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Введение

Начавшаяся в середине XX века третья промышленная революция харак­
теризовалась автоматизацией производства, выполнением рутинных и типовых
действий без участия человека или под его контролем в качестве оператора.
Плодами третьей промышленной революции стали создание программируемых
контроллеров и промышленных роботов, большой скачок в области самолето­
строения и ракетостроения.

В настоящее время мы являемся свидетелями четвертой промышленной
революции. Развитие вычислительной техники, технологические инновации и
масштабная роботизация позволили выйти на новый виток развития автомати­
зированных систем управления.

В современных технических системах всё чаще наблюдается переход от си­
стем управления, где функцию выбора управляющего воздействия выполняет
человек — оператор, водитель, пилот и т.д., к системам, где функция выбо­
ра управляющего воздействия возложена на блок управления. При этом блок
управления, как и в случае с управлением человеком, должен вырабатывать
управляющие воздействия в соответствии с информацией о текущем состоянии
системы, поступающей от приборов, датчиков или внешних источников. Реа­
лизация такого блока управления позволяет учитывать больше информации
о состоянии объекта управления, обеспечить более точное соответствие цели
управления и исключить человеческий фактор.

Диссертация посвящена решению задачи общего синтеза системы управ­
ления. Технически решение данной задачи — это создание блока управления,
обеспечивающего выработку управления на основе информации о состоянии
системы. Вырабатываемое управление должно обеспечивать достижение цели
управления в соответствии с определенными критериями.

Задача общего синтеза системы управления как задача нахождения
многомерной функции управления от компонент вектора состояния объекта
управления была сформулирована В.Г. Болтянским в конце 60-х годов прошло­
го века [12; 51]. Найденная функция управления по имеющейся информации о
состоянии объекта управления должна предоставлять значение в виде вектора
управления, обеспечивающего перемещение объекта из начального состояния
в терминальное по оптимальной по заданному критерию качества траектории.
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Позднее в формулировке появилось уточнение, что достижение терминального
состояния объекта управления должно обеспечиваться для любого начального
состояния из всего пространства состояний.

До недавнего времени для систем управления, в которых требуется до­
стижение цели в соответствии с заданным критерием качества, в основном
использовалось программное управление без реализации принципа обратной
связи. Реализация такого программного управления производилась на основе
решения задачи оптимального управления. Найденная таким образом функция
управления является функцией от времени и зависит только от состояния объ­
екта управления в начальный момент времени, а не от текущего. В отличие
от задачи оптимального управления, решение задачи общего синтеза системы
управления реализует принцип обратной связи и позволяет найти функцию
управления от координат пространства состояний объекта, при этом начальное
состояние объекта уже не будет играть роли и может быть любым.

Данное отличие задачи оптимального управления от задачи общего синте­
за системы управления говорит о большей значимости и одновременно большей
сложности последней. Так как решение задачи синтеза позволяет найти опти­
мальное управление для любого начального состояния объекта, то в каком-то
смысле его можно сравнить с решением бесконечного множества задач опти­
мального управления. В работе [24] задача общего синтеза системы управления
отнесена к основной задаче современной теории управления и названа зада­
чей тысячелетия.

Ввиду высокой сложности задачи общего синтеза системы управления,
наиболее распространенным способом её решения является параметрический
синтез. При таком подходе структура функциональной зависимости управ­
ляющих воздействий от текущего состояния системы управления задаётся
разработчиком с точностью до некоторого числа неизвестных параметров. Да­
лее производится настройка данных параметров как правило с помощью одного
из оптимизационных алгоритмов. При выборе структуры функциональной за­
висимости разработчик может руководствоваться определенными знаниями
и принимать решение на основе собственного опыта и предварительных ис­
следований или даже на основе интуиции. Настройка параметров сделает
предполагаемую функциональную зависимость более точной. Однако такой
подход не является универсальным, а в случае отсутствия предварительной
информации о форме функциональной связи будет вовсе неэффективным.
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Гораздо больший интерес представляют методы структурно-параметриче­
ского решения задачи общего синтеза системы управления, направленные на
одновременное получение и структуры функциональной зависимости, и опти­
мального значения параметров. Такие методы при поиске решения используют
только математическую модель объекта управления и информацию об ограни­
чениях на векторы состояния и управления.

Структурно-параметрические методы синтеза можно поделить на два
класса. К первому классу относятся методы аналитического поиска решения
задачи синтеза. Среди методов данного класса можно выделить метод аналити­
ческого конструирования оптимальных регуляторов, синтез на основе функций
Ляпунова, метод бэкстеппинга и метод аналитического конструирования агре­
гированных регуляторов. Аналитические методы синтеза сильно ограничены
размерностью и видом объекта управления и не являются универсальным спо­
собом решения поставленной задачи.

Ко второму классу относятся численные методы синтеза, в которых поиск
структуры и параметров функции управления осуществляется на основе мето­
дов машинного поиска. В отличии от аналитических методов, методы данного
класса не накладывают ограничений на размерность и вид объекта управления
и не требуют предварительных аналитических преобразований.

Численный структурно-параметрический поиск стал возможен только в
конце прошлого века. Именно в это время появляются первые методы машин­
ного поиска. Пионером в этой области считается Джон Коза, который в 1992
году представил метод генетического программирования, относящийся к классу
методов символьной регрессии. Метод задумывался для реализации автома­
тического составления компьютерных программ на языке LISP. В его основе
лежит генетический алгоритм, а поиск осуществляется на нечисловом простран­
стве символов путем их перебора.

Метод генетического программирования и другие реализуемые с помощью
вычислительных машин методы символьной регрессии позволили программно
реализовывать структурно-параметрический поиск для целей решения задачи
синтеза системы управления. В настоящее время известно более 10 методов
символьной регрессии [23]. Метод генетического программирования является
первым и, пожалуй, наиболее широко известным из всех. Отдельно следует
упомянуть метод сетевого оператора, предложенный А.И. Дивеевым [96]. При
его создании учитывалась специфика задачи синтеза системы управления.
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Для осуществления поиска на нечисловом пространстве символов в каж­
дом методе символьной регрессии предусмотрена обратимая операция кодиро­
вания. Кодирование позволяет представлять элементы символьной структуры
в виде специфичного для данного метода кода. При решении задачи синтеза
системы управления кодированию и дальнейшему поиску подвергается мате­
матическое выражение многомерной функции управления. Поиск оптимальной
структуры осуществляется на основе генетического алгоритма.

Решение задачи синтеза системы управления на основе методов символь­
ной регрессии рассмотрено в работах [95; 96]. В представленном в них подходе
методы символьной регрессии используются для структурно-параметрического
синтеза путем выбора оптимального решения на пространстве всех возможных
решений. Основным недостатком такого подхода является отсутствие метрики
для определения близости найденного решения к оптимальному.

Таким образом, известные численные методы синтеза системы управления
позволяют осуществлять структурно-параметрический поиск функции управле­
ния, но не позволяют оценить близость найденного решения к оптимальному.
Блок управления на основе такой функции управления позволит обеспечить
достижение цели управления, но не оптимального значения критерия качества
управления.

В настоящее время актуальной задачей является создание метода решения
задачи синтеза системы управления, для которого будет определена оценка бли­
зости найденного решения к оптимальному. В составе блока управления такое
решение будет обеспечивать достижение цели управления по траектории близ­
кой к оптимальной, т.е. доставлять оптимальное значение критерия качества.
Создание такого блока управления является необходимой частью этапа проекти­
рования современных устройств в области самолетостроения и ракетостроения,
создания роботизированных устройств, мобильных роботов, беспилотных лета­
тельных аппаратов, беспилотных автомобилей и др.

Решению данной задачи посвящены работы автора [156—180] и поды­
тоживающая их настоящая диссертация.Автором разработан новый подход
численного решения задачи синтеза системы управления и нахождения струк­
туры многомерной функции управления на основе аппроксимации множества
предварительно найденных оптимальных траекторий. Поиск решения в пред­
лагаемом подходе осуществляется в два этапа. На первом этапе многократно
решается задача оптимального управления для разных начальных условий. По­
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лученные решения задачи оптимального управления для разных начальных
условий позволяют на основе найденных оптимальных траекторий сформи­
ровать множество данных для аппроксимации. На втором этапе с помощью
метода символьной регрессии осуществляется поиск математического выра­
жения функции управления, аппроксимирующего данные из множества. В
логике использования методов символьной регрессии и оценки качества ап­
проксимации в предложенном подходе используются принципы обучения с
подкреплением. Использование данных, полученных на основе оптимальных
траекторий, и функционала качества их аппроксимации позволяют для найден­
ного решения задачи синтеза оценить его близость к оптимальному.

Целью диссертационной работы является разработка эффективного
численного метода решения задачи синтеза системы управления с оценкой бли­
зости численного решения к оптимальному.

Для достижения поставленной цели были решены следующие задачи:
1. разработка численного метода решения задачи синтеза системы управ­

ления на основе аппроксимации оптимальных траекторий;
2. формирование множества данных для аппроксимации из оптимальных

траекторий путём численного решения задачи оптимального управле­
ния для разных начальных условий;

3. сравнительное исследование численных методов решения задачи оп­
тимального управления на основе прямого подхода и выбор наиболее
эффективных из них;

4. разработка гибридного алгоритма оптимизации для решения задачи
оптимального управления;

5. формализация вида функционала качества аппроксимации и разра­
ботка алгоритма поиска оптимального решения на основе методов
символьной регрессии;

6. разработка комплекса программ, реализующих все этапы предложен­
ного численного метода синтеза системы управления;

7. применение предложенного подхода и разработанного комплекса про­
грамм для решения прикладной задачи синтеза системы управления
автомобилеподобным роботом.
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Научная новизна диссертации состоит в следующем.
1. Впервые предложен двухэтапный численный метод решения задачи

синтеза системы управления на основе аппроксимации множества оп­
тимальных траекторий:

а) предложено использовать информацию об оптимальных тра­
екториях в качестве данных для аппроксимации;

б) разработан алгоритм аппроксимации данных, полученных на
основе оптимальных траекторий, с помощью методов символь­
ной регрессии, позволяющий оценить близость найденного
решения к оптимальному.

2. Выполнены сравнительные исследования и выявлены эффективные ал­
горитмы для решения задачи оптимального управления.

3. Разработан новый гибридный алгоритм для решения задачи оптималь­
ного управления.

4. Впервые с помощью разработанного метода и комплекса программ, его
реализующего, численными экспериментами подтверждена его эффек­
тивность.

Теоретическая значимость. Разработан и апробирован численный ме­
тод решения задачи синтеза системы управления на основе аппроксимации
оптимальных траекторий. Показано, что данный метод при поиске численного
решения задачи синтеза позволяет определять близость найденного решения
к оптимальному.

Практическая значимость. Разработка проблемно-ориентированно­
го комплекса программ решения задачи синтеза системы управления была
выполнена в рамках проекта 075-15-2020-799 «Методы построения и модели­
рования сложных систем на основе интеллектуальных и суперкомпьютерных
технологий, направленные на преодоление больших вызовов» Минобрнауки
России. Предложенный метод решения задачи синтеза системы управления
используется в научно-исследовательской и опытно-конструкторской работе
инжинирингового центра «Интеллектуальные роботизированные системы и
технологии» Белгородского государственного технологического университета
им. В.Г. Шухова (Белгород, Россия), а также внедрен в деятельность ООО «Экс­
периментальная мастерская НаукаСофт» (Москва, Россия) при проектирова­
нии и разработке программно-аппаратных комплексов, что подтверждается
соответствующими актами, представленными в Приложении к диссертационной
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работе. Разработанные алгоритмы применяются в научно-исследовательской
работе роботоцентра Федерального исследовательского центра «Информатика
и управление» Российской академии наук (Москва, Россия).

Соответствие диссертации паспорту научной специальности.
В соответствии с формулой специальности 2.3.1 «Системный анализ, управле­
ние и обработка информации, статистика» (технические науки) в диссертации
разработаны методы совершенствования управления сложными прикладными
объектами, а именно — численный метод решения задачи синтеза системы
управления. Разработанный метод ориентирован на повышение эффективности
управления. Полученные результаты исследования соответствуют следующим
пунктам областей исследований, перечисленных в паспорте научной специаль­
ности: пункт 4 — “Разработка методов и алгоритмов решения задач системного
анализа, оптимизации, управления, принятия решений, обработки информации
и искусственного интеллекта”; пункт 7 — “Методы и алгоритмы структурно­
параметрического синтеза и идентификации сложных систем”.

Методология и методы исследования. Методологическую основу дис­
сертационного исследования составляют методы системного и сравнительного
анализа в области теории оптимального управления, численных методов опти­
мизации, методов символьной регрессии и дифференциальных уравнений. При
проведении вычислительного эксперимента применяется метод моделирования
с использованием системного подхода.

Основные положения, выносимые на защиту:
1. Новый численный метод решения задачи общего синтеза системы

управления на основе аппроксимации оптимальных траекторий ме­
тодами символьной регрессии. Предложенный метод не накладывает
ограничений на размерность и вид объекта управления, не требует
предварительных аналитических преобразований. При поиске решения
он позволяет оценить близость текущего решения к оптимальному.

2. Методы на основе эволюционных алгоритмов для решения задачи опти­
мального управления и получения оптимальных траекторий. Показано,
что при прямом подходе решения задачи оптимального управления,
для которого характерны увеличение размерности пространства поиска
и многоэкстремальность целевой функции, эволюционные алгоритмы
позволяют получить значительно более точные решения.
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3. Новый гибридный алгоритм для решения задачи оптимального управ­
ления. Новый алгоритм сочетает свойства двух наиболее эффективных
в области решения задачи оптимального управления алгоритмов.

4. Комплекс программ, реализующий предложенный метод для решения
задачи общего синтеза системы управления.

5. Решение прикладной задачи синтеза системы управления автомобиле­
подобным роботом с помощью разработанного метода. На основании
оценки полученного решения прикладной задачи подтверждена эффек­
тивность разработанного численного метода синтеза системы управле­
ния.

Достоверность Достоверность результатов следует из применения стро­
гих математических методов и известных теоретических оценок погрешностей
численных решений и на основании вычислительных экспериментов. До­
стоверность результатов подтверждается сравнением полученных решений с
известными результатами других авторов.

Апробация работы. Основные результаты диссертационной работы до­
кладывались на следующих конференциях: International Symposium “Intelligent
Systems” (INTELS) — 2020, 2018, 2016, 2014; International Conference on
Control, Decision and Information Technologies (CoDIT) — 2022, 2020, 2018;
International Conference “Optimization and Applications” (OPTIMA) — 2021,
2020; European Control Conference (ECC) — 2020; Международная научно-прак­
тическая конференция, посвященная 110-летию со дня рождения академика
Н.А. Пилюгина, “Фундаментально-прикладные проблемы безопасности, живу­
чести, надёжности, устойчивости и эффективности систем” — 2019; International
Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD) — 2017; Всероссийская научная конференция с международным
участием Моделирование коэволюции природы и общества: проблемы и опыт.
К 100-летию со дня рождения академика Н.Н. Моисеева — 2017, Междуна­
родная научно-практическая конференция “Инженерные системы” — 2015 и на
научном семинаре “Всероссийский семинар с международным участием «Эво­
люционные вычисления»” (ФИЦ ИУ РАН) — 2019.

Личный вклад. Содержание диссертации и основные положения, выно­
симые на защиту, являются итогом самостоятельной работы автора. Подготовка
к публикации полученных результатов проводилась совместно с соавторами. В
совместных работах автор принимал непосредственное участие в постановке
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задачи и выборе направления исследования, в программной реализации и об­
суждении результатов исследований. При подготовке работ [162; 165; 173—178;
180] вклад диссертанта был определяющим. Все представленные в диссертации
результаты получены лично автором.

Публикации. Основные результаты по теме диссертации изложены
в 25 научных изданиях, среди них: публикаций в журналах, рекомендованных
ВАК — 7, публикаций в журналах, индексируемых Web of Science и Scopus — 15,
публикаций в трудах российских и зарубежных конференций — 3. Зарегистри­
рованы 8 программ для ЭВМ.

Объем и структура работы. Диссертация состоит из введения, 5 глав,
заключения, списка литературы и 1 приложения. Полный объём диссертации
составляет 180 страниц, включая 12 рисунков и 4 таблицы. Список цитируемой
литературы содержит 180 наименований.

Во Введении приведено обоснование актуальности темы диссертационной
работы, сформулированы цели и задачи проводимых исследований, аргументи­
рована научная новизна исследований, показана теоретическая и практическая
значимость полученных результатов, представлены положения, выносимые на
защиту, перечислены конференции и семинары, на которых докладывались
основные результаты исследований и кратко изложено содержание разделов
диссертации.

В Главе 1 приведены постановка и методы решения задачи синтеза систе­
мы управления: рассмотрена формальная постановка задачи общего синтеза
системы управления; приведен обзор известных аналитических методов синте­
за системы управления; рассмотрены их преимущества и недостатки; приведена
постановка задачи численного синтеза системы управления на основе многокри­
териальной структурно-параметрической оптимизации; рассмотрен численный
метод её решения и указаны его недостатки; сформулированы выводы по ха­
рактеристикам рассмотренных методов.

В Главе 2 рассмотрены класс методов символьной регрессии и возмож­
ность их применения для задач синтеза системы управления: представлено
описание класса методов символьной регрессии; приведен краткий обзор наи­
более известных методов данного класса; рассмотрены их преимущества и
недостатки; приведено описание принципа малых вариаций и метода сетево­
го оператора.
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Глава 3 посвящена новому численному методу решения задачи синте­
за системы управления на основе аппроксимации оптимальных траекторий:
приведена постановка задачи численного метода синтеза системы управления
на основе аппроксимации оптимальных траекторий методами символьной ре­
грессии; представлены его описание и последовательность шагов при поиске
решения; показаны преимущества предлагаемого метода.

В Главе 4 рассмотрены вопросы численного решения задачи оптимального
управления: приведена постановка задачи оптимального управления; рассмот­
рены численные методы её решения; приведен обзор методов безусловной
оптимизации для прямого подхода решения задачи оптимального управле­
ния; рассмотрены эволюционные алгоритмы; проанализированы результаты
сравнительных экспериментов, демонстрирующих высокую эффективность
применения эволюционных алгоритмов для решения задачи оптимального
управления; рассмотрены методы гибридизации алгоритмов; предложен новый
гибридный алгоритм; приведены его описание и основные преимущества.

В Главе 5 приведены описание и результаты вычислительного экспери­
мента: представлено описание математической модели автомобилеподобного
робота; приведено описание задачи синтеза системы управления для рассматри­
ваемого объекта; рассмотрены этап поиска множества оптимальных траекторий
и этап синтеза системы управления на основе аппроксимации этих траекторий
методом сетевого оператора; представлены результаты вычислительного экспе­
римента; сформулированы выводы об успешном решении поставленной задачи
и эффективности предложенного метода.

В Заключении сформулированы основные результаты диссертации.
В Приложении А представлены акты о внедрении, подтверждающие при­

менение результатов диссертационного исследования в научной и коммерческой
деятельности.
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Глава 1. Обзор методов решения задачи общего синтеза системы
управления

Задача общего синтеза системы управления была так названа и сфор­
мулирована В.Г. Болтянским в конце 60-х годов прошлого века [12; 51]. Ей
предшествовала постановка задачи оптимального управления Л.С. Понтря­
гиным [1]. Решение задачи общего синтеза системы управления состоит в
нахождении многомерной функции управления от компонент вектора состояния
объекта управления. Такая функция, получая в качестве аргумента вектор те­
кущего состояния объекта управления, предоставляет значение в виде вектора
управления, обеспечивающего перемещение объекта управления из начального
состояния в терминальное по оптимальной по некоторому заданному критерию
качества траектории. В работе [12] задача синтеза системы управления фор­
мулируется как нахождение функции управления для начальных условий из
всего пространства состояний.

Принадлежность начальных условий всему пространству состояний или
его некоторой области, наряду с необходимостью нахождения оптимального
управления в виде многомерной функции от координат пространства состо­
яний, составляет основную сложность и главное отличие задачи синтеза от
задачи оптимального управления, в которой требуется найти управление в виде
функции времени для определенных начальных условий. С практической точки
зрения решение задачи синтеза более значимо, чем решение задачи оптималь­
ного управления в виде функции времени. С учетом того, что решение задачи
оптимального управления позволяет найти оптимальное управление только для
одного заданного начального состояния объекта, то решение задачи синтеза
можно сопоставить с решением бесконечного множества задач оптимального
управления.

Довольно часто в литературных источниках под синтезом системы управ­
ления рассматривают задачу поиска стабилизирующих управлений [35; 49].
Однако задача обеспечения устойчивости динамической системы является лишь
частным случаем задачи синтеза системы управления. Решение задачи общего
синтеза системы управления обеспечивает не только устойчивость объекта в
области аттрактора, но и оптимальное по заданному критерию качества переме­
щение объекта из любого возможного начального состояния в данную область.
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Задача общего синтеза системы управления по праву считается основной зада­
чей в современной теории управления [24].

1.1 Постановка задачи общего синтеза системы управления

Рассмотрим постановку задачи синтеза оптимального управления. Пусть
задана математическая модель объекта управления в виде⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝑥1
𝑑𝑡

= 𝑓1 (𝑥1, . . . ,𝑥𝑛, 𝑢1, . . . ,𝑢𝑚)

· · ·
𝑑𝑥𝑛
𝑑𝑡

= 𝑓𝑛 (𝑥1, . . . ,𝑥𝑛 ,𝑢1, . . . ,𝑢𝑚)

(1.1)

или в более краткой векторной форме

ẋ = f (x,u) , (1.2)

где x = [𝑥1 . . . 𝑥𝑛]
𝑇 — вектор состояния объекта, x ∈ R𝑛, u = [𝑢1 . . . 𝑢𝑚]

𝑇 — век­
тор управления объектом, u ∈ U ⊆ R𝑚, U — ограниченное замкнутое
множество [51].

Задано множество начальных состояний

X0 ⊆ R𝑛 (1.3)

и терминальные условия

x (𝑡𝑓) = x𝑓 , (1.4)

где 𝑡𝑓 — ограниченное время процесса управления, которое может быть задано
или определяться в процессе решения задачи по условию достижения терми­
нальных условий.

Функционал качества имеет вид

𝐽 =

∫︁ 𝑡𝑓

0

𝑓0 (x (𝑡) ,u (𝑡)) 𝑑𝑡→ min . (1.5)

Требуется найти управление в форме многомерной функции от компонент
вектора пространства состояний объекта

u = h(x), (1.6)
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где h(x) : R𝑛 → R𝑚, h(x) ∈ U, ∀x ∈ R𝑛.
С учётом (1.6) представим математическую модель объекта управле­

ния (1.2) в виде

ẋ = f (x, h (x)) , (1.7)

решением которой для любого начального состояния объекта из заданной об­
ласти ∀x (0) = x0 ∈ X0 будет векторная функция времени x

(︀
x0, 𝑡

)︀
, которая

обеспечивает перемещение объекта управления из начального состояния x (0) в
терминальное положение x𝑓 за конечное время 𝑡𝑓 < ∞ и при этом доставляет
минимум функционалу качества (1.5)

min
u∈Ũ

∫︁ 𝑡𝑓

0

𝑓0
(︀
x
(︀
x0,𝑡

)︀
, u (𝑡)

)︀
𝑑𝑡, (1.8)

где Ũ = {ũ (·)} — множество всех допустимых управлений, удовлетворяющих
ограничениям ũ (𝑡) ∈ U, 0 ⩽ 𝑡 ⩽ 𝑡𝑓 и обеспечивающих достижение терми­
нальных условий (1.4).

Таким образом, решение поставленной задачи синтеза оптимального
управления требует поиска многомерной функции (1.6), удовлетворяющей
условию оптимальности (1.8) для всех возможных начальных значений из мно­
жества (1.3).

Несмотря на важность задачи синтеза оптимального управления, точные
методы ее решения отсутствуют по сей день. Аналитическое решение постав­
ленной задачи возможно только для несложных объектов малой размерности,
модели которых в форме (1.7) имеют решения. Для большинства прикладных
объектов управления получить аналитическое решение задачи синтеза опти­
мального управления пока не удавалось.

1.2 Обзор методов решения задачи общего синтеза системы
управления

Середина XX века считается моментом перерождения классической тео­
рии автоматического управления в так называемую современную теорию
автоматического управления [75]. В её основе лежат работы Л.С. Понтряги­
на [51], В.Г. Болтянского [11—13], А.А. Красовского [42; 43; 74] Р. Беллмана [9;
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10], Р. Калмана [30; 110] и других известных учёных. Существенное влия­
ние на интенсивное развитие современной теории автоматического управления
оказывала и продолжает оказывать высокая потребность в автоматизации
управления технологическими и экономическими процессами. В 1960 году в
Москве был проведен первый международный конгресс международной фе­
дерации по автоматическому управлению IFAC (International Federation of
Automatic Control). Внимание ученых привлекло большое число актуальных
задач в области оптимального управления, среди которых задача синтеза си­
стемы управления занимает одно из центральных мест.

За прошедшее время было разработано несколько методик решения
поставленной задачи, которые показали свою эффективность в решении опреде­
ленного круга задач. Достигнутый технологический прогресс, с одной стороны,
позволил значительно увеличить эффективность существующих, как правило
численных методов решения задачи синтеза. Но, с другой стороны, он предопре­
делил значительное расширение сферы применения систем автоматического
управления и усложнение объектов управления. Всё это делает поиск новых
эффективных методов решения задачи синтеза системы управления актуаль­
ной задачей по сей день.

1.2.1 Синтез на основе метода динамического программирования

Метод динамического программирования был предложен в 50-х годах про­
шлого века коллективом авторов во главе с Р. Беллманом [66]. Метод основан
на изучении множества оптимальных траекторий, переводящих объект управ­
ления из разных начальных состояний в одно терминальное состояние. Таким
образом, данный метод позволяет находить решение задачи синтеза системы
управления, а также применим к более широкому кругу технических и эко­
номических задач.

Принцип оптимальности, сформулированный Р. Беллманом [9] и лежащий
в основе метода динамического программирования, определяет зависимость
системы управления в любой момент времени только от текущего состояния си­
стемы. Согласно данной формулировке, если для объекта управления известна
оптимальная траектория перемещения из начального положения x0 в терми­
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нальное положение x𝑓 , то для любой промежуточной точки x′, расположенной
на данной траектории и делящей оптимальную траекторию x0x𝑓 на два произ­
вольных участка, оба участка x0x′ и x′x𝑓 также будут являться оптимальными
траекториями.

При таком подходе определяется функционал

𝐼 =

∫︁ 𝑡𝑓

𝑡0

g (x,u,𝑡) 𝑑𝑡→ min, (1.9)

и решается задача поиска такого вектора управления u, при котором функ­
ционал (1.9) достигает своего минимального значения. Согласно принципу
оптимальности Р. Беллмана оптимальное управление u, являющееся решени­
ем исходной задачи, и вектор оптимального фазового состояния x, полученный
при управлении u, для произвольного времени 𝑡, 𝑡 < 𝑡 < 𝑡𝑓 минимизирует
функционал

𝐼 =

∫︁ 𝑡𝑓

𝑡

g (x,u,𝑡) 𝑑𝑡→ min,

где 𝑡 — произвольно взятая точка на интервале [0,𝑡𝑓 ].
Следовательно, часть оптимального управления u и часть оптимально­

го фазового состояния x для времени 𝑡, 𝑡 < 𝑡 < 𝑡𝑓 являются оптимальными
по функционалу 𝐼 независимо от того, каким образом объект управления был
переведен в начальное фазовое состояние x

(︀
𝑡
)︀
.

Для малого приращения времени 𝑑𝑡 значение функционала (1.9) примет
вид

𝐼 =

∫︁ 𝑡0+𝑑𝑡

𝑡0

g (x,u,𝑡) 𝑑𝑡→ min, (1.10)

тогда, согласно принципу оптимальности Беллмана, оставшаяся часть будет
равна

𝐼 =

∫︁ 𝑡𝑓

𝑡0+𝑑𝑡

g (x,u,𝑡) 𝑑𝑡→ min .

Принимая во внимание, что для выражения (1.10) верно приближенное
равенство

𝐼 =

∫︁ 𝑡0+𝑑𝑡

𝑡0

g (x,u,𝑡) 𝑑𝑡 ≈ g (x,u,𝑡) 𝑑𝑡,

функционал (1.9) можно перезаписать в следующем виде

𝐼 = 𝐼 + 𝐼 = g (x,u,𝑡) 𝑑𝑡+

∫︁ 𝑡𝑓

𝑡0+𝑑𝑡

g (x,u,𝑡) 𝑑𝑡→ min . (1.11)
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С учётом оптимальности по u необходимо найти такое решение, при кото­
ром функционал (1.11) принимает максимальное значение. Тогда, переходя к
пределу при 𝑑𝑡→ 0, из выражения (1.11) можно получить уравнение Беллмана
в дифференциальной форме

− 𝜕𝐼

𝜕𝑡
= min

u∈[u−,u+]

{︂
g (x,u,𝑡) +

𝜕𝐼

𝜕𝑥
f (x,u)

}︂
. (1.12)

Использование данного метода позволяет получить множество значений
векторов управлений для множества значений векторов состояний, и не позво­
ляет получить структуру самой функции управления, описывающей данную
зависимость. В большей части научных трудов метод динамического про­
граммирования применяется для поиска оптимального управления из одного
начального состояния [83]. По сути это решение задачи оптимального управле­
ния, а не синтеза. Применение метода динамического программирования для
решения именно задачи синтеза системы управления требует дополнительных
нетривиальных ухищрений. Так в работе [28] осуществляется поиск прибли­
женного решения задачи синтеза оптимального управления с помощью метода
динамического программирования с последующим применением метода усред­
нения [55]. В работе [57] предлагается использовать итерационный подход к
определению на основе метода динамического программирования оптималь­
ных управлений в малой окрестности точки начального состояния объекта
управления. В результате многократного применения метода динамического
программирования получается матрица оптимальных управлений, размерность
и точность которой прямо пропорциональны и зависят от числа точек разби­
ения множества начальных состояний и применения методов аппроксимации
найденных решений.

1.2.2 Синтез на основе принципа максимума Понтрягина

В.Г. Болтянским в своих работах [12; 14], а также в коллективной ра­
боте [51] для решения задачи синтеза оптимального управления предлагается
использовать подход на основе принципа максимума Понтрягина.

Для формулировки принципа максимума Понтрягина в дополнение к ос­
новной системе дифференциальных уравнений (1.1) вводится ещё одна система
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уравнений относительно вектора вспомогательных переменныхψ = [ψ1 . . .ψ𝑛]
𝑇⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑ψ1
𝑑𝑡

= −
𝑛∑︀

𝑗=1

𝜕𝑓𝑗 (x,u)
𝜕𝑥1

ψ𝑗

· · ·

𝑑ψ𝑛
𝑑𝑡

= −
𝑛∑︀

𝑗=1

𝜕𝑓𝑗 (x,u)
𝜕𝑥𝑛

ψ𝑗

. (1.13)

Системы (1.1) и (1.13) объединяют одной записью, вводя функцию 𝐻,
которая в случае задачи оптимальности по быстродействию имеет вид

𝐻 (ψ,x,u) = −𝑓0 (x,u) +
𝑛∑︁

𝑗=1

ψ𝑗𝑓𝑗 (x,u) . (1.14)

На основе уравнения (1.14) можно записать уравнения (1.1) и (1.13) в
виде гамильтоновой системы

𝑑𝑥𝑖
𝑑𝑡

=
𝜕𝐻

𝜕ψ𝑖
, 𝑖 = 1,𝑛, (1.15)

𝑑ψ𝑖

𝑑𝑡
= −𝜕𝐻

𝜕𝑥𝑖
, 𝑖 = 1,𝑛. (1.16)

При фиксированных значениях векторов ψ и x функция 𝐻 становится
функцией от вектора управления u. Таким образом, решением краевой задачи
оптимального управления по быстродействию будет такой ненулевой вектор
ψ = [ψ1 . . .ψ𝑛]

𝑇 , при котором функция 𝐻 переменного вектора u достигает
своего максимального значения

max
u∈[u−,u+]

𝐻 (ψ,x,u) . (1.17)

Здесь следует отметить, что описанный подход применяется в основном
для решения задачи оптимального управления. При использовании данно­
го подхода для решения задачи синтеза системы управления, на начальном
этапе осуществляется поиск всех фазовых траекторий, удовлетворяющих прин­
ципу максимума Понтрягина. Движение по полученным траекториям ввиду
принципа максимума будет оптимальным. Далее осуществляется поиск кри­
вых переключения на фазовой плоскости, определяющих синтез оптимальных
управлений объектом.

Применение принципа максимума Понтрягина для поиска оптимального
управления в виде функций от переменных состояния требует большого числа
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аналитических преобразований, при этом полученное решение не будет рабо­
тать для режимов особого управления, например, в случаях наличия фазовых
ограничений, что довольно часто встречается в прикладных задачах.

В качестве примера рассмотрим задачу поиска закона оптимального
управления в плане быстродействия для простейшего управляемого объекта —
материальной точки, двигающейся по горизонтальной прямой без учета силы
трения и упругой силы [12]. Уравнения движения данного объекта имеют сле­
дующий вид ⎧⎨⎩ 𝑥̇1 = 𝑥2

𝑥̇2 = 𝑢
. (1.18)

Для рассматриваемого объекта решается задача о наискорейшем перемеще­

нии из произвольной начальной точки x0 =
[︁
𝑥01 𝑥02

]︁𝑇
в начало координат

x𝑓 =
[︁
0 0

]︁𝑇
. Ограничения, наложенные на управление, имеют следующий

вид
|𝑢| ⩽ 1.

Функционал качества для рассматриваемой задачи быстродействия

𝐽 =

∫︁ 𝑡𝑓

0

𝑓0 (x,u) 𝑑𝑡→ min .

В соответствии с (1.14) функция Гамильтона для объекта (1.18) имеет вид

𝐻 = −1 +ψ1𝑥2 +ψ2𝑢. (1.19)

Используя соотношение (1.16), получаем следующую систему уравнений
для вспомогательных переменных⎧⎨⎩ ψ̇1 = 0

ψ̇2 = −ψ1

,

откуда находим значения ψ1 и ψ2⎧⎨⎩ ψ1 = 𝑑1

ψ2 = −𝑑1𝑡+ 𝑑2
,

где 𝑑1 и 𝑑2 — постоянные интегрирования.
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В соответствии с принципом максимума Понтрягина (1.17) решением зада­
чи оптимального управления по быстродействию будет такой ненулевой вектор

ψ =
[︁
ψ1 ψ2

]︁𝑇
, при котором функция 𝐻 (1.19) достигает своего максималь­

ного значения.
Отсюда получаем следующие условия для значений управления⎧⎨⎩ 𝑢(𝑡) = 1, если ψ(𝑡) = −𝑑1𝑡+ 𝑑2 > 0

𝑢(𝑡) = −1, если ψ(𝑡) = −𝑑1𝑡+ 𝑑2 < 0
.

В виду того, что линейная функция −𝑑1𝑡+𝑑2 меняет знак не более одного
раза на интервале времени 0 ⩽ 𝑡 ⩽ 𝑡𝑓 , то любое оптимальное управление на
данном отрезке времени имеет не более двух интервалов постоянства.

Таким образом, можно построить семейство фазовых траекторий для
отрезка времени, на котором 𝑢(𝑡) = 1, и для отрезка времени, на котором
𝑢(𝑡) = −1.

Для случая, когда 𝑢(𝑡) = 1 из уравнения объекта (1.18), имеем 𝑑𝑥1
𝑑𝑥2

= 𝑥2,
откуда

𝑥1 =
1

2
𝑥22 + 𝑐. (1.20)

Для случая, когда 𝑢(𝑡) = −1 из уравнения объекта (1.18), имеем
𝑑𝑥1
𝑑𝑥2

= −𝑥2, откуда

𝑥1 = −
1

2
𝑥22 + 𝑐′. (1.21)

Построив на основе (1.20) и (1.21) семейства фазовых траекторий, можно
для любого начального состояния x0 определить траекторию движения фазовой
точки и соответствующее этому движению оптимальное управление

𝑢̃ = 1− 2ϑ (ℎ (x)) ,

где ℎ (x) — разрывная функция вида

ℎ (x) =

⎧⎪⎨⎪⎩
𝑥1 +

𝑥22
2 , если 𝑥2 > 0

𝑥1 −
𝑥22
2 — иначе

,

ϑ (ℎ (x)) — функция Хэвисайда

ϑ (ℎ (x)) =

⎧⎨⎩ 1, если ℎ (x) > 0

0 — иначе
. (1.22)
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В научной литературе рассмотренный подход в основном используется для
аналитического исследования несложных систем невысокого порядка. Так в ра­
боте [65] рассматривается классический пример поиска управляющей функции,
переводящей нелинейный маятник в устойчивое положение за минимальное вре­
мя. В работе представлено аналитическое решение, дополненное численными
расчетами.

В работе [69] для синтеза системы управления предлагается усовер­
шенствованный метод на основе принципа максимума. Авторами приводится
аналитическое решение задачи вывода спутника на заданную орбиту. Недо­
статком предлагаемого подхода является необходимость выполнения условия
трансверсальности. Определение произвольных постоянных, при которых усло­
вие трансверсальности будет выполняться, возможно для весьма ограниченного
круга задач.

В работе [45] авторами проводится сравнение результатов решения одной и
той же задачи синтеза системы управления методом на основе принципа макси­
мума Понтрягина и методом аналитического конструирования агрегированных
регуляторов (АКАР). Авторами отмечается сложность применения метода на
основе принципа максимума, связанная с необходимостью решения систем диф­
ференциальных уравнений, что не всегда возможно для нелинейных случаев.

Сочетание метода динамического программирования и принципа мак­
симума Понтрягина для задачи синтеза системы управления рассмотрено в
работе [153]. Авторами рассматриваются аналитические методы построения
поверхностей переключения управлений, а также методы редукции задачи
синтеза системы управления к исследованию задачи Коши с указанием на су­
щественные ограничения данного подхода.

1.2.3 Метод аналитического конструирования оптимальных
регуляторов

Понятие «аналитическое конструирование» и последовавший за этим ме­
тод аналитического конструирования оптимальных регуляторов (АКОР) были
предложены профессором А.М. Летовым в 1960 году [74]. В своих работах [46]
А.М. Летов определил АКОР как чисто аналитических метод получения закона
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управления. В настоящее время метод АКОР эффективно применяется к зада­
чам с линейными объектами и квадратичными критериями качества. Данное
направление получило название метода АКОР по Летову-Калману [3]. Более
современная модификация метода с использованием критерия качества обоб­
щенной работы была предложена А.А. Красовским и получила название метода
АКОР по Красовскому [42].

В соответствии с постановкой задачи АКОР, требуется найти такой закон
управления (1.6), который позволит перевести объект управления (1.2) из любо­
го начального состояния (1.3) в терминальное состояние (1.4), соответствующее
началу координат фазового пространства, обеспечивая устойчивость системы и
минимум функционалу качества (1.5).

В основе решения задачи синтеза системы управления методом АКОР
лежит метод динамического программирования. При этом уравнение Беллмана
предлагается преобразовать в более простые для решения алгебраические или
дифференциальные уравнения Риккати.

Представим математическую модель (1.2) в векторно-матричной форме
для линейного объекта управления

ẋ = Ax+Bu, (1.23)

где x = [𝑥1 . . . 𝑥𝑛]
𝑇 , x ∈ R𝑛 — вектор состояния объекта, u = [𝑢1 . . . 𝑢𝑚]

𝑇 ,
u ∈ R𝑚 — ограниченное управление объектом. Для данного объекта управления
будем рассматривать классическую задачу поиска функции управления, пере­
водящей объект из начального состояния (1.3) в терминальное состояние (1.4).
Функционал качества (1.5) примет вид

𝐽 =

∫︁ 𝑡𝑓

0

(︀
x𝑇Qx+ u𝑇Ru

)︀
𝑑𝑡→ min . (1.24)

Сразу следует отметить, что функционал вида (1.24) не учитывает возможные
фазовые ограничения, накладываемые на вектор состояния объекта, что явля­
ется довольно актуальным при решении прикладных задач.

Далее записываем основное функциональное уравнение метода динамиче­
ского программирования для поставленной задачи (1.23) и (1.24)

min
u

{︂
𝑑𝑆(x)

𝑑𝑡
+ x𝑇Qx+ u𝑇Ru

}︂
= 0. (1.25)
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С учётом того, что

𝑑𝑆(x)

𝑑𝑡
=

𝑛∑︁
𝑖=1

𝜕𝑆(x)

𝜕𝑥𝑖
ẋ𝑖,

выражение (1.25) можно представить в виде

min
u

{︃(︂
𝜕𝑆(x)

𝜕x

)︂𝑇

(Ax+Bu) + x𝑇Qx+ u𝑇Ru

}︃
= 0. (1.26)

Дифференцирование выражения в фигурных скобках по управлению поз­
воляет выразить функцию управления через функцию Беллмана

u = −1
2
R−1B𝑇 𝜕𝑆(x)

𝜕x
. (1.27)

Подстановка выражения для управления из (1.27) в уравнение (1.26) поз­
воляет получить уравнение Гамильтона-Якоби-Беллмана(︂

𝜕𝑆(x)

𝜕x

)︂𝑇

A− 1

4

(︂
𝜕𝑆(x)

𝜕x

)︂𝑇

BR−1B𝑇 𝜕𝑆(x)

𝜕x
+ x𝑇Qx = 0. (1.28)

Уравнение Гамильтона-Якоби-Беллмана (1.28) является уравнением в
частных производных и позволяет определить функцию Беллмана 𝑆(x). Таким
образом, получив аналитическое решение уравнения (1.28) с краевым условием
𝑆 (x(𝑡𝑓)) = 0 и подставив его в выражение (1.27), можно получить решение
задачи синтеза системы управления для заданного объекта.

Однако общее решение уравнения в частных производных (1.28) известно
только для линейных объектов [49]. В таком случае решение задачи синтеза
системы управления сводится к решению алгебраических уравнений Риккати.

Для линейного объекта управления функция Беллмана имеет решение в
квадратичной форме

𝑆(x) = x𝑇Px, (1.29)

где P — симметричная, положительно определенная матрица размера 𝑛 × 𝑛.
Тогда, подставляя выражение (1.29) в уравнение Гамильтона-Якоби-Беллма­
на (1.28), получаем

x𝑇
(︀
PA+A𝑇P−PBR−1B𝑇P+Q

)︀
x = 0. (1.30)
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В выражении (1.30) x ̸= 0, следовательно имеем алгебраическое матрич­
ное уравнение Рикатти

PA+A𝑇P−PBR−1B𝑇P+Q = 0. (1.31)

Подставив выражение (1.29) в (1.27) и найдя матрицу P как положительно
определенное решение уравнения Рикатти (1.31), получаем систему управления
для линейного объекта (1.23)

u = −1
2
R−1B𝑇Px.

В качестве примера рассмотрим модель короткопериодического движения
самолета, которая описывается следующей системой дифференциальных урав­
нений [15] {︃

𝑥̇1 = 𝑥2

𝑥̇2 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑢
, (1.32)

где 𝑥1 — угол атаки, 𝑥2 — скорость изменения угла атаки, 𝑢 — отклонение руля
высоты, 𝑎1, 𝑎2 и 𝑎3 — коэффициенты системы, соответствующие определенно­
му режиму полета самолета. Для заданной системы (1.32) необходимо найти
функцию управления рулем высоты 𝑢̃(x), обеспечивающую стабилизирующее
движение самолета по углу атаки 𝑥*1 = 𝑥*2 = 0.

В соответствии с методом АКОР по Красовскому используется функцио­
нал качества общей работы следующего вида

𝐽 =

∫︁ 𝑡𝑓

0

(︂
𝑞1𝑥

2
1 + 𝑞2𝑥

2
2 +

1

2
𝑟𝑢2 +

1

2
𝑟(𝑢*)2

)︂
𝑑𝑡.

