𝑑𝑢+

𝑗+1∑︁
𝑘=1

P{ν𝑛 = 𝑘}𝑟𝑗+1−𝑘(𝑡), 𝑗 > 0.

И опять, поскольку в установившемся режиме P{ν𝑛+1 = 𝑘} = 𝑃+
𝑘 , 𝑘 > 0, то

существуют и пределы lim𝑛→∞ ℎ𝑛+1(𝑡,𝑗) = ℎ(𝑡,𝑗), 𝑗 > 0, причем

ℎ(𝑡,𝑗) = 𝑃+
0

∫︁ 𝑡

0

λ𝑒−λ𝑢𝑟𝑗(𝑡− 𝑢)𝑑𝑢+

𝑗+1∑︁
𝑘=1

𝑃+
𝑘 𝑟𝑗+1−𝑘(𝑡).

Учитывая, что приход каждой новой заявки в непустую систему откладыва­
ет (на случайное время) момент окончания обслуживания заявки на приборе,
естественно ожидать, что число заявок в системе в момент ухода произвольной
заявки и длина интервала времени от момента предыдущего ухода являются
зависимыми величинами, т. е. равенства

ℎ(𝑡,𝑗) = ℎ(𝑡)𝑃+
𝑗 , 𝑗 > 0, (1.32)

29Предполагая, что операция почленного интегрирования законна.
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не выполняются. Докажем30, что (1.32) справедливо тогда и только тогда, ко­
гда распределение длины заявки имеет экспоненциальное распределение. Для
этого достаточно показать, что (1.32) не выполняется при произвольном рас­
пределении 𝐵(𝑥) уже при 𝑗 = 0. Используя явный вид ℎ(𝑡,0), ℎ(𝑡), 𝑃+

0 и 𝑟𝑘(𝑥),
распишем подробнее равенство ℎ(𝑡,0) = ℎ(𝑡)𝑃+(0):

𝑃+
0 λ𝑒

−λ𝑡𝐵(𝑡)+𝑃+
1 𝑒

−λ𝑡𝑏(𝑡)=𝑃+
0 (1−𝑃+

0 )𝑟(𝑡)+(𝑃+
0 )

2

∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢. (1.33)

Продифференцируем левую и правую части по 𝑡. Имеем

− 𝑃+
0 λ

2𝑒−λ𝑡𝐵(𝑡) + 𝑃+
0 λ𝑒

−λ𝑡𝑏(𝑡)− 𝑃+
1 λ𝑒

−λ𝑡𝑏(𝑡) + 𝑃+
1 𝑒

−λ𝑡𝑏′(𝑡) =

= 𝑃+
0 (1− 𝑃+

0 )𝑟
′(𝑡)− (𝑃+

0 )
2λ

∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢+ (𝑃+
0 )

2λ𝑟(𝑡). (1.34)

Домножив (1.33) на λ и сложив с (1.34), получим

𝑃+
0 λ𝑒

−λ𝑡𝑏(𝑡) + 𝑃+
1 𝑒

−λ𝑡𝑏′(𝑡) = 𝑃+
0 (1− 𝑃+

0 )𝑟
′(𝑡) + λ𝑃+

0 𝑟(𝑡),

или, учитывая, что 𝑃+
0 (1 − 𝑃+

0 ) = 𝑃+
1 ,

𝑃+
0 λ𝑒

−λ𝑡𝑏(𝑡) + 𝑃+
1 𝑒

−λ𝑡𝑏′(𝑡) = λ𝑃+
0 𝑟(𝑡) + 𝑃+

1 𝑟
′(𝑡).

Вспоминая, что 𝑟(𝑥) =
∑︀∞

𝑘=0 𝑟𝑘(𝑥) = 𝑒−λ𝑥𝑏(𝑥) +
∑︀∞

𝑘=1 𝑟𝑘(𝑥), после приведения
подобных слагаемых31, получаем уравнение

𝑃+
1 λ𝑒

−λ𝑡𝑏(𝑡)− λ𝑃+
0

∞∑︁
𝑘=1

𝑟𝑘(𝑡)− 𝑃+
1

∞∑︁
𝑘=1

𝑟′𝑘(𝑡) = 0

или, учитывая явный вид 𝑃+
1 и 𝑃+

0 , — уравнение

λ𝑒−λ𝑡𝑏(𝑡)− λβ(λ)

1− β(λ)

∞∑︁
𝑘=1

𝑟𝑘(𝑡)−
∞∑︁
𝑘=1

𝑟′𝑘(𝑡) = 0.

Решение найдем в терминах ПЛ. Положивψ*(𝑠) =
∑︀∞

𝑘=1

∫︀∞
0 𝑒−𝑠𝑢𝑟𝑘(𝑢)𝑑𝑢, преды­

дущее уравнение можно переписать в виде:

λβ(𝑠+ λ)− λβ(λ)

1− β(λ)
ψ*(𝑠)− 𝑠ψ*(𝑠) = 0,

30В предположении, что 𝑏 — аналитическая функция.
31И предполагая, что операция почленного дифференцирования законна.
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откуда следует, что

ψ*(𝑠) =
λβ(𝑠+ λ)

𝑠+ λβ(λ)
1−β(λ)

.

Значит, если (1.32) выполняется при 𝑗 = 0, то ПЛС времени пребывания заявки
на приборе с одной стороны равно ψ(𝑠) (которое задается формулой (1.17)), а
с другой стороны равно β(λ + 𝑠) + ψ*(𝑠) т. е. ψ(𝑠) = β(λ + 𝑠) + ψ*(𝑠). После
подстановки явного вида слагаемых имеем:

β(λ+ 𝑠)(λ+ 𝑠)

𝑠+ λβ(λ+ 𝑠)
= β(λ+ 𝑠) +

λβ(𝑠+ λ)

𝑠+ λβ(λ)
1−β(λ)

.

Приводя теперь подобные слагаемые, получаем, что (1.32) выполняется при
𝑗 = 0 тогда и только тогда, когда

β(λ+ 𝑠) =

λβ(λ)
1−β(λ)

𝑠+ λ+ λβ(λ)
1−β(λ)

,

или, после обратного преобразования, тогда и только тогда, когда

𝑏(𝑥) =
λβ(λ)

1− β(λ)
𝑒−

λβ(λ)
1−β(λ)𝑥, 𝑥 > 0.

Разлагая левую и правую части в ряд по степеням 𝑥, обозначая через 𝑏(𝑖)(𝑥) 𝑖-ю
производную функции 𝑏 в точке 𝑥, получаем, что (1.32) выполняется при 𝑗 = 0

тогда и только тогда, когда

𝑏(0) =
λβ(λ)

1− β(λ)
, 𝑏(𝑖)(0) = (−1)𝑖

(︂
λβ(λ)

1− β(λ)

)︂𝑖+1

, 𝑖 > 1.

Из первого равенства немедленно следует, что β(λ) = 𝑏(0)
λ+𝑏(0) : это возможно тогда

и только тогда, когда 𝐵(𝑥) имеет экспоненциальное распределение с интенсив­
ностью 𝑏(0), и в этом случае справедливо выражение для 𝑏(𝑖)(0) при 𝑖 > 1.

Итак, если 𝐵(𝑥) имеет неэкспоненциальное распределение, то (1.32)
не может выполняться т. е. число заявок в системе в момент окончания об­
служивания зависит от того, сколько прошло времени с момента окончания
предыдущего обслуживания. Если же 𝐵(𝑥) имеет экспоненциальное распре­
деление (и тогда его интенсивность равна 𝑏(0)), то (1.32) выполняется при
любом 𝑗 > 0. Для 𝑗 = 0 это было показано выше. Остановимся на случае 𝑗 > 1.
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Из того, что 𝐵(𝑥) имеет экспоненциальное распределение следует, что

ψ(𝑠) =
𝑏(0)

𝑠+ 𝑏(0)
,

𝑟(𝑡) = 𝑏(0)𝑒−𝑏(0)𝑡,

𝑃+
0 = 1− λ

𝑏(0)
, 𝑃+

𝑘 = 𝑃+
0

(︂
λ

𝑏(0)

)︂𝑘

, 𝑘 > 1,

ℎ(𝑡) = λ𝑒−λ𝑡,

𝑟𝑘(𝑥) = 𝑏(0)
(λ𝑥)𝑘

𝑘!
𝑒−(λ+𝑏(0))𝑥, 𝑘 > 0.

Тогда формулу для ℎ(𝑡,𝑗), с учетом явного вида входящих в нее слагаемых,
можно переписать следующим образом:

ℎ(𝑡,𝑗) = 𝑃+
0

∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟𝑗(𝑢)𝑑𝑢+

𝑗+1∑︁
𝑘=1

𝑃+
𝑘 𝑔𝑗+1−𝑘(𝑡) =

= 𝑃+
0

(︂
λ

𝑏(0)

)︂𝑗

λ𝑒−λ𝑡
∫︁ 𝑡

0

𝑏(0)𝑗+1

𝑗!
𝑢𝑗𝑒−𝑏(0)𝑢𝑑𝑢+

𝑗+1∑︁
𝑘=1

𝑃+
𝑘 𝑟𝑗+1−𝑘(𝑡) =

= 𝑃+
𝑗 λ𝑒

−λ𝑡

(︃
1−

𝑗∑︁
𝑘=0

(𝑏(0)𝑡)𝑘

𝑘!
𝑒−𝑏(0)𝑡

)︃
+

𝑗+1∑︁
𝑘=1

𝑃+
𝑘 𝑟𝑗+1−𝑘(𝑡).

Учитывая, что последняя сумма равна
𝑗+1∑︁
𝑘=1

𝑃+
𝑘 𝑟𝑗+1−𝑘(𝑡) = λ𝑃

+
𝑗

𝑗∑︁
𝑘=0

(𝑏(0)𝑡)𝑘

𝑘!
𝑒−(λ+𝑏(0))𝑡,

получаем, что ℎ(𝑡,𝑗) = λ𝑒−λ𝑡𝑃+
𝑗 = ℎ(𝑡)𝑃+

𝑗 , 𝑗 > 0.
Изучим теперь распределение интервалов времени между последователь­

ными моментами окончания обслуживания. Введем обозначения:

ℎ𝑛+2(𝑡|τ)𝑑𝑡= P{𝑡 < 𝑙𝑛+1 < 𝑡+ 𝑑𝑡|𝑙𝑛 = τ},
𝑃𝑛+1(𝑗|τ) = P{ν𝑛+1 = 𝑗|𝑙𝑛 = τ},

Так ℎ𝑛+2(𝑡|τ) есть условная плотность вероятности того, что длина интервала
𝑙𝑛+1 равна 𝑡, при условии, что длина интервала 𝑙𝑛 = τ, а 𝑃𝑛+1(𝑗|τ) — условная
вероятность того, что в момент окончания обслуживания (𝑛 + 1)-й заявки в
системе окажется 𝑗 заявок, при условии, что длина интервала 𝑙𝑛 = τ. Рассуждая
как и ранее, получаем

ℎ𝑛+2(𝑡|τ) = (1− 𝑃𝑛+1(0|τ))𝑟(𝑡) + 𝑃𝑛+1(0|τ)
∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢,
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или, в установившемся режиме, —

ℎ(𝑡|τ) = (1− 𝑃 (0|τ))𝑟(𝑡) + 𝑃 (0|τ)
∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢.

Если бы длины интервалов между последовательными моментами оконча­
ния обслуживания были независимы, то ℎ(𝑡|τ)− ℎ(𝑡) = 0 т. е., учитывая (1.31),

(𝑃+
0 − 𝑃 (0|τ))𝑟(𝑡)− (𝑃+

0 − 𝑃 (0|τ))
∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢 = 0.

Это равенство возможно только в двух случаях: а) 𝑃+
0 = 𝑃 (0|τ), б)

𝑟(𝑡) =
∫︀ 𝑡

0 λ𝑒
−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢. Но а) выполняется тогда и только тогда, когда рас­

пределение 𝐵(𝑥) длины заявки имеет экспоненциальное распределение. Если
же а) не выполняется, то для того, чтобы ℎ(𝑡|τ) = ℎ(𝑡) необходимо, чтобы
выполнялось б). Но это невозможно т. к. из б) следует, что

𝑟′(𝑡) = λ𝑟(𝑡)− λ
∫︁ 𝑡

0

λ𝑒−λ(𝑡−𝑢)𝑟(𝑢)𝑑𝑢

и, значит, 𝑟′(𝑡) = 0 т. е. 𝑟(𝑡) — постоянная, чего быть не может. Таким об­
разом, за исключением случая экспоненциальной длины заявки, промежутки
между последовательными окончаниями обслуживания являются зависимыми
величинами. Для завершения доказательства найдем их совместное распреде­
ление в установившемся режиме. Для плотности ℎ(𝑡1,𝑡2) по формуле полной
вероятности имеем

ℎ(𝑡1,𝑡2) = 𝑃+
0

∫︁ 𝑡1

0

λ𝑒−λ𝑢𝑟0(𝑡1 − 𝑢)𝑑𝑢

∫︁ 𝑡2

0

λ𝑒−λ𝑣𝑟(𝑡2 − 𝑣)𝑑𝑣+

+ 𝑃+
0

∫︁ 𝑡1

0

λ𝑒−λ𝑢
∞∑︁
𝑘=1

𝑟𝑘(𝑡1 − 𝑢)𝑑𝑢𝑟(𝑡2) + 𝑃+
1 𝑟0(𝑡1)

∫︁ 𝑡2

0

λ𝑒−λ𝑢𝑟(𝑡2 − 𝑣)𝑑𝑣+

+ 𝑃+
1

∞∑︁
𝑗=1

𝑟𝑗(𝑡1)𝑟(𝑡2) +
∞∑︁
𝑘=2

𝑃+
𝑘 𝑟(𝑡1)𝑟(𝑡2).

Переходя к ПЛ η(𝑠1,𝑠2) =
∫︀∞
0

∫︀∞
0 𝑒−𝑠1𝑡1𝑒−𝑠2𝑡2ℎ(𝑡1,𝑡2)𝑑𝑡1𝑑𝑡2, получаем (1.29).

Числовые характеристики (1.30) выходящего потока получаются дифференци­
рованием (1.29).
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На основе полученных результатов можно было бы углубиться в анализ32

стационарных характеристик СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe (например, совмест­
ного стационарного распределения основных характеристик обслуживания на
одном периоде занятости). Однако, как станет понятно только в главе 2, боль­
ший интерес (по крайней мере для задач практики) представляют другие
вопросы — вопросы изучения разновидностей этой системы. Некоторым из них
посвящены следующие параграфы.

32И в изучение связей между характеристиками подобных неконсервативных и классиче­
ских СМО. Например, вопросы приближения многолинейных систем однолинейными хорошо
освещены в научной литературе (см., например, [385; 386]). Полученные в этом параграфе ре­
зультаты позволяют по-другому посмотреть, по крайней мере, на простейшие из них. Рассмотрим
классическую СМО 𝑀 |𝑀 |∞ с интенсивностью входящего потока λ и интенсивностью обслужи­
вания µ. Как известно, стационарное среднее число заявок в такой бесконечнолинейной системе
равно λ/µ. Однако, такое же среднее наблюдается и в стационарной СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe

c ф. р. длины заявки 𝐵(𝑥) ПЛС которой равно β(λ) = λ+µ
2λ+µ (см. выражение для E𝑁 на стр. 57).

При этом стационарные распределения чисел заявок в системах не совпадают. Вернемся к 𝐵(𝑥):
подходящая ф. р. содержит дискретную компоненту, а плотность может быть формально записа­
на в виде 𝑏(𝑥) = 𝐵′(𝑥) = 1

2δ(𝑥) +
µ
4 𝑒

−µ
2
𝑥, 𝑥 > 0, где δ — дельта–функция Дирака. Поэтому, говоря

строго, результаты Теоремы 4 неприменимы, поскольку были получены в предположении абсолют­
ной непрерывности распределения длины заявки. Однако воспользовавшись вместо δ какой-нибудь
несимметричной функцией 𝑓 (например, 𝑓(𝑥) = ε

𝑥2 𝑒
− ε

𝑥 , 𝑥 > 0, дающей δ в пределе при ε→ 0), полу­
чаем подходящую функцию 𝑏, при которой среднее число заявок в новой СМО ≈ λ/µ.
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1.3 Обслуживание нескольких потоков без преимущества

Рассмотрим систему 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe, в которую поступает 𝑟

(𝑟 < ∞), независимых пуассоновских потоков интенсивностей λ𝑖, 1 6 𝑖 6 𝑟.
Длины заявок 𝑖-го потока (типа) имеют ф. р. 𝐵𝑖(𝑥) с непрерывной ограни­
ченной плотностью 𝑏𝑖(𝑥) = 𝐵′

𝑖(𝑥). Будем считать, что в случае нескольких
входящих потоков дисциплина LIFORe работает следующим образом. В мо­
мент поступления новой заявки любого типа становится известной ее длина и,
если система непуста, приостанавливается обслуживание. Вне зависимости от
всей предыстории функционирования системы заявке на приборе назначается
новая (остаточная) длина в соответствии с распределением, соответствующим
ее типу. Затем процесс ее обслуживания возобновляется, а новая заявка по­
мещается на первое место в очереди. В момент окончания обслуживания на
прибор выбирается первая заявка из очереди.

Отличительной особенностью рассматриваемой системы является отсут­
ствие приоритетов для входящих потоков т. е. она не относится к хорошо
известному классу приоритетных СМО [117–119; 387]. Как следствие, если две
или более из ф. р. 𝐵1(𝑥), . . . ,𝐵𝑟(𝑥) совпадают, то система не может отличить
друг от друга заявки этих потоков. Естественный выход33 из такого положе­
ния — считать все заявки с одинаковыми ф. р. длин принадлежащими одному
потоку, но большей интенсивности. Далее будем считать, что такой анализ си­
стемы уже проведен (т. е. все 𝐵𝑖(𝑥) различны) и (для удобства изложения) типы
потоков занумерованы в порядке возрастания значений 1− β𝑖(𝑠) т. е. 1-й тип
присваивается потоку с наименьшим значением 1− β𝑖(𝑠) и т. д.

Введем случайный процесс η(𝑡) = (ν(𝑡),ξ1(𝑡),ι1(𝑡), . . . ,ξν(𝑡)(𝑡),ιν(𝑡)(𝑡)), опи­
сывающий функционирование системы, как вектор длин заявок, находящихся в
системе в момент 𝑡. Когда в момент 𝑡 в системе находится 𝑘 заявок, то ν(𝑡) = 𝑘.
При этом, координаты ξ1(𝑡) и ι1(𝑡) хранят остаточное время обслуживания за­
явки на приборе и ее тип, а ξ𝑖(𝑡) и ι𝑖(𝑡) — длину и тип (𝑖−1)-й заявки в очереди.
Процесс η(𝑡) является марковским с множеством состояний

∞⋃︁
𝑘=1

{(𝑘; (𝑥1,𝑦1), . . . ,(𝑥𝑘,𝑦𝑘)) : 𝑥1,...,𝑥𝑘 > 0, 1 6 𝑦1,...,𝑦𝑘 6 𝑟}
⋃︁

{0}

33Поскольку все входящие потоки предполагаются пуаccоновскими.
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и описывает состояние очереди и прибора в момент 𝑡. Положим

𝑃0(𝑡) = P{ν(𝑡) = 0},
𝑃

(𝑦1,...,𝑦𝑘)
𝑘 (𝑡;𝑥1,...,𝑥𝑘) = P {ν(𝑡) = 𝑘; ξ1(𝑡)<𝑥1,ι1(𝑡)=𝑦1, . . . , ξ𝑘(𝑡)<𝑥𝑘,ι𝑘(𝑡)=𝑦𝑘} ,

𝑃0 = lim
𝑡→∞

𝑃0(𝑡),

𝑃
(𝑦1,...,𝑦𝑘)
𝑘 (𝑥1,...,𝑥𝑘) = lim

𝑡→∞
𝑃

(𝑦1,...,𝑦𝑘)
𝑘 (𝑡;𝑥1,...,𝑥𝑘),

𝑃
(𝑖)
𝑘 (𝑥) =

𝑟∑︁
𝑦2,...,𝑦𝑘=1

𝑃
(𝑖,𝑦2,...,𝑦𝑘)
𝑘 (𝑥1,...,𝑥𝑘)(𝑥,∞,...,∞),

𝑝
(𝑖)
𝑘 (𝑥) =

𝑑

𝑑𝑥
𝑃

(𝑖)
𝑘 (𝑥), 𝑃𝑘 =

𝑟∑︁
𝑖=1

𝑃
(𝑖)
𝑘 (∞).

При выполнении некоторого условия, которое будет получено в дальнейшнем
(см. Теорему 9 ниже), у рассматриваемой системы существует стационарный
режим. Относительно стационарных плотностей 𝑝

(𝑖)
𝑘 (𝑥) будем предполагать, что

они существуют, являются ограниченными и непрерывными.
Введем необходимые для дальнейшего изложения обозначения34:

pT
𝑘 = (𝑃

(1)
𝑘 , . . . ,𝑃

(𝑟)
𝑘 ), 𝑘 > 1,

bT = (1− β1(λ), . . . , 1− β𝑟(λ)),

1T = (1, . . . , 1),

B= 𝑑𝑖𝑎𝑔(1− β1(λ), . . . , 1− β𝑟(λ)),

A= 𝑑𝑖𝑎𝑔(𝑎1, . . . ,𝑎𝑟), 𝑎𝑖 =
λ𝑖

λ
, λ =

𝑟∑︁
𝑖=1

λ𝑖,

I= 𝑑𝑖𝑎𝑔(1, . . . , 1),

1

κ1
=

𝑟∑︁
𝑖=1

𝑎𝑖β𝑖(λ),

1

κ2
= 1− κ1

𝑟∑︁
𝑖=1

𝑎𝑖(1− β𝑖(λ))
2

β𝑖(λ)
,

κ3 =
𝑟∑︁

𝑖=1

𝑎𝑖(1− β𝑖(λ))

β𝑖(λ)
.

Теорема 7. В системе 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe (𝑟 < ∞) стационарное распре­
деление pT

𝑘 , 𝑘 > 1, общего числа заявок в системе имеет модифицированное
34Если разерность вектора или матрицы не указана явно, то она без труда определяется из

контекста.
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геометрическое распределение:

pT
𝑘 = pT

1

(︀
B + κ1bbTA

)︀𝑘−1
, 𝑘 > 1, (1.35)

pT
1 = 𝑃0κ1bTA, (1.36)

где стационарная вероятность 𝑃0 отсутствия заявок в системе определяет­
ся из условия нормировки и равна 𝑃0 = 1 − κ3.

Доказательство. Выпишем уравнения, которым удовлетворяют стационарные
плотности 𝑝

(𝑖)
𝑘 (𝑥). Начнем со случая 𝑘 = 1. Выберем любое 1 6 𝑖 6 𝑟. Рас­

смотрим моменты времени 𝑡 и 𝑡 + Δ и воспользуемся основным свойством
рассматриваемой системы (см. Теорему 1 ). Для того чтобы в момент време­
ни 𝑡+Δ в системе находилась одна заявка 𝑖-го потока длины 𝑥, нужно, чтобы
произошло одно из следующих событий:

– в момент 𝑡 в системе не было заявок и за время Δ поступила заявка
𝑖-го потока длины 𝑥;

– в момент 𝑡 в системе находилась одна заявка 𝑖-го потока остаточной
длины 𝑥+Δ и за время Δ в систему не поступили новые заявки;

– в момент 𝑡 в системе находилась одна заявка и за время Δ поступила
заявка 𝑖-го типа длины 𝑥.

Вероятности других событий равны 𝑜(Δ). Применяя формулу полной вероят­
ности, имеем

𝑝
(𝑖)
1 (𝑡+Δ;𝑥) = λ𝑖Δ𝑃0𝑏𝑖(𝑥) + (1− λΔ)𝑝

(𝑖)
1 (𝑡;𝑥+Δ) + λ𝑖Δ𝑏𝑖(𝑥)𝑃1(𝑡),

Перенося слагаемое 𝑝
(𝑖)
1 (𝑡;𝑥 + Δ) в левую часть равенства, деля на Δ, устрем­

ляя Δ к нулю и учитывая стационарный режим функционирования системы,
получаем уравнение

− 𝑑

𝑑𝑥
𝑝
(𝑖)
1 (𝑥) = −λ𝑝(𝑖)1 (𝑥) + λ𝑖𝑃0𝑏𝑖(𝑥) + λ𝑖𝑃1𝑏𝑖(𝑥),

решение которого, с учетом граничного условия 𝑝
(𝑖)
1 (∞) = 0, имеет вид

𝑝
(𝑖)
1 (𝑥) = (𝑃0 + 𝑃1)

∫︁ ∞

𝑥

𝑒−λ(𝑡−𝑥)λ𝑖𝑏𝑖(𝑡)𝑑𝑡, 1 6 𝑖 6 𝑟. (1.37)

Интегрирование последнего соотношения дает 𝑃
(𝑖)
1 = (𝑃0 + 𝑃1)𝑎𝑖(1− β𝑖(λ)),

откуда, просуммировав по всем 𝑖, с учетом равенства
∑︀𝑟

𝑖=1 𝑃
(𝑖)
1 = 𝑃1, полу­

чаем (1.36).
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Для плотностей 𝑝
(𝑖)
𝑘 (𝑥) при 𝑘 > 2, по аналогии с тем, как это было сделано

выше, получаем систему линейных однородных дифференциальных уравнений

− 𝑑

𝑑𝑥
𝑝
(𝑖)
𝑘 (𝑥) = −λ𝑝(𝑖)𝑘 (𝑥) + λ𝑃

(𝑖)
𝑘−1𝑏𝑖(𝑥) + λ𝑖𝑃𝑘𝑏𝑖(𝑥),

решение которой, с учетом граничных условий 𝑝
(𝑖)
𝑘 (∞) = 0, имеет вид

𝑝
(𝑖)
𝑘 (𝑥) = (λ𝑃

(𝑖)
𝑘−1 + λ𝑖𝑃𝑘)

∫︁ ∞

𝑥

𝑒−λ(𝑡−𝑥)𝑏𝑖(𝑡)𝑑𝑡, 1 6 𝑖 6 𝑟, 𝑘 > 2. (1.38)

В формуле для 𝑝
(𝑖)
𝑘 (𝑥) неизвестными остаются 𝑃

(𝑖)
𝑘−1 и 𝑃𝑘. Для

их нахождения воспользуемся аппаратом матрично–аналитических мето­
дов [133; 134; 388–395]. Интегрирование (1.38) приводит к соотношению
𝑃

(𝑖)
𝑘 = (𝑃

(𝑖)
𝑘−1 + 𝑎𝑖𝑃𝑘)(1− β𝑖(λ)), которое можно переписать в матричном ви­

де, с учетом введенных перед формулировкой теоремы обозначений, как

pT
𝑘 = pT

𝑘−1B + pT
𝑘 1bTA, 𝑘 > 2,

или
pT
𝑘 (I − 1bTA) = pT

𝑘−1B. (1.39)

Поскольку 1 − bTA1 =
∑︀𝑟

𝑖=1 𝑎𝑖β𝑖(λ) = 1
κ1

̸= 0 при любом положительном
конечном λ, то существует обратная матрица (I − 1bTA)−1, вид которой да­
ет известная формула Шермана–Моррисона (см., например, соотн. (2) в [396]
или [397, С. 121]):

(I − 1bTA)−1 = I + κ11bTA.

Таким образом из (1.39) немедленно следует (1.35).
Для нахождения pT

1 осталось воспользоваться условием нормировки
𝑃0+

∑︀∞
𝑘=1 pT

𝑘 1=1. Однако прежде необходимо доказать, что максимальное
собственное значение матрицы B + κ1bbTA меньше единицы. Воспользуем­
ся35 известным результатом (см., например, [399, Proposition 5.5.3] или [400,
Example 7.10.3]) о том, что максимальное собственное значение неотрицатель­
ной квадратной матрицы (пусть H) не превосходит 𝑎 > 0 тогда и только тогда,
когда (𝑎I − H)−1 существует и (𝑎I − H)−1 > 0. Поскольку матрица (I − B) об­
ратима и

1− κ1bTA(I − B)−1b = 1− κ1
𝑟∑︁

𝑖=1

𝑎𝑖(1− β𝑖(λ))
2

β𝑖(λ)
=

1

κ2
̸= 0,

35Для этого можно воспользоваться и более общим результатом — законом инерции Сильвестра
(законом инерции квадратичных форм), см. [398] и комментарии после доказательства теоремы.
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то выполнены все условия для того, чтобы применить формулу Шермана–Мор­
рисона к матрице (I − B − κ1bbTA)−1. Имеем:

(I − B − κ1bbTA)−1 = (I − B)−1 + κ1κ2(I − B)−1bbTA(I − B)−1.

Т.к. матрица (I − B)−1 неотрицательна, κ1κ2 = 1
1−κ3 и κ3 > 0 по определению,

то для неотрицательности матрицы (I − B − κ1bbTA)−1 достаточно, чтобы
1 − κ3 > 0. Таким образом, при выполнении условия36 κ3 < 1, из (1.35), про­
суммировав по всем возможным 𝑘, получаем

∞∑︁
𝑘=1

pT
𝑘 1= pT

1 (I − B − κ1bbTA)−11 =

= pT
1

(︀
(I − B)−1 + κ1κ2(I − B)−1bbTA(I − B)−1

)︀
1 =

= pT
1 (I − B)−1(I + κ1κ2κ3B)1.

Подставляя сюда явный вид pT
1 из (1.36), находим

∞∑︁
𝑘=1

pT
𝑘 1 = 𝑃0

(︂
κ1κ3 + κ1κ2κ3

(︂
1− 1

κ2

)︂)︂
.

Отсюда, учитывая равенство κ1κ2 = 1
1−κ3 и условие нормировки, приходим к

искомому виду стационарной вероятности 𝑃0 отсутствия заявок в системе.

Отметим, что при доказательстве Теоремы 7 получено несколько больше,
чем заявлено в ее формулировке: формулы (1.37) и (1.38) позволяют рассчиты­
вать совместное стационарное распределение общего числа заявок в системе,
тип заявки на приборе и ее остаточное время обслуживания. Отсюда, в си­
лу свойства PASTA пуассоновского потока и свойства дисциплины LIFORe,
остается один шаг до совместного стационарного распределения, включающего
остаточные длины всех находящихся в системе заявок.

Прежде, чем переходить к изучению стационарных временных характери­
стик остановимся на вопросе существования и расчета моментов стационарного
распределения общего числа заявок в системе. Подразумевая под матрицей H𝑛

матрицу H, каждый элемент которой возведен в 𝑛-ю степень, можем записать
36Далее будет показано, что это условие является необходимым и достаточным для существова­

ния стационарного режима.
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B + κ1bbTA = A− 1
2DA

1
2 . Здесь D = B + κ1A

1
2bbTA

1
2 — вещественная симмет­

ричная матрица. Задача спектрального разложения симметричной матрицы с
вещественными элементами, модифицированной внешним произведением, хоро­
шо изучена. В частности, собственные значения (с. з.) матрицы D — далее 𝑑𝑖,
1 6 𝑖 6 𝑟, — все различны и являются корнями секулярного уравнения (см.,
например, [396, Lemma 2.1])

1 + κ1

𝑟∑︁
𝑖=1

𝑎𝑖(1− β𝑖(λ))
2

(1− β𝑖(λ))− 𝑑
= 0. (1.40)

Значения 𝑑𝑖 могут быть найдены из (1.40) только численно37; для их расчета
пригоден метод деления отрезка пополам, а также другие, специальные методы
(см., например, [402; 403]).

Поскольку 1− β1(λ) > 0 и, как известно из общей теории, корни секуляр­
ного уравнения (1.40) упорядочены следующим образом

1− β1(λ) < 𝑑1 < 1− β2(λ) < 𝑑2 < · · · < 1− β𝑟(λ) < 𝑑𝑟,

то все 𝑑𝑖 положительны (и различны). Выясним, при каком условии максималь­
ное с. з. 𝑑𝑟 матрицы D меньше единицы. Очевидно, так будет тогда и только
тогда, когда отрицательны все с. з. матрицы −I + D. Теперь заметим, что

− I + D = (I − B)
1
2 (−I + κ1(I − B)−

1
2A

1
2bbTA

1
2 (I − B)−

1
2⏟  ⏞  

=D𝑐

)(I − B)
1
2 =

= (I − B)
1
2 (−I + D𝑐)(I − B)

1
2 ,

т. е. матрицы −I + D и −I + D𝑐 связаны преобразованием подобия. По закону
инерции Сильвестра38, если все с. з. матрицы −I + D отрицательны, то отрица­
тельны и все с. з. матрицы −I + D𝑐. Но I — диагональная матрица, а матрица
D𝑐 имеет ранг 1. Поэтому у матрицы −I+D𝑐 всего два с. з.: −1 кратности 𝑟 − 1

и −1 + 𝑡𝑟(D𝑐) кратности 1. Прямыми вычислениями нетрудно убедиться, что
след 𝑡𝑟(D𝑐) матрицы D𝑐 равен κ3. Таким образом, при κ3 < 1 макимальное
с. з. 𝑑𝑟 матрицы D действительно меньше единицы.

37Здесь полезным может быть соотношение между с. з. матриц B и D [401, С. 98]: 𝑑𝑖 = 1−β𝑖(λ)+

α𝑖κ1
∑︀𝑟

𝑖=1 𝑎𝑖(1− β𝑖(λ))
2, где α𝑖 ∈ (0,1) и

∑︀𝑟
𝑖=1 α𝑖 = 1.

38Eсли вещественная симметричная матрица приводится вещественным конгруэнтным преобра­
зованием к диагональному виду, то число положительных, отрицательных и нулевых элементов
на диагонали не зависит от способа приведения [404, 12.92].
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Из общей теории известно, что собственный вектор d𝑖, отвечающий соб­
ственному значению 𝑑𝑖 матрицы D, имеет вид

dT
𝑖 =

κ−1
1

𝑟∑︀
𝑖=1

𝑎𝑖(1−β𝑖(λ))2

((1−β𝑖(λ))−𝑑𝑖)2

(︂√
𝑎1(1− β1(λ))

(1− β1(λ))− 𝑑𝑖
, . . . ,

√
𝑎𝑟(1− β𝑟(λ))

(1− β𝑟(λ))− 𝑑𝑖

)︂
. (1.41)

Решив численно (1.40), для получения собственных векторов можно восполь­
зоваться (1.41), подставляя вместо точных значений 𝑑𝑖 вычисленные. Известен
такой эффект, что матрица из подобным образом полученых собственных век­
торов может не быть орготональной. Поэтому для расчетов предпочтительны
специальные алгоритмы (см., например, [396, Algorithm II]).

Положим ̃︀D = (d1, . . . ,d𝑟) и ̂︀D = 𝑑𝑖𝑎𝑔(𝑑1, . . . ,𝑑𝑟). Воспользовавшись спек­
тральным разложением D = ̃︀D̂︀D̃︀DT

, получаем

pT
𝑘 = pT

1

(︀
B + κ1bbTA

)︀𝑘−1
= pT

1

(︁
A− 1

2DA
1
2

)︁𝑘−1

= pT
1 A

− 1
2 ̃︀D̂︀D𝑘−1 ̃︀DT

A
1
2 , 𝑘 > 1.

Поскольку ̂︀D𝑛
= 𝑑𝑖𝑎𝑔(𝑑𝑛1 , . . . ,𝑑

𝑛
𝑟 ) и (при κ3 < 1) ряд

∑︀∞
𝑘=1 𝑘

𝑛𝑑𝑘𝑖 сходится при
любом 𝑛 > 0 и 1 6 𝑖 6 𝑟, то существуют моменты всех порядков стационарного
распределения общего числа заявок в системе. Например, стационарное среднее
E𝑁 число заявок в системе в стационарном режиме имеет вид39

E𝑁 =
∞∑︁
𝑘=1

𝑘pT
𝑘 1 = pT

1

(︀
I − B − κ1bbTA

)︀−2
1 =

= pT
1

(︀
I − B − κ1B1bTA

)︀−1
(︂
(I − B)−1 +

κ3

1− κ3
(I − B)−1B

)︂
1 =

= pT
1

(︀
I − B − κ1B1bTA

)︀−1
(︂

I +
1

1− κ3
(I − B)−1B

)︂
1 = (1.42)

= κ3 +
1

1− κ3

𝑟∑︁
𝑖=1

λ𝑖

λ

(1− β𝑖(λ))
2

β𝑖(λ)2
. (1.43)

Для произвольного 𝑛 > 0 формулу для E𝑁𝑛 в скалярном виде выписать трудно
из-за необходимости расчета бесконечных сумм

∑︀∞
𝑘=2 𝑘

𝑛𝑑𝑘𝑖 . Примечательно, что∑︀∞
𝑘=1 𝑘

𝑛𝑑𝑘𝑖 (1 − 𝑑𝑖) есть 𝑛-й момент числа заявок в системе 𝑀 |𝑀 | 1 |∞ | FIFO
c загрузкой 𝑑𝑖 и, значит, значения сумм могут быть вычислены через произ­
водные производящей функции (𝑧𝑑𝑖)

2

1−𝑑𝑖𝑧
в точке 𝑧 = 1 или, как уже было указано

в предыдущем параграфе, рекуррентно (см. [352]).
39При переходе от второй к третьей строке использовано лекго проверяемое соотношение (I −

B)−1 = I + (I − B)−1B.
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Обозачим через ϕ𝑖(𝑠) ПЛС стационарного распределения времени пре­
бывания в системе заявки 𝑖-го типа, через ψ𝑖(𝑠) — ПЛС распределения
времени пребывания только что поступившей на прибор заявки 𝑖-го типа, и
через 𝑢𝑖(𝑠) — ПЛС распределения периода занятости системы, открываемого за­
явкой 𝑖-го типа. Положим ϕ⃗(𝑠)T = (ϕ1(𝑠), . . . ,ϕ𝑟(𝑠)), ψ⃗(𝑠)T = (ψ1(𝑠), . . . ,ψ𝑟(𝑠))

и u(𝑠)T = (𝑢1(𝑠), . . . ,𝑢𝑟(𝑠)).

Теорема 8. В СМО 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe ПЛС ψ𝑖(𝑠) распределение времени
пребывания только что поступившей на прибор заявки 𝑖-го типа равно

ψ𝑖(𝑠) =
β𝑖(λ+ 𝑠)(λ+ 𝑠)

𝑠+ λβ𝑖(λ+ 𝑠)
; (1.44)

ПЛС 𝑢𝑖(𝑠) периода занятости, открываемого заявкой 𝑖-го типа вычисляется
по формуле

𝑢𝑖(𝑠) =
(λ+ 𝑠)β𝑖(𝑠+ λ)

λ+ 𝑠− λ𝑢(𝑠)(1− β𝑖(𝑠+ λ))
, (1.45)

где 𝑢(𝑠) =
∑︀𝑟

𝑖=1(λ𝑖/λ)𝑢𝑖(𝑠) — ПЛС периода занятости, открываемого заявкой
произвольного типа;
ПЛС ϕ𝑖(𝑠) стационарного распределения времени пребывания заявки 𝑖-го типа
в системе совпадает с 𝑖-й компонентой вектора

ϕ⃗(𝑠)T = 𝑃0ψ⃗(𝑠)
T + pT

1

(︀
I − B − κ1bbTA

)︀−1
u(𝑠)ψ⃗(𝑠)T. (1.46)

Доказательство. Обозначим через 𝑢𝑖(𝑠;𝑥) ПЛС стационарного распределения
периода занятости системы, открываемого заявкой 𝑖-го типа длины 𝑥. На осно­
вании формулы полной вероятности и с учетом свойств дисциплиы LIFORe,
находим

𝑢𝑖(𝑠;𝑥) = 𝑒−𝑠𝑥𝑒−λ𝑥 +

∫︁ 𝑥

0

𝑒−𝑠𝑢λ𝑒−λ𝑢𝑢𝑖(𝑠)
𝑟∑︁

𝑗=1

𝑎𝑗𝑢𝑗(𝑠)𝑑𝑢

или, после интегрирования по всем возможным 𝑥,

𝑢𝑖(𝑠) = β𝑖(𝑠+ λ) + λ𝑢𝑖(𝑠)
1− β𝑖(𝑠+ λ)

𝑠+ λ

𝑟∑︁
𝑗=1

𝑎𝑗𝑢𝑗(𝑠), 1 6 𝑖 6 𝑟.

Вводя обозначения

B(𝑠) = 𝑑𝑖𝑎𝑔(1− β1(𝑠+ λ), . . . ,1− β𝑟(𝑠+ λ)), (1.47)

b(𝑠)T = (1− β1(𝑠+ λ), . . . ,1− β𝑟(𝑠+ λ)), (1.48)



77

предыдущую систему уравнений можно записать в следующем матричном виде:

u(𝑠)T = 1T(I − B(𝑠)) +
λ

λ+ 𝑠
𝑢(𝑠)u(𝑠)TB(𝑠),

где 𝑢(𝑠) = u(𝑠)TA1 =
∑︀𝑟

𝑖=1 𝑎𝑖𝑢𝑖(𝑠). Решение этого уравнения имеет вид

u(𝑠)T = 1T(I − B(𝑠))

(︂
I − λ

λ+ 𝑠
𝑢(𝑠)B(𝑠)

)︂−1

,

причем обратная матрица в правой части существует т. к. ее определитель∏︀𝑟
𝑖=1

(︀
1− λ

λ+𝑠𝑢(𝑠)(1− β𝑖(𝑠+ λ))
)︀

отличен от нуля при любом 𝑠 > 0. Сделав эле­
ментарные преобразования убеждаемся, что

u(𝑠)T =

(︂
(λ+ 𝑠)β1(𝑠+ λ)

λ+ 𝑠− λ𝑢(𝑠)(1− β1(𝑠+ λ))
, . . . ,

(λ+ 𝑠)β𝑟(𝑠+ λ)

λ+ 𝑠− λ𝑢(𝑠)(1− β𝑟(𝑠+ λ))

)︂
,

т. е. (1.45) имеет место. Неизвестной остается функция 𝑢, удовлетворяющая
функциональному уравнению 𝑢(𝑠) =

∑︀𝑟
𝑖=1(λ𝑖/λ)𝑢𝑖(𝑠). Как будет показано в Тео­

реме 9 при κ3 < 1 его решение (удовлетворяющее необходимым свойствам)
единственно при каждом 𝑠 > 0, но (в общем случае) может быть найдено толь­
ко численно.

Для доказательства (1.44) достаточно заметить, что раз попав на прибор,
заявка его уже не покидает. Поэтому ПЛС времени пребывания заявки 𝑖-го
типа на приборе совпадает с ПЛС времени пребывания на приборе заявки в
аналогичной СМО, но с одним потоком т. е. задается формулой (1.17), в которой
β(λ) необходимо заменить на β𝑖(λ).

Наконец, для ПЛС ϕ𝑖(𝑠) стационарного распределения времени пребыва­
ния заявки 𝑖-го типа в системе по формуле полной вероятности имеем

ϕ𝑖(𝑠) = ψ𝑖(𝑠)𝑃0 +
∞∑︁
𝑛=1

𝑟∑︁
𝑗=1

𝑃 (𝑗)
𝑛 𝑢𝑗(𝑠)ψ𝑖(𝑠), 1 6 𝑖 6 𝑟.

Переписывая эту систему уравнений в матричной форме, с учетом введенных
обозначений, и производя элементарные преобразования, приходим к (1.46).



78

Теорема 9. Необходимое и достаточное условие существования стационар­
ного режима системы 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe имеет вид 40

0 <
𝑟∑︁

𝑖=1

λ𝑖

λ

(1− β𝑖(λ))

β𝑖(λ)
= κ3 < 1. (1.49)

Доказательство. Из общей теории цепей Маркова известно41, что для неприво­
димой и непериодической цепи Маркова необходимым и достаточным условием
существования (собственного) предельного распределения является конечность
среднего времени возвращения в некоторое состояние. Применим этот результат
к состоянию, в котором общее число заявок в системе равно нулю.

Как было показано в Теореме 8 ПЛС 𝑢(𝑠) периода занятости рассматри­
ваемой системы удовлетворяет уравнению

𝑢(𝑠) =
𝑟∑︁

𝑖=1

λ𝑖

λ

(λ+ 𝑠)β𝑖(𝑠+ λ)

λ+ 𝑠− λ𝑢(𝑠)(1− β𝑖(𝑠+ λ))
.

Традиционные рассуждения (см., например, [320, С. 77–78] или [119, С.
120–122]) показывают, что это функциональное уравнение определяет един­
ственную функцию 𝑢, аналитическую в комплексной области R𝑒 𝑠 > 0, в
которой |𝑢(𝑠)| < 1. Рассмотрим функцию 𝑓 двух аргументов, задаваемую сле­
дующим образом:

𝑓(𝑥,𝑠) =
𝑟∑︁

𝑖=1

λ𝑖

λ

(λ+ 𝑠)β𝑖(𝑠+ λ)

λ+ 𝑠− λ𝑥(1− β𝑖(𝑠+ λ))
𝑠 > 0, 0 6 𝑥 6 1.

Изучим некоторые ее свойства. При фиксированном 𝑠 имеем:

(𝑓(𝑥,𝑠))′𝑥 =
𝑟∑︁

𝑖=1

λ𝑖

λ

λ(λ+ 𝑠)β𝑖(𝑠+ λ)(1− β𝑖(𝑠+ λ))

(λ+ 𝑠− λ𝑥(1− β𝑖(𝑠+ λ)))2
> 0,

(𝑓(𝑥,𝑠))′′𝑥 = 2
𝑟∑︁

𝑖=1

λ𝑖

λ

λ2(λ+ 𝑠)β𝑖(𝑠+ λ)(1− β𝑖(𝑠+ λ))
2

(λ+ 𝑠− λ𝑥(1− β𝑖(𝑠+ λ)))3
> 0.

40Таким образом, в отличие от однопотоковой системы (см. Теорему 3 ), роль загрузки в системе
𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe играет величина

∑︀𝑟
𝑖=1

λ𝑖
λ

(1−β𝑖(λ))
β𝑖(λ)

. Примечательно сравнить (1.49) с условием
существования стационарного распределения в классической системе с абсолютным приоритетом,
работающей по Схеме 3а (см. [119, С. 133]).

41Заметим, что доказательство этой теоремы можно провести и по-другому, обратившись к
известным результатам для ветвящихся процессов (процессов Гальтона–Ватсона) с несколькими
типами частиц [405, Гл. 11].
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Значит 𝑓(𝑥,𝑠) является строго возрастающей и строго выпуклой вниз функ­
цией 𝑥, принимающей в точках 𝑥 = 0 и 𝑥 = 1 соответственно значения
𝑓(0,𝑠) =

∑︀𝑟
𝑖=1(λ𝑖/λ)β𝑖(𝑠 + λ) > 0 и 𝑓(1,𝑠) =

∑︀𝑟
𝑖=1(λ𝑖/λ)

(λ+𝑠)β𝑖(𝑠+λ)
𝑠+λβ𝑖(𝑠+λ)

6 1.
При фиксированном 𝑥, имеем:

(𝑓(𝑥,𝑠))′𝑠 =
𝑟∑︁

𝑖=1

λ𝑖

λ

(λ+ 𝑠)β′
𝑖(𝑠+ λ)(λ+ 𝑠− λ𝑥) + λ𝑥β𝑖(𝑠+ λ)(β𝑖(𝑠+ λ)− 1)

(λ+ 𝑠− λ𝑥(1− β𝑖(𝑠+ λ)))2
< 0,

т. е. 𝑓(𝑥,𝑠) является строго убывающей функцией 𝑠.
Рассмотрим уравнение

𝑥 = 𝑓(𝑥,𝑠). (1.50)

При каждом 𝑠 > 0, поскольку 𝑓(0,𝑠) > 0 и 𝑓(1,𝑠) 6 1, оно имеет единственное
решение тогда и только тогда, когда

(𝑓(𝑥,𝑠))′𝑥|𝑥=1 =
𝑟∑︁

𝑖=1

λ𝑖

λ

(1− β𝑖(λ))

β𝑖(λ)
= κ3.

Предположим, что κ3 < 1. В этом случае решение 𝑥(𝑠) уравнения (1.50)
при каждом 𝑠 > 0 удовлетворяет неравенствам 0 < 𝑥(𝑠) 6 1, причем 𝑥(0) = 1

и 𝑥(𝑠) → 1 при 𝑠 → 0. Последнее означает, что период занятости системы коне­
чен с вероятностью единица. Дифференцируя (1.50) по 𝑠 в точке 𝑠 = 0 получаем
уравнение для определения средней длины периода занятости E𝑈 = −𝑥′(0):

E𝑈 = −
𝑟∑︁

𝑖=1

λ𝑖

λ

λβ𝑖(λ)(β𝑖(λ)−1)− λ2β𝑖(λ)(1−β𝑖(λ))E𝑈
λ2(β𝑖(λ)))2

,

откуда

E𝑈 =
1

λ

κ3

1− κ3
. (1.51)

Таким образом, при κ3 < 1 период занятости системы не только конечен с
вероятностью единица, но и имеет конечное среднее значение.

Пусть теперь κ3 = 1. В этом случае, уравнение (1.50) при каждом 𝑠 > 0

также имеет единственное решение, скажем 𝑥(𝑠). Однако, хотя 𝑥(𝑠) → 1

при 𝑠 → 0, как видно из (1.51), средняя длина периода занятости равна бес­
конечности.

Наконец, при κ3 > 1 уравнение (1.50) имеет два решения при 𝑠 = 0:
𝑥1(0) = 1 и 𝑥2(0) = 𝑥(0) < 1. При 𝑠 > 0 решение 𝑥(𝑠) по-прежнему единственно,
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но 𝑥(𝑠) → 𝑥(0) при 𝑠 → 0. Последнее означает, что с вероятностью 1− 𝑥(0)

период занятости системы никогда не кончится.

Простейшие изменения в формуле (1.46) позволяют получить выражение
для ПЛС стационарного распределения времени ожидания заявкой 𝑖-го типа
начала обслуживания. Как обычно, дифференцируя (1.44)—(1.46) по 𝑠 необходи­
мое число раз, можно получить моменты любых порядков основных временных
характеристик. Например, ПЛС ϕ(𝑠) стацинарного распределения времени
пребывания в системе заявки произвольного типа равно ϕ(𝑠) = ϕ⃗(𝑠)TA1. Под­
разумевая под (h(𝑠)T)′ вектор–строку h(𝑠)T, в котором на месте каждого
элемента стоит значение его производной в точке 𝑠, формально из (1.46) имеем

(ϕ(𝑠))′ = 𝑃0

(︁
ψ⃗(𝑠)T

)︁′
A1+

+ pT
1

(︀
I − B − κ1bbTA

)︀−1
(︂
(u(𝑠))′ψ⃗(𝑠)T + u(𝑠)

(︁
ψ⃗(𝑠)T

)︁′)︂
A1.

Отсюда, замечая, что

ψ⃗(0)T = 1T, u(0) = 1,

(ψ⃗(0)T)′ =−1

λ
bT(I − B)−1,

(u(0))′ =−1

λ

1

1− κ3
(I − B)−1b,

следует выражение для стационарного среднего времени E𝑉 = −(ϕ(0))′ пребы­
вания произвольной заявки в системе:

E𝑉 =
1

λ
pT
1

(︀
I − B − κ1bbTA

)︀−1
(︂

I +
1

1− κ3
(I − B)−1B

)︂
1. (1.52)

В качестве другого примера приведем формулу для стационарного среднего
времени E𝑉𝑖 пребывания заявки 𝑖-го типа в системе, которая аналогичным же
образом находится из (1.46):

E𝑉𝑖 =
1− β𝑖(λ)

λβ𝑖(λ)
+

1

λ

1

1− κ3

𝑟∑︁
𝑖=1

λ𝑖

λ

(1− β𝑖(λ))
2

β2
𝑖 (λ)

. (1.53)

Сравнивая (1.42), (1.51), (1.52) и (1.43), (1.53), приходим к следующим
выводам:
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– для немарковской многопотоковой безприоритетной неконсервативной
однолинейной системы с дисциплиной LIFORe справедлив закон Литт­
ла, причем как для произвольной заявки, так и для заявки каждого
типа42;

– в отличие от однопотоковой системы (см. (1.23) и (1.25)), средняя дли­
на периода занятости в многопотокой системе с дисциплиной LIFORe

уже не совпадает со средним временем пребывания в системе произ­
вольной заявки. Это обстоятельство, как будет видно в главе 2, играет
важную роль при выяснении физического смысла, который можно
придать характерикам производительности рассматриваемых неконсер­
вативных СМО.

