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Общая характеристика работы

Актуальность темы. Основной целью генеративного моделирова­
ния является построение математических моделей, описывающих сложную
структуру многомерных данных, и дальнейшее использование этих мо­
делей для симуляции новых данных со схожими статистиками или для
изменения характеристик исходных данных [1]. За последние десять лет в
области генеративного моделирования широкое распространение получи­
ли численные методы на основе математической теории оптимального
транспорта [1; 2], одним из основоположников которой является советст­
кий математик и экономист Леонид Витальевич Канторович.

Оптимальный транспорт (ОТ) — это общее название обширного клас­
са задач нахождения эффективного способа перемещения массы между
вероятностными распределениями. В наши дни численные методы ОТ
преимущественно используются для вычисления функций потерь при обу­
чении генеративных моделей на основе глубоких нейросетей для синтеза
искусственных данных [1], например, изображений. Другое важное приме­
нение численных методов ОТ – доменная адаптация [3], то есть адаптация
модели (например, классификационной) для применения к данным с но­
вого источника. Эта задача крайне важна, например, в медицине, где
типичный размер выборок данных не превышает сотни объектов и необхо­
димо комбинировать знания, полученные с нескольких выборок из разных
источников. Для решения таких задач используются ОТ отображения, а
также центры масс (ОТ барицентры) для агрегации выборок [4].

Наиболее популярна задача ОТ с квадратичной функцией стои­
мости, определяющая известную Васерштейн-2 метрику. Градиентные
потоки функционалов на пространстве распределений, оснащенном этой
метрикой, позволяют моделировать решения ряда дифференциальных
уравнений, например, уравнения Фоккера-Планка, используемого для
описания процессов в физике, финансах, демографии. Моделирование гра­
диентных потоков можно осуществлять, используя методы ОТ [5].

Несмотря на значительные достижения в вычислительном ОТ за
последнее десятилетие, существующие вычислительные методы решения
задач ОТ по-прежнему обладают рядом критичных недостатков (опи­
сываемых далее), ограничивающих их эффективное применение в ряде
вышеупомянутых задач моделирования распределений данных.

Большинство методов [6] в области вычислительного ОТ пред­
назначены для данных, описываемых дискретными вероятностными
распределениями. Такие методы способны аппроксимировать решения за­
дачи ОТ для распределений с дискретным носителем из 105 − 106 точек.
При больших количествах точек проблема неразрешима из-за большой
вычислительной сложности. Таким образом, дискретные методы не мо­
гут обеспечить точную аппроксимацию решения задачи ОТ для данных
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высокой размерности, имеющих непрерывные распределения, поскольку
требуются большие размеры выборок.

В то же время машинное обучение все чаще применяется для решения
задач ОТ [2; 7]. Построение математических моделей на основе глубоких
нейронных сетей для параметризации транспортных отображений позволя­
ет масштабировать применения ОТ на высокороразмерные пространства
и практические задачи, в которых дискретные методы работают неудовле­
творительно [8]. В частности, численные методы ОТ на основе глубоких
нейронных сетей позволяют получать решения задач ОТ для непрерыв­
ных распределений. Такие методы обычно называются непрерывными или
параметрическими, а процесс вычисления ОТ – обучением модели.

Численные непрерывные методы ОТ условно делятся на две группы:
методы на основе энтропийной регуляризации [2] и минимаксные мето­
ды [7]. Энтропийные методы из-за регуляризации находят решение задачи
ОТ, которое смещено относительно истинного решения, что ведет к боль­
шой ошибке решения задачи ОТ и усложняет использование методов на
практике. Минимаксные непрерывные методы не имеют этой проблемы, но
требуют решения задачи поиска седловой точки некоторого функционала.
На практике такая оптимизация может быть неустойчива, что усложняет
процесс обучения с использованием этих методов.

Важно отметить, что хотя в области вычислительного ОТ активно
ведется разработка новых непрерывных методов, вопрос оценки качества
их функционирования все еще остается открытым. Связано это с тем, что
существует лишь ограниченное число непрерывных задач ОТ, в которых
аналитически известно истинное решение задачи, с которым можно срав­
нить решение вычисленное непрерывным методом.

Таким образом, существует необходимость разработки новых чис­
ленных методов, которые позволили бы находить решения непрерывных
задач ОТ в больших размерностях без смещения и без решения мини­
максной задачи оптимизации. Для оценки точности таких методов
требуется разработка количественной методики тестирования непре­
рывных методов вычисления ОТ.

Основными математическими задачами является аналитический
вывод двойственных формулировок задач ОТ, позволяющих осуществ­
лять вычисление транспортных отображений с помощью нейросетей без
необходимости использовать энтропийную регуляризацию или решать
минимаксную задачу. Важной подзадачей является получение теоре­
тических результатов, связывающих точность нахождения оптимума
двойственного функционала (в смысле его значения) с ошибкой восстанов­
ленного решения прямой задачи ОТ. Построение надежных и теоретически
обоснованных нейросетевых методов вычисления ОТ позволит усовершен­
ствовать применения ОТ к ранее упомянутым практическим задачам.
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Целью диссертационной работы является разработка математиче­
ских моделей на основе нейросетей для решения задач непрерывного ОТ с
квадратичной функцией стоимости (называемой Васерштейн-2 метрикой):
вычисление ОТ отображения и расстояния между непрерывными вероят­
ностными распределениями, нахождение барицентров семейств вероятност­
ных распределений и вычисление градиентных потоков функционалов на
пространстве вероятностных распределений. Для достижения цели в рабо­
те были поставлены и решены следующие задачи:

1. Разработать численный метод на основе двойственной формули­
ровки ОТ для поиска Васерштейн-2 оптимальных отображений
между непрерывными распределеними с помощью нейросетей;
получить теоретические оценки того, как связаны ошибки аппрок­
симации решений предложенной двойственной и исходной задач.

2. Разработать численный метод на основе двойственной формули­
ровки ОТ для поиска Васерштейн-2 барицентров семейства непре­
рывных распределений с помощью нейронных сетей; получить
теоретические оценки того, как связаны ошибки аппроксимации
решений предложенной двойственной и исходной задач.

3. Разработать численный метод на основе дискретизации времени и
нейронных сетей для моделирования Васерштейн-2 градиентных
потоков функционалов на пространстве распределений.

4. Разработать методологию для количественного сравнения непре­
рывных методов ОТ; предложить и математически обосновать
метод создания эталонных пар непрерывных распределений с ана­
литически известным Васерштейн-2 ОТ отображением.

Научная новизна:
1. Впервые предложен масштабируемый метод вычисления Васер­

штейн-2 оптимальных отображений между непрерывными рас­
пределениями в пространствах большой размерности, который
состоит из одного этапа обучения и не требует минимаксной опти­
мизации. В основе метода лежит новый подход на основе введения
нового циклического регуляризатора в двойственную постанов­
ку задачи ОТ и использования нейросетей с выпуклой по входу
архитектурой. В отличие от существующих регуляризаторов цик­
лический регуляризатор не вносит смещение в решение задачи.