Далее записывается основное функциональное уравнение метода динами­
ческого программирования

min
𝑢

{︂
𝜕𝑆

𝜕𝑥1
𝑥2 +

𝜕𝑆

𝜕𝑥2
𝑥̇1 + 𝑞1𝑥

2
1 + 𝑞2𝑥

2
2 +

1

2
𝑟𝑢2 +

1

2
𝑟(𝑢*)2

}︂
= 0. (1.33)

Дифференцирование выражения (1.33) по управлению позволяет выра­
зить управление через функцию Беллмана

𝑢̃ = −𝑎3
𝑟

𝜕𝑆

𝜕𝑥2
. (1.34)
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Подставив управление (1.34) в уравнение (1.33) получаем уравнение Га­
мильтона-Якоби-Беллмана

𝜕𝑆

𝜕𝑥1
𝑥2 +

𝜕𝑆

𝜕𝑥2
(𝑎1𝑥1 + 𝑎2𝑥2) + 𝑞1𝑥

2
1 + 𝑞2𝑥

2
2 = 0. (1.35)

Функцию Беллмана можно представить в виде положительно определен­
ной квадратичной формы

𝑆(𝑥1,𝑥2) = 𝐴11𝑥
2
1 + 𝐴12𝑥1𝑥2 + 𝐴22𝑥

2
2, (1.36)

где коэффициенты 𝐴11, 𝐴12 и 𝐴22 определяются через параметры 𝑎1, 𝑎2, 𝑎3,
𝑞1, 𝑞2 и 𝑟 путем подстановки 𝜕𝑆/𝜕𝑥𝑖, 𝑖 = 1,2 в уравнение Гамильтона-Якоби­
Беллмана (1.35)

𝐴12 = −
𝑞1
𝑎1
, 𝐴22 =

𝑞1 − 𝑎1𝑞2
2𝑎1𝑎2

. (1.37)

Таким образом, получив выражение функции Беллмана (1.36) через ко­
эффициенты (1.37) и подставив ее в (1.34), получаем функцию управления для
поставленной задачи

𝑢̃(x) =
𝑎3
𝑟

(︂
𝑞1
𝑎1
𝑥1 +

𝑎1𝑞2 − 𝑞1
𝑎1𝑎2

𝑥2

)︂
.

При практическом применении метода АКОР для синтеза системы управ­
ления нелинейными объектами возникает ряд существенных математических и
вычислительных сложностей, связанных с необходимостью решения уравнения
в частных производных Гамильтона-Якоби-Беллмана (1.28) относительно про­
изводящей функции [73; 82]. Данные сложности имеют свойство стремительно
нарастать с увеличением порядка объекта управления, что делает метод АКОР
непригодным для использования при поиске функции управления современны­
ми объектами высокого порядка. В [2; 16] отмечается, что решение уравнения
Гамильтона-Якоби-Беллмана найдено только для отдельных объектов второго
и третьего порядков. В работе [48] утверждается, что функция Беллмана даже
для линейных объектов управления при определенных значениях своих аргу­
ментов оказывается разрывной функцией, что делает её недифференцируемой.

Предложенный А.А. Красовским модифицированный метод АКОР с ис­
пользованием так называемого функционала обобщенной работы [42], позволил
преодолеть некоторые трудности при решении нелинейной задачи АКОР, но не
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избавиться от них полностью. Использование функционала обобщенной рабо­
ты позволило заменить сложное уравнение Гамильтона-Якоби-Беллмана (1.28)
более простым для решения линейным уравнением в частных производных Ля­
пунова [4; 44]. Вычислительные трудности, связанные с решением уравнения
Ляпунова, для задач с высокой размерностью объекта управления существенно
меньше трудностей, с которыми приходится сталкиваться при решении урав­
нения Рикатти.

Таким образом, метод АКОР предлагает удобные инструменты поиска
аналитического решения задачи синтеза системы управления только для линей­
ных систем, тогда как поиск решения нелинейной задачи АКОР, спустя более
полувека с момента её формулировки, является одной из основных проблем
теории автоматического управления [73].

1.2.4 Синтез на основе функций Ляпунова

В конце XIX века А.М. Ляпуновым был предложен общий подход к иссле­
дованию устойчивости динамических систем. Позднее данный подход получил
название метода функций Ляпунова [7]. На основе функции Ляпунова для
конкретной системы управления можно в первую очередь получить оценку её
устойчивости. Также функции Ляпунова позволяют осуществить синтез систе­
мы управления заданным объектом [29; 44].

В соответствии с постановкой задачи синтеза системы управления (1.6)
для объекта (1.2) методом на основе функций Ляпунова, требуется определить
такой вид обратной связи, чтобы положение равновесия системы управле­
ния (1.2) в области целевой точки (1.4) было асимптотически устойчивым
в целом. Для обеспечения асимптотической устойчивости системы необходи­
мо выбрать такое управление (1.6), чтобы производная по времени функции
Ляпунова являлась отрицательно определенной функцией на траекториях рас­
сматриваемой системы.

В общей постановке задачи для объекта управления, заданного в ви­
де (1.2), определен функционал качества

𝐽 =

∫︁ 𝑡𝑓

0

ω (x,u,𝑡) 𝑑𝑡→ min, (1.38)
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где ω (x,u,𝑡) — некоторая положительно определенная функция.
Для поиска функции управления (1.6), доставляющей минимум функцио­

налу качества (1.38), введем положительно определенную функцию Ляпунова
𝑉 (x,𝑡), для которой существуют непрерывные частные производные первого
порядка на всей области её определения.

Производная функции Ляпунова по времени для уравнения (1.2) имеет
вид

𝑉̇ =
𝜕𝑉

𝜕x
f (x,u) +

𝜕𝑉

𝜕𝑡
. (1.39)

Требуется найти такое управление u = u (x,𝑡), при котором выполняется
неравенство

𝑉̇ ⩽ −ω (x,u,𝑡) . (1.40)

С учетом (1.40) уравнение (1.39) примет вид

µ (x,u,𝑡) =
𝜕𝑉

𝜕x
f (x,u) +

𝜕𝑉

𝜕𝑡
+ω (x,u,𝑡) ⩽ 0. (1.41)

Разрешая неравенство (1.41) относительно управления u при фиксиро­
ванном значении функции Ляпунова 𝑉 (x,𝑡), получаем решение поставленной
задачи.

Рассмотрим задачу синтеза системы управления на основе функций Ляпу­
нова для линейного объекта управления. Пусть математическая модель объекта
управления имеет вид (1.23). Тогда в качестве функции Ляпунова может быть
выбрана квадратичная функция вида

𝑉 (x,𝑡) = x𝑇Px, (1.42)

где P — симметричная, положительно определенная матрица размера 𝑛 × 𝑛.
Функцию ω (x,u,𝑡) также можно представить в квадратичной форме

ω (x,𝑡) = x𝑇Qx, (1.43)

где Q — симметричная, положительно определенная матрица размера 𝑛 × 𝑛.
Неравенство (1.41) для системы (1.23) примет вид

µ (x,u,𝑡) =
𝜕𝑉

𝜕x
Ax+

𝜕𝑉

𝜕x
Bu+

𝜕𝑉

𝜕𝑡
+ω (x,u,𝑡) ⩽ 0. (1.44)

В соответствии с достаточным условием стабилизируемости системы, для
положительно определенной функции Ляпунова 𝑉 (x,𝑡) и положительно опре­
деленной функции ω (x,𝑡) и при действительных значениях вектора состояния
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системы x, для которых выполняется уравнение

σ (x,𝑡) =
𝜕𝑉

𝜕x
B = 0, (1.45)

система стабилизируема, если выполняется неравенство

µ (x,0,𝑡) =
𝜕𝑉

𝜕x
Ax+

𝜕𝑉

𝜕𝑡
+ω (x,0,𝑡) ⩽ 0. (1.46)

С учетом (1.42) и (1.43) неравенство (1.46) и уравнение (1.45) примут вид
соответственно

µ (x,0,𝑡) = x𝑇
(︀
PA+A𝑇P+Q

)︀
x ⩽ 0, (1.47)

σ (x,𝑡) = 2x𝑇PB = 0. (1.48)

Тогда для значений вектора состояния системы x, для которых уравне­
ние (1.48) не выполняется, функция управления выделяется ограничением

u (x,𝑡) sgn (σ (x,𝑡)) ⩽ −µ (x,0,𝑡)
|σ (x,𝑡)|

.

При значениях вектора состояния системы x, для которых уравнение (1.48)
истинно, значения управления u (x,𝑡) могут быть произвольными в рамках на­
ложенных на вектор управления ограничений.

Рассмотрим пример на основе уравнения маятника [80]⎧⎨⎩ 𝑥̇1 = 𝑥2

𝑥̇2 = 𝑎 sin (𝑥1) + 𝑢
, (1.49)

где 𝑎 — заданный параметр системы. Для данной системы необходимо найти
функцию управления, стабилизирующую маятник в точке равновесия x = 0.

В качестве функции Ляпунова возьмем квадратичную функцию следу­
ющего вида

𝑉 (x,𝑡) =
1

2
𝑥21 +

1

2
𝑥22.

Пусть функция ω (x,u,𝑡) также представлена в квадратичной форме

ω (x,𝑡) = 𝑥22.

Тогда, в силу (1.39) и (1.40), имеем следующее уравнение

𝑥1𝑥2 + 𝑥2 (𝑎 sin (𝑥1) + 𝑢) ⩽ −𝑥22. (1.50)
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Из полученного уравнения (1.50) выразим управление u = u(x,𝑡)

𝑢 = −𝑥1 − 𝑎 sin (𝑥1)− 𝑥2. (1.51)

На сегодняшний день не существует универсального метода построения
функций Ляпунова [35]. Для некоторых нелинейных систем определенного вида
разработаны различные методы нахождения функций Ляпунова, среди кото­
рых метод разделения переменных Е.А. Барбашина [6], метод Лурье [50] и др.

Следует отметить связь метода АКОР с использованием критерия общей
работы при решении нелинейных задач и метода функций Ляпунова, о которой
говорилось выше. Отсюда следует применимость метода АКОР с критерием
общей работы только к устойчивым объектам управления. В работе [60] также
отмечается наличие взаимосвязи между подходом к решению задачи синтеза
системы управления на основе функций Ляпунова и методом на основе прин­
ципа максимума.

Метод функций Ляпунова применим только к устойчивым объектам
управления. Также как и при использовании описанных выше методов поиска
функции управления, трудности при поиске решения методом функций Ляпуно­
ва имеют свойство стремительно расти с увеличением порядка системы. Данные
факты, наряду с отсутствием общего подхода к нахождению функций Ляпунова
для нелинейных систем, делают этот метод пригодным только для линейных
систем управления невысокого порядка.

1.2.5 Метод бэкстеппинга

Метод бэкстеппинга (Backstepping), также известный как метод адаптив­
ного обхода интегратора, был предложен в 1991 году коллективом авторов
во главе с П. Кокотовичем [111; 114]. В настоящий момент данный метод яв­
ляется достаточно популярным и широко освещен как в иностранной, так и
отечественной научной литературе [79]. Бэкстеппинг применим к классу задач
нелинейного синтеза и нашел применение к широкому кругу задач управления
в аэрокосмической и технической отраслях [70; 78; 155].

В основе метода бэкстеппинга лежит рекурсивная процедура делающая
каждый интегратор объекта управления устойчивым по Ляпунову путём до­
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бавления обратной связи. Отсюда происходит другое название метода — метод
адаптивного обхода интегратора. Алгоритм бэкстеппинга совмещает задачу на­
хождения функций Ляпунова и поиск соответствующей функции управления
объектом. Согласно алгоритму исходная задача синтеза системы управления
для всей системы разбивается на последовательность подзадач для подсистем
меньшего порядка. Для каждого дифференциального уравнения, описывающе­
го исходный объект управления, осуществляется добавление обратной связи,
делающей интегратор устойчивым по Ляпунову. Иными словами, на каждой
итерации для рассматриваемого уравнения исходной системы управления (1.2)
перед разработчиком встаёт задача определения функции Ляпунова и коэф­
фициентов. По теореме Ляпунова для обеспечения устойчивости интегратора
производная соответствующей функции Ляпунова должна быть отрицательно
полуопределенной (1.40). После последовательного обхода всех интеграторов
возможно получить функцию управления для всей системы.

Пусть математическая модель объекта управления задана в общем виде⎧⎨⎩ 𝑥̇1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1)𝑥2

𝑥̇2 = 𝑓2 (𝑥1,𝑥2) + 𝑔2 (𝑥1,𝑥2)𝑢
, (1.52)

где 𝑓𝑖 и 𝑔𝑖, 𝑖 = 1,2 — известные функции.
В системе (1.52), при условии выполнения неравенства 𝑔2 (𝑥1,𝑥2) ̸= 0

в рассматриваемой области допустимых значений вектора состояния

x =
[︁
𝑥1 𝑥2

]︁𝑇
, возможно преобразование к виду, соответствующему простому

интегратору, путем замены входа системы на выражение

𝑢 =
1

𝑔2 (𝑥1,𝑥2)
(𝑢′ − 𝑓2 (𝑥1,𝑥2)) . (1.53)

Тогда систему (1.52) можно преобразовать к виду⎧⎨⎩ 𝑥̇1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1)𝑥2

𝑥̇2 = 𝑢′
. (1.54)

Целью рассматриваемой задачи является построение системы управления
с обратной связью по координатам вектора состояния, которая обеспечивала бы
стабилизацию системы в начале координат. При необходимости стабилизации
системы в области другой точки координат состояния, путем преобразования
координат можно перейти к стабилизации в начале координат.
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В соответствии с методом бэкстеппинга, рассмотрим подсистему системы
управления (1.54), состоящую из первого уравнения. Пусть данная подсистема
может быть стабилизирована обратной связью вида

𝑥2 = 𝑠 (𝑥1) ,

где 𝑠 — стабилизационная функция, причем

𝑠 (0) = 0. (1.55)

Из (1.55) следует, что начало координат подсистемы 𝑥̇1 = 𝑓1 (𝑥1) +

𝑔1 (𝑥1) 𝑠 (𝑥1) является асимптотически устойчивым.
Пусть известны положительно определенные функция Ляпунова 𝑉 (𝑥1) и

функция ω (𝑥1), для которых в соответствии с теоремой Ляпунова выполня­
ется неравенство

𝜕𝑉

𝜕𝑥1
(𝑓1 (𝑥1) + 𝑔1 (𝑥1) 𝑠 (𝑥1)) ⩽ −ω (𝑥1) .

Представим первое уравнение системы (1.54) следующим образом

𝑥̇1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1)𝑥2 + 𝑔1 (𝑥1) 𝑠 (𝑥1)− 𝑔1 (𝑥1) 𝑠 (𝑥1) .

Тогда модифицированная система (1.54) примет вид⎧⎨⎩ 𝑥̇1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1) 𝑠 (𝑥1) + 𝑔1 (𝑥1) (𝑥2 − 𝑠 (𝑥1))

𝑥̇2 = 𝑢′
. (1.56)

Выражение 𝑥2 − 𝑠 (𝑥1) соответствует отклонению значения стабилизаци­
онной функции от желаемого. Данное отклонение, называемое также ошибкой
состояния, можно представить как

𝑧 = 𝑥2 − 𝑠 (𝑥1) . (1.57)

Подставив (1.57) в (1.56), получим⎧⎨⎩ 𝑥̇1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1) 𝑠 (𝑥1) + 𝑔1 (𝑥1) 𝑧

𝑧̇ = 𝑢′ − 𝑠̇ (𝑥1)
, (1.58)

где

𝑠̇ (𝑥1) =
𝜕𝑠

𝜕𝑥1
(𝑓1 (𝑥1) + 𝑔1 (𝑥1)𝑥2) , (1.59)
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Возьмем
υ = 𝑢′ − 𝑠̇ (𝑥1) , (1.60)

тогда система (1.58) примет вид⎧⎨⎩ 𝑥̇1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1) 𝑠 (𝑥1) + 𝑔1 (𝑥1) 𝑧

𝑧̇ = υ
. (1.61)

В полученной системе (1.61) первая подсистема асимптотически устойчива
в начале координат и требуется найти такое управление υ, которое стабилизи­
рует всю систему.

Для этого в качестве функции Ляпунова для системы (1.61) возьмем

𝑉 (𝑥1,𝑥2) = 𝑉 (𝑥1) +
1

2
𝑧2.

В качестве функции ω (𝑥1,𝑧) возьмем

ω (𝑥1,𝑧) = ω (𝑥1) + 𝑘𝑧2.

На основе теоремы Ляпунова имеем неравенство

𝜕𝑉

𝜕𝑥1
(𝑓1(𝑥1) + 𝑔1(𝑥1)𝑠(𝑥1)) +

𝜕𝑉

𝜕𝑥1
𝑔1(𝑥1)𝑧 + 𝑧υ ⩽ −ω(𝑥1)− 𝑘𝑧2, (1.62)

где 𝑘 > 0 — настраиваемый коэффициент.
Подставив в неравенство (1.62) выражения для 𝑧, 𝑠̇ и υ из (1.57), (1.59)

и (1.60) соответственно, получим функцию управления 𝑢′ для системы (1.54)

𝑢′ =
𝜕𝑠

𝜕𝑥1
(𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2)−

𝜕𝑉

𝜕𝑥1
𝑔1(𝑥1)− 𝑘 (𝑥2 − 𝑠(𝑥1)) . (1.63)

Возвращаясь к модели объекта управления в общем виде (1.52) и подстав­
ляя (1.63) в (1.53), получим функцию управления 𝑢 для системы (1.52)

𝑢 = 1
𝑔2(𝑥1,𝑥2)

(︁
𝜕𝑠
𝜕𝑥1

(𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2)−

− 𝜕𝑉
𝜕𝑥1

𝑔1(𝑥1)− 𝑘 (𝑥2 − 𝑠(𝑥1))− 𝑓2(𝑥1,𝑥2)
)︁
.

В качестве примера рассмотрим задачу стабилизации маятника [80; 81].
Объект описывается системой уравнений (1.49). В соответствии с алгоритмом
бэкстеппинга, рассматриваем каждое уравнение системы (1.49), делая интегра­
тор устойчивым по Ляпунова, путем добавления обратной связи.
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Так для первого уравнения 𝑥2 является своего рода виртуальным управ­
лением. Тогда для первого уравнения функция Ляпунова будет иметь вид

𝑉 (𝑥1) =
1

2
𝑥21,

а ее производная в соответствии с (1.39) будет равна

𝑉̇ (𝑥1) = 𝑥1𝑥2. (1.64)

Чтобы обеспечить устойчивость интегратора, производная функции Ля­
пунова должна быть отрицательно полуопределенной

𝑉̇ (𝑥1) ⩽ −ω (𝑥1) . (1.65)

В качестве функции ω (𝑥1) возьмем функцию вида

ω (𝑥1) = 𝑘1𝑥
2
1. (1.66)

Тогда, подставив (1.64) и (1.66) в (1.65), можно выразить вид обратной свя­
зи в форме стабилизационной функции, которая будет стабилизировать один
интегратор

𝑠(𝑥1) = −𝑘1𝑥1.

Введем ошибку состояния 𝑧 как отклонение 𝑥2 от 𝑠(𝑥1)

𝑧 = 𝑥2 − 𝑠(𝑥1) = 𝑥2 + 𝑘1𝑥1. (1.67)

С учетом (1.67) система (1.49) примет вид⎧⎨⎩ 𝑥̇1 = 𝑧 + 𝑠(𝑥1) = 𝑧 − 𝑘1𝑥1

𝑧̇ = 𝑥̇2 − 𝑠̇(𝑥1) = 𝑎 sin(𝑥1) + 𝑢+ 𝑘1𝑥̇1 = 𝑎 sin(𝑥1)+𝑢+𝑘1(𝑧−𝑘1𝑥1)
. (1.68)

Ошибку состояния 𝑧 необходимо ввести в функцию Ляпунова. Тогда в
качестве новой возможной функции Ляпунова можно принять квадратичную
функцию

𝑉 (𝑥1,𝑧) =
1

2
𝑥21 +

1

2
𝑧2. (1.69)

Аналогично описанной выше схеме необходимо вычислить производную
функции Ляпунова 𝑉̇ (𝑥1,𝑧), которая для обеспечения устойчивости уже всей
системы должна быть отрицательно полуопределенной

𝑉̇ (𝑥1,𝑧) ⩽ −ω (𝑥1,𝑧) . (1.70)



37

В качестве функции ω (𝑥1,𝑧) можно принять сумму квадратов вектора
состояния модифицированной системы (1.68)

ω (𝑥1,𝑧) = 𝑘1𝑥
2
1 + 𝑘2𝑧

2. (1.71)

Подставив производную функции Ляпунова (1.69) и функцию (1.71) в
неравенство (1.70), получим

𝑥1 + 𝑎 sin(𝑥1) + 𝑢+ 𝑘1𝑥1 ⩽ −𝑘2𝑧,

откуда выразим функцию управления

𝑢 = −𝑥1(1 + 𝑘1𝑘2)− 𝑥2(𝑘1 + 𝑘2)− 𝑎 sin(𝑥1).

Подбор значений коэффициентов 𝑘1 и 𝑘2 позволяет найти баланс между
величиной перерегулирования и временем переходного процесса. При значении
одного из коэффициентов равном нулю, а другого — единице получаем выраже­
ние, эквивалентное управлению (1.51), найденного методом функций Ляпунова.

В сравнении с методом на основе функций Ляпунова, бэкстеппинг позво­
ляет избегать трудностей, связанных с линеаризацией объекта, и сравнительно
легче находить решения исходной задачи. Однако данный метод нельзя отне­
сти к классу универсальных. При использовании бэкстеппинга от разработчика
требуется наличие определенного опыта в выборе функций Ляпунова и коэф­
фициентов обратной связи. На практике решения многих прикладных задач
оказываются нестандартными, а производимые расчёты — довольно громозд­
кими [70].

Определенная эффективность бэкстеппинга ощутима только в случаях
синтеза системы управления простыми нелинейными объектами малых поряд­
ков. Так в работе [81] метод бэкстеппинг реализован только для некоторых
систем первого и второго порядков. Увеличение порядка и сложности модели
объекта управления приводит к значительному увеличению трудностей по­
лучения аналитического решения. Известные модификации метода [77; 119]
позволяют получать решения для более сложных объектов управления, но не
избавляют разработчика от сложности и громоздкости вычислений.
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1.2.6 Метод аналитического конструирования агрегированных
регуляторов

Метод аналитического конструирования агрегированных регулято­
ров (АКАР) был предложен А.А. Колесниковым в 1985 году [36] и получил
развитие в работах [37—39]. Данный подход позиционируется как эффективный
метод решения задачи синтеза системы управления нелинейными многомер­
ными и многосвязными объектами. Метод АКАР базируется на принципе
«расширения – сжатия» фазового пространства, сформулированного А.А. Ко­
лесниковым. По словам автора, данных принцип позволят методу АКАР
преодолевать так называемое «проклятие размерности» при решении задач
синтеза для сложных многомерных систем [40].

В основе метода лежит синергетическая концепция анализа и синтеза
нелинейных обратных связей. Согласно методу АКАР делается предположе­
ние о возможности формирования в фазовом пространстве системы управления
притягивающих многообразий — аттракторов. В зоне действия аттрактора даль­
нейшее поведение системы определяется его свойствами. Построенные обратные
связи должны обеспечивать асимптотическую устойчивость системы по отно­
шению к аттракторам. При этом движение системы управления разбивается на
этап устремления к аттрактору и этап асимптотически устойчивого движения
на желаемом аттракторе [68].

Пусть объект управления задан в виде (1.2), пусть также заданы мно­
жество начальных условий (1.3) и терминальные условия (1.4). Тогда, в
соответствии с постановкой задачи аналитического конструирования агрегиро­
ванных регуляторов, требуется найти такую функцию управления

u(ψ) = u(x), (1.72)

которая обеспечивает перемещение объекта управления (1.2) из любого началь­
ного состояния из множества (1.3) сначала в окрестность многообразия

ψ(x) = 0, (1.73)

называемого аттрактором, а затем асимптотически устойчивое движение вдоль
него в заданное терминальными условиями (1.4) состояние.
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В методе АКАР система основных функциональных уравнений имеет сле­
дующий вид

Tψ̇(𝑡) +φ(ψ) = 0. (1.74)

Движение объекта управления должно удовлетворять системе основных функ­
циональных уравнений (1.74). При этом функцииφ(ψ) следует выбирать таким
образом, чтобы обеспечивать асимптотическую устойчивость системы (1.74) и
желаемый вид фазовой траектории движения к аттракторам (1.73). В простей­
шем случае φ(ψ) = ψ. Притягивающие многообразия (1.73) являются своего
рода целевыми множествами, к которым притягивается объект управления.
Движение может осуществляться от одного аттрактора к другому до дости­
жения конечного аттрактора и движения по нему до терминального состояния.

Для поставленной задачи функционал качества имеет вид

𝐽 =

∫︁ 𝑡𝑓

0

(︁
φ2(ψ) +T2ψ̇

2
(𝑡)
)︁
𝑑𝑡→ min . (1.75)

Синтезированная системы управления (1.72) должна обеспечивать ми­
нимум функционалу (1.75), однако сам функционал (1.75) непосредственного
участия в процедуре синтеза системы управления не принимает. Это является
основным отличием метода АКАР от других рассмотренных выше методов.

В качестве примера решения прикладной задачи синтеза системы управ­
ления методом АКАР рассмотрим задачу синтеза системы управления рулем
высоты, обеспечивающей стабилизирующее движение самолета по углу ата­
ки [15; 41]. Математическая модель данной системы описывается системой
дифференциальных уравнений (1.32). Необходимо найти функцию управле­
ния рулем высоты 𝑢̃(x), обеспечивающую стабилизирующее движение самолета
𝑥*1 = 𝑥*2 = 0.

В соответствии с методом АКАР введем функцию преобразования (1.73)
следующего вида

ψ(𝑥1,𝑥2) = β𝑥1 + 𝑥2. (1.76)

На основе (1.76) построим функционал качества (1.75), который для данной
задачи примет вид

𝐽 =

∫︁ 𝑡𝑓

0

(︁
ψ2 + 𝑇 2ψ̇2(𝑡)

)︁
𝑑𝑡→ min . (1.77)
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Подстановка в (1.77) функции (1.76) и ее первой производной позволяет
привести функционал качества (1.77) к следующему виду

𝐽 =
𝑡𝑓∫︀
0

(︂(︂
β2

𝑇 2 + 𝑎1

)︂
𝑥21 +

(︁
β2 + 𝑎22 +

1
𝑇 2

)︁
𝑥22+

+ 2𝑎3 (𝑎1𝑥1 + 𝑎2𝑥2)𝑢+ 𝑎23𝑢
2

)︂
𝑑𝑡→ min .

(1.78)

Далее используем основное функциональное уравнение метода
АКАР (1.74), которое для данной задачи имеет вид

𝑇 ψ̇(𝑡) +ψ = 0. (1.79)

Данное основное функциональное уравнение доставляет минимум функцио­
налу (1.77), а значит и функционалу (1.78). Тогда, с учетом (1.76) и (1.79),
функция управления для системы (1.32) будет иметь вид

𝑢̃(𝑥1,𝑥2) = −
1

𝑎3

(︂
𝑎1 +

β

𝑇

)︂
𝑥1 −

1

𝑎3

(︂
𝑎2 + β+

1

𝑇

)︂
𝑥2.

Метод АКАР показывает более высокую эффективность и простоту реа­
лизации, чем рассмотренные выше методы. Данный метод значительно лучше
работает с нелинейными системами. В тоже время для сложных динамических
систем не всегда представляется возможным произвести выбор функции пре­
образования. Сложность такого выбора может быть сравнима с интуитивным
построением самой системы управления. Также нужно учитывать ряд серьёз­
ных ограничений, накладываемых на исходную задачу, вплоть до отсутствия
ее аналитического решения. Следует особо отметить, что сам алгоритм поиска
решения методом АКАР, заключающийся в нахождении притягивающих мно­
гообразий — аттракторов и движении в их окрестности, содержит своего рода
подводные камни, которые могут оказать существенное негативное влияние на
решение. В самом деле, известно, что движение объекта в окрестности опти­
мальной траектории может сильно отличаться по значению критерия качества
от движения по самой оптимальной траектории.
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1.3 Постановка задачи численного синтеза системы управления на
основе многокритериальной структурно-параметрической

оптимизации

Высокая сложность большинства прикладных задач синтеза системы
управления делает невозможным применение методов их аналитического ре­
шения. Действительно, для большого класса прикладных задач рассмотренные
в разделе 1.2 методы аналитического синтеза системы управления принимают
излишне громоздкий вид или эффективны в весьма узких диапазонах усло­
вий применения.

Когда применение аналитических методов не является возможным, целе­
сообразно использовать численные методы поиска решения. Технологический
прогресс, достигнутый за прошедшее с момента появления первых ЭВМ время,
позволил значительно увеличить эффективность, точность и быстродействие
применяемых численных методов решения поставленной задачи. С другой
стороны, тот же технологический прогресс предопределил как значительное
расширение сферы применения систем автоматического управления, так и
усложнение объектов управления. Всё это делает поиск новых эффективных
численных методов решения задачи синтеза системы управления актуальным
по сей день.

Приведем постановку задачи численного синтеза системы управления на
основе многокритериальной структурно-параметрической оптимизации [23].

Для системы (1.2) можно получить частное численное решение для одно­
го начального состояния x (0) из множества (1.3), оптимальное по значению
функционала (1.5). Такое решение для данного начального состояния будет
совпадать с решением, которое можно было бы получить с помощью иско­
мой системы управления. Однако определить структуру многомерной функции
управления по одному частному решению нельзя, так как найденное частное
решение может не доставлять оптимального управления из иного начального
состояния из множества (1.3). Согласно постановке задачи синтеза системы
управления многомерная функция управления должна обеспечивать оптималь­
ное решение для всех начальных состояний из множества (1.3).
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Заменим непрерывное множество (1.3) конечным множеством из 𝑁 эле­
ментов

X̃0 =
{︀
x0,1, . . . ,x0,𝑁

}︀
. (1.80)

Введем в рассмотрение функционалы качества

𝐽1 =
𝑁∑︁
𝑗=1

(︂∫︁ 𝑡𝑓

0

𝑓0 (x(𝑡),u(𝑡)) 𝑑𝑡

)︂
x0,𝑗

→ min, (1.81)

𝐽2 =
𝑁∑︁
𝑗=1

(︃
𝐿∑︁

𝑘=1

|φ𝑘 (x(𝑡𝑓))|

)︃
x0,𝑗

→ min, (1.82)

где φ𝑘 (x(𝑡𝑓)), 𝑘 = 1,𝐿, 1 ⩽ 𝐿 ⩽ 𝑛 — функции оценки достижения терминаль­
ного условия (1.4), при x(𝑡𝑓) = x𝑓 ⇒ φ𝑘 (x(𝑡𝑓)) = 0.

Тогда решением поставленной задачи будет система управления в виде
функции от координат пространства состояний

ũ = h(x) ∈ Π (1.83)

где Π — множество Парето оптимальных решений по значениям функциона­
лов (1.81) и (1.82).

Пусть известны функции управления для 𝑁 одноточечных задач из 𝑁

разных начальных состояний x (0) = x0,𝑗, 𝑗 = 1,𝑁 ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ũ(x0,1) = h1(x)

ũ(x0,2) = h2(x)

· · ·
ũ(x0,𝑁) = h𝑁(x)

(1.84)

такие, что доставляют минимум соответствующим функционалам качества⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐽(x0,1)

𝐽(x0,2)

· · ·
𝐽(x0,𝑁)

, (1.85)

где 𝐽(x0,𝑗) — свертка функционалов (1.81) и (1.82), вычисленных для началь­
ного значения x (0) = x0,𝑗, 𝑗 = 1,𝑁 .
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Тогда существует функция управления для 𝑁 -точечной задачи синтеза в
виде функции от координат пространства состояний

u(x0,1,x0,2, . . . ,x0,𝑁) = h(x),

которая доставляет значение функционала 𝐽 не хуже, чем сумма функциона­
лов (1.85) для 𝑁 одноточечных задач

𝐽(x0,1,𝑥0,2, . . . ,x0,𝑁) = 𝐽(x0,1) + 𝐽(x0,2) + . . .+ 𝐽(x0,𝑁).

С учетом (1.84) функция управления (1.83), обеспечивающая перевод объ­
екта управления (1.2) из множества начальных состояний (1.80) в терминальное
состояние (1.4) и обеспечивающая оптимальное по Парето значение функцио­
налов (1.81) и (1.82), примет вид

ũ = h(x) =
𝑁∑︁
𝑗=1

ϑ
(︀
ε−

⃦⃦
x(0)− x0,𝑗

⃦⃦)︀
h𝑗(x),

где ϑ (𝐴) — функция Хэвисайда (1.22), ε — малая величина, ε <
⃦⃦
x0,𝑗 − x0,𝑘

⃦⃦
2 ,

𝑗,𝑘 = 1,𝑁 .
Рассмотренную постановку задачи численного синтеза системы управле­

ния также можно назвать многокритериальным синтезом ввиду наличия сразу
нескольких функционалов качества (1.81) и (1.82). Такая форма постановки
задачи синтеза в большей степени свойственна прикладным инженерным за­
дачам.

1.4 Численные методы решения задачи синтеза системы
управления на основе многокритериальной
структурно-параметрической оптимизации

До последнего времени одним из наиболее распространенных способов ре­
шения задачи синтеза системы управления являлся параметрический синтез.
При таком подходе предварительный анализ объекта управления и обычно из­
вестный заранее диапазон изменения его возможных состояний, как правило,
позволяет разработчику сделать предположение о структуре функциональ­
ной зависимости управляющих воздействий от текущего состояния объекта.
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В отсутствии предварительных данных разработчик может выбрать структуру
системы управления на основе собственного опыта или даже интуиции. Функци­
ональная зависимость задается до некоторого числа неизвестных параметров,
а дальнейшая настройка системы управления сводится к поиску оптималь­
ных значений данных параметров. Использование разных оптимизационных
алгоритмов позволяет заметно увеличить точность выбранной функциональной
зависимости. Однако более значимую роль в достижении требуемых критериев
управления играет наличие предварительной информации о форме функцио­
нальной связи, а не настройка её параметров. Таким образом, параметрический
синтез не является универсальным подходом и может быть совершенно неэф­
фективен для сложных систем.

Далее речь пойдет о численных методах структурно-параметрического ре­
шения задачи синтеза управления. В нем производится одновременный поиск
и формы функциональной зависимости управления, и параметров, делающих
эту зависимость более точной. В отличие от параметрического синтеза, та­
кой подход не требует наличия информации о форме функциональной связи
управляющих воздействий от текущего состояния объекта управления. Так­
же не требуется предварительной подготовки к поиску решения со стороны
разработчика. Поиск решения основывается на математической модели, описы­
вающей объект управления, на данных об ограничениях на векторы состояния
и управления. Отсюда следует универсальность и бóльшая научная и приклад­
ная значимость такого подхода.

Долгое время не существовало эффективных подходов к численному
структурно-параметрическому синтезу. Для подбора оптимальной структуры
функциональной зависимости требовалось обеспечить возможность поиска на
пространстве математических выражений. Прорывом в данной области по­
служило бурное развитие вычислительной техники в конце прошлого века и
появление методов машинного обучения. В 1989 году американским ученым
Джоном Козой был предложен метод генетического программирования [117],
в основе которого лежал поиск на нечисловом пространстве символов. Изна­
чально метод задумывался для автоматического составления компьютерных
программ. Поиск оптимального выражения осуществлялся с помощью генетиче­
ского алгоритма [106]. Позднее в 1999 году Джон Коза с соавторами представил
работу, посвященную структурно-параметрическому синтезу системы управле­
ния на основе метода генетического программирования [86].
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Широкого прикладного распространения метод генетического програм­
мирования в области структурно-параметрического синтеза не получил. Воз­
можно, это обусловлено некоторыми недостатками метода, связанными с
необходимостью проверки корректности выражения на каждом этапе поиска.
Однако данный метод стал отправной точкой для целого класса новых мето­
дов поиска на нечисловом пространстве, получивших общее название методов
символьной регрессии [23]. Среди методов данного класса следует отметить ме­
тод декартового генетического программирования [124], метод грамматической
эволюции [136], метод аналитического программирования [154] и метод сете­
вого оператора, предложенный профессором А.И. Дивеевым в 2008 году [96].
Различия в методах символьной регрессии заключаются в методике кодирова­
ния математических выражений и осуществления преобразования одной записи
в другую. В случае с задачей синтеза управления искомой функцией управле­
ния будет наиболее оптимальное математическое выражение, полученное в ходе
итерационного процесса преобразования записей. Таким образом, любой метод
символьной регрессии может с той или иной эффективностью быть использован
для решения задачи синтеза управления. Более подробно методы символьной
регрессии рассмотрены в Главе 2.

Несмотря на то, что любые методы символьной регрессии могут приме­
няться для поиска решения задачи синтеза управления, наибольшее распростра­
нение в этом направлении получил метод сетевого оператора. Отличительной
особенностью, выделяющей метод сетевого оператора среди других методов
класса, является то, что он создавался для целей применения именно к задачам
синтеза системы управления и учитывает их специфику [22]. Использование
данного метода позволило достичь значительных успехов в решении многих
прикладных задач идентификации математических моделей и задач синтеза
системы управления. В своих работах А.И. Дивеев и его ученики рассматрива­
ли такие сложные объекты управления как химические реакторы, гусеничные
и колесные мобильные роботы, беспилотные летательные аппараты и квадроко­
птеры, космические спутники, космические аппараты и многие другие [21—23;
163; 96]. Метод сетевого оператора, а также другие методы символьной регрес­
сии в данных работах использовались для многокритериальной оптимизации
структуры и параметров искомой функции управления.

Рассмотрим задачу численного синтеза системы управления на основе
структурно-параметрической многокритериальной оптимизации с помощью ме­
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тодов символьной регрессии [22]. Пусть объект управления задан в виде (1.2),
множество начальных значений дискретно и имеет вид (1.80), а терминальные
условия описываются уравнением (1.4). При решении задачи используем функ­
ционалы качества (1.81) и (1.82).

Введем обозначение записи функции управления

g (x,s) , (1.86)

где s — вектор постоянных параметров, заданной размерности 𝐾,
s = [𝑠1 . . . 𝑠𝐾 ]

𝑇 . В методах символьной регрессии возможность записи струк­
туры функции управления в виде (1.86) ограничена набором используемых
символов.

Решением задачи численного синтеза системы управления на основе струк­
турно-параметрической многокритериальной оптимизации с помощью методов
символьной регрессии будет запись оптимальной структуры функции

ũ = g* (x,s*) (1.87)

и оптимальные значения ее параметров s*.
Выбор решения в форме записи структуры функции управления (1.87)

осуществляется на множестве Парето в пространстве функционалов (1.81)
и (1.82)

Π =
{︀
g̃𝑖
(︀
x,s̃𝑖

)︀
: 𝑖 = 1,2, . . .

}︀
. (1.88)

Для поиска решения методами символьной регрессии строится множество воз­
можных решений в форме записей функций

G =
{︀
g𝑗
(︀
x,s𝑗

)︀
: 𝑗 = 1,2, . . .

}︀
(1.89)

и применяются операции генетического алгоритма для получения записей
g̃𝑖
(︀
x,s̃𝑖

)︀
, удовлетворяющих задаче (1.2), (1.4), (1.80) — (1.82). Таким образом,

множество Парето (1.88) является подмножеством множества возможных ре­
шений (1.89)

Π ⊆ G.

Как видно из описания, синтез системы управления на основе многокри­
териальной оптимизации структуры функции управления и одновременного
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поиска оптимальных значений ее параметров реализует подход прямого подбора
оптимального решения на пространстве всех возможных решений. С помощью
данного подхода впервые были получены решения для большого числа задач,
ранее для которых получить ни аналитическое, ни численное решение не пред­
ставлялось возможным. Однако данный подход обладает рядом недостатков.

Численное решение задачи структурно-параметрической многокритери­
альной оптимизации требует дискретизации множества начальных состоя­
ний (1.3) и, как следствие, перехода от функционала (1.5) к функционалу (1.81)
в виде суммы функционалов качества для каждого начального состояния из
конечного множества (1.80). Для задач, учитывающих расстояния от началь­
ного состояния системы до цели управления, при таком переходе начальные
состояния из множества (1.80), расположенные дальше от терминального
состояния (1.4), будут вносить в сумму функционала качества (1.81) более суще­
ственный вклад, чем начальные состояния, расположенные ближе к цели (1.4).
Таким образом, найденное решение с использованием функционала (1.81)
может оказаться не универсальным, так как оптимизация решения для рас­
положенных далеко от цели начальных состояний будет сильней влиять на
уменьшение значения функционала.

Чтобы проверить и убедиться в универсальности найденного решения за­
дачи синтеза в работе [22] предлагается использовать критерий оптимальности
на основе численного решения задачи оптимального управления

max
𝑡

⃒⃒
ṽ𝑗 (𝑡)−

(︀
g̃𝑖
(︀
x,s̃𝑖

)︀)︀
x0,𝑗

⃒⃒
⩽ δ, 𝑗 = 1,𝑁, (1.90)

где ṽ𝑗 (𝑡) — численное решение задачи оптимального управления для
объекта (1.2), терминального условия (1.4) и начального состояния из
множества (1.80) x(0) = x0,𝑗 ∈ X̃0,

(︀
g̃𝑖
(︀
x,s̃𝑖

)︀)︀
x0,𝑗 — решение задачи струк­

турно-параметрической многокритериальной оптимизации из множества (1.88),
вычисленное для того же начального условия x(0) = x0,𝑗 ∈ X̃0. Следует отме­
тить, что такая проверка является достаточно трудоёмкой.

Другой недостаток подхода на основе структурно-параметрической мно­
гокритериальной оптимизации вытекает из описания приведенного выше недо­
статка. Поиск решения в форме оптимальной записи структуры функции
управления (1.87) среди всех возможных решений из множества (1.89) осу­
ществляется без учета его близости к оптимальному. Для определения близости
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найденного решения к оптимальному в данном подходе отсутствует соответству­
ющая метрика. Это в свою очередь не позволяет оценить качество решения без
проведения дополнительных вычислений. Для оценки уже найденного решения
можно воспользоваться методикой на основе вычисления критерия оптималь­
ности (1.90), описанной выше. Но, во-первых, это связано с необходимостью
проведения трудоемких вычислений. Во-вторых, такая оценка не может быть
использована для уточнения найденного решения.

Таким образом, известные численные методы структурно-параметриче­
ского синтеза системы управления позволяют осуществлять поиск функции
управления, но не позволяют оценить близость найденного решения к опти­
мальному, а также обладают другими недостатками. В прикладных задачах
такое решение в составе блока управления даст возможность получать непло­
хие траектории достижения цели управления. Однако достаточных оснований
для утверждения, что с заданной величиной погрешности полученная траекто­
рия является оптимальной, такое решение не предоставит.

Создание метода решения задачи синтеза системы управления, для кото­
рого будет определена оценка близости возможного решения к оптимальному,
позволило бы качественно оценивать получаемые в процессе поиска решения.
В составе блока управления найденное таким образом решение будет обеспе­
чивать достижение цели управления по траектории близкой к оптимальной с
известной оценкой данной близости. Создание такого блока управления являет­
ся необходимой частью этапа проектирования современных устройств в области
самолетостроения и ракетостроения, создания роботизированных устройств, мо­
бильных роботов, роверов, беспилотных летательных аппаратов, беспилотных
автомобилей и др.

Далее в Главе 3 автором предлагается новый подход численного реше­
ния задачи синтеза системы управления и нахождения структуры многомерной
функции управления на основе аппроксимации множества оптимальных траек­
торий методами символьной регрессии. Предлагаемый метод лишен некоторых
недостатков численных подходов, рассмотренных выше, и больше отвечает тре­
бованиям современных прикладных задач.
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Выводы по Главе 1

Задача общего синтеза системы управления считается основной задачей в
современной теории управления. Решением задачи синтеза является многомер­
ная функция управления от компонент вектора состояния объекта управления,
обеспечивающая оптимальное по заданному критерию качества достижение
терминального состояния. При этом начальное состояние объекта управления
может принадлежать некой области или даже всему пространству состояний.

Обзор известных методов решения задачи общего синтеза системы управ­
ления показал целый ряд их недостатков. Данные методы не предоставляют
универсальных инструментов решения поставленной задачи и в основном при­
менимы только для несложных объектов малой размерности. Для сложных
нелинейных систем рассмотренные методы как правило неприменимы.

Метод динамического программирования, применяемый для решения за­
дачи синтеза системы управления не позволяет получить структуру функции
управления в явном виде. Полученное решение будет представлять собой множе­
ство значений вектора управления для множества значений вектора состояния
объекта управления. Данное решение не предоставит оптимальное управление в
случае изменения начального состояния объекта. То есть, также как и решение
задачи оптимального управления, синтез на основе динамического программи­
рования даёт решение только для одного начального состояния объекта. При
этом сложность получения такого решения значительно выше сложности реше­
ния задачи оптимального управления.

Решение задачи синтеза на основе принципа максимума Понтрягина тре­
бует большого числа аналитических преобразований и необходимости решения
систем дифференциальных уравнений. Без специальных преобразований най­
денное решение будет неприменимым для случаев особого управления.

При использовании метода АКОР для решения задачи синтеза системы
управления нелинейными объектами, сложности, связанные с необходимостью
решения уравнения Гамильтона-Якоби-Беллмана, возрастают с увеличением по­
рядка объекта управления. Таким образом, метод АКОР применяется только
для линейных систем.