42Здесь уместно упомянуть, что подобным же образом обстоит дело и в классической однолиней­
ной СМО с дисциплиной справедливого разделения процессора 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ |PS.
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1.4 Дополнения

Обслуживание одного потока двумя идентичными приборами

Рассмотрим систему 𝑀 |𝐺𝐼 | 2 |∞ | LIFORe с идентичными приборами, в
которую поступает пуассоновский поток заявок интенсивности λ. Длина за­
явки распределена по закону 𝐵(𝑥) с плотностью 𝑏(𝑥) = 𝐵′(𝑥) и средним∫︀∞
0 𝑥𝑏(𝑥)𝑑𝑥 < ∞. Будем считать, что в случае нескольких приборов дисципли­

на LIFORe работает следующим образом. В момент прихода очередной заявки
становится известной ее длина и, если система не пуста, приостанавливается
обслуживание на всех приборах. Каждой заявке, обслуживание которой было
прервано, независимо от всей предыстории функционирования системы назна­
чается новая остаточная длина в соответствии с распределением 𝐵(𝑥). Затем
обслуживание возобновляется. Новая заявка (мгновенно) становится на свобод­
ный прибор, если такой имеется; в противном случае она занимает первое место
в очереди. Когда остаточная длина заявки на приборе становится равной нулю,
она покидает систему и на обслуживание выбирается заявка с первого места
в очереди.

Введем случайный процесс η(𝑡) = (ν(𝑡),ξ1(𝑡), . . . ,ξν(𝑡)(𝑡)), описывающий
функционирование системы, как вектор длин заявок, находящихся в системе в
момент 𝑡. Когда в момент 𝑡 в системе находится 𝑘 заявок, то ν(𝑡) = 𝑘. Коорди­
наты ξ1(𝑡) и ξ2(𝑡) — это остаточные времена обслуживания заявок на приборах,
ξ3(𝑡) — длина первой заявки в очереди, а ξν(𝑡)(𝑡) — последней. В том случае,
когда в системе отсутствуют заявки, координаты η(𝑡), начиная со второй, не
определяются. Наконец, при ν(𝑡) = 1 координата ξ1(𝑡) хранит остаточное время
обслуживания единственной заявки на приборе. Процесс η(𝑡) является марков­
ским и описывает состояние очереди и приборов в момент 𝑡. Предположим43,
что существуют стационарные вероятности

𝑃0 = lim
𝑡→∞

P {ν(𝑡) = 0} ,
𝑃𝑘(𝑥1, . . . ,𝑥𝑘) = lim

𝑡→∞
P {ν(𝑡) = 𝑘, ξ1(𝑡) < 𝑥1, . . . ,ξ𝑘(𝑡) < 𝑥𝑘} , 𝑘 > 1,

43 Ниже будет получено только необходимое условие существования стационарного режима.
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и ограниченные непрерывные плотности вероятностей

𝑝1(𝑥) = 𝑃 ′
1(𝑥),

𝑝𝑘(𝑥1,𝑥2) =
𝜕2

𝜕𝑥1 𝜕𝑥2
𝑃𝑘(𝑥1,𝑥2,∞, . . . ,∞), 𝑘 > 2.

В приводимой ниже Теореме 10 показано, что плотности 𝑝1(𝑥) и 𝑝𝑘(𝑥1,𝑥2)

могут быть рассчитаны рекуррентным образом. Прием, позволяющий полу­
чить соответствующие формулы в идейном плане не отличается от того, что
использовался для вывода рекуррентных соотношений Теоремы 4. Но напря­
мую применить его к новой системе нельзя, поскольку, допуская некоторую
вольность речи, для правильной “склейки” кусков процесса η(𝑡) необходимо учи­
тывать длину заявки на другом приборе — т.е. делать то, что не требовалось
в однолинейной системе. Опишем конструкцию, которая расширяет область
применения метода доказательства Теоремы 4 на 2–линейные СМО с пуассо­
новским входящим потоком и дисциплиной LIFORe.

Пусть в некоторый момент в систему поступила новая заявка и сразу
после ее поступления в системе оказалось 𝑛 > 3 заявок с длинами44 𝑦1, . . . ,𝑦𝑛.
Обозначим через 𝑓𝑛(𝑠;𝑥1,𝑥2,𝑦4, . . . ,𝑦𝑛|𝑦1, . . . ,𝑦𝑛) ПЛС времени до момента, когда
в системе впервые останется (𝑛−1) заявка и плотность вероятности того, что в
тот же момент длины оставшихся в системе заявок будут равны 𝑥1,𝑥2,𝑦4, . . . ,𝑦𝑛.
Из описания системы и свойств дисциплины LIFORe следует, что функции 𝑓𝑛

симметричны на паре переменных (𝑥1,𝑥2), не зависят от 𝑦4, 𝑦5, . . . , 𝑦𝑛 и совпа­
дают при 𝑛 > 3. Воспользовавшись формулой полной вероятности, получаем
уравнение для расчета условной плотности 𝑓 = 𝑓𝑛, 𝑛 > 3:

𝑓(𝑠;𝑥1,𝑥2|𝑦1,𝑦2,𝑦3) = 1(𝑦16𝑦2)𝑒
−(λ+𝑠)𝑦1δ (𝑦2 − (𝑦1 + 𝑥2)) δ(𝑦3 − 𝑥1)+

+ 1(𝑦1>𝑦2)𝑒
−(λ+𝑠)𝑦2δ (𝑦1 − (𝑦2 + 𝑥1)) δ(𝑦3 − 𝑥2)+

+
λ
(︀
1−𝑒−(λ+𝑠)min(𝑦1,𝑦2)

)︀
λ+ 𝑠

∫︁ ∞

0

∫︁ ∞

0

𝑓(𝑠;𝑢1,𝑢2)𝑓(𝑠;𝑥1,𝑥2|𝑢1,𝑢2,𝑦3)𝑑𝑢1𝑑𝑢2, (1.54)

где 𝑓(𝑠;𝑥1,𝑥2) =
∫︀∞
0

∫︀∞
0

∫︀∞
0 𝑓(𝑠;𝑥1,𝑥2|𝑢1,𝑢2,𝑢3)𝑏(𝑢1)𝑏(𝑢2)𝑏(𝑢3)𝑑𝑢1𝑑𝑢2𝑑𝑢3, δ —

дельта–функция Дирака, а 1(𝐴) — индикатор множества 𝐴. Решая (1.54), по­
лучаем, что для 𝑓(𝑠;𝑥1,𝑥2) справедлива формула 𝑓(𝑠;𝑥1,𝑥2) = 𝑏(𝑥1)𝑔(𝑠;𝑥2) +

𝑏(𝑥2)𝑔(𝑠;𝑥1), 𝑠, 𝑥1, 𝑥2 > 0, в которой неизвестная неотрицательная функция 𝑔
44Предполагается, что на первом приборе заявка длины 𝑦1, на втором — 𝑦2, в очереди на первом

месте заявка длины 𝑦3, на втором — 𝑦4 и т. д.
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есть решение интегрального уравнения

𝑔(𝑠;𝑥) = 𝑦(𝑠;𝑥) + γ(𝑠)

∫︁ ∞

0

𝐾(𝑠;𝑢,𝑥)𝑔(𝑢)𝑑𝑢, (1.55)

в котором

𝑦(𝑠;𝑥) =

∫︁ ∞

0

𝑒−(λ+𝑠)𝑢𝑏(𝑢)𝑏(𝑢+ 𝑥)𝑑𝑢,

𝐾(𝑠;𝑢,𝑥) = θ(𝑢− 𝑥)𝑒−(λ+𝑠)(𝑢−𝑥)𝑏(𝑢− 𝑥) + 𝑒−(λ+𝑠)𝑢𝑏(𝑢+ 𝑥),

γ(𝑠) =
2λ
λ+𝑠

∫︀∞
0

∫︀ 𝑢

0 𝑏(𝑢)𝑏(𝑣)
(︀
1−𝑒−(λ+𝑠)𝑣

)︀
𝑑𝑣𝑑𝑢

1− 2λ
λ+𝑠

∫︀∞
0

∫︀ 𝑢

0

(︀
1−𝑒−(λ+𝑠)𝑣

)︀
(𝑏(𝑢)𝑔(𝑠; 𝑣)+𝑏(𝑣)𝑔(𝑠;𝑢)) 𝑑𝑣𝑑𝑢

,

а θ — функция Хевисайда45. Отметим, что значение γ(𝑠) зависит от неиз­
вестной функции 𝑔, и уравнение (1.55), по-видимому, не обладает хорошими
особенностями, кроме одной: свободный член и ядро являются неотрицатель­
ными функциями. В некоторых частных случаях46 решение (1.55) может быть
выписано в явном виде. В общем же случае его приходится искать численно.
Хорошие результаты дает итерационный метод, причем в качестве начальной
итерации необходимо брать нулевое приближение. Тогда итерации будут возрас­
тающими, что позволит контролировать сходимость к точному решению. При
𝑠 = 0 для контроля точности можно пользоваться условием нормировки, из
которого следует, что

∫︀∞
0 𝑔(0;𝑥)𝑑𝑥 = 1/2.

Пусть теперь в некоторый момент в систему поступила новая заявка и
сразу после ее поступления в системе оказалось две заявки с остаточными дли­
нами 𝑦1 и 𝑦2. Обозначим через 𝑓2(𝑠;𝑥|𝑦1,𝑦2) ПЛС времени до момента, когда
в системе впервые останется одна заявка, и плотность вероятности того, что в
тот же момент ее остаточная длина будет равна 𝑥. Выписывая для 𝑓2(𝑠;𝑥|𝑦1,𝑦2)
уравнение, аналогичное (1.54), и решая его, получаем, что 𝑓2(𝑠;𝑥) = 2𝑔(𝑠;𝑥).

Введем обозначения:

β̂(λ) = λ

∞∫︁
0

𝑒−λ𝑢(1−𝐵(𝑢))2 𝑑𝑢, (1.56)

β̄(λ) = 2λ

∞∫︁
0

∞∫︁
0

𝑒−λ𝑧(1−𝐵(𝑧))𝑔(0; 𝑧 + 𝑥) 𝑑𝑥𝑑𝑧, (1.57)

β̃(λ) = 2λ

∞∫︁
0

∞∫︁
0

𝑒−λ𝑧𝑔(0; 𝑧 + 𝑥) 𝑑𝑥𝑑𝑧. (1.58)

45Т. е. θ(𝑥) = 1 при 𝑥 > 0 и θ(𝑥) = 0 иначе.
46Например, при 𝑠 = 0 в случае 𝐵(𝑥) = 1− 𝑒−µ𝑥 решение (1.55) есть 𝑔(0;𝑥) = 1

2µ𝑒
−µ𝑥.
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Теорема 10. В системе 𝑀 |𝐺𝐼 | 2 |∞ | LIFORe стационарное распределение
𝑃𝑘, 𝑘 > 0, общего числа заявок в системе образует, начиная с 𝑃1, геомет­
рическую прогрессию:

𝑃𝑘 =

(︃
β̂(λ)

1− β̄(λ)

)︃𝑘−1

𝑃1, 𝑘 > 1, (1.59)

𝑃1 = 𝑃0
1− β(λ)
1− β̃(λ)

, 𝑃0 =

(︃
1 +

1− β(λ)
1− β̃(λ)

1− β̄(λ)
1− β̄(λ)− β̂(λ)

)︃−1

; (1.60)

маргинальые стационарные плотности вероятностей состояний 𝑝1(𝑥) и
𝑝𝑘(𝑥1,𝑥2), 𝑘 > 2, определяются формулами:

𝑝𝑘(𝑥1,𝑥2) =

∞∫︁
𝑥1

λ𝑒−λ(𝑢−𝑥1) (𝑏(𝑢)𝑏(𝑥2−𝑥1+𝑢)𝑃𝑘−1+𝑓(0;𝑢,𝑥2−𝑥1+𝑢)𝑃𝑘) 𝑑𝑢, (1.61)

𝑝1(𝑥) =

∞∫︁
𝑥

𝑒−λ(𝑢−𝑥) (λ𝑏(𝑢)𝑃0 + 2λ𝑔(0;𝑢)𝑃1) 𝑑𝑢; (1.62)

ПЛС 𝑢(𝑠;𝑥) периода занятости, открываемого заявкой длины 𝑥, имеет вид

𝑢(𝑠; 𝑠) = 𝑒−(𝑠+λ)𝑥 +
(︁
1− 𝑒−(λ+𝑠)𝑥

)︁ 2λ
λ+𝑠

∞∫︀
0

𝑒−(𝑠+λ)𝑢𝑔(𝑠;𝑢)𝑑𝑣

1− 2λ
λ+𝑠

∞∫︀
0

(︀
1− 𝑒−(λ+𝑠)𝑢

)︀
𝑔(𝑠;𝑢)𝑑𝑢

; (1.63)

ПЛС ϕ(𝑠;𝑥) стационарного распределения времени пребывания в системе за­
явки длины 𝑥 задается выражением

ϕ(𝑠;𝑥) = 𝑃0ψ(𝑠;𝑥) + (1− 𝑃0)ψ(𝑠;𝑥)

∫︁ ∞

0

𝑓2(𝑠;𝑢)𝑑𝑢, (1.64)

где ПЛС ψ(𝑠;𝑥) распределения времени пребывания заявки длины 𝑥 на приборе
опредяется формулой

ψ(𝑠;𝑥) = 𝑒−(λ+𝑠)𝑥 +
λ
(︀
1− 𝑒−(λ+𝑠)𝑥

)︀
λ+ 𝑠

ψ(𝑠), и ψ(𝑠) =
β(λ+ 𝑠)(λ+ 𝑠)

𝑠+ λβ(λ+ 𝑠)
. (1.65)

Доказательство. Пусть 𝑚 > 1 — произвольное целое число. Выделим для про­
цесса ν(𝑡) те интервалы времени, когда число заявок в системе будет больше
𝑚, т. е. ν(𝑡) > 𝑚. Тогда, в силу свойств дисцилины LIFORe, с того момента, как
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в системе впервые появится (𝑚+ 1)-я заявка и до того момента, как в системе
снова будет 𝑚 заявок, последние (𝑚−1) компонент процесса (ξ1(𝑡), . . . ,ξν(𝑡)(𝑡))

не меняются. Следовательно, если для процесса выкинуть все те интервалы
времени, когда ν(𝑡) > 𝑚, и оставшиеся куски склеить, то вероятностные харак­
теристики получившегося после склейки процесса будут одинаковыми для всех
𝑚 и плотности 𝑝1(𝑥), 𝑝𝑘(𝑥1,𝑥2), 2 6 𝑘 6 𝑚, будут совпадать с точностью до
постоянного множителя, не зависящего от 𝑘.

Положим 𝑃1 =
∫︀∞
0 𝑝1(𝑢)𝑑𝑢, 𝑃𝑘 =

∫︀∞
0

∫︀∞
0 𝑝𝑘(𝑢,𝑣)𝑑𝑢𝑑𝑣, 𝑘 > 2. С учетом

описанного выше свойства дисциплины LIFORe, для стационарных плотностей
вероятностей состояний справедлива следующая система уравнений (Колмого­
рова–Чепмена):

− 𝑝′1(𝑥) = −λ𝑝1(𝑥) + λ𝑏(𝑥)𝑃0 + λ𝑓2(0;𝑥)𝑃1, (1.66)

− 𝜕𝑝𝑘(𝑥1,𝑥2)

𝜕𝑥1
− 𝜕𝑝𝑘(𝑥1,𝑥2)

𝜕𝑥2
= −λ𝑝𝑘(𝑥1,𝑥2)+

+ λ𝑏(𝑥1)𝑏(𝑥2)𝑃𝑘−1 + λ𝑓𝑘+1(0;𝑥1,𝑥2)𝑃𝑘, 𝑘 > 2, (1.67)

с граничными условиями 𝑝1(∞) = 0, 𝑝𝑘(∞,𝑥2) = 𝑝𝑘(𝑥1,∞) = 𝑝𝑘(∞,∞) = 0,
𝑘 > 2. Дифференциальные уравнения (1.67) с частными производными первого
порядка нетрудно разрешить методом характеристик. Предположим, что реше­
ние каждого существует и единственно. Зафиксируем в (1.67) любое целое 𝑘 > 2

и сделаем замену 𝑝𝑘(𝑥1,𝑥2) = ω(ε1,ε2). Поскольку 𝑑𝑥1

1 = 𝑑𝑥2

1 — характеристика
уравнения (1.67), ε1 и ε2 выберем следующим образом: ε1 = 𝑥1, ε2 = 𝑥1 − 𝑥2.
Заметим, что якобиан такого преобразования 𝜕ε2

𝜕𝑥2
̸= 0. Тогда учитывая, что

𝜕𝑝𝑘(𝑥1,𝑥2)

𝜕𝑥1
=

𝜕ω(ε1,ε2)

𝜕ε1

𝜕ε1
𝜕𝑥1

+
𝜕ω(ε1,ε2)

𝜕ε2

𝜕ε2
𝜕𝑥1

=
𝜕ω(ε1,ε2)

𝜕ε1
+

𝜕ω(ε1,ε2)

𝜕ε2
,

𝜕𝑝𝑘(𝑥1,𝑥2)

𝜕𝑥2
= 0 +

𝜕ω(ε1,ε2)

𝜕ε2
𝜕ε2 · (−1),

получаем из (1.67) обыкновенное дифференциальное уравнение первого поряд­
ка для функции ω:

−𝜕ω(ε1,ε2)

𝜕ε1
= −λω(ε1,ε2) + λ𝑏(ε1)𝑏(ε1 − ε2)𝑃𝑘−1 + λ𝑓𝑘+1(0; ε1,ε1 − ε2)𝑃𝑘.

Отсюда, трактуя ε2 как параметр и вспоминая, что 𝑓𝑘 = 𝑓 при 𝑘 > 3, уже
нетрудно получить следующее выражение для плотности 𝑝𝑘(𝑥1,𝑥2) при 𝑘 > 2:

𝑝𝑘(𝑥1,𝑥2) = 𝑒λ𝑥1

∞∫︁
𝑥1

𝑒−λ𝑢 (λ𝑏(𝑢)𝑏(𝑥2−𝑥1+𝑢)𝑃𝑘−1+λ𝑓(0;𝑢,𝑥2−𝑥1+𝑢)𝑃𝑘) 𝑑𝑢, (1.68)
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где 𝑓(0;𝑥1,𝑥2) = 𝑏(𝑥1)𝑔(0;𝑥2) + 𝑏(𝑥2)𝑔(0;𝑥1), а функция 𝑔 есть решение урав­
нения (1.55) при 𝑠 = 0. Для нахождения неизвестных вероятностей 𝑃𝑘−1 и 𝑃𝑘,
фигурирующих в (1.68), проинтегрируем (1.68) по всем значениям 𝑥1 и 𝑥2. С
помощью обычных преобразований с учетом (1.56)–(1.58), получим соотноше­
ние 𝑃𝑘 = β̂(λ)𝑃𝑘−1 + β̄(λ)𝑃𝑘, из которого следует (1.59). Поступая аналогичным
образом с решением уравнения (1.66), которое имеет вид

𝑝1(𝑥) = 𝑒λ𝑥
∞∫︁
𝑥

𝑒−λ𝑢(λ𝑏(𝑢)𝑃0 + 2λ𝑔(0;𝑢)𝑃1) 𝑑𝑢,

получаем первое соотношение в (1.60). Оставшаяся неизвестной вероятность
𝑃0, как обычно, находится из условия нормировки

∑︀∞
𝑘=0 𝑃𝑘 = 1, откуда следует

второе соотношеие в (1.60).
Будем считать, что период занятости системы начинается в момент по­

ступления заявки в пустую систему и заканчивается в тот момент, когда система
впервые оказалась свободной от заявок. Тогда по формуле полной вероятности
находится уравнение для ПЛС 𝑢(𝑠;𝑢) распределения периода занятости, от­
крываемого заявкой длины 𝑥 > 0:

𝑢(𝑠;𝑥) = 𝑒−(𝑠+λ)𝑥 +
λ

λ+ 𝑠

(︁
1− 𝑒−(λ+𝑠)𝑥

)︁ ∞∫︁
0

𝑢(𝑠;𝑢)𝑓2(𝑠;𝑢)𝑑𝑢.

Его решение находится стандартным образом и, с учетом явного вида 𝑓2, имеет
вид (1.63).

Время пребывания заявки длины 𝑥 в системе, находящейся в стационар­
ном режиме, представляет собой сумму двух независимых частей: времени
ожидания начала обслуживания и собственно времени нахождения заявки на
приборе. Поскольку с вероятностью 𝑃0 +𝑃1 поступающая заявка попадает сра­
зу на прибор, а с дополнительной вероятностью — в очередь, то ПЛС ϕ(𝑠;𝑥)

стационарного распределения времени пребывания в системе заявки длины 𝑥

имеет вид

ϕ(𝑠;𝑥) = (𝑃0 + 𝑃1)ψ(𝑠; 𝑠) + (1− 𝑃0 − 𝑃1)ψ(𝑠; 𝑠)ω(𝑠),

где ψ(𝑠;𝑥) — ПЛС распределения времени пребывания заявки длины 𝑥 на
приборе, ω(𝑠) — ПЛС распределения времени, необходимого для уменьшения
общего числа заявок в системе на единицу, при условии, что обслуживание
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заявок на обоих приборах только началось (причем длины заявок выбираны
независимо из распределения 𝐵(𝑥)). Очевидно, что для заявки, поступившей
на прибор, уже безразлично сколько в системе приборов и сколько еще за­
явок находится в системе. Таким образом, ПЛС ψ(𝑠;𝑥) условного и ПЛС
ψ(𝑠) =

∫︀∞
0 ψ(𝑠;𝑥)𝑑𝐵(𝑥) безусловного распределения времени пребывания за­

явки на приборе, совпадает с аналогичными характеристиками однолинейной
системы. Это доказывает (1.65). Замечая, что из самого определения ω(𝑠) сле­
дует ω(𝑠) =

∫︀∞
0 𝑓2(𝑠;𝑢)𝑑𝑢, получаем (1.64).

Всюду выше существование стационарного распределения47 лишь пред­
полагалось. Необходимое условие, при котором существуют 𝑃𝑘 > 0 следует
из только что доказанной теоремы (см. (1.60)), однако критерий по-прежнему
не ясен. Результаты, полученные для одноканальной системы (см. Теорему 3 ),
подсказывают, что для двухканальной системы необходимое и достаточное усло­
вие существования стационарного режима, по-видимому, не должно зависеть от
моментов длины заявки какого-либо порядка, т. е. для любого распределения
длины заявки при достаточно малой интенсивности λ существует стационарное
распределение. Пусть E𝑉 — стационарное среднее время пребывания в системе
произвольной заявки, а E𝑁 — стационарное среднее число заявок в системе.
Как показывают вычислительные эксперименты, средняя длина ПЗ рассматри­
ваемой системы равна48 3

2E𝑉 . Отсюда получаем, что, в случае справедливости
формулы Литтла49 (которую используемым здесь методом доказать не удает­
ся), условие 𝑃0 > 0 является критерием существования стационарного режима.

47В рамках изучаемых в первой части диссертации вопросов, анализ СМО ограничен только
стационарными характеристиками. Ввиду важности для задач практики и вопросов получения
вероятностно-временных характеристик систем в переходном режиме, в рамках диссертации вни­
мание было уделено развитию одного из известных в этой области исследований методов — метода
логарифмической нормы [406]. Для новых классов СМО изучены вопросы построение оценок ско­
рости сходимости к стационарному режиму, облегчающие численное решение бесконечных систем
(прямых) дифференциальных уравнений Колмогорова. Результаты этого исследования, выполнен­
ного в рамках проекта 075–15–2020–799 Министерства науки и высшего образования Российской
Федерации “Методы построения и моделирования сложных систем на основе интеллектуальных и
суперкомпьютерных технологий, направленные на преодоление больших вызовов”, изложены в ра­
боте [407].

48В отличие от случая одноканальной системы, в которой стационарное среднее время пребыва­
ния заявки в системе совпадает со средней длиной ПЗ.

49Из которой следует, что E𝑉 = λ−1E𝑁 = (1− 𝑃0)
2/(λ𝑃1).
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Инверсионный порядок обслуживания с вероятностным
приоритетом в системе 𝑀 |𝐺𝐼 | 1 |∞ c групповым потоком

разнородных заявок

Рассмотрим систему 𝑀 |𝐺𝐼 | 1 |∞ на вход которой поступает групповой
пуассоновский поток заявок с переменной интенсивностью λ𝑛, зависящей от
числа заявок 𝑛, находящихся в системе. Через 𝐵𝑘(𝑥1, . . . ,𝑥𝑘) будем обозначать
вероятность того, что в поступившей группе будет 𝑘 заявок, причем первая
заявка будет иметь длину меньше 𝑥1, вторая — меньше 𝑥2 и т. д. Будем предпо­
лагать, что функции 𝐵𝑘 имеют непрерывные ограниченные плотности50

𝑏𝑘(𝑥1, . . . ,𝑥𝑘) =
𝜕𝑘

𝜕𝑥1 · · · 𝜕𝑥𝑘
𝐵𝑘(𝑥1, . . . ,𝑥𝑘), 𝑘 > 1,

а длины заявок в различных группах независимы между собой.
В системе реализована дисциплина инвесионный порядок обслуживания с

вероятностным приоритетом (далее — LIFOPP), которая работает следующим
образом. В момент прихода очередной группы заявок замеряется остаточное
время обслуживания первой заявки из группы. Пусть она равна 𝑢. Эта дли­
на сравнивается с остаточной длиной заявки, находящейся на обслуживании.
Если оставшееся время обслуживания заявки на приборе равно 𝑣, то с веро­
ятностью 𝑤(𝑢,𝑣) первая заявка из группы становится на обслуживание, за
ней (в очередь) становятся остальные заявки группы, затем обслуживавшая­
ся ранее и остальные заявки, прежде находившиеся в системе. С вероятностью
𝑤(𝑢,𝑣) = 1− 𝑤(𝑢,𝑣) обслуживавшаяся ранее заявка продолжает обслуживать­
ся на приборе, вновь поступившие заявки становятся (в очередь) за ней, затем
остальные находившиеся прежде в системе заявки. Когда остаточная длина
заявки на приборе становится равной нулю, она покидает систему и на об­
служивание выбирается заявка с первого места в очереди. Недообслуженные
заявки дообслуживаются.

Условимся кодировать описанную систему как 𝑀
[𝑋𝑖]
𝑘 |𝐺𝐼 | 1 |∞ | LIFOPP,

где обозначение 𝑀
[𝑋𝑖]
𝑘 указывает на тот факт, что входящий поток — группо­

вой, состоит из разнородных заявок, а его параметр зависит от числа 𝑘 заявок
в системе.

50Для сокращения записи будем также писать 𝐵𝑘(𝑑𝑥1, . . . ,𝑑𝑥𝑘) вместо 𝑏𝑘(𝑥1, . . . ,𝑥𝑘)𝑑𝑥1 · · · 𝑑𝑥𝑘.
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Очевидно, дисциплина LIFOPP является частным случаем введенной в па­
раграфе 1.1 дисциплины LIFOGPP, причем51

𝑑(𝑥,𝑦|𝑢,𝑣) = δ(𝑥− 𝑢)δ(𝑦 − 𝑣)𝑤(𝑢,𝑣),

𝑑*(𝑥,𝑦|𝑢,𝑣) = δ(𝑥− 𝑢)δ(𝑦 − 𝑣)𝑤(𝑢,𝑣).

Введем случайный процесс η(𝑡) = (ν(𝑡),ξ1(𝑡), . . . ,ξν(𝑡)(𝑡)), описывающий
функционирование системы, как вектор длин заявок, находящихся в системе
в момент 𝑡. Если в момент 𝑡 в системе находится 𝑘 заявок, то ν(𝑡) = 𝑘, при­
чем ξ1(𝑡) хранит остаточное время обслуживания заявки, находящейся в этот
момент на приборе, ξ2(𝑡) — остаточное время обслуживания первой заявки
в очереди, . . . , ξ𝑘(𝑡) —последней, (𝑘− 1)-й заявки в очереди. Процесс η(𝑡) явля­
ется марковским и описывает состояние очереди и прибора в момент 𝑡.

Положим

𝑃0(𝑡) = P{ν(𝑡) = 0},
𝑃𝑘(𝑡;𝑥1, . . . ,𝑥𝑘) = P{ν(𝑡) = 𝑘, ξ1(𝑡) < 𝑥1, . . . ,ξ𝑘(𝑡) < 𝑥𝑘}, 𝑘 > 1,

и введем совместные и маргинальные стационарные распределения процес­
са η(𝑡):

𝑃𝑘(𝑥1, . . . ,𝑥𝑘) = lim
𝑡→∞

𝑃𝑘(𝑡;𝑥1, . . . ,𝑥𝑘),

𝑃𝑘(𝑥) = 𝑃𝑘(𝑥,∞, . . . ,∞), 𝑃𝑘 = 𝑃𝑘(∞),

𝑝𝑘(𝑥1, . . . ,𝑥𝑘) =
𝜕𝑘

𝜕𝑥1 · · · 𝜕𝑥𝑘
𝑃𝑘(𝑥1, . . . ,𝑥𝑘),

𝑝𝑘(𝑥) = 𝑃 ′
𝑘(𝑥).

Относительно плотностей 𝑝𝑘(𝑥1, . . . ,𝑥𝑘) и 𝑝𝑘(𝑥) будем предполагать, что они
существуют, являются ограниченными и непрерывными.

Теорема 11. Для СМО 𝑀
[𝑋𝑖]
𝑘 |𝐺𝐼 | 1 |∞ | LIFOPP маргинальные стацио­

нарные вероятности состояний определяются из рекуррентной системы
51Напоним, что всюду δ обозначает дельта–функцию Дирака.
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уравнений

−𝑝′1(𝑥) = 𝑎1(𝑥)− λ1𝑝1(𝑥) + λ1

∞∫︁
0

𝑝1(𝑦)𝐾(𝑥,𝑦) 𝑑𝑦 + λ1𝑝1(𝑥)𝑔1(𝑥), (1.69)

−𝑝′𝑘(𝑥) = 𝑎𝑘(𝑥)− λ𝑘𝑝𝑘(𝑥) + λ𝑘

∞∫︁
0

𝑝𝑘(𝑦)𝐾(𝑥,𝑦) 𝑑𝑦 +

+
𝑘−1∑︁
𝑖=1

λ𝑖

(︃
𝑝𝑖(𝑥)𝑔𝑘,𝑖(𝑥) +

∞∫︁
0

𝑝𝑖(𝑦)𝐺𝑘,𝑖(𝑥,𝑦) 𝑑𝑦

)︃
, 𝑘 > 2, (1.70)

с граничными условиями 𝑝𝑘(∞) = 0, где 𝑎𝑘, 𝐾, 𝑔 и 𝐺𝑘,𝑖 — некоторые явным
образом выписываемые функции.

Доказательство. Убедиться в справедливости (1.69) и (1.70) и указать явный
вид функций 𝑎𝑘, 𝐾, 𝑔 и 𝐺𝑘,𝑖, можно, выписав уравнения для совместных стаци­
онарных плотностей 𝑝𝑘(𝑥1, . . . ,𝑥𝑘) и проинтегрировав их по 𝑥2, . . . ,𝑥𝑘. Для их
получения воспользуемся свойством дисциплины LIFOGPP, описанном в дока­
зательстве Теоремы 1 и наследуемым рассматриваемой дисциплиной LIFOPP.
Начнем с 𝑝1(𝑥) и рассмотрим моменты времени 𝑡 и 𝑡+Δ. Для того чтобы в мо­
мент времени 𝑡+Δ в системе находилась одна заявка длины 𝑥, нужно, чтобы
произошло одно из следующих событий:

– в момент 𝑡 в системе находилось 0 заявок и за время Δ поступила груп­
па заявок произвольного размера, причем заявка на последем месте
в группе имела длину 𝑥;

– в момент 𝑡 в системе находилась одна заявка остаточной длины 𝑥+Δ

и за время Δ новая группа не поступила в систему;
– в момент 𝑡 в системе находилась одна заявка остаточной длины 𝑥+Δ,

за время Δ поступила группа заявок размера 𝑖, 𝑖 > 1, первая заявка в
группе имела длину 𝑦1, . . . , последняя заявка имела длину 𝑦𝑖, и первая
заявка в группе заняла прибор (с вероятностью 𝑤(𝑦1,𝑥));

– в момент 𝑡 в системе находилась одна заявка, за время Δ поступила
одна заявка длины 𝑥, которая встала в очередь;

– в момент 𝑡 в системе находилась одна заявка остаточной длины 𝑦1, за
время Δ поступила группа заявок размера 𝑖, 𝑖 > 2, первая заявка в
группе имела длину 𝑦2, . . . , предпоследняя заявка имела длину 𝑦𝑘, а по­
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следняя — длину 𝑥, и группа целиком всталв в очередь (с вероятностью
𝑤(𝑦2,𝑦1)).

Вероятности других событий равны 𝑜(Δ). Применяя формулу полной вероят­
ности, имеем

𝑝1(𝑡+Δ;𝑥) = λ0Δ𝑃0(𝑡)

(︃
𝑏1(𝑥) +

∞∑︁
𝑖=2

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖−1>0

𝑏𝑖(𝑦1, . . . ,𝑦𝑖−1,𝑥) 𝑑𝑦1 · · · 𝑑𝑦𝑖−1

)︃
+

+ (1− λ1Δ𝑝1(𝑡;𝑥+Δ)) + λ1Δ

∞∫︁
0

𝑝1(𝑡; 𝑦)𝑏1(𝑥)𝑤(𝑥,𝑦) 𝑑𝑦+

λ1Δ𝑝1(𝑡;𝑥+Δ)
∞∑︁
𝑖=1

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖>0

𝑤(𝑦1,𝑥)𝐵𝑖(𝑑𝑦1, . . . ,𝑑𝑦𝑖)+

+ λ1Δ
∞∑︁
𝑖=2

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖>0

𝑝1(𝑡; 𝑦1)𝑏𝑖(𝑦2, . . . ,𝑦𝑖,𝑥)𝑤(𝑦2,𝑦1) 𝑑𝑦1 · · · 𝑑𝑦𝑖,

откуда, перенося слагаемое 𝑝1(𝑡;𝑥) в левую часть равенства, деля на Δ, устрем­
ляя Δ к нулю и учитывая стационарный режим функционирования системы,
получаем

− 𝑝′1(𝑥) = λ0𝑃0

(︃
𝑏1(𝑥)+

∞∑︁
𝑖=2

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖−1>0

𝑏𝑖(𝑦1, . . . ,𝑦𝑖−1,𝑥) 𝑑𝑦1 · · · 𝑑𝑦𝑖−1

)︃
− λ1𝑝1(𝑥)+

+ λ1𝑝1(𝑥)
∞∑︁
𝑖=1

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖>0

𝑤(𝑦1,𝑥)𝐵𝑖(𝑑𝑦1, . . . ,𝑑𝑦𝑖) + λ1

∞∫︁
0

𝑝1(𝑦)𝑏1(𝑥)𝑤(𝑥,𝑦) 𝑑𝑦+

+ λ1

∞∑︁
𝑖=2

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖>0

𝑝1(𝑦1)𝑏𝑖(𝑦2, . . . ,𝑦𝑖,𝑥)𝑤(𝑦2,𝑦1) 𝑑𝑦1 · · · 𝑑𝑦𝑖. (1.71)

Уравнение для 𝑝𝑘(𝑥1, . . . ,𝑥𝑘) получается аналогичным образом, но
несколько сложнее. Рассмотрим, как и выше, моменты времени 𝑡 и 𝑡+Δ.
Для того чтобы в момент времени 𝑡+Δ в системе находилось 𝑘, 𝑘 > 2, заявок,
причём на приборе заявка длины 𝑥1, а в очереди заявки длин 𝑥2, . . . ,𝑥𝑘, нужно,
чтобы произошло одно из следующих событий:

– в момент 𝑡 в системе находилось 0 заявок и за время Δ поступила группа
заявок размера 𝑘, причем первая заявка в группе имела длину 𝑥1, . . . ,

последняя заявка имела длину 𝑥𝑘;
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– в момент 𝑡 в системе находилось 0 заявок и за время Δ поступила группа
заявок размера 𝑖, 𝑖 > 𝑘 + 1, причем первые 𝑖− 𝑘 заявок в группе имели
произвольные длины, а другие 𝑘 заявок по порядку — длины 𝑥1, . . . ,𝑥𝑘

соответственно;
– в момент 𝑡 в системе находилось 𝑖, 1 6 𝑖 6 𝑘 − 1, заявок, причём заявка

на приборе имела длину 𝑥𝑘−𝑖+1, первая заявка в очереди имела дли­
ну 𝑥𝑘−𝑖+2, . . . , последняя заявка в очереди имела длину 𝑥𝑘, за время Δ

поступила группа из 𝑘 − 𝑖 заявок, причем первая заявка в группе имела
длину 𝑥1, вторая — 𝑥2, . . . , последняя заявка имела длину 𝑥𝑘−𝑖 и пер­
вая заявка из поступившей группы заняла на прибор (с вероятностью
𝑤(𝑥1,𝑥𝑘−𝑖+1));

– в момент 𝑡 в системе находилось 𝑖, 1 6 𝑖 6 𝑘 − 1, заявок, причём заяв­
ка на приборе имела длину 𝑥1, первая заявка в очереди имела длину
𝑥𝑘−𝑖+2, . . . , последняя заявка в очереди имела длину 𝑥𝑘, за время Δ по­
ступила группа из 𝑘 − 𝑖 заявок, причем первая заявка в группе имела
длину 𝑥2, вторая — 𝑥3, . . . , последняя заявка имела длину 𝑥𝑘−𝑖+1 и заяв­
ка на приборе продолжила обслуживаться (с вероятностью 𝑤(𝑥2,𝑥1));

– в момент 𝑡 в системе находилась 𝑘 заявок, причём заявка на приборе
имела длину 𝑥1, первая заявка в очереди имела длину 𝑥2, . . . , последняя
заявка в очереди имела длину 𝑥𝑘, и за время Δ не произошло поступ­
лений;

– в момент 𝑡 в системе находилось 𝑖, 1 6 𝑖 6 𝑘, заявок, причём заяв­
ка на приборе имела длину 𝑦, первая заявка в очереди имела длину
𝑥𝑘−𝑖+2, . . . , последняя заявка в очереди имела длину 𝑥𝑘, за время
Δ поступила группа из (𝑘 − 𝑖 + 1) заявок, причем первая заявка
в группе имела длину 𝑥1, вторая — 𝑥2, . . . , последняя заявка имела
длину 𝑥𝑘−𝑖+1 и заявка на приборе продолжила обслуживаться (с веро­
ятностью 𝑤(𝑥1,𝑦));

– в момент 𝑡 в системе находилось 𝑖, 1 6 𝑖 6 𝑘, заявок, причём заявка
на приборе имела длину 𝑥𝑘−𝑖+1, первая заявка в очереди имела длину
𝑥𝑘−𝑖+2, . . . , последняя заявка в очереди имела длину 𝑥𝑘, за время Δ по­
ступила группа из (𝑘 − 𝑖 + 1) заявок, причем первая заявка в группе
имела длину 𝑦, вторая — 𝑥1, . . . , последняя заявка имела длину 𝑥𝑘−𝑖,
и первая заявка из поступившей группы заняла прибор (с вероятно­
стью 𝑤(𝑦,𝑥𝑘−𝑖+1));
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– в момент 𝑡 в системе находилось 𝑖, 1 6 𝑖 6 𝑘, заявок, причём
заявка на приборе имела длину 𝑦1, первая заявка в очереди имела
длину 𝑥𝑘−𝑖+2, . . . , последняя заявка в очереди имела длину 𝑥𝑘, за
время Δ поступила группа из (𝑘 − 𝑖 + 𝑚), 𝑚 > 2, заявок, причем
первые (𝑚− 1) заявок имели длины 𝑦2, . . . ,𝑦𝑚, а следующие — длины
𝑥1,𝑥2, . . . ,𝑥𝑘−𝑖+1, и заявка на приборе продолжила обслуживаться (с ве­
роятностью 𝑤(𝑦2,𝑦1));

– в момент 𝑡 в системе находилось 𝑖, 1 6 𝑖 6 𝑘, заявок, причём заявка
на приборе имела длину 𝑥𝑘−𝑖+1, первая заявка в очереди имела дли­
ну 𝑥𝑘−𝑖+2, . . . , последняя заявка в очереди имела длину 𝑥𝑘, за время
Δ поступила группа из (𝑘 − 𝑖+𝑚), 𝑚 > 2, заявок, причем первые 𝑚

заявок имели длины 𝑦1, . . . ,𝑦𝑚, а следующие — длины 𝑥1,𝑥2, . . . ,𝑥𝑘−𝑖,
и первая заявка из поступившей группы заняла прибор (с вероятно­
стью 𝑤(𝑦1,𝑥𝑘−𝑖+1)).

Вероятности других событий равны 𝑜(Δ). Применяя формулу полной вероят­
ности и действуя стандартным образом, приходим к следующему уравнению,
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справедливому при 𝑘 > 2:

− 𝑝′𝑘(𝑥1, . . . ,𝑥𝑘) = λ0𝑃0

(︃
𝑏𝑘(𝑥1, . . . ,𝑥𝑘)+

+
∞∑︁

𝑖=𝑘+1

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖−𝑘>0

𝑏𝑖(𝑦1, . . . ,𝑦𝑖−𝑘,𝑥1, . . . ,𝑥𝑘) 𝑑𝑦1 · · · 𝑑𝑦𝑖−𝑘

)︃
+

+
𝑘−1∑︁
𝑖=1

λ𝑖𝑤(𝑥1,𝑥𝑘−𝑖+1)𝑏𝑘−𝑖(𝑥1, . . . ,𝑥𝑘−𝑖)𝑝𝑖(𝑥𝑘−𝑖+1, . . . ,𝑥𝑘)+

+
𝑘−1∑︁
𝑖=1

λ𝑖𝑤(𝑥2,𝑥1)𝑏𝑘−𝑖(𝑥2, . . . ,𝑥𝑘−𝑖+1)𝑝𝑖(𝑥1,𝑥𝑘−𝑖+2, . . . ,𝑥𝑘)− λ𝑘𝑝𝑘(𝑥1, . . . ,𝑥𝑘)+

+
𝑘∑︁

𝑖=1

∞∫︁
0

λ𝑖

(︃
𝑤(𝑥1,𝑦)𝑏𝑘−𝑖+1(𝑥1, . . . ,𝑥𝑘−𝑖+1)𝑝𝑖(𝑦,𝑥𝑘−𝑖+2, . . . ,𝑥𝑘)+

+ 𝑤(𝑦,𝑥𝑘−𝑖+1)𝑏𝑘−𝑖+1(𝑦,𝑥1, . . . ,𝑥𝑘−𝑖)𝑝𝑖(𝑥𝑘−𝑖+1, . . . ,𝑥𝑘)

)︃
𝑑𝑦+

+
𝑘∑︁

𝑖=1

λ𝑖

∞∑︁
𝑚=2

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑚>0

(︃
𝑤(𝑦2,𝑦1)𝑏𝑘−𝑖+𝑚(𝑦2, . . . ,𝑦𝑚,𝑥1, . . . ,𝑥𝑘−𝑖+1)𝑝𝑖(𝑦1,𝑥𝑘−𝑖+2, . . . ,𝑥𝑘)+

+ 𝑤(𝑦1,𝑥𝑘−𝑖+1)𝑏𝑘−𝑖+𝑚(𝑦1, . . . ,𝑦𝑚,𝑥1, . . . ,𝑥𝑘−𝑖)𝑝𝑖(𝑥𝑘−𝑖+1, . . . ,𝑥𝑘)

)︃
𝑑𝑦1 · · · 𝑑𝑦𝑚. (1.72)

Граничные условия для полученной системы уравнений выводятся таким же
образом, как и в Теореме 1, и имеют вид

𝑝1(∞) = 0, 𝑝𝑘(∞,𝑥2, . . . ,𝑥𝑘) = 0, 𝑘 > 2. (1.73)

Введем обозначения:

𝑏𝑘,𝑚(𝑥)=

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑘−1>0

𝑏𝑘(𝑦1, . . . ,𝑦𝑚−1,𝑥,𝑦𝑚, . . . ,𝑦𝑘−1) 𝑑𝑦1 · · · 𝑑𝑦𝑘−1, 1 6 𝑚 6 𝑘,

𝑏2,1,2(𝑦,𝑥) = 𝑏2(𝑦,𝑥),

𝑏𝑘,1,𝑚(𝑦,𝑥)=

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑘−2>0

𝑏𝑘(𝑦,𝑦1, . . . ,𝑦𝑚−2,𝑥,𝑦𝑚−1, . . . ,𝑦𝑘−2) 𝑑𝑦1 · · · 𝑑𝑦𝑘−2, 2 6 𝑚 6 𝑘.

Интегрируя (1.71) и (1.72) по 𝑥2,...,𝑥𝑛 в пределах от 0 до ∞ и учитывая введен­
ные обозначения, получаем уравнения (1.69) и (1.70), в которых функции 𝑎𝑘,
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𝐾, 𝑔 и 𝐺𝑘,𝑖 являются неотрицательными и задаются следующими формулами:

𝑎1(𝑥)=λ0𝑃0

(︃
𝑏1(𝑥)+

∞∑︁
𝑘=2

𝑏𝑘𝑘(𝑥)

)︃
, 𝑎𝑘(𝑥)=λ0𝑃0

(︃
𝑏𝑘1(𝑥)+

∞∑︁
𝑖=𝑘+1

𝑏𝑖,𝑖−𝑘+1(𝑥)

)︃
, (1.74)

𝐾(𝑥,𝑦) = 𝑤(𝑥,𝑦)𝑏1(𝑥) +
∞∑︁
𝑖=2

∞∫︁
0

𝑤(𝑧,𝑦)𝑏𝑖,1,𝑖(𝑧,𝑥) 𝑑𝑧, (1.75)

𝑔1(𝑥) =

∞∫︁
0

𝑤(𝑦,𝑥)𝑏1(𝑦) 𝑑𝑦 +
∞∑︁
𝑖=2

∞∫︁
0

𝑤(𝑦,𝑥)𝑏𝑖1(𝑦) 𝑑𝑦, (1.76)

𝑔𝑘,𝑘−1(𝑥)=

∞∫︁
0

𝑤(𝑦,𝑥)𝑏1(𝑦) 𝑑𝑦, 𝑔𝑘,𝑖(𝑥)=

∞∫︁
0

𝑤(𝑦,𝑥)𝑏𝑘−𝑖,1(𝑦) 𝑑𝑦, 1 6 𝑖 6 𝑘−2, (1.77)

𝐺𝑘,𝑘−1(𝑥,𝑦) = 𝑤(𝑥,𝑦)𝑏1(𝑥), (1.78)

𝐺𝑘,𝑖(𝑥,𝑦)=
∞∑︁

𝑚=2

∞∫︁
0

(︃
𝑤(𝑧,𝑦)𝑏𝑘−𝑖+𝑚,1,𝑚(𝑧,𝑥)+𝑤(𝑧,𝑦)𝑏𝑘−𝑖+𝑚,1,𝑚+1(𝑧,𝑥)

)︃
𝑑𝑧+

+ 𝑤(𝑥,𝑦)𝑏𝑘−𝑖,1(𝑥) + 𝑤(𝑥,𝑦)𝑏𝑘−𝑖+1,1(𝑥)+

+

∞∫︁
0

𝑤(𝑧,𝑦)𝑏𝑘−𝑖+1,1,2(𝑧,𝑥) 𝑑𝑧, 1 6 𝑖 6 𝑘−2. (1.79)

Предполагая, что решения каждого из уравнений (1.69) и (1.70) един­
ственно в классе ограниченных неотрицательных суммируемых функций,
полученные в Теореме 11 соотношения позволяют последовательно по 𝑘 найти
стационарное распределение системы, а через него и основные вероятностные
характеристики. Если для функции 𝑤(𝑥,𝑦) известна сепарабельная аппрок­
симация (см. комментарий к Теореме 1 ), то в некоторых случаях52 (1.69)
и (1.70) сводятся к системе линейных алгебраических уравнений. Отметим так­
же, что соотношения (1.71)—(1.73) позволяют последовательно по 𝑘 вычислять
и совместное стационарное распределение 𝑃𝑘(𝑥1, . . . ,𝑥𝑘) с точностью до вероят­
ности 𝑃0, которая находится из условия нормировки.

Для нахождения основных стационарных временных характеристик си­
стемы введем следующие обозначения:

52Как, например, при выполнении приводимых ниже условий (1.84).
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– 𝐵̃(𝑘,𝑖,𝑥) = 𝐵𝑘(∞, . . . ,∞,𝑥,∞, . . . ,∞), 𝑘 > 1, 1 6 𝑖 6 𝑘, — вероятность
того, что пришла группа из 𝑘 заявок и 𝑖-я заявка в группе имеет длину
меньше 𝑥;

– 𝐵̄(𝑥1, . . . ,𝑥𝑖−1; 𝑘,𝑖,𝑥) = 𝑑𝑥𝐵𝑘(𝑥1, . . . ,𝑥𝑖−1,𝑥,∞, . . . ,∞)/𝑑𝐵̃(𝑘,𝑖,𝑥) — услов­
ная вероятность53 того, что первая заявка имеет длину меньше 𝑥1,
вторая — меньше 𝑥2, . . . , (𝑖 − 1)-я — меньше 𝑥𝑖−1, при условии, что
пришла группа из 𝑘 заявок, причем заявка на 𝑖-м месте имеем длину 𝑥.

– 𝐵̂(𝑥) =
∑︀∞

𝑘=1

∑︀𝑘
𝑖=1 𝐵̃(𝑘,𝑖,𝑥) — среднее число заявок длины меньше 𝑥 в

поступающей группе;
– 𝐵̂(𝑘,𝑖;𝑥) = 𝑑𝑥𝐵̃(𝑘,𝑖,𝑥)/𝑑𝐵̂(𝑥), 𝑘 > 1, 1 6 𝑖 6 𝑘, — условная вероятность

того, что поступила группа из 𝑘 заявок, среди них есть ровно одна за­
явка длины 𝑥 и она находится на 𝑖-м месте, при условии, что поступила
группа, в которой имеются заявки длины 𝑥.

Теорема 12. В СМО 𝑀
[𝑋𝑖]
𝑘 |𝐺𝐼 | 1 |∞ | LIFOPP ПЛС ω(𝑠;𝑥) стационарного

распределения времени ожидания начала обслуживания заявки длины 𝑥 равно

ω(𝑠;𝑥) =
∞∑︁
𝑘=1

𝑘∑︁
𝑖=1

ω𝑘𝑖(𝑠;𝑥)𝐵̂(𝑘,𝑖;𝑥), (1.80)

где ω𝑘𝑖(𝑠;𝑥) — ПЛС условного стационарного распределения времени ожида­
ния начала обслуживания заявки длины 𝑥 при условии, что она поступила в
группе из 𝑘 > 2 заявок и оказалась на 𝑖-м месте.