2. Впервые предложен масштабируемый метод вычисления Васер­
штейн-2 барицентров непрерывных вероятностных распределений,
который состоит из одного этапа обучения и не требует ми­
нимаксной оптимизации. В основе подхода лежит комбинация
циклического регуляризатора (см. выше), нового регуляризатора
на конгруэнтность решений двойственной задачи и выпуклых по
входу нейронных сетей. В отличие от существующих регуляриза­
торов, предложенная комбинация не вносит смещение в решение.
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3. Впервые предложен масштабируемый численный метод для мо­
делирования Васерштейн-2 градиентных потоков на пространстве
высокоразмерных вероятностных распределений. Метод является
практической реализацией теоретической схемы JKO [5], для кото­
рой ранее не были известны эффективные численные методы для
её реализации в пространствах высокой размерности.

4. Предложена оригинальная методология синтеза пар многомер­
ных непрерывных вероятностных распределений, для которых
аналалитически известно эталонное Васерштейн-2 транспортное
отображение между ними. Разработанная методология и предло­
женные пары распределений позволяют сравнивать непрерывные
численные методы ОТ в больших размерностях и устраняют
недостатки существующих методик, связанные с узостью классов
используемых тестовых распределений и не позволяющие объек­
тивно оценивать качество численных методов ОТ.

Теоретическая значимость работы заключается в том, что пред­
ложенные новые подходы на основе нейронных сетей и численных методов
ОТ позволяют эффективно решать ряд задач математического моедли­
рования, избавляясь от недостатков существующих подходов таких как
использование численно нестабильной минимаксной оптимизации или на­
личие систематических ошибок в решении. Принципиальной особенностью
предложенных подходов является то, что разработанные в работе реше­
ния для не требуют минимаксной оптимизации и не смещают оптимальное
решение задачи, что приводит к более вычислительно эффективному и
точному нахождению решения по сравнению с существующими численны­
ми методами ОТ на основе нейронных сетей. В частности, эти улучшения
значительно упрощают теоретический анализ полученных решений, и, как
следствие, позволяют выводить оценки ошибки оптимизации по ограничен­
ному классу функций, например, представленному нейросетями.

Практическая значимость. Предложенные подходы математиче­
ского моделирования на основе нейронных сетей и численных методов
ОТ имеют потенциал для решения практически важных научно-иссле­
довательских и промышленных задач. Например, разработанный метод,
протестированный в задачах доменной адаптации и переноса стиля на
искусственных и модельных данных, имеет ряд потенциальных прило­
жений в задачах компьютерного зрения, таких как обучение моделей
для улучшения разрешения изображений, устранения шума и пр. Другим
возможным применением разработанных подходов является агрегация дан­
ных из нескольких источников, например, медицинских сканеров разных
производителей, что позволит улучшить качество моделей классификации
и сегментации медицинских изображений, построенных на них.

Методология и методы исследования. Для достижения постав­
ленных в диссертационной работе целей используются:
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1. Подходы теории оптимального транспорта для аналитического вы­
вода двойственных формулировок задач ОТ и соотношений между
прямыми/двойственными переменными, а также для построения
методов регуляризации двойственных задач, позволяющих эффек­
тивно находить их решение.

2. Численные методы стохастической оптимизации для построения
практически эффективных алгоритмов нахождения решений рас­
сматриваемых задач ОТ с помощью нейронных сетей.

3. Подходы глубинного обучения для построения нейронных сетей с
выпуклой по входу архитектурой для аппроксимации минимизато­
ров разработанных целевых функций.

4. Методы выпуклого анализа, линейной алгебры, математического
и функционального анализа, теории вероятностей и теории меры
для теоретического обоснования предложенных целевых функций
оптимизации, анализа соотношений решений прямых и предложен­
ных регуляризованных двойственных задач.

5. Способы количественной и качественной оценки результатов экспе­
риментов, используемых в области вычислительного оптимального
транспорта и генеративного машинного обучения.

6. Подходы объектно-ориентированного программирования с исполь­
зованием языка программирования Python и фреймворка Pytorch
глубинного обучения и численной оптимизации для практической
реализации и тестирования предложенных методов.

Основные положения, выносимые на защиту:
1. Предложен алгоритм для вычисления Васерштейн-2 оптимального

отображения и расстояния между непрерывными распределения­
ми, базирующийся на нейросетях с выпуклой по входу архитек­
турой и применении разработанной циклической регуляризации в
двойственной задаче. Получены теоретические оценки, связываю­
щие ошибку минимизации разработанного целевого функционала
с ошибкой решения исходной задачи нахождения ОТ отображения.

2. Предложен алгоритм для вычисления Васерштейн-2 барицентра
семейства непрерывных распределений, базирующийся на ней­
росетях с выпуклой по входу архитектурой и использовании
разработанных циклической регуляризации и регуляризации на
конгруэнтность двойственных переменных задачи поиска бари­
центра. Получены теоретические оценки, связывающие ошибку
минимизации разработанного целевого функционала с ошибкой ре­
шения исходной задачи нахождения барицентра.

3. Предложен численный метод моделирования Васерштейн-2 гради­
ентных потоков функционалов на пространствах вероятностных
распределений, основанный на дискретизации градиентного пото­
ка по времени и на использовании выпуклых по входу нейросетей.
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4. Разработана методология на основе нейронных сетей с выпуклой
по входу архитектурой для синтеза пар непрерывных распределе­
ний с аналитически известным ОТ отображением между ними.
Данная методология позволяет устранить имеющийся пробел в
тестировании непрерывных методов решения задачи ОТ и иссле­
дования математических моделей, на которых они основаны.

Полученные результаты соответствуют следующим пунктам
паспорта специальности 1.2.2 (математическое моделирование, числен­
ные методы и комплексы программ):

1. Результаты 1-3 соответствуют п.1 «Разработка новых математи­
ческих методов моделирования объектов и явлений», п.3 «Разра­
ботка, обоснование и тестирование эффективных вычислительных
методов с применением современных компьютерных технологий»
и п.4 «Реализация эффективных численных методов и алгорит­
мов в виде комплексов проблемно-ориентированных программ для
проведения вычислительного эксперимента».

2. Результат 4 соотв. п.2 «Развитие качественных и приближенных
аналитических методов исследования математических моделей».

Достоверность полученных результатов обеспечивается корректно­
стью применения апробированного в научной практике математического
аппарата теории оптимального транспорта и других смежных теорети­
ческих областей, а также экспериментальной проверкой разработанных
численных методов на большом количестве модельных и практических
задач оптимального транспорта. Полученные теоретические результы
обосновываются математически строгими доказательствами, а для про­
веденных вычислительных экспериментов даются детальные описания,
обеспечивающие их воспроизводимость. Результаты опубликованы в тру­
дах ведущих рецензируемых международных конференций по машинному
обучению и искусственному интеллекту.

Публикации. Список публикаций приведен в конце автореферата.
Результаты диссертации изложены в 5 работах. Все работы опубликова­
ны в трудах Core rank A* ведущих международных конференций по
машинному обучению.