Синтез системы управления на основе функций Ляпунова также огра­
ничен линейными системами невысокого порядка. Аналогично предыдущим
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методам, сложности при работе с системами высокого порядка нарастают ла­
винообразно.

В методе бэкстеппинга удается достичь устойчивости интегратора пу­
тём добавления обратной связи для каждого дифференциального уравнения,
описывающего объект управления. Это позволяет избежать трудностей с ли­
неаризацией объекта, но одновременно требует нестандартных подходов при
выборе функций Ляпунова и коэффициентов обратной связи. Данные сложно­
сти возлагаются на разработчика и не всегда могут быть разрешены.

Метод АКАР для решения задачи синтеза системы управления наибо­
лее эффективный из рассмотренных аналитических методов. Он применим
для класса нелинейных систем и заключается в поиске притягивающих мно­
гообразий. При этом от разработчика требуется осуществить выбор функции
преобразования. Ввиду отсутствия универсальных подходов, такой выбор в
большинстве случаев осуществляется на основе опыта и интуиции самого раз­
работчика.

Обзор численных методов синтеза на основе структурно-параметрической
многокритериальной оптимизации методами символьной регрессии показал их
применимость для гораздо более широкого класса прикладных задач. Примене­
ние методов символьной регрессии впервые позволило реализовывать поиск на
нечисловом пространстве математических функций и таким образом осуществ­
лять одновременный поиск структуры и оптимальных значений параметров
функции управления. Однако рассмотренные подходы также содержат ряд
недостатков, основным из которых является невозможность оценить близость
найденного решения к оптимальному.
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Глава 2. Обзор методов символьной регрессии для синтеза
математических выражений

2.1 Методы символьной регрессии для синтеза математических
выражений

Как следует из названия, методы символьной регрессии предназначены
для поиска взаимосвязи между символьным выражением и набором неза­
висимых переменных. При этом в качестве символьного выражения могут
выступать как числовые, так и нечисловые многомерные структуры, такие как:
компьютерные программы, электрические цепи, химические формулы, матема­
тические выражения и др.

Задача синтеза управления подразумевает поиск математического выра­
жения функции управления. Таким образом, данную задачу можно решать
путем применения методов символьной регрессии. Искомое символьное выра­
жение при этом будет представлять собой математическое выражение в виде
суперпозиции заданных функций и арифметических операций над ними.

Задачи поиска математического выражения решались задолго до по­
явления методов символьной регрессии. Однако в таких задачах структуру
математического выражения обычно задавал сам исследователь с точностью до
некоторого числа неизвестных параметров. Далее использовался один из опти­
мизационных алгоритмов для поиска оптимальных значений параметров. Вид
выражения и число параметров выбирались на основе собственного опыта и
предварительного исследования задачи. Другими словами, если исследователь
обладает знаниями о форме функциональной связи между входами и выхода­
ми у искомого выражения, то классические методы безусловной оптимизации
позволят найти такие значения параметров, которые делают функциональную
зависимость в предполагаемом выражении более точной. В случае, когда ис­
следователь не обладает информацией о форме функциональной связи, методы
оптимизации окажутся бессильны.

Отличительной особенностью методов символьной регрессии является то,
что они позволяют одновременно искать и структуру математического выра­
жения, и значения его параметров. Они не требуют обязательного указания
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формы функциональной связи. При использовании методов символьной ре­
грессии предварительный анализ задачи исследователем может положительно
влиять на скорость поиска, но не на его конечный результат.

Все методы символьной регрессии осуществляют поиск на нечисловом про­
странстве кодов. Понятие кодирования является одним из основополагающих
для данного класса методов. Под кодированием подразумевается обратимая опе­
рация записи числовой или нечисловой структуры в виде кода, специфичного
для каждого конкретного метода символьной регрессии. Так в методе генетиче­
ского программирования, который является первым методом из класса методов
символьной регрессии, автором Джоном Козой было предложено использовать
кодирование в виде префиксной польской записи [115]. Далее к полученной
закодированной записи применялись операции скрещивания и мутации генети­
ческого алгоритма. Выбор генетического алгоритма для осуществления поиска
оптимального кода не был случаен. Операции скрещивания и мутации не ис­
пользуют арифметические операции, а, следовательно, применимы для поиска
на нечисловых пространствах. Другие известные методы символьной регрессии
для поиска также используют операции на основе модификаций генетического
алгоритма.

Таким образом, метод символьной регрессии в общем виде состоит из
алгоритма кодирования символьного выражения и алгоритма поиска на про­
странстве кодов. Различия в реализации каждой из двух частей формируют
отличительные особенности каждого метода из класса.

При решении задачи синтеза системы управления с помощью методов
символьной регрессии кодированию подвергается математическое выражение
многомерной функции управления. Сложные математические выражения мо­
гут быть получены с помощью композиции функций из множества простых
функций от одного или нескольких аргументов. В качестве аргументов мо­
гут использоваться переменные и параметры математического выражения или
функции без аргументов.

В настоящее время известно более 10 различных методов символьной
регрессии [23]. Помимо уже упомянутого метода генетического программи­
рования также следует отметить метод декартового генетического програм­
мирования [124], метод грамматической эволюции [136], метод индуктивного
программирования [129], метод аналитического программирования [154], метод
сетевого оператора [96] и метод матриц разбора [122]. Все перечисленные ме­
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тоды осуществляют поиск оптимальной структуры символьного выражения
на множестве нечисловых кодов. При таком поиске арифметические опера­
ции не могут быть применены, а, следовательно, нет возможности применять
известные численные методы безусловной оптимизации, основанные на ариф­
метических преобразованиях текущего решения. В генетическом алгоритме
эволюционные преобразования, основанные на операциях скрещивания и му­
тации, не используют арифметические действия. Таким образом, генетический
алгоритм и его модификации являются единственными на текущий момент
инструментами реализации поиска оптимальной структуры выражения на
нечисловом пространстве кодов в методах символьной регрессии.

2.2 Обзор методов символьной регрессии

2.2.1 Метод генетического программирования

Идея использования эволюционных алгоритмов для поиска оптимального
символьного представления выражения принадлежит профессору Стэндфорд­
ского университета Джону Коза [120]. В основе метода лежит генетический
алгоритм, осуществляющий операции скрещивания и мутации на строках
символов. Данный подход получил название метод генетического программи­
рования [102; 117].

В настоящее время генетическое программирование является самым из­
вестным методом из класса методов символьной регрессии. Известно множество
успешных реализаций этого метода для решения разнообразных задач синтеза
оптимальных структур, например, решение задачи синтеза сложной электри­
ческой схемы [118].

Изначально метод генетического программирования задумывался для ре­
шения задач автоматического составления компьютерных программ на языке
программирования LISP, в котором выражения представляются в виде пре­
фиксной записи [116]. При этом каждому символу или коду соответствует
определенная функция или операция из языка программирования LISP.
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Те же принципы кодирования применимы и для представления мате­
матического выражения в виде кода. Здесь каждому символу ставится в
соответствие некоторая математическая функция или арифметическая опе­
рация. Математическая функция дополнительно характеризуется числом её
параметров. Переменные и параметры математического выражения можно
представить, как функции без аргументов. Вид математического выражения
и соответствие между функциями и их аргументами определяется порядком
следования символов в закодированной строке.

Визуально принципы кодирования и поиска нового выражения методом
генетического программирования часто представляются в виде графа. Для при­
мера рассмотрим два математических выражения:

𝑓1 (x) = 𝑞1𝑥1 + cos (𝑞2𝑥2 + 𝑞3) , (2.1)

𝑓2 (x) = 𝑥2 − 𝑞1 sin (𝑞2𝑥1 + 𝑞3) . (2.2)

Их представление в виде графа изображено на Рис. 2.1.

Рисунок 2.1 — Представление математических выражений в виде графа: а —
выражение (2.1); б — выражение (2.2).
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При выполнении генетической операции скрещивания над двумя пред­
ставлениями математических выражений (2.1) и (2.2), случайным образом
определяются номера узлов, для которых будет произведен обмен вместе со
всеми дочерними элементами. Результат применения операции скрещивания
представлен на Рис. 2.2.

Рисунок 2.2 — Результат выполнения операции скрещивания: а — выражение
(2.3); б — выражение (2.4).

Точкой скрещивания для выражения (2.1) стал узел 7, а для выраже­
ния (2.2) — узел 2. В результате применения операции скрещивания были
получены следующие математические выражения:

𝑓 ′1 (x) = 𝑞1𝑥1 + cos (𝑥2 + 𝑞3) , (2.3)

𝑓 ′2 (x) = 𝑞2𝑥2 − 𝑞1 sin (𝑞2𝑥1 + 𝑞3) . (2.4)

Далее путем вычисления значения определенного задачей критерия ка­
чества для каждого нового выражения можно оценить успешность применения
генетических операций, отобрать лучшие решения и продолжить описанные вы­
числения до достижения заданного минимального значения критерия качества.
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Для представления математического выражения в памяти компьютера
удобно использовать двухкомпонентные целочисленные векторы. Такой вектор
описывает кодируемую элементарную функцию. При этом первая компонента
вектора определяет количество аргументов кодируемой функции, а вторая ком­
понента указывает на номер этой функции во множестве всех используемых
при поиске функций

F = {F0, . . . ,F𝑛} ,

где
F𝑖 = (𝑓𝑖,1 (𝑧1, . . . ,𝑧𝑖) , . . . ,𝑓𝑖,𝑚𝑖

(𝑧1, . . . ,𝑧𝑖)) , 𝑖 = 0,𝑛,

𝑓𝑖,𝑗 (𝑧1, . . . ,𝑧𝑖) — функция под номером 𝑗 с количеством аргументов 𝑖, 𝑖 = 0,𝑛.
Код функции имеет вид

s =
[︁
𝑠1 𝑠2

]︁𝑇
,

где 𝑠1 — количество аргументов функции, а 𝑠2 — номер элементарной функ­
ции во множестве 𝐹𝑠1.

Математическое выражение в закодированном виде будет представлять
собой упорядоченное множество векторов кодов функций.

В качестве примера разберем представление в закодированном виде выра­
жения (2.1). Для этого рассмотрим следующие множества функций:

F0 = (𝑞1, 𝑞2, 𝑞3, 𝑥1, 𝑥2) ,

F1 = (−𝑧, cos(𝑧), sin(𝑧)) ,

F2 = (𝑧1 + 𝑧2, 𝑧1𝑧2) .

(2.5)

Множества функций (2.5), записанные в кодах, будут иметь вид

F0 =

(︃[︃
0

1

]︃
,

[︃
0

2

]︃
,

[︃
0

3

]︃
,

[︃
0

4

]︃
,

[︃
0

5

]︃)︃
,

F1 =

(︃[︃
1

1

]︃
,

[︃
1

2

]︃
,

[︃
1

3

]︃)︃
,

F2 =

(︃[︃
2

1

]︃
,

[︃
2

2

]︃)︃
.

(2.6)
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Рисунок 2.3 — Граф вычислений математического выражения (2.1) в кодах
функций.

Заменим символьное представление функции в графе на Рис. 2.1(а) со­
ответствующими векторами кода функции (2.6). Граф вычислений в кодах
функций представлен на Рис. 2.3.

Из представленного на Рис. 2.3 графа составим закодированное представ­
ление математического выражения (2.1) на основе следующих правил:

• Вектор кода первого аргумента функции следует сразу после вектора
кода функции;

• Вектора кодов второго и последующих аргументов функции следуют
после вектора кода функции с нулевым количеством аргументов;

• Каждый вектор кода аргумента относится к ближайшей слева функции
с недостающим числом аргументов.

В итоге получаем следующую запись математического выражения (2.1)
в закодированном виде:

S1 =

(︃[︃
2

1

]︃
,

[︃
2

2

]︃
,

[︃
0

1

]︃
,

[︃
0

4

]︃
,

[︃
1

3

]︃
,

[︃
2

1

]︃
,

[︃
2

2

]︃
,

[︃
0

2

]︃
,

[︃
0

5

]︃
,

[︃
0

3

]︃)︃
.

Аналогичные действия, выполненные для математического выраже­
ния (2.2), позволяют получить следующую закодированную строку:

S2 =

(︃[︃
2

1

]︃
,

[︃
0

5

]︃
,

[︃
1

1

]︃
,

[︃
2

2

]︃
,

[︃
0

1

]︃
,

[︃
1

2

]︃
,

[︃
2

1

]︃
,

[︃
2

2

]︃
,

[︃
0

2

]︃
,

[︃
0

4

]︃
,

[︃
0

3

]︃)︃
.
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Для обеспечения корректности записи математического выражения в зако­
дированном виде необходимо ввести понятие индекса символа математического
выражения. Индекс 𝑗-го символа указывает на минимальное число недостаю­
щих символов справа от него и вычисляется по формуле

𝑇 (𝑗) = 1− 𝑗 +

𝑗∑︁
𝑖=1

𝑠𝑗1.

Математическое выражение записано в закодированном виде корректно,
если выполняются следующие условия

𝑇 (𝑗) > 0, 𝑗 = 1,𝐾 − 1, (2.7)

𝑇 (𝐾) = 0. (2.8)

где 𝐾 — количество символов в кодируемом математическом выражении.
Введем понятие записи кода подвыражения математического выражения

S (𝑚) =
(︀
s𝑚, . . . ,s𝑚+𝑘

)︀
⊆ S,

где 𝑚 — позиция кода символа s𝑚, с которого начинается подвыражение. На ос­
нове использования подвыражений в методе генетического программирования
осуществляется процедура скрещивания. Так как любая запись кода подвыра­
жения математического выражения сама является записью математического
выражения, для её корректности также необходимо выполнение условий (2.7)
и (2.8).

В методе генетического программирования для выполнения процедуры
скрещивания двух отобранных решений необходимо выбрать две точки скре­
щивания. Операция скрещивания заключается в обмене подвыражений у пары
выбранных выражений. В рассмотренном выше примере точкой скрещивания
для выражения (2.1) был символ 7, а для выражения (2.2) — символ 2. Обеспе­
чив выполнение условий (2.7) и (2.8), определим подвыражения, коды которых
начинаются в данных точках

S1 (7) =

(︃[︃
2

2

]︃
,

[︃
0

2

]︃
,

[︃
0

5

]︃)︃
,

S2 (2) =

(︃[︃
0

5

]︃)︃
.
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После выполнения операции скрещивания получаем новые выражения:

S′1 =

(︃[︃
2

1

]︃
,

[︃
2

2

]︃
,

[︃
0

1

]︃
,

[︃
0

4

]︃
,

[︃
1

3

]︃
,

[︃
2

1

]︃
,

[︃
0

5

]︃
,

[︃
0

3

]︃)︃
, (2.9)

S′2 =
(︁[︁

2

1

]︁
,
[︁
2

2

]︁
,
[︁
0

2

]︁
,
[︁
0

5

]︁
,
[︁
1

1

]︁
,
[︁
2

2

]︁
,
[︁
0

1

]︁
,
[︁
1

2

]︁
,
[︁
2

1

]︁
,
[︁
2

2

]︁
,
[︁
0

2

]︁
,
[︁
0

4

]︁
,
[︁
0

3

]︁)︁
. (2.10)

Математические выражения в закодированном виде (2.9) и (2.10) соответ­
ствуют математическим выражениям (2.3) и (2.4).

Особенностью метода генетического программирования является нефик­
сированная длина записи математических выражений и их подвыражений в
закодированном виде. Данную особенность относят к недостаткам метода, так
как это существенно осложняет вычисления с помощью данного метода. Также
при поиске подвыражений необходимо учитывать их корректность в соответ­
ствии с условиями (2.7) и (2.8).

2.2.2 Метод декартового генетического программирования

Описанные в предыдущем разделе недостатки метода генетического про­
граммирования послужили толчком к созданию более простых и эффективных
методов символьной регрессии. Так в 1999 году был предложен метод декарто­
вого генетического программирования [124; 125]. Преимущество данного метода
в фиксированной длине кода математических выражений и в использовании от­
дельного целочисленного вектора для описания вызова каждой функции. Это
позволяет значительно упростить алгоритмическую сложность метода.

По сути, декартово генетическое программирование является усовер­
шенствованной модификацией метода генетического программирования. Своё
название данный метод получил в виду того, что закодированное выражение
в данном методе представляет собой двухмерную сетку вычислительных уз­
лов [123].

Кодирование математического выражения в методе декартового генетиче­
ского программирования осуществляется путем использования целочисленного
вектора, описывающего коды функции, коды её аргументов, а также номера
используемых параметров и переменной, куда должен быть записан результат
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вычисления данной функции. Таким образом, элементарный код математиче­
ского выражения представляет собой вектор из 𝑀 + 1 компонент, где 𝑀 — это
максимальное число аргументов используемых функций

d =
[︁
𝑑1 . . . 𝑑𝑀+1

]︁𝑇
. (2.11)

В отличие от метода генетического программирования, в методе декарто­
вого генетического программирования все элементарные базовые функции вне
зависимости от числа аргументов записываются в одно объединенное множе­
ство

F =

⎧⎨⎩𝑓1 (𝑧) , . . . , 𝑓𝑛1
(𝑧)⏟  ⏞  

𝑛1

, 𝑓𝑛1+1 (𝑧1,𝑧2) , . . . , 𝑓𝑛1+𝑛2
(𝑧1,𝑧2)⏟  ⏞  

𝑛2

, . . . ,

𝑓∑︀𝑀−1
𝑖=1 𝑛𝑖+1 (𝑧1, . . . ,𝑧𝑀) , . . . , 𝑓∑︀𝑀−1

𝑖=1 𝑛𝑖+𝑛𝑀
(𝑧1, . . . ,𝑧𝑀)⏟  ⏞  

𝑛𝑀

⎫⎪⎬⎪⎭ .

(2.12)

где 𝑛𝑖 — количество функций от 𝑖 аргументов, 𝑖 = 1,𝑀 .
Все параметры и переменные, а также дополнительные переменные для

хранения результатов промежуточных вычислений также записываются в одно
множество

R =

⎧⎪⎨⎪⎩𝑟1 = 𝑞1, . . . , 𝑟𝑝 = 𝑞𝑝⏟  ⏞  
𝑝

, 𝑟𝑝+1 = 𝑥1, . . . , 𝑟𝑝+𝑛 = 𝑥𝑛⏟  ⏞  
𝑛

,

𝑟𝑝+𝑛+1, . . . , 𝑟𝑝+𝑛+𝑙⏟  ⏞  
𝑙

⎫⎬⎭ .

(2.13)

где 𝑝 — число параметров, 𝑛 — число переменных, 𝑙 — число дополнительных
переменных.

В элементарном коде математического выражения (2.11) 𝑑1 — это номер
функции из множества (2.12), 𝑑1 ∈

{︁
1,
∑︀𝑀

𝑖=1 𝑛𝑖

}︁
, 𝑑𝑗 — это номер элемента из

множества (2.13), 𝑗 = 2, 𝑀 + 1. Если функция с номером 𝑑1 имеет 𝑚 < 𝑀

аргументов, то оставшиеся аргументы в векторе (2.11) не используются, 𝑑𝑗 = 0,
𝑗 = 𝑚+ 2, 𝑀 + 1.

Таким образом, элементарный код математического выражения (2.11) поз­
воляет определить вызов функции с соответствующими аргументами

𝑓𝑑1 = (𝑟𝑑2, . . . , 𝑟𝑑𝑚) .
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Закодированное математическое выражение представляет собой набор
векторов (2.11)

D =
(︀
d1, . . . , d𝑙

)︀
. (2.14)

При поиске оптимального математического выражения методом декар­
тового генетического программирования генерируется множество возможных
решений заданного размера 𝐻, каждый элемент которого представляет со­
бой возможное решение в закодированном виде (2.14). В процессе поиска для
отобранных возможных решений выполняются генетические операции скре­
щивания и мутации. Для выполнения этих операций не требуется, чтобы все
закодированные математические выражения имели одинаковую длину кода.
Такое свойство делает соответствующие операции проще и ставится авторами
декартово генетического программирования как преимущество их метода [145].

Изначально определить число вызовов функций в искомом математиче­
ском выражении не представляется возможным. Поэтому, для обеспечения
одинаковой длины кода математического выражения, количество вызовов функ­
ций, а, следовательно, и число дополнительных переменных для хранения
промежуточных результатов 𝑙 берется с избытком. При этом часть дополни­
тельных переменных с результатами выполнения избыточных вызовов функций
может нигде не использоваться.

Для выполнения операции скрещивания для двух отобранных наборов
векторов

D𝑖 =
(︀
d𝑖,1, . . . , d𝑖,𝑙

)︀
,

D𝑗 =
(︀
d𝑗,1, . . . , d𝑗,𝑙

)︀
случайным образом определяется точка скрещивания 𝑘, 𝑘 ∈ {1, . . . ,𝑙},
𝑖,𝑗 ∈ {1, . . . ,𝐻}, 𝑖 ̸= 𝑗, 𝐻 — размер множества возможных решений. Пра­
вые части наборов векторов, начиная от точки скрещивания, обмениваются
местами, в результате чего получаются два новых возможных решения

D̃𝑖 =
(︀
d𝑖,1, . . . , d𝑖,𝑘−1, d𝑗,𝑘, . . . , d𝑗,𝑙

)︀
,

D̃𝑗 =
(︀
d𝑗,1, . . . , d𝑗,𝑘−1, d𝑖,𝑘, . . . , d𝑖,𝑙

)︀
.

Для выполнения операции мутации в отобранном возможном решении слу­
чайным образом определяется точка мутации α, α ∈ {1, . . . ,𝑙}. Вектор кода
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элементарного математического выражения dα на позиции α отобранного воз­
можного решения заменяется на новый вектор d̃α, сгенерированный случайным
образом.

Далее для полученных в результате применения операций скрещивания и
мутации новых возможных решений вычисляется значение критерия качества и
оценивается успешность поиска. Если заданный критерий окончания поиска не
достигнут, то производится отбор лучших возможных решений, для которых
продолжаются описанные выше вычисления.

В качестве примера рассмотрим принципы кодирования и поиска но­
вого выражения методом декартового генетического программирования для
математических выражений (2.1) и (2.2). Множество элементарных базовых
функций (2.12) для данных выражений будет иметь вид

F = {𝑓1 (𝑧) = −𝑧, 𝑓2 (𝑧) = cos(𝑧), 𝑓3 (𝑧) = sin(𝑧),

𝑓4 (𝑧1,𝑧2) = 𝑧1 + 𝑧2, 𝑓5 (𝑧1,𝑧2) = 𝑧1𝑧2} .
(2.15)

Для описания математического выражения используются функции с макси­
мальным числом 𝑀 = 2 аргументов. Таким образом, вектор элементарного
кода математического выражения будет состоять из 𝑀 + 1 = 3 компонент.

Пусть искомое математическое выражение состоит из максимум 𝑙 = 7

элементарных базовых функций. Тогда набор векторов (2.14) каждого возмож­
ного решения будет состоять из 𝑙 = 7 элементов, а множество параметров и
переменных (2.13) будет иметь вид:

R = {𝑟1 = 𝑞1, 𝑟2 = 𝑞2, 𝑟3 = 𝑞3, 𝑟4 = 𝑥1, 𝑟5 = 𝑥2,

𝑟6 = d1, 𝑟7 = d2, 𝑟8 = d3, 𝑟9 = d4, 𝑟10 = d5, 𝑟11 = d6, 𝑟12 = d7} .
(2.16)

С учетом (2.15) и (2.16) набор векторов (2.14) для математических выра­
жений (2.1) и (2.2) будет иметь вид соответственно

D1 =

(︂
d1 =

[︁
5 2 5

]︁𝑇
, d2 =

[︁
4 6 3

]︁𝑇
, d3 =

[︁
2 7 0

]︁𝑇
,

d4 =
[︁
5 3 5

]︁𝑇
, d5 =

[︁
5 1 4

]︁𝑇
, d6 =

[︁
3 3 0

]︁𝑇
,

d7 =
[︁
4 8 10

]︁𝑇)︂
,

(2.17)
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D2 =

(︂
d1 =

[︁
5 2 4

]︁𝑇
, d2 =

[︁
4 6 3

]︁𝑇
, d3 =

[︁
3 7 0

]︁𝑇
,

d4 =
[︁
5 8 1

]︁𝑇
, d5 =

[︁
1 9 0

]︁𝑇
, d6 =

[︁
4 1 2

]︁𝑇
,

d7 =
[︁
4 10 5

]︁𝑇)︂
.

(2.18)

Результаты выполнения элементарных базовых функций, описываемых

векторами d4 =
[︁
5 3 5

]︁𝑇
, d6 =

[︁
3 3 0

]︁𝑇
набора D1 (2.17) и d6 =

[︁
4 1 2

]︁𝑇
набора D2 (2.18) не используются в дальнейших вычислениях математическо­
го выражения. Значение их компонент не влияет на итоговое математическое
выражение, а их наличие в наборах D1 и D2 обусловлено необходимостью вы­
полнения условия одинаковой длины кода математического выражения. Однако
данные векторы могут участвовать в операциях скрещивания и мутации. В век­
торах наборов D1 и D2, в которых выполняется базовая функция от одного
аргумента в качестве компоненты 𝑑3, ассоциирующейся со вторым аргументом,
записано значение 0, 𝑑3 = 0.

Случайным образом выберем точку скрещивания 𝑘. Пусть 𝑘 = 4, тогда
после обмена части наборов векторов правее точки скрещивания получим сле­
дующие новые возможные решения

D̃1 =

(︂
d1 =

[︁
5 2 5

]︁𝑇
, d2 =

[︁
4 6 3

]︁𝑇
, d3 =

[︁
2 7 0

]︁𝑇
,

d4 =
[︁
5 8 1

]︁𝑇
, d5 =

[︁
1 9 0

]︁𝑇
, d6 =

[︁
4 1 2

]︁𝑇
,

d7 =
[︁
4 10 5

]︁𝑇)︂
,

(2.19)

D̃2 =

(︂
d1 =

[︁
5 2 4

]︁𝑇
, d2 =

[︁
4 6 3

]︁𝑇
, d3 =

[︁
3 7 0

]︁𝑇
,

d4 =
[︁
5 3 5

]︁𝑇
, d5 =

[︁
5 1 4

]︁𝑇
, d6 =

[︁
3 3 0

]︁𝑇
,

d7 =
[︁
4 8 10

]︁𝑇)︂
.

(2.20)

Полученные в результате операции скрещивания закодированные выра­
жения (2.19) и (2.20) соответствуют следующим математическим выражениям
соответственно

𝑓 ′1 = 𝑥2 − 𝑞1 cos(𝑞2𝑥2 + 𝑞3),

𝑓 ′2 = 𝑞1𝑥1 + sin(𝑞2𝑥1 + 𝑞3).
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Для выполнения операции мутации выберем выражение (2.19) и случай­
ным образом определим точку мутации α. Пусть α = 3, тогда заменим вектор

d3 =
[︁
2 7 0

]︁𝑇
в наборе D̃1 на другой вектор, сгенерированный случайно, на­

пример d̃3 =
[︁
5 7 4

]︁𝑇
. В итоге получим закодированное выражение

D̃1 =

(︂
d1 =

[︁
5 2 5

]︁𝑇
, d2 =

[︁
4 6 3

]︁𝑇
, d̃3 =

[︁
5 7 2

]︁𝑇
,

d4 =
[︁
5 8 1

]︁𝑇
, d5 =

[︁
1 9 0

]︁𝑇
, d6 =

[︁
4 1 2

]︁𝑇
,

d7 =
[︁
4 10 5

]︁𝑇)︂
,

которому соответствует следующее математическое выражение

𝑓 ′1 = 𝑥2 − 𝑞1𝑥1(𝑞2𝑥2 + 𝑞3).

Программная реализация алгоритма метода декартового генетического
программирования значительно проще реализации алгоритма генетического
программирования. Достигается это за счет осуществления поиска оптимальной
структуры математического выражения на наборах кодов одинаковой длины.
Реализация процедуры скрещивания для двух наборов кодов одинаковой длины
также значительно проще. Она не требует дополнительных проверок коррект­
ности полученных новых возможных решений.

2.2.3 Метод грамматической эволюции

Метод грамматической эволюции был представлен в 1998 году коллек­
тивом авторов во главе с Майклом О’Нейлом [130; 136]. По словам авторов,
данный метод может использоваться для широкого класса задач символьной
регрессии, в том числе и для задач автоматического написания программного
кода на любом языке программирования [131].

Символьная запись выражения в методе грамматической эволюции при­
водится в виде системы продукционных правил в форме Бэкуса-Наура. Кроме
множества продукционных правил также задается множество терминальных
символов, множество нетерминальных символов и множество стартовых сим­
волов. Для кодирования символьного выражения используется упорядоченное
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множество целых чисел — хромосом

C = (𝑐1, . . . ,𝑐𝐾) . (2.21)

Для записи хромосом, как правило, используется двоичное представление
числа, однако запись в десятичной системе счисления также возможна. Для
обеспечения одинаковой длины кода у различных возможных решений длина
каждой хромосомы и их количество в коде выражения фиксируется. При этом
для поиска более сложных выражений число хромосом можно взять с избыт­
ком. Каждая хромосома указывает на номер элемента из соответствующего
заданного множества продукционных правил.

Поиск оптимального выражения осуществляется с помощью генетическо­
го алгоритма. Операция скрещивания осуществляется для двух отобранных
возможных решений путем определения случайной точки скрещивания и обме­
на части решений правее данной точки. Операция скрещивания не приводит к
изменению длины кода выражения, для её выполнения не требуется выполне­
ние каких-либо дополнительных условий, а после её выполнения не требуется
проверка корректности получившегося выражения.

После операции скрещивания отобранных решений производится оцен­
ка качества поиска посредством вычисления значения критерия качества для
новых возможных решений, полученных в результате применения генетиче­
ских операций. Если заданный критерий окончания поиска не достигнут, то
производится отбор лучших возможных решений, для которых продолжаются
описанные выше вычисления.

В качестве примера рассмотрим принципы кодирования и поиска нового
выражения методом грамматической эволюции для математических выра­
жений (2.1) и (2.2). Закодированное символьное выражение для каждого
математического выражения будет иметь вид множества хромосом (2.21). Возь­
мем число хромосом 𝐾 = 20. Для описания математических выражений в
форме Бэкуса-Наура необходимо определить множества символов. Представим
их в виде таблицы продукционных правил (Таблица 1).

Стартовый символ для математического выражения имеет вид

𝑓1 (x) = <expr>.

Далее каждая хромосома в коде выражения будет указывать на номер ва­
рианта из соответствующей строки таблицы продукционных правил (Таблица
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Таблица 1 — Таблица продукционных правил

Правило № варианта Вариант

<expr> 0 <expr><op><expr>

1 <function>(<expr>)

2 <var>

<op> 0 +

1 −
2 *

<function> 0 cos

1 sin

<var> 0 𝑞1

1 𝑞2

2 𝑞3

3 𝑥1

4 𝑥2

1). Вычисление кода математического выражения (2.1) будет состоять из сле­
дующих шагов:
𝑐1 = 0⇒ 𝑓1 (x) =<expr><op><expr>
𝑐2 = 0⇒ 𝑓1 (x) =<expr><op><expr><op><expr>
𝑐3 = 2⇒ 𝑓1 (x) =<var><op><expr><op><expr>
𝑐4 = 0⇒ 𝑓1 (x) = 𝑞1 <op><expr><op><expr>
𝑐5 = 2⇒ 𝑓1 (x) = 𝑞1* <expr><op><expr>
𝑐6 = 2⇒ 𝑓1 (x) = 𝑞1* <var><op><expr>
𝑐7 = 3⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 <op><expr>
𝑐8 = 0⇒ 𝑓1 (x) = 𝑞1 * 𝑥1+ <expr>
𝑐9 = 1⇒ 𝑓1 (x) = 𝑞1 * 𝑥1+ <function> (<expr>)

𝑐10 = 0⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(<expr>)

𝑐11 = 0⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(<expr><op><expr>)

𝑐12 = 0⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(<expr><op><expr><op><expr>)

𝑐13 = 2⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(<var><op><expr><op><expr>)

𝑐14 = 1⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2 <op><expr><op><expr>)
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𝑐15 = 2⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2* <expr><op><expr>)

𝑐16 = 2⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2* <var><op><expr>)

𝑐17 = 4⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2 * 𝑥2 <op><expr>)

𝑐18 = 0⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2 * 𝑥2+ <expr>)

𝑐19 = 2⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2 * 𝑥2+ <var>)

𝑐20 = 2 ⇒ 𝑓1 (x) = 𝑞1 * 𝑥1 + cos(𝑞2 * 𝑥2 + 𝑞3)

Таким образом, код математического выражения (2.1) будет иметь вид

C1 = (0, 0, 2, 0, 2, 2, 3, 0, 1, 0, 0, 0, 2, 1, 2, 2, 4, 0, 2, 2) .

Вычисленный аналогичным образом код математического выраже­
ния (2.2) будет иметь вид

C2 = (0, 2, 4, 1, 0, 2, 0, 2, 1, 1, 0, 0, 2, 1, 2, 2, 3, 0, 2, 2) .

Случайным образом выберем точку скрещивания 𝑘. Пусть 𝑘 = 8, произ­
водим обмен части наборов векторов правее точки скрещивания. В результате
операции скрещивания получаем следующие новые возможные решения

C′1 = (0, 0, 2, 0, 2, 2, 3, 2, 1, 1, 0, 0, 2, 1, 2, 2, 3, 0, 2, 2) , (2.22)

C′2 = (0, 2, 4, 1, 0, 2, 0, 0, 1, 0, 0, 0, 2, 1, 2, 2, 4, 0, 2, 2) . (2.23)

Используя таблицу продукционных правил (Таблица 1), получим матема­
тический вид закодированного выражения (2.22)
𝑐1 = 0⇒ 𝑓 ′1 (x) =<expr><op><expr>
𝑐2 = 0⇒ 𝑓 ′1 (x) =<expr><op><expr><op><expr>
𝑐3 = 2⇒ 𝑓 ′1 (x) =<var><op><expr><op><expr>
𝑐4 = 0⇒ 𝑓 ′1 (x) = 𝑞1 <op><expr><op><expr>
𝑐5 = 2⇒ 𝑓 ′1 (x) = 𝑞1* <expr><op><expr>
𝑐6 = 2⇒ 𝑓 ′1 (x) = 𝑞1* <var><op><expr>
𝑐7 = 3⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 <op><expr>
𝑐8 = 2⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1* <expr>
𝑐9 = 1⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1* <function> (<expr>)

𝑐10 = 1⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(<expr>)

𝑐11 = 0⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(<expr><op><expr>)

𝑐12 = 0⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(<expr><op><expr><op><expr>)

𝑐13 = 2⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(<var><op><expr><op><expr>)
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𝑐14 = 1⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2 <op><expr><op><expr>)

𝑐15 = 2⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2* <expr><op><expr>)

𝑐16 = 2⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2* <var><op><expr>)

𝑐17 = 3⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2 * 𝑥1 <op><expr>)

𝑐18 = 0⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2 * 𝑥1+ <expr>)

𝑐19 = 2⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2 * 𝑥1+ <var>)

𝑐20 = 2 ⇒ 𝑓 ′1 (x) = 𝑞1 * 𝑥1 * sin(𝑞2 * 𝑥1 + 𝑞3)

Таким образом, коду выражения (2.22) соответствует математическое вы­
ражение

𝑓 ′1 (x) = 𝑞1𝑥1 sin (𝑞2𝑥1 + 𝑞3) .

Аналогичным образом для закодированного выражения (2.23) получаем
математическое выражение

𝑓 ′2 (x) = 𝑥2 − 𝑞1 + cos (𝑞2𝑥2 + 𝑞3) .

При сравнении с методом генетического программирования метод грам­
матической эволюции обладает явными преимуществами. Основными преиму­
ществами можно назвать одинаковую длину кода всех возможных решений и
кодирование символьного представления выражения с помощью целых деся­
тичных или двоичных чисел. Также к преимуществам метода можно отнести
более простую реализацию операции скрещивания и отсутствие необходимости
проверки новых решений на корректность. Среди недостатков метода граммати­
ческой эволюции, как и других рассмотренных выше методов, следует отметить
то, что операции скрещивания и мутации могут приводить к существенным
изменениям символьного выражения. Это обусловлено тем, что близкие по зна­
чению хромосомы не всегда соответствуют близким по значению символам.

2.2.4 Принцип малых вариаций базисного решения

При решении задачи синтеза системы управления с помощью методов
символьной регрессии искомая функция управления будет представлять собой
оптимальное выражение в виде набора символов или их кодов. Поиск оптималь­
ного решения на пространстве нечисловых символов или кодов осложняется
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отсутствием связи между близостью элементов пространства поиска и близо­
стью их числовых оценок по заданному критерию качества. В первую очередь
отсутствие евклидовой метрики оценки расстояния между возможными реше­
ниями существенно усложняет процедуру целенаправленного поиска, особенно
в области уже найденного возможного решения. Введение такой метрики для
элементов пространства символов или кодов, вообще говоря, невозможно.

Для преодоления указанного недостатка профессором А.И. Дивеевым бы­
ла предложена модификация алгоритма поиска на пространстве нечисловых
символов, основанная на принципе малых вариаций базисного решения [94].
В основе предложенного метода лежит понятие малой вариации, которая из­
меняет код текущего возможного решения, тем самым приводя к коду нового
возможного решения. При этом принцип малых вариаций не меняет методику
кодирования и декодирования соответствующего метода символьной регрессии.
Однако вместо множества возможных решений берется всего одно возможное
решение, которое называется базисным. Далее строится множество наборов ма­
лых вариаций. Каждый набор из множества позволяет получить из базисного
решения новое возможное решение. Поиск оптимального решения осуществля­
ется на наборах малых вариаций. Предусмотренные соответствующим методом
символьной регрессии генетические операции скрещивания и мутации применя­
ются к наборам малых вариаций, в результате чего получаются новые наборы
с измененным порядком и самими вариациями. Множество полученных в ре­
зультате генетических операций новых наборов вариаций после применения к
базисному решению дают множество возможных решений. Некоторые из этих
возможных решений могут оказаться лучше, чем базисное решение по оценке
критерия качества. С определенной периодичностью следует заменять базис­
ное решение. В качестве нового базисного решения берется лучшее на текущий
момент поиска возможное решение. При использовании принципа малых вари­
аций выбор начального базисного решения, основанный на предварительном
анализе решаемой задачи, может оказывать положительное влияние на ско­
рость нахождения оптимального решения.

Применение принципа малых вариаций базисного решения позволяет
определить численную метрику расстояния между двумя возможными решени­
ями, а также определить понятие поиска в окрестности выбранного решения.
Для пояснения введенных понятий следует рассмотреть поиск оптимального
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решения с помощью принципа малых вариаций базисного решения более по­
дробно.

В общем виде код символьного выражения можно представить в виде по­
следовательности кодов символов заданной длины 𝑛

y = (𝑦1, 𝑦2, . . . ,𝑦𝑛), (2.24)

где 𝑦𝑖 ∈ A, 𝑖 = 1,𝑛, A — конечный набор кодов базовых символов

A = {0, 𝑎1, 𝑎2, . . . ,𝑎𝐿} , (2.25)

нулевой символ 0 обозначает отсутствие элемента.
При построении кода выражения (2.24) из набора кодов базовых симво­

лов (2.25) определяется его допустимость на основе конечного числа функций
оценки правильности кода выражения

θ𝑗 (y) ⩽ 0, 𝑗 = 1,𝑙. (2.26)

Из всех возможных кодов символьных выражений (2.24), удовлетворяю­
щих требованиям (2.26), определяем множество допустимых кодов символьных
выражений заданной длины 𝑛

Y =
{︀
y1, y2, . . .

}︀
. (2.27)

Любые два символьных выражения из множества допустимых кодов (2.27)
отличаются между собой кодом одного или более базовых символов.

Согласно принципу малых вариаций базисного решения, под элементар­
ной вариацией кода символьного выражения понимается замена кода одного
символа данного выражения на символ из множества базовых символов (2.25).
При этом такая замена может привести к недопустимому коду выражения в со­
ответствии с условиями (2.26). Для получения допустимого кода символьного
выражения одной элементарной вариации может быть недостаточно.

Минимальный набор элементарных вариаций, позволяющий получить из
одного допустимого решения новое решение, удовлетворяющее условиям (2.26),
называется малой вариацией δ(y). Малая вариация может состоять из одной
или нескольких элементарных вариаций.

Для множества допустимых кодов символьных выражений (2.27) можно
определить конечное множество малых вариаций

Ω (Y) = {δ1(y), . . . ,δ𝑀(y)} , (2.28)
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обладающее свойством полноты, то есть допускающее возможность для любых
двух кодов выражений из множества (2.27) найти конечное число малых вариа­
ций, позволяющих из одного кода выражения получить второй код выражения

∀y𝑖,y𝑗 ∈ Y, y𝑖 = δ𝑘1(. . . δ𝑘𝑑(y
𝑗)),

где 𝑑 — минимальное число малых вариаций для получения y𝑗 из y𝑖.
Минимальное число 𝑑 малых вариаций, необходимых для получения из

одного допустимого кода символьного выражения другого допустимого кода
символьного выражения, называется расстоянием между двумя кодами сим­
вольных выражений

∀y𝑖,y𝑗 ∈ Y,
⃦⃦
y𝑖 − y𝑗

⃦⃦
Ω
= 𝑑, если 𝑑 = min

𝑟

{︀
y𝑖 = δ𝑘1(. . . δ𝑘𝑑(y

𝑗))
}︀
, (2.29)

где δ𝑘𝑝(y) ∈ Ω (Y), 𝑝 = 1,𝑟.
Окрестностью ∆(y) кода символьного выражения y называется подмно­

жество кодов символьных выражений, расположенных на расстоянии ∆ от кода
символьного выражения y

∀y𝑖 ∈ ∆(y) ,
⃦⃦
y𝑖 − y

⃦⃦
Ω
= ∆, ∆(y) ⊆ Y.

Для организации целенаправленного поиска на множестве кодов символь­
ных выражений с использованием принципа малых вариаций необходимо ввести
понятие вектора вариаций w, описывающего малую вариацию δ(y)

w =
[︁
𝑤1 𝑤2 . . . 𝑤𝑟

]︁𝑇
, (2.30)

где 𝑤1 — номер малой вариации во множестве (2.28), 𝑤2 — номер изменяемого
символа в коде символьного выражения (2.24), 𝑤𝑖, 𝑖 = 3,𝑟 — другая информация
для выполнения малой вариации δ(y), если таковая требуется.

Для определения действия вектора вариаций на любое символьное выра­
жение y из множества (2.27) используется обозначение

y𝑖 = w𝑙 ∘ y𝑗,

где w𝑙 — вектор вариаций, описывающий малую вариацию δ𝑙(y), δ𝑙(y𝑗) = y𝑖.
Получить код символьного выражения y𝑖 из ∆-окрестности символьного

выражения y𝑗 можно путем применения не более ∆ векторов вариаций

∀y𝑖 ∈ ∆
(︀
y𝑗
)︀
, y𝑖 = w𝑘 ∘ . . . ∘w1 ∘ y𝑗, 𝑘 ⩽ ∆.
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Таким образом, чтобы получить любое символьное выражение y′ в окрест­
ности на заданном расстоянии 𝑑 от символьного выражения y, y′ ∈ 𝑑 (y), можно
использовать набор векторов вариаций W из 𝑑 векторов

W =
(︀
w1, . . . ,w𝑑

)︀
. (2.31)

При поиске оптимального символьного выражения методом символьной
регрессии с использованием принципа малых вариаций выбирается одно началь­
ное возможное решение y0, называемое базисным. Выбор базисного решения
можно осуществлять на основе предварительного анализа решаемой задачи
или случайным образом. Остальные коды возможных решений заменяются
наборами малых вариаций базисного решения. Целенаправленный поиск с при­
менением генетических операций скрещивания и мутации осуществляется на
множестве наборов малых вариаций базисного решения. В терминологии гене­
тического алгоритма такое множество называется популяцией.

Для упрощения процедуры применения генетических операций число век­
торов вариаций в каждом наборе популяции должно быть одинаковым. Если
для получения нового символьного выражения y′ в 𝑑-окрестности символьного
выражения y требуется 𝑘 < 𝑑 малых вариаций, то для соблюдения количества
векторов вариаций в наборе необходимо добавить 𝑙 = 𝑑 − 𝑘 нулевых векто­
ров вариации w0. Нулевой вектор вариации описывает невыполняемую малую
вариацию

∀y ∈ Y, w0 ∘ y = y.

Для организации поиска с использованием принципа малых вариаций
задается начальное базисное решение y0 и генерируется популяция наборов
векторов вариаций

W𝑖 =
(︀
w𝑖,1, . . . ,w𝑖,𝑑

)︀
, 𝑖 = 1,𝐻, (2.32)

где 𝑑 — заданное количество векторов вариаций в одном наборе, 𝐻 — заданное
значение размера популяции.