Доказательство. Обозначим через 𝑢𝑘(𝑠;𝑥), 𝑘 > 1, ПЛС распределения времени
до того момента, когда в системе останется (𝑘 − 1) заявок при условии, что
на приборе начала обслуживаться заявка длины 𝑥, и в системе находилось 𝑘

заявок. Уравнение для 𝑢𝑘(𝑠;𝑥) получается из следующих рассуждений: за вре­
мя обслуживания заявки длины 𝑥 с вероятностью 𝑒−λ𝑘𝑥 не поступит больше ни
одной заявки, а с вероятностью λ𝑘𝑒−λ𝑘𝑡𝑑𝑡 на интервале времени [𝑡,𝑡+ 𝑑𝑡] может
поступить группа размером 𝑖 > 1. В первом случае ПЛС равно 𝑒−𝑠𝑥, а во вто­
ром зависит от размера поступающей группы и того, произошла смена заявки
на приборе или нет (и в каждом случае необходимо дождаться окончания об­
служивания исходной заявки длины 𝑥− 𝑡 и 𝑖 новых заявок). Рассматривая все

53Здесь производная понимается как производная Радона–Никодима.
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возможные события и воспользовавшись свойствами ПЛС, получаем

𝑢𝑘(𝑠;𝑥) = 𝑒−(λ𝑘+𝑠)𝑥+

+
∞∑︁
𝑖=1

∫︁ 𝑥

0

λ𝑘𝑒
−(λ𝑘+𝑠)𝑡 𝑑𝑡

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖>0

(︃
𝑤(𝑦1,𝑥−𝑡)𝑢𝑘(𝑠;𝑥−𝑡)

𝑖∏︁
𝑗=1

𝑢𝑘+𝑖+1−𝑗(𝑠; 𝑦𝑗)+

+

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑖>0

𝑤(𝑦1,𝑥−𝑡)𝑢𝑘+𝑖(𝑠;𝑥−𝑡)
𝑖∏︁

𝑗=1

𝑢𝑘+𝑖−𝑗(𝑠; 𝑦𝑗)

)︃
𝐵𝑖(𝑑𝑦1, . . . ,𝑑𝑦𝑖). (1.81)

Найдем ПЛС ω𝑘1(𝑠;𝑥) стационарного распределения времени ожидания
начала обслуживания заявки длины 𝑥 при условии, что она поступила в группе
размера 𝑘 > 1 и была на первом месте в группе. Ее время ожидания равно
нулю, если она застала систему свободной и если она, застав на приборе заявку
длины 𝑦, заняла ее место. Если же она застала в системе 𝑛, 𝑛 > 1, заявок, на
приборе — заявку длины 𝑦 и не заняла ее место, то время ожидания совпадает
с ПЗ, открываемого заявкой длины 𝑦, когда в системе находится (𝑛+𝑘) заявка
т. е. 𝑢𝑛+𝑘(𝑠; 𝑦). В терминах ПЛС имеем

ω𝑘1(𝑠;𝑥) = 𝑃0 +
∞∑︁
𝑛=1

∫︁ ∞

0

𝑝𝑛(𝑦) (𝑤(𝑥,𝑦) + 𝑤(𝑥,𝑦)𝑢𝑛+𝑘(𝑠; 𝑦)) 𝑑𝑦, 𝑘 > 1.

Перейдем к ПЛС времени ожидания начала обслуживания заявки дли­
ны 𝑥, поступившей в группе из 𝑘, 𝑘 > 2, заявок и занимающей в группе 𝑖-е
место (2 6 𝑖 6 𝑘). В случае поступления в пустую систему время ожидания
совпадает с суммарной длительностью (𝑖 − 1)-го ПЗ, первый из которых от­
крывается заявкой длины 𝑥1, второй — 𝑥2 и т. д. и в терминах ПЛС равно
𝑢𝑘(𝑠;𝑥1) . . . 𝑢2(𝑠;𝑥𝑖−1). Длительности соответствующих ПЗ необходимо доба­
вить к времени ожидания, когда поступающая группа застает систему занятой.
В итоге, вводя обозначение 𝑢̃𝑛𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1) = 𝑢𝑛+𝑘(𝑠;𝑥1) . . . 𝑢𝑛+2(𝑠;𝑥𝑖−1), вы­
ражение для ПЛС стационарного распределения времени ожидания начала
обслуживания ω𝑘𝑖(𝑠;𝑥1, . . . , 𝑥𝑖−1,𝑥) заявки длины 𝑥, поступившей в группе из 𝑘
заявок и занимающей в группе 𝑖-е место, можно записать так:

ω𝑘𝑖(𝑠;𝑥1, . . . , 𝑥𝑖−1,𝑥) = 𝑃0𝑢̃0𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1)+

+
∞∑︁
𝑛=1

∫︁ ∞

0

𝑝𝑛(𝑦)

(︃
𝑤(𝑥1,𝑦)𝑢̃𝑛𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1)+

+ 𝑤(𝑥1,𝑦)𝑢𝑛+𝑘(𝑠; 𝑦)𝑢̃𝑛−1,𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1)

)︃
𝑑𝑦, 𝑘 > 2, 2 6 𝑖 6 𝑘.
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Воспользовавшись формулой полной вероятности находим ПЛСω𝑘𝑖(𝑠;𝑥) услов­
ного стационарного распределения времени ожидания начала обслуживания
заявки длины 𝑥 при условии, что она поступила в группе из 𝑘 > 2 заявок и
оказалась на 𝑖-м месте:

ω𝑘𝑖(𝑠;𝑥) =

∫︁ ∞

0

. . .

∫︁ ∞

0

ω𝑘𝑖(𝑠;𝑥1, . . . , 𝑥𝑖−1,𝑥)𝐵̄(𝑑𝑥1, . . . ,𝑑𝑥𝑖−1; 𝑘,𝑖,𝑥),

усредняя которое по распределению 𝐵̂(𝑘,𝑖;𝑥), получаем (1.80).

Очевидно, ПЛСω(𝑠) стационарного распределения времени ожидания на­
чала обслуживания произвольной заявки получается путем усреднения (1.80)
по распределению длины заявки т. е.

ω(𝑠) =

∫︁ ∞

0

ω(𝑠;𝑥)𝑑𝐵̂(𝑥)(𝐵̂(∞))−1. (1.82)

Приведенные в доказательстве Теоремы 12 рассуждения могут быть полезны
для нахождения в терминах преобразований и других стационарных временных
характеристик; в частности — ПЛС условного и безусловного стационарного
распределения времени пребывания заявки в системе (соответственно ϕ(𝑠;𝑥)
и ϕ(𝑠)). Обозначим через ϕ𝑘𝑖(𝑠;𝑥1, . . . , 𝑥𝑖−1,𝑥), 𝑘 > 1, 1 6 𝑖 6 𝑘, ПЛС ста­
ционарного распределения времени пребывания в системе заявки длины 𝑥,
поступившей в группе из 𝑘 заявок и занимающей в группе 𝑖-е место. При 𝑖 = 1

аргумент 𝑥0 опускается, т. е. ϕ𝑘1(𝑠;𝑥0,𝑥) = ϕ𝑘1(𝑠;𝑥). Тогда по формуле полной
вероятности имеем:

ϕ𝑘𝑖(𝑠;𝑥1, . . . , 𝑥𝑖−1,𝑥) = 𝑃0𝑢̃0𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1)𝑢1(𝑠;𝑥)+

+
∞∑︁
𝑛=1

∫︁ ∞

0

𝑝𝑛(𝑦)

(︃
𝑤(𝑥1,𝑦)𝑢̃𝑛𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1)𝑢𝑛+1(𝑠;𝑥)+

+ 𝑤(𝑥1,𝑦)𝑢𝑛+𝑘(𝑠; 𝑦)𝑢̃𝑛−1,𝑘(𝑠;𝑥1, . . . ,𝑥𝑖−1)𝑢𝑛(𝑠;𝑥)

)︃
𝑑𝑦, 𝑘 > 1, 1 6 𝑖 6 𝑘.

Переход к ПЛС ϕ(𝑠;𝑥) и ϕ(𝑠) осуществляется по формулам (1.80)–(1.82).
Дифференцируя полученные формулы необходимое число раз можно получать
моменты соответствующих характеристик.
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Теорема 13. Необходимое и достаточное условие существования стационар­
ного режима системы 𝑀

[𝑋𝑖]
𝑘 |𝐺𝐼 | 1 |∞ | LIFOPP имеет вид −𝑢′(0) < ∞, где

𝑢(𝑠) =
∞∑︁
𝑘=1

∫︁
. . .

∫︁
𝑦1,...,𝑦𝑘>0

𝑘∏︁
𝑛=1

𝑢𝑛(𝑠; 𝑦𝑘−𝑛+1)𝐵𝑘(𝑑𝑦1, . . . ,𝑑𝑦𝑘). (1.83)

Доказательство. Нетрудно видеть, что (1.83) есть ПЛС периода занятости систе­
мы. Поэтому, опираясь на известный результат из общей теории цепей Маркова
о том, что для неприводимой и непериодической цепи Маркова необходимым и
достаточным условием существования (собственного) предельного распределе­
ния является конечность среднего времени возвращения в некоторое состояние
и применяя его к состоянию 0 (т. е. когда общее число заявок в системе равно
нулю), приходим к утверждению теоремы.

Потенциал полученных выше теоретических результатов раскрывается
при рассмотрении частных случаев входящего потока. Действительно, рас­
смотрим групповой пуассоновский поток постоянной интенсивности, в котором
длины заявок в поступающей группе не зависят друг от друга и от размера
группы т. е.

λ𝑘 = λ, 𝑘 > 0, 𝐵𝑘(𝑥1, . . . ,𝑥𝑘) = 𝑐𝑘𝐵(𝑥1) . . . 𝐵(𝑥𝑘), 𝑘 > 1, (1.84)

где 𝐵(𝑥) — ф.р. распределения времени обслуживания одной заявки на прибо­
ре, 𝑐𝑘 > 0 и

∑︀∞
𝑘=1 𝑐𝑘 = 1. Необходимым и достаточным условием существования

стационарного режима54 является λ𝑐𝑏 < 1, где 𝑏 =
∫︀∞
0 𝑥𝑏(𝑥)𝑑𝑥 — средняя длина

поступающей заявки, а 𝑐 =
∑︀∞

𝑘=1 𝑘𝑐𝑘 — средний размер поступающей группы
заявок.

Определим теперь ПФ55

𝐻*(𝑧) =
∞∑︁
𝑛=0

𝑧𝑛𝑃𝑛 = 𝑃0 +𝐻(𝑧), ℎ(𝑧,𝑥) =
∞∑︁
𝑛=1

𝑧𝑛𝑝𝑛(𝑥), 𝐶(𝑧) =
∞∑︁
𝑛=1

𝑧𝑛𝑐𝑛.

54Этот результат также следует из сравнения суммарной работы в рассматриваемой системе и
классической системе 𝑀/𝐺/1 с групповым входящим потоком и обслуживанием в порядке поступ­
ления.

55Предполагая, что ряды в определениях 𝐻(𝑧) и ℎ(𝑧,𝑥) сходятся при 0 < 𝑧 6 1.
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Умножив уравнение (1.69) на 𝑧, а (1.70) — на 𝑧𝑛, просуммировав и проинтегри­
ровав с учетом граничного условия ℎ(𝑧,∞) = 0, получаем уравнение56

ℎ(𝑧,𝑥) = λ𝑃0(1−𝐵(𝑥))
𝑧(1− 𝐶(𝑧))

1− 𝑧
+

+ λ(1−𝐵(𝑥))𝐻(𝑧)

(︂
𝐶(𝑧) + 𝑐1 +

𝑧2 − 𝐶(𝑧)

𝑧(1− 𝑧)

)︂
−

− λ(1− 𝐶(𝑧))

⎛⎝ ∞∫︁
𝑥

∞∫︁
0

𝑤(𝑡,𝑦)ℎ(𝑧,𝑦)𝑑𝑦 𝑑𝐵(𝑡)−
∞∫︁
0

∞∫︁
𝑥

𝑤(𝑡,𝑦)ℎ(𝑧,𝑦)𝑑𝑦 𝑑𝐵(𝑡)

⎞⎠+

+ λ
𝐶(𝑧)− 𝑐1𝑧

𝑧

∞∫︁
𝑥

∞∫︁
0

ℎ(𝑧,𝑦)

⎛⎝𝑤(𝑡,𝑦) +

∞∫︁
0

𝑤(𝑢,𝑦)𝑑𝐵(𝑢)

⎞⎠ 𝑑𝑦 𝑑𝐵(𝑡). (1.85)

Полученное соотношение позволяет хоть и численно но, не прибегая к сумми­
рованию бесконечного ряда, находить моменты стационарного распределения
общего числа заявок в системе. Ограничимся описанием алгоритма расчета ма­
тематического ожидания. Обозначим через ν сл.в., распределенную как общее
число заявок в системе в стацинарном режиме. Проинтегрируем57 (1.85) по 𝑥

от 0 до ∞ и найдем 𝐻(𝑧). Продифференцировав выражение для (1−𝑧)𝐻(𝑧) два
раза и положив 𝑧 = 1, получим формулу для расчета среднего числа заявок Eν
в системе с двумя неизвестными: ℎ(1,𝑥) и ℎ′(1,𝑥) = 𝜕ℎ(𝑧,𝑥)/𝜕𝑧|𝑧=1. Их нахожде­
ние осуществляется в два этапа. Сначала выписывается выражение для 𝐻(1),
затем, подставив 𝑧 = 1 и найденное выражение для 𝐻(1) в (1.85), получается
интегральное уравнение для ℎ(1,𝑥), численное решение которого можно най­
ти, например, итерационным методом58. Таким же образом, но предварительно
продифференцировав (1.85) по 𝑧, находится и уравнение для ℎ′(1,𝑥). Используя
метод из [318] (см. также [314]) можно показать, что необходимым условием су­
ществования стационарного среднего E𝑁 числа заявок в системе является

𝑐

∞∫︁
0

∞∫︁
0

∞∫︁
𝑥

𝑤(𝑡,𝑦)(1−𝐵(𝑦))𝑑𝑦 𝑑𝐵(𝑡)𝑑𝑥 < ∞. (1.86)

Для (1.86) достаточно конечности среднего размера группы и существова­
ния у распределения времени обслуживания второго момента. Перейдем к

56В случае ординарного потока (𝑐1 ≡ 1) из (1.85) следует ПФ числа заявок в системе, исследо­
ванной в [318;319].

57Предполагается, что операции дифференцирования, которые будут применены ниже, законны.
58См. комментарии к Теореме 1.
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временным характеристикам. Поскольку в условиях (1.84) значения 𝑢𝑛(𝑠;𝑥),
найденные в Теореме 12, не зависят от 𝑛 (т. е. 𝑢𝑛(𝑠;𝑥) = 𝑢(𝑠;𝑥)), то
из (1.81) следует, что 𝑢(𝑠;𝑥) = 𝑒−(λ+𝑠−λ𝐶(𝑢(𝑠)))𝑥. Здесь 𝑢(𝑠) является кор­
нем уравнения59 𝑢(𝑠) = β (λ+ 𝑠− λ𝐶(𝑢(𝑠))). Далее, поскольку при фикси­
рованном 𝑖 все 𝑢𝑛(𝑠;𝑥𝑖) равны между собой, то ω𝑘𝑖(𝑠;𝑥1, . . . , 𝑥𝑖−1,𝑥) =

ω𝑘1(𝑠;𝑥1)𝑢(𝑠;𝑥1) . . . 𝑢(𝑠;𝑥𝑖−1). В итоге, несложными преобразованиями форму­
ла (1.80) для ПЛС ω(𝑠;𝑥) стационарного распределения времени ожидания
начала обслуживания заявки длины 𝑥 приводится к виду

ω(𝑠;𝑥) =
1

𝑐

(︂
ω*(𝑠;𝑥) +

𝑢(𝑠)− 𝐶(𝑢(𝑠))

𝑢(𝑠)(1− 𝑢(𝑠))

∫︁ ∞

0

ω*(𝑠; 𝑦)𝑢(𝑠,𝑦)𝑑𝐵(𝑦)

)︂
,

где

ω*(𝑠;𝑥) = 𝑃0 +

∫︁ ∞

0

ℎ(1,𝑦) (𝑤(𝑥,𝑦) + 𝑤(𝑥,𝑦)𝑢(𝑠; 𝑦)) 𝑑𝑦.

Вспоминая, что время пребывания заявки в системе складывается из вре­
мени ожидания начала обслуживания и времени пребывания на приборе,
ПЛС ϕ(𝑠;𝑥) стационарного распределения времени пребывания в системе заяв­
ки длины 𝑥 равно ϕ(𝑠;𝑥) = ω(𝑠;𝑥)𝑢(𝑠;𝑥). Полученные формулы уже пригодны
для расчета моментов; что же касается их обращения, то здесь справедливо
уже сделанное ранее замечание (см. стр. 49).

В завершение этого параграфа рассмотрим систему с так называемыми
фоновыми заявками60, раскрывающую потенциал разработанных теоретиче­
ских результатов в направлении, отличном от избранного выше. В систему
𝑀 [𝑋] |𝐺𝐼 | 1 |𝑛 | LIFOPP (𝑛 6 ∞) поступают заявки двух типов. Заявки первого
типа поступают группами в соответствии с пуассоновским потоком с парамет­
ром λ. Как и ранее, 𝑐𝑘 будет обзначать вероятность наличия 𝑘 заявок в группе,
а 𝑐 =

∑︀∞
𝑘=1 𝑘𝑐𝑘 — средний размер группы. Заявки второго типа поступают из

накопителя бесконечной емкости, и их длины независимы с ф. р. 𝐺(𝑥), имеющей
плотность 𝑔(𝑥) = 𝐺′(𝑥), и средним значением 𝑔 =

∫︀∞
0 𝑥𝑔(𝑥)𝑑𝑥 < ∞. Заявки пер­

вого типа имеют относительный приоритет перед заявками второго типа, т. е.
поступление на прибор заявки второго типа происходит только в том случае,
если в системе отсутствуют заявки первого типа. Прерывание обслуживания за­
явок второго типа не допускается. Общее число заявок первого типа в системе
ограничено числом 𝑛, 𝑛 6 ∞. При 𝑛 < ∞ считается, что поступающая группа

59Отметим, что ПЛС 𝑢*(𝑠) длительности ПЗ системы в условиях (1.84) удовлетворяет уравнению
𝑢*(𝑠) = 𝐶(β(λ+ 𝑠− λ𝑢*(𝑠))).

60По поводу заявок такого типа см., например, [139;140].
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теряется целиком, если в момент поступления для хотя бы одной из заявок в
группе не хватает места в очереди.

Будем считать, что в случае двух потоков дисциплина LIFOPP работает
следующим образом:

– если в момент поступления группы заявок первого типа в системе об­
служивается заявка первого типа, то длина 𝑥 первой из поступающей
группы заявки сравнивается с остаточной длиной 𝑦 заявки, находящей­
ся на приборе. С вероятностью 𝑤(𝑦,𝑥) поступающая группа занимает
первые места в очереди, а заявки, находившиеся в очереди до поступле­
ния группы, становятся за ними с учетом порядка. С дополнительной
вероятностью 𝑤(𝑦,𝑥) = 1− 𝑤(𝑦,𝑥) первая заявка из поступающей груп­
пы становится на прибор, остальные заявки из поступающей группы
занимают первые места в очереди, заявка с прибора встает за ними.
Остальные заявки, находившиеся в очереди до поступления новой груп­
пы, становятся после этой заявки с сохранением порядка;

– если группа заявок первого типа в момент поступления застает на при­
боре заявку второго типа, то длина 𝑥 первой из поступающей группы
заявки сравнивается с длиной 𝑦 заявки, стоящей на первом месте в
очереди. С вероятностью 𝑣(𝑦,𝑥) заявка длины 𝑦 остается на первом ме­
сте в очереди, поступающая группа занимает места в очереди начиная
со второго, а остальные заявки, имевшиеся в очереди до поступления
новой группы, становятся за ними с сохранением порядка. С дополни­
тельной вероятностью 𝑣(𝑦,𝑥) = 1− 𝑣(𝑦,𝑥) поступающая группа заявок
занимает первые места в очереди, заявка длины 𝑦 становится за посту­
пившей группой заявок, а заявки, находившиеся в очереди до момента
поступления группы, становятся за ней с учетом порядка.

Останавливаясь только на случае 𝑛 = ∞, положим:
– 𝑞𝑘(𝑡,𝑥), 𝑘 > 0, — стационарная плотность вероятности того, что на

приборе обслуживается заявка второго типа длины 𝑡 и в очереди нахо­
дятся 𝑘 заявок первого типа, причем заявка, стоящая в очереди первой,
имеет длину 𝑥;

– 𝑝𝑘(𝑥,𝑦), 𝑘 > 1, — стационарная плотность вероятности того, что на
приборе обслуживается заявка первого типа длины 𝑥 и в очереди на­
ходятся 𝑘 − 1 заявок первого типа, причем заявка, стоящая в очереди
первой, имеет длину 𝑦.
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Обозначим через 𝑃𝑘 =
∫︀∞
0

∫︀∞
0 𝑝𝑘(𝑥,𝑦)𝑑𝑦𝑑𝑥, 𝑘 > 1, стационарную вероятность

того, что на приборе обслуживается заявка первого типа и в очереди находят­
ся 𝑘 − 1 заявок первого типа. Соответственно, 𝑄𝑘 =

∫︀∞
0

∫︀∞
0 𝑞𝑘(𝑡,𝑥)𝑑𝑥𝑑𝑡, 𝑘 > 0

есть стационарная вероятность того, что в системе находятся 𝑘 заявок первого
типа и обслуживается заявка второго типа. Определим ПФ61

𝑃 (𝑠,𝑥) =
∞∑︁
𝑘=1

𝑝𝑘(𝑥)𝑠
𝑘, (1.87)

𝑄(𝑠,𝑡,𝑥) =
∞∑︁
𝑘=1

𝑞𝑘(𝑡,𝑥)𝑠
𝑘, (1.88)

𝑄*(𝑠,𝑡,𝑧,𝑥) =
∞∑︁
𝑘=1

𝑞*𝑘+1(𝑡,𝑧,𝑥)𝑠
𝑘, (1.89)

где 𝑝𝑘(𝑥) =
∫︀∞
0 𝑝𝑘(𝑥,𝑦)𝑑𝑦. Используя методы исследования, изложенные в этом

параграфе и в [132;298], были изучены62 аналогичные характеристики для опи­
санной системы с фоновыми заявками. В частности показано, что стационарные
вероятности 𝑄𝑘, 𝑘 > 0, определяются как коэффициенты при 𝑠𝑘 разложения в
ряд по степеням 𝑠 ПФ 𝑄(𝑠) +𝑄0, задаваемой формулой

𝑄(𝑠) +𝑄0 = 𝑄
1− γ(λ− λ𝐶(𝑠))

λ− λ𝐶(𝑠)
,

где γ(𝑠) — ПЛ плотности 𝑔 в точке 𝑠, 𝑄 — (нормировочная) постоянная, а стаци­
онарные вероятности 𝑃𝑘, 𝑘 > 1, — как коэффициенты при 𝑠𝑘 разложения в ряд
по степеням 𝑠 ПФ 𝑃 (𝑠) =

∫︀∞
0 𝑃 (𝑠,𝑥)𝑑𝑥, где 𝑃 (𝑠,𝑥) удовлетворяет уравнению

− 𝑑𝑃 (𝑠,𝑥)

𝑑𝑥
= −λ(1− 𝑐1)𝑃 (𝑠,𝑥) + λ𝑐1𝑏(𝑥)𝑃 (𝑠) +𝑄(𝑠,0,𝑥) +

∞∫︁
0

𝑄*(𝑠,0,𝑢,𝑥)𝑑𝑢+

+ λ (𝐶(𝑠)− 𝑐1)

∞∫︁
0

(𝑏(𝑢)𝑤(𝑥,𝑢)𝑃 (𝑠,𝑥) + 𝑏(𝑥)𝑤(𝑢,𝑥)𝑃 (𝑠,𝑢)) 𝑑𝑢+

+λ

(︂
𝐶(𝑠)

𝑠
− 𝑐1

)︂ ∞∫︁
0

𝑑𝑧

∞∫︁
0

(𝑏(𝑢)𝑤(𝑧,𝑢)𝑃 (𝑠,𝑧)δ(𝑢−𝑥) + 𝑏(𝑧)𝑏(𝑥)𝑤(𝑢,𝑧)𝑃 (𝑠,𝑢)) 𝑑𝑢,

61Предполагая, что λ𝑐𝑏 < 1 и ряды в определениях сходятся при 0 < 𝑠 6 1.
62В предположении, что введенные плотности существуют, непрерывны и ограничены.
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в котором 𝑄(𝑠,𝑡,𝑥) =
∑︀∞

𝑖=1𝐴𝑖(𝑥)𝑞𝑖(𝑡) (𝐶(𝑠))𝑖, 𝐴𝑖 и 𝑞𝑖 — некоторые рекурретным
образом вычисляемые функции, и

𝑄*(𝑠,𝑡,𝑧,𝑥) = 𝑄λ

(︂
𝐶(𝑠)

𝑠
− 𝑐1

)︂
𝑏(𝑧)𝑏(𝑥)

∞∫︁
𝑡

𝑒λ𝑢𝑑𝑢

∞∫︁
𝑢

𝑔(𝑦)𝑒−λ𝑦𝑑𝑦+

+ λ𝑐1

∞∫︁
𝑡

(𝑏(𝑥)𝑣(𝑧,𝑥)𝑄(𝑠,𝑢,𝑧) + 𝑏(𝑧)𝑣(𝑥,𝑧)𝑄(𝑠,𝑢,𝑥)) 𝑑𝑢+

+λ

(︂
𝐶(𝑠)

𝑠
− 𝑐1

)︂ ∞∫︁
𝑡

𝑑𝑢

∞∫︁
0

(𝑏(𝑦)𝑣(𝑧,𝑦)𝑄(𝑠,𝑢,𝑧)δ(𝑦−𝑥) + 𝑏(𝑧)𝑏(𝑥)𝑣(𝑦,𝑧)𝑄(𝑠,𝑢,𝑦)) 𝑑𝑦.

Постоянная 𝑄 определяется из условия нормировки из соотношения
𝑄0 + 𝑃 (1) +𝑄(1) = 1. Из результатов [298] также следует, что стационар­
ные временные характеристики могут быть найдены не только при описанном
выше варианте дисциплины LIFOPP, но также и когда порядок постановки
в очередь заявок первого типа в момент обслуживания заявки второго типа
произвольный63.

63Вместе с тем, в связи с изученными в этом параграфе СМО остаются и открытые теорети­
ческие вопросы. Например, специального исследования заслуживает случай, когда длины заявок
принимают только конечное число значений. Не изучен вариант более общего группового входяще­
го потока, когда в каждой поступающей группе могут находиться подгруппы заявок одинаковой
длины. Наконец, представляет интерес обобщение разработанного метода на случай нескольких ти­
пов (с различными функциями распределения длин) заявок и других правил начала обслуживания
(например, 𝑁 -политики [408]).
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Глава 2. Получение оценок стационарных характеристик частично
наблюдаемых стохастических систем обслуживания на основе

информации о прогнозных временах обслуживания

2.1 Предварительные замечания

В этой главе будем называть частично наблюдаемой всякую СМО, для
которой выполнены следующие условия:

– для каждой поступающей заявки становится известным некоторое по­
ложительное число, которое назовем остаточным прогнозным временем
обслуживания и которое имеет смысл работы, которую, как ожидается,
необходимо совершить прибору для завершения обработки заявки1;

– фактическое время обслуживания заявки, т. е. работа, которую в
действительности необходимо совершить прибору для завершения ее
обработки, фиксируется в момент поступления заявки в систему, од­
нако ненаблюдаемо и не совпадает с указанным для нее прогнозным
временем обслуживания;

– специальное планирование обслуживания (если оно в системе преду­
смотрено2) осуществляется только на основе остаточных прогнозных
времен обслуживания.

Таким образом, говоря о вероятностно–временных характеристиках частично
наблюдаемых (в указанном выше смысле) СМО, необходимо отличать их про­
гнозные значения, от фактических. При этом для задач практики значение
имеют, вообще говоря, лишь последние3.

1Отметим, что остаточное прогнозное время обслуживания уменьшается только при нахожде­
нии заявки на приборе и, вообще говоря, может стать отрицательным. Кроме того, обслуживание
заявки может окончиться раньше, чем обнулится остаточное прогнозное время обслуживания.

2Например, оно предусмотрено при дисциплине SRPT и не предусмотрено при дисциплине FIFO.
Известно и планирование другого рода; см. [409].

3Здесь уместно подчеркнуть связь рассматриваемого вопроса с практикой. Несовпадение того
времени выполнения заявки, которое указывается в момент ее поступления и используется планиров­
щиком очереди, с тем временем, которое по факту заняло ее обслуживание, является неотъемлемой
чертой некоторых современных технических систем (см., например, [36;410–414]). В частности, как
отмечается специалистами межведомственного суперкомпьютерного центра РАН [415], эта особен­



107

В этой главе теоретически обосновывается новый метод уточнения оце­
нок (сверху) фактических значений стационарных характеристик частично
наблюдаемых СМО, исходные параметры которых удовлетворяют определен­
ным, продиктованным практикой условиям4. Он заключается в следующем.
Для имеющейся частично наблюдаемой системы сначала фиксируется инте­
ресующая характеристика, стационарное распределение которой существует,
и вычисляется ее значение5. Затем, исходя из имеющейся информации о ча­
стично наблюдаемой системе, выбирается СМО с некоторой разновидностью
дисциплины LIFOGPP, в которой значение искомой (или, возможно, другой)
характеристики лучше рассчитанного прогнозного значения и близко к (неиз­
вестному!) фактическому.

Ясно, что приблизиться к фактическому значению, не зная его, можно
не всегда. Условие, при котором предложенный метод позволяет это сделать,
формулируется ниже следующим образом: в случае ненаблюдаемости системы
известного класса (далее он обозначается M) возможно получение оценок (свер­
ху) фактических значений некоторых ее стационарных характеристик, если она
принадлежит его определенному подмножеству (далее оно обозначается M*).
Задача исчерпывающего описания M*, т. е. нахождение границ применимости
метода, остается нерешенной. Однако некоторые аналитические соображения
(см. Теорему 18 ) подсказывают условия6, при выполнении которых метод, по­
видимому, работает для многих частично наблюдаемых СМО. Вычислительные
эксперименты подтверждают этот вывод.

Прежде чем переходить к основному содержанию главы, напомним
несколько определений.
ность типична для современных суперкомпьютерных систем коллективного пользования и снижает
эффективность расписаний запусков заявок.

4Примером одного из таких условий является принадлежность прогнозных времен обслужива­
ния классу сл. в. с убывающей функцией интенсивности (УФИ). Напомним, что принадлежность
классу УФИ означает, что вероятность окончания обслуживания на промежутке [𝑡,𝑡+ 𝑥] при
условии, что обслуживание заявки не окончилось до момента 𝑡, не возрастает с ростом 𝑡 при фик­
сированном 𝑥.

5Это значение, являясь лишь прогнозным, может быть как больше, так и меньше фактического.
6Это условия на загрузку системы и на распределение(я) прогнозных времен обслуживания.
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Определение7. Для двух сл. в. 𝑋 и 𝑌 с ф. р. 𝐹 (𝑥) и 𝐺(𝑥) выполняется

соотношение 𝑋
𝑑
6 𝑌 , если для всех вещественных 𝑥 выполняется неравенство

𝐹 (𝑥) > 𝐺(𝑥).

В литературе встречаются и другие обозначения для
𝑑
6; например,

6𝑠𝑡, 6𝑑,
(1)

6. Обычно случайную величину 𝑋, в случае выполнения 𝑋
𝑑
6 𝑌 ,

называют стохастически меньшей, чем 𝑌 .

Определение8. Положительная сл. в. 𝑋 с ф. р. 𝐹 (𝑥) принадлежит клас­
су ГНСХИ (гармоничное новое в среднем хуже использованного), если для всех
𝑥 > 0 ∫︁ ∞

𝑥

(1− 𝐹 (𝑢))𝑑𝑢 > E𝑋 𝑒−
𝑥

E𝑋 .

Определение9. Положительная сл. в. 𝑋 с ф. р. 𝐹 (𝑥) принадлежит клас­
су L , если для всех 𝑠 > 0∫︁ ∞

0

𝑒−𝑠𝑢(1− 𝐹 (𝑢))𝑑𝑢 >
E𝑋

1 + 𝑠E𝑋
. (2.1)

Если же в (2.1) выполняется обратное (но опять же нестрогое) неравен­
ство, то будем говорить, что сл. в. 𝑋 принадлежит классу L̄ . Класс L̄ строго
“больше” класса ГНСХИ (см. [419, С. 617]) и включает экспоненциально распре­
деленные сл. в. в качестве граничных (для них выполняется точное равенство).
Напоним, что, если сл. в. 𝑋 принадлежит классу L̄ , то ее коэффициент вариа­
ции не меньше единицы (см., например, [420;421]); при этом уже третий момент
может не существовать10 (см. [424, Example 2.1]).

Определение11. Будем говорить, что положительная сл. в. 𝑋 име­
ет лог–симметричное распределение с параметром σ > 0, если 𝑋 = 𝑒𝑌 и

7См., например, [416, С. 16].
8См., например, [417;418] или [60, С. 103].
9См., например, [419].

10Таким образом, сл. в. 𝑋 может быть “тяжелохвостой” в следующем смысле: если 𝐵(𝑥) ее ф. р.,
то lim𝑥→∞ 𝑒ε𝑥(1−𝐵(𝑥)) = ∞ при всех ε > 0 (см., например, определение 2.4 и раздел 2.2 в [422],
и [423]).

11См., например, [425].



109

сл. в. 𝑌 имеет симметричное (относительно нуля) распределение с плотнотью
𝑔(𝑥) = α

(︁
𝑥2
√
σ

)︁
, 𝑥 ∈ (−∞,∞), где α — некоторая положительная при 𝑥 > 0

функция, для которой
∫︀∞
0

√
𝑢α(𝑢)𝑑𝑢 = 1.

Из этого определения следует, что сл. в. 𝑋 и 1/𝑋 одинаково распреде­
лены и E𝑋𝑟 > 1, если момент 𝑟-го порядка существует. Отметим также, что
ряд известных распределений относятся к классу лог–симметричных: логнор­
мальное12, лог–лапласовское, Бирнбаума–Сандерса и др. (см., например, [426,
С. 199]).

Обозначим через M множество, состоящее из всех возможных СМО типа

Σ |𝐵𝑟(𝑥), 𝑟 ∈ ℛ | 𝑐 |𝑛 | 𝒰 , (2.2)

где Σ — суммарный входящий поток, 𝐵𝑟(𝑥) — распределение длины заявки ти­
па 𝑟, ℛ — конечное множество типов заявок, 𝑐 — число идентичных приборов,
𝑛 — емкость очереди, 𝒰 — дисциплина выбора из очереди и предоставления
обслуживания. Считается, что обслуживающие приборы не порятятся и спо­
собны немедленно после окончания обслуживания одной заявки приступить к
обслуживанию следующей. Кроме того, допускается прерывание обслуживания
и механизм прерывания не меняет длины заявки. Таким образом, в M содер­
жатся только “консервативные” СМО.

Далее, говоря о вероятностно–временных характеристиках, будем иногда
явно указывать их зависимость от ф. р. длин заявок; например, если сл. в. 𝑄
— длина очереди в СМО (2.2), то сл. в. 𝑄𝐵1,...,𝐵|ℛ| имеет тот же смысл.

Обозначим через M* подмножество M, для элементов которого выполня­
ются следующие условия:

– найдется вероятностно–временная характеристика13, стационарное рас­
пределение которой существует, и известны достаточные условия его
существования. Пусть 𝑋 — сл. в., имеющая это распределение;

– найдутся такие два набора {𝐵𝑟(𝑥), 𝑟 ∈ ℛ} и {𝐵̂𝑟(𝑥), 𝑟 ∈ ℛ} ф. р. длин
заявок, что справедливо неравенство

𝑋𝐵1,...,𝐵|ℛ|

𝑑
6 𝑋𝐵̂1,...,𝐵̂|ℛ|

;

12С параметрами 0 и σ, если положить α(𝑢) = 1√
2π
𝑒−

1
2
𝑢.

13Например, длина очереди, время ожидания начала обслуживания, время пребывания заявки
в системе и т. п.
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– найдется вероятностно–временная характеристика, скажем 𝑌 , функци­
онирующей в стационарном режие СМО с тем же входящим потоком,
набором ф. р. {𝐵̂𝑟(𝑥), 𝑟 ∈ ℛ}, возможно другим числом приборов и
емкостью очереди, и некоторым вариантом дисциплины LIFOGPP, для
которой выполняются соотношения

𝑋𝐵1,...,𝐵|ℛ|

𝑑
6 𝑌𝐵̂1,...,𝐵̂|ℛ|

𝑑
6 𝑋𝐵̂1,...,𝐵̂|ℛ|

. (2.3)

Принадлежность СМО множеству M* фактически означает, что, в слу­
чае ее частичной наблюдаемости, с помощью описанного в начале параграфа
метода можно получать оценки (сверху) фактических значений ее стационар­
ных характеристик.

2.2 Оценки для систем с дисциплиной справедливого разделения
процессора

Покажем, что M* — непустое множество. Рассмотрим систему
𝑀 |𝐺𝐼 | 1 |∞ |PS с интенсивностью входящего потока λ, в которой длины
заявок 𝑆 имеют абсолютно непрерывное14 распределение 𝐵̂(𝑥) (с плотностью
𝑏̂(𝑥)) и конечное среднее E𝑆. Пусть сл. в. 𝑁PS имеет распределение, совпа­
дающее со стационарным распределением общего числа заявок в этой СМО.
Как известно [75, С. 61], оно существует при λE𝑆 < 1. Теперь рассмотрим
систему 𝑀 |𝐺𝐼 | 1 |∞ | LIFOGPP с тем же входящим потоком, той же ф. р.
длин заявок 𝐵̂(𝑥) и дисциплиной LIFOGPP, в которой 𝐷(𝑥,𝑦|𝑢,𝑣) = 𝐵̂(𝑥)𝐵̂(𝑦),
а остальные определяющие дисциплину функции тождественно равны нулю.
Сл. в., имеющую стационарное распределение общего числа заявок в этой СМО,
которое существует (согласно Теореме 3 ) при 1

2 < β̂(λ) =
∫︀∞
0 𝑒−λ𝑢𝑑𝐵̂(𝑢) < 1,

обозначим через 𝑁LIFORe.
Далее до конца параграфа (если явно не указано иное) через 𝐵(𝑥) и 𝑏(𝑥)

обозначаются соответственно ф. р. и плотность сл. в. 𝑆, через 𝑙(𝑥) и 𝑔(𝑥) —
плотности соответственно лог–симметричной сл. в. 𝑋 = 𝑒𝑌 и сл. в. 𝑌 .

14Это условие необходимо, поскольку дальнейшие рассуждения основываются на результатах
параграфа 1.2, полученных в предположении, что распределение длин заявок является абсолютно
непрерывным. Обобщение на случай, когда отсутствует плотность возможно, но требует других
рассуждений.
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Теорема 1415. Если сл. в. 𝑆 принадлежит классу L̄ , то справедливо нера­
венство

𝑁LIFORe
𝐵̂

𝑑
6 𝑁PS

𝐵̂
. (2.4)

Если дополнительно известно, что сл. в. 𝑆 представима в виде произве­
дения16 𝑆 ·𝑋, причем сл. в. 𝑆 и 𝑋 независимы и имеют соответсвенно
экспоненциальное и лог–симметричное распределения, то выполняются со­
отношения

𝑁PS
𝐵

𝑑
6 𝑁LIFORe

𝐵̂

𝑑
6 𝑁PS

𝐵̂
. (2.5)

Доказательство. Начнем с первого утверждения теоремы. Стационарные рас­
пределения общего числа заявок в обеих системах являются геометрическими.
Для СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS, как известно (см., например, [75, С. 61]), имеет
место формула

P{𝑁PS
𝐵̂

= 𝑘} =
(︁
1− λE𝑆

)︁(︁
λE𝑆

)︁𝑘
, 𝑘 = 0,1, . . . ,

а для СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe, согласно Теореме 4, — формула

P{𝑁LIFORe
𝐵̂

= 𝑘} =

(︃
2− 1

β̂(λ)

)︃(︃
1− β̂(λ)
β̂(λ)

)︃𝑘

, 𝑘 = 0,1, . . .

Отсюда следует, что 𝑁LIFORe
𝐵̂

𝑑
6 𝑁PS

𝐵̂
тогда и только тогда, когда β̂(λ) > 1

1+λE𝑆
.

Вспоминая (2.1), убеждаемся в справедливости последнего неравенства.
Перейдем к доказательству второго утверждения. Для этого рассмотрим

подробнее вид ПЛС β̂(λ), когда 𝑆 = 𝑆 ·𝑋. С учетом того, что плотность сл. в.
𝑋 была обозначена выше через 𝑙(𝑥), имеем

β̂(λ) = E
(︀
𝑒−λ𝑆𝑋

)︀
=

∫︁ ∞

0

E
(︀
𝑒−λ𝑢𝑆

)︀
𝑙(𝑢)𝑑𝑢 =

∫︁ ∞

0

1/E𝑆

1/E𝑆 + λ𝑢
𝑙(𝑢)𝑑𝑢.

15Отчасти эта теорема справедлива и для однолинейной СМО в дискретном времени с геометри­
ческим входящим потоком и дисциплиной циклического обслуживания (см. [295]).

16В том, что эта сл. в. принадлежит классу L̄ , можно убедиться, воспользовавшись неравенством
Йенсена [427]:

E𝑒−𝑠𝑆 = E𝑒−𝑠𝑆𝑋 =

∫︁ ∞

0
E
(︀
𝑒−𝑠𝑢𝑋

)︀
𝑏(𝑢)𝑑𝑢 >

∫︁ ∞

0
𝑒−𝑠𝑢E𝑋𝑏(𝑢)𝑑𝑢 =

1

E𝑆

∫︁ ∞

0
𝑒−𝑠𝑢E𝑋𝑒−

𝑢
E𝑆 𝑑𝑢 =

1

1 + 𝑠E𝑆
.
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Положим ln(𝑢) = 𝑣; тогда предыдущая формула, в которой надо положить
𝑢 = 𝑒𝑣 и 𝑑𝑢 = 𝑒𝑣𝑑𝑣, дает

β̂(λ) =

∫︁ ∞

−∞

1

1 + E𝑆𝑒𝑣
𝑔(𝑣)𝑑𝑣,

или, с учетом того, что функция 𝑔 является четной, —

β̂(λ) =

∫︁ ∞

0

(︂
1

1 + λE𝑆𝑒−𝑣
+

1

1 + λE𝑆𝑒𝑣

)︂
𝑔(𝑣)𝑑𝑣 =

=

∫︁ ∞

0

(︂
2 + λE𝑆(𝑒𝑣 + 𝑒−𝑣)

1 + (λE𝑆)2 + λE𝑆(𝑒−𝑣 + 𝑒𝑣)

)︂
𝑔(𝑣)𝑑𝑣 =

=

∫︁ ∞

0

(︂
2 + 2λE𝑆 cosh(𝑣)

1 + (λE𝑆)2 + 2λE𝑆 cosh(𝑣)

)︂
𝑔(𝑣)𝑑𝑣.

Здесь cosh обозначает гиперболический косинус, т. е. cosh(𝑥) = 1
2(𝑒

−𝑥 + 𝑒𝑥).
Заметим теперь, что предыдущую формулу можно переписать в виде

β̂(λ) =
2

1 + λE𝑆

∫︁ ∞

0

(︂
(1 + λE𝑆 cosh(𝑣))(1 + λE𝑆)

1 + (λE𝑆)2 + 2λE𝑆 cosh(𝑣)

)︂
𝑔(𝑣)𝑑𝑣 =

=
2

1+λE𝑆

∫︁ ∞

0

(︂
1+λE𝑆+cosh(𝑣)(λE𝑆 + (λE𝑆)2)

1 + (λE𝑆)2 + 2λE𝑆 cosh(𝑣)

)︂
⏟  ⏞  

=ℎ(𝑣)

𝑔(𝑣)𝑑𝑣 =

=
2

1 + λE𝑆

∫︁ ∞

0

ℎ(𝑣)𝑔(𝑣)𝑑𝑣.

Покажем, что 0 6 ℎ(𝑥) 6 1 при 𝑥 > 0. Неотрицательность функции ℎ очевидна.
Далее, поскольку cosh(𝑥) > 1 при всех 𝑥 > 0, 0 < λE𝑆 < 1 и λE𝑆 − (λE𝑆)2 > 0,
имеем

λE𝑆 − (λE𝑆)2 6 cosh(𝑥)
(︀
λE𝑆 − (λE𝑆)2

)︀
.

Прибавляя к левой и правой частям неравенства 1 + λE𝑆 cosh(𝑥), получаем

1 + λE𝑆 + cosh(𝑥)
(︀
λE𝑆 + (λE𝑆)2

)︀
6 1 + (λE𝑆)2 + 2λE𝑆 cosh(𝑥),

т. е. числитель определяющей функцию ℎ дроби не превосходит знаменателя.
Вспоминая теперь, что 2

∫︀∞
0 𝑔(𝑢)𝑑𝑢 = 1, имеем

β̂(λ) =
2

1 + λE𝑆

∫︁ ∞

0

ℎ(𝑣)𝑔(𝑣)𝑑𝑣 6
2

1 + λE𝑆

∫︁ ∞

0

𝑔(𝑣)𝑑𝑣 =
1

1 + λE𝑆
,

что вместе с (2.4) доказывает (2.5).
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Из доказательства17 теоремы видно, что для выполнения неравенств (2.5) нет
необходимости требовать, чтобы для сл. в. 𝑆 выполнялось (2.1) при всех 𝑠 > 0,
а достаточно проверить (2.1) при 0 6 𝑠 < E𝑆.

Полученный результат можно проинтерпретировать следующим образом.
Пусть имеется СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS, в которой времена обслуживания за­
явок становятся известными в момент поступления, причем их ф. р. известна;
обозначим ее через 𝐵̂(𝑥) = P{𝑆 < 𝑥}. Кроме того известно, что эти времена со­
держат случайную ошибку 𝑋 и фактическое18 время обслуживания 𝑆 каждой
заявки связано с планируемым временем 𝑆 соотношением 𝑆 = 𝑆 ·𝑋19. Теоре­
ма 14 показывает, что достаточно знать распределения 𝑆 и 𝑋 (и не требуется

17Стоит отметить, что путь доказательства второго утверждения теоремы был найден не сра­
зу. Так безрезультатными оказались попытки применения методов асимптотического (при σ → 0)
анализа [428] и известных общих неравенств, в том числе и для ПЛ (см., например, [429–431]).

18Т. е. то время, которое она действительно проведет на приборе.
19Это предположение, являющееся существенным для большинства результатов параграфа, взя­

то из практики. Известен ряд исследований (см., например, работы [413; 414] и ссылки в них), в
которых достаточно убедительно показывается, что в некоторых современных технических системах
времена обслуживания заданий/заявок/запросов содержат мультипликативную ошибку. В теорети­
ческих же исследованиях оно — не редкость (см., например, [432;433]). Небезынтересно проследить
на обсуждаемом примере к чему может привести отказ от предположения, что 𝑆 содержит мульти­
пликативную ошибку, в пользу предположения о наличии несистематической аддитивной ошибки
(помехи), принятого во многих областях (см., например, [434, С. 596], [435, С. 241–244], [20; 436].).
Пусть 𝑆 = 𝑆 +𝑋, где P{𝑆 > 2} = 1 и случайная ошибка 𝑋 имеет соответствующее усеченное нор­
мальное распределение с нулевым средним (см., например, [437, С. 434]). Возвращаясь в начало
доказательства Теоремы 14 , видим, что, поскольку E𝑆 = E𝑆 + 0, то наличие несистематической
ошибки вообще никак не влияет на распределение P{𝑁PS

𝐵̂
= 𝑘}, и все вероятностные характеристики

очереди будут в точности равны фактическим. Допуская некоторую вольность речи, можно сказать,
что дисциплина справедливого разделения процессора фильтрует случайную ошибку. Такое поло­
жение дел, конечно же, объясняется ее известным свойством (т. е. инвариантностью стационарного
распределения общего числа заявок в системе относительно вида распределения времени обслужи­
вания при фиксированном среднем), и имеет место для некоторых других специальных дисциплин
обслуживания (например, LIFO с прерыванием, LIFO с прерыванием наикратчайшей заявкой). Адди­
тивная модель обладает и другим серьезным недостатком: в рамках изучаемой проблемы ей трудно
придать наблюдаемые на практике черты. Например, сл. в. 𝑆, будучи временем обслуживания,
всегда положительна. Таким образом, сл. в. 𝑋 должна принимать либо только неотрицательные
значения, либо такие (положительные и отрицательные) значения, при которых сумма 𝑆 = 𝑆 +𝑋

всегда положительна. Оба эти ограничения представляются неестественными. А такое требование
(обсуждаемое в [413; 414]), как “ошибка в большую сторону также вероятна, как и в меньшую”, по­
видимому, вообще не реализуемо в рамках аддитивной модели; в мультипликативном же случае для
его выполнения достаточно предположить, что сл. в. 𝑋 имеет, например, логнормальное распреде­
ление. Дальнейшие результаты в связи с обсуждаемыми здесь вопросами можно найти в [296], а
критику мультипликативной модели — в [30;438].
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знать их параметры!), и проверить принадлежность20 сл. в. 𝑆 классу L̄ , что­
бы иметь возможность уточнить оценку фактического распределения очереди.
Новую, более точную оценку21 дает СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe с той же ин­
тенсивностью входящего потока и той же ф. р. времени обслуживания 𝐵̂(𝑥).
Необходимо отметить особо тот способ, с помощью которого посредством новой
СМО достигается результат: каждая (поступающая в непустую систему) заяв­
ка назначает новое остаточное время обслуживания заявке на приборе, причем
независимо от всей предыстории функционирования системы. Поскольку сл. в.
𝑆 принадлежит классу L̄ , эти воздействия22 укорачивают время обслужива­
ния23 и, в итоге, каждая заявка уходит с прибора раньше, чем предписывает
ее прогноное время выполнения.

Следствием Теоремы 14 (и отношения
𝑑
6) является упорядоченность мо­

ментов любого порядка стационарных распределений общего числа заявок в
рассмотренных СМО; в частности24,

E
(︀
𝑁PS

𝐵

)︀𝑟
6 E

(︀
𝑁LIFORe

𝐵̂

)︀𝑟
6 E

(︀
𝑁PS

𝐵̂

)︀𝑟
, 0 6 𝑟 < ∞. (2.6)

Пусть сл. в. 𝑉 PS имеет распределение, совпадающее со стационар­
ным распределением времени пребывания заявки в СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS,
а сл. в. 𝑉 LIFORe — распределение той же характеристики, но в СМО
𝑀 |𝐺𝐼 | 1 |∞ | LIFORe. Положив 𝑟 = 1 в (2.6) и воспользовавшись законом

20Отметим, например, что принадлженость распределений длительностей выполнения работ в
процессоре в системах разделения времени классу УФИ (и, значит, классу L̄ ) подчеркивалась еще
в [439] и [75, С. 88]; изучение свойств распределений различных характеристик нагрузки продол­
жается и поныне, причем сейчас это направление исследований набирают все больший вес (см.,
например, [64;440;441], [354, Part VI] и [442, Section 6]).

21Отметим, что область стационарности новой СМО шире, чем исходной. Поэтому она позволяет
получить оценки при таких значениях загрузки, которые ранее были вне рассмотрения.

22Пользуясь устоявшейся терминологией (см., например, [443]), эти воздействия можно назвать
шоковыми. Для математических моделей с шоковыми воздействиями известно много результатов
(см., например, [444–454] и ссылки в них). Однако, ввиду принципиальных отличий рассматривае­
мых моделей от шоковых (например, не происходит накопление шоковых воздействий, не случается
критических превышений уровней и т. п.), уже известные результаты не удается приспособить для
получения ответов на интересующие вопросы.

23Или удлинняет, если 𝑆 принадлежит классу L . Здесь интересно указать на связь, отмеченную в
[455], между таким процессом обслуживания и характеризацией экспоненциального распределения.

24Все моменты существуют при λE𝑆 < 1. При λE𝑆 > 1, но 1
2 < β̂(λ) < 1 не существуют моменты

сл. в. 𝑁PS
𝐵̂

. При 0 < β̂(λ) < 1
2 и λE𝑆 < 1 не существуют также и моменты сл. в. 𝑁LIFORe

𝐵̂
. Наконец при

λE𝑆 > 1 никакие моменты не существуют.
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Литтла25, обнаруживаем, что (в условиях Теоремы 14 ) упорядочены и стаци­
онарные средние времена пребывания заявок в системах26, т. е.

E
(︀
𝑉 PS
𝐵

)︀
6 E

(︀
𝑉 LIFORe
𝐵̂

)︀
6 E

(︀
𝑉 PS
𝐵̂

)︀
. (2.7)

Однако для моментов более высоких порядков систему неравенств получить
уже не удается.