Апробация работы. Результаты работы доложены на 3 ведущих
международных научных конференциях ранга A* (суммарно 5 докладов)
по машинному обучению и искусственному интеллекту:

1. The 9th International Conference on Learning Representations (ICLR
2021, Core A*, онлайн) – 2 презентации по [A3, A4];

2. The 35th Conference on Neural Information Processing Systems
(NeurIPS 2021, Core A*, онлайн) – 2 презентации по [A1, A2];

3. The 10th International Conference on Learning Representations
(ICLR 2022, Core A*, онлайн) – 1 презентация по [A5];
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Результаты работы [A3] были представлены на 5 следующих научных се­
минарах по машинному обучению и искусственному интеллекту:

– Huawei Machine Learning Workshop (2019, Сочи, Россия);
– Семинар по байесовским методам (2020, НИУ ВШЭ, онлайн);
– Geometry Data Processing Group Seminar (2020, MIT, онлайн);
– SMILES Machine Learning Summer School (2020, онлайн);
– Math of Machine Learning Summer School (2020, Сочи, Россия).

За научные результаты, включая результаты диссертации, автор в 2019
и 2021 годах становился лауреатом премии им. Ильи Сегаловича для
поддержки молодых исследователей в области машинного обучения и ис­
кусственного интеллекта от компании Яндекс.

Личный вклад. Все положения, выносимые на защиту, получены
автором лично. Все алгоритмы и теоретические результаты, приведенные
в диссертации и работах [A1-A5], сформулированы и обоснованы непосред­
ственно автором диссертации. В диссертации использованы результаты
совместных исследований: экспериментальное тестирование метода для
нахождения ОТ отображения [A3] проведено совместно с соавторами В.
Егиазаряном, А. Асадулаевым и А. Сафиным; тестирование метода для
вычисления барицентров [A4] проведено совместно с соавтором Л. Ли; ав­
тор диссертации осуществил предварительную реализацию и тестирование
разработанного метода для вычисления градиентных потоков [A2], адапта­
ция кода для рассматриваемых в экспериментальной части практических
задач сравнения с альтернативными подходами осуществлена соавтором П.
Мокровым; все вычислительные эксперименты в работе [A1] осуществлены
непосредственно автором диссертации, а в работе [A5] – соавтором Л. Роут.

Объем и структура работы. Диссертация состоит из введения, 5
глав и заключения. Полный объём диссертации составляет 148 страниц,
включая 30 рисунков и 17 таблиц. Список литературы содержит 138 на­
именований.

Содержание работы
Во введении обосновывается актуальность исследований, прово­

димых в рамках данной диссертационной работы, формулируется цель,
ставятся задачи работы, излагается научная новизна, теоретическая и
практическая значимость представляемой работы.

В первой главе приводится общее описание 4 основных задач,
решаемых в работе: вычисление Васерштейн-2 оптимальных транспорт­
ных отображений и расстояний (задача 1), вычисление Васерштейн-2
барицентров (задача 2), вычисление Васерштейн-2 градиентных потоков
функционалов (задача 3) и построение эталонных пар вероятностных рас­
пределений для Васерштейн-2 оптимального транспорта (задача 4). Ниже
мы приводим математические постановки вышеописанных задач, а также
кратко приводим недостатки существующих подходов к их решению.
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а) Постановка Канторовича. б) Постановка Монже.

Рис. 1 — Схематически изображенная задача 1 оптимального транспорта
между распределениями P,Q с квадратичной функцией стоимости.

Через (R𝐷, ‖·‖) обозначим 𝐷-мерное евклидово пространство с евкли­
довой метрикой ‖ ·‖. Через 𝒫2(R𝐷) обозначим множество всех борелевских
вероятностных распределений на R𝐷 с конечным вторым моментом. Так­
же через 𝒫2,ac(R𝐷) ⊂ 𝒫2(R𝐷) обозначим подмножество всех абсолютно
непрерывных распределений (относительно меры Лебега). Образ распре­
деления P ∈ 𝒫2(R𝐷) под действием измеримого отображения 𝑇 : R𝐷 → R𝐷
обозначим через 𝑇♯P.

Задача 1 (Вычисление оптимального транспорта с квадратичной ценой).
Для пары вероятностных распределений P,Q ∈ 𝒫2(R𝐷) задача оптималь­
ного транспорта с квадратичной ставится следующим образом:

W2
2(P,Q)

def
= min

𝜋∈Π(P,Q)

∫︁
R𝐷×R𝐷

‖𝑥− 𝑦‖2

2
𝑑𝜋(𝑥,𝑦), (1)

где Π(P,Q) – множество транспортных планов, то есть вероятностных
распределений на R𝐷 × R𝐷, чьи маргиналы суть P,Q соответственно.

Решение задачи (1) предполагает нахождение оптимального плана
𝜋* ∈ Π(P,Q), доставляющего минимум. Соответствующие минимальное
значение называется оптимальной транспортной стоимостью, а её ко­
рень называется расстоянием Васерштейн-2 и обозначается через W2.

Формулировка (1) задачи оптимального транспорта часто называется
формулировкой Канторовича задачи ОТ (Рис. 1а) и представляет собой
оптимизацию линейного функционала от 𝜋 (интеграла по 𝜋) на простран­
стве вероятностных мер на R𝐷×R𝐷 в линейных ограничениях 𝜋 ∈ Π(P,Q).
Однако аналитические решения (1) для пар P,Q общего вида неизвестны, а
решать данную задачу оптимизации на практике вычислительно сложно.

В случае, когда P,Q – дискретные вероятностные распределения
с конечным носителем, задача обычно решается численными методами
линейного программирования или же используются дополнительные ре­
гуляризаторы, приводящие к итеративным матричным методам [6]. К
сожалению, когда P и Q непрерывные распределения (доступные через
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конечные или бесконечные случайные выборки), вышеупомянутые дис­
кретные методы не дают достаточного качества, так как необходимые
точные дискретизации распределений вычислительно недостижимы.

Далее мы кратко рассмотрим основные существующие методы ре­
шения задачи (1) в случае непрерывных P,Q и обозначим их ключевые
недостатки, которые устраняются в данной диссертации. Для начала от­
метим, что если P ∈ 𝒫2,𝑎𝑐(R𝐷), то ОТ план 𝜋 единственным образом
определяется в виде 𝜋* = [idR𝐷 , 𝑇 *]♯P, где 𝑇 * : R𝐷 → R𝐷 – единственный
минимизатор задачи ОТ в форме Монжа (Рис. 1б) [9]:

W2
2(P,Q) = min

𝑇♯P=Q

∫︁
R𝐷

‖𝑥− 𝑇 (𝑥)‖2

2
𝑑P(𝑥), (2)

где минимум берется по измеримым отображениям 𝑇 : R𝐷 → R𝐷, удо­
влетворяющим условию переноса распределения 𝑇♯P = Q. Таким образом,
в непрерывном случае задача (1) сводится к нахождению оптимального
транспортного отображения 𝑇 * : R𝐷 → R𝐷.