Популяция (2.32) дополняется набором из нулевых векторов вариаций

W0 =
(︀
w0,1, . . . ,w0,𝑑

)︀
.

Применение любого набора W𝑖, 𝑖 = 0,𝐻 из популяции к базисному ре­
шению y0 позволяет получить новое возможное решение y𝑖 в 𝑑-окрестности
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базисного решения y0

W𝑖 ∘ y0 = y𝑖, 𝑖 = 0,𝐻,

где y𝑖 ∈ 𝑑
(︀
y0
)︀
⊆ Y.

Оценка нового возможного решения y𝑖 является одновременно и оценкой
соответствующего набора векторов вариаций W𝑖, 𝑖 = 0,𝐻. Применение опера­
ций генетического алгоритма к наборам векторов вариаций W𝑖 с учетом их
оценок обеспечивает поиск наилучшего решения в 𝑑-окрестности базисного ре­
шения y0.

Для выполнения операции скрещивания по известным правилам генети­
ческих алгоритмов из популяции отбираются пары наборов векторов вариаций

W𝑖 =
(︀
w𝑖,1, . . . ,w𝑖,𝑑

)︀
, (2.33)

W𝑗 =
(︀
w𝑗,1, . . . ,w𝑗,𝑑

)︀
, (2.34)

где 𝑖,𝑗 ∈ {1, . . . ,𝐻}, 𝑖 ̸= 𝑗.
Отобранным наборам векторов вариаций (2.33) и (2.34) соответствуют сле­

дующие возможные решения в символьном виде

y𝑖 = W𝑖 ∘ y0,

y𝑗 = W𝑗 ∘ y0.

Для отобранной пары наборов векторов вариаций случайным образом
определяется точка скрещивания 𝑘, 𝑘 ∈ {1, . . . ,𝑑}. Правые части наборов векто­
ров, начиная от точки скрещивания, обмениваются местами, в результате чего
получаются два новых набора векторов вариаций

W̃𝑖 =
(︀
w𝑖,1, . . . ,w𝑖,𝑘−1,w𝑗,𝑘, . . . ,w𝑗,𝑑

)︀
, (2.35)

W̃𝑗 =
(︀
w𝑗,1, . . . ,w𝑗,𝑘−1,w𝑖,𝑘, . . . ,w𝑖,𝑑

)︀
. (2.36)

Для выполнения операции мутации в отобранном наборе векторов вариа­
ций случайным образом определяется точка мутации α, α ∈ {1, . . . ,𝑑}. Вектор
вариаций wα на позиции α отобранного набора векторов вариаций заменяет­
ся на новый вектор w̃α, выбранный случайным образом из множества малых
вариаций (2.28).
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Наборам векторов вариаций (2.35) и (2.36), полученным в результате
применения генетических операций, соответствуют следующие возможные ре­
шения в символьном виде

ỹ𝑖 = W̃𝑖 ∘ y0,

ỹ𝑗 = W̃𝑗 ∘ y0.

По оценкам новых возможных решений строится оценка соответствующих
наборов векторов вариаций, с помощью которых они получены из базисного
решения, а также определяется их включение в популяцию в соответствии с
правилами генетического алгоритма.

После выполнения определенного количества поисковых итераций ба­
зисное решение целесообразно заменить на новое, выбранное из лучших по
значению оценки наборов векторов вариаций. При обновлении базисного реше­
ния все наборы векторов вариаций генерируются заново. Поиск продолжается
до достижения заданного критерия окончания или достижения максимального
числа поисковых итераций.

Использование при поиске оптимальной структуры символьного выра­
жения с помощью методов символьной регрессии принципа малых вариаций
базисного решения обладает существенными преимуществами перед клас­
сическими методами, рассмотренными выше. Применение принципа малых
вариаций не меняет методов кодирования и декодирования символьного вы­
ражения соответствующих методов, однако позволяет осуществлять поиск на
кодах одинаковой длины даже в тех методах, классические реализации кото­
рых этого не предусматривают. Процедуры поиска методами, использующими
принцип малых вариаций, эффективнее по времени поиска и использованию
компьютерной памяти при сравнении с аналогичными методами, не исполь­
зующими данный принцип [22; 107]. Главным преимуществом использования
принципа малых вариаций базисного решения является то, что его применение
позволяет задать евклидову метрику расстояния между двумя возможными
решениями. Наличие такой метрики позволяет эффективно осуществлять целе­
направленный поиск оптимального решения.

Принцип малых вариаций базисного решения послужил основой для со­
здания эффективных модификаций некоторых методов символьной регрессии,
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среди которых следует отметить метод вариационного генетического програм­
мирования [144], метод вариационного аналитического программирования [143],
метод вариационной грамматической эволюции [22].

2.2.5 Метод сетевого оператора

Метод сетевого оператора был предложен профессором А.И. Дивеевым
в 2008 году [21; 96]. В отличие от метода генетического программирования,
который создавался в первую очередь для решения задач автоматического
создания программ на языке LISP, метод сетевого оператора создавался для
решения задач синтеза системы управления [22]. Таким образом, недостатки
метода генетического программирования и некоторых других методов символь­
ной регрессии были учтены и устранены в методе сетевого оператора ещё на
этапе его создания.

Для кодирования символьного выражения методом сетевого оператора
используется ограниченный набор функций с одним или двумя аргументами.
Выражения с большим числом аргументов кодируются с помощью комбинации
функций с двумя аргументами. Для этого функции с двумя аргументами долж­
ны обладать свойствами коммутативности и ассоциативности, а также иметь
единичный элемент. Аргументами функций могут являться значения других
функций или переменные и параметры символьного выражения. Из функций с
одним и двумя аргументами и из всех переменных и параметров символьного
выражения формируются три упорядоченных множества:

• множество переменных и параметров F0;
• множество функций с одним аргументом F1;
• множество функций с двумя аргументами F2.
Символьное выражение в методе сетевого оператора представляется в

виде ориентированного графа. Узлы-источники ориентированного графа ассо­
циируются с переменными и параметрами символьного выражения. Остальные
узлы графа ассоциируются с функциями с двумя аргументами. Дуги графа
ассоциируются с функциями с одним аргументом.

Для ориентированного графа без циклов возможно произвести нумерацию
узлов в соответствии с условиями топологической сортировки. Далее строится
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матрица смежности графа, имеющая верхнетреугольный вид

A = [𝑎𝑖,𝑗] , (2.37)

где

𝑎𝑖,𝑗 =

{︃
1, если узлы с номерами 𝑖 и 𝑗 соединены дугой
0 — иначе

, 𝑖,𝑗 = 1,𝐿,

𝐿 — число узлов графа. Единичные элементы полученной матрицы смежно­
сти (2.37) соответствуют дугам исходного графа, поэтому они заменяются на
номер связанной с этой дугой функции с одним аргументом из множества F1.
На главной диагонали за исключением строк, соответствующих узлам-источ­
никам, ставится номер функции с двумя аргументами из F2, соответствующий
узлу в текущей строке.

Полученная верхнетреугольная матрица вида

Ψ = [ψ𝑖,𝑗] , 𝑖,𝑗 = 1,𝐿,

называется матрицей сетевого оператора. Матрица сетевого оператора позво­
ляет однозначно представить символьное выражение в закодированном виде.
В компьютерной памяти закодированное символьное выражение также пред­
ставляется в виде матрицы. Элементы матрицы содержат числа, указывающие
на номера функций с одним или двумя аргументами из соответствующих мно­
жеств.

В случае если кодированию подвергается математическое выражение, то
для вычисления значения этого выражения достаточно определить матрицу се­
тевого оператора и множества аргументов и функций F0, F1 и F2. При этом,
для вычисления значения выражения не требуется лексического анализа мате­
матического выражения.

Для хранения промежуточных и итоговых результатов вычисления мате­
матического выражения необходимо определить вектор узлов

z =
[︁
𝑧1 . . . 𝑧𝐿

]︁𝑇
. (2.38)

Компоненты вектора узлов (2.38) соответствуют узлу графа сетевого
оператора. Каждая компонента вектора узлов инициализируется начальным
значением. Для компонент, соответствующих узлам-источникам, — это зна­
чение связанной с этим узлом переменной или параметра. Для остальных
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компонент — единичный элемент связанной с данным узлом функции от двух
аргументов

𝑧
(0)
𝑖 =

{︃
𝑓0,𝑖, если 𝑖 ∈ {1, |F0|}
𝑒ψ𝑖,𝑖

— иначе
, 𝑓0,𝑖 ∈ F0, 𝑖 = 1,𝐿. (2.39)

Для вычисления значения математического выражения достаточно одной
итерации прохода про строкам матрицы сетевого оператора. В цикле прохода по
строкам матрицы при нахождении ненулевого элемента вычисляется новое зна­
чение компоненты вектора узлов (2.38), соответствующего столбцу текущего
элемента

𝑧
(𝑖)
𝑗 =

{︃
𝑓2,ψ𝑗,𝑗

(︁
𝑧
(𝑖−1)
𝑗 ,𝑓1,ψ𝑖,𝑗

(︁
𝑧
(𝑖−1)
𝑖

)︁)︁
, если ψ𝑖,𝑗 ̸= 0

𝑧
(𝑖−1)
𝑗 — иначе

, (2.40)

𝑖 = 1, 𝐿− 1, 𝑗 = 𝑖+ 1, 𝐿.
Вычисленное значение математического выражения будет записано в по­

следнюю компоненту вектора узлов (2.38)

𝑓 (x) = 𝑧
(𝐿−1)
𝐿 . (2.41)

Поиск оптимального кода символьного выражения в форме матрицы
сетевого оператора осуществляется с помощью генетического алгоритма на
множестве малых вариаций предварительно заданного базисного решения. Ис­
пользование принципа малых вариаций позволяет определить понятия близости
двух возможных решений в форме матриц сетевого оператора, а также задать
ограниченную область поиска. Начальное базисное решение задается в виде
матрицы базисного сетевого оператора. Там, где это возможно, выбор базисного
решения целесообразно производить на основе знаний и опыта исследователя.
Малые вариации, применяемые к матрице базисного сетевого оператора, позво­
ляют получать новые возможные решения в форме матрицы сетевого оператора
на заданном расстоянии от базисного.

При выполнении малых вариаций необходимо проверять новые возмож­
ные решения в форме матрицы сетевого оператора на предмет корректности
кода. Код матрицы сетевого оператора считается корректным, если в нем от­
сутствуют строки и столбцы со всеми нулевыми недиагональными элементами
за исключением столбцов, соответствующих узлам-источникам и последней
строки матрицы. Условие корректности матрицы сетевого оператора можно
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записать следующим образом

∀𝑖 ∃ψ𝑖,𝑗 ̸= 0, 𝑖 = 1, 𝐿− 1, 𝑗 = 𝑖+ 1, 𝐿, (2.42)

∀𝑗 ∃ψ𝑖,𝑗 ̸= 0, 𝑗 = |F0|+ 1, 𝐿, 𝑖 = 1, 𝑗 − 1. (2.43)

Метод сетевого оператора предполагает включение в алгоритм процеду­
ры отдельного поиска оптимальных значений используемых параметров. Это
является существенным преимуществом данного метода над другими метода­
ми из класса методов символьной регрессии, в которых изменение значений
параметров осуществляется, как правило, за счёт их нелинейного преобразова­
ния. Таким образом, поиск оптимальной структуры символьного выражения
осуществляется параллельно с поиском оптимальных значений используемых
в выражении параметров.

В качестве примера рассмотрим представление математического выра­
жения (2.1) в закодированном виде в форме матрицы сетевого оператора и
последующее применение малых вариаций к получившейся матрице.

Определим множество переменных и параметров

F0 = (𝑓0,1 = 𝑥1, 𝑓0,2 = 𝑥2, 𝑓0,3 = 𝑞1, 𝑓0,4 = 𝑞2, 𝑓0,5 = 𝑞3) , (2.44)

множество функций с одним аргументом

F1 = (𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧) = −𝑧, 𝑓1,3(𝑧) = sin(𝑧), 𝑓1,4(𝑧) = cos(𝑧)) , (2.45)

множество функций с двумя аргументами

F2 = (𝑓2,1(𝑧1,𝑧2) = 𝑧1 + 𝑧2, 𝑓2,2(𝑧1,𝑧2) = 𝑧1𝑧2) . (2.46)

Множество функций с одним аргументом должно содержать тождествен­
ную функцию 𝑓1,1(𝑧) = 𝑧. Функции с двумя аргументами множества (2.46)
обладают свойствами коммутативности и ассоциативности и имеют единичный
элемент. Для функции 𝑓2,1(𝑧1,𝑧2) = 𝑧1 + 𝑧2 единичный элемент 𝑒1 = 0, для
функции 𝑓2,2(𝑧1,𝑧2) = 𝑧1𝑧2 единичный элемент 𝑒2 = 1.

Используя номера функций, переменных и параметров из множеств (2.44)
— (2.46), формируем ориентированный граф. Узлы-источники графа будут
содержать номера переменных и параметров из множества (2.44), остальные
узлы — номера функций с двумя аргументами из множества (2.46), а дуги гра­
фа — номера функций с одним аргументом из множества (2.45). Граф сетевого
оператора для математического выражения (2.1) представлен на Рис. 2.4.



79

Рисунок 2.4 — Граф сетевого оператора для математического выражения (2.1).

Узлы графа на Рис. 2.4 пронумерованы в соответствии с условиями то­
пологической сортировки. Число узлов полученного графа 𝐿 = 9. Применяя
выражение (2.37), строится матрица смежности графа

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.47)

Единичные элементы полученной матрицы смежности графа (2.47) за­
меняются на соответствующие номера функций с одним аргументом из мно­
жества (2.45). На главной диагонали ставятся соответствующие узлам номера
функций с двумя аргументами из множества (2.46). Полученная в результате
описанных преобразований матрица является кодом математического выраже­
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ния (2.1) в форме матрицы сетевого оператора

Ψ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 2 0 0 1

0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 1 4

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.48)

Вычисление значения математического выражения не требует обратного
декодирования матрицы сетевого оператора. Для вычисления значения выра­
жения кроме самой матрицы сетевого оператора необходима информация о
множествах функций, переменных и параметров (2.44) — (2.46), а также опре­
деление вектора узлов (2.38) в соответствии с выражением (2.39). Вектор узлов
хранит числовые значения переменных и параметров и промежуточные зна­
чения вычисления математического выражения. Для выражения (2.1) и его
закодированной формы (2.48) вектор узлов имеет вид

z0 =
[︁
𝑥1 𝑥2 𝑞1 𝑞2 𝑞3 1 1 0 0

]︁𝑇
.

Для поиска структуры оптимального математического выражения в
форме сетевого оператора используется принцип малых вариаций базисного
решения. В данном примере начальным базисным решением будет сетевой опе­
ратор (2.48). Определим вид вектора малой вариации (2.30), применяемый к
базисному решению во время поиска

w =
[︁
𝑤1 𝑤2 𝑤3 𝑤4

]︁𝑇
, (2.49)

где 𝑤1 ∈ {0, 1, 2, 3} — номер типа малой вариации, 𝑤2 ∈ {0, . . . ,𝐿} —
номер строки элемента матрицы, к которому применяется малая вариация,
𝑤3 ∈ {|F0|+ 1, . . . ,𝐿} — номер столбца элемента матрицы, к которому приме­
няется малая вариация, 𝑤4 — номер функции с одним или двумя аргументами
из множеств (2.45) и (2.46).

Для поиска оптимального выражения используются следующие типы ма­
лых вариаций:
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• 𝑤1 = 0 — замена номера функции с одним аргументом;
• 𝑤1 = 1 — замена номера функции с двумя аргументами;
• 𝑤1 = 2 — удаление функции с одним аргументом;
• 𝑤1 = 3 — добавление функции с одним аргументом.
Далее зададим область поиска оптимального решения в окрестности

базисного решения. Для этого определим расстояние 𝑑 (2.29) от базисного ре­
шения (2.48). Пусть расстояние 𝑑 = 5. Тогда набор векторов вариаций (2.31)
будет состоять из 𝑑 = 5 векторов вариаций (2.49).

Для поиска оптимального выражения на начальном этапе случайным
образом генерируется множество заданного размера наборов векторов вариа­
ций (2.31). Отберем случайно два набора из этого множества

W1 =

(︂[︁
2 3 6 0

]︁𝑇
,
[︁
3 3 7 1

]︁𝑇
,
[︁
1 6 6 1

]︁𝑇
,[︁

0 7 8 3
]︁𝑇

,
[︁
0 8 9 2

]︁𝑇)︂
,

(2.50)

W2 =

(︂[︁
2 1 6 0

]︁𝑇
,
[︁
3 1 7 2

]︁𝑇
,
[︁
0 5 8 2

]︁𝑇
,[︁

1 8 8 2
]︁𝑇

,
[︁
3 1 9 1

]︁𝑇)︂
.

(2.51)

Набор векторов малых вариаций (2.50), примененный к базисному реше­
нию (2.48), позволяет получить новое возможное решение в форме сетевого
оператора

Ψ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 2 3 0

0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.52)

В матрице (2.52) полужирным шрифтом выделены элементы, которые под­
верглись изменению согласно набору малых вариаций (2.50).
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Матрица сетевого оператора (2.52) является корректной на основании
условия корректности матрицы сетевого оператора (2.42) и (2.43) и соответ­
ствует математическому выражению

𝑓1(x) = 𝑥1 − 𝑞3 − sin(𝑞1𝑞2𝑥2).

Набор векторов малых вариаций (2.51), примененный к базисному реше­
нию (2.48), позволяет получить новое возможное решение

Ψ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 2 0 0 1

0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 2 4

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.53)

Элементы, подвергшиеся изменению в матрице (2.53), выделены полужир­
ным шрифтом.

Матрица сетевого оператора (2.53) является корректной на основании
условия корректности матрицы сетевого оператора (2.42) и (2.43) и соответ­
ствует математическому выражению

𝑓2(x) = 𝑥1 + 𝑞1 + cos(𝑞2𝑞3𝑥1𝑥2).

Выполним операцию скрещивания для отобранных наборов малых ва­
риаций (2.50) и (2.51). Для этого случайным образом определим точку
скрещивания 𝑘, 𝑘 ∈ {1, . . . ,𝑑}. Пусть 𝑘 = 4, тогда правые части наборов век­
торов малых вариаций (2.50) и (2.51), начиная от точки скрещивания 𝑘 = 4

и заканчивая последним элементом, обмениваются местами, в результате чего
получаются два новых набора векторов малых вариаций

W̃1 =

(︂[︁
2 3 6 0

]︁𝑇
,
[︁
3 3 7 1

]︁𝑇
,
[︁
1 6 6 1

]︁𝑇
,[︁

1 8 8 2
]︁𝑇

,
[︁
3 1 9 1

]︁𝑇)︂
,

(2.54)
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W̃2 =

(︂[︁
2 1 6 0

]︁𝑇
,
[︁
3 1 7 2

]︁𝑇
,
[︁
0 5 8 2

]︁𝑇
,[︁

0 7 8 3
]︁𝑇

,
[︁
0 8 9 2

]︁𝑇)︂
.

(2.55)

Набор векторов малых вариаций (2.54), примененный к базисному реше­
нию (2.48), позволяет получить возможное решение

Ψ̃1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 2 4

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.56)

Элементы, подвергшиеся изменению в матрице (2.56), выделены полужир­
ным шрифтом.

Матрица сетевого оператора (2.56) является корректной на основании
условия корректности матрицы сетевого оператора (2.42) и (2.43) и соответ­
ствует математическому выражению

𝑓1(x) = 2𝑥1 + cos(𝑞1𝑞2𝑞3𝑥2).

Набор векторов малых вариаций (2.55), примененный к базисному реше­
нию (2.48), позволяет получить новое возможное решение

Ψ̃2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 2 0 0 1

0 0 0 0 0 0 2 3 0

0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.57)
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Элементы, подвергшиеся изменению в матрице (2.57), выделены полужир­
ным шрифтом.

Матрица сетевого оператора (2.57) является корректной на основании
условия корректности матрицы сетевого оператора (2.42) и (2.43) и соответ­
ствует математическому выражению

𝑓2(x) = 𝑞1 + 𝑞3 − sin(−𝑞2𝑥1𝑥2).

Для набора векторов малых вариаций (2.54) выполним операцию мутации.
Для выполнения операции мутации в отобранном наборе векторов вариаций
случайным образом определяется точка мутации α, α ∈ {1, . . . ,𝑑}. Вектор
вариаций wα на позиции α отобранного набора векторов малых вариаций за­
меняется на новый вектор w̃α, выбранный случайным образом из множества
малых вариаций (2.28).

Пусть α = 3, а новый вектор малых вариаций w̃α имеет вид

w̃α =
[︁
3 2 8 1

]︁𝑇
,

тогда набор векторов малых вариаций (2.54) после применения операции му­
тации будет иметь вид

W̃1 =

(︂[︁
2 3 6 0

]︁𝑇
,
[︁
3 3 7 1

]︁𝑇
,
[︁
3 2 8 1

]︁𝑇
,[︁

1 8 8 2
]︁𝑇

,
[︁
3 1 9 1

]︁𝑇)︂
.

(2.58)

Полученный в результате операции мутации набор векторов малых ва­
риаций (2.58), примененный к базисному решению (2.48), позволяет получить
новое возможное решение

Ψ̃1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 2 0 0 1

0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 2 4

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.59)
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Элементы, подвергшиеся изменению в матрице (2.59), выделены полужир­
ным шрифтом.

Матрица сетевого оператора (2.59) является корректной на основании
условия корректности матрицы сетевого оператора (2.42) и (2.43) и соответ­
ствует математическому выражению

𝑓1(x) = 2𝑥1 + cos(𝑞1𝑞2𝑞3𝑥
2
2).

В результате применения генетических операций над множеством наборов
векторов вариаций получаем новые наборы и, соответственно, новые возмож­
ные решения в форме сетевого оператора. В процессе поиска оптимального
решения может производиться смена базисного решения на новое. Новым ба­
зисным решением выбирается лучшее на текущий момент известное решение.
Процесс замены базисного решения называется сменой эпохи.

Главным преимуществом метода сетевого оператора является то, что
он создавался с целью решения в первую очередь задачи синтеза системы
управления. В нем используется принцип малых вариаций, что позволяет опре­
делять ограниченную область поиска решения и числовую метрику близости
двух возможных решений. На скорость поиска методом сетевого оператора
положительно влияет отсутствие необходимости в лексическом анализе ма­
тематического выражения. Вычислить значение выражения можно по самой
матрице сетевого оператора. Применение генетических операций на наборах
малых вариаций также упрощает и ускоряет процесс поиска. К недостаткам ме­
тода сетевого оператора можно отнести ограниченность набора используемых
функций. В методе сетевого оператора применимы только функции с одним и
двумя аргументами, причем функции с двумя аргументами должны удовлетво­
рять условиям коммутативности и ассоциативности.

Выводы по Главе 2

Методы символьной регрессии — это численные методы поиска опти­
мального решения на нечисловом пространстве. Они предоставляют широкие
возможности для задач, в которых решением является набор символов, на­
пример, программные коды, элементы электрических цепей, математические
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функции и т.д. Поэтому данные методы представляют большой интерес в
области решения задачи синтеза системы управления, где требуется найти
структуру математической функции управления.

В методах символьной регрессии сложные математические выражения
представляются в виде суперпозиции кодов заданных функций и арифмети­
ческих операций над ними. Дальнейший поиск осуществляется на нечисловом
пространстве кодов с помощью генетического алгоритма. Кодирование матема­
тического выражения является обратимой операцией. По окончанию поиска,
найденное решение может быть декодировано и представлено в форме структу­
ры математического выражения и значений его параметров.

Методы символьной регрессии различаются между собой алгоритмами
кодирования символьного выражения и алгоритмами поиска на пространстве
кодов. При этом все известные методы построены на использовании разновид­
ностей генетического алгоритма для поиска на пространстве кодов.

Первым и наиболее широко известным методом символьной регрессии
является метод генетического программирования. В нём закодированное ма­
тематическое выражение представляется в виде упорядоченного множества
векторов кодов функций. Далее для получения новых кодов применяются
генетические операции скрещивания и мутации. При этом возникает задача
проверки корректности записи нового выражения. Также спецификой метода ге­
нетического программирования является нефиксированная длина записи кода
математического выражения. Оба этих факта являются существенными недо­
статками данного метода и усложняют его прикладное применение.

Методы, появившиеся после метода генетического программирования, в
большинстве случаев создавались с целью частичной или полной компенсации
описанных выше недостатков. Так в методе декартового генетического програм­
мирования и методе грамматической эволюции используются коды выражений
одинаковой длины. Это в свою очередь значительно упрощает применение опе­
рации скрещивания. Однако наиболее совершенным из рассмотренных методов
является метод сетевого оператора. Данный метод выделяется на фоне осталь­
ных тем, что при его создании учитывалась специфика задачи синтеза системы
управления. Помимо фиксированной длины кодов выражений и более простой
реализации операции скрещивания, в нём используется принцип малых ва­
риаций базисного решения. Это позволяет определять ограниченную область
поиска решения и числовую метрику близости двух возможных решений.
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Глава 3. Синтез системы управления на основе аппроксимации
множества оптимальных траекторий методами символьной

регрессии

В диссертации предлагается новый метод численного решения задачи син­
теза системы управления и нахождения многомерной функции управления (1.6)
на основе аппроксимации множества предварительно найденных оптимальных
траекторий. Для нахождения структуры многомерной функции управления
используются методы символьной регрессии, в частности предлагается исполь­
зовать рассмотренный в разделе 2.2.5 метод сетевого оператора, который более
других приспособлен для решения задачи синтеза системы управления.

Следует ещё раз отметить, что применение методов символьной регрес­
сии для решения задачи синтеза системы управления уже было рассмотрено в
работах А.И. Дивеева [95; 96]. Представленный в этих работах подход основан
на структурно-параметрической многокритериальной оптимизации и действи­
тельно позволяет находить структуру математического выражения функции
управления в явном виде, однако он не позволяет оценить близость найденного
решения к оптимальному. При таком подходе методы символьной регрессии ис­
пользуются впрямую для подбора кода многомерной функции управления. Это
позволяет найти наилучшее решение на пространстве кодов всех рассмотренных
возможных решений, но метрика близости найденного решения к оптимально­
му не определена и, соответственно, не может быть оценена.

Предлагаемый в диссертации подход лишен описанного выше недостатка,
так как поиск структуры математического выражения методами символьной
регрессии осуществляется не впрямую, а путем аппроксимации множества пред­
варительно найденных оптимальных траекторий. Также это позволяет перейти
от многокритериальной оптимизации к поиску решения с учётом одного крите­
рия качества. В логике использования методов символьной регрессии в данном
случае происходит переход от поиска путём подбора к поиску путём обучения.
Найденная таким образом многомерная функция управления будет доставлять
управление, близкое к оптимальному, причем его близость к оптимальному
решению определяется точностью аппроксимации и размером обучающего мно­
жества оптимальных траекторий.
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3.1 Решение задачи численного синтеза системы управления на
основе аппроксимации оптимальных траекторий

Для численного решения задачи синтеза системы управления разработан
новый подход на основе аппроксимации множества оптимальных траекторий.
Данный подход предполагает два основных этапа:

1. Поиск множества оптимальных траекторий для заданного множества
начальных состояний;

2. Поиск функции управления от координат состояния, аппроксимирую­
щей полученное множество оптимальных траекторий.

На первом этапе решается задача поиска множества оптимальных траек­
торий. Такое множество может быть получено путем многократного решения
задачи оптимального управления для ограниченного числа начальных со­
стояний из непрерывного множества (1.3). Для этого заменим непрерывное
множество (1.3) конечным множеством из 𝑁 элементов

X̃0 =
(︀
x0,1, . . . ,x0,𝑁

)︀
. (3.1)

Решением каждой отдельно взятой задачи оптимального управления для
одного начального состояния из множества (3.1) будет управление как функция
от времени ũ𝑗(𝑡), 𝑗 ∈ {1, . . . ,𝑁}, 𝑁 — размер множества (3.1). При дан­
ном управлении перемещение объекта управления из начального состояния в
терминальное положение осуществляется по оптимальной траектории, также
называемой экстремалью. Множество оптимальных управлений ũ𝑗(𝑡), 𝑗 = 1,𝑁 ,
полученное путем решения задачи оптимального управления для каждого на­
чального состояния из множества (3.1), даст нам соответствующее множество
оптимальных траекторий.

Здесь следует отдельно подчеркнуть разницу между задачей оптималь­
ного управления и задачей синтеза системы управления. В случае задачи
оптимального управления решением будет функция управления от времени

u = v(𝑡). (3.2)

Данное решение доставляет оптимальную траекторию только для одного
начального состояния объекта управления.
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В случае задачи синтеза системы управления решение представляет собой
функцию управления от вектора компонент состояния объекта (1.6). Данное ре­
шение доставляет оптимальную траекторию перемещения объекта для любого
начального состояния из множества возможных состояний или его ограничен­
ной области.

Подставив управления вида (3.2) и вида (1.6) в (1.2) получим соответству­
ющие записи математической модели объекта управления

ẋ = f (x, v (𝑡)) , (3.3)

ẋ = f (x, h (x)) . (3.4)

Решения x
(︀
x0,𝑡

)︀
систем (3.3) и (3.4), обеспечивающие перемещение объ­

екта управления из одного и того же начального состояния x0 ∈ X̃0 из
множества (3.1) в терминальное положение x𝑓 по оптимальной траектории,
должны доставлять минимум функционалу качества (1.5)

𝑡𝑓∫︀
0

𝑓0
(︀
x
(︀
x0,𝑡

)︀
, v (𝑡)

)︀
𝑑𝑡 =

𝑡𝑓∫︀
0

𝑓0
(︀
x
(︀
x0,𝑡

)︀
, h
(︀
x
(︀
x0,𝑡

)︀)︀)︀
𝑑𝑡 =

= min
u∈Ũ

𝑡𝑓∫︀
0

𝑓0 (x,u) 𝑑𝑡.

(3.5)

Другими словами, решение системы (3.3) для выбранного начального состояния
x0 ∈ X̃0 из множества (3.1) должно обеспечивать получение такой же оптималь­
ной траектории, а, следовательно, такого же значения функционала качества,
как и решение задачи синтеза системы управления для этого же конкретного
начального состояния x0.

Решив задачу оптимального управления для каждого начального состоя­
ния объекта из множества (3.1), мы получим множество функций управления
от времени

Ṽ =
(︀
v1(𝑡), . . . ,v𝑁(𝑡)

)︀
, (3.6)

где v𝑗(𝑡) — решение задачи оптимального управления для начального условия
x0,𝑗, 𝑗 = 1,𝑁 , удовлетворяющее функционалу качества (3.5) и терминальным
условиям (1.4).

Для поиска решений задачи оптимального управления (3.6) можно исполь­
зовать любой из известных методов решения. При этом отдельно возникает
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задача выбора наиболее подходящего подхода и метода её решения. Исполь­
зуемый метод должен, с одной стороны, быть универсальным и учитывать
специфику прикладных задач оптимального управления, а, с другой стороны,
быть достаточно точным для получения репрезентативных результатов. Данно­
му вопросу посвящена Глава 4 настоящей диссертации.

Подставив каждое решение v𝑗(𝑡) из множества (3.6) в модель объекта
управления (3.3), получим множество пар оптимальных траекторий и про­
граммных управлений:

D̃ =
{︀(︀

x̃1 (·) ,ũ1 (·)
)︀
, . . . ,

(︀
x̃𝑁 (·) ,ũ𝑁 (·)

)︀}︀
, (3.7)

где x̃𝑗 (·) — частное решение системы (3.3) для начального условия x (0) = x0,𝑗,
ũ𝑗 (·) — решение задачи оптимального управления для заданного начального
условия и с учетом ограничений на управление ũ𝑗 (𝑡) ∈ U ⊆ R𝑚 ∀𝑡 ∈ [0; 𝑡𝑓 ],
𝑗 = 1,𝑁 .

На втором этапе решается задача поиска многомерной функции управле­
ния от координат состояния объекта (1.6) путем аппроксимации полученного
множества оптимальных траекторий и программных управлений (3.7).

Для численной аппроксимации множества (3.7) вводим дискретизацию по
времени. Для этого задаем малое значение ∆𝑠𝑡 > 0 и определяем множество
дискретных значений времени для всех найденных решений из множества (3.6)

T𝑗 = (0, ∆𝑠𝑡, 2∆𝑠𝑡, . . . , 𝑀𝑗∆𝑠𝑡) ,

где 𝑀𝑗 =

⌈︂
𝑡𝑓
(︀
x0,𝑗
)︀

∆𝑠𝑡

⌉︂
, 𝑡𝑓
(︀
x0,𝑗
)︀

— время процесса управления для найденного ре­

шения задачи оптимального управления из начального состояния x0,𝑗, 𝑗 = 1,𝑁 .
Тогда значения векторов состояния и управления для каждого начального со­
стояния в дискретный момент времени 𝑡𝑗 ∈ T𝑗 можно записать в виде

x̃𝑗,𝑖 = x̃𝑗 (𝑡𝑗,𝑖) ,

ũ𝑗,𝑖 = ũ𝑗 (𝑡𝑗,𝑖) ,

где 𝑖 = 1,𝑀𝑗, 𝑗 = 1,𝑁 .
В итоге получаем множество точек оптимальных траекторий и программ­

ных управлений в пространстве R𝑛 × R𝑚

D =
{︀(︀(︀

x̃1,1,ũ1,1
)︀
, . . . ,

(︀
x̃1,𝑀1,ũ1,𝑀1

)︀)︀
, . . . ,(︀(︀

x̃𝑁,1,ũ𝑁,1
)︀
, . . . ,

(︀
x̃𝑁,𝑀𝑁 ,ũ𝑁,𝑀𝑁

)︀)︀}︀
.

(3.8)
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Решением задачи численного синтеза системы управления будет мно­
гомерная функция управления от координат состояния объекта вида (1.6),
удовлетворяющая критерию

𝐽 =
𝑁∑︁
𝑗=1

𝑀𝑗∑︁
𝑖=1

⃦⃦
x̃𝑗,𝑖 − x𝑗(x0,𝑗,𝑡𝑗,𝑖)

⃦⃦
→ min, (3.9)

где x𝑗
(︀
x0,𝑗,𝑡𝑗,𝑖

)︀
— частное решение системы ẋ= f

(︀
x𝑗(x0,𝑗,𝑡𝑗,𝑖−1),h

(︀
x𝑗(x0,𝑗,𝑡𝑗,𝑖−1)

)︀)︀
для начального условия x (0) = x0,𝑗 в дискретный момент времени 𝑡𝑗,𝑖, 𝑖 = 1,𝑀𝑗,
x𝑗(x0,𝑗,𝑡𝑗,0) = x0,𝑗 — состояние объекта управления в начальный момент време­
ни 𝑡𝑗,0 = 0, 𝑗 = 1,𝑁 .

Значение функционала (3.9) определяет близость рассматриваемого ре­
шения к оптимальным траекториям, представленным в виде обучающей выбор­
ки (3.8). Чем ближе значение функционала (3.9) к нулю, тем точнее выполнена
аппроксимация и ближе решение к оптимальному.

Ключевыми параметрами, влияющими на качество решения задачи син­
теза системы управления и его близость к оптимальному, являются размер
множества оптимальных траекторий 𝑁 и значение параметра дискретизации
оптимальных траекторий по времени ∆𝑠𝑡. Увеличение размера множества
оптимальных траекторий позволит улучшить качество решения для разных на­
чальных состояний, в том числе тех, которые не входили в исходное множество.
В свою очередь уменьшение параметра дискретизации приведёт к увеличению
числа 𝑀𝑗, 𝑗 = 1,𝑁 рассматриваемых дискретных значений для каждой опти­
мальной траектории, что позволит улучшить качество аппроксимации.

При решении прикладных задач критерий (3.9) может быть дополнен
функциями поощрений или штрафов, например за нарушение фазовых огра­
ничений или выход из области допустимых состояний объекта.

В качестве иллюстрации случая, когда штраф за нарушение фазовых
ограничений необходимо включить в критерий качества обучения, рассмот­
рим следующий пример (Рис. 3.1). Пусть известна оптимальная траектория
перемещения объекта управления из начального состояния x0 в терминальное
состояние x𝑓 (сплошная черная линия) и существуют два возможных решения
задачи синтеза системы управления h1(x) и h2(x) и траектории, полученные
с их помощью (пунктирные черные линии). Пусть для точек на рассматрива­
емых траекториях верно следующее неравенство

⃦⃦
x̃− x1

⃦⃦
<
⃦⃦
x̃− x2

⃦⃦
. Тогда

согласно (3.9) возможное решение h1(x) является более качественным. Однако
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из Рис. 3.1 видно, что часть траектории, полученной с помощью данного реше­
ния нарушает фазовые ограничения (область, ограниченная красной сплошной
линией), в том числе и точка x1, а следовательно возможное решение h1(x)

должно быть исключено из рассмотрения.

Рисунок 3.1 — Пример. Случай необходимости включения штрафа за наруше­
ние фазовых ограничений в критерий качества обучения.

Для задач с фазовыми ограничениями добавим в критерий (3.9) штраф
за их нарушение

𝐽 =
𝑁∑︁
𝑗=1

𝑀𝑗∑︁
𝑖=1

⃦⃦
x̃𝑗,𝑖 − x𝑗

(︀
x0,𝑗,𝑡𝑗,𝑖

)︀⃦⃦
+

𝑧∑︁
𝑘=1

α𝑘ϑ (ℎ𝑘 (x))ℎ𝑘 (x)→ min, (3.10)

где α𝑘 — заданный штрафной коэффициент, ℎ𝑘 (x) — фазовое ограничение в
пространстве вектора состояния объекта, 𝑘 = 1,𝑧, 𝑧 — число фазовых ограни­
чений, ϑ (ℎ𝑘 (x)) — функция Хэвисайда (1.22).

Задача поиска многомерной функции управления (1.6), подстановка кото­
рой в математическую модель объекта управления (1.2) для разных начальных
состояний из множества (3.1) будет давать частные решения, удовлетворяю­
щие критерию качества (3.10), может быть представлена как задача обучения
с подкреплением [67].

Обучение с подкреплением эффективно используется для решения задач
поиска оптимального управления [98; 109]. В отличие от обучения с учителем,
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при котором осуществляется поиск функциональной зависимости программных
управлений u𝑗,𝑖 от значений состояния объекта x𝑗,𝑖, 𝑖 = 1,𝑀𝑗, 𝑗 = 1,𝑁 , в обуче­
нии с подкреплением присутствует явная обратная связь, которая заключается
во влиянии так называемого отклика системы — состояния x𝑗,𝑖 на последую­
щие решения, получаемые функцией управления.

В настоящее время большую популярность и развитие получили ис­
кусственные нейронные сети и связанные с ними технологии машинного
обучения [104]. В связи с этим довольно часто понятия “обучения” и “обучающей
выборки” связывают именно с ними. Однако данные понятия могут относить­
ся не только к применению методов машинного обучения при использовании
нейронных сетей, но и к множеству других подходов [133].

В данном случае многослойная искусственная нейронная сеть играет
роль универсального аппроксиматора при поиске функциональной зависимо­
сти управления от состояния объекта на основе обучающей выборки (3.8) [91].
Помимо нейронных сетей в качестве таких аппроксиматоров могут также ис­
пользоваться методы на основе дерева решений [100], линейной комбинации
радиально-базисных функций [128], локально-взвешенной линейной регрес­
сии [85] и методы символьной регрессии [140].

Выбор подходящего аппроксиматора и его настройка, например, выбор
количества и типов базисных функций или количества и размеров слоев ис­
кусственной нейронной сети, требует значительных усилий и большого объема
экспертных знаний. При этом настроенный аппроксиматор будет представлять
собой черный ящик, то есть получить структуру аппроксимирующей функции
и провести ее анализ не получится.

Из-за высокой сложности настройки и невозможности получить в явном
виде структуру аппроксимирующей функции, подходы на основе нейронных
сетей не используются в задачах синтеза системы управления [90]. Напротив,
в работе [140] показано, что методы символьной регрессии могут эффективно
использоваться для получения аналитического выражения на основе обучаю­
щей выборки.
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3.2 Постановка задачи численного синтеза системы управления на
основе аппроксимации множества оптимальных траекторий

методами символьной регрессии

Предлагаемый в диссертации подход численного решения задачи синтеза
системы управления и нахождения многомерной функции управления путем
аппроксимации множества оптимальных траекторий использует принципы обу­
чения с подкреплением. Ввиду того, что решением задачи синтеза системы
управления является математическое выражение функции управления (1.6),
для его поиска необходимо осуществить выбор эффективного аппроксиматора,
позволяющего получить искомое выражение в явном виде. В качестве такого
аппроксиматора в диссертации предлагается использовать методы символьной
регрессии.

Сформулируем постановку задачи численного синтеза системы управле­
ния на основе аппроксимации множества оптимальных траекторий методами
символьной регрессии.

Пусть задача синтеза системы управления в исходном виде задана с по­
мощью выражений (1.2) — (1.6). Произведем замену непрерывного множества
начальных состояний (1.3) на конечное множество из 𝑁 элементов (3.1).

На первом этапе для каждого начального состояния из дискретного мно­
жества (3.1) путем решения задачи оптимального управления необходимо найти
оптимальную траекторию перехода в терминальное состояние (1.4). Для этого
вводим критерий качества

𝐽 𝑗
𝑜𝑐𝑝 =

∫︁ 𝑡𝑓

𝑡0

𝑓0 (x,u) 𝑑𝑡→ min , 𝑗 = 1,𝑁 (3.11)

и решаем 𝑁 задач оптимального управления по переводу объекта управления
из состояния x0,𝑗 ∈ X̃0 в состояние x𝑓 . В итоге получаем решение в виде множе­
ства функций управления от времени (3.6), доставляющих минимум критерию
качества (3.11).

Подставив найденные функции управления в математическую модель
объекта (1.2), получим оптимальные траектории, соответствующие каждому
начальному состоянию.

Далее необходимо подготовить выборку данных для их последующей ап­
проксимации. Для этого зададим значение параметра дискретизации ∆𝑠𝑡 > 0
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и получим множество точек оптимальных траекторий и программных управ­
лений (3.8).

В соответствии с предложенным методом для аппроксимации использует­
ся только информация об оптимальных траекториях. Тогда для последующего
поиска математического выражения функции управления достаточно получить
множество точек оптимальных траекторий вида

D =
{︀(︀

x̃1,1,x̃1,2, . . . , x̃1,𝑀1
)︀
, . . . ,

(︀
x̃𝑁,1,x̃𝑁,2, . . . , x̃𝑁,𝑀𝑁

)︀}︀
, (3.12)

где x̃𝑗,𝑖 = x̃𝑗 (𝑡𝑗,𝑖) — вектор состояния объекта управления в дискретный момент
времени 𝑡𝑗,𝑖 при старте из точки начального состояния x0,𝑗, принадлежащей
множеству (3.1), 𝑖 = 1,𝑀𝑗, 𝑀𝑗 — число точек дискретизации оптимальной тра­
ектории из начального состояния x0,𝑗, 𝑗 = 1,𝑁 .

На втором этапе осуществляем поиск структуры и параметров функ­
ции управления, аппроксимирующей множество точек оптимальных траекто­
рий (3.12). Для этого введём обозначение записи искомой многомерной функции
управления (1.6) в виде кода метода символьной регрессии

g (x,s) , (3.13)

где s — вектор постоянных параметров, заданной размерности 𝐾,
s = [𝑠1 . . . 𝑠𝐾 ]

𝑇 .
Решением задачи численного синтеза системы управления на основе

аппроксимации множества оптимальных траекторий с помощью методов сим­
вольной регрессии будет запись оптимальной структуры функции управления

ũ = g* (x,s*) (3.14)

и оптимальные значения ее параметров s*, доставляющие минимум критерию
качества (3.9).

Главным преимуществом предлагаемого метода является возможность в
процессе поиска оптимального выражения функции управления в форме (3.14)
производить оценку близости текущих возможных решений к оптимальному на
основе значения критерия качества (3.9). Также следует отметить, что в приве­
денной постановке задачи численного синтеза системы управления не требуется
производить многокритериальную оптимизацию, что также положительно вы­
деляет предлагаемый подход при сравнении с методом, рассмотренным в
разделе 1.3 диссертации.
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Эффективность предлагаемого подхода исследовалась на различных при­
кладных задачах синтеза системы управления. Положительные результаты
проведенных исследований отражены в работах [172; 174—176; 179; 180] и под­
крепляют доводы, приводимые в диссертации.