Теорема 15. Если сл. в. 𝑆 представима в виде произведения 𝑆 ·𝑋, причем
сл. в. 𝑆 и 𝑋 независимы и имеют соответсвенно экспоненциальное и лог–сим­
метричное распределения, то справедливо неравенство

Var
(︀
𝑉 PS
𝐵

)︀
6 min

(︀
Var
(︀
𝑉 LIFORe
𝐵̂

)︀
,Var

(︀
𝑉 PS
𝐵̂

)︀)︀
. (2.8)

Доказательство. Напомним (см., например, [75, С. 81]), что дисперсия времени
пребывания заявки в стационарной СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS, равна

Var
(︀
𝑉 PS
𝐵

)︀
=

(E𝑆)2

(1− λE𝑆)2
2 + λE𝑆

2− λE𝑆
=

1

λ2
· (1− 𝑦)2(1 + 𝑦)

(2𝑦 − 1)2(3𝑦 − 1)
=

1

λ2
· 𝑓1(𝑦),

где введено обозначение 𝑦 = 1
1+λE𝑆 . Заметим, что 1

2 < 𝑦 < 1. Для нахождения

формулы для дисперсии Var
(︁
𝑉 LIFORe
𝐵̂

)︁
воспользуемся результатами Теоремы 4.

Имеем

Var
(︀
𝑉 LIFORe
𝐵̂

)︀
= ϕ′′(0)−

(︀
E
(︀
𝑉 LIFORe
𝐵̂

)︀)︀2
= − (1− β̂(λ))2

λ2(2β̂(λ)− 1)2
+

+
2
(︁
1− 3β̂(λ) + 3β̂(λ)2

)︁
λ2β̂(λ)2(2β̂(λ)− 1)3

(︁
β̂(λ)2(1− β̂(λ)) + λ(2β̂(λ)− 1)β̂′(λ)

)︁
, (2.9)

25Который, как известно, справедлив для СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS, и, как следует из доказанных
формул (1.24) и (1.25), имеет место и для СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe.

26Известные интервальные оценки для E
(︁
𝑉 PS
𝐵̂

)︁
при пуассоновском входящем потоке ничего не

дают (см. [456, Theorem 3.2] и [457, Section 1]). Если же входящий поток другой (а, как будет вид­
но из дальнейшего, метод “работает” и в этом случае), то вопрос использования нижней границы
соответствующего интервала вместо E

(︁
𝑉 PS
𝐵̂

)︁
(как и обоснование самого метода!) остается невыяс­

ненным.
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где ϕ′′(0) — вторая производная по 𝑠 в точке 𝑠 = 0 ПЛС ϕ(𝑠) стационарно­
го распределения времени пребывания заявки в системе, найденного в (1.16),
а β̂′(λ) — первая производная ПЛС β̂(𝑠) по 𝑠 в точке 𝑠 = λ.

Чтобы получить нижнюю оценку для (2.9), необходимо найти границы
изменения β̂′(λ). Покажем, что

− 1

4λ
6 β̂′(λ) 6 0. (2.10)

Поскольку первый и второй моменты сл. в. 𝑉 LIFORe
𝐵̂

существуют, то существует
и дисперсия. Следующая цепочка равенств не требует других пояснений:

β̂′(λ) =
𝑑

𝑑λ

∫︁ ∞

−∞

1

1 + λE𝑆𝑒𝑢
𝑔(𝑢)𝑑𝑢 =

=

∫︁ ∞

−∞

−E𝑆𝑒𝑢

(1 + λE𝑆𝑒𝑢)2
𝑔(𝑢)𝑑𝑢 =

=−
∫︁ ∞

0

(︂
E𝑆𝑒𝑢

(1 + λE𝑆𝑒𝑢)2
+

E𝑆𝑒−𝑢

(1 + λE𝑆𝑒−𝑢)2

)︂
𝑔(𝑢)𝑑𝑢. (2.11)

Запишем двойное неравенство 0 6 𝑥
(1+𝑥)2 6 1

4 , справедливое при 𝑥 > 0. Поло­
жив в нем сначала 𝑥 = λE𝑆𝑒𝑢, а затем 𝑥 = λE𝑆𝑒−𝑢, устанавливаем, что правый
сомножитель в подынтегральном выражении (2.11) неотрицателен и не превос­
ходит 1

2λ . Вспоминая, что
∫︀∞
0 𝑔(𝑢)𝑑𝑢 = 1

2 , из (2.11) получаем (2.10).
Вернемся к (2.9) и заметим, что при 1

2 < β̂(λ) < 1 дробь во втором сла­
гаемом в правой части положительна. Следовательно нижняя оценка для
дисперсии Var

(︁
𝑉 LIFORe
𝐵̂

)︁
получится, если вместо β̂′(λ) подставить ее наимень­

шее значение т. е. − 1
4λ . Вводя для сокращения записи обозначение 𝑥 = β̂(λ),

из (2.9) получаем

Var
(︀
𝑉 LIFORe
𝐵̂

)︀
>

1

λ2
· 1− 5𝑥+ 3𝑥2 + 18𝑥3 − 34𝑥4 + 16𝑥5

2𝑥2(2𝑥− 1)3
=

1

λ2
· 𝑓2(𝑥).

Покажем, что Var
(︀
𝑉 PS
𝐵

)︀
6 Var

(︁
𝑉 LIFORe
𝐵̂

)︁
. Для этого достаточно убедиться в

том, что при27 1
2 < 𝑥 6 𝑦 < 1 имеет место неравенство 𝑓1(𝑦) 6 𝑓2(𝑥). Но

𝑓1(𝑦) убывает при 1
2 < 𝑦 < 1 т. к.

𝑓 ′
1(𝑦) =

(1− 𝑦)(3− 8𝑦 + 𝑦2)

(1− 3𝑦)2(2𝑦 − 1)3
< 0,

27Неравенство 𝑥 6 𝑦 следует из Теоремы 14.
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и, кроме того, 𝑓1(𝑥) < 𝑓2(𝑥) при 1
2 < 𝑥 < 1, поскольку

𝑓2(𝑥)− 𝑓1(𝑥) =
1− 8𝑥+ 20𝑥2 + 3𝑥3 − 86𝑥4 + 124𝑥5 − 52𝑥6

2𝑥2(2𝑥− 1)3(3𝑥− 1)
> 0.

Для завершения доказательства (2.8) осталось воспользоваться рассуждения­
ми, использованными в [75, С. 87], для вывода свойства монотонности дисперсии
в СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS, из которых следует, что Var

(︀
𝑉 PS
𝐵

)︀
6 Var

(︁
𝑉 PS
𝐵̂

)︁
.

Ввиду громоздкости явного выражения для Var
(︁
𝑉 PS
𝐵̂

)︁
, дальнейшее уточне­

ние правой части (2.8), т. е. установление соотношения между дисперсиями
Var
(︁
𝑉 LIFORe
𝐵̂

)︁
и Var

(︁
𝑉 PS
𝐵̂

)︁
, затруднено.

Интересно остановиться на другой, популярной в классических СМО
временной характеристике — незаконченной работе. Обозначим через 𝑅PS и
𝑅LIFORe сл. в. с распределениями, совпадающими со стационарными распре­
делениями незаконченной работы соответственно в СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS
и СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe. Отметим, что выражение для E

(︁
𝑅LIFORe

𝐵̂

)︁
было

получено в (1.26); а формула для E
(︁
𝑅PS

𝐵̂

)︁
может быть найдена, например, из со­

ответствующего ПЛС в [75, С. 85]. Как известно (см., например, [416, С. 38–39]),

если бы выполнялось соотношение 𝑅LIFORe
𝐵̂

𝑑
6 𝑅PS

𝐵̂
, то должно было выполнять­

ся соответствующее неравенство как для ПЛС, так и, конечно же, для средних
т. е. E

(︁
𝑅LIFORe

𝐵̂

)︁
6 E

(︁
𝑅PS

𝐵̂

)︁
. Однако можно привести примеры28, когда

E
(︀
𝑅LIFORe

𝐵̂

)︀
− E

(︀
𝑅PS

𝐵̂

)︀
=

(︃
E𝑆β̂(λ)

2β̂(λ)− 1
− 1− β̂(λ)

λβ̂(λ)

)︃
− λE𝑆2

2(1− λE𝑆)
> 0.

Таким образом, в условиях Теоремы 14 сл. в. 𝑅LIFORe
𝐵̂

не является29 во всем
диапазоне загрузки 0 < λE𝑆 < 1 ни стохастически меньшей, ни стохастически
большей, чем сл. в. 𝑅PS

𝐵̂
.

28Например, 𝑆 = 𝑆 ·𝑋, 𝑆 имеет экспоненциальное распределение с параметром 1, 𝑋 — логнор­
мальное распределение с параметрами 0 и σ = 0.7, и λ = 0.1.

29Известен ряд работ (см., например, [458] и обзор в [459]), в которых система 𝑀 |𝐺𝐼 | 1 |∞ |PS
применяется для моделирования (генерации выборки из) стационарных распределений характери­
стик других, более сложных СМО (например, вектора остаточных длин обслуживания в системе
𝑀 |𝐺𝐼 | 𝑐 |∞ |PS, находящейся в стационарном режиме). Методы, которые позволяют это делать
(упомянем, в частности, метод “Dominated CFTP” [459, Раздел 2.3.4]) и регенеративное модели­
рование (см. [459, Раздел 2.4.1] и [323; 355; 460–462]), требуют наличия системы, потраекторно
мажорирующей исходную (например, 𝑀 |𝐺𝐼 | 1 |∞ |FIFO мажорирует 𝑀 |𝐺𝐼 | 𝑐 |∞ |FIFO с точки
зрения процесса незаконченной работы в каждый момент времени). Возникает вопрос: возможно ли
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Вернемся к неравенствам для средних времен. Как было доказано в Тео­
реме 4 среднее время пребывания в стационарной СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe

совпадает со средней длиной ее периода занятости (ср. (1.23) и (1.25)). Таким
образом, (2.7) не изменится, если вместо E

(︁
𝑉 LIFORe
𝐵̂

)︁
— среднего времени пре­

бывания подставить E
(︁
𝑈LIFORe
𝐵̂

)︁
— среднюю длину периода занятости30, т. е.

E
(︀
𝑉 PS
𝐵

)︀
6 E

(︀
𝑈LIFORe
𝐵̂

)︀
6 E

(︀
𝑉 PS
𝐵̂

)︀
. (2.12)

Как показывает следующая теорема, к этой системе неравенств (и к систе­
ме (2.7)) можно добавить еще одно, дающее нетривиальную оценку снизу для
значения E

(︀
𝑉 PS
𝐵

)︀
. Напомним, что 𝑏̂(𝑥) есть значение плотности распределения

сл. в. 𝑆 в точке 𝑥.

Теорема 16. Если сл. в. 𝑆 представима в виде произведения 𝑆 ·𝑋, причем
сл. в. 𝑆 и 𝑋 независимы и имеют соответсвенно экспоненциальное и лог–сим­
метричное распределения, то справедливы неравенства

0 <
1

𝑏̂(0)− λ
6 E

(︀
𝑉 PS
𝐵

)︀
. (2.13)

Доказательство. Как было доказано в Теореме 4, в СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe

с интенсивностью входящего потока λ и ф. р. длины заявки 𝐵̂(𝑥) ПЛС рас­
пределения времени пребывания заявки на приборе (обозначим его ψ(1)(𝑠)),
применение СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe для решения такой же задачи? По-видимому, ответ на этот
вопрос отрицательный. Обозначим через χ(𝑡) величину незаконченной работы в системе в момент 𝑡.
Интуитивно ясно, что при одинаковых начальных условиях (ввиду изменения остаточного времени
обслуживания заявки на приборе при каждом поступлении заявки) неравенство χPS(𝑡) 6 χLIFORe(𝑡)

не может выполняться при всех 𝑡 > 0. Так же обстоит дело, если рассмотреть процессы общего
числа заявок в системах. Таким образом, (с точки зрения упомянутых двух характеристик) система
𝑀 |𝐺𝐼 | 1 |∞ | LIFORe не является мажорантой (и минорантой) для СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS.

30Отсюда автоматически получаются и оценки для средней длины периода занятости, посколь­
ку, как известно (см., например, [354, С. 487]), для стационарной СМО 𝑀 |𝐺𝐼 | 1 |∞ |PS средняя
длина периода занятости равна среднему времени пребывания в системе произвольной заявки. От­
метим, что этот результат не следуют из известных оценок для средних значений периода занятости
и простоя классических систем 𝐺𝐼 |𝐺𝐼 | 1 |∞ | · (см., например, [416, C. 112]). Неравенства (2.12)
указывают на еще одно важное обстоятельство: оценкой интересующей характеристики (здесь это
E
(︀
𝑉 PS
𝐵

)︀
) может служить значение совершенно другой характеристики (здесь это средняя длина

периода занятости). Прояснить эту ситуацию (хотя бы частично) помогает рассмотрение СМО с
несколькими типами заявок (см. стр. 122).
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рассчитывается по формуле (см. (1.17))

ψ(1)(𝑠) =
β̂(λ+ 𝑠)(λ+ 𝑠)

𝑠+ λβ̂(λ+ 𝑠)
.

Из теоремы Бохнера–Хинчина (см., например, [463, С. 228]) следует31, что
ψ(1)(𝑠) служит преобразованием Лапласа–Стилтьеса некоторой ф.р. Обозна­
чим ее через 𝐵̂(2)(𝑥). Рассмотрим теперь СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe с той же
интенсивностью входящего потока λ и ф. р. длины заявки 𝐵̂(2)(𝑥). Повторяя рас­
суждения Теоремы 4, находим, что в этой новой системе ПЛС стационарного
распределения времени пребывания заявки на приборе (обозначим его ψ(2)(𝑠))
существует при β̂(2λ) ∈ (13 ,1) и равно

ψ(2)(𝑠) =
β̂(2λ+ 𝑠)(2λ+ 𝑠)

𝑠+ λβ̂(2λ+ 𝑠)
,

а для стационарного среднего E
(︁
𝑉 LIFORe
𝐵̂(2)

)︁
времени пребывания заявки в этой

системе имеет место формула

E
(︀
𝑉 LIFORe
𝐵̂(2)

)︀
=

β̂(2λ)− 1

λ− λβ̂(2λ)− 2λβ̂(2λ)
.

Как ранее ПЛС ψ(1)(𝑠), теперь и ψ(2)(𝑠) служит преобразованием Ла­
пласа–Стилтьеса некоторой ф. р. Обозначим ее через 𝐵̂(3)(𝑥) и опять рассмот­
рим СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe с той же интенсивностью входящего потока λ,
и ф. р. длины заявки 𝐵̂(3)(𝑥), и т.д. Путем несложных, но утомительных пре­
образований, можно установить, что стационарное среднее время пребывания
заявки в СМО 𝑀 |𝐺𝐼 | 1 |∞ | LIFORe, рассматриваемой на 𝑛-м шаге, существу­
ет при β̂(𝑛λ) ∈ ( 1

𝑛+1 ,1) и равно

E
(︀
𝑉 LIFORe
𝐵̂(𝑛)

)︀
=

β̂(𝑛λ)− 1

λ− λβ̂(𝑛λ)− 𝑛λβ̂(𝑛λ)
, 𝑛 > 1. (2.14)

Устремим в последнем равенстве 𝑛 к бесконечности. Поскольку lim𝑥→0 𝑏̂(𝑥) = 𝑏̂(0)

существует, из тауберовой теоремы (см., например, [320, С. 211]) следует, что
lim𝑛→∞ 𝑛λβ̂(𝑛λ) = 𝑏̂(0). Учитывая, что lim𝑛→∞ β̂(𝑛λ) = 0, приходим к за­
ключению, что описанные выше шаги, повторенные неограниченное число

31Впрочем можно поступить и по-другому, заметив, что время пребывания заявки на приборе
есть сумма (случайного числа) независимых в совокупности неотрицательных сл. в.
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раз, приводят к СМО, в которой стационарное среднее время пребывания
заявки равно

lim
𝑛→∞

E
(︀
𝑉 LIFORe
𝐵̂(𝑛)

)︀
=

1

𝑏̂(0)− λ
.

Выписывая теперь явный вид плотности 𝑏̂(𝑥)

𝑏̂(𝑥) =
1

E𝑆

∞∫︁
0

𝑒−
𝑥

𝑢E𝑆
𝑙(𝑢)

𝑢
𝑑𝑢, 𝑥 > 0,

подставляя 𝑥 = 0 и вспоминая, что сл. в. 𝑋 и 1/𝑋 одинаково распределены,
и E𝑋 > 1, получаем

𝑏̂(0) =
E(1/𝑋)

E𝑆
>

1

E𝑆
> λ.

Для завершения доказательства осталось вспомнить, что E
(︀
𝑉 PS
𝐵

)︀
= E𝑆

1−λE𝑆 . По­
этому правое неравенство в (2.13) равносильно неравенству 𝑏̂(0)E𝑆 > 1, которое,
как только что было показано, выполняется.

Если собрать вместе (2.7) и (2.13), то получается цепочка неравенств

0 <
1

𝑏̂(0)− λ
6

E𝑆

1− λE𝑆
6

1− β̂(λ)
λ(2β̂(λ)− 1)

6
E𝑆

1− λE𝑆
< ∞,

из которой следует, что

1

𝑏̂(0)
6 E𝑆 6

1− β̂(λ)
λβ̂(λ)

. (2.15)

Вернемся к предложенной выше интерпретации результатов Теоремы 14 (см.
стр. 113), в соответствии с которой сл. в. 𝑆 есть фактическое время обслу­
живания заявки на приборе. Неравенства32 (2.15) показывают, во-первых, что

32Правое неравенство в (2.15) позволяет уточнить оценку для дисперсии, полученную в
Теореме 15. Из свойства монотонности дисперсии времени пребывания в стационарной СМО
𝑀 |𝐺𝐼 | 1 |∞ |PS (см. [75, С. 87]) следует, что замена распределения сл. в. 𝑆 c 𝐵̂(𝑥) на экспонен­
циальное (со средним равным правой части (2.15)), не увеличивает значение дисперсии. Поэтому
правая часть двойного неравенства

Var
(︁
𝑉 PS
𝐵

)︁
6

(︃
1− β̂(λ)

λ(2β̂(λ)− 1)

)︃2
1 + β̂(λ)

3β̂(λ)− 1
6 Var

(︁
𝑉 PS
𝐵̂

)︁
справедлива, а левая устанавливается непосредственной проверкой.
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распределение планируемого времени обслуживания 𝑆 содержит информацию
о (неизвестном!) фактическом среднем времени обслуживания, и, во-вторых,
что часть этой информации можно из этого распределения извлечь. Точность
полученных оценок установить невозможно. Заметим лишь, что при отсутствии
случайной ошибки в (2.15) выполняются точные равенства. Кроме того, пред­
ложенная оценка сверху лучше тривиальной оценки E𝑆.

Условие, что СМО должна принадлежать множеству M* для того, чтобы
с помощью предложенного метода можно быть уточнять оценки фактиче­
ских значений ее стационарных характеристик, является довольно ограничи­
тельным. Хотя оно и приводит к интересным теоретическим выводам (см.,
например, (2.6)), но трудно рассчитывать на то, что M* велико настолько,
чтобы метод можно было признать полезным для задач практики. Испра­
вить ситуацию можно, но за счет большей части теоретических результатов.
Например, соотношение (2.3), являющееся критерием принадлежности СМО
множеству M*, можно заменить двойным неравенством для средних значе­
ний33. Подобная замена по-видимому не может позволить продвинуться далеко
в теоретическом плане, но увеличивает мощность M*. Чтобы наглядно проде­
мострировать последнее обстоятельство сделаем эту замену и предъявим еще
один элемент из M*. Рассмотрим систему 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ |PS, на вход которой
поступает 𝑟 > 1 независимых пуассоновских потоков заявок различных типов
интенсивности λ𝑖, 1 6 𝑖 6 𝑟. Положим λ =

∑︀𝑟
𝑖=1 λ𝑖. Длины 𝑆𝑖 поступающих

заявок — независимые в совокупности одинаково распределенные абсолютно
непрерывные сл. в. с ф. р. 𝐵̂𝑖(𝑥) = P{𝑆𝑖 < 𝑥} и конечным средним E𝑆𝑖. Пусть
сл. в. 𝑉 PS имеет распределение, совпадающее со стационарным распределением
времени пребывания произвольной заявки в такой СМО. Как известно [75, С.
70], при при

∑︀𝑟
𝑖=1 λ𝑖E𝑆𝑖 < 1 имеет место равенство

E
(︁
𝑉 PS
𝐵̂1,...,𝐵̂𝑟

)︁
=

1

λ

𝑟∑︀
𝑖=1

λ𝑖E𝑆𝑖

1−
𝑟∑︀

𝑖=1

λ𝑖E𝑆𝑖

.

Возьмем теперь (исследованную в парарафе 1.3; см. стр. 69) систему
𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe с теми же входящими потоками, тем же набором ф. р.

33Например, для стационарных средних времен пребывания заявок в системе или других момен­
тов.
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длин заявок {𝐵̂𝑖(𝑥), 1 6 𝑖 6 𝑟}, и дисциплиной LIFORe. Сл. в., имеющую ста­
ционарное распределение периода занятости этой СМО, среднее значение
которой конечно (согласно Теореме 9 ) при 0 <

∑︀𝑟
𝑖=1

λ𝑖
λ
1−β̂𝑖(λ)

β̂𝑖(λ)
< 1, обозначим

через 𝑈LIFORe
𝐵̂1,...,𝐵̂𝑟

. Напомним, что β̂𝑖(λ) =
∫︀∞
0 𝑒−λ𝑢𝑑𝐵̂𝑖(𝑢). Согласно (1.51), средняя

длина периода занятости вычисляется по формуле

E
(︁
𝑈LIFORe
𝐵̂1,...,𝐵̂𝑟

)︁
=

1

λ

𝑟∑︀
𝑖=1

λ𝑖
λ
1−β̂𝑖(λ)

β̂𝑖(λ)

1−
𝑟∑︀

𝑖=1

λ𝑖
λ
1−β̂𝑖(λ)

β̂𝑖(λ)

.

Теперь, путем простого сравнения дробей34, нетрудно установить справедли­
вость следующего утверждения, являющегося более слабым аналогом Теоре­
мы 14 : если при каждом 1 6 𝑖 6 𝑟 сл. в. 𝑆𝑖 представима в виде произведения
𝑆𝑖 ·𝑋𝑖, причем сл. в. 𝑆𝑖 и 𝑋𝑖 независимы и имеют соответсвенно экспоненци­
альное и лог–симметричное распределения, то во всей области стационарности
выполняется двойное неравенство

E
(︀
𝑉 PS
𝐵1,...,𝐵𝑟

)︀
6 E

(︁
𝑈LIFORe
𝐵̂1,...,𝐵̂𝑟

)︁
6 E

(︁
𝑉 PS
𝐵̂1,...,𝐵̂𝑟

)︁
. (2.16)

Соотношения (2.16) указывают на важное обстоятельство: чтобы предложен­
ный метод уточнения оценок фактических значений стационарных характе­
ристик частично наблюдаемых СМО дал содержательный результат может
потребоваться найти не только подходящий вариант дисциплины LIFOGPP, но и
правильный оценивающий показатель. Для системы 𝑀 |𝐺𝐼 | 1 |∞ |PS с несколь­
кими типами заявок нужной дисциплиной оказалась дисциплина LIFORe (см.
стр. 69), а правильным показателем35 — стационарная средняя длина ПЗ.

34В самом деле, для каждой сл. в. 𝑆𝑖 в отдельности выполняется Теорема 14 а, значит, и нера­
венства

1

1 + λE𝑆𝑖

6 β̂𝑖(λ) 6
1

1 + λE𝑆𝑖
.

для ПЛС β𝑖(λ).
35Оказалось не стационарное среднее время пребывания в системе произвольной заявки (см.

формулу (1.43)). Это было бы (судя по полученным ранее результатам для СМО с одним типом
заявок) вполне ожидаемым. Однако обратимся к другой характеристике — стационарному среднему
времени пребывания в системе заявки типа 𝑖. Для СМО 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ |PS, как известно, оно равно

E𝑆𝑖

1−
𝑟∑︀

𝑗=1
λ𝑗E𝑆𝑗

= E
(︁
𝑉 PS
𝐵̂1,...,𝐵̂𝑟

(𝑖)
)︁
;
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С точки зрения практики, основным недостатком полученных результатов
является предположение о видах распределений сл. в. 𝑆36 и 𝑋. В следующих
двух теоремах показано, что отказаться37 от этого предположения можно, но
в результате возникают ограничения другого рода.

Теорема 17. Пусть сл. в. 𝑆 принадлежит классу L̄ и представима в виде
произведения 𝑆 ·𝑋, где сл. в. 𝑆 и 𝑋 независимы, и E𝑋 > 1. Тогда существует
такое 𝑛0 ∈ [0,1], что при 𝑛 ∈ [0,𝑛0] справедливы неравенства

E
(︀
𝑉 PS
𝐵

)︀
6

E𝑆

1− λE𝑆
− 𝑛λ

E𝑆2 − 2(E𝑆)2

(1− λE𝑆)2
6 E

(︀
𝑉 PS
𝐵̂

)︀
. (2.17)

Доказательство. Поскольку сл. в. 𝑆 принадлежит классу L̄ , то квадрат ее ко­

эффициента вариации не меньше единицы, т. е. E𝑆2−(E𝑆)2

(E𝑆)2
> 1. Вспоминая, что

E
(︁
𝑉 PS
𝐵̂

)︁
= E𝑆

1−λE𝑆 , убеждаемся, что второе неравенство в (2.17) справедливо.

для СМО 𝑀𝑟 |𝐺𝐼𝑟 | 1 |∞ | LIFORe оно было найдено в (1.53) и равно

1− β̂𝑖(λ)

λβ̂𝑖(λ)
+

1

λ

1

1−
𝑟∑︀

𝑗=1

λ𝑗
λ

1−β̂𝑗(λ)

β̂𝑖(λ)

𝑟∑︁
𝑗=1

λ𝑗

λ

(1− β̂𝑗(λ))
2

β̂2
𝑗 (λ)

= E
(︁
𝑉 LIFORe
𝐵̂1,...,𝐵̂𝑟

(𝑖)
)︁
.

С помощью полученных выше оценок нетрудно установить, что E
(︁
𝑉 LIFORe
𝐵̂1,...,𝐵̂𝑟

(𝑖)
)︁
6 E

(︁
𝑉 PS
𝐵̂1,...,𝐵̂𝑟

(𝑖)
)︁

то­

гда и только тогда, когда
∑︀𝑟

𝑗=1 λ𝑗E𝑆𝑗(E𝑆𝑗 − E𝑆𝑖) 6 0. Не ограничивая общности рассуждений можно
считать, что типы потоков занумерованы в порядке возрастания значений средней длины заявки.
Поэтому предыдущее неравенство точно выполняется при 𝑖 = 𝑟 (т. е. для потока с самой большой
средней длиной заявки), и не выполняется при 𝑖 = 1 (т. е. для потока с самой маленькой средней дли­
ной заявки). Другое же соотношение E

(︁
𝑉 PS
𝐵1,...,𝐵𝑟

(𝑖)
)︁
6 E

(︁
𝑉 LIFORe
𝐵̂1,...,𝐵̂𝑟

(𝑖)
)︁

без введения дополнительных
предположений проверить, по-видимому, невозможно: оно выполняется для всех тех 𝑖, при которых∑︀𝑟

𝑗=1 λ𝑗E𝑆𝑗(E𝑆𝑗 − E𝑆𝑖) > 0. Однако в отличие от неравенства для E𝑆𝑖, здесь значения E𝑆1, . . . , E𝑆𝑟

неизвестны.
36Например, попытки заменить экспоненциальное распределение сл. в. 𝑆 хотя бы на “почти”

экспоненциальное (см. [464]) не дали результатов.
37Речь здесь идет, в том числе, и об отказе от эспоненциальности сл. в. 𝑆. Для классических СМО

в этом направлении известно большое число результатов (см., например, [255; 457; 465–468], [416,
Глава 5], [205, Глава 2]). Однако (по крайней мере стандартные) приемы неприменимы для СМО
𝑀 |𝐺𝐼 | 1 |∞ | LIFORe ввиду ее неконсервативности.
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Поскольку E
(︀
𝑉 PS
𝐵

)︀
= E𝑆

1−λE𝑆 , левое неравенство в (2.17) равносильно нера­
венству

E𝑆(E𝑋 − 1)⏟  ⏞  
>0

−𝑛 λ
1− λE𝑆
1− λE𝑆

(︁
E𝑆2 − 2(E𝑆)2

)︁
⏟  ⏞  

>0

> 0.

Оно выполняется при 𝑛 = 0 и, поскольку первое слагаемое в левой части не за­
висит от 𝑛, то существует38 такое (зависящее от E𝑆, E𝑆2 и E𝑋) число 𝑛0 ∈ [0,1],
что неравенство остается справедливым при всех 𝑛 ∈ [0,𝑛0].

К выражению в центральной части (2.17) приводят следующие сообра­
жения. Предположим, что формула (2.14) справедлива и для всех действи­
тельных 𝑛 ∈ [0,1). Далее будет неудобно использовать громоздкое обозначение
E
(︁
𝑉 LIFORe
𝐵̂(𝑛)

)︁
для правой части (2.14). Поэтому положим

𝑓(𝑛) = E
(︀
𝑉 LIFORe
𝐵̂(𝑛)

)︀
=

β̂(𝑛λ)− 1

λ− λβ̂(𝑛λ)− 𝑛λβ̂(𝑛λ)
, 𝑛 ∈ [0,1].

По формуле Тейлора в окрестности точки 𝑛 = 0 имеем

𝑓(𝑛) = 𝑓(0) + 𝑛𝑓 ′(0) + 𝑜(𝑛). (2.18)

Из того, что сл. в. 𝑆 принадлежит классу L̄ следует, что E𝑆2 < ∞.
Поэтому существуют первая и вторая производные функции β̂ (причем
(−1)𝑘β̂(𝑘)(0) = E𝑆𝑘, 𝑘 = 1,2). Воспользовавшись правилом Лопиталя, находим

𝑓(0) = lim
𝑛→+0

𝑓(𝑛) = lim
𝑛→+0

λβ̂′(𝑛λ)

−λ2β̂′(𝑛λ)− λβ̂(𝑛λ)− 𝑛λ2β̂′(𝑛λ)
=

E𝑆

1− λE𝑆
.

Выпишем теперь формулу для производной 𝑓 ′(𝑛):

𝑓 ′(𝑛) =
1

(λ−λβ̂(𝑛λ)−𝑛λβ̂(𝑛λ))2
×
(︁
−λβ̂′(𝑛λ)

(︁
𝑛λβ̂(𝑛λ)+λβ̂(𝑛λ)−λ

)︁
−

−(1−β̂(𝑛λ))
(︁
𝑛λ2β̂′(𝑛λ) + λ2β̂′(𝑛λ) + λβ̂(𝑛λ)

)︁)︁
=

= λ
−𝑛λβ̂′(𝑛λ)− (1− β̂(𝑛λ))β̂(𝑛λ)

(λ−λβ̂(𝑛λ)−𝑛λβ̂(𝑛λ))2
. (2.19)

38Пусть, например, 𝑛 = 1−λE𝑆
1−λE𝑆 ; 0 < 𝑛 6 1 поскольку E𝑆 6 E𝑆. Тогда левая часть неравенства

равна E𝑆 − E𝑆 − λ(E𝑆2 − 2(E𝑆)2) и при большом втором моменте E𝑆2 может быть отрицательной.
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Учитывая, что λE𝑆 < 1 (чтобы существовала правая часть (2.17))
и −β̂′(𝑛λ) 6 E𝑆39, для числителя дроби имеем следующую оценку:

−𝑛λβ̂′(𝑛λ)− (1− β̂(𝑛λ))β̂(𝑛λ) 6 𝑛− (1− β̂(𝑛λ))β̂(𝑛λ).

Поскольку для существования 𝑓(𝑛) должно выполняться условие
β̂(𝑛λ) ∈ ( 1

1+𝑛 ,1), то ((1− β̂(𝑛λ))β̂(𝑛λ))′𝑛 > 0 и ((1− β̂(𝑛λ))β̂(𝑛λ))′′𝑛 < 0 при
𝑛 ∈ [0,1]. Значит найдется такое 𝑛0 ∈ [0,1], что при 𝑛 ∈ [0,𝑛0] числитель (2.19)
отрицателен, и, значит, функция 𝑓 убывает. Воспользовавшись дважды пра­
вилом Лопиталя, находим

𝑓 ′(0) = lim
𝑛→+0

𝑓 ′(𝑛) = λ
2(E𝑆)2 − E𝑆2

(1− λE𝑆)2
.

Подставляя 𝑓(0) и 𝑓 ′(0) в (2.18), и отбрасывая остаточный член, приходим к
искомому выражению.

Теорема 17 расширяет область применения предложенного метода уточ­
нения оценок фактических значений стационарных характеристик частично
наблюдаемых СМО. В ней показано, что ограничения на тип распределений
сл. в. 𝑆 и 𝑋, накладываемые Теоремой 14, могут быть (иногда) сняты, и но­
вые оценки остаются справедливыми во всей области стационарности. Вместе
с тем, в них появляется новый параметр, значение которого неизвестно и не
может быть найдено в рамках сделанных предположений40.

Если же отказаться от требования, чтобы новые оценки были справедливы
во всей области стационарности, то, как показывает следующая теорема, можно
получить более сильный результат, чем (2.17).

Теорема 18. Пусть сл. в. 𝑆 принадлежит классу L̄ и представима в виде
произведения 𝑆 ·𝑋, где сл. в. 𝑆 и 𝑋 независимы, и E𝑋 > 1. Тогда существует
такое λ0 > 0, что при всех 0 6 λ 6 λ0 выполняются соотношения

𝑁PS
𝐵

𝑑
6 𝑁LIFORe

𝐵̂

𝑑
6 𝑁PS

𝐵̂
. (2.20)

39Это немедленно следует из того, что −β̂′(𝑛λ) =
∫︀∞
0 𝑢𝑒−𝑛λ𝑢𝑑𝐵̂(𝑢).

40Тем не менее, польза для практики из результата (2.17) может быть извлечена. Например,
когда априори известно, что времена обслуживания заявок сильно завышены (и такие случаи ти­
пичны; например, в [415] отмечается, что пользователи суперкомпьютерных центров коллективного
пользования в среднем завышают время выполнения на 86%), то подойдет любое 𝑛 ∈ (0,1).



126

Доказательство. Как показано в Теореме 14 (2.20) выполняется тогда и только
тогда, когда для β̂(λ) справедлива двусторонняя оценка

1

1 + λE𝑆
6 β̂(λ) 6

1

1 + λE𝑆
.

Поскольку сл. в. 𝑆 принадлежит классу L̄ , левое неравенство выполняется при
любом λ > 0. Иначе обстоит дело с правым неравенством. Из того, что λE𝑆 < 1

следует, что 1− λE𝑆 6 1
1+λE𝑆 . Воспользуемся неравенством для преобразований

Лапласа неотрицательных сл. в., полученным в [429]. Из формулы (18) в [429]
имеем:

β̂(λ) 6 1− λ(E𝑆)2

λE𝑆2 + E𝑆
, λ > 0.

Нетрудно видеть, что 1− λ(E𝑆)2

λE𝑆2+E𝑆
6 1− λE𝑆 тогда и только тогда, когда

λ 6
E𝑆(E𝑋 − 1)

E𝑆2
.

Правая часть неравенства неотрицательна и является искомым значением λ0.

И снова вернемся к предложенной выше интерпретации результатов Тео­
ремы 14 (см. стр. 113), в соответствии с которой фактические времена
обслуживания 𝑆 содержат случайную ошибку 𝑋. Поскольку по условию Теоре­
мы 18 сл. в. 𝑆 = 𝑆 ·𝑋 принадлежит классу L̄ , то квадрат ее коэффициента
вариации не меньше единицы и, значит, E𝑆2

E𝑆
> 2E𝑆. Но тогда справедливо нера­

венство

λ0 =
E𝑆(E𝑋 − 1)

E𝑆2
6

1

E𝑆

(︂
1

2
− 1

2E𝑋

)︂
,

которое помогает прояснить физический смысл Теоремы 18. Если прогнозные
времена обслуживания 𝑆 сильно завышены, то, по крайней мере когда (нена­
блюдаемая!) система загружена меньше чем наполовину, можно рассчитывать
на получение более точных оценок фактического распределения общего числа
заявок в системе. Если же прогнозные времена обслуживания близки фактиче­
скими, то (скорее всего) такой возможности нет.

Как и в случае с Теоремой 17, польза для практики от Теоремы 18 огра­
ничена, поскольку значение λ0 невозможно вычислить. Однако, ограничившись
областью малой загрузки, можно (в известных случаях; см. сноску на стр. 125)
быть почти уверенным, что (2.20) выполняются.
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2.3 Дополнения

1. В множество M* входят СМО не только с дисциплиной справедливого
разделения процессора, но и с другими (в том числе и классическими) дис­
циплинами обслуживания. Например, неравенства для первых моментов (2.7)
остаются справедливыми, если вместо дисциплины PS взять FIFO41. Ключевую
роль здесь играет предположение об экспоненциальности сл. в. 𝑆. Если же отка­
заться от него и заменить распределение 𝐵(𝑥) = P{𝑆 < 𝑥} на другое, скажем
на распределение Вейбулла

𝑏(𝑥) = 𝐵′(𝑥) = 𝑘Γ(1 + 𝑘−1)(𝑥Γ(1 + 𝑘−1))𝑘−1𝑒−(𝑥Γ(1+𝑘−1))𝑘, 𝑘 > 0, 𝑥 > 0,

то при 𝑘 ̸= 1 неравенства (2.7) более не выполняются. Причина этого кроет­
ся в том, что дисциплина LIFORe никак не учитывает изменившиеся свойства
распределения 𝐵̂(𝑥) (например, что хвост распределения стал тяжелее, если
𝑘 < 1). Как показывает следующий пример, существуют случаи, когда вы­
бор (вместо LIFORe) другой дисциплины обслуживания позволяет исправить
ситуацию. Пусть 𝑘 = 0.5, а сл. в. 𝑋 имеет логнормальное распределение с пара­
метрами 0 и 0.5. Графически (см. рисунок ниже) можно убедиться, что сл. в.
𝑆 = 𝑆 · 𝑋 принадлежит классу L̄ .
Значения, приведенные в следующей таблице (см. таблица 1), свидетельствуют
о том, что неравенства E

(︀
𝑉 FIFO
𝐵

)︀
6 E

(︁
𝑉 LIFORe
𝐵̂

)︁
6 E

(︁
𝑉 FIFO
𝐵̂

)︁
не выполняются42

ни при каком значении λ. Изменим дисциплину LIFORe следующим образом:
каждая поступающая в непустую систему заявка назначает новую остаточную
длину заявке на приборе, если и только если текущая остаточная длина послед­
ней не меньше некоторого заранее фиксированного числа. Такую пороговую
дисциплину с порогом θ > 0 будем обозначать LIFORe(θ). Очевидно, LIFORe(θ)

41Или LIFO или Random. Однако, например, для дисциплины SRPT это уже не так.
42Оценка E

(︁
𝑉 LIFORe
𝐵̂

)︁
оказывается заниженной и связано это с тем, что назначение новых оста­

точных длин обслуживающимся заявкам происходит слишком часто для данного распределения
𝐵̂(𝑥).
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Рисунок 1 — Левая и правая части неравенства (2.1) при 𝑠 < 1
E𝑆

есть одна из разновидностей дисциплины LIFOGPP, причем43

𝑑(𝑥,𝑦|𝑢,𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑏̂(𝑥)δ(𝑦 − 𝑣), 𝑢 > θ, 𝑣 < θ,

𝑏̂(𝑦)δ(𝑥− 𝑢), 𝑢 < θ, 𝑣 > θ,

δ(𝑥− 𝑢)δ(𝑦 − 𝑣), 𝑢 < θ, 𝑣 < θ,

𝑏̂(𝑥)𝑏̂(𝑦), 𝑢 > θ, 𝑣 > θ,

а остальные определяющие дисциплину LIFOGPP функции тождественно рав­
ны нулю. Возвращаясь к таблице 1 видим, что, варьируя значения порога θ,
можно добиться того, чтобы (при всех λ) выполнялись неравенства44

E
(︀
𝑉 FIFO
𝐵

)︀
6 E

(︁
𝑉

LIFORe(θ)

𝐵̂

)︁
6 E

(︀
𝑉 FIFO
𝐵̂

)︀
.

Открытым (и, по-видимому, неразрешимым без дополнительных предпо­
ложений) остается вопрос вычисления значения θ без информации о параметрах
распределений сл. в. 𝑆 и 𝑋.

2. Предложенный метод уточнения оценок фактических значений
стационарных характеристик частично наблюдаемых СМО может давать со­
держательные результаты не только при пуассоновских входящих потоках.

43Напомним, что всюду δ обозначает дельта–функцию Дирака.
44Значения порога для указанных в таблице значений E

(︁
𝑉

LIFORe(θ)

𝐵̂

)︁
равно 25; оно было найдено

численно по точным формулам параграфа 1.1.
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Таблица 1 — Стационарные средние времена пребывания в СМО
𝑀 |𝐺𝐼 | 1 |∞ | FIFO при различных интенсивностях входящего потока λ:
E
(︀
𝑉 FIFO
𝐵

)︀
— фактическое, E

(︁
𝑉 FIFO
𝐵̂

)︁
— прогнозное, E

(︁
𝑉 LIFORe
𝐵̂

)︁
— оценка

с дисциплиной LIFORe, E
(︁
𝑉

LIFORe(θ)

𝐵̂

)︁
— оценка с дисциплиной LIFORe(θ)

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E
(︀
𝑉 FIFO
𝐵

)︀
1.333 1.750 2.286 3 4 5.5 8 13 28

E
(︁
𝑉 LIFORe
𝐵̂

)︁
1.056 1.001 0.983 0.982 0.991 1.009 1.034 1.066 1.105

E
(︁
𝑉

LIFORe(θ)

𝐵̂

)︁
1.47 1.90 2.49 3.28 4.43 6.16 9.4 16.9 54

E
(︁
𝑉 FIFO
𝐵̂

)︁
1.688 2.406 3.370 4.734 6.811 10.359 17.794 43.256 ∞

Рассмотрим СМО 𝐷 |𝐺𝐼 | 1 |∞ |PS, в которой времена меджу поступле­
ниями заявок имеют вырожденное распределение (скажем, в точке λ−1).
Пусть 𝐵(𝑥) = P{𝑆 < 𝑥} = 1− 𝑒−𝑥, сл. в. 𝑋 распределена логнормально с па­
раметрами 0 и 0.7, а сл. в. 𝑆 имеет распределение 𝐵̂(𝑥) = P{𝑆 ·𝑋 < 𝑥}.
Из таблицы 2, в которой приведены значения45 средних времен пребывания
E
(︀
𝑉 PS
𝐵

)︀
, E
(︁
𝑉 LIFORe
𝐵̂

)︁
, E
(︁
𝑉 PS
𝐵̂

)︁
при интенсивностях входящего потока λ, рав­

номерно покрывающих область стационарности, видно, что предложенный
метод обеспечивает выполнение (по крайней мере) неравенств для первых
моментов (2.7).

Таблица 2 — Стационарные средние времена пребывания в СМО
𝐷 |𝐺𝐼 | 1 |∞ |PS при различной загрузке λ: E

(︀
𝑉 PS
𝐵

)︀
— фактическое, E

(︁
𝑉 PS
𝐵̂

)︁
— прогнозное, E

(︁
𝑉 LIFORe
𝐵̂

)︁
— оценка

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E
(︀
𝑉 PS
𝐵

)︀
1 1.007 1.043 1.120 1.255 1.480 1.876 2.692 5.179

E
(︁
𝑉 LIFORe
𝐵̂

)︁
1.264 1.254 1.275 1.347 1.474 1.684 2.046 2.710 4.287

E
(︁
𝑉 PS
𝐵̂

)︁
1.295 1.383 1.561 1.884 2.470 3.735 8.254 ∞ ∞

Отметим, что значения E
(︀
𝑉 PS
𝐵

)︀
были рассчитаны по известным точным

формулам (см. [75, С. 102]). Что касается значений в последних двух строках
таблицы 2, то они были получены с помощью имитационного моделирования.

45Отметим, что в последовательности значений E
(︁
𝑉 LIFORe
𝐵̂

)︁
нет (ожидавшейся) монотонности.
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Вопрос о возможности аналитического расчета E
(︁
𝑉 LIFORe
𝐵̂

)︁
и аналитического

обоснования наблюдаемого эффекта остается невыясненным46.

3. Прием, позволивший получить оценки для рассмотренных частично
наблюдаемых СМО, по сути заключается в следующем изменении правила
обслуживания заявок: назначить обслуживающейся заявке новую остаточную
длину (независимо от всей предыстории функционирования системы), когда в
систему поступает заявка. Как показывают вычислительные эксперименты, вне­
сение такого изменения в любую модель частично наблюдаемой стохастической
системы позволяет получать содержательные результаты. Приведем лишь один
пример. Обратимся к модели вычислительного кластера из [469] (см. рисунок 2).

Рисунок 2 — Модель вычислительного кластера с двумя процессорами (𝑝𝑖 —
вероятность того, что заявке для выполнения требуется 𝑖 процессоров); рисунок

взят из [469, Fig. 1]

Она представляет собой два идентичных процессора (единичной производи­
тельности), обслуживающих заявки (в порядке поступления) из единственной
очереди неограниченной емкости. Заявки поступают в очередь по пуассонов­
скому закону (с параметром λ), их длины 𝑆1, 𝑆2, . . . (или, по-другому, времена
вычисления; см. [470]) становятся известны в момент поступления, являются
независимыми сл. в. и имеют одинаковое распределение 𝐵̂(𝑥) = P{𝑆 < 𝑥}. Для
выполнения каждой заявке с вероятностью 𝑝1 ∈ (0,1) требуется один процес­
сор, а с дополнительной вероятностью — два; конкретное число становится
известным в момент поступления заявки в систему и не изменяется вплоть до
момента ее ухода. Предполагается, что занятие (и освобождение) двух процессо­
ров происходит одновременно. Заявка поступает на обслуживание, во-первых,
когда подошла ее очередь и, во-вторых, когда требуемое ей число процессоров

46Хотя, например, условие стационарности хорошо понятно (см. [93, Theorem 4.2]) и имеет вид
E𝐻(𝑇 ) > 2; здесь 𝐻(𝑡) — функция восстановления простого процесса восстановления, в котором
длительности восстановления имеют ф. р. 𝐵̂(𝑥), а сл. в. 𝑇 — длина интервала между поступлениями
двух соседних заявок.
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свободно. Таким образом, система является неконсервативной: процессор мо­
жет простаивать, когда в системе есть незаконченная работа. Пусть параметры
модели выбраны так, что существует47 стационарный режим; обозначим ста­
ционарное среднее время пребывания через E𝑉𝐵̂. Предположим, что времена
вычисления 𝑆 в среднем завышены48, и фактическое время вычисления 𝑆 каж­
дой заявки связано с временем 𝑆, заявленным при поступлении, соотношением
𝑆 = 𝑆 ·𝑋 (и, значит, E𝑋 > 1). Условимся обозначать неизвестную ф. р. сл. в. 𝑆
через 𝐵(𝑥). Если в исходной модели заменить 𝐵̂(𝑥) на 𝐵(𝑥), то очевидно ста­
ционарный режим будет существовать; обозначим (неизвестное) стационарное
среднее время пребывания через E𝑉𝐵. Что можно сказать о значении E𝑉𝐵 кро­
ме того, что оно (вероятно49) не превосходит E𝑉𝐵̂? Если сл. в. 𝑆 принадлежит
классу L̄ , то, видоизменяя (как описано выше) правило обслуживания, можно
получить нечто большее. Пусть теперь каждая поступающая заявка, прежде
чем занять последнее место в очереди, прерывает обслуживание и назначает
заявкам на процессорах новое остаточное время выполнения из распределе­
ния 𝐵̂(𝑥). Обозначим стационарное среднее время пребывания в этой модели
через E𝑉 Re

𝐵̂
. Оказывается, что (по крайней мере) в области малой загрузки мо­

гут выполняться неравенства

E𝑉𝐵 < E𝑉 Re
𝐵̂

< E𝑉𝐵̂. (2.21)

Действительно, пусть сл. в. 𝑆 имеет экспоненциальное распределение с па­
раметром 1, а загрузка системы равна 0.05. График E𝑉𝐵, как функции от
интенсивности входящего потока λ50, представлен в [469] (см. Fig. 9b), причем
λ ∈ (0,0.1). Предположим теперь, что сл. в. 𝑋 имеет логнормальное распреде­
ление с параметрами 0 и σ = 0.25. Как уже не раз было показано выше сл. в.
𝑆 = 𝑆 ·𝑋 принадлежит классу L̄ .

На рисунке 3, изображены кривые зависимостей E𝑉𝐵, E𝑉 Re
𝐵̂

и E𝑉𝐵̂

от λ ∈ (0,0.1). Отмеченные значения E𝑉 Re
𝐵̂

и E𝑉𝐵̂ были получены путем ими­
тационного моделирования. Из рисунка видно, что сформулированное выше

47Отметим, что проблема нахождения условий стационарности для подобных моделей (как вы­
числительных кластеров, так и систем социального обслуживания (см. [471; 472])) остается по
большей части открытой (см. [442, Section 2] и [473]). Также обстоит дело и с проблемой нахож­
дения характеристик их производительности (см., например, [474], а также [442, Section 2]).

48См. сноску на стр. 107.
49Что, вообще говоря, необходимо доказывать.
50Отметим, что значения загрузки системы, среднего времени вычисления и интенсивности вхо­

дящего потока однозначно определяют значение 𝑝1 (см. соотношение (111) в [469]).
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Рисунок 3 — Стационарные средние времена пребывания при малой загрузке:
E𝑉𝐵 — фактическое, E𝑉𝐵̂ — прогнозное, E𝑉 Re

𝐵̂
— оценка

утверждение справедливо: (2.21) выполняется при всех λ ∈ (0,0.1). Теоретиче­
ское обоснование этого экспериментального факта пока не найдено.
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Глава 3. Алгоритмы управления для частично наблюдаемых
стохастических систем с параллельным обслуживанием

В этой и следующей главах диссертации внимание сосредоточено на
задаче централизованного оптимального управления входящими потоками
в частично наблюдаемых стохастических системах с параллельным обслужи­
ванием1. Типичная система представляют собой совокупность параллельно и
независимо друг от друга работающих обслуживающих ресурсов, которые вы­
полняют задания, направляемые на них единственным диспетчером. При этом
диспетчер, осуществляя выбор ресурса для выполнения очередного задания,
не имеет возможности отложить решение. Ему также недоступна какая-либо
динамическая информация о состоянии ресурсов; при этом, однако, в его рас­
поряжении имеется определенная априорная информация о системе.

3.1 Аналитический подход. Алгоритмы управления при прямом
порядке обслуживания в однопроцессорных серверах

Рассмотрим систему в непрерывном времени, состоящую из 𝑀 > 2 па­
раллельно работающих серверов, в которую поступает рекуррентный поток
заданий. Индексируя серверы числами, начиная с единицы, будем обозна­
чать производительность сервера 𝑚 через 𝑣(𝑚). Примем, что 0 < 𝑣(𝑚) < ∞,
1 6 𝑚 6 𝑀 , причем не все 𝑣(𝑚) равны между собой. Задания поступают в
систему по одному, причем интервалы между поступлениями образуют последо­
вательность независимых случайных величин с распределением 𝐹 (𝑥), средним∫︀∞
0 𝑥𝑑𝐹 (𝑥) = λ−1 и коэффициентом вариации 𝐶𝐹 < ∞. Каждое задание имеет

случайный объем (размер), причем его распределение является непрерывным2

и может зависеть от порядкового номера задания. Будем обозначать распреде­
ление размера 𝑆𝑛 задания, поступившего в систему 𝑛-м по счету, через 𝐵𝑛(𝑥),

1Как уже говорилось во Введении, примером таких систем являются системы добровольных
вычислений (volunteer computing) [41, Section 2.3].

2Это предположение не связано с сутью дела и сделано для упрощения изложения. Отказ от
него повлечет некоторые (несущественные) изменения в представленные ниже выкладки.
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предполагая3, что коэффициент вариации 𝐶𝐵𝑛
< ∞. В каждом сервере имеет­

ся очередь неограниченной емкости для хранения заданий и один процессор
для обработки, причем выбор на обслуживание происходит в соответствии
с дисицплиной FIFO. Серверы работают независимо, без обмена заданиями и яв­
ляются абсолютно надежными.