Существующие непрерывные методы основываются на решении двой­
ственной задачи к (1) и (2) и дальнейшем восстановлении оптимального
транспортного отображения 𝑇 * (решения прямой задачи) из найденных
двойственных переменных. Для P,Q ∈ 𝒫2(R𝐷) двойственная формули­
ровка задачи квадратичного ОТ имеет следующий вид (см. [9]):

W2
2(P,Q) = max

𝑓⊕𝑔≤ 1
2‖·‖2

[︂ ∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

𝑔(𝑦)𝑑Q(𝑦)

]︂
, (3)

где максимум берется по всем P-интегрируемым функциям 𝑓 : R𝐷 → R ∪ {∞}
и Q-интегрируемым 𝑔 : R𝐷 → R ∪ {∞} (потенциалам), для которых
выполнено 𝑓(𝑥) + 𝑔(𝑦) ≤ 1

2‖𝑥− 𝑦‖
2 при всех 𝑥, 𝑦 ∈ R𝐷. Существуют аль­

тернативные к (3) двойственные формы, например,

W2
2(P,Q) = Const(P,Q)− min

𝜓∈Convex

Corr(P,Q|𝜓)⏞  ⏟  [︂ ∫︁
R𝐷

𝜓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

𝜓(𝑦)𝑑Q(𝑦)

]︂
, (4)

где минимум берется по выпуклым потенциалам 𝜓. При этом 𝜓(𝑦)
𝑑𝑒𝑓
=

max𝑥∈R𝐷

[︀
⟨𝑥,𝑦⟩ − 𝜓(𝑥)

]︀
– сопряженная функция к 𝜓, которая тоже явля­

ется выпуклой функцией. Второе слагаемое Corr(P,Q|𝜓) в (4) называется
корреляцией, а функции 𝜓,𝜓 – потенциалами Бренье.

В случае, когда P ∈ 𝒫2,𝑎𝑐(R𝐷), P-почти всюду выполнено 𝑇 *(𝑥) =
∇𝜓*(𝑥), то есть градиент оптимального потенциала Бренье является опти­
мальным транспортным отображением из P в Q. Этот факт позволяет для
решения задач ОТ (1), (2) фокусироваться лишь на решении двойственной
задачи, которая представляется более простой, так в задаче устраняется
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нетривиальное граниченое условие 𝜋 ∈ Π(P,Q) в (1) или 𝑇♯P = Q в (2). Од­
нако решение (4), то есть нахождение двойственных потенциалов, все еще
нетривиально, т.к. задача представляет собой оптимизацию по простран­
ству выпуклых функций 𝜓. При этом вычисление сопряженной функции
𝜓 представляет собой внутреннюю задачу оптимизации.

В работе [7] авторы предлагают аппроксимировать 𝜓*, 𝜓* с помощью
выпуклых по входу нейронных сетей (англ. input-convex neural networks, со­
кращенно – ICNNs) и свести задачу к оптимизации параметров нейронных
сетей. Однако для использования предложенных методов предполагается
решение минимаксной задачи поиска седловой точки некоторого функ­
ционала. Полученная задача представляется сложной на практике из-за
численной нестабильности минимаксной оптимизации.

В работе [2] авторы рассматривают классическую двойственную фор­
му (3) вместо (4) и ослабляют условие 𝑓 ⊕ 𝑔 ≤ 𝑐 с помощью наложения
регуляризации (энтропийной и пр.), которая мягко штрафует потенциа­
лы 𝑓, 𝑔 за нарушение этого условия. Из-за регуляризации решение задачи
(оптимальный 𝑓*) смещается относительно истинного решения, что не поз­
воляет из него точно находить решение исходной задачи ОТ (2).

В данной диссертации предлагается численный метод (глава
2 работы), который устраняет недостатки вышеописанных непрерывных
методов, а именно: (1) оптимизируется неманимаксный критерий, (2) ре­
шением которого является истинный несмещенный потенциал 𝜓*, градиент
∇𝜓* которого является искомым ОТ отображением 𝑇 *.

Задача 2 (Задача поиска Васерштейн-2 барицентра). Рассмотрим рас­
пределения P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷). Тогда их барицентр P относительно
весов 𝛼1, . . . ,𝛼𝑁 (при 𝛼𝑛 > 0 и

∑︀𝑁
𝑛=1 𝛼𝑛 = 1) определяется через (рис. 2а)

P def
= argmin

P∈𝒫2(R𝐷)

ℱBar(P)
def
= argmin

P∈𝒫2(R𝐷)

𝑁∑︁
𝑛=1

𝛼𝑛W2
2(P𝑛,P). (5)

Здесь ℱBar называется барицентрическим функционалом, и его мини­
мальное значение обозначается через ℱ*

Bar
𝑑𝑒𝑓
= ℱBar(P).

Проблемы существующих методов вычисления барицентров ана­
логичны проблемам методов решения задачи ОТ (2). В случае, ко­
гда P1, . . . ,P𝑛 являются многомерными непрерывными распределениями,
дискретные методы не дают достаточного качества, так как необходи­
мые точные дискретизации распределений вычислительно недостижимы.
Непрерывные же методы для вычисления барицентров либо требуют ре­
шения сложной minmaxmin задачи оптимизации [10], либо используют
энтропийную регуляризацию [8], ведущую к смещению решения.

В данной диссертации предлагается численный метод (глава 3
работы), который лишен недостатков вышеописанных методов, а именно:
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а) Задача 2:
вычисление барицентра

P семейства {P𝑛}.

б) Задача 3:
моделирование град.

потока 𝜌𝑡 функц. ℱ(𝜌).

в) Дискретизация град.
потока по времени

(схема JKO).

Рис. 2 — Схематически изображенные задачи 2, 3 и схема JKO [5].

(1) оптимизируется неманимаксный критерий, (2) решение которого поз­
воляет восстановить истинный несмещенный барицентр.

Задача 3 (Вычисление Васерштейн-2 градиентного потока функционала
на пространстве распределений). Рассмотрим функционал на простран­
стве вероятностных распределений ℱ : 𝒫2(R𝐷)→ R. Кривая, состоящая
из распределений {𝜌𝑡}𝑡∈R+

и являющаяся решением уравнения

𝜕𝜌𝑡
𝜕𝑡

= div(𝜌𝑡∇𝑥ℱ ′(𝜌𝑡)), s.t. 𝜌0 = 𝜌0, (6)

называется Васерштейн-2 градиентным потоком функционала ℱ , стар­
тующим из точки 𝜌0 ∈ 𝒫2(R𝐷), см. рис. 2б. Здесь ℱ ′(𝜌𝑡) : R𝐷 → R
обозначает первую вариацию функционала ℱ в точке 𝜌𝑡 [9].