Выводы по Главе 3

Аналитические методы решения задачи синтеза системы управления зача­
стую неприменимы для сложных прикладных задач. В таких случаях решение
поставленной задачи следует искать на основе численных подходов. Рассмот­
ренный метод поиска структуры многомерной функции управления на основе
аппроксимации множества предварительно найденных оптимальных траекто­
рий является новым численным методом решения задачи синтеза системы
управления. Он позволяет находить многомерную функцию управления в ана­
литическом виде, используя для этого численные методы символьной регрессии.

Отличительной особенностью предложенного метода от других известных
подходов численного синтеза системы управления является его соответствие
идеологии обучения с подкреплением. В методе предварительно формируется
обучающая выборка на основе множества оптимальных траекторий. Для её фор­
мирования необходимо получить решения задачи оптимального управления для
разных начальных условий. Далее строится критерий качества, позволяющий
оценить соответствие текущего решения эталонному из обучающей выборки, и
осуществляется поиск многомерной функции управления, доставляющей мини­
мум данному критерию.

Такой подход позволяет использовать показатель качества обучения как
оценку близости найденного решения к оптимальному. Также появляется воз­
можность управления качеством обучения с помощью увеличения размера и
полноты обучающей выборки. При этом поиск оптимального решения произво­
дится на множестве всего одного функционала, а, значит, нет необходимости
в поиске и выборе решения на множестве Парето, что свойственно для много­
критериальной оптимизации.

Поиск структуры, максимально точно аппроксимирующей обучающую
выборку, предлагается осуществлять с помощью методов символьной регрес­
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сии. В методах символьной регрессии сложные математические выражения
представляются в виде суперпозиции кодов заданных функций и арифмети­
ческих операций над ними. Дальнейший поиск осуществляется на нечисловом
пространстве кодов с помощью генетического алгоритма. Кодирование мате­
матического выражения методами символьной регрессии является обратимой
операцией. По окончанию поиска, найденное решение может быть декодирова­
но и представлено в форме структуры математического выражения и значений
его параметров.

Разработанный метод решения задачи численного синтеза системы управ­
ления на основе аппроксимации оптимальных траекторий был протестирован
на различных прикладных задачах и показал свою эффективность. Основные
результаты проведенных исследований опубликованы в работах [172; 174—176;
179; 180].
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Глава 4. Применение эволюционных алгоритмов для численного
решения задачи оптимального управления

Бурное развитие сложных технических систем в области самолетострое­
ния, ракетостроения и в других производственных сферах в конце 50-х годов
прошлого века привело к необходимости решения большого числа задач оп­
тимального управления. Этим обусловлено создание и исследование в это
же время численных методов решения задач оптимального управления [26].
Дополнительным стимулом к развитию численных методов решения задач оп­
тимального управления послужило появление и внедрение первых ЭВМ.

Как правило, при упоминании численных методов решения задач оп­
тимального управления, имеют в виду прямые методы, основанные на
преобразовании исходной задачи поиска оптимального управления к задаче
конечномерной оптимизации и применении методов нелинейного программиро­
вания [59]. Однако, существует и ряд исследований, связанных с непрямыми
методами, в которых исходная задача редуцируется на основе принципа макси­
мума Понтрягина к краевой [52], а также связанные с численными методами
решения задачи оптимального управления на основе динамического програм­
мирования [9; 54].

Наиболее эффективным и активно использующимся по сей день оказал­
ся метод, основанный на применении методов нелинейного программирования.
Данный метод активно используется для решения широкого круга сложных
задач оптимального управления [18]. Он позволяет использовать множество ме­
тодов безусловной оптимизации, начиная от градиентных методов и заканчивая
разнообразными современными алгоритмами.

Так в работах [18; 27; 53] при решении задачи оптимального управления,
сведенной к задаче нелинейного программирования, применяются градиентные
методы для определения направления поиска. Это накладывает определенные
требования к целевой функции, в частности требуется выполнение условий глад­
кости, выпуклости и унимодальности целевой функции. Проверка выполнения
данных условий для прикладных задач оптимального управления может по­
требовать существенных усилий, которые по трудоёмкости могут превышать
усилия по нахождению самого решения.
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Для задач оптимального управления с фазовыми ограничениями от­
сутствие сведений о топологических свойствах целевой функции является
характерной особенностью, так как определить свойства целевой функции и
гарантировать её выпуклость даже на ограниченной области пространства по­
иска достаточно сложно. В случаях, когда целевая функция содержит большое
количество локальных экстремумов, методы нелинейного программирования,
использующие градиентные методы для определения направления поиска, мо­
гут застревать в точках локального минимума и седловых точках, что не
позволяет получить информацию о глобальном оптимальном решении в про­
странстве поиска.

Рассматриваемые в данной главе современные поисковые алгоритмы
основаны на идеях, имеющих аналогии с приспособленностью и эволюциониро­
ванием живых организмов. Эволюционные алгоритмы не требуют выполнения
свойств выпуклости и других специальных свойств и позволяют эффективно
находить приближенное оптимальное решение [33]. До недавнего времени широ­
кому развитию и применению данных алгоритмов препятствовала лишь слабая
вычислительная мощность ЭВМ. Современные вычислительные системы позво­
ляют использовать и применять на практике все преимущества эволюционных
алгоритмов.

Следует отметить, что большинство из существующих эволюционных ал­
горитмов хорошо исследованы. Но в основном они исследовались на задачах
конечномерной оптимизации, в частности, их оценивали на решениях тестовых
функций. Ещё десять лет назад научные работы, посвященные исследованию
применения эволюционных алгоритмов в задачах оптимального управления,
отсутствовали. Данное направление стало активно развиваться научным кол­
лективом во главе с профессором А.И. Дивеевым начиная с 2014 года. Так в
работах [157—161; 165; 167; 169; 178] было проведено масштабное исследование,
показавшее высокую эффективность применения эволюционных алгоритмов
для решения задачи оптимального управления.

Отличие исследования эволюционных алгоритмов на предмет решения
задачи оптимального управления состоит в том, что явно не задана целевая
функция на пространстве параметров. Для того, чтобы получить значение целе­
вой функции, сначала требуется проинтегрировать систему дифференциальных
уравнений, а потом на основе полученных решений получить значение целевой
функции. Это является характерной особенностью не только для эволюцион­
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ных алгоритмов, но и для любых других, в том числе и градиентных, при
решении задачи оптимального управления путем редукции к задаче нелиней­
ного программирования.

Интегрирование системы дифференциальных уравнений в прикладных за­
дачах может представлять гораздо бо́льшую вычислительную сложность, то
есть занимать больше вычислительного времени, чем процедуры преобразова­
ния искомого вектора на текущей итерации и вычисления фазового состояния
объекта управления. Таким образом, более точную оценку сложности алгорит­
ма решения задачи оптимального управления можно получить оценивая число
вычислений значений целевой функции, а не по числу произведенных итера­
ций поиска.

Ещё одной характерной особенностью задач оптимального управления,
решаемых методами нелинейного программирования, является большая размер­
ность пространства искомого вектора решения. Редукция задачи оптимального
управления к задаче нелинейного программирования состоит в дискретизации
функций управления по времени. Размерность вектора решения при этом будет
равна произведению количества точек дискретизации и размерности вектора
управления. При таком подходе, чем больше точек дискретизации, тем точнее
численное решение задачи оптимального управления, но тем больше размер­
ность пространства искомого вектора решения.

Здесь следует отметить, что даже для простейшей прикладной задачи с
векторами состояния и управления небольшой размерности и достаточно гру­
бой редукции к задаче нелинейного программирования, пространство поиска
вектора решения будет иметь весьма большую размерность.

В методах нелинейного программирования, в которых используются гра­
диентные методы для определения направления поиска, число вычислений
целевой функции равно размерности искомого вектора решения, а в методах
второго порядка — квадрату его размерности. Таким образом, в прикладных
задачах оптимального управления, решаемых методами нелинейного програм­
мирования с использованием градиентных методов, вычисление значений
целевой функции на каждом шаге занимает бо́льшую часть вычислительного
процесса. Это ещё раз подтверждает справедливость предположения об эффек­
тивности оценки вычислительной сложности численных методов решения задач
оптимального управления по количеству вычислений целевой функции.
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4.1 Постановка задачи оптимального управления с фазовыми
ограничениями

В классической постановке задачи оптимального управления объект
управления записывается в виде системы дифференциальных уравнений [51]

ẋ = f (x,u) ,

где x ∈ R𝑛, x = [𝑥1 . . . 𝑥𝑛]
𝑇 — вектор состояния, u ∈ U ⊆ R𝑚, u = [𝑢1 . . . 𝑢𝑚]

𝑇 —
вектор управления, f (x,u) = [𝑓1 (x,u) . . . 𝑓𝑛 (x,u)]

𝑇 .
Заданы ограничения на управление

u− ⩽ u ⩽ u+,

где u−, u+ — заданные постоянные векторы ограничений, u− =
[︀
𝑢−1 . . . 𝑢−𝑚

]︀𝑇 ,
u+ =

[︀
𝑢+1 . . . 𝑢+𝑚

]︀𝑇 .
Многомерная функция f (x,u) определена для любых возможных значе­

ний вектора состояний x и любых возможных значений вектора управления u.
Заданы начальные условия

𝑡0 ⩾ 0,

x(𝑡0) = x0,

где 𝑡0 — начальное время, x0 — заданный вектор состояния объекта в начальный
момент времени 𝑡0, x0 =

[︀
𝑥01 . . . 𝑥

0
𝑛

]︀𝑇 .
Заданы терминальные условия

x (𝑡𝑓) = x𝑓 ,

где x𝑓 — заданный вектор терминального состояния, x𝑓 =
[︁
𝑥𝑓1 . . . 𝑥

𝑓
𝑛

]︁𝑇
,

𝑡𝑓 — ограниченное время процесса управления

𝑡𝑓 =

⎧⎨⎩ 𝑡, если 𝑡 < 𝑡𝑚𝑎𝑥 и
⃦⃦
x (𝑡)− x𝑓

⃦⃦
⩽ ε

𝑡𝑚𝑎𝑥 — иначе
,

где 𝑡𝑚𝑎𝑥 — ограничение на время процесса управления, ε > 0 — необходимая
точность достижения терминального состояния. Норма разности векторов мо­
жет выбираться из особенностей задачи. Для модели объекта с соизмеримыми
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компонентами вектора состояния целесообразно выбрать Евклидову норму

⃦⃦
x (𝑡)− x𝑓

⃦⃦
=

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(︁
𝑥𝑖 (𝑡)− 𝑥𝑓𝑖

)︁2
.

В общем виде функционал качества для задачи перевода объекта управ­
ления из состояния x0 в состояние x𝑓 будет выглядеть следующим образом

𝐽 =

∫︁ 𝑡𝑓

𝑡0

𝑓0 (x,u) 𝑑𝑡→ min . (4.1)

Частным случаем рассматриваемой задачи является задача об оптималь­
ном быстродействии, то есть задача поиска такого вектора управления u,
который обеспечит перевод объекта управления из состояния x0 в состояние
x𝑓 за минимальное время. В этом случае значение 𝑓0 (x,u) = 1, а значение
функционала качества (4.1) принимает вид

𝐽 = 𝑡𝑓 → min .

В прикладных задачах довольно часто приходится сталкиваться с огра­
ничениями на состояние объекта управления. В простейшем случае можно
говорить о статических фазовых ограничениях, информация о которых извест­
на изначально

ℎ𝑖 (x) ⩽ 0, 𝑖 = 1,𝑧,

где 𝑧 — число фазовых ограничений.
Также в прикладных задачах встречаются динамические фазовые ограни­

чения, которые вычисляются на каждом шаге поиска. Все фазовые ограничения
также должны быть учтены при поиске оптимального управления. Тогда
функционал качества с учётом фазовых ограничений и значения нормы разно­
сти векторов полученного и терминального состояний, представляющих собой
ошибку управления, будет иметь вид

𝐽 = µ
⃦⃦
x(𝑡𝑓)− x𝑓

⃦⃦
+

∫︁ 𝑡𝑓

𝑡0

(︃
𝑓0 (x,u) +

𝑧∑︁
𝑖=1

α𝑖ϑ (ℎ𝑖(x))ℎ𝑖(x)

)︃
𝑑𝑡→ min,

где µ — весовой коэффициент, ϑ (ℎ𝑖 (x)) — функция Хэвисайда (1.22), α𝑖 —
заданные коэффициенты штрафа, 𝑖 = 1,𝑧.
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Результатом решения задачи оптимального управления является вектор
управления с компонентами в форме функций времени ũ (·) = [𝑢̃1(·) . . . 𝑢̃𝑚(·)]𝑇 ,
поэтому данная задача относится к классу задач бесконечномерной оптими­
зации. Далее эта задача может быть решена одним из численных методов
решения.

4.2 Численные методы решения задачи оптимального управления

Среди обширного класса численных методов решения задачи оптимально­
го управления выделяют несколько существенно отличающихся друг от друга
направлений [53].

Наиболее популярным и эффективным является прямой метод, заключа­
ющийся в сведении исходной задачи бесконечномерной оптимизации к задаче
конечномерной оптимизации и применении методов нелинейного программи­
рования. При реализации этого подхода применяются различные методы
оптимизации, которые исследуются и совершенствуются по сей день.

Альтернативный подход к решению задачи оптимального управления
связан с непрямыми методами, в которых с помощью принципа максимума
Понтрягина исходная задача редуцируется к краевой.

4.2.1 Непрямые методы решения задачи оптимального управления

Решение задачи оптимального управления на основе принципа
максимума Понтрягина

Непрямые методы решения задачи оптимального управления существен­
ным образом основаны на результатах работ Л.С. Понтрягина [51], хорошо
известных как «принцип максимума» [26].

При описании принципа максимума Понтрягина для решения задачи оп­
тимального управления в литературе часто приводится аналогия с методами
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исследования функций от многих переменных, при котором сначала произво­
дится отбор точек, удовлетворяющих необходимым условиям, а далее — их
анализ на предмет выполнения достаточных условий [20]. В данном случае
принцип максимума выполняет роль необходимого условия оптимальности.

Принцип максимума является обобщением классической вариационной за­
дачи нахождения оптимального управления как функции от времени, обеспечи­
вающего минимум функционалу качества (4.1). При этом поиск оптимального
управления осуществляется при условии максимизации функции Гамильтона
𝐻(ψ,x,u).

Описание принципа максимума Понтрягина приведено в разделе 1.2.2 дис­
сертации.

Важно подчеркнуть, что, при переходе от исходной задачи оптимального
управления к краевой задаче, число дифференциальных уравнений возрастает
в два раза, а это, в свою очередь, значительно увеличивает сложность вычис­
лений.

Решение задачи оптимального управления на основе метода
динамического программирования

В научной литературе [11; 54] также рассматриваются численные мето­
ды решения задачи оптимального управления на основе метода динамического
программирования. В основе такого подхода лежит принцип оптимальности
Р. Беллмана [9].

Описание метода динамического программирования в терминологии тео­
рии управления приведено в разделе 1.2.1 диссертации.

Уравнение Беллмана (1.12) может быть использовано для построения
вектора оптимального управления u и вектора оптимального фазового состо­
яния x. В работах В.Г. Болтянского [11; 51] было показано, что в принципе
оптимальности Р. Беллмана и принципе максимума Л.С. Понтрягина использу­
ются одни и те же необходимые условия оптимальности, сформулированные
по разному.

Однако практическое использование принципа максимума Понтрягина
и принципа оптимальности Беллмана оказалось весьма затрудненным, ввиду
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значительного увеличения вычислительной сложности с ростом размерности си­
стемы управления при решении прикладных задач. Этим обусловлена бо́льшая
популярность прямых методов решения задачи оптимального управления.

4.2.2 Прямые методы решения задачи оптимального управления

Прямые методы решения задачи оптимального управления основаны на
идее перехода от исходной задачи к задаче нелинейного программирования и
позволяют использовать обширный набор разнообразных методов безусловной
оптимизации [18; 25; 59; 76]. Переход от исходной задачи осуществляется пу­
тём дискретизации и вводом некоторой вспомогательной функции от многих
переменных, изменяемой от шага к шагу [13; 26].

Решением задачи оптимального управления является вектор управления
с компонентами в форме кусочно-непрерывных функций времени ũ(·), поэто­
му данная задача относится к классу задач бесконечномерной оптимизации.
Для поиска решения задачи оптимального управления прямым подходом с по­
мощью методов нелинейного программирования необходимо аппроксимировать
искомые компоненты вектора управления 𝑢̃𝑖(·), 𝑖 = 1,𝑚 функциональны­
ми зависимостями от конечного числа параметров. Для этой цели часто
используют полиномы, ортогональные ряды или кусочно-функциональную ап­
проксимацию [61]. Эксперименты показали, что среди перечисленных видов
аппроксимаций для исследуемой в работе прикладной задачи лучший резуль­
тат дала кусочно-линейная аппроксимация.

Рассмотрим редукцию задачи оптимального управления к задаче нелиней­
ного программирования с помощью кусочно-линейной аппроксимации.

Задаётся малый интервал ∆𝑡 > 0, и определяется количество интервалов

𝑀 =

⌈︂
𝑡𝑚𝑎𝑥

∆𝑡

⌉︂
, (4.2)

где 𝑡𝑚𝑎𝑥 — ограничение на время управления.



106

Значение управления ũ(𝑡) = [𝑢̃1(𝑡) . . . 𝑢̃𝑚(𝑡)]
𝑇 в момент времени 𝑡 будет

определяться из соотношения

𝑢̃𝑗 (𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢−𝑗 , если 𝑞 (𝑡,𝑗,𝑖,∆𝑡) < 𝑢−𝑗

𝑢+𝑗 , если 𝑞 (𝑡,𝑗,𝑖,∆𝑡) > 𝑢+𝑗

𝑞 (𝑡,𝑗,𝑖,∆𝑡) — иначе

,

где 𝑞 (𝑡,𝑗,𝑖,∆𝑡) = 𝑞(𝑗−1)𝑀+𝑖 +
(︀
𝑞(𝑗−1)𝑀+𝑖+1 − 𝑞(𝑗−1)𝑀+𝑖

)︀ (𝑡− (𝑖− 1)∆𝑡)
∆𝑡 ,

𝑖∆𝑡 ⩽ 𝑡 < (𝑖+ 1)∆𝑡, 𝑖 = 1,𝑀 , 𝑗 = 1,𝑚.
В результате поиск управления можно заменить поиском вектора посто­

янных параметров q = [𝑞1 . . . 𝑞𝑝]
𝑇 , q ∈ R𝑝, где 𝑝 = 𝑚 (𝑀 + 1).

При поиске значения параметров следует ограничить

𝑞−𝑖 ⩽ 𝑞𝑖 ⩽ 𝑞+𝑖 , 𝑖 = 1,𝑝,

где 𝑞−𝑖 , 𝑞+𝑖 — заданные значения ограничений на параметры, 𝑢−𝑗 ⩾ 𝑞−𝑖 , 𝑢+𝑗 ⩽ 𝑞+𝑖 ,
𝑗 = 1,𝑚, 𝑖 = (𝑗 − 1) (𝑀 + 1) + 1, 𝑗 (𝑀 + 1). Ограничение на управление не
совпадает с ограничениями на значения параметров с целью увеличения Лип­
шицевости искомой функции. Постоянная Липшица определяется по формуле(︀
𝑞+𝑖 − 𝑞−𝑖

)︀ ⧸︀
∆𝑡.

Поиск вектора постоянных параметров q, являющегося решением реду­
цированной задачи оптимального управления, реализуется одним из многочис­
ленных методов безусловной оптимизации. От эффективности и сходимости
выбранного метода в условиях отсутствия сведений о топологических свойствах
целевой функции во многом зависит результат решения поставленной задачи.

4.3 Методы безусловной оптимизации для решения задачи
оптимального управления

В настоящее время разработано и исследовано множество разнообразных
численных методов для задач безусловной оптимизации [56]. К классическим
методам принято относить класс хорошо изученных методов, которые принято
разделять на методы нулевого порядка, методы первого порядка, требующие
вычисления первой производной, и методы второго порядка, требующие вычис­
ления второй производной.
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Среди классических методов нулевого порядка можно выделить метод
Нелдера-Мида, метод Хука-Дживса, метод Розенброка [56]. Также к методам
нулевого порядка относится обширный класс методов случайного поиска [63].
Методы нулевого порядка хорошо зарекомендовали себя для решения простых
задач оптимизации малой размерности, однако не используются на практике
для решения задач оптимального управления.

Среди методов первого порядка, требующих вычисления первой произ­
водной на каждом шаге поиска, можно выделить метод градиентного спуска с
постоянным шагом, метод наискорейшего градиентного спуска, метод покоорди­
натного градиентного спуска, метод Гаусса-Зейделя, метод Флетчера-Ривса [56].
Также заслуживает внимания современный метод Adam [113]. В методах пер­
вого порядка значение градиента используется для вычисления направления
поиска на каждом шаге алгоритма. Благодаря использованию значения гра­
диента функции в процессе поиска, эффективность методов первого порядка
намного выше чем у методов нулевого порядка, но одновременно с этим появ­
ляются определенные ограничения на класс минимизируемых функций ввиду
необходимости их дифференцируемости на всем множестве поиска.

Среди методов второго порядка, в которых на каждом шаге алгоритма
требуется вычисление второй производной, можно выделить хорошо известный
метод Ньютона и его модификацию — метод Ньютона-Рафсона, а также метод
Марквардта [56; 72]. Методы второго порядка эффективнее и работают намного
быстрее методов первого порядка, но накладывают ещё бóльшие ограничения
на минимизируемые функции, так как требуют существования второй произ­
водной на всем пространстве поиска.

В развитии современных методов безусловной оптимизации можно выде­
лить два направления. Одно направление развития основано на использовании
значения градиента для поиска решения на каждом шаге. Такие методы можно
отнести к классу градиентных методов. Эти методы нашли широкое примене­
ние в задачах обучения нейронных сетей.

Второе направление развития современных методов безусловной опти­
мизации связано с появлением в 80-х годах прошлого века и последующим
интенсивным развитием класса стохастических алгоритмов. Данные алгоритмы
основаны на принципах одновременного учёта множества возможных решений
оптимизационной задачи и эволюционирования этих решений на каждом шаге
алгоритма с целью получения лучшего решения в соответствии с критериями
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поиска. Данный класс методов получил название эволюционных или популяци­
онных методов. Первым и самым известным методом данного класса является
генетический алгоритм, предложенный Джоном Холландом в 1975 году [106].
Среди широко известных эволюционных алгоритмов также стоит упомянуть
метод роя частиц, предложенный в 1995 году и эффективно использующийся
по сей момент [112]. Класс эволюционных алгоритмов активно развивается и
каждый год пополняется новыми методами.

C бурным ростом числа разнообразных оптимизационных алгоритмов,
стала возникать задача их сравнительного анализа с целью оценки их эф­
фективности и производительности. Точный и полный анализ алгоритмов
может служить хорошим помощником в выборе определенного метода для ре­
шения конкретной прикладной задачи. Число научных работ, посвященных
сравнительному анализу оптимизационных методов довольно велико. Так в
60-70-х годах прошлого века большое внимание уделялось выявлению наибо­
лее эффективных подходов среди методов нулевого порядка и градиентных
методов [87; 141]. А в настоящее время внимание ученых направлено на поиск
универсальных и эффективных методов среди современных метаэвристических
алгоритмов, включая эволюционные алгоритмы [88; 127; 135].

Несмотря на то, что для подавляющего большинства оптимизационных
алгоритмов существует значительное число сравнительных исследований их
эффективности, эти исследования в основном выполнялись с использованием,
тестовых функций [108; 137; 148]. Использование тестовых функций позволяет
оценить эффективность того или иного алгоритма в условиях мультимодально­
сти и недифференцируемости оптимизируемого функционала. Однако в полной
мере сделать вывод о преимуществе определённого алгоритма для решения при­
кладной задачи по результатам его работы с тестовыми функциями всё-таки
невозможно.

Рассматривая широкий перечень разнообразных методов безусловной оп­
тимизации, необходимо учитывать их эффективность именно для решения
задачи оптимального управления.
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4.3.1 Градиентные методы

К классу градиентных методов относятся как методы первого поряд­
ка, так и методы второго порядка. В подавляющем большинстве методов
данного класса используется траекторный подход к организации поиска опти­
мального значения, то есть градиентные методы относятся к классу методов
детерминированного поиска. При таком подходе для заданной или выбранной
случайно начальной точки с помощью вычислений на основе значения градиен­
та функции строится траектория перемещения в точку искомого оптимального
решения.

Градиентные методы наиболее часто предлагают для решения зада­
чи нелинейного программирования. Методы данного класса больше других
подвергались теоретическим исследованиям [5; 17; 31]. Приведем основные ха­
рактеристики наиболее известных градиентных методов: метода наискорейшего
градиентного спуска; метода Ньютона-Рафсона; метода Марквардта; метода
Adam.

Метод наискорейшего градиентного спуска включает поиск направления
по антиградиенту целевой функции в одной точке и одномерный поиск в на­
правлении антиградиента, как правило, прямым методом, например, методом
золотого сечения [56]. Использование прямых методов одномерной оптимизации
обусловлено тем, что в задачах оптимального управления отсутствует явный
вид функциональной зависимости между целевой функцией и компонентами
искомых параметров, а, следовательно, возможность использования производ­
ной целевой функции по параметрам отсутствует. Данный факт также говорит
о слабости классических градиентных методов при их применении для задач
оптимального управления, ввиду их использования без обоснования свойств
унимодальности целевого функционала. Несмотря на это, в работе Э.Б. Ли
и Л. Маркуса по оптимальному управлению [47] метод наискорейшего спуска
вставлен в приложение, как один из методов решения задачи оптимального
управления.

Метод Ньютона-Рафсона относится к градиентным методам 2-го порядка
и является модификацией классического метода Ньютона [56; 72]. Для вы­
числений используется информация о частных производных целевой функции
первого и второго порядка. Методы 2-го порядка и метод Ньютона-Рафсона
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в частности обладают более высокой скоростью сходимости, так как позволя­
ют вычислить величину шага в сторону антиградиента по обратной матрице
вторых частных производных Гессе. При этом для вычислений необходимо
соблюдение условий положительной определенности матрицы Гессе. В тех
итерациях, где матрица Гессе не является положительно определенной, вычис­
ления производятся по алгоритму наискорейшего градиентного спуска.

Метод Марквардта также относится к градиентным методам 2-го по­
рядка [56]. Но, в отличие от метода Ньютона-Рафсона, в данном методе для
вычислений не требуется положительная определенность матрицы Гессе. На
каждой итерации при вычислении нового возможного решения используется
специальная переменная µ. При уменьшении значения µ метод Марквардта по
своим свойствам приближается к методу Ньютона, а при увеличении µ — к
градиентному спуску.

Новый градиентный метод Adam (сокр. от англ. Adaptive Moment
Estimation) относится к градиентным методам 1-го порядка. Он был предложен
в 2015 году [113] для решения задачи обучения больших искусственных ней­
ронных сетей. Концепция метода требует знания только градиента функции,
что положительно сказывается на скорости работы алгоритма и используе­
мой памяти.

4.3.2 Методы случайного поиска

Одним из первых советских учёных, исследовавших и популяризовавших
методы случайного поиска, был Л.А. Растригин, который в своих работах [63;
64] представил подробное описание и анализ эффективности нескольких мето­
дов из данного класса. Главными преимуществами методов случайного поиска
перед классическими градиентными методами считается их быстродействие и
простота реализации, малочувствительность к росту размерности оптимизиру­
емой задачи и их применимость к многопараметрическим мультимодальным
задачам. В задачах, в которых оптимизируемый функционал обладает свой­
ствами дифференцируемости и унимодальности, методы случайного поиска
ожидаемо проигрывают градиентным методам.
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Самым простым, но одновременно и самым известным методом из класса
методов случайного поиска является метод Монте-Карло [62]. Суть метода в вы­
боре лучшего решения из множества случайно распределенных на пространстве
поиска точек. Очевидно, что данный метод не является эффективным для реше­
ния задач оптимального управления, хотя, при устремлении размера множества
случайных точек к бесконечности, позволит получить глобально оптимальное
решение. Современные методы случайного поиска позволяют эффективно на­
ходить решение оптимизационных задач за конечное время. Среди наиболее
известных и эффективных методов данного класса можно выделить адаптив­
ный метод случайного поиска [56; 63], метод статистического градиента [63],
метод случайного поиска с направляющим гиперквадратом [8] и метод наилуч­
шей пробы для многоэкстремальных задач [56; 63].

Адаптивный метод случайного поиска относится к типу направленного
случайного поиска [56; 63]. В отличие от ненаправленного случайного поис­
ка, в котором все случайные решения генерируются независимо от результатов
предыдущих решений, в направленном случайном поиске полученное на преды­
дущей поисковой итерации решение используется при формировании нового
решения на текущей поисковой итерации. Такой подход позволяет обеспечить
более высокую сходимость метода, но в тоже время найденные решения могут
оказаться локальными экстремумами.

В методе статистического градиента на каждой итерации берется за­
данное число 𝑚 независимых решений на гиперсфере с центром в текущей
точке [63]. Для каждого решения вычисляется приращение значения функцио­
нала качества. При 𝑚→∞ направление, на котором достигается максимальное
уменьшение значения функционала качества, совпадает с направлением анти­
градиента.

В методе случайного поиска с направляющим гиперквадратом строится
гиперквадрат, на начальном этапе совпадающий с допустимой областью поис­
ка [8]. Внутри гиперквадрата берется заданное число 𝑚 независимых решений.
Лучшее из этих решений становится центром нового гиперквадрата меньше­
го размера.

В методе наилучшей пробы для многоэкстремальных задач из случайно
заданного на допустимой области решения осуществляется поиск локального
минимума с заданной точностью [56; 63]. Далее берется новое случайное реше­
ние и по той же схеме осуществляется поиск, результатом которого может быть
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точка локального минимума со значением функции либо больше, чем в преды­
дущей точке, либо меньше. В последнем случае, новая точка берется за текущее
решение, а поиск новых локальных минимумов продолжается до достижения
заданного числа итераций.

4.3.3 Эволюционные алгоритмы

В конце ХХ века появились и стали активно развиваться эволюционные ал­
горитмы — методы глобальной безусловной оптимизации, относящиеся к классу
метаэвристических методов [32; 71]. Приспособленность живых организмов к
выживанию и размножению в разных условиях их жизнедеятельности являлась
вдохновением для разработчиков при создании алгоритмов, имитирующих со­
ответствующие процессы. Отсюда происходит название класса эволюционных
алгоритмов, для которых также известны и другие названия: поведенческие,
популяционные или вдохновленные природой [33].

Первым из эволюционных алгоритмов следует считать генетический ал­
горитм, появившийся в начале 70-х годов прошлого века [106]. Спустя два
десятилетия развитие эволюционных алгоритмов вышло на новый виток. Этому
способствовала значительно возросшая вычислительная мощность ЭВМ.

В настоящее время известно большое число эффективных и хорошо за­
рекомендовавших себя алгоритмов данного класса [33]. Среди них можно
выделить метод роя частиц [112], предложенный в 1995 году, пчелиный ал­
горитм [142], алгоритм муравьиной колонии [97], метод дифференциальной
эволюции [139], метод инспирированный летучими мышами [147], алгоритм
светлячков [149], кукушкин поиск [152], метод серых волков [126].

Следует сказать, что экзотические названия новых поисковых алгоритмов
скорее препятствуют их широкому распространению и исследованию в среде
прикладных математиков и инженеров-вычислителей. Сложность оценки бли­
зости выполняемых операций в данных алгоритмах к реальным биологическим
процессам в организованных живых системах, именами которых эти алгорит­
мы названы, может вызывать недоверие к результатам поиска. Определенное
недоверие также может вызывать тот факт, что все эволюционные алгоритмы
относятся к классу эвристических недерминированных методов, что означает
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отсутствие доказательства их сходимости. Видимо, этим обусловлено большое
число научных работ, посвященных экспериментальному доказательству их эф­
фективности [33; 148; 151].

Все эволюционные алгоритмы имеют общие признаки. У эволюционных
алгоритмов для поиска используется множество возможных решений вместо
одного решения как при классическом траекторном подходе в алгоритмах де­
терминированного поиска. Данное множество возможных решений в разных
публикациях называется роем, стаей, популяцией и т.п. Начальное множество
возможных решений в большинстве случаев генерируется случайно. Далее вы­
полняется оценка всех возможных решений по значению целевой функции.
После этого на основе полученных оценок выполняется преобразование элемен­
тов множества возможных решений с целью улучшения оценок этих элементов.
Часто вместо возможных решений с плохими оценками генерируются новые
возможные решения. Преобразование множества возможных решений на осно­
ве анализа оценок существующих решений называется эволюцией. Процессы
генерации возможных решений, их оценивание и преобразование повторяются
конечное число итераций. Решение с наилучшей оценкой в последнем множе­
стве возможных решений считается решением задачи оптимизации.

Процедура эволюции множества возможных решений состоит из двух эта­
пов — исследовательского поиска и локального поиска [151]. Данные этапы
можно рассматривать как последовательные процессы диверсификации и ин­
тенсификации поиска.

Первый этап — исследовательский поиск. На данном этапе алгоритм про­
водит исследование всей области поиска, генерируя разнообразные возможные
решения на значительном расстоянии друг от друга. Эта часть поиска является
глобальной в части исследования области возможных решений. Она позволяет
значительно уменьшить вероятность застревания в локальных оптимумах и уве­
личить вероятность нахождения глобального оптимума.

Второй этап — локальный поиск. На данном этапе известная на теку­
щей момент информация об области поиска используется для поиска новых
решений, которые будут лучше чем текущие решения. Эта часть поиска хоть
и подвержена застреванию в локальных оптимумах, но позволяет обеспечить
высокую сходимость алгоритма.

Алгоритмы, в которых исследовательский поиск преобладает над ло­
кальным, могут находить решения в области глобального оптимума, но не
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обеспечивать необходимого уровня точности. И наоборот, алгоритмы, в кото­
рых локальный поиск преобладает над исследовательским, могут обеспечивать
высокую точность, но застревать в локальных оптимумах. Таким образом, для
обеспечения высокой эффективности алгоритма, необходимо соблюсти баланс
между исследовательским и локальным поисками. Нахождение такого баланса
до сих пор является отдельной актуальной задачей среди исследователей эво­
люционных алгоритмов. На выбор соотношения между исследовательским и
локальным поиском могут влиять настройки параметров алгоритма, механизм
работы самого алгоритма и тип оптимизируемой задачи.

Эволюционная стратегия описывает механизмы модификации всего мно­
жества возможных решений в целом, но свойства отдельно взятого элемента
этого множества также представляют интерес. Каждое решение из множества
возможных решений на каждой поисковой итерации обладает следующими
свойствами [33]:

1. Автономность — отдельные решения хотя бы частично независимы
друг от друга;

2. Стохастичность — эволюционные преобразования решений множества
содержат случайную составляющую;

3. Ограниченность — отдельно взятые решения не предоставляют инфор­
мации об исследуемой задаче в целом;

4. Децентрализованность — процесс поиска основан на информации о мно­
жестве решений, а не одного, пусть даже и лучшего, решения;

5. Коммуникабельность — эволюционные преобразования отдельного ре­
шения могут быть частично основаны на информации, полученной от
других решений множества.

Отличие эволюционных алгоритмов между собой заключается в различии
преобразований возможных решений на этапе эволюции. Следует особо отме­
тить, что, несмотря на то, что эволюционные алгоритмы относятся к классу
стохастических методов, случайная составляющая не играет главенствующую
роль. При эволюционных преобразованиях основная роль отводится информа­
ции об оценках всего множества возможных решений. Случайная составляющая
в свою очередь обеспечивает диверсификацию поиска для более высокой веро­
ятности нахождения глобального оптимума решаемой задачи.

В генетическом алгоритме эволюция выполняется с помощью операций
скрещивания и мутации кодов возможных решений. Вероятность выполнения
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операции скрещивания зависит от близости значений оценок отобранных для
скрещивания возможных решений к наилучшей текущей оценке. Полученные
после эволюционных преобразований новые возможные решения добавляются
к множеству, если их оценки не хуже наихудшей оценки во множестве. В наибо­
лее популярном сегодня алгоритме роя частиц эволюционные преобразования
возможного решения выполняются с учетом наилучшего найденного к текуще­
му моменту возможного решения и наилучшего среди некоторого подмножества
возможных решений, называемого множеством информаторов.

Обычно эволюционные алгоритмы имеют некоторое число свободных па­
раметров. Решение той или иной прикладной оптимизационной задачи зависит
как от правильного выбора значений свободных параметров, так и от правиль­
ного выбора используемого метода в целом.

Далее в диссертации рассматриваются следующие классические и совре­
менные эволюционные алгоритмы в терминологии, принятой для описания
задач оптимального управления: генетический алгоритм [106], метод диффе­
ренциальной эволюции [139], метод роя частиц [112], пчелиный алгоритм [142],
алгоритм летучих мышей [147], алгоритм серых волков [126].

Во всех эволюционных алгоритмах поиск осуществляется на множестве
возможных решений заданного размера 𝐻, в котором выполняются определен­
ные эволюционные преобразования заданное 𝑊 число раз, соответствующее
количеству поисковых итераций. Решением поставленной задачи будет наилуч­
шее по значению целевой функции возможное решение в итоговом множестве.

Генетический алгоритм

Начало 70-х годов XX века можно назвать отправной точкой развития
эволюционных алгоритмов. В это время американский учёный Джон Холланд
с помощниками начали применять операции скрещивания и рекомбинации
для исследования адаптивных систем. Результатом данных исследований ста­
ло изобретение генетического алгоритма, который был опубликован в работе
Дж. Холланда в 1975 году [106]. Главной особенностью алгоритма было то,
что он был представлен как математическая абстракция Дарвинской теории
эволюции и естественного отбора в природе, реализованная с помощью мате­
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матических операторов скрещивания, рекомбинации, мутации и отбора [103].
Генетический алгоритм показал высокую эффективность в решении широкого
спектра задач, в том числе сложноформализуемых, мультимодальных и недиф­
ференцируемых.

Основу генетического алгоритма составляют три операции: скрещивание,
мутация и отбор. Операция скрещивания выполняет роль локальной части
поиска, ее задача — улучшение сходимости алгоритма. Операция мутации
представляет исследовательскую часть поиска и позволяет увеличить шанс на­
хождения глобального оптимума в ущерб скорости сходимости алгоритма.

Рассмотрим генетический алгоритм пошагово.
В генетическом алгоритме каждая компонента вектора возможного реше­

ния q кодируется двоичным кодом Грея. Для кодирования одной компоненты
решения выделяем 𝐶 бит под целую часть числа и 𝐷 бит — под дробную часть.
В результате код каждой компоненты вектора возможного решения представ­
ляет собой положительное целое число 𝑔𝑖, 𝑖 = 1,𝑝, в диапазоне от 0 до 2𝐶+𝐷.
Всего код одного вектора из 𝑝 компонент содержит 𝑝 (𝐶 +𝐷) бит.

На начальном этапе генерируем множество возможных решений из 𝐻 слу­
чайных двоичных кодов. При кодировании используются коды Грея

S = {S1, . . . ,S𝐻} ,

где S𝑖 =
(︁
𝑠𝑖1, . . . ,𝑠

𝑖
𝑝(𝐶+𝐷)

)︁
, 𝑠𝑖𝑗 ∈ {0,1}, 𝑖 = 1,𝐻, 𝑗 = 1, 𝑝 (𝐶 +𝐷).

Запускаем процесс поиска. Для каждого возможного решения производим
вычисление значения функционала. Для этого преобразовываем код Грея воз­
можного решения S𝑖 =

(︁
𝑠𝑖1, . . . ,𝑠

𝑖
𝑝(𝐶+𝐷)

)︁
в двоичный код B𝑖 =

(︁
𝑏𝑖1, . . . ,𝑏

𝑖
𝑝(𝐶+𝐷)

)︁
,

где

𝑏𝑖𝑗 =

⎧⎨⎩ 𝑠𝑖𝑗, если (𝑗 − 1)mod (𝐶 +𝐷) = 0

𝑠𝑖𝑗 ⊕ 𝑠𝑖𝑗−1 — иначе
, 𝑗 = 1, 𝑝 (𝐶 +𝐷).

Полученный двоичный код переводим в десятичный

𝑔𝑖𝑘 =
𝐶+𝐷∑︁
𝑙=1

𝑏𝑖(𝐶+𝐷)(𝑘−1)+𝑙2
𝐶−𝑙, 𝑘 = 1,𝑝.

Вычисляем значения компонент вектора возможного решения q𝑖 по формуле

𝑞𝑖𝑘 =
𝑔𝑖𝑘
2𝐶
(︀
𝑞+𝑘 − 𝑞−𝑘

)︀
+ 𝑞−𝑘 , 𝑘 = 1,𝑝.
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Формируем множество оценок возможных решений по значению функ­
ционала

F =
{︀
𝑓1 = 𝐽

(︀
q1
)︀
, . . . ,𝑓𝐻 = 𝐽

(︀
q𝐻
)︀}︀

.

Выполняем одноточечное скрещивание. Случайно отбираем два кода воз­
можных решений

Sα =
(︁
𝑠α1 , . . . ,𝑠

α
𝑝(𝐶+𝐷)

)︁
, Sβ =

(︁
𝑠β1 , . . . ,𝑠

β
𝑝(𝐶+𝐷)

)︁
, α,β ∈

{︀
1,𝐻

}︀
.

Вычисляем вероятность скрещивания по формуле

𝑃𝑐 = max

{︂
𝑓−

𝑓α
,
𝑓−

𝑓β

}︂
,

где 𝑓− = min {𝑓1, . . . ,𝑓𝐻}.
Процедура скрещивания выполняется если ξ ⩽ 𝑃𝑐, где ξ — случайное чис­

ло, ξ ∈ [0; 1]. Точка скрещивания σ определяется случайно, σ ∈
{︁
1, 𝑝 (𝐶 +𝐷)

}︁
.

Части кодов отобранных возможных решений правее точки скрещивания обме­
ниваются. В результате получаем коды двух новых возможных решений.

S𝐻+1 =
(︁
𝑠α1 , . . . ,𝑠

α
σ−1,𝑠

β
σ, . . . ,𝑠

β
𝑝(𝐶+𝐷)

)︁
,

S𝐻+2 =
(︁
𝑠β1 , . . . ,𝑠

β
σ−1,𝑠

α
σ, . . . ,𝑠

α
𝑝(𝐶+𝐷)

)︁
.

Операция мутации выполняется с заданной величиной вероятности 𝑃𝑚.
В коде нового возможного решения S𝐻+1 случайным образом определяется
точка мутации µ ∈

{︁
1, 𝑝 (𝐶 +𝐷)

}︁
и производится инверсия компоненты

𝑠𝐻+1
µ ∈ {0,1}. Те же действия повторяем для возможного решения S𝐻+2.

Производим оценку полученных новых возможных решений по значению
минимизируемого функционала

𝑓𝐻+1 = 𝐽
(︀
q𝐻+1

)︀
, 𝑓𝐻+2 = 𝐽

(︀
q𝐻+2

)︀
.

Если значение оценки нового возможного решения лучше наихудшей оценки
решения из множества всех возможных решений, то наихудшее решение из
множества заменяем на новое возможное решение

S𝑤 = S𝐻+𝑖, 𝑓𝑤 = 𝑓𝐻+𝑖, если 𝑓𝑤 > 𝑓𝐻+𝑖,

где 𝑓𝑤 = max {𝑓1, . . . ,𝑓𝐻}, 𝑖 = 1,2.
Процесс поиска повторяется на протяжении заданного числа итераций 𝑊 .

В качестве итогового решения выбираем наилучшее возможное решение во мно­
жестве.
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Алгоритм дифференциальной эволюции

Алгоритм дифференциальной эволюции впервые был представлен в 1995
году [101; 139]. В алгоритме используется адаптивная мутация векторов па­
раметров, которая зависит от распределения решения в пространстве поиска.
При сильном распределении решений, алгоритм производит существенные ва­
риации, а при малом распределении производятся лишь небольшие изменения
векторов параметров во множестве возможных решений.

Рассмотрим алгоритм дифференциальной эволюции пошагово.
Генерируем множество Q возможных решений

Q =
(︀
q1, . . . ,q𝐻

)︀
,

где q𝑗 — вектор параметров, вычисленный по формуле

𝑞𝑗𝑖 = ξ
(︀
𝑞+𝑖 − 𝑞−𝑖

)︀
+ 𝑞−𝑖 , 𝑖 = 1,𝑝, 𝑗 = 1,𝐻, (4.3)

ξ — случайная равномерно распределенная величина в диапазоне [0; 1].
Определяем множество значений целевых функций для каждого возмож­

ного решения

F =
(︀
𝑓1 = 𝐽

(︀
q1
)︀
, . . . ,𝑓𝐻 = 𝐽

(︀
q𝐻
)︀)︀

.