Каждое поступившее задание должно быть немедленно направлено
на один из серверов. Пусть 0 6 𝑡1 < · · · < 𝑡𝑛 < . . . — последовательность
моментов поступления заданий в систему. Решение (действие), принимаемое
диспетчером (в автоматическом или ручном режиме), в момент 𝑡𝑛 относитель­
но поступившего задания обозначим через 𝑦𝑛. Очевидно, 𝑦𝑛 ∈ {1, . . . ,𝑀}.
Пусть 𝑉𝑛 — время, проведенное в системе заданием, поступившим в момент 𝑡𝑛

и обслуженным согласно правилу 𝑦𝑛. Цель диспетчера — минимизировать ста­
ционарное среднее E𝑉 время пребывания задания в системе, определяемое как

E𝑉 = lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑛=1

E𝑦𝑉𝑛, (3.1)

где E𝑦 — интегрирование по мере, порождаемой последовательностью 𝑦. При
принятии решения относительно задания, поступающего в момент времени 𝑡𝑛+1,
помимо информации о дисциплине обслуживания в серверах и их производи­
тельностях, диспетчеру известны только лишь

– предыстория принятых решений 𝑦1, . . . ,𝑦𝑛, включая моменты времени
𝑡1, . . . ,𝑡𝑛, в которые эти решения принимались, и

– распределения 𝐵1(𝑥), . . . , 𝐵𝑛(𝑥), 𝐵𝑛+1(𝑥) размеров поступивших зада­
ний.

Какая-либо динамическая информация о состоянии системы (например, о числе
заданий в серверах, об остаточных временах обслуживания, о размерах заданий
и др.) диспетчеру недоступна. Как уже упоминалось во Введении, к насто­
ящему времени в научной литературе известно два способа для достижения
поставленной цели: использовать либо рандомизированную, либо программ­
ную стратегию4. В этом параграфе описывается новый подход к порождению
диспетчеризаций, являющихся наилучшими из известных во всем диапазоне
изменений значений исходных параметров системы.

3Наложенные на все распределения ограничения связаны с рассматриваемым целевым функци­
оналом и дисциплиной обслуживания, и могут быть ослаблены (или усилены) при их пересмотре.

4См. подробное описание этих стратегий начиная, со стр. 20.
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Основная идея нового подхода состоит в использовании всей доступной
предыстории наблюдаемых компонент. Точнее говоря, помимо самих реше­
ний 𝑦1,𝑦2, . . . , предлагается использовать информацию о моментах времени
𝑡1,𝑡2, . . . , в которые эти решения принимались. Положим

𝑦𝑛+1 = argmin16𝑚6𝑀

(︂
E𝑊

(𝑚)
𝑛+1 +

E𝑆𝑛+1

𝑣(𝑚)

)︂
, 𝑛 > 0, (3.2)

где 𝑊
(𝑚)
𝑛+1 — время, необходимое для выполнения всех заданий, имеющихся

в сервере 𝑚 в момент 𝑡𝑛+1, без учета задания, поступившего в этот момент. На­
помним, что неоднозначность при нахождении минимума разрешается в пользу
самого быстрого сервера и, если их несколько, — равновероятным выбором.
Число 𝑦𝑛+1 служит номером сервера, на который направляется задание, по­
ступившее в момент 𝑡𝑛+1. Диспетчеризация5 𝑦 = {𝑦1,𝑦2, . . . }, которую далее
условимся кодировать AA, основываются на предыстории принятых решений
и моментах поступления заданий.

Заметим, что математические ожидания E𝑊
(𝑚)
𝑛 в (3.2) являются услов­

ными и зависят от распределений размеров первых 𝑛 заданий и моментов
их поступлений. Для расчета 𝑊

(𝑚)
𝑛 воспользуемся рекурсией Линдли, соглас­

но которой

𝑊
(𝑚)
𝑛+1 = max

(︂
0,𝑊 (𝑚)

𝑛 +
𝑆𝑛

𝑣(𝑚)
1(𝑚=𝑦𝑛) − τ𝑛

)︂
, 𝑛 > 1, (3.3)

где 1(𝐴) — индикатор множества 𝐴, а τ𝑛 = 𝑡𝑛+1 − 𝑡𝑛 — время между поступ­
лением (𝑛+ 1)-го и 𝑛-го задания.

Для расчета E𝑊
(𝑚)
𝑛 поступим следующим образом. Проведем формальное

“квантование” каждого из распределений 𝐵1(𝑥), 𝐵2(𝑥), . . . с фиксированным
шагом 0 < Δ ≪ 1. Обозначая дискретный аналог сл. в. 𝑆𝑛 через 𝑆𝑛, положим6

P
{︁
𝑆𝑛 = 𝑘Δ

}︁
= P {𝑆𝑛 < (𝑘 + 0.5)Δ} − P {𝑆𝑛 < (𝑘 − 0.5)Δ} =

= 𝐵𝑛((𝑘 + 0.5)Δ)−𝐵𝑛((𝑘 − 0.5)Δ) = 𝑠𝑛(𝑘), 𝑘 = 0,1, . . . (3.4)

5Диспетчеризация (3.2) “подражает” известной стратегии LWL, используя вместо точных зна­
чений незаконченной работы в каждом сервере их средние значения, посчитанные по участку
траектории, начиная с первого задания.

6Как, например, в [475]. Но можно воспользоваться и другими способами дискретной аппрокси­
мации (см., например, [416, С. 181] и [476]).
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Перейдя от непрерывных распределений размеров заданий к дискретным,
естественным образом получается и “квантование” распределения сл. в. 𝑊 (𝑚)

𝑛 .
Обозначая ее дискретный аналог через 𝑊̃

(𝑚)
𝑛 , из (3.3) из формулы полной ве­

роятности следуют соотношения для вероятностей 𝑤
(𝑚)
𝑛 (𝑘) = P

{︁
𝑊̃

(𝑚)
𝑛 = 𝑘Δ

}︁
,

𝑛 > 2, 𝑘 = 0,1, . . .: при 𝑚 = 𝑦𝑛 имеем

𝑤
(𝑚)
𝑛+1(0) =

⌊︁
τ𝑛𝑣(𝑚)

Δ

⌋︁∑︁
𝑖=0

⌊︁
τ𝑛
Δ − 𝑖

𝑣(𝑚)

⌋︁∑︁
𝑗=0

𝑤(𝑚)
𝑛 (𝑗)𝑠𝑛(𝑖), (3.5)

𝑤
(𝑚)
𝑛+1(𝑘) =

𝑘𝑣(𝑚)+
⌊︁
τ𝑛𝑣(𝑚)

Δ

⌋︁∑︁
𝑖=0

𝑤(𝑚)
𝑛

(︂
𝑘 +

⌊︂
τ𝑛

Δ
− 𝑖

𝑣(𝑚)

⌋︂)︂
𝑠𝑛(𝑖), 𝑘 = 0,1, . . . ; (3.6)

при 𝑚 ̸= 𝑦𝑛 получаем

𝑤
(𝑚)
𝑛+1(0) =

⌊τ𝑛Δ⌋∑︁
𝑖=0

𝑤(𝑚)
𝑛 (𝑖), (3.7)

𝑤
(𝑚)
𝑛+1(𝑘) = 𝑤(𝑚)

𝑛

(︁
𝑘 +

⌊︁τ𝑛
Δ

⌋︁)︁
, 𝑘 = 0,1, . . . . (3.8)

Здесь и далее ⌊·⌋ обозначает округление вниз. Задав начальное состояние си­
стемы и распределения

{︁
𝑤

(𝑚)
1 (𝑘) = P{𝑊̃ (𝑚)

1 = 𝑘Δ}, 𝑘 = 0,1, . . .
}︁

, 1 6 𝑚 6 𝑀 ,
по соотношениям (3.5)–(3.8) теоретически можно рассчитать значения любых
(как угодно далеких) вероятностей 𝑤

(𝑚)
𝑛 (𝑘).

Воспользовавшись равенством (8.91) в [353, Раздел 8.4]), получим:

max

(︂
0,𝑊 (𝑚)

𝑛 +
𝑆𝑛

𝑣(𝑚)
1(𝑚=𝑦𝑛) − τ𝑛

)︂
−max

(︂
0,−𝑊 (𝑚)

𝑛 − 𝑆𝑛

𝑣(𝑚)
1(𝑚=𝑦𝑛) + τ𝑛

)︂
=

= 𝑊 (𝑚)
𝑛 +

𝑆𝑛

𝑣(𝑚)
1(𝑚=𝑦𝑛) − τ𝑛.

Отсюда, взяв математическое ожидание от обеих частей, находим

E𝑊
(𝑚)
𝑛+1 = E

(︂
max

(︂
0,−𝑊 (𝑚)

𝑛 − 𝑆𝑛

𝑣(𝑚)
1(𝑚=𝑦𝑛)+τ𝑛

)︂)︂
+E𝑊 (𝑚)

𝑛 +
E𝑆𝑛

𝑣(𝑚)
1(𝑚=𝑦𝑛)−τ𝑛.
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Выписывая теперь явный вид первого слагаемого в правой части, различая
случаи 1(𝑚=𝑦𝑛) = 0 и 1(𝑚=𝑦𝑛) = 1, приходим к рекуррентной формуле для при­
ближенного расчета при 𝑛 > 1 математических ожиданий, входящих в (3.2):

E𝑊
(𝑚)
𝑛+1≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E𝑊
(𝑚)
𝑛 + E𝑆𝑛

𝑣(𝑚)−τ𝑛+

+

⌊︁
τ𝑛𝑣(𝑚)

Δ

⌋︁∑︀
𝑖=0

⌊︁
τ𝑛
Δ − 𝑖

𝑣(𝑚)

⌋︁∑︀
𝑗=0

(︀
τ𝑛−𝑗Δ− 𝑖Δ

𝑣(𝑚)

)︀
𝑤

(𝑚)
𝑛 (𝑗)𝑠𝑛(𝑖), 1(𝑚=𝑦𝑛) = 1,

E𝑊
(𝑚)
𝑛 −τ𝑛+

⌊τ𝑛Δ⌋∑︀
𝑖=0

(τ𝑛−𝑖Δ)𝑤
(𝑚)
𝑛 (𝑖), 1(𝑚=𝑦𝑛) = 0.

(3.9)

Теперь, задавшись некоторым7 значением Δ и зафиксировав управление 𝑦1 для
первого по счету задания, можно воспользоваться (3.2) для нахождения управ­
лений для всех последующих заданий. Формальное описание соответствующего
алгоритма для задания, поступившего в момент 𝑡𝑛+1, представлено ниже. Поми­
мо исходных значений 𝑀 , 𝑣(1), . . . ,𝑣(𝑀), выбранного Δ и 𝑡𝑛+1 входными данными
являются: дискретизованное распределение 𝐵𝑛(𝑥), среднее значение E𝑆𝑛+1 раз­
мера (𝑛 + 1)-го задания, средние значения E𝑊

(1)
𝑛 , . . . ,E𝑊

(𝑀)
𝑛 незаконченной

работы в каждом из серверов в момент 𝑡𝑛, управления 𝑦1, . . . ,𝑦𝑛 и моменты
𝑡1, . . . ,𝑡𝑛, в которые эти управления применялись. Выходные данные — это но­
мер сервера 𝑦𝑛+1, на который следует отправить поступившее в момент 𝑡𝑛+1

задание и средние значения E𝑊
(1)
𝑛+1, . . . ,E𝑊

(𝑀)
𝑛+1 .

7 Подходящее значение этого единственного неизвестного параметра приходится искать в каж­
дой задаче методом проб и ошибок. При этом необходимо учитывать, что значение Δ должно быть
меньше среднего времени между поступлениями заданий, а также меньше среднего времени обслу­
живания любого задания на любом из процессоров.
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Алгоритм I. Псевдокод алгоритма выбора управления для задания, поступившего

в момент 𝑡𝑛+1, 𝑛 > 1

1: for 𝑙 = 2 → 𝑛 do
2: for 𝑘 = 0 →

∑︀𝑛
𝑗=𝑙−1

⌊︂
τ𝑗𝑣

(𝑦𝑗)

Δ

⌋︂
do

3: 𝑠𝑙(𝑘) = 𝐵𝑙((𝑘 + 0.5)Δ)−𝐵𝑙((𝑘 − 0.5)Δ)

4: for 𝑙 = 2 → 𝑛 do
5: if 𝑚 = 𝑦𝑙 then

6: 𝑤
(𝑚)
𝑙 (0) =

⌊︂
τ𝑙−1𝑣

(𝑚)

Δ

⌋︂∑︀
𝑖=0

⌊︁
τ𝑙−1
Δ

− 𝑖

𝑣(𝑚)

⌋︁∑︀
𝑗=0

𝑤
(𝑚)
𝑙−1 (𝑗)𝑠𝑙(𝑖)

7: else

8: 𝑤
(𝑚)
𝑙 (0) =

∑︀⌊︁
τ𝑙−1
Δ

⌋︁
𝑖=0 𝑤

(𝑚)
𝑙−1 (𝑖)

9: for 𝑘 = 1 →
∑︀𝑛+1

𝑗=𝑙

⌊︀τ𝑗
Δ

⌋︀
do

10: if 𝑚 = 𝑦𝑙 then

11: 𝑤
(𝑚)
𝑙 (𝑘) =

𝑘𝑣(𝑚)+

⌊︂
τ𝑙−1𝑣

(𝑚)

Δ

⌋︂∑︀
𝑖=0

𝑤
(𝑚)
𝑙−1

(︁
𝑘 +

⌊︁
τ𝑙−1

Δ − 𝑖
𝑣(𝑚)

⌋︁)︁
𝑠𝑙(𝑖)

12: else
13: 𝑤

(𝑚)
𝑙 (𝑘) = 𝑤

(𝑚)
𝑙−1

(︀
𝑘 +

⌊︀τ𝑙−1

Δ

⌋︀)︀
14: for 𝑚 = 1 → 𝑀 do
15: if 𝑚 = 𝑦𝑛 then

16: E𝑊
(𝑚)
𝑛+1 = E𝑊

(𝑚)
𝑛 + E𝑆𝑛

𝑣(𝑚) −τ𝑛+

⌊︂
τ𝑛𝑣(𝑚)

Δ

⌋︂∑︀
𝑖=0

⌊︁
τ𝑛
Δ

− 𝑖

𝑣(𝑚)

⌋︁∑︀
𝑗=0

(︁
τ𝑛− (𝑖+𝑗)Δ

𝑣(𝑚)

)︁
𝑤

(𝑚)
𝑛 (𝑗)𝑠𝑛(𝑖)

17: else

18: E𝑊
(𝑚)
𝑛+1 = E𝑊

(𝑚)
𝑛 −τ𝑛+

⌊τ𝑛Δ⌋∑︀
𝑖=0

(τ𝑛−𝑖Δ)𝑤
(𝑚)
𝑛 (𝑖)

19: 𝑦𝑛+1 = argmin16𝑚6𝑀

(︁
E𝑊

(𝑚)
𝑛+1 +

E𝑆𝑛+1

𝑣(𝑚)

)︁
20: return 𝑦𝑛+1,E𝑊

(1)
𝑛+1, . . .E𝑊

(𝑀)
𝑛+1

Вычислительная сложность8 этого алгоритма растет с увеличением чис­
ла поступивших заданий. В отсутствие больших вычислительных мощностей
или возможностей распараллеливания9, время, затрачиваемое на принятие оче­
редного решения может выйти за рамки всякого разумного представления
о быстродействии. Вместе с тем, Алгоритм I является отправной точкой для
всевозможных изменений в расчете на увеличение эффективности. Далее речь

8Которую можно оценить, например, в терминах необходимого числа умножений (см. [265,
Section 5]).

9См. обсуждение на стр. 157.



139

пойдет об одной из наилучших найденных модификаций этого алгоритма, кото­
рая, имея заметно меньшую вычислительную сложность, полноценно реализует
его основной замысел.

Зададимся некоторым 0 < Δ ≪ 1 и обозначим через {𝑠𝑛,𝑚(𝑘), 𝑘 = 0,1, . . . }
распределение на 𝒳Δ = {0,Δ, 2Δ, . . . }, аппроксимирующее распределение
сл. в. 𝑆

(𝑚)
𝑛 = 𝑆𝑛/𝑣

(𝑚) т. е.

𝑠𝑛,𝑚(𝑘) = 𝐵𝑛

(︁
(𝑘 + 0.5)𝑣(𝑚)Δ

)︁
−𝐵𝑛

(︁
(𝑘 − 0.5)𝑣(𝑚)Δ

)︁
, 𝑘 = 0,1, . . . .

Для заранее заданного α𝑛,𝑚 ∈ (0,1) положим 𝐾𝑛,𝑚=min(𝑘 :
∑︀𝑘

𝑖=0 𝑠𝑛,𝑚(𝑖)>α𝑛,𝑚).
Будем считать, что сл. в. 𝑆(𝑚)

𝑛 может принимать только конечное число значе­
ний10 из множества {0, . . . ,𝐾𝑛,𝑚,𝐾𝑛,𝑚 + 1}. Для этого назначим максимальному
значению вероятность, равную

(︁
1−

∑︀𝐾𝑛,𝑚

𝑘=0 𝑠𝑛,𝑚(𝑘)
)︁
. Обозначим теперь через

{𝑤(𝑚)
𝑛 (𝑘), 𝑘 = 0,1, . . . } и {𝑤̃(𝑚)

𝑛 (𝑘), 𝑘 = 0,1, . . . } распределения на 𝒳Δ, аппрок­
симирующие соответственно распределения сл. в. 𝑊 (𝑚)

𝑛 и 𝑊
(𝑚)
𝑛 + 1(𝑚=𝑦𝑛)𝑆

(𝑚)
𝑛 .

Выберем такое ε ∈ [0,1), что найдутся положительные константы

𝐾(𝑚)
𝑛 = argmax𝑘>0

(︁
𝑤(𝑚)

𝑛 (𝑘) > ε
)︁
,̃︀𝐾(𝑚)

𝑛 = argmax𝑘>0

(︁
𝑤̃(𝑚)

𝑛 (𝑘) > ε
)︁
,

𝐿(𝑚)
𝑛 = argmax𝑘>0 (𝑠𝑛,𝑚(𝑘) > ε) .

Наконец положим ̂︀𝐾(𝑚)
𝑛 = argmin𝑘>0

(︁∑︀𝑘
𝑖=0 𝑤̃

(𝑚)
𝑛 (𝑖) > α𝑛,𝑚

)︁
. Повторяя рассуж­

дения, которые использовались для вывода (3.5)–(3.8), но теперь с учетом того,
что все сл. в. должны принимать только конечное число значений, получаем но­
вые соотношения для распределения незаконченной работы в каждом сервере
в момент поступления (𝑛 + 1)-го задания:

𝑤̃(𝑚)
𝑛 (𝑘)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
min(𝑘,𝐾

(𝑚)
𝑛 )∑︀

𝑖=max(0,𝑘−𝐿
(𝑚)
𝑛 )

𝑤
(𝑚)
𝑛 (𝑖)𝑠𝑛,𝑚(𝑘−𝑖), 1(𝑚=𝑦𝑛)=1,

𝑤
(𝑚)
𝑛 (𝑘), 1(𝑚=𝑦𝑛)=0,

, 0 6 𝑘 6 ̂︀𝐾(𝑚)
𝑛 ,

0, иначе,

(3.10)

10Перейти к дискретному распределению с конечным числом значений можно и по-другому,
начав c нахождения такого минимального 𝑋 > 0, что

∫︀ 𝑋
0 𝑑𝐵𝑛(𝑣

(𝑚)𝑥) > α𝑛,𝑚.
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𝑤
(𝑚)
𝑛+1(0) =

min(⌊τ𝑛
Δ ⌋, ̃︀𝐾(𝑚)

𝑛 )∑︁
𝑖=0

𝑤̃(𝑚)
𝑛 (𝑖), (3.11)

𝑤
(𝑚)
𝑛+1(𝑘) = 𝑤̃(𝑚)

𝑛

(︁
𝑘+
⌊︁τ𝑛
Δ

⌋︁)︁
, 1 6 𝑘 6 ̃︀𝐾(𝑚)

𝑛 −
⌊︁τ𝑛
Δ

⌋︁
, ̃︀𝐾(𝑚)

𝑛 >
⌊︁τ𝑛
Δ

⌋︁
. (3.12)

Перейдя к новым аппроксимирующим распределениям, вычисляемым по
(3.10)–(3.12), заменим и прежнее правило диспетчеризации (3.2) на новое:

𝑦𝑛+1 = argmin16𝑚6𝑀

(︁
E𝑊̃

(𝑚)
𝑛+1 + θ · E𝑆

(𝑚)
𝑛+1

)︁
, 𝑛 > 0, (3.13)

где θ ∈ [0,1] — наперед заданное число, и11

E𝑊̃
(𝑚)
𝑛+1 =

̂︀𝐾(𝑚)
𝑛∑︁

𝑘=0

𝑘𝑤
(𝑚)
𝑛+1(𝑘), E𝑆

(𝑚)
𝑛+1 =

𝐾𝑛+1,𝑚+1∑︁
𝑘=0

𝑘𝑠𝑛+1,𝑚(𝑘).

Формальное описание нового алгоритма выбора управления для задания, по­
ступившего в момент 𝑡𝑛+1, представлено ниже.

11Для расчета E𝑊̃
(𝑚)
𝑛+1 можно воспользоваться и приведенным выше рекуррентным соотношени­

ем, которое, с учетом новых построений, имеет вид:

E𝑊̃
(𝑚)
𝑛+1 = E𝑊̃ (𝑚)

𝑛 +1(𝑚=𝑦𝑛)E𝑆
(𝑚)
𝑛 −τ𝑛 +

min(⌊ τ𝑛
Δ ⌋, ̃︀𝐾(𝑚)

𝑛 )∑︁
𝑖=0

(τ𝑛 − 𝑖Δ) 𝑤̃(𝑚)
𝑛 (𝑖).



141

Алгоритм II. Псевдокод алгоритма выбора управления для задания, поступившего

в момент 𝑡𝑛+1, 𝑛 > 1

1: for 𝑚 = 1 → 𝑀 do
2: for 𝑘 = 0 → 𝐾𝑛+1,𝑚 do
3: 𝑠𝑛+1,𝑚(𝑘) = 𝐵𝑛+1

(︀
(𝑘 + 0.5)𝑣(𝑚)Δ

)︀
−𝐵𝑛+1

(︀
(𝑘 − 0.5)𝑣(𝑚)Δ

)︀
4: 𝑠𝑛+1,𝑚(𝐾𝑛+1,𝑚 + 1) = 1−

𝐾𝑛+1,𝑚∑︀
𝑘=0

𝑠𝑛+1,𝑚(𝑘)

5: if 𝑚 = 𝑦𝑛 then
6: for 𝑘 = 0 → ̂︀𝐾(𝑚)

𝑛 do

7: 𝑤̃
(𝑚)
𝑛 (𝑘) =

min(𝑘,𝐾
(𝑚)
𝑛 )∑︀

𝑖=max(0,𝑘−𝐿
(𝑚)
𝑛 )

𝑤
(𝑚)
𝑛 (𝑖)𝑠𝑛,𝑚(𝑘−𝑖)

8: else
9: 𝑤̃

(𝑚)
𝑛 (𝑘) = 𝑤

(𝑚)
𝑛 (𝑘)

10: 𝑤
(𝑚)
𝑛+1(0) =

min(⌊ τ𝑛
Δ ⌋, ̃︀𝐾(𝑚)

𝑛 )∑︀
𝑖=0

𝑤̃
(𝑚)
𝑛 (𝑖)

11: if ̃︀𝐾(𝑚)
𝑛 >

⌊︀
τ𝑛
Δ

⌋︀
then

12: for 𝑘 = 1 → ̃︀𝐾(𝑚)
𝑛 −

⌊︀
τ𝑛
Δ

⌋︀
do

13: 𝑤
(𝑚)
𝑛+1(𝑘) = 𝑤̃

(𝑚)
𝑛

(︀
𝑘 +

⌊︀
τ𝑛
Δ

⌋︀)︀
14: E𝑊̃

(𝑚)
𝑛+1 =

̂︀𝐾(𝑚)
𝑛∑︀

𝑘=0

𝑘𝑤
(𝑚)
𝑛+1(𝑘)

15: E𝑆
(𝑚)
𝑛+1 =

𝐾𝑛+1,𝑚+1∑︀
𝑘=0

𝑘𝑠𝑛+1,𝑚(𝑘)

16: 𝑦𝑛+1 = argmin16𝑚6𝑀

(︁
E𝑊̃

(𝑚)
𝑛+1 + θE𝑆

(𝑚)
𝑛+1

)︁
17: return 𝑦𝑛+1, 𝑤

(𝑚)
𝑛+1(·), 𝑠𝑛+1,𝑚(·),𝐾(𝑚)

𝑛+1,
̃︀𝐾(𝑚)
𝑛+1, 𝐿

(𝑚)
𝑛+1

Выходными данными Алгоритма II являются номер сервера 𝑦𝑛+1, на
который следует отправить (𝑛+ 1)-е задание, (усеченные) распределения неза­
конченной работы в каждом из серверов в момент 𝑡𝑛+1 и времен обслуживания,
и числа 𝐾

(𝑚)
𝑛+1, ̃︀𝐾(𝑚)

𝑛+1, 𝐿
(𝑚)
𝑛+1. По сравнению с Алгоритмом I, дополнительными

входными данными для нового алгоритма являются константы ε, α𝑛,𝑚, и θ.
Варьирование значения ε позволяет изменять число компонент аппроксими­
рующих распределений. Безопасным выбором12 является ε = 0: он избавляет
от циклов, в которых суммируются ряды из нулевых слагаемых, что ускоряет
работу алгоритма без ущерба для точности. Значения квантилей α𝑛,𝑚 необхо­
димо подбирать вручную, исходя из специфики распределений сл. в. 𝑆𝑛. Для
нахождения же постоянного коэффициента θ, который зависит, вообще говоря,

12Какое-либо общее правило для выбора приемлемых значений ε ∈ (0,1) сформулировать не уда­
ется. В каждой конкретной задаче, если есть неохбодимость кратного увеличения скорости работы
алгоритма (за счет точности получаемых оценок), его приходится искать методом проб и ошибок.
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от исходных параметров и от выбранной целевой функции, можно привлекать
специальные методы оптимизации на имитируемых траекториях13.

Следующий параграф начинается с набора численных примеров14, свиде­
тельствующих о том, что для рассматриваемых частично наблюдаемых систем
с параллельным обслуживанием предложенные алгоритмы диспетеризации по
полной предыстории являются равномерно наилучшими. Почти во всем диа­
пазоне изменений значений исходных параметров системы они15 позволяют
уменьшить стационарное среднее время пребывания по сравнению со всеми16

ранее известными из научной литературы стратегиями. Когда улучшение целе­
вой функции невозможно17, новые алгоритмы приводят к тем же значениям,
что и наилучшие из ранее извесных.

3.2 Примеры и дополнения

Начнем с простейшего примера. Пусть система состоит всего из двух
серверов суммарной производительности 1, причем 𝑣(1) = 2/3 и 𝑣(2) = 1/3.
Предположим, что входящий поток — пуассоновский с интенсивностью λ, а рас­
пределение размера заданий — экспоненциальное со средним 1. Таким образом,
загрузка системы ρ совпадает с λ. В таблице 3 даны значения стационарного
среднего (и стандартного отклонения) времени пребывания задания в системе

13 Применимы адаптивные алгоритмы для управления частично наблюдаемыми марковскими
цепями [4] (см. также [3]) и алгоритмы эволюционной оптимизации [477; 478]. Последние, однако,
из-за особенностей задачи несильно отличаются от ручного перебора.

14С их помощью можно также составить некоторое представление и о вычислительной сложно­
сти Алгоритма II. Для получения третьей значащей цифры требовалось “пропустить” через систему
порядка 107–109 заданий и, значит, столько же запусков алгоритма. При этом длительность каждого
эксперимента не превосходила 10 минут современного персонального компьютера.

15Вероятно, идея, лежащая в их основе, может позволить улучшить любую из стандартных ста­
ционарных характеристик.

16Здесь предполагается, что все возможные стратегии исчерпываются в рамках двух описанных
выше подходов (см. стр. 19). Но, строго говоря, это не совсем так. Например, если известно, что
оптимальной является программная стратегия (11011011101101101110)∞, то существует другая стра­
тегия, “не укладывающаяся” ни в один из двух описанных выше подходов — это рандомизированная
стратегия с 219 параметрами. Для ее применения необходимо оценивать 219−1 параметров, что едва
ли выполнимо. Поэтому сделанное предположение исключает лишь совсем причудливые стратегии.

17Что, если и случается, то либо в случае очень низкой, либо очень высокой загрузки.
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при различных значениях загрузки ρ и стратегиях RND, PROG и AA. Значения
параметров стратегий (см. таблица 4) при каждом значении загрузки были вы­
браны следующим образом: для RND — как решение задачи минимизации (5),
для PROG и AA18 — как результат оптимизации на имитируемых траекториях.

Таблица 3 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в системе из двух серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительности
серверов: 𝑣(1) = 2/3, 𝑣(2) = 1/3. Входящий поток — пуассоновский с интенсив­
ностью λ, размер заданий имеет экспоненциальное распределение со средним 1.
Значения параметров стратегий приведены в таблице 4

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 1.76 (1.76) 2.58 (2.63) 3.77 (3.87) 6.39 (6.56) 19.4 (20)
PROG-opt 1.76 (1.76) 2.41 (2.45) 3.22 (3.87) 5.17 (5.29) 15.0 (15.17)

AA 1.738 (1.76) 2.28 (2.36) 3.13 (3.23) 5.1 (5.18) 14.92 (15.43)

Таблица 4 — Значения параметров стратегий из таблицы 3
ρ 0.1 0.3 0.5 0.7 0.9

RND-opt 1 0.855 0.784 0.701 0.676
PROG-opt 1 0.7684 0.7076 0.6825 0.6734

AA

Δ 0.1 0.25 0.5 0.3 0.5
ε 0 0 0 0 0
α𝑛,𝑚 0.99 0.95 0.95 0.9 0.5
θ 0.85 0.67 0.46 0.39 0.39

Как видно из таблицы 3, при любом значении загрузки новый алгоритм
наилучшим образом оптимизирует значение стационарного среднего времени
пребывания задания в системе. Рандомизированная стратегия, которая не ис­
пользует никаких наблюдений, ожидаемо является наименее эффективной из
трех. Наилучшая из ранее известных — программная стратегия — уступает
новому решению, хотя и незначительно19: максимальный относительный проиг­
рыш составляет примерно 5%. В связи с этим интересно сразу же посмотреть

18В этом и всех остальных приводимых ниже примерах этого пунтка диспетчеризация AA реа­
лизовывалась по Алгоритму II.

19Этот экспериментальный факт является примечательным и еще раз подтверждает (уже извест­
ное из литературы обстоятельство (см., например, [207, С. 28–36])), что программные стратегии,
несмотря на свою простоту, могут быть очень эффективными.
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на то, как ранжируются стратегии при другом целевом функционале. В следу­
ющей таблице (см. таблица 5) приведены значения стационарного среднего (и
стандартного отклонения) времени ожидания заданием начала обслуживания.

Таблица 5 — Значения стационарного среднего (и стандартного отклонения)
времени ожидания заданием начала обслуживания в системе из двух серве­
ров при различных стратегиях диспетчеризации и различной загрузке ρ = λ.
Производительности серверов: 𝑣(1) = 2/3, 𝑣(2) = 1/3. Входящий поток —
пуассоновский с интенсивностью λ, размер заданий имеет экспоненциальное
распределение со средним 1. Значения параметров стратегий приведены в таб­
лице 6

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 0.264 (0.93) 0.88 (1.91) 1.92 (3.27) 4.57 (6.16) 24.43 (29)
PROG-opt 0.12 (0.62) 0.49 (1.4) 1.27 (2.51) 3.19 (4.78) 13.04 (15)

AA 0.061 (0.47) 0.427 (1.36) 1.21 (2.51) 3.17 (4.87) 12.96 (15)

Таблица 6 — Значения параметров стратегий из таблицы 5
ρ 0.1 0.3 0.5 0.7 0.9

RND-opt 1 0.87 0.76 0.72 0.71
PROG-opt 0.74 0.7 0.7 0.68 0.67

AA

Δ 0.1 0.2 0.3 0.5 0.5
ε 0 0 0 0 0
α𝑛,𝑚 0.95 0.95 0.95 0.9 0.9
θ 0.1 0.1 0.13 0.05 0.21

По приведенным в таблице 5 значениям видно, что смена целевого
функционала не влияет качественно на сформулированное выше соотношение
между тремя стратегиями, но влияет количественно. При оптимизации сред­
него времени ожидания начала обслуживания (в отличие от среднего времени
пребывания) новый алгоритм (т. е. диспетчеризация, учитывающая предысто­
рию) оказывается вне конкуренции: в приведенном примере при малой загрузке
наблюдается относительный выигрыш почти в 50% по сравнению с наилучшей
из ранее известных стратегий. Здесь уместо еще раз подчеркнуть, что указан­
ные в таблицах 3 и 5 значения функционалов при стратегиях RND и PROG

являются неулучшаемыми20. При этом, значения параметров нового алгорит­
20Для программной стратегии такое заключение делается здесь по результатам вычислительных

экспериментов.
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ма, указанные в таблицах 4 и 6, не являются оптимальными. Таким образом,
имеется потенциальная возможность получить еще большую отдачу от его при­
менения.

Имея теперь пример того, что в полностью марковском случае21 новая
стратегия является оптимальной, посмотрим на то, как влияют характеристи­
ки входящего потока и распределения размера заданий на соотношения между
стратегиями. Рассмотрим систему с 𝑀 = 9 серверами различной производи­
тельности. Положим22

𝑣(1) = 0.9, 𝑣(2) = 1, 𝑣(3) = 1.1,

𝑣(4) = 2.9, 𝑣(5) = 3, 𝑣(6) = 3.1,

𝑣(7) = 6.9, 𝑣(8) = 7, 𝑣(9) = 7.1.

Пусть в систему поступают однородные задания, средний размер которых равен
единице. Тогда загрузка системы ρ равна λ/

∑︀9
𝑚=1 𝑣

(𝑚) = λ/33. Предположим,
что размер заданий имеет распределение 𝐵(𝑥) = P{|𝑆| < 𝑥}, где сл. в. 𝑆 мо­
жет иметь

– экспоненциальное распределение, т. е. 𝐵′(𝑥) = 𝑒−𝑥, 𝑥 > 0 (коэффициент
вариации 𝐶𝐵 = 1),

– равномерное распределение на интервале [−1.11,2.41] (коэффициент ва­
риации 𝐶𝐵 = 0.45), т. е.

𝐵′(𝑥) =
1

3.52

(︀
2 · 1(0<𝑥61.11) + 1(1.11<𝑥62.41)

)︀
, 𝑥 ∈ [0,2.41],

– нормальное распределение со средним 0.195 и дисперсией 1.533 (коэф­
фициент вариации 𝐶𝐵 = 0.57), т. е.

𝐵′(𝑥) =
1√

3.066π

(︂
𝑒−

(𝑥−0.195)2

3.066 − 𝑒−
(𝑥+0.195)2

3.066

)︂
, 𝑥 > 0,

21И не только в случае двух серверов; по этому поводу см. [307].
22Основой выбора подобного размера и состава системы служат следующие рассуждения. Это

полноценная многосерверная система, в которой не возникают эффекты, свойственные слишком ма­
леньким и слишком большим системам. В частности, при 𝑀 = 2 известна оптимальная стратегия
(это программная стратегия), а при 𝑀 > 2 оптимальная стратегия неизвестна. При очень боль­
шом 𝑀 целесообразнее искать приближенные алгоритмы диспетчеризации, а не точные (отметим,
что некоторые результаты в этом направлении имеются в литературе (см. [224])). Наконец, посколь­
ку исходные параметры систем приходится выбирать искусственным образом, это усложняет задачу
сравнения стратегий: при ненадлежащем выборе, значения целевых функционалов могут быть очень
близкими или вовсе бессмысленными.
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– гиперэкспоненциальное распределение с параметрами (0.75; 1.5,0.5) (ко­
эффициент вариации 𝐶𝐵 = 1.66), т. е.

𝐵′(𝑥) = 1.125𝑒−1.5𝑥 + 0.125𝑒−0.5𝑥, 𝑥 > 0.

В качестве распределения 𝐹 (𝑥) входящего потока рассмотрим
– экспоненциальное распределение, т. е. 𝐹 ′(𝑥) = λ𝑒−λ𝑥, 𝑥 > 0 (коэффици­

ент вариации 𝐶𝐹 = 1),
– распределение Парето с параметрами α = 2.15, 𝑥𝑚 = (α− 1)/(λα) (ко­

эффициент вариации 𝐶𝐹 = 1.76), т. е.

𝐹 ′(𝑥) =
α𝑥α𝑚
𝑥α+1

, 𝑥 > 𝑥𝑚.

Как и в предыдущем примере, будем иметь в виду два целевых функциона­
ла: стационарное среднее время пребывания задания в системе и стационарное
среднее время ожидания начала обслуживания. Кроме того, добавим к рас­
смотрению еще две диспетчеризации: LWL (диспетчеризация по наименьшей
незаконченной работе) и JSQ (диспетчеризация по наикратчайшей очереди).
Поскольку для реализации каждой из них необходимы наблюдения, интуиция
подсказывает, что они должны всегда оптимизировать целевые функционалы
лучше тех алгоритмов, что наблюдения не используют. Однако, как будет видно
далее, это соображение (полезное хотя бы для контроля вычислений) является
неверным, если во внимание принимается предложенная в диссертации диспет­
черизация.

Вернемся к описанию примера. Алгоритмы LWL и JSQ являются непара­
метрическими. Отыскание оптимальных значений параметров для стратегий
RND и PROG и AA, по существу, представляет собой отдельные задачи. Когда
было возможно, для RND решалась минимизационная задача (5); в остальных
случаях, значения параметров оптимизировались на имитируемых траектори­
ях. При этом, для стратегии PROG значения параметров отождествлялись
с оптимальными значениями параметров для RND. В алгоритме AA значения Δ,
ε и α𝑛,𝑚 были зафиксированы: Δ = 0.1, ε = 0, α𝑛,𝑚 = 0.95 при всех 𝑛 и 𝑚; посто­
янный коэффициент θ каждый раз подбирался на имитируемых траекториях.

Примем диспетчеризацию PROG-RND-opt за точку отсчета. На рисун­
ках 4—11 для всех возможных комбинаций распределений входящего потока
и размера заданий приведены графики зависимостей от загрузки ρ23 значений

23В диапазоне (0,0.85]. Отображение значений для всего диапазона загрузки (0,1) потребовало
бы изменения масштаба по осям.
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относительного стационарного среднего времени пребывания задания в системе
(т. е. значений E𝑉 X

E𝑉 PROG-RND-opt ; здесь “X” — одна из стратегий LWL, JSQ, RND-opt,
PROG-RND-opt или AA) и относительного стационарного среднего времени ожи­
дания начала обслуживания.

Рисунок 4 — Входящий поток — пуассоновский (𝐶𝐹 = 1), распределение
размера заданий — экспоненциальное (𝐶𝐵 = 1). Верхний рисунок — стаци­
онарное среднее время ожидания начала обслуживания. Нижний рисунок —
стационарное среднее время пребывания задания в системе. Указаны значения

относительно программной стратегии PROG-RND-opt
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Рисунок 5 — Входящий поток — пуассоновский (𝐶𝐹 = 1), распределение
размера заданий — “нормальное” (𝐶𝐵 = 0.57). Верхний рисунок — стацио­
нарное среднее время ожидания начала обслуживания. Нижний рисунок —
стационарное среднее время пребывания задания в системе. Указаны значения

относительно программной стратегии PROG-RND-opt
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Рисунок 6 — Входящий поток — пуассоновский (𝐶𝐹 = 1), распределение
размера заданий — “равномерное” (𝐶𝐵 = 0.45). Верхний рисунок — стаци­
онарное среднее время ожидания начала обслуживания. Нижний рисунок —
стационарное среднее время пребывания задания в системе. Указаны значения

относительно программной стратегии PROG-RND-opt
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Рисунок 7 — Входящий поток — пуассоновский (𝐶𝐹 = 1), распределение раз­
мера заданий — гиперэкспоненциальное (𝐶𝐵 = 1.66). Верхний рисунок —
стационарное среднее время ожидания начала обслуживания. Нижний рису­
нок — стационарное среднее время пребывания задания в системе. Указаны

значения относительно программной стратегии PROG-RND-opt
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Рисунок 8 — Входящий Парето–поток (𝐶𝐹 = 1.76), распределение размера
заданий — экспоненциальное (𝐶𝐵 = 1). Верхний рисунок — стационарное сред­
нее время ожидания начала обслуживания. Нижний рисунок — стационарное
среднее время пребывания задания в системе. Указаны значения относительно

программной стратегии PROG-RND-opt
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Рисунок 9 — Входящий Парето–поток (𝐶𝐹 = 1.76), распределение размера
заданий — “нормальное” (𝐶𝐵 = 0.57). Верхний рисунок — стационарное сред­
нее время ожидания начала обслуживания. Нижний рисунок — стационарное
среднее время пребывания задания в системе. Указаны значения относительно

программной стратегии PROG-RND-opt
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Рисунок 10 — Входящий Парето–поток (𝐶𝐹 = 1.76), распределение размера
заданий — “равномерное” (𝐶𝐵 = 0.45). Верхний рисунок — стационарное сред­
нее время ожидания начала обслуживания. Нижний рисунок — стационарное
среднее время пребывания задания в системе. Указаны значения относительно

программной стратегии PROG-RND-opt
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Рисунок 11 — Входящий Парето–поток (𝐶𝐹 = 1.76), распределение размера
заданий — гиперэкспоненциальное (𝐶𝐵 = 1.66). Верхний рисунок — стаци­
онарное среднее время ожидания начала обслуживания. Нижний рисунок —
стационарное среднее время пребывания задания в системе. Указаны значения

относительно программной стратегии PROG-RND-opt
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Как видно из рисунков, стратегия RND-opt, которая не использует
никаких наблюдений, является наименее эффективной из всех. Новая же дис­
петчеризация AA (в классе диспетчеризаций, не использующих какую-либо
информацию о текущем состоянии системы и размере поступающих заданий)
всегда позволяет улучшить значение целевой функции. Выигрыш при раз­
ных интенсивностях зависит от свойств распределения размера задания (см.
таблицу 7, в которой указаны относительные выигрышы для каждого из рас­
смотренных случаев).

Таблица 7 — Относительный выигрыш при стратегии AA относительно наилуч­
шей из ранее известных стратегии PROG-RND-opt при различных значениях
загрузки ρ: первое значение — стационарное среднее временя ожидания начала
обслуживания, второе значение — стационарное среднее временя пребывания
задания в системе (т. е. значение 100%× E𝑉 AA−E𝑉 PROG-RND-opt

E𝑉 PROG-RND-opt )
ρ 0.125 0.25 0.375 0.5 0.625 0.75 0.875

рис. 4 80%/0% 50%/3.7% 22%/3.8% 13%/2.1% 6.2%/2.8% 2.1%/1.4% 0%/0%

рис. 5 97%/0.6% 80%/1.2% 48%/5.7% 26%/2.8% 7.6%/3.7% 5.1%/2.9% 2.5%/1.8%

рис. 6 94%/0.6% 89%/0.6% 62%/6.4% 35%/4% 17%/4.3% 5%/3.4% 2.5%/1.5%

рис. 7 70%/0% 68%/6.7% 43%/3.8% 24%/3.6% 14%/4.4% 10%/2.3% 2.5%/1.7%

рис. 8 63%/0% 26%/6.6% 13%/1.3% 6.8%/1% 3.3%/1.3% 1.8%/1.5% 0.8%/0.7%

рис. 9 100%/0% 66%/7.8% 30%/5% 17%/2.5% 6.4%/3.2% 2.7%/0.9% 0.5%/0.8%

рис. 10 100%/0.7% 100%/7.5% 74%/6.7% 33%/1.8% 11%/4.1% 4.2%/2.3% 0.9%/1%

рис. 11 66%/0% 36%/12% 33%/6% 19%/3.3% 9%/6.2% 3.6%/1.2% 1%/0.6%

Напомним, что в рассматриваемом примере три из четырех параметров
новой стратегии AA не подвергались вообще никакой оптимизации. На этом
основании можно утверждать, что возможности для улучшения результатов24,
указанных в таблице 7, не исчерпаны.

Как и графики на рисунках 4—11, значения в таблице 7 свидетельству­
ют о том, что с ростом загрузки преимущество новой стратегии сходит на нет.
Причина этого явления, по-видимому, заключается в следующем: при высокой
загрузке очереди в серверах непусты большую часть времени и новая диспет­
черизация AA (т. е. правило (3.2)) оказывается недостаточно чувствительной
для того, чтобы уловить разброс значений незаконченной работы в серверах,
возникающий за время между двумя последовательными поступлениями. Су­
дя по вычислительным экспериментам, в пределе при ρ→ 1 новая стратегия

24В том числе и с помощью быстрых алгоритмов (см. [479]).
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доставляет такой же выигрыш25, как и лучшая из ранее известных стратегий
— программная стратегия (со значениями параметров, выбранными оптималь­
ным образом).

Присмотримся теперь на рисунках 4—11 к графикам целевых функцио­
налов при стратегиях LWL и JSQ. При оптимизации (в обычных условиях26)
стационарного среднего времени пребывания задания в системе, как LWL,
так и JSQ вне зависимости от загрузки предпочтительнее любой из диспет­
черизаций, не использующих наблюдения за системой. Однако наблюдается
следующий эффект: с уменьшением дисперсии размера задания новая стра­
тегия AA ведет себя стабильно, тогда как эффективность JSQ (относительно
AA) падает в области низкой и средней загрузок. Вычислительные эксперимен­
ты с предельным случаем (т. е. вырожденным распределением размера заданий)
показывают, что новый алгоритм AA может быть лучше JSQ (но не LWL).
Конкретный пример и интуитивное объяснение этого экспериментального фак­
та будет предложено в последующих параграфах27 (см. стр. 185), а сейчас
обратимся к другому функционалу — стационарному среднему времени ожи­
дания заданием начала обслуживания. И здесь новая диспетчеризация дает
контринтуитивный результат: в четырех из восьми рассмотренных случаев (см.
рисунки 5, 6, 7, 10) стратегия AA лучше основанной на наблюдениях диспет­
черизации LWL по наименьшей незаконченной работе (но никогда не лучше
диспетчеризации по наикратчайшей очереди JSQ). Объяснение этого эффекта,
который наблюдается в различных вычислительных экспериментах, остается
открытым вопросом.

Представленные, а также другие вычислительные эксперименты (с резуль­
татами которых можно ознакомиться в [304; 306; 307; 309]) свидетельствуют о
том, что для рассматриваемых частично наблюдаемых стохастических систем
с параллельным обслуживанием предложенный подход к управлению всегда
приносит выигрыш по сравнению со всеми другими известными из научной
литературы стратегиями. Величина его зависит от целевой функции и может
достигать десятков процентов (см. таблица 7). Наблюдаемое преимущество,
однако, дается не бесплатно. С вычислительной точки зрения алгоритмы, реа­
лизующие новый подход (см. Алгоритм I и Алгоритм II ), являются намного

25Объяснения этому экспериментальному факту найти не удалось.
26Т. е., например, в отсутствие особых свойств распределения размера заданий (например, очень

тяжелых хвостов).
27Где будет предложен иной способ реализации диспетчеризации по предыстории.
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более сложными, чем алгоритмы рандомизированной и программной страте­
гий. Впрочем это обстоятельство не говорит однозначно в пользу последних
по ряду причин:

1. Число параметров, требующих предварительной оценки для стратегий
RND и PROG, на единицу меньше общего числа серверов в системе. В новой
же диспетчеризации AA число параметров28 не превосходит четырех при лю­
бом числе серверов (см. таблицы 4 и 6). Равномерно хороших процедур поиска
оптимальных значений ни для какой из упомянутых стратегий к настоящему
времени не разработано.

2. Несмотря на сложность алгоритмов, реализующих новый подход к дис­
петчеризации (см. Алгоритм I и Алгоритм II ), можно29 считать, что они
реализуют управление входящим потоком в реальном времени (см. сноску на
стр. 142). Кроме того, они допускают распараллеливание вычислений. Поэтому
их быстродействие можно повысить при наличии соответствующей инфраструк­
туры30.

3. Изложенный аналитической подход к реализации диспетчеризации
по предыстории в принципе применим всегда, когда для интересующего слу­

28Отметим, что, судя по вычислительным экспериментам, для самого важного параметра дис­
петчеризации AA — коэффициента θ — в каждой задаче существует единственное значение,
доставляющее минимум целевому функционалу, причем θ ∈ (0,1). Кроме того, по крайней мере
наиболее употребительные целевые функционалы оказываются пологими в окрестности оптималь­
ного значения θ, что (при отсутствии требования сверхвысокой точности) облегчает его нахождение.

29Справедливости ради необходимо сказать, что границу здесь провести довольно трудно. Можно
подобрать исходные параметры так, что на принятие решения о поступающем задании будет затра­
чиваться столь много времени, что по его истечении очереди в серверах уже окажутся пусты (и,
значит, отправлять задание надо на сервер, выбранный равновероятно из наиболее производитель­
ных). Обстоятельства, при которых возникают подобные ситуации, являются скорее исключением,
чем правилом. Для диспетчеризации в них необходимы иные идеи (например, [224]), которые в дис­
сертации не обсуждаются. Отметим также, что задача диспетчеризации по предыстории, при низкой
скорости работы реализующих ее алгоритмов, имеет схожие черты с известными в литературе
(см. [480–485] и http://webhome.auburn.edu/~yzs0078/AoI.html) задачами управления по “старею­
щей” информации. Действительно, при низкой скорости диспетчеризации каждое принятое решение,
вообще говоря, не отвечает текущему состоянию системы и поэтому может быть названо устарев­
шим. Вопрос о возможности учета этого эффекта остается невыясненным.

30И соответствующих алгоритмов, разработка которых (из-за особенностей процессов, возникаю­
щих в теории очередей) — вопрос открытый; хотя литература по проблематике распалаллеливания
вычислений весьма обширна (укажем для примера на [486–495]).

http://webhome.auburn.edu/~yzs0078/AoI.html
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чайного процесса с дискретным временем удается31 выписать рекуррентные
соотношения типа32 (3.3). В частности, имея в виду рекурсию Кифера–Воль­
фовица, однопроцессорные сервера можно заменить на многопроцессорные.
Близость программной стратегии к оптимальной в такой системе — вопрос от­
крытый. Свойства же оптимальности нового алгоритма от структуры системы
не зависят. Кроме того, судя по вычислительным экспериментам, он гаранти­
рует33 результаты не хуже тех, что получаются при стратегии PROG-opt (и
тем более RND-opt).

Модификации и обобщения. Для минимизации стационарного среднего
времени пребывания задания в системе с учетом предыстории существует путь
(по крайней мере еще один), отличный от того, что был избран в алгоритме AA.
А именно, в момент поступления 𝑛-го задания можно (вместо вычисления
E𝑉𝑛) пересчитывать распределение случайной величины, равной номеру сер­
вера с минимальным числом заданий. Тогда тот сервер, которому, например,
отвечает мода распределения, и будет тем, на который надлежит отправить
𝑛-е задание. Судя по вычислительным экспериментам, такой образ действий,
являясь, конечно, более вычислительно затратным, может (при некоторых дис­
циплинах обслуживания) приводить к еще большему выигрышу, в сравнении
с алгоритмом AA.

В продолжение мысли, сформулированной в предыдущем абзаце, остано­
вимся на принципиально отличном от приведенных выше примере, который
показывает, что диспетчеризация по предыстории возможна не только с опорой
на вычисление значений E𝑉𝑛, но и на связанные с ними величины. Рассмотрим

31В иных случаях (например, когда целевой функционал связан с хвостами распределений време­
ни пребывания [496] или когда используется какая-то экзотическая дисциплина обслуживания [497])
необходимы новые приемы; речь о них пойдет в следующем параграфе диссертации и в главе 4.