Научно-практический интерес в вычислении градиентных потоков за­
ключается в том, что многие диффузионные процессы, возникающие на
практике, являются Васерштейн-2 градиентными потоками определенных
фуцнкционалов. В данной диссертационной работе основной объект иссле­
дования представляют диффузии, являющиеся градиентными потоками
функционала ℱFP свободной энергии Фоккера-Планка (𝛽 > 0)

ℱFP(𝜌)
𝑑𝑒𝑓
=

∫︁
R𝐷

Φ(𝑥)𝑑𝜌(𝑥) + 𝛽−1

∫︁
R𝐷

log
𝑑𝜌

𝑑𝑥
(𝑥)𝑑𝜌(𝑥), (7)

являющегося разностью потенциальной энергии и энтропии. Соответству­
ющий градиентный поток удовлетворяет 𝜕𝜌𝑡

𝜕𝑡 = div(∇Φ(𝑥)𝜌𝑡)+𝛽−1∆𝜌𝑡 при
𝜌0 = 𝜌0. Отметим, что при 𝛽 = ∞ выражение является классическим ура­
венением переноса, а в случае Φ(𝑥) ≡ 0 – уравнением теплопроводности.

В общем случае задача вычисления градиентных потоков Васер­
штейна-2 является сложной. Обычно аналитическое решение получить
не удается, и поэтому приходится применять методы численной аппрок­
симации. Джордан, Киндерлерер и Отто предложили подход (позже
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получивший сокращенное название “JKO-интегрирование”) для аппрокси­
мации динамики 𝜌𝑡 в (6), см. [5]. В этом методе осуществляется дискретное
по времени итеративное уточнение непрерывного потока (рис. 2в):

𝜌(𝑘) ← argmin
𝜌∈𝒫2(R𝑛)

[︂
ℱ(𝜌) + 1

ℎ
W2

2(𝜌
(𝑘−1), 𝜌)

]︂
, (8)

где 𝜌(0) = 𝜌0 – начальное условие и ℎ > 0 – величина шага дискретизации
по времени. Дискретный временной градиентный поток сходится к непре­
рывному потоку при ℎ → 0, т.е. 𝜌(𝑘) ≈ 𝜌𝑘ℎ.

Cтоит отметить, что выполнение JKO-итераций является сложной
задачей из-за наличия минимизации по W2

2. Типичный подход к выпол­
нению JKO-шага основан на дискретизации пространственного домена.
При размере носителя ⪅ 106 задача (8) может быть решена стандартными
дискретными алгоритмами ОТ [6], упомянутыми в предыдущих разделах.
В размерностях 𝐷 ≥ 3 дискретные распределения обычно неточно ап­
проксимируют непрерывные распределения и, как следствие, динамику
градиентных потоков. Чтобы обойти эту трудность, в [11] предложен па­
раметрический метод для аппроксимации 𝜌𝑡 на основе энтропийного OT,
который приводит к смещению найденного решения.

В данной диссертации предлагается численный метод (глава 4
работы) для моделирования несмещенной динамики JKO с помощью заме­
ны оптимизации (8) по вероятностным распределениям на эквивалентную,
но практически более обозримую оптимизацию по выпуклым функциям.

Задача 4 (Построение эталонных пар непрерывных распределений для
Васерштейн-2 оптимального транспорта). Построить пары непрерывных
вероятностных распределений (P,Q), для которых оптимальное решение
𝑇 * задачи 1 (ОТ отображение) аналитически известно. Подразумева­
ется, что построенные распределения P,Q на практике должны быть
доступны через случайные независимые выборки.

Эталонные пары могут быть использованы для количественного те­
стирования численных методов для решения задачи 1 поиска ОТ плана
или отображения. На данный момент возможности такого тестирования
значительно ограничены. Этот пробел в научной области вычислительного
ОТ не позволяет объективно оценить качество существующих численных
методов для решения задач ОТ. В литературе для оценки качества суще­
ствующих непрерывных методов используются два типа метрик.

В явных метриках вычисленное транспортное отображение 𝑇 срав­
нивается с истинным 𝑇 *. В настоящее время имеется сравнительно немного
явных метрик, поскольку число примеров P,Q с известным эталоном 𝑇 *

(т.е. решений задачи 4) достаточно мало: 𝑇 * может быть получено в дис­
кретном, 1-мерном и линейно-разбросанном случаях.
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Неявные метрики применяют численный метод ОТ как компоненту в
многоэтапной схеме обучения. При этом качество конечного решения зада­
чи используется как косвенная оценка качества самого численного метода.
Например, в генеративном моделировании, при котором ОТ использует­
ся как фукнция потери нейронной сети генератора, качество генератора
оценивают через популярные метрики генеративного моделирования [1].
Такие метрики не дают четкого понимания о качестве самого численного
метода, так как зависят от компонент модели, не связанных с ОТ.

Таким образом, возникает необходимость разработки нетривиальных
пар непрерывных вероятностных распределений (P,Q), которые могли бы
быть использованы для явной оценки качества численных методов ОТ,
то есть имели бы аналитически известное ОТ отображение. В данной дис­
сертационной работе предлагается метод (глава 5 работы) построения
эталонных непрерывных пар P,Q с известным 𝑇 *.

Далее обозреваются основные результаты глав 2-5. Каждая
глава посвящена решению конкретной задачи ОТ 1, 2, 3, 4.

Во второй главе решается задача поиска Васерштейн-2 ОТ отоб­
ржения между двумя непрерывными вероятностными распределениями
(задача 1). Предлагается и теоретически обосновывается численный метод
для решения рассматриваемой задачи на основе выпуклых по входу ней­
ронных сетей и добавления циклической регуляризации к двойственной
задаче. Ниже детализируются результаты главы.

Для нахождения оптимального выпуклого потенциала 𝜓* в (4), гради­
ент∇𝜓* которого является ОТ отображением, предлагается рассматривать
следующую неминимаксную задачу оптимизации:

min
𝜑,𝜓∈Convex

Corr(P,Q|𝜑, 𝜓;𝜆) 𝑑𝑒𝑓= min
𝜓,𝜑∈Convex

[︂
𝜆

2
ℛQ

2 (𝜓,𝜑) +(︂∫︁
R𝐷

𝜓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

[︀
⟨∇𝜑(𝑦), 𝑦⟩ − 𝜓(∇𝜑(𝑦))

]︀
𝑑Q(𝑦)

)︂]︂
, (9)

где оптимизация ведется по выпуклым функциям 𝜓, 𝜑 : R𝐷 → R, аℛQ
2 (𝜓, 𝜑)

– специально разработанный циклический регуляризатор (с весом 𝜆 > 0):

ℛQ
2 (𝜓, 𝜑)

𝑑𝑒𝑓
=

∫︁
R𝐷

‖∇𝜓 ∘ ∇𝜑(𝑦)− 𝑦‖2𝑑Q(𝑦). (10)

Регуляризатор штрафует потенциалы 𝜑, 𝜓 за нарушение условия цик­
лической состоятельности (взаимнообратности) их градиентов ∇𝜑, ∇𝜓.
Отметим, что при определенных предположениях о выпуклых функциях
𝜑, 𝜓 взаимнообратность их градиентов ∇𝜑,∇𝜓 соответствует сопряженно­
сти с точностью до добавочной константы.