Для выполнения эволюции множества возможных решений задаем пара­
метр 𝐾, который определяет количество модификаций векторов во множестве.
Для модификации с заданной величиной вероятности 𝑃𝑚 отбираем случай­
но вектор q𝑗 ∈ 𝑄, 1 ⩽ 𝑗 ⩽ 𝐻, выбираем случайно три различных вектора
q𝑎, q𝑏, q𝑐, 𝑎 ̸= 𝑏 ̸= 𝑐, отбираем случайно компоненту µ, µ ∈

{︀
1,𝑝
}︀
.

Вычисляем новое значение компоненты по формуле

𝑞µ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1
(︀
𝑞+µ − 𝑞−µ

)︀
+ 𝑞−µ , если 𝑞𝑎µ + ξ2

(︀
𝑞𝑏µ − 𝑞𝑐µ

)︀
> 𝑞+µ

ξ1
(︀
𝑞+µ − 𝑞−µ

)︀
+ 𝑞−µ , если 𝑞𝑎µ + ξ2

(︀
𝑞𝑏µ − 𝑞𝑐µ

)︀
< 𝑞−µ

𝑞𝑎µ + ξ2
(︀
𝑞𝑏µ − 𝑞𝑐µ

)︀
— иначе

,

где ξ1 и ξ2 — случайные равномерно распределенные величины в диапа­
зоне [0; 1].



119

Формируем новый вектор q̃ =
[︁
𝑞𝑗1 . . . 𝑞µ . . . 𝑞

𝑗
𝑝

]︁𝑇
и вычисляем для него зна­

чение целевой функции 𝐽 (q̃). Если это значение меньше, чем значение целевой
функции для первоначального отобранного вектора q𝑗, 𝐽 (q̃) < 𝑓𝑗 = 𝐽

(︀
q𝑗
)︀
, то

заменяем отобранный вектор новым вектором, q𝑗 = q̃, 𝑓𝑗 = 𝐽 (q̃).
Повторяем эволюции с модификациями 𝐾 отобранных векторов заданное

𝑊 количество раз. Решением считаем наилучший вектор в итоговом множестве
возможных решений.

Метод роя частиц

Метод роя частиц на текущий момент является одним из наиболее
популярных эволюционных алгоритмов. Данный метод является первым алго­
ритмом, основанным на имитации поведенческой модели самоорганизующихся
живых систем — так называемом роевом интеллекте [99]. Канонический метод
роя частиц был предложен в 1995 году [112]. Появление этого метода дало но­
вый толчок к более интенсивному развитию эволюционных алгоритмов, а сам
метод роя частиц получил широкое развитие в многочисленных научных рабо­
тах, посвященных исследованию и модификации исходного алгоритма [34].

Модификация всего множества возможных решений производится с уче­
том некоторого числа лучших решений на текущей итерации, называемых
информаторами и выбираемых из числа всех возможных решений или неко­
торого подмножества.

Рассмотрим метод роя частиц пошагово.
На начальном этапе задаем размер множества возможных решений 𝐻,

размер подмножества информаторов 𝑁 и число поисковых итераций 𝑊 .
Генерируем начальное множество векторов возможных решений

q𝑗, 𝑗 = 1,𝐻, по формуле (4.3).
Задаем начальные векторы v𝑗 направления изменения возможных реше­

ний
𝑣𝑗𝑖 = 0, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻.

Процесс поиска оптимального решения продолжаем до достижения мак­
симального числа итераций 𝑊 . На каждой итерации производим вычисление
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вектора q𝑏, доставляющего лучшее значение функционала

𝐽
(︀
q𝑏
)︀
= min

𝑗

{︀
𝐽
(︀
q𝑗
)︀
: 𝑗 = 1,𝐻

}︀
,

и вычисление опорного вектора q𝑗𝑟 , являющегося лучшим среди 𝑁 случайно
отобранных векторов q𝑗1, . . . ,q𝑗𝑁

𝐽
(︀
q𝑗𝑟
)︀
= min

𝑘

{︀
𝐽
(︀
q𝑗𝑘
)︀
: 𝑘 = 1,𝑁

}︀
,

где 𝑗1, . . . ,𝑗𝑁 — случайные целые числа в диапазоне [1;𝐻].
Для каждого возможного решения q𝑗 вычисляем новое значение вектора

v𝑗 с учётом найденных лучшего q𝑏 и опорного q𝑗𝑟 возможных решений

𝑣𝑗𝑖 ← α𝑣𝑗𝑖 + ξβ

(︁
𝑞𝑏𝑖 − 𝑞𝑗𝑖

)︁
+ ξγ

(︁
𝑞𝑗𝑟𝑖 − 𝑞𝑗𝑖

)︁
, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻,

где ξβ ∈ [0;β] и ξγ ∈ [0;γ] — случайные величины, α, β, γ — заданные сво­
бодные параметры алгоритма, значение которых подбирают в зависимости от
задачи. Далее вычисляем новое возможное решение q̃𝑗 по формуле

𝑞𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞−𝑖 , если 𝑞𝑗𝑖 + δ𝑣

𝑗
𝑖 < 𝑞−𝑖

𝑞+𝑖 , если 𝑞𝑗𝑖 + δ𝑣
𝑗
𝑖 > 𝑞+𝑖

𝑞𝑗𝑖 + δ𝑣
𝑗
𝑖 — иначе

, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻,

где δ — заданный свободный параметр, δ ≈ 1.
Если 𝐽

(︀
q𝑗
)︀
> 𝐽

(︀
q̃𝑗
)︀
, то заменяем решение q𝑗 во множестве возможных

решений новым возможным решением q̃𝑗, q𝑗 ← q̃𝑗.
Завершаем вычисления при выполнении 𝑊 итераций. В качестве реше­

ния задачи выбираем вектор q из итогового множества возможных решений,
доставляющий наилучшее значение целевой функции.

Пчелиный алгоритм

Пчелиный алгоритм был предложен в 2005 году [19; 142]. Как следует из
названия метода, на создание алгоритма авторов вдохновило поведение медо­
носных пчёл в дикой природе.
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В пчелином алгоритме первоначально выявляется определенное чис­
ло подобластей пространства поиска, в которых значение целевой функции
меньше. Данные подобласти исследуются более интенсивно, а их радиус умень­
шается с каждой итерацией.

Рассмотрим пчелиный алгоритм пошагово.
Задаем параметры алгоритма — размер множества возможных решений

𝐻, максимальное число итераций 𝑊 , количество 𝑁 элитных возможных реше­
ний, 𝑁 ≈ 0,2𝐻, и количество 𝐿 перспективных возможных решений, 𝐿 ≈ 0,5𝐻,
число 𝐸 новых векторов в области элитного возможного решения, 𝐸 ≈ 𝐻, и чис­
ло 𝑆 новых векторов в области перспективного возможного решения, 𝑆 ≈ 0,5𝐻.

Задаем начальные значения векторов радиусов областей поиска r𝑒 и r𝑠,
𝑟𝑒𝑖 > 0, 𝑟𝑠𝑖 > 𝑟𝑒𝑖 , 𝑖 = 1,𝑝.

Генерируем множество векторов параметров q𝑗, 𝑗 = 1,𝐻, по формуле (4.3).
На каждой итерации для всех возможных решений вычисляем значения

функционала 𝐽
(︀
q𝑗
)︀
, 𝑗 = 1,𝐻, и упорядочиваем возможные решения во множе­

стве по возрастанию значения целевой функции

𝐽
(︀
q1
)︀
⩽ 𝐽

(︀
q2
)︀
⩽ . . . ⩽ 𝐽

(︀
q𝐻
)︀
. (4.4)

Отбираем первые 𝑁 элитных векторов q𝑗, 𝑗 = 1,𝑁 . Для каждого элитного
вектора q𝑗 строим набор из 𝐸 векторов g𝑒

𝑔𝑒𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞−𝑖 , если 𝑞𝑗𝑖 + ξ

𝑒
𝑖 < 𝑞−𝑖

𝑞+𝑖 , если 𝑞𝑗𝑖 + ξ
𝑒
𝑖 > 𝑞+𝑖

𝑞𝑗𝑖 + ξ
𝑒
𝑖 — иначе

, 𝑖 = 1,𝑝, 𝑒 = 1,𝐸,

где ξ𝑒𝑖 ∈ [−𝑟𝑒𝑖 ; 𝑟𝑒𝑖 ] — величина, случайно распределенная на интервале
от −𝑟𝑒𝑖 до 𝑟𝑒𝑖 , 𝑟𝑒 — заданный вектор радиусов области поиска вокруг элит­
ного вектора; 𝐸 — число новых векторов g𝑒 в области элитного вектора q𝑗.

Если вектор g𝑒 доставляет значение функционала лучше, чем возможное
решение q𝑗, то производим замену

— если 𝐽 (g𝑒) < 𝐽
(︀
q𝑗
)︀
, то q𝑗 ← g𝑒, 𝐽

(︀
q𝑗
)︀
← 𝐽 (g𝑒) , 𝑒 = 1,𝐸.
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Производим модификацию перспективных возможных решений. Для каж­
дого q𝑗, 𝑗 = 𝑁 + 1, 𝐿, строим набор из 𝑆 векторов g𝑠 по формуле

𝑔𝑠𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞−𝑖 , если 𝑞𝑗𝑖 + ξ

𝑠
𝑖 < 𝑞−𝑖

𝑞+𝑖 , если 𝑞𝑗𝑖 + ξ
𝑠
𝑖 > 𝑞+𝑖

𝑞𝑗𝑖 + ξ
𝑠
𝑖 — иначе

, 𝑠 = 1,𝑆,

где ξ𝑠𝑖 ∈ [−𝑟𝑠𝑖 ; 𝑟𝑠𝑖 ] — величина, случайно распределенная на интервале
от −𝑟𝑠𝑖 до 𝑟𝑠𝑖 , 𝑟𝑠 — заданный вектор радиусов области поиска вокруг пер­
спективного возможного решения.

Если вектор g𝑠 доставляет значение функционала лучше, чем возможное
решение q𝑗, то производим замену

— если 𝐽 (g𝑠) < 𝐽
(︀
q𝑗
)︀
, то q𝑗 ← g𝑠, 𝐽

(︀
q𝑗
)︀
← 𝐽 (g𝑠) , 𝑠 = 1,𝑆.

Для остальных возможных решений q𝑗, 𝑗 = 𝐿+ 1, 𝐻, во множестве про­
изводим генерацию новых случайных значений по формуле (4.3).

Уменьшаем величины радиусов области поиска вокруг элитных и перспек­
тивных возможных решений

𝑟𝑒𝑖 ← α𝑒𝑟
𝑒
𝑖 , 𝑟𝑠𝑖 ← α𝑠𝑟

𝑠
𝑖 , 𝑖 = 1,𝑝,

где α𝑒, α𝑠 — заданные коэффициенты уменьшения области поиска, α𝑒 ≈ 0,95,
α𝑠 ≈ 0,95.

Процесс поиска и модификации возможных решений продолжаем до
достижения максимального числа итераций 𝑊 . В качестве решения задачи вы­
бираем лучший вектор q из итогового множества возможных решений.

Алгоритм летучих мышей

Алгоритм летучих мышей был впервые представлен в 2010 году [147].
На идею создания алгоритма автора вдохновили летучие мыши, обладающие
уникальными средствами эхолокации, которая используется для обеспечения
полетов в темноте и обнаружения добычи.

Рассмотрим алгоритм летучих мышей пошагово.
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Генерируем множество возможных решений q𝑗, 𝑗 = 1,𝐻, по формуле (4.3).
Задаем начальные векторы v𝑗 направления изменения возможных реше­

ний
𝑣𝑗𝑖 = 0, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻.

Задаем параметры алгоритма

𝑎𝑗 = 1, 𝑟𝑗 = 𝑟0𝑗 , 𝑟0𝑗 = ξ𝑗, 𝑗 = 1,𝐻,

где ξ𝑗, 𝑗 = 1,𝐻, — случайные величины, равномерно распределенные на ин­
тервале [0; 1].

Задаем максимальное число итераций 𝑊 .
На каждой итерации производим вычисление вектора q𝑏, доставляющего

наилучшее значение функционала

𝐽
(︀
q𝑏
)︀
= min

𝑘

{︀
𝐽
(︀
q𝑘
)︀
: 𝑘 = 1,𝐻

}︀
.

Вычисляем значения параметра ω𝑗 и вектора скоростей ṽ𝑗 для каждого
вектора q𝑗 во множестве возможных решений

ω𝑗 = ξ
(︀
ω+ −ω−

)︀
+ω−, 𝑣𝑗𝑖 = 𝑣𝑗𝑖 +ω𝑗

(︁
𝑞𝑗𝑖 − 𝑞𝑏𝑖

)︁
, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻,

где ξ — случайная равномерно распределенная величина на интервале [0; 1],
ω−, ω+ — заданные неотрицательные минимальное и максимальное значения
параметра ω𝑗, ω− ≈ 0, ω+ ≈ 2.

Далее для каждого возможного решения q𝑗, 𝑗 = 1,𝐻, вычисляем новый
вектор q̃𝑗. Для этой цели генерируем случайную величину α ∈ [0; 1].

Если α < 𝑟𝑗, то

𝑞𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞−𝑖 , если 𝑞𝑗𝑖 + 𝑣𝑗𝑖 < 𝑞−𝑖

𝑞+𝑖 , если 𝑞𝑗𝑖 + 𝑣𝑗𝑖 > 𝑞+𝑖

𝑞𝑗𝑖 + 𝑣𝑗𝑖 — иначе

, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻,

иначе

𝑞𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞−𝑖 , если 𝑞𝑏𝑖 + 𝑎̄ (2ξ− 1) < 𝑞−𝑖

𝑞+𝑖 , если 𝑞𝑏𝑖 + 𝑎̄ (2ξ− 1) > 𝑞+𝑖

𝑞𝑏𝑖 + 𝑎̄ (2ξ− 1) — иначе

, 𝑖 = 1,𝑝, 𝑗 = 1,𝐻,
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где 𝑎̄ = 1
𝐻

𝐻∑︀
𝑖=1

𝑎𝑖, ξ — случайная величина, равномерно распределенная на ин­

тервале [0; 1].
Если выполняется условие 𝐽

(︀
q𝑗
)︀
> 𝐽

(︀
q̃𝑗
)︀
, то производим замену

q𝑗 ← q̃𝑗, v𝑗 ← ṽ𝑗, 𝑎𝑗 ← α𝑎𝑗, 𝑟𝑗 = 𝑟0𝑗
(︀
1− 𝑒−γ𝑤

)︀
, 𝑗 = 1,𝐻,

где 𝑤 — номер текущей итерации, α, γ — заданные параметры, α ≈ 0,9, γ ≈ 0,9.
Повторяем вычисления 𝑊 раз. В качестве решения задачи выбираем луч­

ший вектор q из итогового множества возможных решений.

Алгоритм серых волков

Алгоритм серых волков появился в 2014 году [126]. Суть алгоритма, по
словам авторов, строится на имитации поведения стаи волков во время охоты
на добычу. Алгоритм использует иерархию полученных возможных решений по
значению функционала. Для модификации возможных решений алгоритм ис­
пользует три наилучших возможных решения, найденных к текущему моменту.

Рассмотрим алгоритм серых волков пошагово.
Генерируем множество возможных решений q𝑗, 𝑗 = 1,𝐻, по формуле (4.3).
Задаем максимальное число итераций 𝑊 , устанавливаем текущее значе­

ние счетчика итераций 𝑤 = 0.
Далее на каждой итерации производим вычисление трех лучших векторов

qα, qβ, qδ таких, что

𝐽 (qα) = min
𝑘

{︀
𝐽
(︀
q𝑘
)︀
: 𝑘 = 1,𝐻

}︀
, (4.5)

𝐽
(︀
qβ
)︀
= min

𝑘

{︀
𝐽
(︀
q𝑘
)︀
: 𝑘 = 1,𝐻, 𝑘 ̸= α

}︀
, (4.6)

𝐽
(︀
qδ
)︀
= min

𝑘

{︀
𝐽
(︀
q𝑘
)︀
: 𝑘 = 1,𝐻, 𝑘 ̸= α, 𝑘 ̸= β

}︀
. (4.7)

Вычисляем параметр линеаризации

𝑎 = 2− 2𝑤

𝑊
. (4.8)

Для каждого вектора q𝑗 вычисляем три дополнительных вектора α𝑗, β𝑗,
δ𝑗 по формулам

α𝑗
𝑖 = 𝑞α𝑖 − 𝑎 (2ξ1 − 1)

⃒⃒⃒
2ξ2𝑞

α
𝑖 − 𝑞𝑗𝑖

⃒⃒⃒
, (4.9)
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β𝑗
𝑖 = 𝑞β𝑖 − 𝑎 (2ξ3 − 1)

⃒⃒⃒
2ξ4𝑞

β
𝑖 − 𝑞𝑗𝑖

⃒⃒⃒
, (4.10)

δ𝑗𝑖 = 𝑞δ𝑖 − 𝑎 (2ξ5 − 1)
⃒⃒⃒
2ξ6𝑞

δ
𝑖 − 𝑞𝑗𝑖

⃒⃒⃒
, (4.11)

где ξ1, . . . ,ξ6 — случайно распределенные величины в диапазоне [0; 1], 𝑖 = 1,𝑝.
На основе полученных векторов α𝑗, β𝑗, δ𝑗 производим вычисление нового

значения вектора q𝑗

𝑞𝑗𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑞−𝑖 , если

1

3

(︁
α𝑗
𝑖 + β

𝑗
𝑖 + δ

𝑗
𝑖

)︁
< 𝑞−𝑖

𝑞+𝑖 , если
1

3

(︁
α𝑗
𝑖 + β

𝑗
𝑖 + δ

𝑗
𝑖

)︁
> 𝑞+𝑖

1

3

(︁
α𝑗
𝑖 + β

𝑗
𝑖 + δ

𝑗
𝑖

)︁
— иначе

, 𝑖 = 1,𝑝. (4.12)

Процесс поиска продолжаем до достижения максимального числа итера­
ций 𝑊 . Решением задачи будет лучшее по значению функционала возможное
решение q в итоговом множестве.

4.4 Сравнение эффективности эволюционных алгоритмов для
решения задачи оптимального управления

В научной литературе можно найти большое число работ, посвящен­
ных сравнению и исследованию эффективности разнообразных эволюционных
алгоритмов [33; 150; 151]. Классический подход к оценке эффективности по­
исковых алгоритмов основывается на тестовых функциях [108; 148]. Многие
из существующих тестовых функций обладают свойствами большой размер­
ности и мультимодальности функционала, но практический интерес в разрезе
диссертационного исследования представляет оценка эффективности данных
алгоритмов именно на прикладных задачах оптимального управления. В кон­
тексте применения метаэвристических эволюционных алгоритмов при решении
задачи оптимального управления прямым подходом следует учитывать, что по­
лученное решение будет приблизительно оптимальным. В отличии от тестовых
задач, для которых известны оптимальные решения, в прикладной задаче оп­
тимального управления информации об оптимальном решении у исследователя
обычно не имеется. В этом случае сравнение всех результатов производится с
лучшим решением из найденных сравниваемыми алгоритмами.
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Оптимизируемый функционал в задаче оптимального управления, редуци­
рованной к задаче нелинейного программирования, имеет высокую размерность
и не обладает свойствами унимодальности и дифференцируемости на простран­
стве поиска. Несмотря на это, для решения таких задач обычно предлагались
оптимизационные методы на основе градиентного спуска, как правило, второго
порядка [27]. Отсюда возникает задача сравнения эволюционных алгоритмов с
классическими градиентными методами безусловной оптимизации в контексте
решения задачи оптимального управления.

Из анализа свойств эволюционных и градиентных алгоритмов следует,
что первые будут более эффективны при решении задач высокой размерности,
а также задач, в которых функционал не обладает свойствами унимодально­
сти и дифференцируемости на пространстве поиска. Напротив, в задачах с
гладкими и унимодальными оптимизируемыми функционалами более эффек­
тивными и быстродействующими окажутся классические градиентные методы
безусловной оптимизации. На основе этого можно сделать предположение о пре­
имуществе эволюционных алгоритмов над градиентными методами в области
задач оптимального управления.

Исследования в области эффективности эволюционных алгоритмов для
решения задачи оптимального управления проводились автором настоящей дис­
сертации в составе научного коллектива во главе с профессором А.И. Дивеевым.
В первых работах, появившихся в 2014 году, рассматривалась сама возможность
применения эволюционных алгоритмов в задачах управления [156]. Значимые
результаты, показавшие высокую эффективность и преимущество эволюцион­
ных алгоритмов, были получены к 2017 и опубликованы в [157; 167] и других
работах автора. Более ранних работ в данной области в отечественной научной
литературе найти не удалось. Известные работы в иностранных научных из­
даниях, освещающие результаты исследования эволюционных алгоритмов для
решения задачи оптимального управления и их сравнения с градиентными мето­
дами, датируются началом нулевых годов нашего века [92; 121]. В этих работах
утверждается преимущество использования именно эволюционных алгоритмов.

К 2019 году автором диссертации в составе научного коллектива была
проведена серия масштабных сравнительных экспериментов, полностью под­
твердивших приведённое выше предположение о превосходстве эволюционных
алгоритмов над другими известными методами при решении задачи оптималь­
ного управления. Результаты данных исследований, показавших преимущество
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эволюционных алгоритмов при сравнении с градиентными методами, опубли­
кованы в работах [157; 160; 167; 169]. Также вполне ожидаемо подтвердилось
превосходство эволюционных алгоритмов над методами случайного поиска, что
показано в работах [157; 161; 165].

В наиболее значимой работе [160] рассматривалась прикладная задача оп­
тимального управления гусеничным роботом в пространстве с двумя фазовыми
ограничениями. В Таблице 2 приведены результаты сравнительного анализа
градиентных и эволюционных алгоритмов, опубликованные в данной работе.
Рассмотренные в сравнительном эксперименте алгоритмы и их обозначение в
Таблице 2: BA — пчелиный алгоритм; GW — алгоритм серых волков; PSO —
метод роя частиц; GA — генетический алгоритм; MQ — метод Марквардта;
AD — метод Adam; BIA — метод летучих мышей; DE — алгоритм дифферен­
циальной эволюции; FGD — метод наискорейшего градиентного спуска; RS —
метод случайного поиска; NR — метод Ньютона-Рафсона.

Таблица 2 — Результаты сравнительного анализа эволюционных и
градиентных алгоритмов на основе решения задачи об оптимальном
быстродействии

Алгоритм Лучший
результат

Среднее
значение

СКО

BA 2,4308 2,5284 0,0639
GW 2,4781 2,8418 0,0671
PSO 2,5100 2,7835 0,4287
GA 2,5116 2,9577 0,3543
MQ 2,5466 3,1735 0,3882
AD 2,5759 3,3047 0,5931
BIA 2,5421 3,3134 0,8846
DE 2,8599 3,6074 0,5899
FGD 2,7257 3,6222 1,0180
RS 4,2796 5,1516 0,6416
NR 3,1155 5,1373 1,6584

По условиям эксперимента задача оптимального быстродействия гусенич­
ным роботом решалась прямым подходом путём редукции к задаче нелинейного
программирования. Далее для каждого из перечисленных методов производи­
лось 10 независимых испытаний по поиску решения задачи. Начальные данные
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и настройки алгоритмов были подобраны таким образом, чтобы обеспечить оди­
наковые условия испытаний для каждого алгоритма. По результатам серии из
10 испытаний каждым алгоритмом в колонках Таблицы 2 приведены лучший
результат из серии, среднее значение по 10 испытаниям и среднеквадратиче­
ское отклонение.

Как видно из Таблицы 2 лучшим по сумме мест по всем трём рассматрива­
емым критериям оказался пчелиный алгоритм. Следом с небольшим отрывом
расположился алгоритм серых волков. Лучший из градиентных методов — ме­
тод Марквардта — занял 5-ую позицию в результатах сравнения. Для всех
градиентных методов разница между средним значением и лучшим среди всех
рассмотренных алгоритмов решением 2,4308, полученным пчелиным алгорит­
мом, составляет величины того же порядка. Значения среднеквадратического
отклонения у градиентных методов варьируются в диапазоне от 12% до 31% от
соответствующего среднего значения решения задачи.

Анализ итогов вычислительного эксперимента показал, что результа­
ты решения прикладной задачи оптимального быстродействия, полученные
рассмотренными градиентными алгоритмами, нельзя считать достоверными.
Напротив, эволюционные алгоритмы в целом и пчелиный алгоритм и алгоритм
серых волков в частности показывают высокую эффективность и достовер­
ность результатов при решении задачи оптимального управления. Аналогичные
выводы об эффективности эволюционных алгоритмов и их преимуществе над
градиентными методами сделаны по итогам серии сравнительных эксперимен­
тов для других прикладных задач [157; 167; 169].

Таким образом, современные эволюционные алгоритмы можно рекомен­
довать для использования при решении задач оптимального управления. Для
таких задач свойственна мультимодальность и недифференцируемость опти­
мизируемого функционала. Экспериментально показано, что эволюционные
алгоритмы являются универсальными и гораздо менее подвержены застрева­
нию в локальных оптимумах, чем известные градиентные методы. Качество
решения различных прикладных задач эволюционными алгоритмами может
зависеть как от выбора самого алгоритма, так и от значений его свободных
параметров. При этом в подавляющем большинстве экспериментов пчелиный
алгоритм и алгоритм серых волков показали лучшие результаты. С целью
создания наиболее эффективного и универсального метода на базе данных ал­
горитмов можно воспользоваться методикой гибридизации.
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4.5 Гибридизация алгоритмов

Как уже отмечалось ранее, главное отличие среди многообразия эво­
люционных алгоритмов состоит в разных схемах преобразования множества
возможных решений на этапе эволюции. Несмотря на то, что эволюционные ал­
горитмы с успехом применяются во множестве прикладных оптимизационных
задач, каждый отдельно взятый метод имеет свои достоинства и недостатки.
Безусловно, есть более эффективные алгоритмы, использующие более выиг­
рышные стратегии поиска оптимального решения, есть менее эффективные
или специфичные методы. Но не существует одного универсального алгорит­
ма, который бы одинаково эффективно решал весь спектр прикладных задач
из разных областей.

В последнее время одним из основных способов повышения эффектив­
ности и области применения алгоритмов считается гибридизация [146]. В
гибридных алгоритмах, объединяющих два или более алгоритма, слабость од­
ного алгоритма компенсируется эффективностью другого и наоборот. Таким
образом, гибридизация нескольких методов может породить новый более уни­
версальный и эффективный метод для решения более широкого круга задач.

Возможность гибридных алгоритмов обойти слабые стороны своих исход­
ных алгоритмов, но при этом не потерять свои отличительные сильные стороны,
делает гибридизацию одним из основных направлений развития современных
методов глобальной оптимизации, в результате которого ожидается появление
новых высокоэффективных универсальных алгоритмов. На текущий момент
создано и исследовано большое число гибридных алгоритмов и это число про­
должает расти [84; 105; 138].

Известно несколько видов классификаций гибридизации алгоритмов гло­
бальной оптимизации [134; 146]. Рассмотрим более детально классификацию
Ванга (X. Wang) [146]. Согласно данной классификации, гибридные алгоритмы
могут быть разделены на два вида по назначению проведенной гибридизации:

1. Гибридизация с целью параметрической оптимизации. В данном типе
гибридизации второй алгоритм используется для более точной настрой­
ки параметров первого алгоритма.

2. Гибридизация с целью улучшения поисковой стратегии. В данном ти­
пе гибридизации поисковые стратегии нескольких алгоритмов могут
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использоваться в определенном гибридизацией иерархическом порядке
для создания более эффективной стратегии.

Гибридизация с целью улучшения поисковой стратегии в свою очередь
может быть разделена на три типа:

1. Гибридизация с препроцессингом и постпроцессингом. Данный тип ги­
бридизации является наиболее часто встречающимся. При таком типе
гибридизации результаты преобразования множества возможных реше­
ний по итогам использования одного алгоритма (препроцессинг), могут
быть улучшены с помощью использования второго алгоритма (постпро­
цессинг) (Рис. 4.1a).

2. Гибридизация с кооператорством. При таком типе гибридизации два
или более алгоритма одновременно участвуют в процессе преобразова­
ния множества возможных решений, используя общую информацию о
текущих решениях множества (Рис. 4.1б).

3. Гибридизация вложением. При таком типе гибридизации второй ал­
горитм целиком или частично вкладывается в первый алгоритм.
Комбинирование разных поисковых стратегий позволяет улучшить схо­
димость гибридного метода (Рис. 4.1в).

Рисунок 4.1 — Типы гибридизации с целью улучшения поисковой страте­
гии: (а) — гибридизация с препроцессингом и постпроцессингом; (б) — гибри­

дизация с кооператорством; (в) — гибридизация вложением.
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4.6 Гибридный алгоритм на основе алгоритма серых волков и
пчелиного алгоритма

В данном разделе рассматривается новый гибридный алгоритм, разрабо­
танный на основе алгоритма серых волков и пчелиного алгоритма и впервые
представленный автором диссертации в работе [177]. Методы, составившие ос­
нову оригинального гибридного алгоритма, хорошо зарекомендовали себя для
решения разнообразных сложных мультимодальных оптимизационных задач,
в том числе задач оптимального управления, что показано в работах авто­
ра [157—161; 165; 167; 169].

В соответствии с классификацией Ванга, рассматриваемый гибридный ал­
горитм по типу относится к гибридизации вложением, причём объединяемые
методы имеют довольно высокую степень интегрированности, что позволяет
говорить о получении нового метода. Процедура выбора элитных решений
и поиска в заданном радиусе вокруг них и процедура обновления заданного
числа худших решений новыми случайными возможными решениями, унаследо­
ванные от пчелиного алгоритма, составляют исследовательскую часть поиска.
Локальную часть поиска составляет унаследованная от алгоритма серых вол­
ков процедура модификации возможных решений на основе информации о трех
текущих лучших решениях, которая позволяет концентрировать решения в рай­
оне глобального лучшего решения. При этом предложенный гибридный метод
имеет даже меньшее число настраиваемых параметров, чем исходные методы.

Рассмотрим основные этапы оригинального гибридного алгоритма.
Задаем параметры алгоритма — размер множества возможных решений

𝐻, число итераций 𝑊 , количество 𝐵 исследуемых возможных решений, 𝐵 =

⌊0,3𝐻⌋, число 𝑆 худших решений, подлежащих замене.
Задаём текущее значение счетчика итераций 𝑤 = 0, задаем начальные

значения вектора радиусов поиска вокруг лучших решений r = [𝑟1 . . . 𝑟𝑝]
𝑇 ,

𝑟𝑖 > 0, 𝑖 = 1,𝑝.
Генерируем множество векторов параметров q𝑗, 𝑗 = 1,𝐻, по формуле (4.3).
На каждой итерации для всех возможных решений вычисляем значения

функционала 𝐽
(︀
q𝑗
)︀
, 𝑗 = 1,𝐻, и упорядочиваем возможные решения во множе­

стве по возрастанию значения целевой функции (4.4).
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Производим вычисление значения параметра линеаризации по форму­
ле (4.8).

Производим исследующий поиск вокруг заданного числа 𝐵 лучших воз­
можных решений q𝑘, 𝑘 = 1,𝐵. Для этого для каждого возможного решения q𝑘

строим набор из 𝐸𝑘 векторов g𝑘𝑒 =
[︁
𝑔𝑘𝑒1 . . . 𝑔𝑘𝑒𝑝

]︁𝑇

𝑔𝑘
𝑒

𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞−𝑖 , если 𝑞𝑘𝑖 + ξ

𝑘𝑒
𝑖 < 𝑞−𝑖

𝑞+𝑖 , если 𝑞𝑘𝑖 + ξ
𝑘𝑒
𝑖 > 𝑞+𝑖

𝑞𝑘𝑖 + ξ
𝑘𝑒
𝑖 — иначе

, 𝑖 = 1,𝑝, 𝑒 = 1,𝐸𝑘, 𝑘 = 1,𝐵,

где ξ𝑘𝑒𝑖 — величина, случайно распределенная на интервале [−𝑟𝑖; 𝑟𝑖]; 𝐸𝑘 — число
новых векторов g𝑘𝑒 в области исследуемого вектора q𝑘. Значение числа новых
векторов 𝐸𝑘 может быть постоянным и выбираться под конкретную приклад­
ную задачу (обычно 𝐸𝑘 = 𝐻) или динамическим и уменьшаться с уменьшением
привлекательности решения q𝑘, тогда 𝐸𝑘 = ⌊1,5𝐻⌋ , ⌊0,5𝐻⌋, 𝑘 = 1,𝐵.

Если какой-либо вектор g𝑘𝑒 доставляет значение функционала меньше,
чем вектор q𝑘, то заменяем им вектор q𝑘

— если 𝐽
(︀
g𝑘𝑒
)︀
< 𝐽

(︀
q𝑘
)︀
, то q𝑘 ← g𝑘𝑒, 𝐽

(︀
q𝑘
)︀
← 𝐽

(︀
g𝑘𝑒
)︀
, 𝑒 = 1,𝐸𝑘, 𝑘 = 1,𝐵.

Выбираем три наилучших решения qα, qβ, qδ из всего текущего множе­
ства возможных решений по формулам (4.5) — (4.7).

Для каждого возможного решения q𝑗, 𝑗 = 1,𝐻 в текущем множестве
производим вычисление трех вспомогательных векторов α𝑗, β𝑗, δ𝑗 по форму­
лам (4.9) — (4.11).

На основе полученных векторов α𝑗, β𝑗, δ𝑗 производим модификацию воз­
можного решения q𝑗 по формуле (4.12).

Для модифицированного множества возможных решений производим вы­
числение значений функционала 𝐽

(︀
q𝑗
)︀
, 𝑗 = 1,𝐻, и упорядочение возможных

решений по возрастанию значения функционала. Далее для 𝑆 худших решений
производим генерацию новых случайных значений по формуле (4.3).

Производим уменьшение радиусов области поиска вокруг исследуемых
векторов

𝑟𝑖 ← γ𝑟𝑖, 𝑖 = 1,𝑝,

где γ — заданный параметр уменьшения области поиска, γ ≈ 0,95.
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Увеличиваем значение счётчика итераций 𝑤 ← 𝑤+1 и повторяем описан­
ные выше вычисления. Процесс поиска и модификации возможных решений
продолжаем до достижения максимального числа итераций 𝑊 . В качестве ре­
шения задачи выбираем лучший вектор q из итогового множества возможных
решений.

Представленный в работе [177] сравнительный анализ эффективности дан­
ного гибридного алгоритма показал высокое качество гибридизации. В новом
гибридном алгоритме удалось достичь взаимной компенсации слабых сторон
пчелиного алгоритма и алгоритма серых волков. Совокупная эффективность
гибридного метода по всем рассмотренным в [177] тестам оказалась выше чем
у исходных алгоритмов по отдельности.

Выводы по Главе 4

В большинстве случаев при решении сложных прикладных задач опти­
мального управления, описываемых системами высокого порядка, применяют
прямые методы. Данные методы используют идею редукции исходной задачи
к задаче нелинейного программирования. Это позволяет перейти от задачи
бесконечномерной оптимизации к задаче конечномерной оптимизации. Для
её решения доступно большое число численных методов оптимизации, среди
которых можно выделить классические методы нулевого порядка, методы слу­
чайного поиска, градиентные методы и эволюционные алгоритмы.

Переход к задаче конечномерной оптимизации достигается за счёт дис­
кретизации функции управления, что сказывается на значительном увеличении
размерности пространства поиска оптимального решения. Полученная в резуль­
тате редукции целевая функция может быть многоэкстремальной. Определить
её топологические свойства и гарантировать выпуклость даже на ограниченной
области, как правило, не представляется возможным.

В данных обстоятельствах методы из класса эволюционных алгоритмов
оказались намного эффективнее других методов. Каждый алгоритм данного
класса предлагает определенную схему исследовательского и локального по­
иска. С одной стороны, это позволяет данным алгоритмам диверсифицировать
поиск для уменьшения вероятности застревания алгоритма в точках локальных
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экстремумов и седловых точках, а, с другой стороны, — интенсифицировать по­
иск в области лучших решений для обеспечения сходимости алгоритма.

Высокая эффективность эволюционных алгоритмов и их превосходство
над методами случайного поиска и градиентными методами при решении
задачи оптимального управления подтверждены рядом сравнительных экспери­
ментов, опубликованных в работах автора [157—161; 165; 167; 169]. Наилучшие
результаты среди всех сравниваемых алгоритмов показали пчелиный алгоритм
и алгоритм серых волков.

Практический интерес представляет гибридизация алгоритмов. Создание
гибридных алгоритмов в настоящее время является одним из основных спо­
собов создания новых универсальных поисковых алгоритмов. Преимущество
гибридных алгоритмов достигается за счёт взаимной компенсации недостатков
отдельно взятых исходных алгоритмов. Создание и использование гибридных
эволюционных алгоритмов для решения задачи оптимального управления име­
ет хорошие перспективы.

В работе предлагается новый гибридный алгоритм на основе хорошо
зарекомендовавших себя для решения разнообразных задач оптимального
управления пчелиного алгоритма и алгоритма серых волков. Новый гибридный
алгоритм имеет высокую степень интегрированности исходных алгоритмов, ле­
жащих в его основе, и успешно наследует их сильные стороны. Сравнительные
эксперименты показали его более высокую эффективность, чем у исходных ал­
горитмов. Новый гибридный алгоритм предлагается использовать для поиска
численного решения прикладных задач оптимального управления.
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Глава 5. Прикладная задача синтеза системы управления
автомобилеподобным роботом

Главным показателем качества любого численного метода является его
эффективность при решении прикладных задач. Предложенный в Главе 3 метод
синтеза системы управления на основе аппроксимации множества оптимальных
траекторий методом символьной регрессии был применен для поиска решения
прикладной задачи синтеза системы управления автомобилеподобным роботом.

В соответствии с предложенным подходом для объекта управления на пер­
вом этапе необходимо численно решить задачу оптимального управления для
разных начальных состояний. Далее на основе полученных оптимальных траек­
торий строится обучающая выборка и производится поиск структуры функции
управления, наиболее точно аппроксимирующей обучающую выборку.

В рассматриваемой прикладной задаче искомое решение должно учи­
тывать ограничения на положение автомобилеподобного робота в фазовом
пространстве. Это существенно усложняет как поиск решения задачи оптималь­
ного управления, так и поиск структуры функции управления.

Решение задачи оптимального управления осуществлялось прямым ме­
тодом на основе нового гибридного алгоритма, рассмотренного в Главе 4, а
дальнейший поиск многомерной функции управления — с помощью метода се­
тевого оператора.

5.1 Математическая модель автомобилеподобного робота

В качестве объекта управления был выбран четырехколесный мобильный
робот [58], представленный на Рис. 5.1. На задней оси робота расположены
ведущие колеса, а колеса передней оси отвечают за поворот робота. Положение
в пространстве определяется фазовыми координатами 𝑥𝑐 и 𝑦𝑐 базовой точки
робота, которая расположена на середине задней оси, а также углом θ между
центральной осью мобильного робота и осью абсцисс неподвижной системы
координат. Такой вид роботов принято называть автомобилеподобными [93].
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Рисунок 5.1 — Четырехколесный автомобилеподобный робот.

Математическая модель автомобилеподобного робота имеет вид⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥

𝑑𝑡
= 𝑉 cos (θ)

𝑑𝑦

𝑑𝑡
= 𝑉 sin (θ)

𝑑θ

𝑑𝑡
=

𝑉

𝐿
tg (δ)

𝑑δ

𝑑𝑡
= ω

, (5.1)

где 𝑉 — вектор мгновенной скорости базовой точки робота, 𝐿 — колесная база,
δ — угол поворота передних колес, ω — угловая скорость поворота рулевого
управления. В реальных условиях при совершении поворота, углы поворота
двух передних колес различны, так как левое и правое передние колеса дви­
жутся по разным траекториям, т.е. δ𝑙 ̸= δ𝑟. Однако двухколесное рулевое
управление можно интерпретировать как одноколесное, расположенное на цен­
тральной оси с соблюдением длины колесной базы 𝐿 (Рис. 5.1). Тогда верно
равенство

δ =
δ𝑙 + δ𝑟

2
.
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Описанная математическая модель характерна для небольших мобильных
роботов с шаговыми двигателями. В таких моделях проскальзыванием колес и
инерционными составляющими движения можно пренебречь. Для упрощения
математической модели (5.1) можно предположить, что угол поворота колес δ
изменяется мгновенно. Тогда упрощенная математическая модель будет иметь
вид [132] ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥

𝑑𝑡
= 𝑉 cos (θ)

𝑑𝑦

𝑑𝑡
= 𝑉 sin (θ)

𝑑θ

𝑑𝑡
=

𝑉

𝐿
tg (δ)

. (5.2)

При моделировании необходимо также учитывать ограничения на ско­
рость движения мобильного робота 𝑉 и на угол поворота его руля δ, которые
могут варьироваться в зависимости от технических характеристик робота.

Введем вектор состояния объекта x и вектор управления u

x =

⎡⎢⎣𝑥1𝑥2
𝑥3

⎤⎥⎦ =

⎡⎢⎣𝑥𝑦
θ

⎤⎥⎦ , (5.3)

u =

[︃
𝑢1

𝑢2

]︃
=

[︃
𝑉

δ

]︃
. (5.4)

Перезапишем модель (5.2) в новой форме с учетом (5.3) и (5.4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥̇1 = 𝑢1 cos (𝑥3)

𝑥̇2 = 𝑢1 sin (𝑥3)

𝑥̇3 =
𝑢1
𝐿

tg (𝑢2)

. (5.5)

Зададим ограничения на вектор управления u

u− ⩽ u ⩽ u+, (5.6)

где u− =
[︁
𝑢−1 𝑢−2

]︁𝑇
=
[︁
−10 −1

]︁𝑇
, u+ =

[︁
𝑢+1 𝑢+2

]︁𝑇
=
[︁
10 1

]︁𝑇
.
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5.2 Задача синтеза системы управления автомобилеподобным
роботом в пространстве с фазовыми ограничениями

Решением задачи синтеза системы управления автомобилеподобным ро­
ботом является управление в форме многомерной функции от координат
состояния робота, позволяющее оптимально по заданному критерию качества
переместить робота из начального состояния в терминальное. При этом на­
чальное состояние робота может быть любым или принадлежать какой-либо
ограниченной области.

Для постановки задачи синтеза системы управления автомобилеподобным
роботом необходимо задать начальное и терминальное состояние робота. Пусть
начальное состояние робота определено на ограниченной области начальных
условий

X0 = {7 ⩽ 𝑥0,1 ⩽ 9, 9 ⩽ 𝑥0,2 ⩽ 11, 𝑥0,3 = π} . (5.7)

Зададим терминальное состояние

x𝑓 =
[︁
𝑥𝑓1 𝑥𝑓2 𝑥𝑓3

]︁𝑇
=
[︁
0 0 π

]︁𝑇
. (5.8)

Пусть на плоскости движения робота имеются препятствия. Зададим их
в виде фазовых ограничений

ℎ𝑖 (𝑥) = 𝑟*𝑖 −
√︁(︀

𝑥*𝑖,1 − 𝑥1
)︀2

+
(︀
𝑥*𝑖,2 − 𝑥2

)︀2
⩽ 0, 𝑖 = 1,𝑧, (5.9)

где 𝑟*𝑖 , 𝑥*𝑖,1 и 𝑥*𝑖,2 — заданные параметры фазовых ограничений, 𝑧 — число фа­
зовых ограничений.

Параметры фазовых ограничений имеют следующие значения: 𝑧 = 4,
𝑟*1 = 3, 𝑥*1,1 = 2, 𝑥*1,2 = 8, 𝑟*2 = 3, 𝑥*2,1 = 8, 𝑥*2,2 = 2, 𝑟*3 = 1,5, 𝑥*3,1 = 2,5,
𝑥*3,2 = 2,5, 𝑟*4 = 1,5, 𝑥*4,1 = 7,5, 𝑥*4,2 = 7,5.

По условию задачи необходимо найти структуру многомерной функции
управления u (x), обеспечивающую перемещение автомобилеподобного робота
из любого начального положения x0 ∈ X0 в терминальное положение x𝑓 за
минимальное время. Рассматриваемая задача является задачей об оптималь­
ном быстродействии. Функционал качества для данной задачи, помимо времени
процесса управления, должен учитывать ошибку управления и все фазовые
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ограничения

∀x0 ∈ X0 : 𝐽 = 𝑡𝑓(x
0) +

⃦⃦
x
(︀
𝑡𝑓(x

0)
)︀
− x𝑓

⃦⃦
+

+
𝑡𝑓 (x

0)∫︀
𝑡0

(︂
𝑧∑︀

𝑖=1

α𝑖ϑ (ℎ𝑖 (x))ℎ𝑖 (x)

)︂
𝑑𝑡→ min

, (5.10)

где 𝑡𝑓(x
0) — время процесса управления для начального состояния x0,

𝑡𝑓(x
0) =

{︃
𝑡(x0), если

⃦⃦
x
(︀
𝑡𝑓(x

0)
)︀
− x𝑓

⃦⃦
⩽ ε

𝑡max — иначе
,

ε — заданная малая положительная величина, 𝑡0 и 𝑡max — заданные значения на­
чального времени и ограничения на время процесса управления соответственно,
𝑡max > 𝑡0, α𝑖 — штрафной коэффициент, ϑ (ℎ𝑖 (x)) — функция Хэвисайда (1.22).