32Объем литературы, затрагивающий этот вопрос, огромен (см., например, список литературы
в диссертации [498]). Поэтому ограничимся лишь несколькими примерами. Так в [499] получе­
ны соотношения для времен ожидания неприоритетных заявок в (неклассической) приоритетной
СМО с двумя типами заявок и прямым порядком обслуживания. Рекуррентные процедуры для
расчета времен ожидания в некоторых тандемных системах приводятся в [500] (см. также [501]
и [60, С.34–36]). Соотношения между моментами поступления и окончания обслуживания заданий
в СМО 𝐺 |𝐺 |𝑚 |∞ |FIFO даны в [502]. Наиболее общая рекурсия (для времени ожидания и пре­
бывания) в параллельных однолинейных СМО с дисциплиной FIFO и заданиями, допускающими
определенную внутреннюю структуру, приведена в [503, Theorem 2.1] (см. также [504]). Для дисци­
плин, отличных от FIFO, редко удается выписать соотношения для величин, важных для решаемой
задачи (см., например, [505, Lemma1], где изучена СМО 𝑆𝑀𝑃 |𝑀 | 1 |∞ |PS).

33Математическое доказательство этого утверждения неизвестно.
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систему из двух однопроцессорных серверов производительности 𝑣(1) и 𝑣(2),
каждый из которых имеет очередь неограниченной емкости. Находящиеся
в них задания обслуживаются в соответствии с дисциплиной справедливого
разделения процессора. Задания поступают к диспетчеру по одному, по пуас­
соновскому потоку, причем их размер имеет экспоненциальное распределение
с параметром µ. Цель диспетчера — минимизировать стационарное среднее
E𝑉 время пребывания задания в системе т. е. (3.1). Для выбора действия 𝑦𝑛+1

(𝑦𝑛+1 ∈ {1,2}), принимаемого в момент 𝑡𝑛+1 относительно поступившего зада­
ния, (вместо (3.13)) будем руководствоваться правилом

𝑦𝑛+1 = argmin16𝑚62

(︁
θ · E𝑁 (𝑚)

𝑛+1

)︁
, 𝑛 > 0, (3.14)

где 𝑁
(𝑚)
𝑛+1 — число заданий в сервере 𝑚 в момент поступления задания с но­

мером 𝑛+ 1 (но до прибавления задания к какому-либо серверу), а θ ∈ (0,1]

— наперед заданное число. Вычисление 𝑦𝑛+1 может быть алгоритмизировано.
Действительно, выберем 0 < Δ ≪ 1 так, чтобы µ𝑣(𝑚)Δ < 1. Тогда µ𝑣(𝑚)Δ мож­
но трактовать как вероятность окончания обслуживания задания на сервере 𝑚

за малое время Δ. Для сокращения записи положим 𝑣(1) = 𝑣(2) = 1 и введем
следующие обозначения34:

𝑞𝑖𝑗 =𝐶𝑗
𝑖

(︂
µΔ

𝑖

)︂𝑗 (︂
1− µΔ

𝑖

)︂𝑖−𝑗

, 𝑖 > 1, 𝑗 = 0,1, . . . ,𝑖,

qT
𝑗 = (𝑞𝑗,𝑗,𝑞𝑗,𝑗−1, . . . ,𝑞𝑗,1), 𝑗 > 2,

0T
𝑛 = (0,0, . . . ,0⏟  ⏞  

𝑛

), 𝑛 > 1.

Через I𝑖,𝑖+1 будем обозначать прямоугольную матрицу размерности 𝑖× (𝑖+ 1),
составленную из единичной матрицы I𝑖 размера 𝑖, дополненной справа нуле­
вым столбцом. Наконец, определим две вспомогательные матрицы, P𝑛 и P̃𝑛,

34Здесь уместно упомянуть работу [506].
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следующим образом. Пусть P(𝑖)
𝑛 (P̃

(𝑖)

𝑛 ) — 𝑖-я строка матрицы P𝑛 (P̃𝑛). Тогда

P1 =

(︃
1 0

𝑏 1− 𝑏

)︃
=

(︃
P(1)

1

P(2)
1

)︃
,

P2 =

⎛⎜⎝P(1)
1 0

P(2)
1 0

qT
2 𝑞2,0

⎞⎟⎠ =

⎛⎜⎝P(1)
2

P(2)
2

P(3)
2

⎞⎟⎠ , P̃2 =

(︃
P(2)

1 0

qT
2 𝑞2,0

)︃
=

(︃
P̃

(1)

2

P̃
(2)

2

)︃
,

P3 =

(︃
P2 03

qT
3 𝑞3,0

)︃
=

⎛⎜⎜⎜⎜⎝
P(1)

3

P(2)
3

P(3)
3

P(4)
3

⎞⎟⎟⎟⎟⎠ , P̃3 =

⎛⎜⎝P(2)
2 0

P(3)
2 0

qT
3 𝑞3,0

⎞⎟⎠ =

⎛⎜⎜⎝
P̃

(1)

3

P̃
(2)

3

P̃
(3)

3

⎞⎟⎟⎠ , . . .

т. е. матрица P𝑛 получается из матрицы P𝑛−1 путем изменения размера по­
следней: снизу добавляется одна строка (𝑞𝑛,𝑛,𝑞𝑛,𝑛−1, . . . ,𝑞𝑛,1,𝑞𝑛,0), справа — один
нулевой столбец. Вычеркиванием из матрицы P𝑛 первой строки получаем мат­
рицу P̃𝑛.

Положим pT
𝑛,𝑚 = (𝑃𝑛,𝑚(0),𝑃𝑛,𝑚(1), . . . ,𝑃𝑛,𝑚(𝑛)), где 𝑃𝑛,𝑚(𝑖) вероят­

ность того, что в сервере 𝑚 в момент 𝑡𝑛 находится ровно 𝑖 заданий. Пусть
0 6 𝑡1 < · · · < 𝑡𝑛 < . . . — последовательность моментов поступления заданий
в систему. Из формулы полной вероятности, с учетом введенных обозначе­
ний, имеем35:

pT
1,𝑚 = (1− 1(𝑚=𝑦1),1(𝑚=𝑦1)),

pT
2,𝑚 = pT

1,𝑚

(︁
P̃1(P1)

𝑡2−𝑡1
Δ −11(𝑚=𝑦1) + I2(1− 1(𝑚=𝑦1))

)︁
.

pT
𝑛,𝑚 = pT

𝑛−1,𝑚

(︁
P̃𝑛−1(P𝑛−1)

𝑡𝑛−𝑡𝑛−1
Δ −11(𝑚=𝑦𝑛−1) + I𝑛−1,𝑛(1− 1(𝑚=𝑦𝑛−1))

)︁
, 𝑛 > 2.

Задавшись некоторым36 значением Δ и зафиксировав управление 𝑦1, алго­
ритм37 выбора решения для задания, поступившего в момент 𝑡𝑛+1, 𝑛 > 1, состо­
ит в следующем38: сначала рассчитываются распределения pT

𝑛+1,𝑚, 1 6 𝑚 6 𝑀 ,
35Напомним, что 1(𝐴) — индикатор множества 𝐴.
36См. сноску на стр. 137.
37Описанный алгоритм, по-видимому, можно распространить и на случай, когда размеры зада­

ний имеют распределение фазового типа. Такое обобщение было бы полезным (при не сверхбольшой
дисперсии размера заданий), поскольку, как известно, распределением фазового типа с любой степе­
нью точности можно приблизить (в смысле слабой сходимости ф. р.) любое распределение (см. [416,
С. 181]).

38Отметим, что размерность векторов pT
𝑛,𝑚 растет вместе с ростом 𝑛. Поэтому вычисления при

реализации необходимо (на каком-то этапе) обрывать.
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затем вычисляются по определению значения E𝑁
(𝑚)
𝑛+1 и, наконец, выбирается

сервер по правилу (3.14). Неизвестное в (3.14) значение θ либо подбирается
на имитируемых траекториях, либо полагается равным единице.

Оценка параметров. Основная цель введения постоянного коэффици­
ента θ в алгоритмы диспетчеризации по предыстории (см. (3.13) и (3.14))
— компенсация тех изменений, которые вызываются в исходной задаче зна­
чениями всех остальных параметров алгоритмов39. Однако, безотносительно
предназначения коэффициента θ, само его наличие40 в структуре стратегий
позволяет называть их пороговыми. Как уже упоминалось выше, оценки поро­
га θ могут быть найдены экспериментально, т. е. на имитируемых траекториях
путем ручного или умным образом огранизованного автоматизированного пере­
бора41. Поскольку, судя по вычислительным экспериментам, в каждой задаче
существует единственное оптимальное значение порога θ, то наличие хорошего
(хотя бы в каком-то смысле) начального приближения заметно упрощает по­
иск. Например, за такое начальное значение можно взять оптимальное значение
порога в какой-нибудь аналогичной задаче, но с полным наблюдением. Далее
речь пойдет об одной из таких задач, решение которой может служить началь­
ным приближением для значений порогов в алгоритмах диспетчеризации по
полной предыстории. Составить некоторое представление о результативности
этого подхода к оценке значений порогов позволяют результаты вычислитель­
ных экспериментов, речь о которых пойдет в параграфе 3.4 (см. стр. 181–182).

Итак, рассмотрим систему, состоящую из двух параллельно и незави­
симо работающих серверов (далее — серверы 1 и 2), в которую поступает
случайный поток одинаковых заданий единичного размера. В каждом сервере
имеется очередь неограниченной емкости для хранения заданий, ожидаю­
щих обработки. Не ограничивая общности рассуждений, будем считать, что
производительность42 сервера 1 равна единице, а сервера 2 равна 𝑣 > 1. Предпо­
лагается, что входной поток заданий является рекуррентным43, и распределение
𝐹 (𝑥) = P{τ < 𝑥} интервала τ между поступлениями имеет конечный первый

39Которые приходится искать методом проб и ошибок; см. сноску на стр. 137.
40Есть, конечно, и дополнительные основания. Например, (3.13) при 𝑀 = 2 является не чем

иным, как пороговой стратегией.
41Cм. сноску на стр. 142.
42Т. е. сервер 1 выполняет каждое задание за время 1, а сервер 2 — за время 𝑣−1.
43Это предположение является существенным. Вопрос разработки подходящего для коррелиро­

ванного потока решения является открытым.
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момент
∫︀∞
0 𝑥𝑑𝐹 (𝑥) = λ−1. Постановка задания в одну из очередей осуществля­

ется в момент его поступления и дальнейшие переходы между очередями не
допускаются. Обслуживание заданий в серверах происходит в порядке их по­
ступления, без прерывания. Обозначим через 𝑥 текущую нагрузку в сервере 1,
которая складывается из числа заданий в очереди и остаточной нагрузки непо­
средственно на процессоре. Аналогичную величину для сервера 2 обозначим
через 𝑦. Состоянием системы назовем пару 𝑠 = (𝑥,𝑦), 𝑠 ∈ 𝑆 = [0,∞)× [0,∞).

Пусть в некоторый момент, когда поступает задание, система находит­
ся в состоянии 𝑠. В этот момент принимается решение относительно того, в
какую очередь направляется задание. Если задание отправлено в очередь к
серверу 1 (будем это характеризовать словами “выбрано действие 1”), то в мо­
мент прихода следующего задания через случайное время τ система, очевидно,
окажется в состоянии

𝑠′ = ((𝑥+ 1− τ)+, (𝑦 − 𝑣τ)+),

где для сокращения записи используется стандартное обозначение
𝑎+ = max(0,𝑎). Если же задание отправлено в очередь к серверу 2 (действие 2),
то в момент прихода следующего задания система окажется в состоянии

𝑠′ = ((𝑥− τ)+, (𝑦 + 1− 𝑣τ)+).

Вероятность перехода в первом из этих случаев, обозначим ее 𝑃1(𝑠
′|𝑠), пред­

ставляет собой распределение на множестве

𝐴1(𝑠) = {(𝑥′,𝑦′), 𝑥′ = (𝑥+ 1− 𝑡)+, 𝑦′ = (𝑦 − 𝑣𝑡)+, 𝑡 > 0}.

Аналогично, вероятность перехода вовтором случае, обозначим ее 𝑃2(𝑠
′|𝑠), пред­

ставляет собой распределение на множестве

𝐴2(𝑠) = {(𝑥′,𝑦′), 𝑥′ = (𝑥− 𝑡)+, 𝑦′ = (𝑦 + 1− 𝑣𝑡)+, 𝑡 > 0}.

Обе вероятности, 𝑃1(𝑠
′|𝑠) и 𝑃2(𝑠

′|𝑠), определяются распределением 𝐹 (𝑥) слу­
чайной величины τ. Также заметим, что оба множества, 𝐴1(𝑠) и 𝐴2(𝑠),
параметризованы одной неотрицательной вещественной переменной, то есть
являются одномерными. Каждое из них составлено в общем случае из двух
отрезков на плоскости, один из которых представляет собой часть прямой с
угловым коэффициентом 𝑣 — от точки 𝑠 до первого пересечения с одной из
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осей 𝑂𝑥 или 𝑂𝑦, а другой — от указанной точки пересечения до начала ко­
ординат.

Рассмотрим теперь систему в моменты поступления заданий, которые
перенумеруем последовательно: 𝑛 = 1,2, . . . Обозначим через 𝑠𝑛 состояние
системы в момент 𝑛 (до принятия решения) и пусть 𝑠0 — известное началь­
ное состояние системы. Полагаем, что система управляется согласно пороговой
стратегии с порогом ξ > 0. Это означает, что в состоянии 𝑠𝑛 выбирается дей­
ствие 1, если

𝑠𝑛 ∈ 𝑆ξ = {(𝑥,𝑦) : 𝑦
𝑣
− 𝑥 > ξ} (3.15)

и выбирается действие 2, если

𝑠𝑛 ∈ 𝑆
ξ
= 𝑆∖𝑆ξ = {(𝑥,𝑦) : 𝑦

𝑣
− 𝑥 6 ξ}. (3.16)

В этой ситуации, последовательность 𝑠𝑛 образует марковскую цепь с переход­
ной вероятностью

𝑃ξ(𝑠
′|𝑠) =

⎧⎨⎩𝑃1(𝑠
′|𝑠), если 𝑠 ∈ 𝑆ξ,

𝑃2(𝑠
′|𝑠), если 𝑠 ∈ 𝑆

ξ
.

Для полноты описания необходимо еще задать начальное распределение; на­
пример, можно положить 𝑠1 = (0,0).

Предельное распределение44, соответствующее пороговой стратегии с по­
рогом ξ, обозначим через π ξ. С каждым состоянием марковской цепи 𝑠𝑛 связан
“доход” (далее — 𝑔𝑛), который интерпретируется как время пребывания в си­
стеме 𝑛-го по счету задания. Если 𝑠𝑛 = 𝑠 = (𝑥,𝑦), то, поскольку дисциплина
очереди в каждом сервере — FIFO, имеем

𝑔𝑛(𝑠𝑛) =

⎧⎨⎩𝑥+ 1, если 𝑠𝑛 ∈ 𝑆ξ,

𝑦+1
𝑣 , если 𝑠𝑛 ∈ 𝑆

ξ
.

Предельный средний доход (предельное среднее время пребывания задания в
системе) определяется как

𝑇ξ =

∫︁
𝑆

𝑔(𝑢)π ξ(𝑑𝑢).

44Предполагая, что оно существует. Для этого достаточно потребовать, чтобы загрузка систе­
мы λ/(1 + 𝑣) была меньше едницы, поскольку цель введения пороговой стратегии — минимизация
среднего времени пребывания задания в системе.



164

Задача заключается в нахождении значения ξ, которое минимизирует 𝑇ξ.
Построение итеративного алгоритма для нахождения приближенного зна­

чения оптимального порога ξopt основано на следующем рассуждении. Пусть
система находится в состоянии 𝑠 = (𝑥̂,𝑦) таком, что 𝑦

𝑣 − 𝑥̂ = ξopt. Тогда опи­
санная выше пороговая стратегия предписывает выбирать в этом состоянии
действие 1. Но на самом деле выбор действия в такой точке не имеет значения.
Если бы это было не так, то изменением порога можно было бы добиться улуч­
шения целевой функции45. Сравним две стратегии, σ(1)ξ и σ(2)ξ , отличающиеся
правилом выбора начального действия: первая стратегия выбирает действие 1,
а вторая — действие 2. В дальнейшем обе стратегии действуют одинаково и
так, как предписывает пороговая стратегия с порогом ξ. Индексируя распре­
деления на шаге 𝑛, соответствующие этим стратегиям, единицей и двойкой,
рассмотрим величину

Δξ = 𝑔(1) − 𝑔(2) +
∞∑︁
𝑛=1

(︂∫︁
𝑆

𝑔(𝑢)π(1)𝑛 (𝑑𝑢)−
∫︁
𝑆

𝑔(𝑢)π(2)𝑛 (𝑑𝑢)

)︂
, (3.17)

где 𝑔(1) и 𝑔(2) — доходы в начальный момент, когда оба распределения, π(1)0 и π(2)0 ,
сосредоточены в точке 𝑠 = (𝑥̂,𝑦). По определению сравниваемых стратегий

𝑔(1) = 𝑥̂+ 1, 𝑔(2) =
𝑦 + 1

𝑣
. (3.18)

поэтому 𝑔(1) − 𝑔(2) ̸= 0. Последующие слагаемые также отличны от нуля, по­
скольку распределения π(1)𝑛 и π(2)𝑛 не совпадают при любом 𝑛. Однако в силу
того, что lim𝑛→∞ π

(1)
𝑛 = lim𝑛→∞ π

(2)
𝑛 = π ξ, ряд в (3.17) сходится46. Если Δξ = 0,

то значение порога ξ следует считать оптимальным. Если же Δξ ̸= 0, то значе­
ние следует увеличить или уменьшить в зависимости от знака Δξ.

Для реализации этой идеи требуется уметь находить, хотя бы приближен­
но, распределения π(1)𝑛 и π(2)𝑛 . Очевидный подход заключается в аппроксимации
марковской цепи 𝑠𝑛 некоторой конечной цепью с переходной матрицей P и ис­
пользованием соотношения

π𝑛 = π𝑛−1P,

где π𝑛 — вектор–строка вероятностей состояний из конечного множества. Од­
нако прямое применение этого подхода с прямоугольной равномерной сеткой,

45Это утверждение следует из интуитивно очевидной непрерывности функции 𝑇ξ.
46Причем скорость сходимости — экспоненциальная (см., например, [507], [508, С. 277]).
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разбивающей пространство состояний, дает плохие результаты. Дело в том,
что, как показывают эксперименты, функция 𝑇ξ имеет очень пологий график
вблизи минимума. Поэтому для получения приемлемой точности необходимо
образовывать матрицу P слишком большой размерности — алгоритм стано­
вится неконструктивным. Предлагаемый далее метод использует специальное
неравномерное разбиение47 пространства состояний и специальный способ вы­
числения вероятностей перехода, не требующий использования матрицы P.

Опишем конечную марковская цепь 𝑠𝑛, которая аппроксимирует мар­
ковскую цепь 𝑠𝑛. Вначале проведем дискретизацию множества состояний 𝑆.
Воспользуемся числовой последовательностью

ℎ𝑖 = ℎ0(1 + α)
𝑖, 𝑖 = 0,1, . . . , (3.19)

где α > 0 — некоторая константа (причем 𝐿 ≪ 1). Зададим множества (пря­
мые линии)

ℬ𝑖 = {(𝑥,𝑦) : 𝑦 = 𝑣(𝑥− 𝑎𝑖)}, 𝑖 = 0,±1,±2, . . . , 𝐿,

где 𝐿 — некоторое натуральное число (причем α ≫ 1) и

𝑎𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, если 𝑖 = 0,

𝑎𝑖−1 + ℎ𝑖−1, если 𝑖 > 0,

𝑎𝑖+1 − ℎ−𝑖−1, если 𝑖 < 0.

Кроме того, рассмотрим множества 𝒞+
𝑗 и 𝒞−

𝑗 , задаваемые следующим образом

𝒞+
𝑗 = {(𝑥,𝑦) : 𝑥 = 𝑎𝑗}, 𝑗 = 1, 2, . . . , 𝐿,

𝒞−
𝑗 = {(𝑥,𝑦) : 𝑦 = 𝑣𝑎𝑗}, 𝑗 = 1, 2, . . . , 𝐿.

Определим совокупность точек 𝑆α,𝐿:

𝑆α,𝐿 = {𝑆00} ∪ {𝑆𝑖𝑗, 𝑖 = 0,±1,±2, . . . , 𝐿; 𝑗 = 1, 2, . . . , 𝐿},

таким образом, что 𝑆00 = (0,0), 𝑆𝑖𝑗 = ℬ𝑖∩𝒞+
𝑗 для 𝑖 > 0 и 𝑆𝑖𝑗 = ℬ𝑖∩𝒞−

𝑗 для 𝑖 < 0.
47Как показывают вычислительные экспериенты такая косоугольная сетка достаточна для полу­

чения решений за приемлемое вычислительное время. Для полноты картины, однако, необходимо
отметить, что к настоящему времени, ввиду важности для решения задач практики численными
методами, предложено немало типов разбиений и способов их построения. Работы в этом направле­
нии продолжаются (укажем для примера на [509–513]; см. также [514, § 2], [515]). Вопрос выбора
наилучшей сетки из известных может быть предметом отдельных исследований.
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Множество 𝑆α,𝐿 содержит (𝐿+1)2 точек и представляет собой сетку, кото­
рая покрывает на плоскости прямоугольник со сторонами 𝐻 (по оси 𝑂𝑥) и 𝑣𝐻

(по оси 𝑂𝑦) и c точкой (0,0) в качестве одной из вершин. При этом

𝐻 =
𝐿−1∑︁
𝑖=0

ℎ𝑖 =
ℎ0(1 + α)

𝐿 − ℎ0

α
. (3.20)

Точки из множества 𝑆α,𝐿 распределены неравномерно (рисунок 12). Большее
сгущение имеет место при приближении к началу координат и к прямой 𝐵0

т. е. прямой 𝑦 = 𝑣𝑥. Более редко точки располагаются при удалении от начала
координат и от прямой 𝐵0.

Рисунок 12 — Схема дискретизации множества состояний 𝑆

Точки из множества48 𝑆α,𝐿 являются основой для построения множества
состояний аппроксимирующей цепи 𝑠𝑛. Следующие рассуждения вытекают из
описания множеств 𝐴1(𝑠) и 𝐴2(𝑠), сделанного выше при рассмотрении переходов

48Как следует из построения сетки 𝑆α,𝐿, длина любого звена (горизонтального, вертикального
или наклонного) для произвольного маршрута определяется с помощью некоторого значения ℎ𝑖.
Легко понять, что (абсолютное) время, необходимое для того, чтобы система преодолела расстояние
вдоль любого звена, равняется ℎ𝑖.



167

в цепи 𝑠𝑛. Пусть цепь 𝑠𝑛 оказалась после принятия решения на шаге 𝑛 в неко­
торой точке 𝑠 = (𝑥,𝑦) ∈ ℬ𝑖 (рисунок 12). Тогда изменение состояния системы
до момента прихода следующего задания происходит по “маршруту”, отмечен­
ному на рисунок 12 стрелками. Этот маршрут (на рисунке 𝑖 = 2) начинается
в точке 𝑠 и оканчивается в точке (0,0), соответствующей пустой системе. К мо­
менту (𝑛 + 1)-го перехода цепи в новое состояние, система может оказаться в
любой точке этого маршрута. Если множество состояний стало дискретным, то,
естественно, все точки маршрута должны принадлежать дискретному множе­
ству, но характер “движения”, приводящего к новому состоянию цепи, остается
прежним: вначале система движется по наклонной прямой, а затем по той оси,
которую она достигнет раньше. Определим следующие “множества маршрутов”:

𝒜0 =ℬ0 ∩ 𝑆α,𝐿,

𝒜𝑖 =
(︀
ℬ𝑖 ∩ 𝑆α,𝐿

)︀
∪{𝑆𝑖−1,𝑖−1, . . . , 𝑆1,1, 𝑆0,0}, 𝑖 > 0,

𝒜𝑖 =
(︀
ℬ𝑖 ∩ 𝑆α,𝐿

)︀
∪{𝑆𝑖+1,−𝑖−1, . . . , 𝑆−1,1, 𝑆0,0}, 𝑖 < 0.

В этих формулах выражения в круглых скобках содержат точки из множе­
ства 𝑆α,𝐿, лежащие на прямой 𝐵𝑖. В фигурных скобках содержатся те точки из
𝑆α,𝐿, которые “соединяют” точку первого пересечения прямой 𝐵𝑖 оси 𝑂𝑥 или 𝑂𝑦

с началом координат. Более развернутая запись множеств 𝐵𝑖 выглядит так:

𝒜0 = {𝑆0,𝐿, 𝑆0,𝐿−1, . . . , 𝑆0,0},
𝒜𝑖 = {𝑆𝑖,𝐿, 𝑆𝑖,𝐿−1, . . . , 𝑆𝑖,𝑖, 𝑆𝑖−1,𝑖−1, . . . , 𝑆1,1, 𝑆0,0}, 𝑖 > 0,

𝒜𝑖 = {𝑆𝑖,𝐿, 𝑆𝑖,𝐿−1, . . . , 𝑆𝑖,−𝑖, 𝑆𝑖+1,−𝑖−1, . . . , 𝑆−1,1, 𝑆0,0}, 𝑖 < 0.

Любой дискретный маршрут, подобный изображенному на рисунке 12, являет­
ся подмножеством 𝐴𝑖. Элементы множества 𝐴𝑖 можно естественным образом
перенумеровать, например, начиная с точки 𝑆0,0:

𝑆𝑖,0 = 𝑆0,0, 𝑆𝑖,1 = 𝑆1,1, . . . , 𝑆𝑖,𝑖−1 = 𝑆𝑖−1,𝑖−1,

𝑆𝑖,𝑖 = 𝑆𝑖,𝑖, . . . 𝑆𝑖,𝐿−1 = 𝑆𝑖,𝐿−1, 𝑆𝑖,𝐿 = 𝑆𝑖,𝐿,

если 𝑖 > 0 и

𝑆𝑖,0 = 𝑆0,0, 𝑆𝑖,1 = 𝑆−1,1, . . . , 𝑆𝑖,−𝑖−1 = 𝑆𝑖+1,−𝑖−1,

𝑆𝑖,−𝑖 = 𝑆𝑖,−𝑖, . . . 𝑆𝑖,𝐿−1 = 𝑆𝑖,𝐿−1, 𝑆𝑖,𝐿 = 𝑆𝑖,𝐿.
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если 𝑖 < 0. Таким образом, для любого 𝑖 маршрут 𝒜𝑖 = {𝑆𝑖,0, 𝑆𝑖,1, . . . , 𝑆𝑖,𝐿}. В
качестве множества состояний конечной марковской цепи 𝑠𝑛 примем объедине­
ние множеств маршрутов

𝑆α,𝐿 =
𝐿⋃︁

𝑖=−𝐿

𝒜𝑖.

Множество 𝑆α,𝐿 содержит (𝐿+1)× (2𝐿+1) элементов, то есть больше элемен­
тов, чем множество 𝑆α,𝐿. Это объясняется тем, что некоторые точки сетки 𝑆α,𝐿

входят сразу в несколько множеств 𝐴𝑖. Таковыми являются все, кроме крайних,
точки, лежащие на координатных осях. Данное обстоятельство интерпрети­
руется как введение фиктивных состояний — дублеров одного физического
состояния. Например, в каждом множестве 𝐴𝑖 присутствует точка 𝑆𝑖,0 = 𝑆0,0, ха­
рактеризующая пустую систему. Подобная конструкция множества состояний
упрощает описание переходных вероятностей и работу с ними.

Опишем теперь переходы в цепи 𝑠𝑛. Пусть 𝑠𝑛 = 𝑆𝑖𝑗 ∈ 𝑆α,𝐿, и пусть
𝑆𝑘𝑙 ∈ 𝑆α,𝐿 — состояние, в которое перешла система под воздействием выбранно­
го в момент 𝑛 управления. Переход 𝑆𝑖𝑗 → 𝑆𝑘𝑙 происходит мгновенно. Точка 𝑆𝑘𝑙

определяется механизмом пороговой стратегии, при этом индексы 𝑘 и 𝑙 устанав­
ливаются детерминировано по значениям 𝑖 и 𝑗. Далее система будет изменять
свое состояние, пока не поступит новое задание. В этот момент цепь перехо­
дит в новое состояние 𝑠𝑛+1, которым может быть любая из точек 𝑆𝑘𝑙, 𝑆𝑘,𝑙−1,
. . . , 𝑆𝑘0. В соответствии с построением множества 𝑆α,𝐿 (и замечанием в сноске)
вероятности попадания в состояния 𝑆𝑘𝑙 → 𝑆𝑘𝑚, 𝑚 = 0,1, . . . , 𝑙, зависят толь­
ко от индекса 𝑙, но не от индекса 𝑘. Обозначим эти вероятности через 𝑞𝑙𝑚, т. е.
𝑞𝑙𝑚 = P{𝑆𝑘𝑙 → 𝑆𝑘𝑚}. Выпишем формулы для их вычисления. Очевидно, 𝑞00 = 1.
Рассмотрим случай 𝑙 = 1. Физически этот случай соответствует тому, что в
некоторый момент в системе есть нагрузка, требующая для своего выполнения
времени ℎ0. Вследствие дискретизации множества состояний системы имеются
только две возможности: либо в момент прихода очередного задания нагрузка
в системе останется прежней, либо система будет пуста. Вероятности соответ­
ствующих событий составляют 𝑞11 и 𝑞10. В качестве первой из этих вероятностей
естественно принять вероятность того, что время до поступления очередного
задания не будет превышать 0.5ℎ0 т. е.

𝑞11 = 𝐹 (0.5ℎ0), 𝑞10 = 1− 𝑞11.
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Аналогичное рассуждение приводит к следующим формулам для произвольно­
го значения 𝑙, 1 6 𝑙 6 𝐿:

𝑞𝑙𝑚 = 𝐹 (𝐻𝑙−𝑚+1)− 𝐹 (𝐻𝑙−𝑚), 0 6 𝑚 6 𝑙,

где

𝐻𝑚 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, если 𝑚 = 0,

ℎ𝑙−1 + ℎ𝑙−2 + · · ·+ ℎ𝑙−𝑚+1 + 0.5ℎ𝑚−1, если 1 6 𝑚 6 𝑙,

1, если 𝑚 = 𝑙 + 1.

При дальнейшей работе с конечной марковской цепью 𝑠𝑛 необходимо пе­
реходить от “косоугольных” координат, выражаемых индексами элементов 𝑆𝑖𝑗,
к прямоугольным координатам и обратно. Приведем эти преобразования,
которые получаются путем несложных выкладок из правил построения мно­
жества 𝑆α,𝐿. Пусть (𝑥,𝑦) — прямоугольные координаты точки 𝑆𝑖𝑗 ∈ 𝑆α,𝐿. Тогда
𝑥 = 𝑦 = 0 при 𝑖 = 0. Если же 𝑖 > 0, то

𝑥= ℎ0
(1 + α)𝑗 − 1

α
, (3.21)

𝑦 =max

(︂
0, 𝑣𝑥− 𝑣ℎ0

(1 + α)𝑖 − 1

α

)︂
, (3.22)

иначе, т. е. при 𝑖 < 0, имеем

𝑥=max

(︂
0,

𝑦

𝑣
− ℎ0

(1 + α)−𝑖 − 1

α

)︂
, (3.23)

𝑦 = 𝑣ℎ0
(1 + α)𝑗 − 1

α
. (3.24)

Обратное преобразование, вообще говоря, неоднозначно, во-первых, из-за на­
личия фиктивных состояний и, во-вторых, из-за того, что можно по-разному
выбирать из множества 𝑆𝑖𝑗 ∈ 𝑆α,𝐿, аппроксимирующую произвольную точ­
ку (𝑥,𝑦) ∈ 𝑆. Можно принять, например, следующий вариант:

𝑖=max
(︀
−𝐿,min(𝐿, 𝑖′)

)︀
, (3.25)

𝑗 =max
(︀
−𝐿,min(𝐿, 𝑗′)

)︀
, (3.26)
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где

𝑖′ = sign
(︁
𝑥− 𝑦

𝑣

)︁⎡⎣ ln
(︁
1 + α

ℎ0

⃒⃒
𝑥− 𝑦

𝑣

⃒⃒)︁
ln(1 + α)

⎤⎦ ,

𝑗′ =

⎧⎪⎪⎨⎪⎪⎩
[︂
ln
(︁
1+α𝑥

ℎ0

)︁
ln(1+α)

]︂
, если 𝑦 < 𝑣𝑥,[︂

ln
(︁
1+ α𝑦

ℎ0𝑣

)︁
ln(1+α)

]︂
, если 𝑦 > 𝑣𝑥.

Здесь, как обычно, sign(𝑎) означает знак числа 𝑎, [𝑎] означает целую часть
числа 𝑎.

Предположим, что в момент 𝑛 исходная марковская цепь (т. е. 𝑠𝑛)
находится в состоянии (𝑥,𝑦). Тогда после принятия решения относительно по­
ступившего в этот момент задания, цепь перейдет в состояние

(𝑥̃, 𝑦) =

⎧⎨⎩(𝑥+ 1,𝑦), если 𝑦
𝑣 − 𝑥 > ξ,

(𝑥,𝑦 + 1), если 𝑦
𝑣 − 𝑥 6 ξ.

(3.27)

Выберем в качестве начального состояния для аппроксимирующей цепь 𝑠𝑛 со­
стояние 𝑠 = (𝑥̂, 𝑦) такое, что 𝑦

𝑣 − 𝑥̂ = ξ. Рассмотрим опять упомянутые выше
стратегии σ(1)ξ и σ(2)ξ . Обозначим через π̂(1)𝑛 и π̂(2)𝑛 соответствующие этим стра­
тегиям распределения на множестве 𝑆α,𝐿. Дискретный аналог величины Δξ,
определенной формулой (3.17), имеет вид

Δα,𝐿
ξ = 𝑔(1) − 𝑔(2) +

∞∑︁
𝑛=1

∑︁
𝑖

∑︁
𝑗

𝑔(𝑖,𝑗)
(︀
π̂(1)𝑛 (𝑖,𝑗)− π̂(2)𝑛 (𝑖,𝑗)

)︀
,

где 𝑔(1) и 𝑔(2) вычисляются согласно (3.18), 𝑔(𝑖,𝑗) = 𝑔(𝑆𝑖𝑗), и π̂(𝑖)𝑛 (𝑖,𝑗) — зна­
чения распределений π̂(1)𝑛 и π̂(2)𝑛 в точке 𝑆𝑖𝑗. Будем обозначать через (𝑥𝑖𝑗,𝑦𝑖𝑗)

прямоугольные координаты точки 𝑆𝑖𝑗, вычисленные по формулам (3.21)–(3.24),
и через 𝐼𝑥𝑦, 𝐽𝑥𝑦 — индексы обратного преобразования, вычисленные по фор­
мулам (3.25) и (3.26). Обозначения 𝑥̃ = 𝑥̃(𝑥,𝑦), 𝑦 = 𝑦(𝑥,𝑦) выражают
преобразования по формулам (3.27).

Для приближенного нахождения Δα,𝐿
ξ , т. е. оценки произвольного зна­

чения порога ξ с точки зрения его оптимальности, может быть использован
следующий алгоритм49.

49К которому дадим следующие пояснения. В строке 8 рассчитываются вероятности состояний по­
сле выбора действия 1 на первом шаге; в строке 11 — вероятности состояний после выбора действия 2
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Алгоритм III. Псевдокод алгоритма оценки произвольного значения порога ξ

Шаг 1
1: Δ0 = 𝑔(1) − 𝑔(2)

2: if 𝑖 = 𝑖𝑥̂,𝑦, 𝑗 = 𝑗𝑥̂,𝑦 then
3: π̂

(1)
0 (𝑖,𝑗) = 1, π̂(2)0 (𝑖,𝑗) = 0

4: else
5: π̂

(1)
0 (𝑖,𝑗) = 0, π̂(2)0 (𝑖,𝑗) = 1

Шаг 2
6: 𝑥 = 𝑥̂+ 1, 𝑦 = 𝑦, 𝑘 = 𝐼𝑥𝑦, 𝑙 = 𝐽𝑥𝑦, π̂

(1)
1 = 0

7: for 𝑚 = 0 to 𝑙 do
8: π̂

(1)
1 (𝑘,𝑚) = π̂

(1)
1 (𝑘,𝑚) + 𝑞𝑙𝑚 · π̂(1)0 (𝑘,𝑙)

9: 𝑥 = 𝑥̂, 𝑦 = 𝑦 + 1, 𝑘 = 𝐼𝑥𝑦, 𝑙 = 𝐽𝑥𝑦, π̂
(2)
1 = 0

10: for 𝑚 = 0 to 𝑙 do
11: π̂

(2)
1 (𝑘,𝑚) = π̂

(2)
1 (𝑘,𝑚) + 𝑞𝑙𝑚 · π̂(2)0 (𝑘,𝑙)

12: Δπ̂1 = π̂
(1)
1 − π̂(2)1

13: Δ1 = Δ0 +
∑︀𝐿

𝑖=−𝐿

∑︀𝐿
𝑗=0 𝑔(𝑖,𝑗) ·Δπ̂1(𝑖,𝑗)

14: 𝑛 = 1

Шаг 3
15: 𝑛 = 𝑛+ 1

16: for 𝑖 = −𝐿 to 𝐿 do
17: for 𝑗 = 0 to 𝐿 do
18: 𝑥 = 𝑥𝑖𝑗 , 𝑦 = 𝑦𝑖𝑗

19: 𝑘 = 𝑖𝑥̃𝑦, 𝑙 = 𝑗𝑥̃𝑦

20: Δπ̂𝑛 = 0

21: for 𝑚 = 0 to 𝑙 do
22: Δπ̂𝑛 = Δπ̂𝑛 + 𝑞𝑙𝑚 · π̂(1)𝑛−1(𝑘,𝑙)− 𝑞𝑙𝑚 · π̂(2)𝑛−1(𝑘,𝑙)

23: Δ𝑛 = Δ𝑛−1 +
∑︀𝐿

𝑖=−𝐿

∑︀𝐿
𝑗=0 𝑔(𝑖,𝑗) ·Δπ̂𝑛(𝑖,𝑗)

24: if |Δ𝑛 −Δ𝑛−1| < ε then
25: goto Шаг 3
26: else
27: return Δ𝑛 = Δα,𝐿

ξ .

Предложенный алгоритм представляет собой версию “по-умолчанию”,
которая допускает модификации в расчете на увеличение эффективности. На­
пример, можно перенести “область сгущения” сетки 𝑆α,𝐿, которая расположена
в прилегающей к нулю окрестности прямой 𝑦 = 𝑣𝑥, в район наиболее часто
повторяющихся состояний. Центр сгущения можно определять заранее с по­
мощью статистического моделирования. В алгоритме также не предусмотрена
на первом шаге. В строке 12 разность — покомпонентная. В строке 18 задаются прямоугольные ко­
ординаты точки 𝑆𝑖𝑗 ; в строке 19 — координаты системы на сетке после принятия решения. В строке
24, ε — наперед заданное положительное число (ε≪ 1).
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процедура вычисления порога, поскольку она может быть реализована разны­
ми способами. Например, задавшись гарантированными границами интервала,
внутри которого лежит оптимальное значение порога (скажем, [0,𝑣−1]), можно
далее очевидным образом действовать методом деления отрезка пополам.

Проиллюстрируем работу Алгоритма III. Найдем с его помощью значе­
ния порогов в двух системах, отличающихся типом входящего потока. Пусть
в каждой из систем быстрый сервер имеет скорость 𝑣 = 2, но в одну поступает
пуассоновский поток с параметром λ, а в другую — рекурренетный поток с Па­
рето распределенным интервалом между поступлениями т. е. 𝐹 (𝑥) = 1− 𝑏𝑎𝑥−𝑎,
𝑥 > 𝑏. Выберем параметры потоков таким образом, чтобы загрузка каждой си­
стемы была равна 0.8 и среднее время между поступлениями заданий было
одинаковым; т. о.

λ = 2.4, 𝑏 = 0.21, 𝑎 =
1

1− λ𝑏
≈ 2.016.

Отметим, что дисперсия времени между поступлениями для одного потока рав­
на λ−2 ≈ 0.417, а для другого — 𝑎𝑏2/((𝑎 − 1)2(𝑎 − 2)) ≈ 5.833. Параметры
сетки 𝑆α,𝐿 выберем опосредованно, задав размеры наименьшей (ℎ0 = 0.005) и
наибольшей (ℎ𝐿−1 = 0.025) ячейки, а также положив размер области покры­
тия 𝐻 = 10. При этих значениях размеров параметры сетки равны

α =
ℎ𝐿−1 − ℎ0

𝐻 − ℎ𝐿−1
≈ 0.0001, 𝐿 =

[︃
ln
(︀
1 + α𝐻

ℎ0

)︀
ln(1 + α)

]︃
≈ 1600.

Таким образом, число состояний в аппроксимирующей цепи равно50 (𝐿 + 1) ×
(2𝐿+ 1) ≈ 5.2× 106. Предложенный алгоритм дает следующие диапазоны для
оптимального значения порога:

система с пуассоновским потоком: ξ ∈ (0.166, 0.167).

система с “Парето потоком”: ξ ∈ (0.150, 0.151).
50Численные эксперименты показывают, что решение задачи может вести себя нерегулярно при

уменьшении ячеек сетки и, в итоге, может “сломаться”. По примеру из теории дифференциальных
уравнений в частных производных, в которой известен критерий Куранта–Фридрихса–Леви (необ­
ходимое условие устойчивости численной схемы), здесь никакого правила (например, условий на
длины сторон ячеек сетки по направлениям) установить не удалось. Подходящий размер сетки при­
ходится искать методом проб и ошибок.
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Чтобы понять, насколько точны эти результаты, рассмотрим полученные с
помощью имитации (метода Монте-Карло) значения целевой функции в окрест­
ности найденных оптимальных значений. Эти значения представлены в табли­
цах 8 и 9.

Таблица 8 — Значения целевой функции 𝑇ξ в окрестности оптимального значе­
ния ξ для системы с пуассоновским входящим потоком при загрузке 0.8

Значение порога, ξ Среднее время пребывания, 𝑇ξ
0.160 1.25459
0.162 1.25458
0.164 1.25456
0.166 1.25454
0.168 1.25454
0.172 1.25454
0.174 1.25455

Таблица 9 — Значения целевой функции 𝑇ξ в окрестности оптимального значе­
ния ξ для системы с входящим Парето–потоком при загрузке 0.8

Значение порога, ξ Среднее время пребывания, 𝑇ξ
0.144 0.93638
0.146 0.93637
0.148 0.93636
0.150 0.93636
0.152 0.93636
0.154 0.93637
0.156 0.93638

Как видно из полученных значений, итеративный расчет порога да­
ет вполне удовлетворительную точность до третьего знака после запятой.
Проверить правильность значений в четвертом знаке путем статистического
моделирования весьма затруднительно, поскольку потребовалось бы оценивать
целевую функцию с точностью до шестого знака после запятой, в то время как
одна оценка этой функции до пятого знака после запятой занимает несколько
часов работы современного стандартного персонального компьютера. В то же
время одна оценка с помощью предложенного алгоритма занимает примерно
5–10 минут.
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Независимую оценку точности можно получить по численными резуль­
татам из [272], где для решения рассматриваемой задачи использовался
принципиально другой метод. Значения в таблице 8 относятся к кривой ρ = 0.8

на первом из трех рисунков в [272, Figure 6], который воспроизведен ниже (см.
рисунок 13).

Рисунок 13 — Система из двух серверов (производительности 1 и 2) с пуассонов­
ским потоком заданий единичного размера. Графики стационарного среднего
времени пребывания в системе зависимости от значения порога ξ при раз­
личных значениях загрузки ρ. Оптимальные значения порога отмечены �;
значения при других стратегиях (TRI, FPI, Myopic) отмечены �. Рисунок

взят из [272, Figure 6]

Хотя по рисунку и трудно делать какие-либо количественные выводы, визуаль­
но очевидно, что найденное решение является наилучшим51.

Рассуждение52, позволившее построить алгоритм для нахождения при­
ближенного значения оптимального порога при 𝑀 = 2, “проходит” и для
произвольного53 2 6 𝑀 < ∞. Но разработать на его основе какую-либо чис­
ленную процедуру не удается. Вместе с тем для общего случая представляется

51Примечательно (см. [272, Раздел 4.2]), что иногда близкие к оптимальным значения целевой
функции получаются, если значение порога ξ вычислять по простому эвристическому правилу
ξ = (𝑣−1

1 − 𝑣−1
2 )(1− ρ). На рисунке 13 значения по этому правилу обозначены TRI и отмечены �.

52См. стр. 164.
53Однако, для систем, состоящих из более, чем двух серверов структура оптимальной стратегии

неизвестна: она совершенно необязательно должна быть пороговой (см., например, [191, Figure 4]
и [283]).
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довольно естественным следующий способ54 поэтапного нахождения значений
порогов ξ(2), . . . , ξ(𝑀), опирающийся на разработанный алгоритм для двух
серверов. Предположим, что серверы занумерованы в порядке возрастания
производительности т. е. 𝑣(1) < 𝑣(2) < · · · < 𝑣(𝑀) и входной поток заданий яв­
ляется рекуррентным с распределением 𝐹1(𝑥). На первом этапе с помощью
предложенного алгоритма находится приближенно значение порога, ξ(2), для
системы из двух серверов производительности 𝑣(1) и (𝑣(2) + · · ·+ 𝑣(𝑀)) соот­
ветственно. Затем, уже при известном ξ(2), решается задача нахождения55

подходящего рекурретного потока 𝐹2(𝑥) для потока заданий, отклоненных
сервером 1. На втором этапе для системы из двух серверов производитель­
ности 𝑣(2) и (𝑣(3) + · · ·+ 𝑣(𝑀)) соответственно, с распределением входного
потока 𝐹2(𝑥), рассчитывается значение порога, ξ(3). После этого распределения
потока заданий, отклоненных сервером 2, приближается некоторым рекуррент­
ным потоком 𝐹3(𝑥) и т. д. Таким образом, на каждом этапе осуществляется
дискретизация множества состояний, строится аппроксимирующая цепь Мар­
кова, применяется предложенная выше итерационная процедура нахождения
порога и подбирается распределение потока оклоненных заданий. Решение
о том, что в какую из 𝑀 очередей направляется поступающее задание при­
нимается так. Пусть в момент поступления система находится в состоянии
(𝑥1,𝑥2, . . . ,𝑥𝑀), где 𝑥𝑖 — текущая незаконченная работа в сервере 𝑖. Тогда вы­
бирается сервер 1, если 𝑥1 6

∑︀𝑀
𝑖=2 𝑥𝑖 + ξ

(2). Иначе требуется дополнительная
проверка: если 𝑥2 6

∑︀𝑀
𝑖=3 𝑥𝑖 + ξ

(3), то выбирается сервер 2. Иначе требуется
дополнительная проверка и т. д.

Закончим параграф двумя замечаниями относительно последней из
рассмотренных задач. Для нахождения значений оптимальных порогов
ξ(1), . . . , ξ(𝑀) в принципе применимы ныне популярные алгоритмы эволюцион­
ной оптимизации56 [478], не требующие знания градиента целевой функции. Но
поскольку в задаче нельзя получить выражения для самой целевой функции,
такие алгоритмы приходится применять “внутри” имитационной модели. По­
этому качество получаемых решений является низким. Еще одним подходом
для системы c произвольным числом серверов является подход, основанный

54Не гарантирующий, вообще говоря, нахождение значений именно оптимальных порогов.
55Например, можно воспользоваться методами из [516]; см. также [517].
56Например, particle swarm optimization, ant colony optimization, artificial swarm intelligence,

gravitational search algorithm и др.
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на использовании метода Монте–Карло в сочетании с адаптивными алго­
ритмами для управления частично наблюдаемыми марковскими цепями.
Как показывают эксперименты, такой метод имеет подходящий “угол атаки”
как для пороговой стратегии, так и для самого общего варианта постанов­
ки задачи57. С его помощью можно находить стратегию, которая являются
лучшей по сравнению со всеми известными эвристическими стратегиями
(см. [178] и [526]).

57С принципиальной точки зрения здесь достаточна и методология динамического програм­
мирования (см., например, уравнения (8.46) в [193]). Однако, как известно, объемы вычислений,
требующиеся для получения приемлемых ответов, могут оказаться чрезмерно большими. Ос­
нованные на идеях марковского процесса принятия решений специальные методы вынуждают
накладывать на изучаемые системы особые оганичения. Типичным является ограничение на вхо­
дящие потоки (см., например, стр. 110 в [518]): полностью приходится отказываться от потоков,
циркулирующих в реальных системах (см. [519; 520] и репозитории https://www.cs.huji.ac.il/

labs/parallel/workload/, http://gwa.ewi.tudelft.nl/, http://ita.ee.lbl.gov/, http://mawi.

wide.ad.jp/mawi/), а также от таких реальных ситуаций, когда размеры заданий зависят от длин
интервалов между поступлениями [521]. Другим недостатком является необходимость внесения из­
менений в выкладки всякий раз, когда изменяются предположения о структуре системы (например,
когда меняется число процесоров в серверах [518, Раздел 4], когда серверы могут выходить из строя
и т.п.). Но, несмотря на сказанное, нельзя не отметить, что в ряде случаев (например, когда по­
ступающие необязательно по пуассоновскому потоку задания “видят” временные средние [522;523])
альтернативу таким методам найти нелегко: по совокупной эффективности они могут давать прак­
тически неулучшаемые результаты [178;191;518;524;525].

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
http://gwa.ewi.tudelft.nl/
http://ita.ee.lbl.gov/
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
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3.3 Аналитико–имитацинный подход. Общая схема построения
алгоритмов управления при использовании в серверах

консервативных дисциплин

В предыдущих параграфах был предложен аналитический подход к ре­
ализации идеи диспетчеризации по полной предыстории. На его основе для
частично наблюдаемых систем с параллельным обслуживанием на однопро­
цессорных серверах с дисциплиной FIFO удалось разработать стратегию (см.
Алгоритм II ), являющуюся, как показывают вычислительные эксперименты,
наилучшей58 из всех ранее известных в научной литературе. Уже из самого
названия подхода следует, что избрать его можно только в тех случаях, ко­
гда либо для значений E𝑉𝑛

59, либо для связанных с ними величин, зависяших,
вообще говоря, от всей предыстории поведения системы до момента 𝑡𝑛, есть
вычислительно реализуемые (точные или хорошие приближенные) формулы
расчета. Однако, при отличном от FIFO обслуживании в серверах, получить
их чаще всего не удается. В этом параграфе описывается более универсальный
подход к реализации диспетчеризации по полной предыстории, не накладыва­
ющий ограничений на дисциплину обслуживания. Такое расширения области
применения достигается путем замены точных значений величин, необходимых
диспетчеру для выбора очередного действия, на их статистические оценки, по­
лученные посредством имитационной модели.

В основе новых алгоритмов диспетчеризации по полной предыстории
(в сравнении с теми, что предложены в предыдущих параграфах) лежит при­
ем, используемый в теории адаптивного управления и известный под названием
идентификационный подход. Суть последнего в следующем. За основу берется
алгоритм, успешно действующий по отношению к конкретному объекту, если
правильно выбрать параметры алгоритма. Однако выбор параметров зависит
от свойств объекта, которые могут быть априори неизвестны. В этом случае
иногда удается осуществить настройку параметров непосредственно в процес­
се управления, основываясь на идентификации по результатам наблюдений.

58По крайней мере, как с точки зрения минимума стационарного среднего времени ожидания,
так и с точки зрения минимума стационарного среднего времени пребывания задания в системе.

59Напомним, что 𝑉𝑛 — время, проведенное в системе заданием, поступившим в момент 𝑡𝑛.
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В рассматриваемой ситуации, взяв за основу какой-то алгоритм60, идентифи­
цируются (с помощью метода статистических испытаний) необходимые для
реализации, но недоступные для наблюдения, динамические характеристики
серверов.

Одним из главных звеньев аналитико–имитационного подхода является
компьютерная модель, имитирующая процесс поступления и обслуживания
заданий в системе. Модель трактуется61 как преобразование F исходных
данных U, принимающих значения из некоторого пространства U, в выход­
ные данные V, возможные значения которых принадлежат пространству B

т. е. F : U → B. Тройка (U,B,F) задает модель вместе с составом входных и вы­
ходных данных. В наиболее интересных случаях F может быть задано только
алгоритмически и, при этом, естественно, особое значение имеет точность,
с которой F воспроизводит процесс обслуживания в системе. Модель (U,B,F)

является промежуточным объектом, на котором осуществляется оценка не
поддающихся расчету величин, необходимых диспетчеру для выбора управле­
ния. Общая схема применения модели такова. Сначала, исходя из основного
алгоритма, выбираются выходные данные V (например, поток значений неза­
конченной работы в каждом сервере). Затем фиксируются входные данные U:
для принятия решения 𝑦𝑛 в качестве входных данных могут быть выбраны рас­
пределения 𝐹 (𝑥) и 𝐵(𝑥) интервалов между поступлениями и размеров заданий
каждого типа, предыстория совершенных действий до момента 𝑡𝑛 и моменты
их совершения. Наконец оценки значений V строятся по значениям F(U).