Ключевой особенностью предложенной задачи оптимизации и регу­
ляризатора ℛQ

2 является то, что при правильном подборе параметра 𝜆 > 0
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оптимальным решением задачи является действительная оптимальная па­
ра потенциалов Бренье (𝜓*, 𝜑*) = (𝜓*, 𝜓*), которая решает задачу (4). В
диссертационной работе доказывается теорема 12 на связь ошибки реше­
ния задачи (9) с помощью данных выпуклых потенциалов (𝜑, 𝜓) и ошибки
восстановленного решения прямой задачи нахождения ОТ отображения
(2) через 𝜓 с использованием отображения 𝑇 = ∇𝜓.

Теорема 1 (транспортное свойство для приближения регуляризованных
корреляций). Пусть P,Q ∈ 𝒫2,𝑎𝑐(R𝐷). Пусть 𝜓* : R𝐷 → R – оптималь­
ный выпуклый потенциал Бренье:

𝜓*= argmin
𝜓∈Convex

Corr(P,Q|𝜓)= argmin
𝜓∈Convex

[︂ ∫︁
R𝐷

𝜓(𝑥)𝑑P(𝑥)+
∫︁
R𝐷

𝜓(𝑦)𝑑Q(𝑦)

]︂
. (11)

Пусть дифференцируемые выпуклые функции 𝜓 : R𝐷 → R и 𝜑 : R𝐷 → R
таковы, что при некотором 𝜖 ∈ R выполнено

Corr
(︀
P,Q | 𝜓, 𝜑;𝜆

)︀
≤ Corr(P,Q | 𝜓*) + 𝜖. (12)

Предположим, что 𝜓 является 𝛽-сильно выпуклой (𝛽 > 1
𝜆 > 0) и

ℬ-гладкой (ℬ ≥ 𝛽). Предположим также, что 𝜑 имеет биективный гра­
диент ∇𝜑. Тогда имеют место следующие неравенства:

1. Оценка сверху для корреляции:

Corr
(︀
P,Q | 𝜓,𝜑;𝜆

)︀
≥ Corr

(︀
P,Q | 𝜓*)︀ (т.e. 𝜖 ≥ 0);

2. Прямое транспортное свойство:

1

2

∫︁
R𝐷

‖∇𝜓(𝑥)−∇𝜓*(𝑥)‖2𝑑P(𝑥) ≤ (ℬ)2 · 𝜖
𝜆𝛽 − 1

·
[︀ 1√

𝛽
+
√
𝜆
]︀2

= 𝑂(𝜖);

3. Обратное транспортное свойство:

1

2

∫︁
R𝐷

‖∇𝜑(𝑦)−∇𝜓*(𝑦)‖2𝑑Q(𝑦) ≤ 𝜖

𝛽 − 1
𝜆

= 𝑂(𝜖).

Теорема утверждает, что чем лучше мы аппроксимируем корреляции
(9) при помощи потенциалов 𝜓, 𝜑, тем ближе градиенты этих потенци­
алов к прямому ∇𝜓* (и обратному ∇𝜓* = (∇𝜓*)−1) транспортному
отображению. При этом несложно видеть, что оптимальные потенциалы
Бренье (𝜓*, 𝜑*) = (𝜓*, 𝜓*), решающие (4), доставляют минимум и в за­
даче (9). В следующей теореме демонстрируется, что в действительности
корреляции можно аппроксимировать требуемым образом, если аппрокси­
мирующий класс функций для потенциалов является достаточно большим.

Теорема 2 (аппроксимируемость корреляций). Пусть P,Q ∈ 𝒫2,𝑎𝑐(R𝐷), а
𝜓* : R𝐷 → R – оптимальный выпуклый потенциал. Пусть Ψ,Φ – классы
дифференцируемых выпуклых функций R𝐷 → R. Предположим, что
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1. ∃𝜓1 ∈ Ψ с 𝜖1-близким градиентом прямого отображения ∇𝜓*, то
есть

∫︀
R𝐷 ‖∇𝜓1(𝑥)−∇𝜓*(𝑥)‖2𝑑P(𝑥)≤𝜖1, где 𝜓1 является ℬ-гладкой;

2. ∃𝜑2 ∈ Φ с 𝜖2-близким градиентом к обратному отображению
∇𝜓*, то есть

∫︀
R𝐷 ‖∇𝜑2(𝑦)−∇𝜓*(𝑦)‖2𝑑Q(𝑦) ≤ 𝜖2.

Пусть (𝜓, 𝜑) = argmin𝜓∈Ψ,𝜓∈Φ Corr
(︀
P,Q | 𝜓,𝜑;𝜆

)︀
– минимизаторы регуля­

ризованных корреляций в Ψ× Φ. Тогда выполняется неравенство:

Corr
(︀
P,Q | 𝜓, 𝜑;𝜆

)︀
≤

Corr(P,Q | 𝜓*)+
[︀𝜆
2
(ℬ
√
𝜖2+
√
𝜖1)

2+(ℬ
√
𝜖2 +

√
𝜖1) ·
√
𝜖2+
ℬ
2
𝜖2
]︀
, (13)

т.e. регуляризованные корреляции не больше истинных плюс 𝑂(𝜖1+𝜖2).

Применяя теоремы 2 и 1, мы заключаем, что градиенты ∇𝜓,∇𝜑 при­
ближенных решений 𝜓, 𝜑 являются 𝑂(𝜖1 + 𝜖2)-близкими (в смысле ℒ2) к
∇𝜓* и∇𝜓* соответственно. Фактически, полученные теоретические оценки
показывают, что точность решения предложенной неминимаксной задачи
(9) с точки зрения значения целевого функционала пропорциональна точ­
ности восстановления решения основной прямой задачи Монжа (2), то есть
нахождения прямого ∇𝜓* и обратного ∇𝜓* ОТ отображений.

В работе предлагается вычислительный алгоритм для миними­
зации разработанного функционала (2) на основе методов глубинного
обучения. В качестве классов выпуклых функций Ψ,Φ, по которым ведет­
ся минимизация, используются выпуклые по входу нейронные сети ICNN
𝜓𝜃, 𝜑𝜔 [12] с параметрами (весами) 𝜃, 𝜔. Для оптимизации их параметров
𝜃, 𝜔 используется метод стохастического градиентного спуска с использо­
ванием случайных выборок из входных распределений P,Q.

Для эмпирической проверки работоспособности предложенного алго­
ритма оптимизации функционала (9) с помощью нейронных сетей прово­
дится ряд вычислительных экспериментов. Приводятся как качественная,
так и количественная оценки оптимальных транспортных отображений,
вычисленных алгоритмом. Для этого рассматривается широкий спектр за­
дач и приложений как с синтетическими, так и с реальными данными.
Обучаются ОТ отображения (а) между 2D распределениями; (b) между
многомерными гауссианами; (c) для задачи транспорта масс в латентном
пространстве автокодировщиков данных; (d) для задачи доменной адапта­
ции в задаче классификации изображений рукописных цифр; (e) в задаче
переноса стиля между непарными датасетами изображений.