5.3 Численное решение задачи синтеза системы управления
автомобилеподобным роботом на основе аппроксимации

оптимальных траекторий

Поиск численного решения задачи синтеза системы управления авто­
мобилеподобным роботом осуществлялся предложенным методом на основе
аппроксимации оптимальных траекторий. На первом этапе требовалось опре­
делить конечное множество начальных условий и решить задачу оптимального
управления для каждого из них. Результатом выполнения первого этапа являет­
ся найденное множество оптимальных траекторий. На втором этапе множество
оптимальных траекторий использовалось как обучающая выборка при поиске
структуры математического выражения методом символьной регрессии. Реше­
нием поставленной задачи будет функция управления от координат состояния
автомобилеподобного робота в форме математического выражения, максималь­
но точно аппроксимирующего множество оптимальных траекторий.
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5.3.1 Поиск множества оптимальных траекторий

Заменим ограниченную область начальных условий (5.7) на конечное мно­
жество X̃0 из 𝑁 = 9 начальных состояний

X̃0 = { x0,1 = [7 9 π]𝑇 , x0,2 = [8 9 π]𝑇 , x0,3 = [9 9 π]𝑇 ,

x0,4 = [7 10 π]𝑇 , x0,5 = [8 10 π]𝑇 , x0,6 = [9 10 π]𝑇 ,

x0,7 = [7 11 π]𝑇 , x0,8 = [8 11 π]𝑇 , x0,9 = [9 11 π]𝑇 }.
(5.11)

Точки множества (5.11) выбраны с учетом равномерного покрытия обла­
сти начальных условий (5.7) сеткой с шагом ∆ = 1. Все точки множества (5.11)
кроме x0,5 = [8 10 π]𝑇 являются граничными точками множества (5.7).

Для каждого начального состояния из множества (5.11) необходимо найти
решение задачи оптимального управления в форме u

(︀
x0,𝑗,𝑡

)︀
, обеспечивающее

минимум функционалу

𝐽𝑜𝑐𝑝
𝑗 = 𝑡𝑓(x

0,𝑗) +
⃦⃦
x
(︀
𝑡𝑓(x

0,𝑗)
)︀
− x𝑓

⃦⃦
+

+
𝑡𝑓 (x

0,𝑗)∫︀
𝑡0

(︂
𝑧∑︀

𝑖=1

α𝑖ϑ (ℎ𝑖 (x))ℎ𝑖 (x)

)︂
𝑑𝑡→ min

, 𝑗 = 1,𝑁. (5.12)

Для поиска решения использовались прямые методы решения задачи оп­
тимального управления. Для этого исходная задача оптимального управления
должна быть редуцированна к задаче нелинейного программирования с помо­
щью кусочно-линейной аппроксимации.

Зададим малый интервал ∆𝑡 > 0 и определим количество интервалов 𝑀

по формуле (4.2). Значение управления u
(︀
x0,𝑗,𝑡

)︀
=
[︁
𝑢1
(︀
x0,𝑗,𝑡

)︀
𝑢2
(︀
x0,𝑗,𝑡

)︀ ]︁𝑇
в

момент времени 𝑡 определяется из соотношения

𝑢1
(︀
x0,𝑗,𝑡

)︀
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢−1 , если 𝑞𝑖 + (𝑞𝑖+1 − 𝑞𝑖)

(𝑡− (𝑖− 1)∆𝑡)
∆𝑡 < 𝑢−1

𝑢+1 , если 𝑞𝑖 + (𝑞𝑖+1 − 𝑞𝑖)
(𝑡− (𝑖− 1)∆𝑡)

∆𝑡 > 𝑢+1

𝑞𝑖 + (𝑞𝑖+1 − 𝑞𝑖)
(𝑡− (𝑖− 1)∆𝑡)

∆𝑡 — иначе

,

𝑢2
(︀
x0,𝑗,𝑡

)︀
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢−2 , если 𝑞𝑘(𝑞𝑘+1 − 𝑞𝑘)

(𝑡− (𝑖− 1)∆𝑡)
∆𝑡 < 𝑢−2

𝑢+2 , если 𝑞𝑗 + (𝑞𝑗+1 − 𝑞𝑗)
(𝑡− (𝑖− 1)∆𝑡)

∆𝑡 > 𝑢+2

𝑞𝑗 + (𝑞𝑗+1 − 𝑞𝑗)
(𝑡− (𝑖− 1)∆𝑡)

∆𝑡 — иначе

,

(5.13)
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где 𝑖∆𝑡 ⩽ 𝑡 < (𝑖 + 1)∆𝑡, 𝑗 = 1,𝑁 , 𝑖 = 1,𝑀 , 𝑘 = 𝑀 + 1, 2𝑀 .
Таким образом, решением каждой отдельно взятой задачи оптимального

управления будет вектор постоянных параметров

q𝑗 =
[︁
𝑞𝑗1 . . . 𝑞

𝑗
𝑝

]︁𝑇
, (5.14)

где 𝑞−𝑖 ⩽ 𝑞𝑗𝑖 ⩽ 𝑞+𝑖 , 𝑞−𝑖 , 𝑞+𝑖 — заданные значения ограничений на параметры,
q𝑗 ∈ R𝑝, 𝑗 = 1,𝑁 , 𝑖 = 1,𝑝, 𝑝 = 2 (𝑀 + 1).

Увеличение размерности пространства поиска при переходе к задаче
конечномерной оптимизации и наличие фазовых ограничений значительно
усложняет поиск решения задачи оптимального управления. В Главе 4 показа­
но, что в таких случаях наиболее эффективными оказываются эволюционные
алгоритмы. В вычислительном эксперименте поиск решений задачи оптималь­
ного управления осуществлялся с помощью нового гибридного алгоритма на
основе алгоритма серых волков и пчелиного алгоритма. Описание данного ал­
горитма приведено в разделе 4.6.

Во время поиска использовались следующие значения параметров: началь­
ное время 𝑡0 = 0; ограничение на время процесса управления 𝑡𝑚𝑎𝑥 = 2,5; малый
интервал времени ∆𝑡 = 0,25; число интервалов 𝑀 =

⌈︁
𝑡𝑚𝑎𝑥
∆𝑡

⌉︁
= 10; точность

достижения терминального состояния при решении задачи оптимального управ­
ления ε = 0,01; число фазовых ограничений 𝑧 = 4; штрафной коэффициент при
нарушении фазовых ограничений α𝑖 = 1, 𝑖 = 1,𝑧; размер искомого вектора по­
стоянных параметров q𝑗, 𝑗 = 1,𝑁 , 𝑝 = 2(𝑀 +1) = 22; ограничения на значения
компонент вектора постоянных параметров q𝑗, 𝑗 = 1,𝑁 , 𝑞−𝑖 = −12, 𝑞+𝑖 = 12,
𝑖 = 1, 𝑝/2, 𝑞−𝑖 = −1, 𝑞+𝑖 = 1, 𝑖 = 𝑝/2 + 1, 𝑝; размер множества возможных реше­
ний 𝐻 = 30; число поколений 𝑊 = 300; число элитных решений 𝐵 = 10; число
возможных решений в области элитного решения 𝐸𝑘 = 30, 𝑘 = 1,𝐵; радиус
поиска вокруг элитного решения 𝑟𝑖 = 2,4, 𝑖 = 1, 𝑝/2, 𝑟𝑖 = 0,2, 𝑖 = 𝑝/2 + 1, 𝑝;
коэффициент редукции радиуса поиска γ = 0,95; число худших решений, под­
лежащих замене 𝑆 = 20.

Значения функционала качества (5.12), полученные при решении
задачи оптимального управления для различных начальных условий
x0,𝑗 ∈ X̃0, 𝑗 = 1,𝑁 , приведены в Таблице 3.

В результате решения редуцированной к задаче нелинейного программи­
рования исходной задачи оптимального управления для каждого начального
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Таблица 3 — Результаты решения задачи оптимального
управления для различных начальных условий

𝑗 x0,𝑗 𝐽𝑜𝑐𝑝
𝑗

1 x0,1 = [7 9 π]𝑇 1,2883

2 x0,2 = [8 9 π]𝑇 1,4063

3 x0,3 = [9 9 π]𝑇 1,4712

4 x0,4 = [7 10 π]𝑇 1,3974

5 x0,5 = [8 10 π]𝑇 1,4182

6 x0,6 = [9 10 π]𝑇 1,5095

7 x0,7 = [7 11 π]𝑇 1,4855

8 x0,8 = [8 11 π]𝑇 1,5097

9 x0,9 = [9 11 π]𝑇 1,5935

состояния из множества (5.11) были получены значения векторов парамет­
ров (5.14), которые при подстановке в (5.13) дадут решение в форме множества
функций управления от времени. Подставив найденные функции управления от
времени в модель объекта (5.5), получим множество пар программных управ­
лений и соответствующих их траекторий

D̃ =
{︀(︀

x̃1 (·) ,ũ1 (·)
)︀
, . . . ,

(︀
x̃𝑁 (·) ,ũ𝑁 (·)

)︀}︀
, (5.15)

где x̃𝑗 (·) — частное решение системы (5.5) для начального условия x (0) = x0,𝑗

из множества (5.11), ũ𝑗 (·) — решение задачи оптимального управления для за­
данного начального условия, 𝑗 = 1,𝑁 . Ввиду использования прямого подхода
и применения эволюционных алгоритмов, найденные решения будут приблизи­
тельно оптимальными. Соответственно на втором этапе в аппроксимируемом
множестве используются приблизительно оптимальные траектории.

На Рис. 5.2 представлены полученные при решении задачи оптимального
управления траектории движения автомобилеподобного робота на плоскости.

5.3.2 Синтез системы управления автомобилеподобным роботом

Для реализации второго этапа предлагаемого подхода — непосредственно
синтеза системы управления автомобилеподобным роботом, необходимо под­
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Рисунок 5.2 — Графики траекторий из различных начальных состояний.

готовить обучающую выборку на основе полученных на предыдущем шаге
оптимальных траекторий. Синтез системы управления осуществляется с помо­
щью одного из методов символьной регрессии путем численной аппроксимации
значений обучающей выборки.

Для представления множества найденных траекторий (5.15) в форме
обучающей выборки, пригодной для численной аппроксимации, произведем дис­
кретизацию по времени.

Введем малое значение ∆𝑠𝑡 > 0 и определим множество дискретных зна­
чений времени для всех найденных частных решений во множестве (5.15)

T𝑗 = (0, ∆𝑠𝑡, 2∆𝑠𝑡, . . . , 𝑀𝑗∆𝑠𝑡) ,

где 𝑀𝑗 =

⌈︂
𝑡𝑓(x

0,𝑗)
∆𝑠𝑡

⌉︂
, 𝑡𝑓(x0,𝑗) — время процесса управления для найденного ре­

шения задачи оптимального управления из начального состояния x0,𝑗, 𝑗 = 1,𝑁 .
Обучение в ходе поиска оптимального математического выражения функ­

ции управления автомобилеподобным роботом производилось на основе оп­
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тимальных траекторий. Значения найденных программных управлений в
обучении не использовались. Таким образом, для каждого начального состо­
яния (5.11) было сформировано множество из значений вектора состояния в
дискретный момент времени 𝑡𝑗,𝑖 ∈ T𝑗, 𝑖 = 1,𝑀𝑗, 𝑗 = 1,𝑁

D𝑗 =
{︀(︀

x̃𝑗,1
)︀
, . . . ,

(︀
x̃𝑗,𝑀𝑗

)︀}︀
, (5.16)

где x̃𝑗,𝑖 = x̃𝑗 (𝑡𝑗,𝑖), 𝑖 = 1,𝑀𝑗 — значение вектора состояния автомобилеподобного
робота в дискретный момент времени 𝑡𝑗,𝑖 ∈ T𝑗 при движении из начального
состояния x0,𝑗, 𝑗 = 1,𝑁 .

Итоговая обучающая выборка представляла собой набор множеств значе­
ний вектора состояния робота (5.16)

D = {D1, . . . ,D𝑁} . (5.17)

Численным решением задачи синтеза системы управления автомобилепо­
добным роботом будет многомерная функция управления от координат вектора
состояния объекта и вектора ее параметров

ũ = g* (x,s*) . (5.18)

Многомерная функция управления (5.18) должна обеспечивать перемещение
автомобилеподобного робота из любого начального положения x0,𝑗 ∈ X̃0,
𝑗 = 1,𝑁 (5.11) в терминальное положение (5.8) по траектории, наиболее близ­
кой к оптимальной.

Поиск математического выражения многомерной функции управле­
ния (5.18) осуществлялся с помощью методов символьной регрессии путем
численной аппроксимации точек оптимальных траекторий из обучающей выбор­
ки (5.17). При достаточном качестве аппроксимации, найденная многомерная
функция управления (5.18) обеспечит перемещение объекта управления по
близким к оптимальным траекториям для любых начальных состояний из
заданной области начальных условий x0 ∈ X0 (5.7).

Из условия аппроксимации точек оптимальных траекторий следует, что
искомая многомерная функция управления (5.18) при подстановке в матема­
тическую модель автомобилеподобного робота (5.5) должна давать частные
решения, удовлетворяющие критерию

𝐽 =
𝑁∑︁
𝑗=1

𝑀𝑗∑︁
𝑖=1

⃦⃦
x̃𝑗,𝑖 − x𝑗

(︀
x0,𝑗,𝑡𝑗,𝑖

)︀⃦⃦
→ min, (5.19)
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где x𝑗
(︀
x0,𝑗,𝑡𝑗,𝑖

)︀
— частное решение системы (5.5) для начального условия x0,𝑗 в

дискретный момент времени 𝑡𝑗,𝑖 ∈ T𝑗, x̃𝑗,𝑖 — эталонное решение из обучающей
выборки (5.17) для соответствующего начального условия и момента времени,
𝑖 = 1,𝑀𝑗, 𝑗 = 1,𝑁 .

В рассматриваемой в вычислительном эксперименте задаче также заданы
фазовые ограничения на вектор состояния объекта управления (5.9). Без­
условно, оптимальные траектории, используемые для поиска математического
выражения функции управления, удовлетворяют условиям данных фазовых
ограничений. Однако сами возможные решения, рассматриваемые в процессе
поиска, могут их нарушать. Чтобы избежать данного случая, который также
проиллюстрирован в примере в разделе 3.1, добавим в критерий (5.19) штраф
за нарушение фазовых ограничений

𝐽 =
𝑁∑︁
𝑗=1

𝑀𝑗∑︁
𝑖=1

⃦⃦
x̃𝑗,𝑖 − x𝑗

(︀
x0,𝑗,𝑡𝑗,𝑖

)︀⃦⃦
+

𝑧∑︁
𝑘=1

α𝑘ϑ (ℎ𝑘 (x))ℎ𝑘 (x)→ min, (5.20)

где α𝑘 — штрафной коэффициент, ℎ𝑘 (x) — фазовое ограничение в простран­
стве вектора состояния объекта, 𝑘 = 1,𝑧, 𝑧 — число фазовых ограничений,
ϑ (ℎ𝑘 (x)) — функция Хэвисайда (1.22).

Также следует отметить, что, согласно критерию (5.19), для всех точек
из обучающей выборки близость их аппроксимации имеет одинаковый приори­
тет. Равновесность всех точек обучающей выборки не является применимым
подходом для рассматриваемой задачи. Действительно, близость найденного
решения к последней точке каждого множества D𝑗 ∈ D, 𝑗 = 1,𝑁 (5.17), явля­
ется более приоритетной, чем близость ко всем остальным точкам, ввиду того,
что последняя точка каждого множества D𝑗 по сути является терминальным
состоянием объекта управления, которое необходимо достичь

∀D𝑗 ∈ D : x̃𝑗,𝑀𝑗 ≈ x𝑓 =
[︁
0 0 π

]︁𝑇
, 𝑗 = 1,𝑁.

Дополним критерий (5.20) значением оценки достижения возможным
решением терминального состояния (5.8). Тогда критерий оценки качества обу­
чения примет следующий окончальный вид

𝐽 =
𝑁∑︀
𝑗=1

(︃
λ
⃦⃦
x𝑓 − x𝑗

(︀
x0,𝑗,𝑡𝑗,𝑀𝑗

)︀⃦⃦
+

𝑀𝑗−1∑︀
𝑖=1

⃦⃦
x̃𝑗,𝑖 − x𝑗

(︀
x0,𝑗,𝑡𝑗,𝑖

)︀⃦⃦)︃
+

+
𝑧∑︀

𝑘=1

α𝑘ϑ (ℎ𝑘 (x))ℎ𝑘 (x)→ min,
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где λ — весовой коэффициент оценки достижения терминального состояния x𝑓 ,
α𝑘 — штрафной коэффициент нарушения фазового ограничения, 𝑘 = 1,𝑧. Для
рассматриваемой задачи значения коэффициентов λ и α𝑘 были подобраны эмпи­
рически так, чтобы исключить возможность нарушения фазовых ограничений
и соблюсти точность достижения терминального состояния: λ = 3; α𝑘 = 5.

В вычислительном эксперименте синтез системы управления автомоби­
леподобным роботом осуществлялся с помощью метода сетевого оператора,
относящегося к классу методов символьной регрессии. Описание данного мето­
да приведено в разделе 2.2.5. Выбор метода сетевого оператора из ряда других
методов класса обусловлен тем, что при его создании учитывалась специфика
задач синтеза управления, а следовательно, он больше других подходит для
использования в данном вычислительном эксперименте.

Во время поиска математической формы функции управления исполь­
зовались следующие значения параметров метода сетевого оператора: число
входных переменных — 3; число параметров — 12; число выходных значе­
ний — 2; множество переменных и параметров

F0 = ( 𝑓0,1 = 𝑥1, 𝑓0,2 = 𝑥2, 𝑓0,3 = 𝑥3, 𝑓0,4 = 𝑠1, 𝑓0,5 = 𝑠2,

𝑓0,6 = 𝑠3, 𝑓0,7 = 𝑠4, 𝑓0,8 = 𝑠5, 𝑓0,9 = 𝑠6, 𝑓0,10 = 𝑠7,

𝑓0,11 = 𝑠8, 𝑓0,12 = 𝑠9, 𝑓0,13 = 𝑠10, 𝑓0,14 = 𝑠11, 𝑓0,15 = 𝑠12 ) ;

(5.21)

множество функций с одним аргументом

F1 = ( 𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧) = 𝑧2, 𝑓1,3(𝑧) = −𝑧,

𝑓1,4(𝑧) = sgn (𝑧)
√︀
|𝑧|, 𝑓1,5(𝑧) = 1

𝑧 , 𝑓1,6(𝑧) = e𝑧,

𝑓1,7(𝑧) = ln (|𝑧|) , 𝑓1,8(𝑧) = 1− e−𝑧

1 + e−𝑧
, 𝑓1,9(𝑧) = arctan (𝑧) ,

𝑓1,10(𝑧) = 𝑧3, 𝑓1,11(𝑧) = 3
√
𝑧, 𝑓1,12(𝑧) = 𝑧 − 𝑧3 ) ;

(5.22)

множество функций с двумя аргументами

F2 = ( 𝑓2,1(𝑧1,𝑧2) = 𝑧1 + 𝑧2, 𝑓2,2(𝑧1,𝑧2) = 𝑧1𝑧2,

𝑓2,3(𝑧1,𝑧2) = max (𝑧1,𝑧2) , 𝑓2,4(𝑧1,𝑧2) = min (𝑧1,𝑧2) ,

𝑓2,5(𝑧1,𝑧2) = 𝑧1 + 𝑧2 − 𝑧1𝑧2,

𝑓2,6(𝑧1,𝑧2) = sgn (𝑧1 + 𝑧2)
√︀
𝑧21 + 𝑧22, ) ;

(5.23)
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размерность матрицы сетевого оператора 𝐿 = 40; начальное базисное решение

𝑢1(x) = 𝑢2(x) = 𝑠7 (𝑠1𝑥1 + 𝑠4) + 𝑠10+

+ 𝑠8 (𝑠2𝑥2 + 𝑠5) + 𝑠11+

+ 𝑠9 (𝑠3𝑥3 + 𝑠6) + 𝑠12;

начальное значение вектора параметров s

s = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) .

С учетом номеров функций, переменных и параметров из мно­
жеств (5.21) — (5.23) матрица сетевого оператора для начального базисного
решения будет иметь вид

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Поиск оптимального математического выражения, являющегося реше­
нием поставленной задачи синтеза системы управления автомобилеподобным
роботом, в форме матрицы сетевого оператора осуществлялся с помощью гене­
тического алгоритма. Параметры генетического алгоритма имели следующие
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значения: размер начальной популяции 𝐻 = 1024; число поколений поиска
𝑊 = 3200; вероятность скрещивания 𝑃𝑐 = 0,4; вероятность мутации 𝑃𝑚 = 0,7.

Вычисления проводились на компьютере Intel® Core™ i7 2.8 GHz,
8 GB RAM с использованием авторского комплекса программ, написанного
на языке Free Pascal в среде Lazarus. Время поиска решений в рассмотренных
примерах составляло от 5 до 14 часов.

5.4 Результаты вычислительного эксперимента

Поиск математического выражения функции управления (5.18) произво­
дился в трех независимых экспериментах. Эксперименты отличались друг от
друга числом оптимальных траекторий в обучающей выборке 𝑁 и значением
параметра дискретизации оптимальных траекторий по времени ∆𝑠𝑡.

• Эксперимент 1: 𝑁 = 9, ∆𝑠𝑡 = 0,01;
• Эксперимент 2: 𝑁 = 9, ∆𝑠𝑡 = 0,05;
• Эксперимент 3: 𝑁 = 5, ∆𝑠𝑡 = 0,01.
В Эксперименте 3 обучающая выборка D̆ являлась подмножеством обу­

чающей выборки D (5.17), используемой в Экспериментах 1 и 2,

D̆ = {D1, D3, D5, D7, D9} , D̆ ∈ D.

Значение параметра дискретизации ∆𝑠𝑡 влияет на число опорных точек
в обучающей выборке для каждой используемой оптимальной траектории. Та­
ким образом, суммарное число точек в обучающей выборке 𝑆 и время поиска
решения 𝑇 составило

• Эксперимент 1: 𝑆 = 1311, 𝑇 = 14 ч. 14 мин.;
• Эксперимент 2: 𝑆 = 266, 𝑇 = 4 ч. 53 мин.;
• Эксперимент 3: 𝑆 = 728, 𝑇 = 5 ч. 46 мин.
В результате в каждом эксперименте было получено решение поставлен­

ной задачи синтеза системы управления автомобилеподобным роботом в форме
матрицы сетевого оператора и вектора параметров. Оценка каждого решения
производилась по значению функционала качества (5.10) для разных началь­
ных состояний из области X0 (5.7).
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Функционал качества (5.10) для выбранного начального состояния
x0 ∈ X0 совпадает с функционалом качества решения задачи оптимально­
го управления (5.12) для этого же начального состояния. Тогда в качестве
эталонного решения в сравнении будет использоваться значение функциона­
ла качества, полученное при решении задачи оптимального управления для
данного начального состояния x0.

В разделе 5.3.1 для целей составления обучающей выборки приведено ре­
шение задачи оптимального управления автомобилеподобным роботом для 9

начальных условий из множества X̃0 (5.11). Полученные при этом значения
функционала качества (5.12) показаны в Таблице 3. Данные значения будут ис­
пользованы при сравнении с решениями, полученными найденными функциями
управления. Однако, для адекватной оценки найденных функций управления
необходимо произвести сравнение также с теми оптимальными решениями, ко­
торых изначально не было в обучающей выборке. Другими словами, нужно
также получить оценку найденных функций управления при перемещении объ­
екта управления в терминальное состояние из множества начальных состояний
X̂0, обладающего следующим свойством

X̂0 ⊂ X0, X̂0 ∪ X̃0 = ∅. (5.24)

Выберем элементы множества X̂ таким образом, чтобы область начальных
условий (5.7) была покрыта равномерной сеткой с шагом ∆ = 0,5 и при этом
удовлетворялось условие (5.24)

X̂0 = { x0,10 = [7,5 9 π]𝑇 , x0,11 = [8,5 9 π]𝑇 ,

x0,12 = [7 9,5 π]𝑇 , x0,13 = [7,5 9,5 π]𝑇 ,

x0,14 = [8 9,5 π]𝑇 , x0,15 = [8,5 9,5 π]𝑇 ,

x0,16 = [9 9,5 π]𝑇 , x0,17 = [7,5 10 π]𝑇 ,

x0,18 = [8,5 10 π]𝑇 , x0,19 = [7 10,5 π]𝑇 ,

x0,20 = [7,5 10,5 π]𝑇 , x0,21 = [8 10,5 π]𝑇 ,

x0,22 = [8,5 10,5 π]𝑇 , x0,23 = [9 10,5 π]𝑇 ,

x0,24 = [7,5 11 π]𝑇 , x0,25 = [8,5 11 π]𝑇 }.

(5.25)

Для каждого начального состояния из множества (5.25) найдем реше­
ние задачи оптимального управления, обеспечивающее минимум функциона­
лу (5.12). Таким образом, эталонные значения функционала качества (5.12)
будут известны для решений задачи оптимального управления из всех началь­
ных состояний x0 ∈ X̂0 ∪ X̃0.
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Теперь составим множество

X̌0 = X̂0 ∪ X̃0

и используем найденные функции управления для оценки каждого решения
по значению функционала качества (5.10) для всех начальных состояний из
данного множества.

Для полноты сравнительного анализа, кроме оценок отклонений от эта­
лонных значений, рекомендуется использовать оценку значений среднего откло­
нения из всех полученных результатов и среднеквадратического отклонения [89].

Полученные с помощью каждого решения значения функционала ка­
чества (5.10), эталонные значения, полученные с помощью решения задачи
оптимального управления, и значения среднего и среднеквадратического от­
клонений приведены в Таблице 4.

В Таблице 4 в колонке 𝐽1
𝑖 приведено значение функционала качества (5.10),

полученное с помощью найденного решения задачи синтеза в Эксперимен­
те 1; в колонке 𝐽2

𝑖 — значение функционала качества, полученное с помощью
найденного решения задачи синтеза в Эксперименте 2; в колонке 𝐽3

𝑖 —
значение функционала качества, полученное с помощью найденного решения
задачи синтеза в Эксперименте 3; в колонке 𝐽𝑜𝑐𝑝

𝑖 приведено эталонное значе­
ние функционала качества. Лучший среди трех экспериментов результат для
каждого начального состояния выделен полужирным шрифтом. В последней
строке приведены среднее и среднеквадратическое отклонения от эталонных
значений по каждому решению.

В Эксперименте 1 минимальное отклонение от эталонного значе­
ния составило 0,0181, максимальное отклонение — 0,1923, среднее значение
отклонения — 0,0715, среднеквадратическое отклонение — 0,0388. В Экспе­
рименте 2 минимальное отклонение от эталонного значения составило 0,038,
максимальное отклонение — 0,3551, среднее значение отклонения — 0,207,
среднеквадратическое отклонение — 0,0936. В Эксперименте 3 минимальное
отклонение от эталонного значения составило 0,0073, максимальное отклоне­
ние — 0,2246, среднее значение отклонения — 0,0772, среднеквадратическое
отклонение — 0,0481.

Из полученных результатов видно, что в проведенном сравнении наилуч­
шие результаты показало решение, полученное в Эксперименте 1. Далее с
незначительным отставанием следует решение, полученное в Эксперименте 3.
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Таблица 4 — Сравнительные результаты для найденных решений задачи син­
теза системы управления

𝑖 x0,𝑖 𝐽1
𝑖 𝐽2

𝑖 𝐽3
𝑖 𝐽𝑜𝑐𝑝

𝑖

1 x0,1 = [7 9 π]𝑇 1,3363 1,3808 1,3250 1,2883

2 x0,2 = [8 9 π]𝑇 1,4455 1,4443 1,4549 1,4063

3 x0,3 = [9 9 π]𝑇 1,5086 1,5382 1,5446 1,4712

4 x0,4 = [7 10 π]𝑇 1,4155 1,6257 1,4047 1,3974

5 x0,5 = [8 10 π]𝑇 1,4983 1,7604 1,5026 1,4182

6 x0,6 = [9 10 π]𝑇 1,6233 1,8636 1,6642 1,5095

7 x0,7 = [7 11 π]𝑇 1,5255 1,5371 1,5258 1,4855

8 x0,8 = [8 11 π]𝑇 1,5824 1,6736 1,5888 1,5097

9 x0,9 = [9 11 π]𝑇 1,7119 1,7715 1,7230 1,5935

10 x0,10 = [7,5 9 π]𝑇 1,3954 1,5671 1,4008 1,3493

11 x0,11 = [8,5 9 π]𝑇 1,4995 1,4914 1,5107 1,4418

12 x0,12 = [7 9,5 π]𝑇 1,3804 1,5204 1,3558 1,3428

13 x0,13 = [7,5 9,5 π]𝑇 1,4172 1,6439 1,4279 1,3815

14 x0,14 = [8 9,5 π]𝑇 1,4731 1,6214 1,4861 1,4119

15 x0,15 = [8,5 9,5 π]𝑇 1,5507 1,6720 1,5305 1,4521

16 x0,16 = [9 9,5 π]𝑇 1,6819 1,7229 1,7142 1,4896

17 x0,17 = [7,5 10 π]𝑇 1,4484 1,6933 1,4499 1,4052

18 x0,18 = [8,5 10 π]𝑇 1,5531 1,8117 1,5623 1,4566

19 x0,19 = [7 10,5 π]𝑇 1,4806 1,6385 1,4489 1,4353

20 x0,20 = [7,5 10,5 π]𝑇 1,5027 1,7887 1,5669 1,4506

21 x0,21 = [8 10,5 π]𝑇 1,5445 1,7065 1,5453 1,4634

22 x0,22 = [8,5 10,5 π]𝑇 1,5853 1,7555 1,5830 1,5043

23 x0,23 = [9 10,5 π]𝑇 1,6567 1,8040 1,6566 1,5545

24 x0,24 = [7,5 11 π]𝑇 1,5581 1,6794 1,5513 1,4965

25 x0,25 = [8,5 11 π]𝑇 1,6728 1,7228 1,6672 1,5457

Среднее значение
отклонения 0,0715 0,207 0,0772 −

Среднеквадратическое
отклонение 0,0388 0,0936 0,0481 −
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Решение, полученное в Эксперименте 2, показало наихудший результат, зна­
чительно уступив по значениям критерия качества.

Таким образом, экспериментально показано, что значение параметра дис­
кретизации оптимальных траекторий ∆𝑠𝑡 имеет более существенное влияние на
качество поиска решения задачи синтеза чем число оптимальных траекторий
в обучающей выборке. Также анализ результатов вычислений в Эксперимен­
те 1 и Эксперименте 3 свидетельствует, что дальнейшее увеличение числа
оптимальных траекторий в обучающей выборке принесет незначительное улуч­
шение результата при значительном росте времени расчета.

Далее рассмотрим более подробно лучшее решение — решение, полученное
в Эксперименте 1. С помощью метода сетевого оператора было найдено реше­
ние в форме матрицы сетевого оператора Ψ и вектора оптимальных параметров
s. Оптимальная форма матрицы сетевого оператора имела следующий вид

Ψ=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 4 0 0 0 0 0 0 0 0 0 0 7 11 0 0 8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 5 0 0 0 0 0 0 4 8 0 0 0 0 0 0 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 5 10 0 0 10 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8 0 0 0 0 0 11 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7 0 0 0 0 2 4 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 10 0 7 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 7 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 1 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 0 1 0 0 2 0 0 0 0 0 0 0 0 5 0 12 11 0 7 10 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 1 0 1 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 0 1 0 0 0 8 9 0 0 0 0 0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 11 8 0 0 0 0 0 0 0 0 0 0 3 0 11 0 0 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 1 0 0 0 0 0 0 8 0 0 0 0 3 0 0 0 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 9 0 0 8 0 0 0 11 0 5 0 0 11 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 1 0 0 0 0 0 0 10 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 8 0 0 11 0 7 6 1 0 9 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 9 0 1 4 6 0 0 0 0 6 4 1 0 0 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 5 0 0 0 0 11 0 0 0 12 0 5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 8 0 5 0 12 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 6 0 9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 5 8 4 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 5 1 9 8 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 8 0 0 7 0 2 9 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 12 4 0 9 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 5 0 4 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 6 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2 0 6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 8 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.26)
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Найденные оптимальные значения вектора параметров s

s = (3,246338, 5,993164, 15,050049, 13,058105,

12,14209, 10,884277, 12,912842, 12,394775,

7,228271, 3,997803, 0,548096, 6,888184) .

(5.27)

Используя выражения (2.39) — (2.41) для определения композиции функ­
ций в сетевом операторе (5.26) и с учётом найденных оптимальных значений
вектора параметров (5.27) и имеющихся ограничений на управление (5.6),
получим следующее математическое выражение для найденной функции управ­
ления автомобилеподобным роботом

𝑢1 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢−1 , если 𝑢̃1 < 𝑢−1

𝑢+1 , если 𝑢̃1 > 𝑢+1

𝑢̃1 — иначе

, 𝑢2 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢−2 , если 𝑢̃2 < 𝑢−2

𝑢+2 , если 𝑢̃2 > 𝑢+2

𝑢̃2 — иначе

, (5.28)

где

𝑢̃1 = 𝑓2,6

(︂
𝑍−11 , e𝑍4, sgn (𝑍7)

√︀
|𝑍7|, arctan (𝑍8) ,

1− e−𝑍15

1 + e−𝑍15
,

arctan (𝑍16) , 𝑠
2
9, 𝑠

3
6,

1− e−𝑠3

1 + e−𝑠3
, e𝑥1

)︁
,

𝑢̃2 = 1− e−𝑢̃1

1 + e−𝑢̃1

1− e−𝑍6

1 + e−𝑍6
𝑍7 𝑍

−1
16

1− e−𝑍19

1 + e−𝑍19

1− e−𝑍20

1 + e−𝑍20

1− e−𝑍22

1 + e−𝑍22
,

𝑍1 = min
(︁
𝑍3
2 , 𝑍3, e

𝑍6, arctan (𝑍9) , 𝑍11, 𝑍
−1
14 , e

𝑍17, −𝑍23, sgn (𝑠9)
√︀
|𝑠9|
)︁
,

𝑍2 = min

(︂
𝑍3,

1− e−𝑍4

1 + e−𝑍4
, e𝑍5, 𝑍−17 , sgn (𝑍8)

√︀
|𝑍8|, 𝑍2

9 , 𝑍11, 𝑍16,

3
√
𝑍18, 𝑍

3
23, −𝑠12, 𝑠11, ln (|𝑠10|) , 𝑠29, sgn (𝑠4)

√︀
|𝑠4|,

sgn (𝑠3)
√︀
|𝑠3|, 1− e−𝑥3

1 + e−𝑥3

)︁
,

𝑍3 = min
(︁
𝑍−16 , 𝑍8 − 𝑍3

8 , sgn (𝑍11)
√︀
|𝑍11|, arctan (𝑍12) , 𝑍14 − 𝑍3

14,

𝑍15, e
𝑍16, 3
√
𝑍20, e

𝑍21, ln (|𝑍23|) , 3
√
𝑠8, 𝑠

3
6, ln (|𝑠4|)

)︀
,

𝑍4 = 𝑓2,6

(︂
𝑍2
5 , ln (|𝑍9|) , 1− e−𝑍10

1 + e−𝑍10
, 1− e−𝑍11

1 + e−𝑍11
, 𝑍13 − 𝑍3

13, sgn (𝑍15)
√︀
|𝑍15|,

ln (|𝑍16|) , −𝑍19, 𝑠12, ln (|𝑠11|) , 𝑠310, 𝑠7, 𝑠−16 , arctan (𝑥2)
)︀
,

𝑍5 = 𝑓2,6
(︀
arctan (𝑍10) , 𝑍

−1
11 , e

𝑍12, e𝑍15, 𝑍−118 , −𝑍20,

3
√
𝑍23, 𝑠

3
12, 𝑠

−1
10 , −𝑠1, 3

√
𝑥3, 𝑥1 − 𝑥31

)︀
,



154

𝑍6 = arctan (𝑍7) + 𝑍2
8 + 𝑍10 + 𝑍−113 + 3

√
𝑍16 + 𝑍3

17 + 𝑍23 − 𝑍3
23 + 𝑠210 + ln (|𝑥3|) ,

𝑍7 = 𝑍8 +
1− e−𝑍9

1 + e−𝑍9
+ 𝑍−110 + 3

√
𝑍14 +

3
√
𝑍18 + 𝑍−122 + ln (|𝑠9|) + 𝑥2,

𝑍8 = 𝑍9 +
1− e−𝑍13

1 + e−𝑍13
+ 𝑍−123 ,

𝑍9 = 𝑍10
1− e−𝑍16

1 + e−𝑍16

1− e−𝑍19

1 + e−𝑍19

1− e−𝑠8

1 + e−𝑠8
, 𝑍10 = 𝑍11 + 𝑍12 + e𝑍15,

𝑍11 = min

(︂
𝑍12, 𝑍13, sgn (𝑍15)

√︀
|𝑍15|, 1− e−𝑍18

1 + e−𝑍18
, 𝑠211, 𝑠

2
2

)︂
,

𝑍12 = 𝑍−114 + 𝑍15 + 𝑍−122 + 𝑠12 +
1− e−𝑠1

1 + e−𝑠1
,

𝑍13 = 𝑍14 + 𝑍16 + 𝑍17 + arctan (𝑍21) + 𝑠−16 + sgn (𝑠1)
√︀
|𝑠1|,

𝑍14 = 𝑓2,5

(︂
arctan (𝑍15) , 𝑍17, arctan (𝑍18) ,

1− e−𝑍21

1 + e−𝑍21

)︂
,

𝑍15 = 𝑍18 𝑠9, 𝑍16 = 𝑍19
1− e−𝑍20

1 + e−𝑍20
𝑠8,

𝑍17 = max
(︁

3
√
𝑍20, 𝑍22, 𝑍

2
23, 𝑠

3
7, sgn (𝑥3)

√︀
|𝑥3|, 𝑥21

)︁
,

𝑍18 = 𝑍19 + 𝑍21 + 𝑠6, 𝑍19 = max
(︀
𝑍22, 𝑠5, 𝑥

3
3

)︀
,

𝑍20 = 𝑓2,6
(︀
ln (|𝑍21|) , 𝑍23, 𝑠4, 𝑠

−1
1

)︀
, 𝑍21 = 𝑓2,5 (𝑠3, 𝑥3) ,

𝑍22 = 𝑓2,6

(︁
ln (|𝑍23|) , ln (|𝑠11|) , 1− e−𝑠9

1 + e−𝑠9
, 1− e−𝑠3

1 + e−𝑠3
,

𝑠2, arctan (𝑠1) , e
𝑥2, sgn (𝑥1)

√︀
|𝑥1|
)︁
,

𝑍23 = 𝑓2,5 (𝑠1, 𝑥1) ,

𝑓2,5 и 𝑓2,6 — функции из множества (5.23), обладающие свойствами комму­
тативности и ассоциативности, 𝑠𝑖, 𝑖 = 1,12 — элементы найденного вектора
параметров (5.27).

Для любого начального состояния из ограниченной области (5.7) и в
соответствии с текущим фазовым состоянием автомобилеподобного робота ма­
тематическое выражение многомерной функции управления (5.28) позволяет
получить управляющее воздействие, перемещающее робота в терминальное со­
стояние (5.8) по траектории близкой к оптимальной.

Качество получаемых с помощью выражения (5.28) траекторий определя­
ется их отклонением от эталонных значений. Среднеквадратическое отклонение
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Рисунок 5.3 — Траектория движения автомобилеподобного робота на плоско­
сти, полученная с помощью найденной функции управления (сплошная линия)

и эталонная траектория (пунктирная линия).

для полученного решения составляет 0,0388, что свидетельствует о высокой сте­
пени близости получаемых с помощью данной функции управления траекторий
к оптимальным. Таким образом, задача синтеза системы управления автомоби­
леподобным роботом считается решенной.

Проиллюстрируем полученные результаты графически. В качестве при­
мера рассмотрим перемещение автомобилеподобного робота из начального
состояния x0 = [8 10 π]𝑇 в терминальное состояние (5.8).

На Рис. 5.3 сплошной линией представлена траектория движения ро­
бота на плоскости, полученная с помощью функции управления (5.28). Для
сравнения пунктирной линией представлена оптимальная траектория, получен­
ная путём решения задачи оптимального управления. Из Рис. 5.3 видно, что
траектория движения робота не нарушает фазовых ограничений (области огра­
ничений показаны красным) и близка к эталонной.
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На Рис. 5.4 представлены графики изменения фазовых координат робо­
та во времени, а на Рис. 5.5 — графики изменения управляющих воздействий
𝑢1 и 𝑢2 во времени.

Рисунок 5.4 — Графики изменения фазовых координат автомобилеподобного
робота во времени: а) — график 𝑥1(𝑡); б) — график 𝑥2(𝑡); в) — график 𝑥3(𝑡);
сплошная линия — полученное значение; пунктирная линия — эталонное значе­

ние.

Для рассмотренного примера графики на Рис. 5.3 — 5.5 подтвердили
высокое качество найденной функции управления. Однако, информация об оп­
тимальной траектории движения из начального состояния x0 = [8 10 π]𝑇 ,
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а) б)
Рисунок 5.5 — Графики изменения управляющих воздействий во времени:
а) — график 𝑢1(𝑡); б) — график 𝑢2(𝑡); сплошная линия — полученное зна­

чение; пунктирная линия — эталонное значение.

рассмотренного в примере, использовалась в обучающей выборке. Поэтому есть
смысл дополнительно проиллюстрировать работу найденной функции управ­
ления для таких начальных состояний робота, по движению из которых в
обучающей выборке данных не было. На Рис. 5.6 представлены 4 графика
движения автомобилеподобного робота на плоскости из начальных состояний
x0 = [7,5 9,5 π]𝑇 , x0 = [7,5 10,5 π]𝑇 , x0 = [8,5 9,5 π]𝑇 и x0 = [8,5 10,5 π]𝑇 .
Информации об оптимальной траектории движения из этих начальных состо­
яний в обучающей выборке не было. При этом данные начальные состояния
равноудалены от всех начальных состояний, для которых информация об оп­
тимальной траектории имелась.

Полученные с помощью многомерной функции (5.28) траектории (сплош­
ная линия) не нарушают фазовых ограничений и близки к оптимальным
(пунктирная линия). Достижение терминального состояния производится с за­
данной точностью. Графики на Рис. 5.6 также подтвердили высокое качество
найденной функции управления и предложенного метода решения задачи чис­
ленного синтеза системы управления в целом.
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Рисунок 5.6 — Траектории движения автомобилеподобного робота на плос­
кости, полученные с помощью найденной функции управления (сплошная
линия), и эталонные траектории (пунктирная линия): а) — начальное со­
стояние x0 = [7,5 9,5 π]𝑇 ; б) — начальное состояние x0 = [7,5 10,5 π]𝑇 ;
в) — начальное состояние x0 = [8,5 9,5 π]𝑇 ; г) — начальное состоя­

ние x0 = [8,5 10,5 π]𝑇 .
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Выводы по Главе 5

Современным прикладным задачам синтеза системы управления свой­
ственна высокая сложность. Также следует учитывать возможные ограничения,
накладываемые на фазовое состояние объекта управления. Поиск решения для
таких задач требует высокой эффективности применяемых методов.

Предложенный в диссертации метод синтеза системы управления на осно­
ве аппроксимации множества оптимальных траекторий был протестирован на
прикладной задаче синтеза системы управления автомобилеподобным роботом.

В соответствии с алгоритмом данного метода, на первом этапе была
многократно решена задача оптимального управления для разных начальных
условий и получены оптимальные траектории. Для решения задачи оптималь­
ного управления использовался прямой подход, заключающийся в редукции
исходной задачи к задаче нелинейного программирования и её последующе­
го решения новым гибридным алгоритмом. Результатом выполнения первого
этапа стало получение обучающей выборки на основе множества найденных
оптимальных траекторий.