В следующем параграфе на примере двух классов частично наблюдаемых
систем с параллельным обслуживанием, в которых однопроцессорные серверы
используют приципиально различные дисциплины обслуживания очереди, по­
казано, каким образом с помощью предложенного аналитико–имитационного
подхода строятся алгоритмы управления.

60Например, тот, что хорошо зарекомендовал себя в аналогичой, но полностью наблюдаемой
системе: JSQ, HJSQ(d), LWL, Myopic, пороговый или какой-то другой из (огромного!) множества раз­
работанных на сегодняший день алгоритмов (см., например, обзор в [174]). Однако можно поступить
и по-другому: выбрать эвристическую стратегию, сконструированную из разумных соображений.
Как будет показано далее на примере системы с дисциплиной PS, такой выбор может оказаться
наилучшим.

61Здесь изложение следует [60].
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3.4 Примеры и дополнения

Описание алгоритма при дисциплине FIFO

Рассмотрим уже встречавшуюся в параграфе 3.2 систему, в которой име­
ется всего два сервера (занумерованные числами 1 и 2) производительности 𝑣1

и 𝑣2, причем 𝑣1 < 𝑣2. Напомним, что распределение размера задания, посту­
пившего в систему 𝑛-м по счету, есть 𝐵𝑛(𝑥), 0 6 𝑡1 < · · · < 𝑡𝑛 < . . . —
последовательность моментов поступления заданий в систему, а Δ𝑛 = 𝑡𝑛+1 − 𝑡𝑛

— промежутки между этими моментами. Решение (действие), принимаемое дис­
петчером в момент 𝑡𝑛 относительно поступившего задания обозначается через
𝑦𝑛, 𝑦𝑛 ∈ {1, 2}. Пусть 𝑊

(𝑚)
𝑛 — время, необходимое для выполнения всех зада­

ний, имеющихся в сервере 𝑚 в момент 𝑡𝑛, без учета задания, поступившего
в этот момент. Следуя описанной выше схеме, выберем62 за основу, вместо пра­
вила (3.2), алгоритм порогового типа. Пусть ξ — некоторая фиксированная
неотрицательная величина. Правило диспетчеризации определим следующим
образом: задание, поступившее в момент 𝑡𝑛 направляется на сервер 1, если
E𝑊

(1)
𝑛 + ξ < E𝑊

(2)
𝑛 , и на сервер 2 иначе, т. е.

𝑦𝑛 =

⎧⎨⎩1, если E𝑊
(1)
𝑛 + ξ < E𝑊

(2)
𝑛 ,

2, если E𝑊
(1)
𝑛 + ξ > E𝑊

(2)
𝑛 .

(3.28)

Чтобы воспользоваться этим правилом необходимо уметь находить оценки
динамического состояния серверов, а именно средней незаконченной рабо­
ты в каждом сервере. Однако вместо того, чтобы вычислять E𝑊

(𝑚)
𝑛 будем

использовать оценки, полученные по имитируемым на основе наблюденной
предыстории траекториям. Обозначим оценку E𝑊

(𝑚)
𝑛 к моменту 𝑡𝑛 принятия

очередного решения через 𝑊̂
(𝑚)
𝑛 и, для определенности, будем считать, что

в начальный момент система полностью свободна от заданий т. е. 𝑊̂
(𝑚)
1 = 0.

Для 𝑛 = 2 наблюдаемая предыстория — это пара (𝑦1,Δ1 = 𝑡2 − 𝑡1) = ℎ1.
Оценку 𝑊̂

(𝑚)
2 определим как Eℎ1

𝑊
(𝑚)
𝑛 , где Eℎ1

— условное математическое
ожидание при условии, что предыстория к моменту 𝑡2 была ℎ1. Продолжая

62Такой выбор оправдывается здесь тем, что в полностью наблюдаемых системах с двумя серве­
рами пороговая стратегия бывает оптимальной.
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аналогичным образом, для 𝑛 = 2, . . . ,𝑘, определим оценки 𝑊̂
(𝑚)
𝑛 = Eℎ𝑛

𝑊
(𝑚)
𝑛 ,

где ℎ𝑛 = (𝑦1,Δ1, . . . ,𝑦𝑛−1,Δ𝑛−1). Фиксированное натуральное число 𝑘 будем на­
зывать глубиной памяти. Начиная с номера 𝑛 = 𝑘 + 1 будем строить оценки,
исходя из “усеченной” предыстории ℎ𝑛,𝑘 = (𝑦𝑛−𝑘,Δ𝑛−𝑘, . . . ,𝑦𝑛−1,Δ𝑛−1). Полагаем
𝑊̂

(𝑚)
𝑛 = Eℎ𝑛,𝑘

𝑊
(𝑚)
𝑛 , где Eℎ𝑛,𝑘

— условное математическое ожидание при условии,
что наблюдаемая часть предыстории на предшествующих 𝑘 интервалах бы­
ла ℎ𝑛,𝑘 и остаточные времена к моменту 𝑡𝑛−𝑘 равнялись 𝑊 (𝑚)

𝑛−𝑘 = 𝑊̂
(𝑚)
𝑛−𝑘. Фиксируя

в качестве выходных данных V поток значений незаконченной работы в каж­
дом сервере в момент поступления 𝑛-го задания, а в качестве входных данных
U = (𝐵𝑛−𝑙, . . . ,𝐵𝑛−1,𝑊̂

(1)
𝑛−𝑙, . . . ,𝑊̂

(𝑚)
𝑛−𝑙 ,ℎ𝑛,𝑘), 𝑙 = min(𝑘,𝑛− 𝑘), оценки 𝑊̂

(𝑚)
𝑛 получа­

ем путем усреднения значений F(U), т. е. усреднения результатов многократной
имитации отрезка траектории процесса. Для данного 𝑛 длина имитируемого
отрезка составляет 𝑙, начальное значение остаточного времени на сервере 𝑚

принимается равным 𝑊̂
(𝑚)
𝑛−𝑙 , а значения действий и промежутков между ними

фиксированы и совпадают с наблюденной предысторией ℎ𝑛,𝑘.
Отметим, что, несмотря на конечную глубину предыстории, используемой

при расчете оценок E𝑊
(𝑚)
𝑛 на каждом шаге, фактически новая диспетчериза­

ция (далее условимся обозначать ее AA, как и в предыдущих двух параграфах)
учитывает, хотя и косвенно, всю предысторию63. Сохранение этой черты, прису­
щей точным алгоритмам, является основой ее оптимизационных возможностей.
Для определения оптимальных значений параметров нового алгоритма — глу­
бины памяти 𝑘, числа имитируемых траекторий и порогового значения ξ — не
удается предложить какого-либо теоретически обоснованного способа. Значе­
ния первых двух приходится искать в каждой задаче методом проб и ошибок.
Для нахождения подходящего порогового значения могут применяться методы
оптимизации на имитируемых тракеториях64. Однако, как показывают вы­
числительные эксперименты, бывает достаточно уже первого приближения,
получаемого с помощью алгоритма расчета наилучшего порога из парагра­
фа 3.265.

Перейдем к численным примерам и начнем с того же примера, которым
начинается параграф 3.2. Рассматривается система из двух серверов суммар­

63И, разумеется, применима к системам не только с двумя, но и с произвольным числом серверов
(как только задана пороговая стратегия).

64См. сноску на стр. 142.
65См. стр. 161 и Алгоритм III.
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ной производительности 1, причем 𝑣(1) = 2/3 и 𝑣(2) = 1/3. Входящий поток —
пуассоновский с интенсивностью λ, распределение размера заданий — экспо­
ненциальное со средним 1. Таким образом, загрузка системы ρ совпадает с λ.
В таблице 10 даны значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе при различных значениях загрузки
ρ, стратегиях RND и PROG, и новой стратегии AA. Значения параметров первых
двух были выбраны оптимальным образом и приведены в таблице 4. Значения
параметров 𝑘 и ξ новой стратегии даны в таблице 11: первое было найдено
ручным перебором, а второе — с помощью Алгоритма III.

Таблица 10 — Значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе из двух серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительности
серверов: 𝑣(1) = 2/3, 𝑣(2) = 1/3. Входящий поток — пуассоновский с интенсив­
ностью λ, размер заданий имеет экспоненциальное распределение со средним 1.
Оптимальные значения параметров стратегий RND, PROG приведены в табли­
це 4, а стратегии AA — в таблице 11

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 1.76 (1.76) 2.58 (2.63) 3.77 (3.87) 6.39 (6.56) 19.4 (20)
PROG-opt 1.76 (1.76) 2.41 (2.45) 3.22 (3.87) 5.17 (5.29) 15.0 (15.17)

AA 1.74 (1.76) 2.3 (2.36) 3.18 (3.22) 5.11 (5.2) 14.91 (15.06)

Таблица 11 — Значения параметров стратегии AA из таблице 10
ρ 0.1 0.3 0.5 0.7 0.9

глубина памяти 𝑘 2 2 3 4 5
пороговое значение ξ 0.79 0.75 0.66 0.48 0.4

Как видно из таблице 10, для диспетчеризации по полной предысто­
рии AA, реализованной на основе аналитико–имитационного подхода, справед­
ливы все те же выводы, что были сделаны для диспетчеризации, основанной
на аналитическом подходе (см. стр. 143). Так, почти во всем диапазоне за­
грузки она позволяет улучшить значение целевого показателя по сравнению
с PROG-opt — лучшей из ранее известных стратегий. Однако с ростом загрузки
наблюдается уменьшение выигрыша.
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Небезынтересно сравнить последние строки в таблице 3 и таблице 11.
Сделав это, убеждаемся, что новая стратегия AA с опорой на метод статисти­
ческих испытаний, уступает “точной” стратегии AA. Однако в случаях, когда
подбор значений параметров “точной” стратегии затруднителен, дело может об­
стоять противоположным образом.

Обратимся теперь к примерам, иллюстрирующим влияние распределе­
ния размера заданий на соотношения между стратегиями66. В отличие от
предыдущего примера будем иметь в виду лишь один целевой функционал —
стационарное среднее время пребывания задания в системе. Кроме того, ожи­
дая, что при наличии наблюдений, диспетчер может действовать лучше, чем
при их отсутствии, добавим для сравнения диспетчеризацию JSQ — диспетче­
ризацию по наикратчайшей очереди. По-прежнему будем предполагать, что в
системе имеется два сервера производительности 𝑣(1) = 2 и 𝑣(2) = 1, входя­
щий поток заданий — пуассоновский интенсивности λ, а средний размер E𝑆

заданий равен единице. В качестве распределения 𝐵(𝑥) = P{𝑆 < 𝑥} размера
заданий рассмотрим

– равномерное распределение на интервале [0.1,1.9] (коэффициент вариа­
ции 𝐶𝐵 = 0.52),

– распределение Парето с параметрами α = 2.5, 𝑥𝑚 = 0.6 (коэффициент
вариации 𝐶𝐵 = 0.894), т. е. 𝐵(𝑥) = 1− 𝑥α

𝑚

𝑥α , 𝑥 > 𝑥𝑚,
– вырожденное распределение , т. е. 𝐵(𝑥) = 1(𝑥>1), 𝑥 > 0 (коэффициент

вариации 𝐶𝐵 = 0).
В следующих трех таблицах (см. таблицах 12—14) даны значения стацио­

нарного среднего времени пребывания задания в системе при стратегиях RND,
PROG, AA и JSQ и значениях загрузки ρ = λ/3, равномерно заполняющих
интервал [0.2,0.8]. Значения параметров стратегий RND и PROG (см. табли­
ца 15) были выбраны оптимальным образом: для RND — как решение задачи
минимизации (5), для PROG — как результат оптимизации на имитируемых
траекториях. Глубина памяти 𝑘 в алгоритме AA динамически корректирова­
лась в процессе имитации в диапазоне от 2 до 6; пороговые значения ξ (см.
таблица 16) были получены по Алгоритму III и, следовательно, не зависели
от выбранного распределения размера задания.

66Можно было бы проиллюстрировать и влияние на соотношения между стратегиями характери­
стик входящего потока. Однако получающиеся здесь результаты полностью подтверждают выводы,
сделанные в параграфе 3.2, и поэтому опущены.
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Таблица 12 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в системе из двух серверов при различных стра­
тегиях диспетчеризации и различной загрузке ρ = λ/3. Производительности
серверов: 𝑣(1) = 2, 𝑣(2) = 1. Входящий поток — пуассоновский с интенсивно­
стью λ, размер заданий имеет равномерное распределение на отрезке [0.1,1.9].
Оптимальные значения параметров стратегий указаны в таблицах 15 и 16

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RND-opt 0.64 0.75 0.87 1.03 1.24 1.59 2.28
PROG-opt 0.64 0.73 0.79 0.87 0.99 1.20 1.62

AA 0.60 0.68 0.75 0.84 0.97 1.17 1.59
JSQ 0.62 0.67 0.73 0.81 0.92 1.11 1.47

Таблица 13 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в системе из двух серверов при различных стра­
тегиях диспетчеризации и различной загрузке ρ = λ/3. Производительности
серверов: 𝑣(1) = 2, 𝑣(2) = 1. Входящий поток — пуассоновский с интенсив­
ностью λ, размер заданий имеет распределение Парето с параметрами α =

2.5, 𝑥𝑚 = 0.6. Оптимальные значения параметров стратегий указаны в табли­
цах 15 и 16

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RND-opt 0.69 0.83 0.98 1.19 1.49 1.97 2.95
PROG-opt 0.69 0.79 0.89 1.04 1.24 1.59 2.31

AA 0.65 0.73 0.84 0.98 1.19 1.51 2.20
JSQ 0.62 0.68 0.76 0.86 1.00 1.25 1.74

Данные в таблицах 12—14 еще раз свидетельствуют о том, что соот­
ношения между стратегиями RND, PROG, AA, установленные в параграфе
3.2, сохраняются и при реализации диспетчеризации по полной предыстории
с опорой на метод статистических испытаний. Во всех вычислительных экспери­
ментах новая стратегия AA позволяла уменьшить стационарное среднее время
пребывания задания в системе по сравнению лучшей из ранее известных стра­
тегий PROG-opt; в приведенных трех примерах достигаемый выигрыш лежит
в диапазоне от 1.5% до 10%.
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Таблица 14 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в системе из двух серверов при различных стра­
тегиях диспетчеризации и различной загрузке ρ = λ/3. Производительности
серверов: 𝑣(1) = 2, 𝑣(2) = 1. Входящий поток — пуассоновский с интен­
сивностью λ, размер заданий имеет вырожденное распределение в точке 1.
Оптимальные значения параметров стратегий указаны в таблицах 15 и 16

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RND-opt 0.61 0.70 0.81 0.94 1.11 1.39 1.94
PROG-opt 0.61 0.70 0.75 0.80 0.88 1.02 1.29

AA 0.59 0.63 0.68 0.75 0.83 0.97 1.25
JSQ 0.61 0.66 0.70 0.77 0.86 1.00 1.28

TP-opt 0.58 0.63 0.68 0.74 0.83 0.97 1.25

Таблица 15 — Оптимальные значения параметров стратегий RND и PROG из
таблиц 12—14

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Равном. RND-opt 0 0.07 0.18 0.24 0.27 0.30 0.31
PROG-opt 1 0.78 0.72 0.70 0.68 0.68 0.68

Парето RND-opt 0.01 0.08 0.20 0.25 0.28 0.30 0.32
PROG-opt 0.99 0.78 0.75 0.73 0.70 0.68 0.67

Вырожд. RND-opt 0 0.03 0.16 0.23 0.27 0.30 0.31
PROG-opt 1 0.86 0.75 0.68 0.67 0.67 0.67

Таблица 16 — Значения параметра ξ стратегии AA из таблиц 12—14
ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

пороговое значение ξ 0.38 0.33 0.28 0.25 0.22 0.19 0.17

Таблица 17 — Относительный средний выигрыш в эффективности при страте­
гии AA по сравнению с PROG-opt — наилучшей из известных стратегий — в
зависимости от коэффициента вариации 𝐶𝐵 размера заданий (по данным из
таблиц 12—14)

Распределение Эксп. Парето Равном. Вырожд.
𝐶𝐵 1 0.894 0.52 0

выигрыш, % 2.8 4.0 5.5 6.1
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Средний выигрыш при различных интенсивностях зависит от типа рас­
пределения размера задания и от коэффициента вариации67 (см. таблицу 17):
с уменьшением 𝐶𝐵 (т. е. уменьшением дисперсии размера заданий) наблюдает­
ся его рост. С влиянием дисперсии можно также связать результат сравнения
стратегий AA и JSQ. Диспетчеризация JSQ интересна тем, что использует на­
блюдения, хотя и неполные, но связанные с состояниями очередей. Интуитивно
можно предположить, что такие наблюдения должны давать существенные
преимущества по сравнению с полностью ненаблюдаемыми характеристиками
нагрузки. Это предположение, однако, подтверждается только для больших
значений дисперсии размера заданий. Для малых значений стратегия JSQ дает
относительно меньший выигрыш по сравнению с оптимальной детерминирован­
ной диспетчеризацией PROG и, более того, проигрывает новой стратегии AA.
Можно предположить, что последнее обстоятельство связано с усилением влия­
ния предыстории в ситуации, когда мала дисперсия и соответственно в меньшей
степени присутствует эффект перемешивания.

Наконец отметим, что результаты в таблице 14 особенно подчеркивают
плодотворность предложенного в диссертации подхода к тому, как частично на­
блюдаемые системы с параллельным обслуживанием должны управляться. В
самом деле, в последней строке таблице 14 добавлена для сравнения еще одна
стратегия — пороговая стратегия (TP-opt). Именно она в полностью наблю­
даемой системе является оптимальной с точки зрения стационарного среднего
времени пребывания задания в системе. Сравнивая по таблице значения целево­
го функционала при стратегиях PROG-opt, AA и TP-opt видим, что существуют
условия68 в которых при полном отсутствии информации о текущем состоянии
системы можно осуществлять диспетчеризацию69 почти так же эффективно,
как и при наличии исчерпывающей информации о нем70.

Ниже на численных примерах показано, что все сделанные выше выводы
о соотношениях между стратегиями RND, PROG и AA справедливы не только

67Совпадающего в рассматриваемых случаях с корнем из дисперсии, т. к. всюду E𝑆 = 1.
68Как, например, в тех, что указаны в подписи к таблице 14.
69И этой диспетчеризацией является диспетчеризация по предыстории, но не программная стра­

тегия.
70Информация о прошлых состояниях системы, т. е. более глубокая предыстория не дает допол­

нительных возможностей для управления: общая теория говорит о том, что оптимальная стратегия
является марковской (см., например, [193, С. 253]).
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при использовании в серверах дисциплины FIFO. Смена дисциплины обслужи­
вания требует, конечно, и замены правила диспетчеризации (3.28).

Описание алгоритма при дисциплине PS

Пусть в каждом из 𝑀 > 2 серверов, имеющих производительность соот­
ветственно 𝑣(1), . . . и 𝑣(𝑀), реализована дисциплина справедливого разделения
процессора. Напомним71, что в этом случае поступившее в сервер задание сразу
же начинает обслуживаться; очередь в традиционном понимании отсутствует.
Обслуживание задания происходит с переменной скоростью до тех пор, пока
его размер не станет равным нулю. В моменты поступлений новых заданий
в сервер или ухода обслуженных происходят скачки скорости обслуживания.

Для того, чтобы иметь возможность сформулировать более или менее
сложное правило диспетчеризации, необходимо иметь количественные оценки
динамического состояния серверов. Рассмотрим следующие три способа для
их получения:

а) состояние сервера 𝑚 в момент 𝑡 оценивается по числу заданий 𝑁 (𝑚),
которые в этот момент находятся в сервере;

б) состояние сервера 𝑚 в момент 𝑡 оценивается по времени 𝑊 (𝑚), необходи­
мому для завершения выполнения всех заданий, которые в этот момент
находятся в сервере, при условии, что новые задания в систему больше
не поступают, т. е., обозначая через 𝑅1, . . . ,𝑅𝑁 (𝑚) незаконченную к мо­
менту 𝑡 работу по каждому заданию, находящемуся в сервере 𝑚, имеем

𝑊 (𝑚) =
𝑅1 + . . . 𝑅𝑁 (𝑚)

𝑣(𝑚)
;

в) пусть 𝑇1 — время до завершения выполнения самого маленького из
имеющихся в сервере 𝑚 в момент 𝑡 заданий, 𝑇1+𝑇2 — время до оконча­
ния выполнения следующего по размеру задания, . . . , 𝑇1 + · · · + 𝑇𝑁 (𝑚)

— время до окончания выполнения всех заданий т. е., например, если
71За строгим математическим описанием можно обратиться к [75, С. 55], откуда и заимствовано

приведенное далее описание дисциплины PS.
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𝑅1 < · · · < 𝑅𝑁 (𝑚), то

𝑇1 =
𝑅1

𝑣(𝑚)

𝑁 (𝑚)

,

𝑇2 =
𝑅2 − 𝑇1

𝑣(𝑚)

𝑁 (𝑚)

𝑣(𝑚)

𝑁 (𝑚)−1

,

. . .

𝑇𝑁 (𝑚) =
𝑅𝑁 (𝑚) − 𝑇1

𝑣(𝑚)

𝑁 (𝑚) − · · · − 𝑇𝑁 (𝑚)−1
𝑣(𝑚)

2

𝑣(𝑚)
.

Зафиксируем положительное число ζ и положим

ω1 = 𝑇1, ω2 = ζω1 + 𝑇2, . . . ,ω𝑁 (𝑚) = ζω𝑁 (𝑚)−1 + 𝑇𝑁 (𝑚). (3.29)

В качестве количественной оценки динамического состояния сервера 𝑚

в момент 𝑡 будем брать число ω𝑁 (𝑚).
Легко усмотреть, что (а) — это оценка состояния сервера по длине очереди, (б)
— оценка по незаконченной работе. Последнюю оценку будем называть эври­
стической и заметим, что при ζ = 1 она совпадает с оценкой (б).

Выбранные выше три способа количественной оценки динамического
состояния серверов требуют таких наблюдений, которые исключены в рассмат­
риваемых в диссертации системах с параллельным обслуживанием. Однако
предположим, что необходимые наблюдения все-таки доступны. Рассмотрим
некоторый момент поступления в систему очередного задания. Пусть дина­
мическое состояние сервера 𝑚 оценивается72 по одному из способов (а)—(в);
обозначим оценку через κ(𝑚). Поскольку речь идет о моменте поступления зада­
ния, то количественная оценка состояния сервера возможна, вообще говоря, как
без учета нового задания, так и в предположении, что оно отправлено именно
на данный сервер. В последнем варианте будем снабжать обозначения дополни­
тельным символом “+”73. Сформулируем теперь два правила диспетчеризации.

Первое правило основано на непосредственном сравнении количественных
оценок состояний серверов: поступившее в момент 𝑡𝑛 задание направляется на
сервер с номером 𝑦𝑛, выбранным равновероятно из множества{︂

𝑚 : 𝑣(𝑚) = max
𝑗∈𝒥

𝑣(𝑗)
}︂
, (3.30)

72Предполагается, что для всех серверов применяется один и тот же способ оценки.
73Например, запись κ(𝑚)

+ = 𝑊
(𝑚)
+ означает, что в момент поступления задания в систему оценка

состояния сервера 𝑚 трактуется как время до окончания выполнения всех заданий, которые были
в этом сервере, плюс новое задание.
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где 𝒥 = {𝑗 : κ(𝑗) = min𝑚∈{1,...,𝑀} κ
(𝑚)}. Оценивая κ(𝑚) по способу (а), получим

диспетчеризацию по минимальной длине очереди т. е. JSQ, а по способу (б) —
алгоритм, известный в литературе74, как Myopic. При оценке динамического
состояния серверов по способу (в) получим диспетчеризацию по минимальной
эвристической оценке (далее — Heuristic). Отметим, что в (3.30) вместо оце­
нок κ(𝑚) можно подставить и оценки κ(𝑚)

+ . При этом легко понять, что, вне
зависимости от использумых оценок, алгоритм JSQ будет приводить к одним и
тем же результатам. Однако с двумя другими алгоритмами это не так.

Второе правило диспетчеризации основано на сравнении прогнозируе­
мого увеличения количественных оценок состояний серверов: поступившее
в момент 𝑡𝑛 задание направляется на сервер с номером 𝑦𝑛, выбранным равнове­
роятно из множества (3.30), но теперь 𝒥 = {𝑗 : κ(𝑗) = min𝑚∈{1,...,𝑀}(κ

(𝑚)
+ −κ(𝑚))}.

Чтобы воспользоваться сформулированными правилами необходимо заме­
нить отсутствующие данные о κ(1), . . . ,κ(𝑀) и/или κ(1)+ , . . . ,κ

(𝑀)
+ статистическими

оценками, которые получаются на основе доступных наблюдений. Сделать это
можно следующим образом. Пусть в момент 𝑡𝑛 в систему поступило задание.
Пусть ℎ𝑛,𝑘 = (𝑦𝑛−𝑘,Δ𝑛−𝑘, . . . ,𝑦𝑛−1,Δ𝑛−1) — предыстория к моменту 𝑡𝑛 глубины
𝑘, составленная из имеющихся наблюдений, то есть из управлений 𝑦𝑖 и про­
межутков Δ𝑖 между моментами совершения действий 𝑦𝑖 и 𝑦𝑖−1. Пусть также
𝑠𝑛,𝑘 = (𝑠𝑛−𝑘, . . . ,𝑠𝑛−1) — вектор независимых реализаций сл.в., имеющих функ­
ции распределения размера (𝑛 − 𝑘)-го, . . . , (𝑛 − 1)-го по счету задания. С
помощью вектора наблюдений ℎ𝑛,𝑘, а также с помощью вектора 𝑠𝑛,𝑘 сымитируем
независимый от основного процесса отрезок траектории следующим образом. В
начальный момент в пустую (вспомогательную) систему поступает задание объ­
емом 𝑠𝑛−𝑘, которое направляется на сервер 𝑦𝑛−𝑘. Спустя время Δ𝑛−𝑘 поступает
задание объемом 𝑠𝑛−𝑘+1, которое направляется на сервер 𝑦𝑛−𝑘+1, и так далее,
вплоть до поступления задания объемом 𝑠𝑛−1. Задания обрабатываются точно
так же как в основной системе. Для 𝑛-го задания решение выбирается на ос­
нове одного из двух описанных выше правил диспетчеризации. Обозначим это
управление 𝑦1. Повторим процедуру точно таким же образом еще 𝑟 > 0 раз.
В результате получим набор управлений (𝑦1,𝑦2, . . . ,𝑦𝑟+1). В качестве искомого

74Если хотя бы два сервера имеют различную производительность. В случае одинаковых серве­
ров алгоритм Myopic идентичен алгоритму LWL.
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управления 𝑦𝑛 в основной системе примем то управление, которое встречается
в наборе наиболее часто75.

Таким образом, каждому описанному выше алгоритму (JSQ, Myopic и
Heuristic) соответствует “приближенный” алгоритм76 по предыстории (обозна­
чаемый соответственно AAJSQ, AAMyopic и AAHeuristic), действующий в условиях
отсутствия наблюдений за состоянием системы. Каждый из новых алгорит­
мов является параметрическим: неизвестными являются значения параметра 𝑘

(глубина предыстории), 𝑟 (число имитируемых траекторий) и ζ (константа
из (3.29)). Отыскание их оптимальных значений, по существу, представляет
собой отдельную, пока нерешенную задачу.

Рассмотрим несколько примеров, иллюстрирующих соотношения между
описанными стратегиями, а также стратегиями RND и PROG, при различных
конфигурациях системы. Ограничимся системой с двумя серверами77. Пусть
производительность первого равна 𝑣(1) = 2, второго — 𝑣(2) = 1, входящий поток
— пуассоновский с интенсивностью λ, средний размер E𝑆 заданий равен едини­
це. В качестве распределения 𝐵(𝑥) = P{𝑆 < 𝑥} размера заданий рассмотрим

– экспоненциальное распределение (коэффициент вариации 𝐶𝐵 = 1),
– равномерное распределение на интервале [0.5,1.5] (коэффициент вариа­

ции 𝐶𝐵 = 0.289),
– распределение Вейбулла с параметрами 𝑎 = 1.(41), 𝑏 = 0.5, т. е.

𝐵(𝑥) = 1− 𝑒−𝑎𝑥𝑏, 𝑥 > 0 (коэффициент вариации 𝐶𝐵 = 2.45),
– вырожденное распределение , т. е. 𝐵(𝑥) = 1(𝑥>1), 𝑥 > 0 (коэффициент

вариации 𝐶𝐵 = 0).
Таким образом, загрузка системы ρ совпадает с λ/3. В таблице 18 приводятся
значения стационарного среднего времени пребывания задания в системе при
восьми стратегиях и ρ = 0.33. Значения параметров стратегий даны в табли­
це 19. Для RND они были выбраны оптимальным образом (см. (6)); эти же

75Возможные конфликты разрешаются в пользу более быстрых серверов и равновероятным вы­
бором среди них.

76Чтобы не загромождать изложение здесь говорится об одном “приближенном” алгоритме, и не
уточняется о каком именно. Но важно помнить общую картину: каждому из способов оценки ди­
намического состояния серверов (а)—(в) соответствует два “приближенных” алгоритма, из которых
в каждом конкретном случае следует выбрать лучший. В приводимых ниже примерах приводятся
результаты именно для лучшего варианта.

77Выводы, которые делаются далее, как показывают вычислительные эксперименты (см. приме­
ры в [304, таблицы 2–5]), остаются в силе и для систем с большим числом серверов. Необходимо,
однако, иметь в виду и сноску на стр. 145.
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значения использовались для параметров стратегии PROG. Что касается но­
вых стратегий AAJSQ, AAMyopic и AAHeuristic, то в таблицах приведены наилучшие
значения параметров, которых удалось добиться78. Поэтому может быть неслу­
чайно, что иногда один и тот же тип алгоритмов оказывается лучшим.

Таблица 18 — Значения стационарного среднего времени пребывания зада­
ния в системе из двух серверов при различных стратегиях диспетчеризации и
различных распределениях размера заданий. Загрузка системы ρ = 0.33. Про­
изводительности серверов: 𝑣(1) = 2, 𝑣(2) = 1. Входящий поток — пуассоновский
с интенсивностью λ = 1. Значения параметров стратегий даны в таблице 19

Распределение размера заданий Вырожд. Равном. Эксп. Вейб.
RND-opt 0.915 0.913 0.914 0.914

PROG-RND-opt 0.846 0.847 0.858 0.891
JSQ 0.721 0.724 0.732 0.737
AAJSQ 0.711 0.754 0.894 0.980

Myopic (первое правило) 0.711 0.714 0.729 0.747
AAMyopic 0.711 0.750 0.872 0.973

Heuristic (второе правило) 0.698 0.699 0.699 0.696
AAHeuristic 0.698 0.733 0.808 0.875

Таблица 19 — Значения параметров стратегий из таблице 18
Распределение размера заданий Вырожд. Равном. Эксп. Вейб.

RND-opt 0.828 0.828 0.828 0.828

PROG-RND-opt 0.828 0.828 0.828 0.828

AAJSQ 𝑘 = 2 𝑘 = 2 𝑘 = 5 𝑘 = 12

AAMyopic 𝑘 = 3 𝑘 = 2 𝑘 = 5 𝑘 = 10

Heuristic ζ = 2.25 ζ = 3 ζ = 2.25 ζ = 2.25

AAHeuristic 𝑘=2, ζ=2 𝑘=2, ζ=2.75 𝑘=5, ζ=2.5 𝑘=5, ζ=2.75

Напомним, что роль точки отсчета играют стратегии RND-opt и
PROG-RND-opt: они является основными объектами сравнения для новых
диспетчеризаций AAJSQ, AAMyopic и AAHeuristic. Другие стратегии (JSQ, Myopic и
Heuristic), которые, вообще говоря, неприменимы в изучаемых системах, служат
методологическим целям. Как видно из таблицы 18 во всех случаях хотя бы
одна новая диспетчеризация позволяет улучшить значение целевого функци­
онала. Вычислительные эксперименты показывают, что разброс достигаемого
выигрыша очень большой: от 1% до 70%. И, как уже неоднократно упоминалось

78При этом число 𝑟 имитируемых траекторий не варьировалось вовсе и принималось равным 10.
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выше, с увеличением “степени случайности” распределения размера задания
имеет место уменьшение выигрыша. Кроме того, численные результаты в таб­
лице 18 свидетельствуют о том, что новые, “приближенные” алгоритмы могут
не уступать или вовсе превосходить в эффективности точные, основанные на
наблюдениях. Интуитивно оправданным кажется предположение, что наблюде­
ния должны давать существенные преимущества точным алгоритмам. Однако
оно подтверждается только для больших значений дисперсии размера заданий.

Сменим входящий поток на “более случайный”. Предположим, что вре­
мена между поступлениями имеют гиперэкспоненциальное распределение с
ф. р. 𝐹 (𝑥) = 1− 0.5𝑒−

2
3𝑥 − 0.5𝑒−2𝑥, 𝑥 > 0. Таким образом, среднее время меж­

ду поступлениями заданий равно единице, коэффициент вариации 𝐶𝐹 ≈ 1.225

(дисперсия ≈ 1.5), а загрузка системы ρ, как и в предыдущем примере, рав­
на 0.33. В таблице 20 приводятся значения стационарного среднего времени
пребывания задания в системе при тех же стратегиях и распределениях раз­
мера заданий, что были рассмотрены в предыдущем примере. Значения всех
параметров стратегий, которые подбирались на имитируемых траекториях, да­
ны в таблице 21.

Таблица 20 — Значения стационарного среднего времени пребывания зада­
ния в системе из двух серверов при различных стратегиях диспетчеризации
и различных распределениях размера заданий. Загрузка системы ρ = 0.33.
Производительности серверов: 𝑣(1) = 2, 𝑣(2) = 1. Входящий поток — гиперэкс­
поненциальный с интенсивностью 1. Значения параметров стратегий указаны
в таблице 21

Распределение размера заданий Вырожд. Равном. Эксп. Вейб.
RND-opt 1.04 1.034 1 0.958

PROG-RND-opt 0.913 0.911 0.911 0.919
JSQ 0.794 0.796 0.789 0.773
AAJSQ 0.777 0.821 0.833 1.047

Myopic (первое правило) 0.777 0.78 0.784 0.783
AAMyopic 0.777 0.817 0.924 1.012

Heuristic (второе правило) 0.77 0.772 0.751 0.728
AAHeuristic 0.77 0.791 0.874 0.904

Как видно из таблицы 20, с изменением характера входного потока
качественная картина поведения целевого функционала в сравнении с преды­
дущим примером не поменялась. Во всех рассмотренных случаях нашлась (по
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Таблица 21 — Значения параметров стратегий из таблицы 20
Распределение размера заданий Вырожд. Равном. Эксп. Вейб.

RND-opt 0.79 0.789 0.789 0.795

PROG-RND-opt 0.79 0.789 0.789 0.795

AAJSQ 𝑘 = 2 𝑘 = 2 𝑘 = 2 𝑘 = 5

AAMyopic 𝑘 = 5 𝑘 = 2 𝑘 = 10 𝑘 = 10

Heuristic ζ = 2.25 ζ = 2 ζ = 2.25 ζ = 2.25

AAHeuristic 𝑘=2, ζ=2.25 𝑘=2, ζ=2.75 𝑘=10, ζ=2.75 𝑘=5, ζ=2.75

крайней мере одна) новая диспетчеризация, позволившая улучшить значение
стационарного среднего времени пребывания задания в системе по сравне­
нию с наилучшей из ранее известных стратегий. Отмеченная выше тенденция
уменьшения выигрыша с увеличением дисперсии размера задания сохраняется.
Как показывают вычислительные эксперименты для новых диспетчеризаций
имеет место своеобразная нечувствительность (с качественной точки зрения)
к степени “случайности” входящего потока. В самом деле, обратимся к рисун­
кам 14—17, на которых приведены значения стационарного среднего времени
пребывания для новых диспетчеризаций AAJSQ, AAMyopic и AAHeuristic в зависимо­
сти от глубины предыстории 𝑘 и коэффициента вариации 𝐶𝐹 входящего потока.
Рассматриваемая система состоит из двух серверов производительности 𝑣(1) = 2

и 𝑣(2) = 1; входящий поток — гиперэкспоненциальный со средним 1, размеры
заданий имеют распределение Вейбулла со средним 1.
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Рисунок 14 — Зависимость от глубины предыстории стационарно­
го среднего время пребывания задания в системе из двух серверов.
Производительности серверов: 𝑣(1) = 2 и 𝑣(2) = 1. Входящий поток — ги­
перэкспоненциальный со средним 1 и коэффициентом вариации 𝐶𝐹 ≈ 1.225;
𝐹 (𝑥) = 1− 0.75𝑒−1.5𝑥 − 0.25𝑒−0.5𝑥, 𝑥 > 0. Размер заданий имеет распределение
Вейбулла с параметрами 𝑎 = 1.(41) и 𝑏 = 0.5, средним 1 и 𝐶𝐵 ≈ 2.45. Загрузка

системы ρ = 0.33. Число имитируемых траекторий 𝑟 = 10



194

Рисунок 15 — Зависимость от глубины предыстории стационарно­
го среднего время пребывания задания в системе из двух серверов.
Производительности серверов: 𝑣(1) = 2 и 𝑣(2) = 1. Входящий поток — ги­
перэкспоненциальный со средним 1 и коэффициентом вариации 𝐶𝐹 = 2;
𝐹 (𝑥) = 1− 0.9571𝑒−2𝑥 − 0.1429𝑒−0.25𝑥, 𝑥 > 0. Размер заданий имеет распреде­
ление Вейбулла с параметрами 𝑎 = 1.(41) и 𝑏 = 0.5, средним 1 и 𝐶𝐵 ≈ 2.45.

Загрузка системы ρ = 0.33. Число имитируемых траекторий 𝑟 = 10



195

Рисунок 16 — Зависимость от глубины предыстории стационарно­
го среднего время пребывания задания в системе из двух серверов.
Производительности серверов: 𝑣(1) = 2 и 𝑣(2) = 1. Входящий поток — ги­
перэкспоненциальный со средним 1 и коэффициентом вариации 𝐶𝐹 ≈ 3.924;
𝐹 (𝑥) = 1− 0.918𝑒−5𝑥 − 0.082𝑒−0.1𝑥, 𝑥 > 0. Размер заданий имеет распределение
Вейбулла с параметрами 𝑎 = 1.(41) и 𝑏 = 0.5, средним 1 и 𝐶𝐵 ≈ 2.45. Загрузка

системы ρ = 0.33. Число имитируемых траекторий 𝑟 = 10
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Рисунок 17 — Зависимость от глубины предыстории стационарно­
го среднего время пребывания задания в системе из двух серверов.
Производительности серверов: 𝑣(1) = 2 и 𝑣(2) = 1. Входящий поток — ги­
перэкспоненциальный со средним 1 и коэффициентом вариации 𝐶𝐹 ≈ 5.925;
𝐹 (𝑥) = 1− 0.95748𝑒−10𝑥 − 0.0452𝑒−0.05𝑥, 𝑥 > 0. Размер заданий имеет распре­
деление Вейбулла с параметрами 𝑎 = 1.(41) и 𝑏 = 0.5, средним 1 и 𝐶𝐵 ≈ 2.45.

Загрузка системы ρ = 0.33. Число имитируемых траекторий 𝑟 = 10
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Как видно из рискунков, после определенного значения 𝑘 (в примерах
— это 𝑘 > 25) значение целевого функционала (по крайней мере при луч­
шей из диспетчеризаций) практически перестает зависеть79 как от глубины
предыстории, так и от того, насколько случаен входящий поток. Этот вывод
подтверждают и другие вычислительные эксперименты. Однако, с количествен­
ной точки зрения влияние дисперсии входящего потока на значение целевого
функионала существенно: чем больше дисперсия, тем больше и среднее время
пребывания задания в системе. Кроме того, с ростом дисперсии изменяется и
эффективность диспетчеризаций. Так, наилучшая при малых значениях диспер­
сии диспетчеризация AAHeuristic уступает лидирующее место диспетчеризации
AAMyopic при больших значениях дисперсии.

Подводя итог параграфам 3.3 и 3.4, отметим следующее. Результаты
вычислительных экспериментов указывают на принципиальную возможность
улучшать значения целевых функционалов в частично наблюдаемых системах
с параллельным обслуживанием на основе предложенного аналитико–имита­
ционного подхода и диспетчеризаций, учитывающих предысторию решений и
моментов их принятия. Сам подход к порождению диспетчеризаций является
универсальным: взяв за основу любой из алгоритмов, применимых в полностью
наблюдаемых системах, можно заменить отсутствующие данные статистиче­
скими оценками, которые получаются на основе доступных наблюдений, и
получить выигрыш целевой функции по сравнению со всеми80 ранее извест­
ными стратегиями.

79По-видимому, слаба и зависимость от числа имитируемых траекторий. Впрочем здесь, разуме­
ется, сложно сделать окончательный вывод, имея в виду распределения времен обслуживания со
сверхвысоким коэффициентом вариации.

80См. сноску на стр. 142.
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Глава 4. Дальнейшие исследования алгоритмов управления в
отсутствие динамической информации

Рассмотрим частично наблюдаемую систему с параллельным обслужи­
ванием, состоящую из 𝑀 > 2 серверов, в которую поступает рекуррентный
поток заданий. Интервалы между поступлениями заданий образуют последо­
вательность независимых случайных величин с распределением 𝐹 (𝑥), средним∫︀∞
0 𝑥𝑑𝐹 (𝑥) = λ−1 и коэффициентом вариации 𝐶𝐹 < ∞. Задания имеют слу­

чайный объем (размер), который определяется одним и тем же распределе­
нием 𝐵(𝑥) = P{𝑆 < 𝑥}; его среднее значение и коэффициент вариации далее
обозначаются соответственно через E𝑆 и 𝐶𝐵. Каждое поступившее задание
должно быть немедленно направлено на один из серверов. Цель диспетчера,
осуществляющего этот выбор (в автоматическом или ручном режиме), — мини­
мизировать стационарное среднее время пребывания задания в системе.

Напомним, что ограничение частичной наблюдаемости связано с тем,
что при принятии решений диспетчеру недоступна информация о текущем
(прошлом или будущем) состоянии системы (например, длины очередей,
незаконченная работа в каждом сервере и т. п.). В то же время известны рас­
пределения 𝐹 (𝑥) и 𝐵(𝑥), производительности1 серверов 𝑣(1), . . . ,𝑣(𝑀) и полная
предыстория принятых решений (включая моменты времени, в которые эти
решения принимались). В каждом сервере имеется очередь неограниченной ем­
кости для хранения заданий и один процессор для обработки, причем выбор
на обслуживание происходит в соответствии с одной из консервативных дисци­
плин2 (например, FIFO, LIFO, RANDOM, SJF, PS, PLIFO, FB, PSJF или SPRT).
Серверы работают независимо, без обмена заданиями и являются абсолютно
надежными.

Как уже было отмечено во введении и в главе 3 недоступность инфор­
мации о текущем состоянии системы при выборе управления очень сужает
множество допустимых стратегий. Из всех ранее известных в научной лите­

1Причем не все 𝑣(𝑚) равны между собой.
2Выбор конкретной дисциплины обслуживания (и целевого функционала) накладывает огра­

ничения на моменты распределений 𝐹 (𝑥) и 𝐵(𝑥): не оговаривая это особо, соответствующие
ограничения предполагаются выполненными. Например, при пуассоновском потоке и дисци­
плине FIFO считается, что для размеров заданий допустимы только распределения с конечным
вторым моментом. См. также сноску на стр. 134.
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ратуре для рассматриваемых систем применимы лишь две — случайный выбор
(далее — RND) и детерминированный выбор (т. е. программная стратегия, далее
— PROG). Обе из них требуют предварительной оценки 𝑀 − 1 параметров3.

В предыдущей главе предложены принципиально новые конструктивные
подходы для порождения диспетчеризаций, которые (по крайней мере в случае
наиболее популярных критериев оптимальности) превосходят как RND, так и
PROG во всем диапазоне изменений значений исходных параметров системы.
Однако и они не свободны от недостатков, главным из которых, пожалуй, яв­
ляется вычислительная сложность.

В этой главе описывается новый простой и эффективный алгоритм, ко­
торый (хотя и уступает алгоритмам главы 3, но) успешно конкурирует как
со стратегий RND, так и с PROG даже при оптимальных значения парамет­
ров последних. Эти свойства, вкупе с тем обстоятельством, что он требует для
своей настройки оценки меньшего числа параметров4, дают основания назвать
его лучшим для частично наблюдаемых стохастических систем с параллель­
ным обслуживанием.

4.1 Алгоритмы управления на основе виртуальных
вспомогательных процессов при использовании в

однопроцессорных серверах консервативных дисциплин

Пусть 0 6 𝑡1 < 𝑡2 < . . . — последовательность моментов поступления за­
даний в систему. Решение (действие), принимаемое в момент 𝑡𝑛 относительно
вновь поступившего задания, обозначим через 𝑦𝑛. Полагаем, что 𝑦𝑛 = 𝑚, ес­
ли 𝑛-е по счету задание направлено на сервер 𝑚.

Предположим, что рассматриваемая система полностью наблюдаема. То­
гда общеупотребительная схема построения правила, по которому выбирается

3Напомим, что, строго говоря, так обстоит дело только с диспетчеризацией RND. В случае
стратегии PROG требуется решать более сложную задачу: находить оптимальную бесконечную
детерминированную последовательность (действий). Подходящие для этого методы пока не раз­
работаны (см. обсуждение, начиная со стр. 20). Но известны алгоритмы, реализующие основной
замысел детерминированных стратегий — сделать входящий поток на каждый сервер более регу­
лярным (см. [161]), чем тот, что порождается рандомизированным выбором; наиболее эффективные
из них зависят от 𝑀 − 1 параметров.

4В том варианте алгоритма, который обсуждается далее, — всего одного.
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сервер для вновь поступившего задания, заключается в следующем. Задана
некоторая функция, которая позволяет количественно оценить состояние каж­
дого сервера на основе текущей длины очереди и остаточного объема работы
для всех заданий в очереди. После того как такие оценки выполнены для всех
серверов, задание направляется на сервер с минимальной оценкой. В случае,
когда несколько серверов имеют одинаковую минимальную оценку, выбира­
ется сервер с наибольшей производительностью. Если по-прежнему имеется
неоднозначность, то она разрешается равновероятным выбором. Рассмотрим
следующие варианты выбора оценочной функции:

– текущее число заданий в сервере, т. е. алгоритм JSQ;
– суммарный остаточный размер всех заданий в очереди, включая обра­

батываемое задание, т. е. алгоритм LWL;
– суммарное остаточное время для окончания выполнения всех заданий

в очереди, включая обрабатываемое задание и вновь поступившее и
(условно) присоединенное к очереди, в предположении, что больше за­
дания в систему не поступают, т. е. алгоритм Myopic.

В случае алгоритма JSQ оценка состояния сервера строится по “наличному
составу” заданий; в двух других случаях учитывается и вновь поступившее
задание. Однако отметим, что ни в одной из этих стратегий не учитывается
важное обстоятельство: задания, которые поступят позже, могут изменить вре­
мя выполнения имеющихся заданий.

Теперь вернемся к исходной постановке, т. е. предположим, что диспет­
черу недоступна информация о текущем (прошлом или будущем) состоянии
системы. Пусть наряду с основным процессом поступления и обслуживания за­
даний в заданной системе обслуживания, имеется еще 𝑘 > 1 вспомогательных
процессов, моделирующих точно такую же систему, т. е. с такими же серверами
и пр. Функционирование вспомогательных процессов в точности копирует рабо­
ту основного процесса в части моментов поступления и распределения заданий,
но различается размерами заданий. Кроме этого, различие между основным
и вспомогательными процессами заключается в характере наблюдений. Если
для основного процесса, наблюдения по условию ограничены моментами поступ­
ления заданий и совершенными управлениями, то вспомогательные процессы
полностью наблюдаемы.

Более подробно и точно диспетчеризацию при неполном наблюдении
можно описать индуктивно. Начальные состояния всех процессов одинаковые
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(например, соответствуют пустой системе). Пусть все процессы (то есть основ­
ной и 𝑘 вспомогательных) проработали до некоторого момента 𝑡𝑛 поступления
очередного задания в основном процессе. Этот момент принудительно считается
моментом поступления задания и для каждого из вспомогательных процессов.
Однако размер нового задания определяется для каждого из вспомогатель­
ных процессов индивидуально и независимо с помощью заданной (и известной
по предположению) функции распределения размера заданий. Каждый из вспо­
могательных процессов, исходя из заданного в нем правила диспетчеризации,
определяет номер сервера, на который следовало бы отправить его собственное
новое задание. Номера серверов, выбранные для различных вспомогательных
процессов, вообще говоря, разные, однако среди них есть, по крайней мере,
один наиболее часто встречающийся номер. Сервер с этим номером и выбира­
ется для задания, поступившего в момент 𝑡𝑛 в основном процессе. Более того,
серверы с указанным номером являются фактическими приемниками новых
заданий во всех вспомогательных процессах, независимо от того, что было вы­
брано в результате работы индивидуального правила диспетчеризации. Далее
работа основного и вспомогательных процессов (то есть имитация выполнения
заданий) протекает независимо друг от друга вплоть до следующего момен­
та 𝑡𝑛+1 поступления задания в основном процессе. Подчеркнем, что поступление
заданий во вспомогательных процессах происходит только в моменты 𝑡𝑛, 𝑡𝑛+1,
. . . поступления заданий в основном процессе. Отметим также, что основной
процесс отображает “реальный” процесс (хотя и может быть заменен имита­
ционной моделью), в то время как вспомогательные процессы являются чисто
виртуальными компьютерными моделями.

Пусть теперь имеется всего один вспомогательный процесс т. е. 𝑘 = 1.
Выберем в качестве правила диспетчеризации для вспомогательного процесса
правило Myopic. Предположим, что все задания, поступающие на серверы вспо­
могательного процесса (идентичные с серверами основного процесса), имеют
одинаковый размер ζ > 0. Пусть 𝑡𝑛 и 𝑡𝑛+1 — два последовательных момен­
та поступления заданий в основном процессе. Обозначим через 𝑧

(𝑚)
𝑛 время,

необходимое для выполнения всех заданий, имеющихся в сервере 𝑚 вспомо­
гательного процесса в момент 𝑡𝑛, с учетом задания, распределенного в этот
момент каким-то образом на один из серверов того же вспомогательного про­
цесса. Через 𝑧

(𝑚)
𝑛+1 обозначим время, необходимое для выполнения всех заданий,

имеющихся в сервере 𝑚 вспомогательного процесса в момент 𝑡𝑛+1, без учета
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задания, поступившего в этот момент. Очевидно,

𝑧
(𝑚)
𝑛+1 = max

(︁
0, 𝑧(𝑚)

𝑛 − (𝑡𝑛+1 − 𝑡𝑛)
)︁
.

Положим
𝑦𝑛+1 = argmin16𝑚6𝑀

(︂
𝑧
(𝑚)
𝑛+1 +

ζ

𝑣(𝑚)

)︂
.

Неоднозначность при нахождении минимума разрешается прежним способом.
Число 𝑦𝑛+1 служит номером сервера, на который направляется задание, посту­
пившее в момент 𝑡𝑛+1. Причем, для основного процесса размер этого задания
определяется согласно заданному распределению, а для вспомогательного про­
цесса размер задания равняется ζ. Таким образом5,

𝑧
(𝑚)
𝑛+1 =

⎧⎨⎩𝑧
(𝑦𝑛+1)
𝑛+1 + ζ

𝑣(𝑦𝑛+1)
, если 𝑚 = 𝑦𝑛+1,

𝑧
(𝑚)
𝑛+1, иначе.