Пример 1 (ОТ между гауссовскими распределениями). Ниже приведе­
ны количественные экспериментальные результаты для восстановления
ОТ отображения 𝑇 * между случайно инициализарованными гауссианами
P,Q в размерностях 𝐷 = 2,4,8, . . . , 212 с помощью предложенного мето­
да. В качестве метрики для оценки обученного отображения 𝑇 = ∇𝜓
используется ℒ2-UVP(𝑇 ) 𝑑𝑒𝑓= 100 ·

∫︀
R𝐷 ‖𝑇 (𝑥)− 𝑇 *(𝑥)‖22𝑑P(𝑥)/Var(Q)%.
17



Dim 2 4 8 16 32 64 128 256 512 1024 2048 4096

LSOT < 1 3.7 7.5 14.3 23 34.7 46.9 > 50

MM-1 < 1 < 1 < 1 < 1 < 1 1.2 1.4 1.3 1.5 1.6 1.8 2.7

MM-2 < 1 < 1 < 1 < 1 < 1 < 1 1 1.1 1.2 1.3 1.5 2.1

W2GN < 1 < 1 < 1 < 1 < 1 < 1 1 1.1 1.3 1.3 1.8 1.5

Таблица 1 — Сравнение ℒ2-UVP (%, мень­
ше=лучше) для методов LSOT [2], MM-1,
MM-2 [7] и предложенного метода.

Рис. 3 — Сравнение сходимо­
сти для методов MM-1, MM-2

и предложенного метода.

Разработанный метод значительно превосходит по качеству метод
[2] на основе энтропийной регуляризации (Таблица 1) и эмпирически схо­
дится быстрее, чем минимаксные методы [7] (Рис. 3).

В третьей главе решается задача поиска Васерштейн-2 барицентра
набора непрерывных вероятностных распределений (задача 2). Предлага­
ется и теоретически обосновывается численный метод для решения задачи
на основе выпуклых по входу нейронных сетей, добавления циклической
регуляризации и регуляризации на конгруэнтность в двойственной задаче.

В основе предлагаемого алгоритма лежит реформулиров­
ка двойственной задачи поиска Васерштейн-2 барицентра. Для
P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷) и весов 𝛼1, . . . ,𝛼𝑁 , удовлетворяющих 𝛼𝑛 > 0 и∑︀𝑁
𝑛=1 𝛼𝑛 = 1, двойственная задача барицентра [4] имеет следующий вид:

ℱ*
Bar = − min

{𝜓𝑛} конгруэнтны

[︂ 𝑁∑︁
𝑛=1

𝛼𝑛

∫︁
R𝐷

𝜓𝑛(𝑦)𝑑P𝑛(𝑦)⏟  ⏞  
MultiCorr({𝛼𝑛,P𝑛}|{𝜓𝑛})

]︂
+ Const({𝛼𝑛},{P𝑛}), (14)

где условие конгруэнтности обозначает, что функции 𝜓𝑛 : R𝐷 → R
выпуклые и их сопряженные функции 𝜓𝑛 удовлетворяют равенству∑︀𝑁
𝑛=1 𝛼𝑛𝜓𝑛(𝑥) = ‖𝑥‖2

2 + 𝑐 для всех 𝑥 ∈ R. Первое слагаемое в (14) на­
зывается множественными корреляциями.

Аналогично двойственной постановке задачи ОТ (4), выпуклые функ­
ции 𝜓𝑛 называются потенциалами Бренье. Оптимальные потенциалы 𝜓*

𝑛

позволяют немедленно получить решение P прямой задачи (5). Для всех
𝑛 = 1,2 . . . , 𝑁 выполняется ∇𝜓*♯P𝑛 = P, то есть из входных распределений
с помощью ∇𝜓*

𝑛 можно получить барицентр P. Однако оптимизация (14)
затруднительна из-за граничного условия на конгруэнтность.

В данной диссертационной работе предлагается рассматривать сле­
дующую неминимаксную задачу оптимизации (𝜆 > 0, 𝜏 ≥ 1) по набору 𝑁
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пар выпулых функций {𝜓𝑛, 𝜑𝑛}𝑁𝑛=1:

min
{𝜓𝑛,𝜑𝑛}

MultiCorr
(︀
{P𝑛} | {𝜓𝑛}, {𝜑𝑛}; 𝜏, ̂︀P, 𝜆)︀ 𝑑𝑒𝑓= min

{𝜓𝑛,𝜑𝑛}

{︂
𝜏 ·ℛ̂︀P

1({𝜑𝑛})+

𝜆

𝑁∑︁
𝑛=1

𝛼𝑛ℛP𝑛
2 (𝜓𝑛, 𝜑𝑛) +

𝑁∑︁
𝑛=1

[︀
𝛼𝑛

∫︁
R𝐷

[⟨𝑥,∇𝜓𝑛(𝑥)⟩ − 𝜑𝑛(∇𝜓𝑛(𝑥))]𝑑P𝑛(𝑥)
]︀}︂
, (15)

где ℛ2 является циклическим регуляризатором (10), предложенным в пер­
вой главе работы, а ℛ̂︀P

1({𝜑𝑛})
𝑑𝑒𝑓
=
∫︀
R𝐷

[︀∑︀𝑁
𝑛=1 𝛼𝑛𝜑𝑛(𝑦) −

‖𝑦‖2

2

]︀
+
𝑑̂︀P – новый

предлагаемый регуляризатор для конгруэнтности потенциалов. В нем вво­
дится вспомогательное распределение P̂ ∈ 𝒫2(R𝐷).

Ключевой особенностью предложенной задачи оптимизации и регуля­
ризатора ℛP̂

1 является то, что при правильном подборе параметров 𝜆, 𝜏, P̂
оптимальным решением задачи являются оптимальные действительные па­
ры потенциалов Бренье (𝜓*

𝑛, 𝜑
*
𝑛) = (𝜓*

𝑛, 𝜓
*
𝑛), решающие (14). В диссертации

доказывается теорема 3, связывающая ошибку решения задачи (15) с помо­
щью некоторых потенциалов (𝜑𝑛, 𝜓𝑛) и ошибку восстановленного решения
прямой задачи нахождения ОТ отображения (5) через ∇𝜓𝑛.

Теорема 3. Пусть P ∈ 𝒫2,𝑎𝑐(R𝐷) – барицентр для P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷)
с весами 𝛼1, . . . ,𝛼𝑁 и пусть {𝜓*

𝑛} – оптимальные конгруэнтные потен­
циалы для задачи о барицентре. Предположим, что 𝜏, P̂ таковы, что
𝜏 ≥ 1 и 𝜏 · ̂︀P ≥ P. Пусть нам также даны выпуклые потенциалы
{𝜓𝑛} и 𝛽-сильно выпуклые и ℬ-гладкие потенциалы {𝜑𝑛} с 0 < 𝛽 ≤ ℬ <∞
и 𝜆 > ℬ

2(𝛽)2 . Положим 𝜖 = MultiCorr
(︀
{𝛼𝑛,P𝑛} | {𝜓𝑛}, {𝜑𝑛}; 𝜏, ̂︀P, 𝜆)︀ −

MultiCorr
(︀
{𝛼𝑛,P𝑛} | {𝜓*

𝑛}
)︀
. Тогда 𝜖 ≥ 0 и при всех 𝑛 ∈ {1, . . . ,𝑁} имеем∫︁

R𝐷

‖∇𝜓𝑛(𝑦)−∇𝜓*(𝑦)‖2𝑑P𝑛(𝑦) ≤
2𝜖

𝛼𝑛
·

(︃√︂
1

𝛽
+

√︃
1

𝜆(𝛽)2 − ℬ
2

)︃2

= 𝑂(𝜖), (16)

что, в частности, означает W2
2

(︀
∇𝜓𝑛♯P𝑛,P

)︀
≤ 𝑂(𝜖).