На втором этапе производился непосредственно синтез системы управле­
ния. Для этого использовался метод сетевого оператора, относящийся к классу
методов символьной регрессии. Поиск функции управления осуществлялся
путем аппроксимации данных из обучающей выборки. Для оценки качества
аппроксимации использовался функционал, учитывающий фазовое состояние
робота, а также факт нарушения фазовых ограничений и степень достижения
терминального состояния. Таким образом, при поиске использовались принци­
пы обучения с подкреплением.

Результатом вычислительного эксперимента стало получение многомер­
ной функции управления в форме математического выражения. Сравни­
тельный анализ на основе 25 траекторий показал, что найденная функция
позволяет для любого начального состояния из ограниченной области полу­
чать управления, перемещающие робота в терминальное состояние по близкой к
оптимальной траектории. Среднеквадратическое отклонение от эталонных зна­
чений составило 0,0388. Данные результаты позволили утверждать об успешном
решении прикладной задачи синтеза системы управления автомобилеподобным
роботом предложенным методом.
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Заключение

В диссертации предложен новый численный подход к решению задачи
синтеза системы управления. Поиск структуры функции управления в новом
подходе осуществляется с помощью методов символьной регрессии путем ап­
проксимации множества предварительно найденных оптимальных траекторий.
При оценке качества аппроксимации учитывается совокупность факторов, в
том числе текущее и предыдущее положение объекта в фазовом пространстве,
степень достижения терминального состояния и, при наличии фазовых ограни­
чений, контроль их нарушения. Эффективность предложенного в диссертации
подхода показана на примере решения прикладной задачи синтеза системы
управления автомобилеподобным роботом, а также результатами других иссле­
дований, опубликованных в рецензируемых научных изданиях.

Основные результаты диссертации заключаются в следующем.
1. Рассмотрена задача общего синтеза системы управления. Показано, что

в настоящее время нет универсальных подходов к решению данной
задачи, а существующие аналитические методы в основном примени­
мы только для несложных объектов малой размерности. Известный
численный метод синтеза системы управления на основе многокритери­
альной структурно-параметрической оптимизации методами символь­
ной регрессии также содержит ряд недостатков, основным из которых
является невозможность оценки близости найденного решения к опти­
мальному.

2. Разработан и предложен численный метод решения задачи синтеза си­
стемы управления на основе аппроксимации множества оптимальных
траекторий. Поиск решения предложенным методом осуществляется
в два этапа. На первом этапе многократно решается задача опти­
мального управления для разных начальных условий и формируется
обучающая выборка на основе найденных оптимальных траекторий. На
втором этапе осуществляется поиск математического выражения функ­
ции управления от координат состояния, аппроксимирующего данные
из обучающей выборки.

3. Для реализации первого этапа предложено использовать прямой под­
ход решения задачи оптимального управления, заключающийся в
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редукции исходной задачи к задаче нелинейного программирования
и её решения численным методом оптимизации. Экспериментально
показано, что среди известных алгоритмов численной оптимизации,
применительно к прикладным задачам оптимального управления наи­
более эффективными оказались эволюционные алгоритмы.

4. Для решения задачи оптимального управления разработан и пред­
ложен гибридный алгоритм. В основу предложенного метода легли
алгоритм серых волков и пчелиный алгоритм.

5. Для реализации второго этапа предложено использовать методы сим­
вольной регрессии. Для оценки качества аппроксимации использованы
принципы обучения с подкреплением. Построен функционал качества,
учитывающий информацию о фазовом состоянии объекта управления
и факт нарушения фазовых ограничений.

6. Показано, что предложенный метод для найденного решения задачи
синтеза системы управления позволяет оценить его близость к опти­
мальному решению.

7. Разработан комплекс программ, реализующих предложенный числен­
ный метод решения задачи синтеза системы управления на основе
аппроксимации множества оптимальных траекторий. Произведен по­
иск решения прикладной задачи синтеза системы управления автомо­
билеподобным роботом в пространстве с фазовыми ограничениями.
Полученные результаты подтвердили эффективность предложенного
метода.

Автор диссертации выражает благодарность и большую признательность
научному руководителю Асхату Ибрагимовичу Дивееву за научное руковод­
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сертации, была выполнена при поддержке проекта 075-15-2020-799 «Методы
построения и моделирования сложных систем на основе интеллектуальных
и суперкомпьютерных технологий, направленные на преодоление больших
вызовов» Минобрнауки России. Автор диссертации выражает благодарность
научному коллективу данного проекта.



162

Список литературы

1. Арутюнов А. В., Магарил-Ильяев Г. Г., Тихомиров В. М. Принцип мак­
симума Понтрягина. Доказательство и приложения. — М. : Факториал
Пресс, 2006.

2. Атанс М., Фалб П. Л. Оптимальное упpавление. — М. : Машиностpоение,
1968. — 764 с.

3. Афанасьев В. Н. Оптимальные системы управления. Аналитическое кон­
струирование. — М. : РУДН, 2007. — 259 с.

4. Афанасьев В. Н., Колмановский В. Б., Носов В. Р. Математическая тео­
рия конструирования систем управления. — М. : Высш. шк., 2003. — 614 с.

5. Базара М., Шетти К. Нелинейное программирование. Теория и алгорит­
мы. — М. : Мир, 1982. — 584 с.

6. Барбашин Е. А. Введение в теорию устойчивости. — М. : Наука, 1967. —
224 с.

7. Барбашин Е. А. Функции Ляпунова. — М. : Наука, 1970. — 240 с.
8. Бахарев А. Т., Зуев А. К., Камилов М. М. Теория и применение случай­

ного поиска. — Рига : Зинатне, 1969. — 309 с.
9. Беллман Р. Динамическое программирование. — М. : Издательство ино­

странной литературы, 1963.
10. Беллман Р., Гликсберг И., Гросс О. Некоторые вопросы математической

теории процессов управления. — М. : Издательство иностранной литера­
туры, 1962. — 336 с.

11. Болтянский В. Г. Достаточные условия оптимальности и обоснование ме­
тода динамического программирования // Изв. АН СССР. Сер. матем. —
1964. — Т. 28, № 3. — С. 481—514.

12. Болтянский В. Г. Математические методы оптимального управления. —
М. : Наука, 1968.

13. Болтянский В. Г. Оптимальное управление дискретными системами. —
М. : Наука, 1973.

14. Болтянский В. Г., Насритдинов Г. Синтез оптимальных управлений в
нелинейных колебательных системах второго порядка // Дифференци­
альные уравнения. — 1967. — Т. 3, № 3. — С. 380—394.



163

15. Буков В. Н. Адаптивные прогнозирующие системы управления поле­
том. — М. : Наука, 1987. — 232 с.

16. Ванько В. И., Ермошина О. В., Кувыркин Г. Н. Вариационное исчисле­
ние и оптимальное управление. — М. : Изд-во МГТУ им. Н.Э. Баумана,
2018. — 488 с.

17. Васильев Ф. П. Численные методы решения экстремальных задач. — М. :
Наука, 1988. — 550 с.

18. Грачев Н. И., Евтушенко Ю. Г. Библиотека программ для решения задач
оптимального управления // Ж. вычисл. матем. и матем. физ. — 1979. —
Т. 19, № 2. — С. 367—387.

19. Гришин А. А., Карпенко А. П. Исследование эффективности метода пче­
линого роя в задаче глобальной оптимизации [Электронный ресурс] //
Наука и образование: научное издание МГТУ им. Н.Э. Баумана. —
2010. — № 8. — С. 1—28. — URL: http : / / engineering - science . ru /doc /
154050.html (дата обр. 12.04.2022).

20. Деменков Н. П., Микрин Е. А. Управление в технических системах. —
М. : Издательство МГТУ им. Н.Э. Баумана, 2017. — 452 с.

21. Дивеев А. И. Метод сетевого опреатора. — М. : ВЦ РАН, 2010. — 178 с.
22. Дивеев А. И. Приближенные методы решения задачи синтеза оптималь­

ного управления. — М. : ВЦ РАН, 2015. — 184 с.
23. Дивеев А. И. Численные методы решения задачи синтеза управления. —

М. : РУДН, 2019. — 192 с.
24. Дивеев А. И., Пупков К. А., Софронова Е. А. Синтез системы управле­

ния — задача тысячелетия // Вестник Российского университета дружбы
народов. Серия: Инженерные исследования. — 2011. — № 2. — С. 113—125.

25. Евтушенко Ю. Г. Численные методы решения задач нелинейного про­
граммирования // Ж. вычисл. матем. и матем. физ. — 1976. — Т. 16,
№ 2. — С. 307—324.

26. Евтушенко Ю. Г. Методы решения экстремальных задач и их примене­
ние в системах оптимизации. — М. : Наука, 1982. — 432 с.

27. Евтушенко Ю. Г. Оптимизация и быстрое автоматическое дифференци­
рование. — М. : ВЦ РАН, 2013. — 144 с.

28. Заболотнов Ю. М., Лобанков А. А. К задаче об оптимальной стабили­
зации углового движения малого космического аппарата при развёртыва­
нии орбитальной тросовой системы // Вестник Самарского университета.

http://engineering-science.ru/doc/154050.html
http://engineering-science.ru/doc/154050.html


164

Аэрокосмическая техника, технологии и машиностроение. — 2016. — Т. 15,
№ 1. — С. 46—54.

29. Зубов В. И. Устойчивость движения. — М. : Высшая школа, 1984. — 229 с.
30. Калман Р., Фалб П., Арбиб М. Очерки по математической теории си­

стем. — М. : УРСС, 2010. — 400 с.
31. Карманов В. Г. Математическое программирование. — М. : ФИЗМАТ­

ЛИТ, 2008. — 264 с.
32. Карпенко А. П. Популяционные алгоритмы глобальной поисковой опти­

мизации. Обзор новых и малоизвестных алгоритмов // Информационные
технологии, Приложение. — 2012. — № 7. — С. 1—32.

33. Карпенко А. П. Современные алгоритмы поисковой оптимизации. Алго­
ритмы, вдохновленные природой. — М. : Издательство МГТУ им. Н.Э.
Баумана, 2014. — 448 с.

34. Карпенко А. П., Селиверстов Е. Ю. Глобальная оптимизация методом
роя частиц. Обзор // Информационные технологии. — 2010. — № 2. —
С. 25—34.

35. Ким Д. П. Теория автоматического управления. Т.2. Многомерные, нели­
нейные, оптимальные и адаптивные системы. — М. : ФИЗМАТЛИТ,
2004. — 464 с.

36. Колесников А. А. Аналитический синтез нелинейных систем, оптималь­
ных относительно линейных агрегированных переменных // Известия
вузов. Электромеханика. — 1985. — № 11. — С. 9—18.

37. Колесников А. А. Аналитическое конструирование нелинейных агреги­
рованных регуляторов по заданной совокупности инвариантных многооб­
разий. I. Скалярное уравнение // Известия вузов. Электромеханика. —
1987. — № 3. — С. 100—108.

38. Колесников А. А. Аналитическое конструирование нелинейных агреги­
рованных регуляторов по заданной совокупности инвариантных многооб­
разий. II. Векторное уравнение // Известия вузов. Электромеханика. —
1987. — № 5. — С. 5—17.

39. Колесников А. А. Последовательная оптимизация нелинейных агрегиро­
ванных систем. — М. : Энергоатомиздат, 1987. — 160 с.

40. Колесников А. А., Веселов Г. Е., Кузьменко А. А. Новые технологии про­
ектирования современных систем управления процессами генерирования
электроэнергии. — М. : МЭИ, 2016. — 280 с.



165

41. Колесников А. А., Колесников А. А., Кузьменко А. А. Методы АКАР и
АКОР в задачах синтеза нелинейных систем управления // Мехатроника,
автоматизация, управление. — 2016. — Т. 17, № 10. — С. 657—669.

42. Красовский А. А. Системы автоматического управления полетом и их
аналитическое конструирование. — М. : Наука, 1973. — 560 с.

43. Красовский А. А., Поспелов Г. С. Основы автоматики и технической ки­
бернетики. — М.–Л. : Госэнергоиздат, 1962. — 600 с.

44. Кунцевич В. М., Лычак М. М. Синтез систем автоматического управле­
ния с помощью функций Ляпунова. — М. : Наука, 1977. — 400 с.

45. Лапшин В. П., Туркин И. А., Христофорова В. В. Пример оценки бли­
зости управлений, синтезированных на основе принципа максимума и
метода АКАР // Вестник Донского государственного технического уни­
верситета. — 2018. — Т. 18, № 4. — С. 439—449.

46. Летов А. М. Математическая теория процессов управления. — М. : Нау­
ка, 1981. — 256 с.

47. Ли Э. Б., Маркус Л. Основы теории оптимального управления. — М. :
Наука, 1972. — 578 с.

48. Ловчаков В. И., Ловчаков Е. В., Кретов Е. И. Синтез быстродей­
ствующих систем управления с использованием теории аналитического
конструирования оптимальных регуляторов // Мехатроника, автомати­
зация, управление. — 2016. — Т. 17, № 2. — С. 84—93.

49. Ловчаков В. И., Сухинин Б. В., Сурков В. В. Оптимальное управление
электротехническими объектами. — Тула : ТулГУ, 2004. — 149 с.

50. Лурье А. И. Некоторые нелинейные задачи теории автоматического ре­
гулирования. — М.-Л. : ГИТТЛ, 1951. — 216 с.

51. Математическая теория оптимальных процессов. 4-е изд. / Л. С. Понтря­
гин [и др.]. — М. : Наука, 1983. — 392 с.

52. Моисеев H. H. Численные методы в теории оптимальных систем. — М. :
Наука, 1971. — 424 с.

53. Моисеев H. H. Оптимизация и управление (эволюция идей и перспекти­
вы) // Техническая кибернетика. — 1974. — № 4. — С. 3—16.

54. Моисеев Н. Н. Методы динамического программирования в теории опти­
мальных управлений. I // Ж. вычисл. матем. и матем. физ. — 1964. —
Т. 4, № 3. — С. 485—494.



166

55. Моисеев Н. Н. Асимптотические методы нелинейной механики. — М. :
Наука, 1981. — 380 с.

56. Пантелеев А. В., Летова Т. А. Методы оптимизации в примерах и зада­
чах. — М. : Высшая школа, 2005. — 544 с.

57. Пантелеев А. В., Родионова Д. А. Применение итерационного динамиче­
ского программирования в задачах синтеза оптимального управления с
полной обратной связью // Научный вестник Московского государствен­
ного технического университета гражданской авиации. — 2016. — Т. 226,
№ 2. — С. 5—13.

58. Пестерев А. В. Синтез линеаризующего управления в задаче стаби­
лизации движения автомобилеподобного робота вдоль криволинейного
пути // Известия РАН. Теория и системы управления. — 2013. — № 5. —
С. 153—165.

59. Поллак Э. Численные методы оптимизации. Единый подход. — М. : Мир,
1974. — 374 с.

60. Пшихопов В. Ч., Медведев М. Ю. Синтез систем управления подвод­
ными аппаратами с нелинейными характеристиками исполнительных
органов // Известия ЮФУ. Технические науки. — 2011. — Т. 3, № 116. —
С. 147—156.

61. Рагимов А. Б. Об одном подходе к решению задач оптимального управле­
ния на классах кусочно-постоянных, кусочно-линейных и кусочно-задан­
ных функций // Вестн. Том. гос. ун-та. Управление, вычислительная
техника и информатика. — 2012. — № 2. — С. 20—30.

62. Растригин Л. А. В мире случайных событий. — Рига : ИЭВТ, 1963. —
79 с.

63. Растригин Л. А. Статистические методы поиска. — М. : Наука, 1968. —
376 с.

64. Растригин Л. А. Теория и применение случайного поиска. — Рига : Зи­
натне, 1969. — 307 с.

65. Решмин С. А., Черноусько Ф. Л. Оптимальный по быстродействию
синтез управления нелинейным маятником // Известия РАН. Теория и
системы управления. — 2007. — № 1. — С. 13—22.

66. Ройтенберг Я. Н. Автоматическое управление. — М. : Наука, 1971. —
396 с.



167

67. Саттон Р. С., Барто Э. Г. Обучение с подкреплением. — М. : ДМК­
Пресс, 2020. — 552 с.

68. Синергетика и проблемы теории управления. / под ред. А.А. Колеснико­
ва. — М. : Физматлит, 2004. — 504 с.

69. Синтез оптимального управления на основе объединенного принципа
максимума / А. А. Костоглотов [и др.] // Известия высших учебных заве­
дений. Северо-Кавказский регион. Технические науки. — 2010. — № 2. —
С. 31—37.

70. Синтез системы управления беспилотного летательного аппарата по
высоте методом бэкстеппинга / С. А. Ахрамович [и др.] // Вестник
Самарского университета. Аэрокосмическая техника, технологии и ма­
шиностроение. — 2018. — Т. 17, № 2. — С. 7—22.

71. Скобцов Ю. А. От генетических алгоритмов к метаэвристикам // Инфор­
матика и кибернетика. — 2021. — Т. 23/24, № 1/2. — С. 101—107.

72. Соболь Б. В., Месхи Б. Ч., Каныгин Г. И. Методы оптимизации. Прак­
тикум. — Ростов н/Д : Феникс, 2009. — 380 с.

73. Современная прикладная теория управления. Ч. I: Оптимизационный
подход в теории управления / под ред. А.А. Колесникова. — Таганрог :
Изд-во ТРТУ, 2000. — 400 с.

74. Справочник по теории автоматического управления. / под ред. А.А. Кра­
совского. — М. : Наука, 1987. — 712 с.

75. Сю Д., Мейер А. Современная теория автоматического управления и ее
применение. — М. : Машиностроение, 1972. — 544 с.

76. Федоренко Р. П. Приближенное решение задач оптимального управле­
ния. — М. : Наука, 1978. — 488 с.

77. Фуртат И. Б. Модифицированный алгоритм обратного обхода интегра­
тора // Мехатроника, автоматизация, управление. — 2009. — № 10. —
С. 2—7.

78. Фуртат И. Б., Нехороших А. Н. Метод бэкстеппинга для структурно
неопределенных объектов // Научно-технический вестник информацион­
ных технологий, механики и оптики. — 2016. — Т. 16, № 1. — С. 61—67.

79. Фуртат И. Б., Тупичин Е. А. Упрощенный алгоритм бэкстеппинга для
управления нелинейными системами // Известия высших учебных заве­
дений. Приборостроение. — 2015. — Т. 58, № 3. — С. 173—178.



168

80. Халил Х. К. Нелинейные системы. — М.-Ижевск : Регулярная и хаотиче­
ская динамика, 2009. — 832 с.

81. Чебыкин Д. В. Backstepping – метод синтеза управления для нелинейных
объектов // Труды международной конференции студентов, аспирантов
и молодых ученых “Информационные технологии, телекоммуникации и
системы управления”. — Екатеринбург : УрФУ, 2015. — С. 248—254.

82. Чураков Е. П. Оптимальные а адаптивные системы. — М. : Энергоатом­
издат, 1987. — 256 с.

83. Яковенко П. Г. Методика последовательного многошагового синтеза
оптимальных управлений // Известия Томского политехнического уни­
верситета. Инжиниринг георесурсов. — 2003. — Т. 306, № 2. — С. 95—98.

84. A hybrid approach to modeling metabolic systems using genetic algorithm and
simplex method / J. Yen [et al.] // Proceedings of the 11th IEEE Conference
on Artificial Intelligence for Applications. — IEEE, 1995. — P. 277—283.

85. Atkeson C. G., Moore A. W., Schaal S. Locally Weighted Learning for Con­
trol // Artificial Intelligence Review. — 1997. — Vol. 11. — P. 75—113.

86. Automatic Synthesis of both the Topology and Parameters for a Robust Con­
troller for a Non-Minimal Phase Plant and a Three-Lag Plant by Means
of Genetic Programming / J. R. Koza [et al.] // Proceedings of the 38th
IEEE Conference on Decision and Control. Vol. 5. — IEEE, 1999. —
P. 5292—5300.

87. Bard Y. Comparison of gradient methods for the solution of nonlinear pa­
rameter estimation problems // SIAM Journal on Numerical Analysis. —
1970. — Vol. 7, no. 1. — P. 157—186.

88. Bartz-Beielstein T., Preuss M. Experimental Analysis of Optimization Algo­
rithms: Tuning and Beyond // Theory and Principled Methods for the Design
of Metaheuristics / ed. by Y. Borenstein, A. Moraglio. — Berlin, Heidelberg :
Springer Berlin Heidelberg, 2014. — P. 205—245.

89. Beiranvand V., Hare W., Lucet Y. Best practices for comparing optimization
algorithms // Optimization and Engineering. — 2017. — Vol. 18, no. 4. —
P. 815—848.



169

90. Constructing parsimonious analytic models for dynamic systems via symbolic
regression / E. Derner [et al.] // Applied Soft Computing. — 2020. —
Vol. 94. — P. 106432.

91. Continuous control with deep reinforcement learning [Электронный ресурс] /
T. P. Lillicrap [et al.] // 4th International Conference on Learning Repre­
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings / ed. by Y. Bengio, Y. LeCun. — 2016. — URL: https:
//arxiv.org/abs/1509.02971 (visited on 04/12/2022).

92. Crispin Y. J. Evolutionary Computation for Discrete and Continuous Time
Optimal Control Problems // Proceedings of the Second International Con­
ference on Informatics in Control, Automation and Robotics. Vol. 4. —
INSTICC. SciTePress, 2005. — P. 45—54.

93. De Luca A., Oriolo G., Samson C. Feedback control of a nonholonomic car­
like robot // Robot Motion Planning and Control / ed. by J.-P. Laumond. —
Berlin, Heidelberg : Springer, 1998. — P. 171—253.

94. Diveev A. I. Small Variations of Basic Solution Method for Non-numerical
Optimization // IFAC-PapersOnLine – 16th IFAC Workshop on Control Ap­
plications of Optimization CAO’2015. — 2015. — Vol. 48, no. 25. —
P. 28—33.

95. Diveev A. I., Kazaryan D. E., Sofronova E. A. Symbolic regression methods
for control system synthesis // 22nd Mediterranean Conference on Control
and Automation. — 2014. — P. 587—592.

96. Diveev A. I., Sofronova E. A. Application of network operator method for
synthesis of optimal structure and parameters of automatic control system //
IFAC Proceedings Volumes – 17th IFAC World Congress. — 2008. — Vol. 41,
no. 2. — P. 6106—6113.

97. Dorigo M., Gambardella L. M. Ant colony system: A cooperative learning
approach to the traveling salesman problem // IEEE Transactions on Evolu­
tionary Computation. — 1997. — Vol. 1, no. 1. — P. 53—66.

98. Duriez T., Brunton S., Noack B. R. Machine Learning Control – Taming
Nonlinear Dynamics and Turbulence. — Switzerland : Springer International
Publishing, 2017. — 229 p.

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971


170

99. Eberhart R., Shi Y., Kennedy J. Swarm Intelligence. — San Francisco :
Morgan Kaufmann, 2001. — 512 p.

100. Ernst D., Geurts P., Wehenkel L. Tree-based Batch Mode Reinforcement
Learning // Journal of Machine Learning Research. — 2005. — Vol. 6. —
P. 503—556.

101. Feoktistov V. Differential Evolution. In Search of Solutions. — Boston, MA :
Springer, 2006. — 208 p.

102. Genetic Programming IV. Routine Human-Competitive Machine Intelli­
gence / J. R. Koza [et al.]. — Boston, MA : Springer, 2003. — 590 p.

103. Goldberg D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. — Boston, MA : Addison-Wesley, 1989. — 432 p.

104. Goodfellow I., Bengio Y., Courville A. Deep Learning. — Cambringe, MA :
The MIT Press, 2016. — 800 p.

105. Grosan C., Abraham A., Nicoara M. Search optimization using hybrid particle
sub-swarms and evolutionary algorithms // International Journal of Simu­
lation Systems, Science and Technology. — 2005. — Vol. 6, no. 10. —
P. 60—79.

106. Holland J. N. Adaptation in Natural and Artificial Systems. — Cambridge,
MA : A Bradford Book, 1992. — 232 p.

107. Ibadulla S. I., Shmalko E. Y., Daurenbekov K. K. The Comparison of Genetic
Programming and Variational Genetic Programming for a Control Synthesis
Problem on the Model “Predator-victim” // Procedia Computer Science. —
2017. — Vol. 103. — P. 155—161.

108. Jamil M., Yang X.-S. A literature survey of benchmark functions for global
optimization problems // International Journal of Mathematical Modelling
and Numerical Optimisation. — 2013. — Vol. 4, no. 2. — P. 150—194.

109. Kaelbling L. P., Littman M. L., Moore A. W. Reinforcement Learning: A
Survey // Journal of Artificial Intelligence Research. — 1996. — Vol. 4. —
P. 237—285.

110. Kalman R. E. Contributions to the theory of optimal control // Boletin de
la Sociedad Matematica Mexicana. — 1960. — Vol. 5. — P. 102—119.



171

111. Kanellakopoulos I., Kokotović P. V., Morse A. S. Systematic design of adap­
tive controllers for feedback linearizable systems // IEEE Transactions on
Automatic Control. — 1991. — Vol. 36, no. 11. — P. 1241—1253.

112. Kennedy J., Eberhart R. Particle swarm optimization // Proceedings of
ICNN’95 – International Conference on Neural Networks. Vol. 4. — IEEE,
1995. — P. 1942—1948.

113. Kingma D. P., Ba J. Adam: A Method for Stochastic Optimization
[Электронный ресурс] // 3rd International Conference on Learning Repre­
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings / ed. by Y. Bengio, Y. LeCun. — 2015. — URL: http:
//arxiv.org/abs/1412.6980 (visited on 04/12/2022).

114. Kokotović P. V. The joy of feedback: nonlinear and adaptive // IEEE Control
Systems Magazine. — 1992. — Vol. 12, no. 3. — P. 7—17.

115. Koza J., Keane M. A., Rice J. P. Performance improvement of machine learn­
ing via automatic discovery of facilitating functions as applied to a problem
of symbolic system identification // IEEE International Conference on Neural
Networks. Vol. 1. — IEEE, 1993. — P. 191—198.

116. Koza J. R. Hierarchical genetic algorithms operating on populations of com­
puter programs // Proc. 11th Int. Joint Conf. on Artificial Intelligence, Vol.
1. — San Mateo, CA : Morgan Kaufmann, 1989. — P. 768—774.

117. Koza J. R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. — Cambridge, MA : The MIT Press, 1992. —
840 p.

118. Koza J. R., Keane M. A., Streeter M. J. Evolving inventions // Scientific
American. — 2003. — Vol. 288, no. 2. — P. 52—59.

119. Krstić M., Kanellakopoulos M., Kokotović P. V. Adaptive nonlinear control
without overparametrization // Systems & Control Letters. — 1992. —
Vol. 19, no. 3. — P. 177—185.

120. Langdon W. B., Poli R. Foundations of Genetic Programming. — Berlin :
Springer, 2002. — 260 p.

121. Lopez Cruz I. L., Van Willigenburg L. G., Van Straten G. Efficient Differen­
tial Evolution algorithms for multimodal optimal control problems // Applied
Soft Computing. — 2003. — Vol. 3, no. 2. — P. 97—122.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


172

122. Luo C., Zhang S.-L. Parse-matrix evolution for symbolic regression // Engi­
neering Applications of Artificial Intelligence. — 2012. — Vol. 25, no. 6. —
P. 1182—1193.

123. Miller J. F. Cartesian Genetic Programming. — Berlin, Heidelberg :
Springer, 2011. — 346 p.

124. Miller J. F. An Empirical Study of the Efficiency of Learning Boolean Func­
tions Using a Cartesian Genetic Programming Approach // GECCO’99:
Proceedings of the 1st Annual Conference on Genetic and Evolutionary Com­
putation. Vol. 2. — San Francisco, CA : Morgan Kaufmann, 1999. —
P. 1135—1142.

125. Miller J. F., Thomson P. Cartesian Genetic Programming // Genetic Pro­
gramming – EuroGP 2000, LNCS. Vol. 1802 / ed. by R. Poli [et al.]. —
Berlin, Heidelberg : Springer, 2000. — P. 121—132.

126. Mirjalili S., Mirjalili S. M., Lewis A. Grey Wolf Optimizer // Advances in
Engineering Software. — 2014. — Vol. 69. — P. 46—61.

127. More J. J., Wild S. Benchmarking derivative-free optimization algorithms //
SIAM Journal on Optimization. — 2009. — Vol. 20, no. 1. — P. 172—191.

128. Munos R., Moore A. Variable Resolution Discretization in Optimal Control //
Machine Learning. — 2002. — Vol. 49, no. 2. — P. 291—323.

129. Nikolaev N. I., Iba H. Inductive genetic programming of polynomial learning
networks // Proceedings of the First IEEE Symposium on Combinations of
Evolutionary Computation and Neural Networks. — 2000. — P. 158—167.

130. O’Neill M., Ryan C. Grammatical evolution // IEEE Transactions on Evo­
lutionary Computation. — 2001. — Vol. 5, no. 4. — P. 349—358.

131. O’Neill M., Ryan C. Grammatical Evolution. Evolutionary Automatic Pro­
gramming in an Arbitrary Language. — Springer, 2002. — 160 p.

132. Oyama K., Nonaka K. Model predictive parking control for nonholonomic
vehicles using time-state control form // 2013 European Control Conference
(ECC). — 2013. — P. 458—465.

133. Quinlan J. R. Induction of decision trees // Machine Learning. — 1986. —
Vol. 1. — P. 81—106.



173

134. Raidl G. R. A Unified View on Hybrid Metaheuristics // Hybrid Metaheuris­
tics / ed. by F. Almeida [et al.]. — Berlin, Heidelberg : Springer, 2006. —
P. 1—12.

135. Rardin R. L., Uzsoy R. Experimental evaluation of heuristic optimization
algorithms: A tutorial // Journal of Heuristics. — 2001. — Vol. 7, no. 3. —
P. 261—304.

136. Ryan C., Collins J., O’Neill M. Grammatical evolution: Evolving programs
for an arbitrary language // Genetic Programming – EuroGP 1998. Lecture
Notes in Computer Science. Vol. 1391 / ed. by W. Banzhaf [et al.]. — Berlin,
Heidelberg : Springer, 1998. — P. 83—96.

137. Schoen F. A wide class of test functions for global optimization // Journal of
Global Optimization. — 1993. — Vol. 3, no. 2. — P. 133—137.

138. Sinha A., Chen Y.-P., Goldberg D. E. Designing Efficient Genetic and Evo­
lutionary Algorithm Hybrids // Recent Advances in Memetic Algorithms /
ed. by W. E. Hart, J. E. Smith, N. Krasnogor. — Berlin, Heidelberg : Springer
Berlin Heidelberg, 2005. — P. 259—288.

139. Storn R., Price K. Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces // Journal of Global Opti­
mization. — 1997. — No. 11. — P. 341—359.

140. Symbolic regression methods for reinforcement learning [Электронный ре­
сурс] / J. Kubalík [et al.] // arXiv:1903.09688 [cs.LG]. — 2019. —
P. 1—12. — URL: https : / / arxiv . org / abs / 1903 . 09688 (visited on
04/12/2022).

141. Tabak D. Comparative study of various minimization techniques used in
mathematical programming // IEEE Transactions on Automatic Control. —
1969. — Vol. 14, no. 5. — P. 572—572.

142. The Bees Algorithm — A Novel Tool for Complex Optimisation Problems /
D. T. Pham [et al.] // Intelligent Production Machines and Systems - 2nd
I*PROMS Virtual International Conference 3-14 July 2006 / ed. by D. Pham,
E. Eldukhri, A. Soroka. — Oxford : Elsevier Science Ltd, 2006. —
P. 454—459.

https://arxiv.org/abs/1903.09688


174

143. Variational Analytic Programming for Synthesis of Optimal Control for Flying
Robot / A. I. Diveev [et al.] // IFAC-PapersOnLine – 11th IFAC Symposium
on Robot Control SYROCO 2015. — 2015. — Vol. 48, no. 19. — P. 75—80.

144. Variational Genetic Programming for Optimal Control System Synthesis of
Mobile Robots / A. I. Diveev [et al.] // IFAC-PapersOnLine – 11th IFAC
Symposium on Robot Control SYROCO 2015. — 2015. — Vol. 48, no. 19. —
P. 106—111.

145. Walker J. A., Miller J. F. Evolution and Acquisition of Modules in Carte­
sian Genetic Programming // Genetic Programming – Proceedings of 7th
European Conference, EuroGP 2004, Coimbra, Portugal, April 5-7, 2004.
Vol. 3003 / ed. by M. Keijzer [et al.]. — Berlin, Heidelberg : Springer-Verlag,
2004. — P. 187—197.

146. Wang X. Hybrid nature-inspired computation methods for optimization
[Электронный ресурс] // TKK dissertations, 161. — 2009. — URL: http:
//lib.tkk.fi/Diss/2009/isbn9789512298594/isbn9789512298594.pdf (visited
on 04/12/2022).

147. Yang X.-S. A New Metaheuristic Bat-Inspired Algorithm // Studies in
Computational Intelligence – Proceedings of Nature Inspired Cooperative
Strategies for Optimization (NISCO 2010). Vol. 284 / ed. by C. Cruz
[et al.]. — Berlin, Heidelberg : Springer-Verlag, 2010. — P. 65—74.

148. Yang X.-S. Engineering Optimization: An Introduction with Metaheuristic
Applications. — John Wiley & Sons, 2010. — 376 p.

149. Yang X.-S. Firefly Algorithm. Stochastic Test Functions and Design opti­
mization // International Journal of Bio-Inspired Computation. — 2010. —
Vol. 2, no. 2. — P. 78—84.

150. Yang X.-S. Swarm intelligence based algorithms: a critical analysis // Evolu­
tionary Intelligence. — 2014. — Vol. 7, no. 1. — P. 17—28.

151. Yang X.-S. Nature-Inspired Optimization Algorithms, 2nd Edition. — Aca­
demic Press, 2020. — 310 p.

152. Yang X.-S., Deb S. Cuckoo Search via Lévy flights // 2009 World Congress
on Nature Biologically Inspired Computing (NaBIC). — IEEE, 2009. —
P. 210—214.

http://lib.tkk.fi/Diss/2009/isbn9789512298594/isbn9789512298594.pdf
http://lib.tkk.fi/Diss/2009/isbn9789512298594/isbn9789512298594.pdf


175

153. Yegorov I., Bratus A. S., Todorov Y. Synthesis of optimal control in a
mathematical model of economic growth under R&D investments // Applied
Mathematical Sciences. — 2015. — Vol. 9, no. 91. — P. 4523—4564.

154. Zelinka I., Oplatkova Z., Nolle L. Analytic Programming – Symbolic Re­
gression by Means of Arbitrary Evolutionary Algorithms // Special Issue on
Inteligent Systems of International Journal of Simulation, Systems, Science
and Technology. — 2005. — Vol. 6, no. 9. — P. 44—55.

155. Zhang S., Qian W. Dynamic backstepping control for pure-feedback nonlin­
ear systems [Электронный ресурс] // arXiv:1706.08641 [cs.SY]. — 2017. —
P. 1—20. — URL: https : / / arxiv . org / abs / 1706 . 08641 (visited on
04/12/2022).

Публикации автора по теме диссертации

156. Дивеев А. И., Константинов С. В. Сравнительный экспериментальный
анализ эволюционных алгоритмов оптимизации // Труды 11-го меж­
дународного симпозиума «Интеллектуальные системы» (INTELS’2014,
Москва, 30 июня – 4 июля 2014 г.) — М. : РУДН, 2014. — С. 139—144.

157. Дивеев А. И., Константинов С. В. Исследование эволюционных ал­
горитмов для решения задачи оптимального управления // Труды
МФТИ. — 2017. — Т. 9, № 3. — С. 76—85.

158. Дивеев А. И., Константинов С. В. Эволюционные алгоритмы для
решения задачи оптимального управления // Вестник РУДН. Серия: Ин­
женерные исследования. — 2017. — Т. 18, № 2. — С. 254—265.

159. Дивеев А. И., Константинов С. В. Задача оптимального управления и
ее решение эволюционным алгоритмом «серого волка» // Вестник РУДН.
Серия: Инженерные исследования. — 2018. — Т. 19, № 1. — С. 67—79.

160. Дивеев А. И., Константинов С. В. Исследование практической сходимо­
сти эволюционных алгоритмов оптимального программного управления
колесным роботом // Известия РАН. Теория и системы управления. —
2018. — № 4. — С. 75—98.

https://arxiv.org/abs/1706.08641


176

161. Дивеев А. И., Константинов С. В. Экспериментальное сравнение ал­
горитмов случайного поиска и эволюционных вычислений в задаче
оптимального управления группой роботов // Фундаментально-приклад­
ные проблемы безопасности, живучести, надёжности, устойчивости и
эффективности систем. Материалы III международной научно-практиче­
ской конференции, посвященной 110-летию со дня рождения академика
Н.А. Пилюгина, Елец. 3-5 июня 2019 г. — Елец, 2019. — С. 249—253.

162. Константинов С. В., Мишинева М. А. Обзор современных популяцион­
ных методов глобальной оптимизации // Труды VIII международной на­
учно-практической конференции “Инженерные системы — 2015” (Москва,
20-22 апреля 2015г.) — М. : РУДН, 2015. — С. 197—203.

163. Поиск структуры и параметров закона взаимодействия веществ в химиче­
ской реакции методом сетевого оператора / И. М. Губайдуллин [и др.] //
Наукоемкие технологии. — М., 2016. — Т. 17, № 6. — С. 76—82.

164. Разработка кинетических моделей сложных химических реакций методом
сетевого оператора [Электронный ресурс] / И. М. Губайдуллин [и др.] //
Современные проблемы науки и образования. — 2014. — № 6. — С. 1—11. —
URL: https://science-education.ru/ru/article/view?id=16113 (дата обр.
12.04.2022).

165. Comparative Research of Random Search Algorithms and Evolutionary
Algorithms for the Optimal Control Problem of the Mobile Robot / S. V. Kon­
stantinov [et al.] // Procedia Computer Science. — 2019. — Vol. 150. —
P. 462—470.

166. Diveev A. I., Balandina G. I., Konstantinov S. V. Binary variational ge­
netic programming for the problem of synthesis of control system // 2017
13th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD). — 2017. — P. 186—191.

167. Diveev A. I., Konstantinov S. V. Study of the Practical Convergence of Evolu­
tionary Algorithms for the Optimal Program Control of a Wheeled Robot //
Journal of Computer and Systems Sciences International. — 2018. — Vol. 57,
no. 4. — P. 561—580.

168. Diveev A. I., Konstantinov S. V., Danilova A. M. Solution of the optimal
control problem by symbolic regression method // Procedia Computer Sci­
ence. — 2021. — Vol. 186. — P. 646—653.

https://science-education.ru/ru/article/view?id=16113


177

169. Diveev A. I., Konstantinov S. V., Sofronova E. A. A comparison of evolution­
ary algorithms and gradient-based methods for the optimal control problem //
2018 5th International Conference on Control, Decision and Information Tech­
nologies (CoDIT). — 2018. — P. 259—264.

170. Diveev A., Konstantinov S. Applying Neural Networks for the Identification
of Control Object Mathematical Models for the Control Problems // 2022 8th
International Conference on Control, Decision and Information Technologies
(CoDIT). — IEEE, 2022. — P. 1059—1063.

171. Diveev A., Sofronova E., Konstantinov S. Approaches to Numerical Solution
of Optimal Control Problem Using Evolutionary Computations // Applied
Sciences. — 2021. — Vol. 11, no. 15. — P. 7096.

172. Diveev A. I., Konstantinov S. V. Solution of the problem of the control sys­
tem general synthesis by approximation of a set of extremals // Advances in
Optimization and Applications. OPTIMA 2020. Communications in Com­
puter and Information Science. Vol. 1340 / ed. by N. Olenev [et al.]. —
Springer, 2021. — P. 113—128.

173. Konstantinov S. V., Baryshnikov A. A. Comparative analysis of evolutionary
algorithms for the problem of parametric optimization of PID controllers //
Procedia Computer Science. — 2017. — Vol. 103. — P. 100—107.

174. Konstantinov S. V., Diveev A. I. Control system synthesis based on optimal
trajectories approximation by symbolic regression for group of robots // 2020
7th International Conference on Control, Decision and Information Technolo­
gies (CoDIT). — IEEE, 2020. — P. 19—24.

175. Konstantinov S. V., Diveev A. I. Solving the Problem of the Optimal Control
System General Synthesis Based on Approximation of a Set of Extremals
using the Symbol Regression Method // Herald of the Bauman Moscow State
Technical University. Series Instrument Engineering. — 2020. — Vol. 2,
no. 131. — P. 59—74.

176. Konstantinov S. V., Diveev A. I. A new two-step approach for solving a
control system synthesis problem by symbolic regression methods // Procedia
Computer Science. — 2021. — Vol. 186. — P. 636—645.



178

177. Konstantinov S. V., Khamidova U. K., Sofronova E. A. A Novel Hybrid
Method of Global Optimization Based on the Grey Wolf Optimizer and the
Bees Algorithm // Procedia Computer Science. — 2019. — Vol. 150. —
P. 471—477.

178. Konstantinov S. V., Diveev A. I. Evolutionary Algorithms for Optimal
Control Problem of Mobile Robots Group Interaction // Advances in Op­
timization and Applications. OPTIMA 2021. Communications in Computer
and Information Science. Vol. 1514 / ed. by N. N. Olenev [et al.]. — Springer,
2021. — P. 123—136.

179. Machine Learning Control Based on Approximation of Optimal Trajectories /
A. Diveev [et al.] // Mathematics. — 2021. — Vol. 9, no. 3. — P. 265.

180. Optimal control system synthesis based on the approximation of extremals by
symbolic regression / S. V. Konstantinov [et al.] // 2020 European Control
Conference (ECC). — IEEE, 2020. — P. 2021—2026.



179

Приложение А. Акты о внедрении

Акт об использовании результатов диссертационного исследования в на­
учно-исследовательской и опытно-конструкторской работе инжинирингового
центра «Интеллектуальные роботизированные системы и технологии» Белго­
родского государственного технологического университета им. В.Г. Шухова
(Белгород, Россия)
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Акт о внедрении результатов диссертационного исследования в деятель­
ность ООО «Экспериментальная мастерская НаукаСофт» (Москва, Россия)


	Введение
	Обзор методов решения задачи общего синтеза системы управления
	Постановка задачи общего синтеза системы управления
	Обзор методов решения задачи общего синтеза системы управления
	Синтез на основе метода динамического программирования
	Синтез на основе принципа максимума Понтрягина
	Метод аналитического конструирования оптимальных регуляторов
	Синтез на основе функций Ляпунова
	Метод бэкстеппинга
	Метод аналитического конструирования агрегированных регуляторов

	Постановка задачи численного синтеза системы управления на основе многокритериальной структурно-параметрической оптимизации
	Численные методы решения задачи синтеза системы управления на основе многокритериальной структурно-параметрической оптимизации
	Выводы по Главе 1

	Обзор методов символьной регрессии для синтеза математических выражений
	Методы символьной регрессии для синтеза математических выражений
	Обзор методов символьной регрессии
	Метод генетического программирования
	Метод декартового генетического программирования
	Метод грамматической эволюции
	Принцип малых вариаций базисного решения
	Метод сетевого оператора

	Выводы по Главе 2

	Синтез системы управления на основе аппроксимации множества оптимальных траекторий методами символьной регрессии
	Решение задачи численного синтеза системы управления на основе аппроксимации оптимальных траекторий
	Постановка задачи численного синтеза системы управления на основе аппроксимации множества оптимальных траекторий методами символьной регрессии
	Выводы по Главе 3

	Применение эволюционных алгоритмов для численного решения задачи оптимального управления
	Постановка задачи оптимального управления с фазовыми ограничениями
	Численные методы решения задачи оптимального управления
	Непрямые методы решения задачи оптимального управления
	Прямые методы решения задачи оптимального управления

	Методы безусловной оптимизации для решения задачи оптимального управления
	Градиентные методы
	Методы случайного поиска
	Эволюционные алгоритмы

	Сравнение эффективности эволюционных алгоритмов для решения задачи оптимального управления
	Гибридизация алгоритмов
	Гибридный алгоритм на основе алгоритма серых волков и пчелиного алгоритма
	Выводы по Главе 2

	Прикладная задача синтеза системы управления автомобилеподобным роботом
	Математическая модель автомобилеподобного робота
	Задача синтеза системы управления автомобилеподобным роботом в пространстве с фазовыми ограничениями
	Численное решение задачи синтеза системы управления автомобилеподобным роботом на основе аппроксимации оптимальных траекторий
	Поиск множества оптимальных траекторий
	Синтез системы управления автомобилеподобным роботом

	Результаты вычислительного эксперимента
	Выводы по Главе 5

	Заключение
	Список литературы
	Акты о внедрении