Формальное описание алгоритма выбора управления для задания, поступив­
шего в момент 𝑡𝑛+1, представлено ниже. Помимо исходных значений 𝑀 ,
𝑣(1), . . . ,𝑣(𝑀) входными данными являются: значения6 незаконченная работа
𝑧
(1)
𝑛 , . . . ,𝑧

(𝑀)
𝑛 в каждом из серверов вспомогательного процесса в момент 𝑡𝑛,

моменты поступлений 𝑡𝑛+1 и 𝑡𝑛 текущего и предыдущего заданий, и значение па­
раметра алгоритма ζ. Выходные данные — это номер сервера 𝑦𝑛+1, на который
следует отправить поступившее в момент 𝑡𝑛+1 задание, и значения 𝑧

(1)
𝑛+1, . . . ,𝑧

(𝑀)
𝑛+1.

Алгоритм IV. Псевдокод алгоритма выбора управления для задания, поступившего

в момент 𝑡𝑛+1, 𝑛 > 0

1: for 𝑚 = 1 → 𝑀 do
2: 𝑧

(𝑚)
𝑛+1 = max

(︁
0,𝑧

(𝑚)
𝑛 − (𝑡𝑛+1 − 𝑡𝑛)

)︁
3: 𝑦𝑛+1 = argmin16𝑚6𝑀

(︁
𝑧
(𝑚)
𝑛+1 +

ζ
𝑣(𝑚)

)︁
4: 𝑧

(𝑦𝑛+1)
𝑛+1 = 𝑧

(𝑦𝑛+1)
𝑛+1 + ζ

𝑣(𝑦𝑛+1)

5: return 𝑦𝑛+1,𝑧
(1)
𝑛+1, . . . ,𝑧

(𝑀)
𝑛+1

5На первый взгляд может показаться, что оптимальное ζ является также и оптимальным (по­
рогом) для системы из параллельных СМО · |𝐷 | 1 |∞|FIFO (см., например, [272]). Но это не так.
Значение ζ во вспомогательном процессе зависит от многих факторов: распределения 𝐵(𝑥), дисци­
плины обслуживания, типа входящего потока и пр.

6Значение 𝑧
(𝑚)
0 есть незаконченная работа в сервере 𝑛 вспомогательного процесса в момент 𝑡0

начала функционирования системы.
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Ниже представлен набор численых примеров, цель которого — показать, что
предложенный Алгоритм IV (далее — AA) успешно конкурирует с диспетчери­
зациями RND и PROG, а в сбалансированных7 системах часто и превосходит их
по критерию стационарного среднего времени пребывания задания в системе.

4.2 Примеры и дополнения

Предположим, что выбор на обслуживание в каждом сервере проис­
ходит в соответствии с дисциплиной FIFO. Рассмотрим сначала полностью
марковский случай т. е. предположим, что входящий поток — пуассоновский
с интенсивностью λ, а распределение размера заданий — экспоненциальное со
средним 1. Пусть система состоит из двух серверов суммарной производитель­
ности 1, причем 𝑣(1) = 2/3 и 𝑣(2) = 1/3. Таким образом, загрузка системы ρ

совпадает с λ. Из всех примеров, которые будут рассмотрены далее, этот пример
является наиболее показательным: в нем известна оптимальная стратегия рас­
пределения заданий8 — это программная стратегия (последовательность Битти;
см. стр. стр. 22).

В таблице 22 даны значения стационарного среднего (и стандартного от­
клонения) времени пребывания задания в системе при различных значениях
загрузки ρ и трех стратегиях: RND, PROG и AA. Значения их параметров (см.
таблица 23) при каждом значении загрузки были выбраны оптимальным обра­
зом: для RND — как решение задачи минимизации (5), для PROG и AA — как
результат оптимизации на имитируемых траекториях.
По таблице 22 видно, что, по сравнению с рандомизированной стратегией, но­
вый алгоритм позволяет уменьшить значение стационарного среднего времени
пребывания в системе при любом значении загрузки ρ. Как и с описанными
в предыдущей главе разновидностями стратегии AA, имеет место тенденция:

7Под этим подразумевается, что производительности серверов не слишком сильно отличаются
друг от друга, т. е. среди серверов нет настолько быстрых, что выгодно отправлять все задания
именно на них. Такое положение дел не является удивительным: влияние соотношения между чис­
лом серверов и их производительностью (а также и правилом обработки очереди) на эффективность
диспетчеризации отмечалась в литературе и ранее (см., например, [527]).

8В классе стратегий, не использующих для принятия решений информацию о текущем (про­
шлом или будущем) состоянии системы, и моментах времени, в которые решения принимались.
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Таблица 22 — Значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе из двух серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительности
серверов: 𝑣(1) = 2/3, 𝑣(2) = 1/3. Входящий поток — пуассоновский с интенсивно­
стью λ, размер заданий имеет экспоненциальное распределение со средним 1.
Значения параметров стратегий приведены в таблице 23

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 1.76 (1.76) 2.58 (2.63) 3.77 (3.87) 6.39 (6.56) 19.4 (20)
PROG-opt 1.76 (1.76) 2.41 (2.45) 3.22 (3.87) 5.17 (5.29) 15.0 (15.17)

AA 1.74 (1.76) 2.31 (2.35) 3.19 (3.87) 5.18 (5.29) 15.1 (15.81)

Таблица 23 — Оптимальные значения параметров стратегий из таблицы 22
ρ 0.1 0.3 0.5 0.7 0.9

RND-opt 1 0.855 0.784 0.701 0.676
PROG-opt 1 0.7684 0.7076 0.6825 0.6734

AA 1.7 1.75 1.5 1.251 1.1

чем выше загрузка, тем больше выигрыш (в этом примере он достигает 20%).
Вычислительные эскперименты показывают, что этот вывод остается справед­
ливым и в самых общих предположениях об исходных параметрах системы.
По-другому обстоит дело при сравнении нового алгоритма с оптимальной9 дис­
петчеризацией PROG. Здесь новый алгоритм приводит к меньшим (в этом
примере до 5%) значениям целевой функции при загрузке ниже средней, но
с ростом загрузки начинает ей уступать. Оказывается, что какая система бы
ни рассматривалась, такова типичная картина: при сравнении нового алгорит­
ма с наилучшим из известных10, выигрыш уменьшается с увеличением загрузки
системы и, в итоге, становится отрицательным11. Это обстоятельство является
ожидаемым следствием преимуществ нового алгоритма (его универсальности и
простоты12), которые в полной мере раскрываются в следующих примерах.

9В указанном в сноске на предыдущей странице смысле.
10Но лишь при близко к оптимальному выбору значений его параметров!
11Этого, однако, не происходит при использовании алгоритмов из предыдущей главы: там выиг­

рыш стремится к нулю, оставаясь все время положительным.
12И поэтому алгоритмы главы 3, которые реализуют идею диспетчеризации по предыстории

действий и моментам поступления полноценным образом, доставляют наилучшие значения целевой
функции во всем диапазоне загрузки.
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Предположим теперь, что полностью марковская система состоит из
𝑀 > 2 серверов различной производительности, суммарно равной единице. Для
определенности положим 𝑣(𝑚) = 2𝑚/(𝑀(𝑀 + 1)), 1 6 𝑚 6 𝑀 . Таким образом,
загрузка системы ρ, как и в предыдущем примере, совпадает с λ. При 𝑀 > 2

оптимальная стратегия распределения заданий уже неизвестна. Поэтому в ка­
честве программной стратегии будем использовать (8). Заметим, что стратегии
RND и PROG зависят от 𝑀 − 1 параметров, а новая стратегия AA — от одного.
В таблице 24 и 25 приведены значения стационарного среднего (и стандартно­
го отклонения) времени пребывания задания в системе c 𝑀 = 64 и 𝑀 = 128

серверами при различных значениях загрузки. Значения параметров страте­
гий (см. таблица 26) были выбраны следующим образом. Для нахождения
оптимальных значений параметров (𝑝1, . . . ,𝑝𝑀) стратегии RND при каждом
значении ρ решалась задача минимизации (5). Для стратегии PROG было рас­
смотрено два случая: когда ее параметры (𝑑1, . . . ,𝑑𝑀) равны (𝑝1, . . . ,𝑝𝑀) (далее
PROG-RND-opt) и когда 𝑑𝑚 = 𝑣(𝑚) (далее PROG-LB13). Значения параметра
стратегии AA находились на имитируемых траекториях.

Таблица 24 — Значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе из 64 серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительность
сервера 𝑚 равна 𝑣(𝑚) = 𝑚/(32× 65). Входящий поток — пуассоновский с ин­
тенсивностью λ, размер заданий имеет экспоненциальное распределение со
средним 1. Значения параметра стратегии AA приведены во второй строке таб­
лице 26

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 46.2 (46) 68.3 (69) 103 (105) 182 (192) 565 (616)

PROG-RND-opt 38.5 (39) 48.6 (51) 65.7 (71) 105 (114) 300 (332)
PROG-LB 64 (127) 67.1 (130) 81.2 (158) 122 (247) 334 (608)

AA 37.2 (37) 48.2 (49) 67.2 (73) 111 (127) 330 (520)

Сопоставляя данные данные в таблицах 24 и 25, видим, что с увеличением
числа серверов соотношения между стратегиями, установленные на примере
двухсерверной системы, сохраняются. Новый алгоритм всегда лучше рандо­
мизированной стратегии (в представленных примерах выигрыш достигает без

13LB от англ. load balancing, т. е. нагрузка балансируется диспетчером между серверами пропор­
ционально их производительности.
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Таблица 25 — Значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе из 128 серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительность
сервера 𝑚 равна 𝑣(𝑚) = 𝑚/(64× 129). Входящий поток — пуассоновский с ин­
тенсивностью λ, размер заданий имеет экспоненциальное распределение со
средним 1. Значения параметра стратегии AA приведены в третьей строке таб­
лицы 26

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 92.0 (92) 136.2 (137) 206 (212) 362 (387) 1126 (1225)

PROG-RND-opt 76.5 (78) 96.2 (100) 130 (138) 207 (226) 592 (656)
PROG-LB 128 (272) 134 (274) 162 (332) 242 (489) 665 (1304)

AA 73.7 (23) 95.6 (98) 133 (141) 219 (261) 652 (911)

Таблица 26 — Значения параметра стратегии AA из таблицы 24 и 25
ρ 0.1 0.3 0.5 0.7 0.9

𝑁 = 64 3.15 2.24 1.77 1.36 1.11
𝑁 = 128 3.4 2.3 1.72 1.38 1.05

малого 100%). В сравнении с программной стратегией он обнаруживает мень­
шие значения стационарного среднего (и стандартного отклонения) времени
пребывания при загрузке ниже средней.

С точки зрения практики к обрисованной выше картине необходим сле­
дующий важный штрих. Премущество лучшей из ранее известных стратегий
(PROG) над новым алгоритмом проявляется обычно только в области высокой
загрузки и только когда значения ее параметров выбраны наилучшим образом.
В отсутсвие возможности осуществить такой выбор, ее преимущество сходит
на нет. Обратимся, например, к стратегии PROG-LB т. е. стратегии PROG, в
которой доля заданий 𝑑𝑚, направляемых на сервер 𝑚, пропорциональна про­
изводительности сервера. Как видно из таблиц 24 и 25, при таком, заведомо
неоптимальном, но порой единственно возможном, выборе значений параметров
стратегии PROG, новый алгоритм оказываются наилучшим во всем диапазоне
загрузки.
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Перейдем к немарковскому случаю и ограничимся14 системой с двумя
серверами производительности 𝑣(1) = 4/5 и 𝑣(2) = 1/5, в которую поступают
задания, средний размер которых равен единице. Тогда загрузка системы ρ

совпадает с λ. В таблицах 27 и 29, приводятся значения стационарного сред­
него (и стандартного отклонения) времени пребывания, позволяющие оценить
влияние характеристик входящего потока и распределения размера заданий
на эффективность нового алгоритма. В качестве распределения 𝐵(𝑥) размера
заданий выбраны

– вырожденное распределение, т. е. размер всех заданий равен единице,
– бимодальное распределение, сосредоточенное в точках 0.5 и 5 с вероят­

ностями 8/9 и 1/9 соответственно.
В качестве распределения 𝐹 (𝑥) входящего потока взяты

– равномерное распределение на интервале [1,2λ−1−1], т. е. среднее время
между поступлениями заданий равно λ−1,

– экспоненциальное распределение с параметром λ,
– гиперэкспоненциальное распределение с параметрами (𝑎1; λ1,λ2), т. е.

среднее время между поступлениями заданий равно 𝑎1λ−1
1 +(1−𝑎1)λ

−1
2 =

λ−1,
– эрланговское распределение с параметрами (𝑘; Λ), т. е. среднее время

между поступлениями заданий равно 𝑘Λ−1 = λ−1.
Каждая из трех доступных диспетчеру стратегий зависит от одного параметра.
Однако в сделанных предположениях уже даже для стратегии RND нет воз­
можности точно вычислить его оптимальное значение. Указанные в таблицах
значения — наилучшие из тех, что удалось найти на имитируемых траекториях.
Как видно из таблицы 27 и 29, для немарковских систем с дисциплиной FIFO

в однопроцессорных серверах установленные ранее соотношения между стра­
тегиями не меняется. При условии, что есть возможность находить близкие к
оптимальным значения параметров 𝑝1, . . . ,𝑝𝑀 , новый алгоритм обнаруживает
меньшие значения стационарного среднего (и стандартного отклонения) време­
ни пребывания при загрузках ниже средней; в противном случае, он является
наилучшим во всем диапазоне загрузки.

14Поскольку основной вывод, сделанный выше на примере марковской модели, остается справед­
ливым и здесь.
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Таблица 27 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в двухсерверной системе при различных входя­
щих потоках и распределениях размера заданий. Производительности серверов:
𝑣(1) = 4/5, 𝑣(2) = 1/5. Загрузка системы ρ = λ = 0.3. Значения параметров стра­
тегий приведены в таблице 28

Распред. размера заданий
Вырожд. (𝐶𝐵 = 0) Бимод. (𝐶𝐵 = 2)
RND 1.295 (0.39) RND 0.675 (0.89)

Равном. (𝐶𝐹 ≈0.4) PROG 1.295 (0.39) PROG 0.673 (0.87)
AA 1.257 (0.04) AA 0.625 (≈ 0)
RND 1.63 (0.67) RND 2.38 (3)

Распределение Эксп. (𝐶𝐹 =1) PROG 1.63 (0.67) PROG 2.38 (3)
входящего AA 1.62 (0.65) AA 2.33 (3)

потока Гиперэксп. RND 1.92 (1) RND 3.04 (4.2)
(1/6; 0.1,0.5) PROG 1.92 (1) PROG 2.9 (3.9)
(𝐶𝐹 ≈ 1.61) AA 1.87 (0.9) AA 2.83 (3.7)
Эрлангл. RND 1.25 (≈ 0) RND 1.72 (2.1)
(50; 15) PROG 1.25 (≈ 0) PROG 1.72 (2.1)

(𝐶𝐹 ≈0.14 ) AA 1.25 (≈ 0) AA 1.72 (2.1)

Таблица 28 — Значения параметров стратегий из таблицы 27
Распределение размера заданий
Вырожд. Бимод.

Равном. 𝑝1=𝑑1=0.9899, ζ=1 𝑝1=𝑑1=0.9889, ζ=1
Распределение Эксп. 𝑝1=𝑑1=1, ζ=1.2 𝑝1=𝑑1=1, ζ=1.72
вход. потока Гиперэксп. 𝑝1=𝑑1=1, ζ=1.24 𝑝1=𝑑1=0.87, ζ=1.72

Эрлангл. 𝑝1=𝑑1=ζ = 1 𝑝1=𝑑1=ζ=1
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Таблица 29 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в двухсерверной системе при различных входя­
щих потоках и распределениях размера заданий. Производительности серверов:
𝑣(1) = 4/5, 𝑣(2) = 1/5. Загрузка системы ρ = λ = 0.5. Значения параметров стра­
тегий приведены в таблице 30

Распределение размера заданий
Вырожд. (𝐶𝐵 = 0) Бимод. (𝐶𝐵 = 2)
RND 1.307 (0.38) RND 0.676 (0.91)

Равном. (𝐶𝐹 ≈0.29) PROG 1.307 (0.38) PROG 0.673 (0.88)
AA 1.269 (0.06) AA 0.625 (≈ 0)
RND 2.30 (1.4) RND 4.1 (5.6)

Распределение Эксп. (𝐶𝐹 =1) PROG 2.29 (1.4) PROG 3.79 (4.8)
входящего AA 2.11 (1.14) AA 3.77 (4.8)

потока Гиперэксп. RND 7.97 (8.2) RND 12.7 (15)
(0.9804; 0.9804,0.0196) PROG 6.07 (4.7) PROG 11.6 (13.1)

(𝐶𝐹 ≈ 2) AA 6.06 (4.7) AA 11.6 (13.8)
Эрлангл. RND 1.25 (≈ 0) RND 3.05 (4.1)
(50; 25) PROG 1.25 (≈ 0) PROG 2.89 (3.7)

(𝐶𝐹 = 0.14) AA 1.25 (≈ 0) AA 2.9 (3.7)

Таблица 30 — Значения параметров стратегий из таблицы 29
Распределение размера заданий

Вырожд. Бимод.
Равном. 𝑝1=𝑑1=0.9899, ζ=1 𝑝1=𝑑1=0.9889, ζ=1

Распределение Эксп. 𝑝1=𝑑1=0.972, ζ=1.3 𝑝1=𝑑1=0.88, ζ=1.48
вход. потока Гиперэксп. 𝑝1=𝑑1=0.8, ζ=2.5 𝑝1=𝑑1=0.815, ζ=1.2

Эрлангл. 𝑝1=𝑑1=ζ=1 𝑝1=𝑑1=0.92, ζ = 1.7375
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Аналогичным образом обстоит дело, если сменить дисциплину обслужи­
вания во всех серверах с FIFO на любую из указанных в начале параграфа15.
Для примера возьмем дисциплину SRPT, которая в однолинейных СМО, как
известно, минимизирует стационарное средне время пребывания задания в си­
стеме (см., например, [528]). Ограничимся системой из двух серверов суммарной
производительности 1, в которую поступает пуассоновский поток заданий, сред­
нй размер которых равен единице. Положим, как и в первом примере, 𝑣(1) = 2/3

и 𝑣(2) = 1/3. Тогда загрузка системы ρ совпадает с λ. В указанных услови­
ях каждая из доступных диспетчеру стратегий (RND, PROG и AA), зависит
от одного параметра. Таблица 31 содержит значения стационарного среднего
(и стандартного отклонения) времени пребывания в системе при различных
значениях загрузки, когда размер заданий имеет равномерное распределение
на [0.5,1.5]. Значения тех же характеристики в случае экспоненциального рас­
пределенного размера заданий даны в таблице 33. При пуассоновском потоке
оптимальные значения параметров (𝑝1, . . . ,𝑝𝑀) стратегии RND можно находить
численно (см. таблицы 32 и 34), путем минимизации среднего времени пребы­
вания задания в системе (см. [529; 530]) —

𝑀∑︁
𝑚=1

𝑝𝑚

∫︁ ∞

0

∫︀ 𝑥

0 𝑢
(︀
1−𝐵

(︀
𝑢𝑣(𝑚)

)︀)︀
𝑑𝑢

𝑥2
(︀
1− λ𝑝𝑚

∫︀ 𝑥

0 𝑢𝑑𝐵
(︀
𝑢𝑣(𝑚)

)︀)︀𝑑𝑥,
при ограничениях 0 6 𝑝𝑚λE(𝑆/𝑣

(𝑚)) < 1 для каждого 𝑚. Для получе­
ния хороших оценок параметров стратегий PROG и AA, а также RND при
непуассоновском входящем потоке, приходится привлекать имитационное мо­
делирование.
Как видно из таблицы 31 и 33, варьируя значения единственного параметра
новый алгоритм можно успешно адаптировать к принципиально16 новым усло­
виям: он всегда “выигрывет” у рандомизированной стратегии и может уступать
наилучшей из ранее известных при оптимальном выборе значений параметров
последней.

15Судя по вычислительным экспериментам, — на любую консервативную дисциплину.
16Если при дисциплине FIFO еще можно усмотреть связь между структурой алгоритма и дина­

микой времен пребывания заданий в серверах, то при любой другой дисципилне она теряется.
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Таблица 31 — Значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе из двух серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительности
серверов: 𝑣(1) = 2/3, 𝑣(2) = 1/3. Входящий поток — пуассоновский с интен­
сивностью λ, размер заданий имеет равномерное распределение на [0.5,1.5].
Оптимальные значения параметров стратегий приведены в таблице 32

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 1.63 (0.65) 2.07 (1.45) 2.73 (2.46) 3.89 (5.29) 8.94 (29)
PROG-opt 1.63 (0.65) 2.07 (1.46) 2.46 (1.8) 3.08 (3.29) 5.95 (17)

AA 1.623 (0.61) 1.92 (0.93) 2.3 (1.4) 2.98 (2.85) 5.84 (15)

Таблица 32 — Оптимальные значения параметров стратегий из таблицы 31
ρ 0.1 0.3 0.5 0.7 0.9

RND-opt 1 0.9901 0.7838 0.7088 0.6761
PROG-opt 1 0.9901 0.7838 0.7088 0.6667

AA 1.15 1.15 1.24 1.18 1.12

Таблица 33 — Значения стационарного среднего (и стандартного отклоне­
ния) времени пребывания задания в системе из двух серверов при различных
стратегиях диспетчеризации и различной загрузке ρ = λ. Производительности
серверов: 𝑣(1) = 2/3, 𝑣(2) = 1/3. Входящий поток — пуассоновский с интенсив­
ностью λ, размер заданий имеет экспоненциальное распределение со средним 1.
Оптимальные значения параметров стратегий приведены в таблице 34

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 1.627 (1.77) 2.03 (2.83) 2.64 (4.16) 3.6 (7.5) 6.92 (32)
PROG-opt 1.627 (1.77) 2.03 (2.83) 2.49 (3.74) 3.19 (6.24) 5.75 (24)

AA 1.627 (1.77) 1.97 (2.45) 2.41 (3.5) 3.17 (6.12) 5.77 (24)

Таблица 34 — Оптимальные значения параметров стратегий из таблицы 33
ρ 0.1 0.3 0.5 0.7 0.9

RND-opt 1 1 0.802 0.717 0.678
PROG-opt 1 1 0.802 0.717 0.673

AA 0.705 1.24 1.24 1.2 1.09
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Дополнения

Модификации и обобщения. Предложенный алгоритм допускает различ­
ные модификации. Например, если рассматривать 𝑧

(𝑚)
𝑛+1 как незаконченную

работу в сервере 𝑚 во вспомогательном процессе в момент 𝑡𝑛+1, и вспомнить,
что все задания имеют одинаковый размер ζ, то ничто не мешает заменить 𝑧

(𝑚)
𝑛+1

на число заданий в сервере 𝑚 в момент 𝑡𝑛+1. Такой вариант алгоритма пред­
ставляется более предпочтительным, чем исходный, например, в тех случаях,
когда в серверах реализована дисциплина справедливого разделения процес­
сора: здесь для поступающего задания важнее число заданий, с которым он
“делит” процессорное время (хотя бы в момент своего поступления!), чем сум­
марная незаконченная работа в системе.

Поскольку новый алгоритм является параметрическим, его можно без
изменений применять при более общих предположениях о входящем потоке17

и структуре18 системы, чем те, что сделаны в начале главы. Так, например,
ординарный входящий поток можно заменить на групповой без внутренней
структуры. Как показано на численных примерах в [300], вне зависимости
от способа диспетчеризации19, такое обощение не меняет установленные выше
соотношения между стратегиями. При этом в качестве целевого функционала
можно взять стационарное среднее время пребывания в системе как отдельно­
го задания, так и группы целиком.

Новый алгоритм остается результативным, если серверы являются мно­
гопроцессорными. В отличие от ранее известных стратегий, в новой такое
изменение структуры системы можно учесть. Для этого, при расчете 𝑧(𝑚)

𝑛 , необ­
17Можно отказаться от предположения о рекуррентности входящего потока и рассматривать

коррелированные потоки [133]. Однако вместе с этим, для получения содержательных выводов,
требуется и новые приемы анализа. В частности это связано с тем, что, как известно, наличие
корреляции во входном потоке существенно ухудшает характеристики СМО (например, в табли­
це 22 при ρ = 0.5 и входном MAP–потоке, задаваемом матрицами 𝐷0 =

(︀−1.6991125 0
0.0005075 −0.05512

)︀
и

𝐷1 =
(︀

1.681415 0.0176975
0.0060675 0.048545

)︀
, стандартное отклонение времени пребывания задания в системе увели­

чивается более, чем в 10 раз).
18Открытым остается вопрос об эффективности новой методики в случае, когда (все или неко­

торые) очереди в серверах имеют конечную емкость.
19Т. е. либо группой целиком, либо каждое задание по отдельности.
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ходимо заменить20 рекурсию Линдли рекурсией Кифера–Вольфовица. За счет
варьирования значений параметров, как ранее известные, так и новую стра­
тегии можно приспособить к случаю, когда серверы не являются абсолютно
надежными. Например, если каждый сервер в случайные моменты време­
ни независимо от остальных отключается и остается недоступным случайное
время, причем распределения 𝑈(𝑥) и 𝐷(𝑥) периодов доступности и недо­
ступности одинаковы для всех серверов, то соотношения между стратегиями
остается прежним (см. таблице 7 в [300], когда серверы работоспособны 90% вре­
мени). И опять же, в новом алгоритме, в отличие от ранее известных, можно
реализовать эту особенность системы: последовательно и независимо порож­
дая значения случайных величин с распределениями 𝑈(𝑥) и 𝐷(𝑥), находятся
периоды доступности и недоступности каждого вспомогательного процесса,
а пересчет значений 𝑧

(𝑚)
𝑛 приостанавливается в течение периода недоступно­

сти процесса 𝑚. Из сказанного следует, что, при наличии точной информации
о доступности серверов, ее можно учесть в новом алгоритме. Однако для ран­
домизированной и программной статегий информация такого рода оказывается
бесполезной. Как следствие, судя по вычислительным экспериментам, в таких
условиях (по-прежнему частичной наблюдаемости!) наилучая из ранее извест­
ных стратегий даже при оптимальных значениях парамеров уступает новому
алгоритму во всем диапазоне загрузки. Наконец заметим, что предложенный
подход к диспетчеризации через вспомогательные процессы позволяет ослабить
предположение о том, что распределения 𝑈(𝑥) и 𝐷(𝑥) (и, вообще говоря, 𝐵(𝑥))
известны точно. Предполагая, что определяющие параметры этих распределе­
ний являются случайными величинами (с известными распределениями), для
получения нового алгоритма достаточно добавить порождение их значений в
описанную выше схему работы вспомогательных процессов.

Наконец, примечательным является поведение нового алгоритма при
ослаблении ограничений на доступность наблюдений за системой: его эф­
фективность возрастает на десятки процентов. Вместе с тем эффективность
ранее известных стратегий для частично наблюдаемых систем не меняется,
т. к. использовать в них новую информацию невозможно. Вернемся к рас­
смотренной выше марковской системе из 𝑀 = 128 однопроцессорных серверов

20При этом вычислительная сложность возрастает, что связано, главным образом, с необходимо­
стью упорядочения в момент каждого поступления 𝑀 наборов чисел. Размер набора 𝑚, 1 6 𝑚 6 𝑀 ,
равен числу процессоров в сервере 𝑚.
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производительностей 𝑣(𝑚) = 2𝑚/(𝑀(𝑀 + 1)), 1 6 𝑚 6 𝑀 . Сменим дисциплину
обслуживания с FIFO на PS и предположим, что диспетчеру в моменты при­
нятия решений доступна информация о текущих числах заданий в серверах.
В этих новых условиях у него на выбор есть (по крайней мере21) четыре страте­
гии: RND, PROG, AA22 и JSQ23. В таблице 35 приведены значения стационарного
среднего (и стандартного отклонения) времени пребывания задания в системе
при различных значениях загрузки. Значения параметров стратегий (см. таб­
лица 36) были выбраны тем же способом, что и в случае, описанном таблице 25.

Таблица 35 — Значения стационарного среднего (и стандартного отклонения)
времени пребывания задания в системе из 128 серверов с дисциплиной PS

при различных стратегиях диспетчеризации и различной загрузке ρ = λ. Про­
изводительность сервера 𝑚 равна 𝑣(𝑚) = 𝑚/(64× 129). Входящий поток —
пуассоновский с интенсивностью λ, размер заданий имеет экспоненциальное
распределение со средним 1. Значения параметра стратегии AA приведены в таб­
лице 36

ρ 0.1 0.3 0.5 0.7 0.9
RND-opt 92.0 (100) 136.2 (164) 206 (274) 362 (548) 1130 (1949)

PROG-RND-opt 76.4 (79) 96.3 (110) 130 (170) 207 (305) 595 (1000)
AA 66.7 (67.1) 71.2 (71.4) 77.4 (78.8) 90.4 (94.3) 164 (170)
JSQ 66.7 (67.1) 71.2 (71.4) 77.2 (78.8) 86.8 (91.7) 117 (238)

Таблица 36 — Значения параметра стратегии AA из таблицы 35
ρ 0.1 0.3 0.5 0.7 0.9
AA 0.25 0.2 0.15 0.1 0.05

Как видно по таблице 35, с помощью некоторой информации о текущем
состоянии системы (в моменты поступлений) и нового алгоритма (но не ранее
известных) фактически удается приблизиться к результатам стратегий для на­
блюдаемых систем.

Оценка параметров. Новый алгоритм зависит от одного единственно­
го параметра (ζ). Вычислительные экспериметы показывают, что в каждой
конкретной системе существует лишь единственное оптимальное значение ζ,

21Т. к. известны и экзотические стратегии, как, например, HJSQ(d); см. [174].
22В начале параграфа указано, каким образом следует модифицировать Алгоритм IV.
23Напомним, что так в диссертации кодируется диспетчеризация по наикратчайшей очереди.
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т. е. такое значение при котором достигается глобальный минимум стационар­
ного среднего времени пребывания задания в системе. Однако формулу для
вычисления ζ получить не удается. Поэтому оптимизационную задачу прихо­
дится каждый раз решать, во-первых, приближенно (т.к. множество значений
ζ несчетно), и, во-вторых, с помощью имитационного моделирования, слож­
ность которого зависит от сложности расчета времени пребывания в системе
поступающего задания. Когда в серверах используется дисциплина FIFO, ситу­
ация облегчается тем обстоятельством, что рекурсия Линдли позволяет при
моделировании легко рассчитывать время пребывания в системе 𝑛-го зада­
ния, распределенного на сервер 𝑚, при любой из рассматриваемых стратегий.
Если обозначить время пребывания в системе 𝑛-го задания при стратегии
RND (или PROG) и новой стратегии соответственно 𝑉𝑛 и 𝑉𝑛, то для выбора
“направления движения” при поиске наилучшего значения ζ может служить
знак суммы 𝑁−1

∑︀𝑁
𝑛=1

(︁
𝑉𝑛 − 𝑉𝑛

)︁
при достаточно большом 𝑁 . Также можно

поступить, если в системе имеются многопроцессорные сервера: для них ре­
курсия Линдли заменяется рекурсией Кифера–Вольфовица. Однако никаких
выражений уже нельзя предложить в случае использования в серверах таких
дисциплин обслуживания, как RANDOM, SJF, PS, PLIFO, FB, PSJF или SPRT.
Здесь использование имитационного моделирования для нахождения ζ выгля­
дит неизбежным.

В случае произвольного входящего потока расчет оптимальных значений
целевой функции как при рандомизированной, так и при программной страте­
гии даже для однопроцессорных серверов связан с серьезными трудностями.
Как уже отмечалось во Введении, для RND задача нахождения оптимального
набора (𝑝1, . . . ,𝑝𝑀) из 𝑀 чисел — вероятностей 𝑝𝑚 выбора для очередного зада­
ния сервера 𝑚, в редких случаях может быть решена в явном виде. В общем же
случае приходится либо использовать какой-то из инженерных подходов (на­
пример, балансировать нагрузку24), либо аппроксимировать входящий поток
с помощью рекуррентного и использовать при решении оптимизационной зада­
чи приближенные формулы25 для стационарного среднего времени пребывания
(например, известную формулу Крамера–Лангенбах-Бельца (см. [537] или [416,

24Т. е. положить 𝑝𝑚 = 𝑣(𝑚)/
∑︀𝑀

𝑚=1 𝑣
(𝑚).

25По проведенным (немногочисленным) вычислительным экспериментам с некоторыми извест­
ными в литературе результатами [531–533], для многопроцессорных серверов наблюдается низкое
качество решений. Однако было бы преждевременным заявить о полной непригодности такого под­
хода: по вопросам аппроксимаций для систем и сетей массового обслуживания имеется обширная
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С. 118])), либо осуществлять оптимизацию на имитируемых траекториях. Для
рассматриваемых в диссертации задач последний подход позволяет рассчиты­
вать на приемлемое качество решений.

В случае программной стратегии вообще не известен метод нахожде­
ния оптимальной последовательности действий. Наилучшие из встречающихся
в научной литературе алгоритмов порождения ее элементов зависят от 𝑀 − 1

параметров — вероятностей (𝑑1, . . . ,𝑑𝑀). Обычным и достаточно хорошим обра­
зом действия является замена набора (𝑑1, . . . ,𝑑𝑀) оптимальным для стратегии
RND набором (𝑝1, . . . ,𝑝𝑀). При этом, конечно, оптимальность программной
стратегии не гарантируется.

Теоретическое обоснование. Остается практически непонятной теорети­
ческая основа продуктивности столь простого в реализации, но интуитивно
совершенно не очевидного алгоритма. Некоторые эффекты удалось обнару­
жить в процессе моделирования. Например, анализ численных экспериментов
показал, что, по-видимому, преимущество нового алгоритма получается за счет
более активного использования медленных серверов. Так, для случая двух сер­
веров (см. таблица 22) и загрузки 0.1 новый алгоритм предписывает посылать
на медленный сервер почти 10% заданий, тогда как (оптимальная!) программ­
ная стратегия вообще не использует медленный сервер. Другой, более тонкий
эффект связан с принципиальной возможностью получения выигрыша за счет
применения нового алгоритма. Например, при низкой загрузке в случае двух
серверов с дисциплиной FIFO и пуассоновского входящего потока, выигрыш
возможен тогда и только тогда, когда производительность быстрого сервера не
превосходит 2(𝑣(1) + 𝑣(2))/3. Для общего случая подобного соотношения полу­
чить не удалось. В итоге, на основании вычислительных экспериментов можно
сделать лишь довольно расплывчатый и требующий дальнейших уточнений вы­
вод о том, что получение выигрыша возможно лишь когда производительности
серверов несильно отличаются друг от друга.

Покажем, что малая загрузка системы является одним из благоприятных
условий для получения теоретических обоснований нового алгоритма. Пусть в
систему из двух серверов с дисциплиной FIFO поступает ординарный пуассо­
новский поток заданий интенсивности λ, причем второй момент E𝑆2 размера
заданий конечен. Предположим, что λ→ 0 т. е. обычно поступающему заданию
литература (например, [116;517;534;535] и [536, Section 6.3]) и внесение ясности в этот вопрос пред­
ставляется предметом отдельных исследований.



217

не приходится ожидать в очереди. Покажем, что при выполнении этих условий
существует такое ζ > 0, что стационарное среднее E𝑉 время пребывания зада­
ния в системе при новом алгоритме меньше, чем при стратегиях RND и PROG

с оптимально выбранными значениями параметров.
Занумеруем серверы в порядке убывания производительности. При ран­

домизированной стратегии пуассоновский входящий поток просеивается неза­
висимо в соответствии с набором верояностей (𝑝1,𝑝2 = 1−𝑝1) и, таким образом,
на 𝑚-й сервер поступает пуассоновский поток интенсивности λ𝑝𝑚. Известно26,
что существует λ* > 0 такое, что при λ < λ*, решение задачи минимиза­
ции (5) есть набор (1,0), предписывающий отправлять каждое задание на сервер
с максимальной производительностью. Кроме того, при λ < λ* стратегия PROG

тождествена RND27.
В силу дисцилины FIFO в каждом сервере время пребывания любого зада­

ния складывается из двух независимых компонент: время ожидания в очереди и
время обслуживания. В теории массового обслуживания известен28 следующий
результат: для СМО 𝑀 |𝐺𝐼 | 1 |∞ | FIFO в условиях малой загрузки стационар­
ное время ожидания 𝑊 примерно29 совпадает с max(0,𝑆−𝑇 ), где 𝑇 — интервал
между двумя последовательными поступлениями, причем

lim
λ→0

E𝑊

E(max(0,𝑆 − 𝑇 ))
= 1. (4.1)

Таким образом, время ожидания в очереди (в указанной выше системе) в стацио­
нарном режиме при малой загрузке есть (без малого) время ожидания в очереди
задания, поступающего следом за заданием, поступившим в пустую систему.

26См., например, раздел 2.2. в [149].
27В указанных условиях при стратегии RND легко выписывается явная формула для E𝑉 . Однако

при стратегии AA получить явную формулу для E𝑉 не удается. Хотя каждый сервер и остается од­
нолинейной СМО, но входящий в нее поток получается путем просеивания пуассоновского потока с
вероятностью, зависящей от времени. Несмотря на наличие в этом направлении некоторых аналити­
ческих результатов (см., например, [538;539] и ссылки в них), пригодные для расчета и/или анализа
формулы для E𝑉 (даже в условиях малой загрузки!) найти не удается. Отметим еще одно обстоя­
тельство. Поскольку каждое задание во вспомогательном процессе имеет одинаковый размер ζ, на
исходную задачу можно посмотреть и по-другому — как на задачу о наиболее плотном размещении
(разнотипных) интервалов фиксированной длины, “поступающих” в случайные моменты времени
(см. [540–544] и [545, С. 42–46]).

28См. доказательство в [546, Corollary 3.2] и [547].
29В метрике полной вариации при λ → 0, а более точно — в смысле определения Definition 2.1

в [546].
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Рассмотрим в указанных выше предположениях две параллельно рабо­
тающие системы: одна со стратегий RND, другая — с новой стратегией AA.
Пусть обе системы находятся в стационарном режиме и в некоторый момент (мо­
мент 0), когда они обе свободны от заданий, приходит первое задание. В системе
с новой стратегией это задание всегда поступает в сервер 1. Также происходит
и в системе со стратегией RND. В обеих системах первое задание будет обслу­
живаться среднее время E𝑆/𝑣(1).

Пусть второе задание поступило через 𝑇2 единиц времени. В системе со
стратегией RND оно (как и все последующие) будет отправлено в сервер 1.
В системе с новой стратегией другое решение (т.е. сервер 2) принимается, если

max

(︂
0,
ζ

𝑣(1)
− 𝑇2

)︂
+

ζ

𝑣(1)
>

ζ

𝑣(2)
,

что эквивалентно 𝑇2 < max(0, 2ζ
𝑣(1)

− ζ
𝑣(2)

). Иначе второе задание будет отправ­
лено в сервер 1. Таким образом, если 2

𝑣(1)
6 1

𝑣(2)
система с новой стратегией

идентична системе со стратегией RND. Поэтому далее предположим, что
2

𝑣(1)
> 1

𝑣(2)
и для сокращения записи введем обозначение 𝑣* = 2

𝑣(1)
− 1

𝑣(2)
.

Разберемся в том, как различаются средние времена пребывания каждого
задания в системе со стратегией RND и в системе с новой стратегией. Для пер­
вого задания средние времена совпадают. Среднее время пребывания второго
задания в системе с новой стратегией равно∫︁ ∞

ζ𝑣*
λ𝑒−λ𝑥E

(︂
max

(︂
0,

𝑆1

𝑣(1)
− 𝑥

)︂
+

𝑆2

𝑣(1)

)︂
𝑑𝑥⏟  ⏞  

сервер 1

+

∫︁ ζ𝑣*

0

λ𝑒−λ𝑥E

(︂
𝑆2

𝑣(2)

)︂
𝑑𝑥⏟  ⏞  

сервер 2

, (4.2)

а в системе со стратегией RND:∫︁ ∞

0

λ𝑒−λ𝑥E

(︂
max

(︂
0,

𝑆1

𝑣(1)
− 𝑥

)︂
+

𝑆2

𝑣(1)

)︂
𝑑𝑥. (4.3)

Вычитая (4.3) из (4.2), получаем:

∫︁ ζ𝑣*

0

λ𝑒−λ𝑥

⎛⎜⎜⎜⎝ E𝑆

𝑣(2)
− E𝑆

𝑣(1)
− E

(︂
max

(︂
0,

𝑆

𝑣(1)
− 𝑥

)︂)︂
⏟  ⏞  

=𝑓(𝑥)

⎞⎟⎟⎟⎠ 𝑑𝑥. (4.4)
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Функция 𝑓 является непрерывной, причем

𝑓(0) =

(︂
1

𝑣(2)
− 2

𝑣(1)

)︂
E𝑆 < 0,

lim
𝑥→∞

𝑓(𝑥) =

(︂
1

𝑣(2)
− 1

𝑣(1)

)︂
E𝑆 > 0.

Кроме того, 𝑓 ′(𝑥) > 0, 𝑥 > 0, т.е. 𝑓 — возрастающая функция. Поэтому су­
ществует такое ζ > 0, что интеграл будет отрицательным и, таким образом,
среднее время пребывания второго задания в системе с новой стратегией будет
меньше, чем в системе со стратегией RND.

Аналогичные рассуждения для последующих заданий показывают, что
среднее время ожидания задания в системе с новой стратегией либо совпадает
с RND, либо меньше него. Проведем рассуждения для третьего задания. Пусть
время между приходом третьего и второго задания равно 𝑇3. В системе со стра­
тегией RND оно будет отправлено в сервер 1. В системе с новой стратегией
ситуация сложнее. Третье задание будет отправлено в другую очередь (т.е. сер­
вер 2) в двух случаях: если при 𝑇2 > ζ𝑣* выполняется неравенство

max

(︂
0,max

(︂
0,
ζ

𝑣(1)
− 𝑇2

)︂
+

ζ

𝑣(1)
− 𝑇3

)︂
+

ζ

𝑣(1)
>

ζ

𝑣(2)
, (4.5)

или если при 𝑇2 < ζ𝑣* выполняется неравенство

max

(︂
0,max

(︂
0,
ζ

𝑣(1)
− 𝑇2

)︂
− 𝑇3

)︂
+

ζ

𝑣(1)
> max

(︂
0,
ζ

𝑣(2)
− 𝑇3

)︂
+

ζ

𝑣(2)
. (4.6)

Однако при 𝑇2 < ζ𝑣* неравенство (4.6) никогда не выполняется. Поэтому
остается только первый случай, согласно которому первое и второе задания
направляются в сервер 1, а третье — в сервер 2. Разность30 между средним
временем пребывания третьего задания в системе с новой стратегий и со страте­
гией RND (при условии, что второе и третье задания поступили соответственно
в очерез 𝑥 и 𝑦 единиц времени) равна

𝑓2(𝑥,𝑦) =
E𝑆

𝑣(2)
− E𝑆

𝑣(1)
− Emax

(︂
0,max

(︂
0,

𝑆1

𝑣(1)
− 𝑥

)︂
+

𝑆2

𝑣(1)
− 𝑦

)︂
,

30Здесь не учтен сучай, когда второе задание было отправлено в сервер 2, а третье — в сервер 1.
Но в этом случае среднее время пребывания третьего задания в системе с новой стратегией будет
меньше, чем в системе со стратегией RND .
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а безусловная вероятность, с учетом (4.5), есть∫︁ ζ

𝑣(1)

ζ𝑣*
λ𝑒−λ𝑥𝑑𝑥

∫︁ ζ𝑣*+ ζ

𝑣(1)
−𝑥

0

λ𝑒−λ𝑦𝑓2(𝑥,𝑦)𝑑𝑦+

+

∫︁ ∞

ζ

𝑣(1)

λ𝑒−λ𝑥𝑑𝑥

∫︁ ζ𝑣*

0

λ𝑒−λ𝑦𝑓2(𝑥,𝑦)𝑑𝑦. (4.7)

Осталось показать это, если ζ выбрано таким образом, что интеграл в (4.4) от­
рицателен, то и сумма (4.7) будет отрицательной (или равна нулю). Для этого
заметим, что

𝑓2(𝑥,𝑦) =
E𝑆

𝑣(2)
− E𝑆

𝑣(1)
− E

(︂
max

(︂
0,

𝑆2

𝑣(1)
− 𝑦

)︂)︂
⏟  ⏞  

=𝑓(𝑦)

+

+ E

(︂
max

(︂
0,

𝑆2

𝑣(1)
− 𝑦

)︂)︂
− Emax

(︂
0,

𝑆2

𝑣(1)
− 𝑦,

𝑆1

𝑣(1)
+

𝑆2

𝑣(1)
− 𝑦 − 𝑥

)︂
. (4.8)

Поскольку ζ в (4.4) выбрано таким образом, что 𝑓(𝑦) < 0 при 0 < 𝑦 < ζ𝑣*,
а разность во второй строке (4.8) по крайней мере неположительна, то второй
интеграл в (4.7) отрицателен и имеет первый порядок малости (относительно λ).
Первый интеграл в (4.7) может оказаться положительным, но имеет второй
порядок малости31.

В заключение отметим, что предположение о пуассоновости входяще­
го потока является существенным в проведенных рассуждениях. Также оно
является существенным и для выполнения соотношения (4.1). Например,
как показано в [547, Раздел 3] для детерминированного входного потока и
𝐵(𝑥) = 1− (𝑥+ 1)−3, 𝑥 > 0, (4.1) не выполняется. Другие контрпримеры мож­
но найти в [546, Remark 3.2] и [547, Раздел 3]. Более широкий класс потоков,
для которого выполняется (4.1), описан в [546, Corollary 3.4]. В этом случае для
обоснования существования ζ, даже в условиях малой загрузки, необходимо
искать другой путь.

31Действительно,

∫︁ ζ

𝑣(1)

ζ𝑣*
λ𝑒−λ𝑥𝑑𝑥

∫︁ 𝑣*+ ζ

𝑣(1)
−𝑥

0
λ𝑒−λ𝑦𝑑𝑦 = 𝑒−λζ𝑣

* − 𝑒
−λ ζ

𝑣(1)

(︂
1− λ𝑒−λ𝑣*

(︂
ζ

𝑣(2)
− ζ

𝑣(1)

)︂)︂
≈

≈ λ2
(︂
ζ

𝑣(1)
+ 𝑣*

)︂(︂
ζ

𝑣(2)
− ζ

𝑣(1)

)︂
+ 𝑜(λ2).
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Заключение

Тематика этой диссертационной работы относится к развивающемуся на­
учному направлению — исследованиям стохастическим систем обслуживания
с частичной наблюдаемостью (или, что то же, — с неполным наблюдением,
c неполным информационным описанием и т. п.). Словосочетание “частичная
наблюдаемость” может трактоваться весьма широко. Это, например, отсут­
ствие априорной информации (даже на уровне представления) о структуре
объекта, и/или ограниченная возможность наблюдения объекта и его идентифи­
кации и т. д. Таким образом, в это направление “укладываются” многие задачи,
возникающие в современных информационных, телекоммуникационны, вычис­
лительных и других технических системах (см., например, [12–19;42;70;72;548]).

Если от системы в процессе функционирования поступает какая-либо ин­
формация, то при решении проблем, связанных по крайней мере с системным
анализом, преимущество целесообразно отдать адаптивным стратегиям обра­
ботки информации. В отсутствие же обратной связи первостепенное значение
приобретает умение воспользоваться доступной априрной информацией о систе­
ме; прямое применение адаптивных приемов здесь невозможно.

Решенная в диссертационной работе проблема — разработка комплекса
вероятностных моделей и создание на их основе методов анализа и алгоритмов
управления для стохастических систем обслуживания с частичной наблюдаемо­
стью — относится к проблемам последнего рода. Если на основе результатов,
изложенных диссертации, подвести итог всему исследованию, то можно сказать,
что его основные результаты заключаются в следующем.

1. Развит аналитический аппарат анализа стационарных характеристик
ранее не изучавшихся классов СМО инверсионного типа, допускающих
не сохраняющее работу обслуживание. Расширена область применения
известной методики [98], в соответствии с которой с помощью (опре­
деленным образом вводимой) совокупности вспомогательных СМО
получаются рекуррентные процедуры вычисления стационарных ха­
рактеристик исходных систем.

2. Введена и систематически изучена новая дисциплина — инверсионный
порядок обслуживания с обобщенным вероятностным приоритетом.
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При надлежащем выборе параметров введенная новая дисциплина пре­
вращается в распространенные на практике и наиболее изученные.

3. Область применения СМО инверсионного типа расширена на класс
задач, связанных с получением оценок фактических значений ста­
ционарных вероятностно–временных характеристик изолированно
функционирующих стохастических систем обслуживания с частичной
наблюдаемостью.

4. Разработан метод получения оценок (фактических) значений ста­
ционарных вероятностно–временных характеристик изолированно
функционирующих систем, частичная наблюдаемость которых свя­
зана с тем, что используемые для управления очередями времена
обслуживания могут не совпадать с (ненаблюдаемыми) фактическими.
Сформулированы условия и получено доказательство эффективности
предложенного метода для ряда систем, моделируемых немарковски­
ми системами массового обслуживания с пуассоновскими входящими
потоками.

5. Изучен класс стохастических систем с параллельным обслуживанием,
диспетчеризация в которых осуществляется в таких условиях частич­
ного наблюдения, что исключают возможность прямого применения
методов теории адаптации. Проведена систематизация известных в на­
учной литературе результатов этой области.

6. Разработаны новые методы диспетчеризации для широкого класса ча­
стично наблюдаемых стохастических систем с параллельным обслужи­
ванием, основанные на общей идее — использовании при управлении
входящими потоками полной предыстории наблюдаемых компонент.
Основанные на них алгоритмы превосходят (по крайней мере по наибо­
лее популярным критериям) ранее известные в научной литературе.

7. Предложена новая простая и эффективная конструкция стратегии
управления входящими потоками в системах с параллельным обслужи­
ванием при отсутствии информации об их динамическом состоянии,
основанная на использовании виртуальных вспомогательных процес­
сов.

В связи с рассмотренными в диссертационной работе задачами остаются
вопросы, поиск ответов на которые представляется интересным направлением
дальнейших исследований. Не останавливаясь повторно на тех, что уже были
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освещены в тексте, скажем несколько слов о других, носящих принципиальный
характер. Метод получения оценкок (фактических) значений характеристик
частично наблюдаемых систем, предложенный в главе 2, приводит к содер­
жательным результатам в стационарном случае. Разработка аналитических
основ, расширяющих его область применения на системы c периодическими
потоками и на переходный режим функционирования, является новой и на
данный момент нерешенной задачей. Кроме того, интересным является вопрос
о возможности обобщения полученных результатов на частично наблюдае­
мые СеМО, системы конечной емкости, а также на системы, двойственные32

тем, что рассмотрены в главе 2. В связи с предложенными в главах 3 и 4
решениями задачи диспетчеризации, наиболее интересные вопросы связаны
с новыми “неточными” стратегиями. В частности, стратегии главы 4, даже в са­
мом простом виде, остаются слишком сложными для анализа. Здесь еще только
предстоит найти подходящий “угол атаки” и сформированить теоретическую ос­
нову продуктивности предложенной констуркции.

32Т. е. в которых прогнозные интервалы между поступлениями заявок могут не совпадать с
фактическими, а времена обслуживания известны в точности.
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Список сокращений и условных обозначений

LWL least work left
JSQ join the shortest queue

HJSQ(d) hybrid JSQ with d choices
AA arrival aware

RND random
PAP probabilistic allocation policy

BS bernoulli splitting
TP threshold policy
FPI first policy iteration

FIFO first–in–first–out
LIFO last–in–first–out

PS processor–sharing
PLIFO preemptive last-in-first-out

SJF (non-preemptive) shortest job first,
PSJF preemptive shortest job first

FB foregroung-backgroud processor–sharing
SRPT shortest remaining processing time

LIFOGPP last–in–first–out with generalized probabilistic priority
LIFORe last–in–first–out with resampling

LIFOPRD last–in–first–out preemptive different
SMART small response time

FSP fair scheduling policy
УФИ убывающая функция интенсивности

ГНСХИ гармоничное новое в среднем хуже использованного
СМО система массового обслуживания

СeМО сеть массового обслуживания
ТМО теория массового обслуживания
ПЛС преобразование Лапласа–Стилтьеса

ПЛ преобразование Лапласа
ПФ производящая функция

сл. в. случайная величина
ф. р. функция распределения
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