Полученная теоретическая оценка показывает, что точность решения
предложенной неминимаксной задачи (15) с помощью (𝜑, 𝜓) с точки зре­
ния значения целевого функционала мажорирует точность восстановления
барицентра P с помощью {∇𝜓𝑛} из входных распределений P𝑛.

В работе предлагается вычислительный алгоритм для миними­
зации разработанного функционала (15) на основе методов глубинного
обучения. В качестве 2𝑁 выпуклых потенциалов {𝜓𝑛, 𝜑𝑛} используются вы­
пуклые по входу нейронные сети ICNN {𝜓𝜃𝑛 , 𝜑𝜔𝑛} с параметрами (весами)
𝜃𝑛, 𝜔𝑛. Для оптимизации их параметров используется метод стохастическо­
го градиентного спуска с использованием случайных выборок из входных
распределений {P𝑛} и априорного распределения P̂.
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а) Входные
распределения {P𝑛}

б) Истинный
барицентр P

в) Вычисленный
барицентр ∇𝜓𝑛♯P𝑛.

Рис. 4 — Барицентр линейно-разбросанных “швейцарских рулетов” с веса­
ми (𝛼1, . . . ,𝛼4) = ( 1

10 ,
2
10 ,

3
10 ,

4
10 ), вычисленный алгоритмом.

Для эмпирической проверки работоспособности предложенного ал­
горитма в работе приводятся как качественная, так и количественная
оценки ОТ барицентров, обученных алгоритмом в задачах: (a) вычисление
барицентров 2D распределений; (b) вычисление барицентров линейно­
разбросанных распределений; (c) применение барицентров к байесовской
задаче агрегации апостериорных распределений, полученных по подвыбор­
кам данных; (d) применение барицентров к задаче агрегации цветовых
палитр RGB изображений. Результаты подтверждают превосходство алго­
ритма над существующими численными методами для барицентров.

Пример 2 (Барицентр локально-разбросанных распред.). См. рис. 4.

В четвертой главе решается задача вычисления Васерштейн-2
градиентного потока функционала на пространстве вероятностных рас­
пределений (задача 3). Предлагается численный метод для её решения на
основе выпуклых по входу нейронных сетей и схемы JKO, рассмотренной
ранее. Ниже детализируются результаты главы.

Согласно теореме Бренье [13] для любых 𝜌 ∈ 𝒫2(R𝐷), 𝜌(𝑘−1) ∈ 𝒫2,𝑎𝑐(R𝐷)
существует 𝜌(𝑘−1)-единственный градиент ∇𝜓 : R𝐷 → R𝐷 выпуклой
функции 𝜓, удовлетворяющий 𝜌 = ∇𝜓♯𝜌(𝑘−1). Положим 𝜌 = ∇𝜓♯𝜌(𝑘−1) и
запишем шаг JKO (8) как оптимизационную задачу с выпуклой 𝜓:

𝜓(𝑘) ← argmin
Convex 𝜓

[︂
ℱ(∇𝜓♯𝜌(𝑘−1)) +

1

ℎ

∫︁
R𝐷

1

2
‖𝑥−∇𝜓(𝑥)‖22𝑑𝜌(𝑘−1)(𝑥)

]︂
. (17)

Так как 𝜌 является образом 𝜌(𝑘−1) под действием градиента выпуклой
функции ∇𝜓, то член W2

2 в (17) может быть вычислен явно, что приво­
дит к явному представлению расстояния Васерштейна-2. Для перехода на
следующий шаг JKO определим 𝜌(𝑘)

def
= ∇𝜓(𝑘)♯𝜌(𝑘−1). При такой перефор­

мулировке мы избегаем сложностей, связанных с вычислением расстояния
Васерштейна-2. При этом для получения выборки из 𝜌(𝑘) = [∇𝜓(𝑘) ∘ · · · ∘
∇𝜓(1)]♯𝜌0 можно выбрать выборку 𝑥0 ∼ 𝜌(0), и тогда ∇𝜓(𝑘) ∘ · · · ∘∇𝜓(1)(𝑥0)
дает выборку из 𝜌(𝑘).
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б) Время 𝑡 = 0.9

Рис. 5 — Значения симметричной дивергенции Кульбака–Лейблера между
вычисленным и истинным распределением 𝜌𝑡 в моменты времени 𝑡 = 0.5

(слева) и 𝑡 = 0.9 (справа) для размерностей 𝐷 = 1,2, . . . ,12.
В диссертации предлагается вычислительный алгоритм для осу­

ществления переформулированного JKO интегрирования (17) на основе
методов глубинного обучения. Для вычисления шага JKO (17), предла­
гается аппроксимировать 𝜓(𝑘) с помощью выпуклой по входу нейронной
сети ICNN 𝜓𝜃𝑘 с параметрами (весами) 𝜃𝑘 и для оптимизации параметров
использовать алгоритм стохастического градиентного спуска с использова­
нием выборок из полученного на предыдущем шаге распределения 𝜌(𝑘−1).

Для эмпирической проверки предложенного метода проводится ряд
вычислительных экспериментов: (a) моделирование процессов Орнштейна­
Уленбека; (b) нахождение минимумов функционалов на пространстве
распределений с помощью Васерштейн-2 градиентного потока; (c) приме­
нение градиентных потоков к вычислению апостериорного распределения
в задаче байесовской логистической регрессии.

Пример 3 (Вычисление динамики процесса Орнштейн-Уленбека). На рис.
5 приводится количественный анализ восстановленной динамики процес­
са Орнштейн-Уленбека, т.е., градиентного потока функционала ℱFP (7) с
квадратичным потенциалом Φ(𝑥) = 1

2 (𝑥−𝑏)
𝑇𝐴(𝑥−𝑏), 𝐴 ⪰ 0 и гауссовским

𝜌0. В больших размерностях результаты экспериментов показывают
значительное превосходство разработанной методологии над существу­
ющими методами вычисления градиентных потоков.

В пятой главе разрабатывается методология на основе нейросетей с
выпуклой по входу архитектурой для синтеза пар непрерывных вероятност­
ных распределений с аналитически известным ОТ отображением между
ними (задача 4). Ниже описываются полученные результаты главы.

Ключевая идея предлагаемого метода построения эталонных пар за­
ключается в том, что для дифференцируемой выпуклой 𝜓 : R𝐷 → R ее гра­
диент ∇𝜓 является ОТ отображением между произвольным P ∈ 𝒫2,𝑎𝑐(R𝐷)
и его образом ∇𝜓♯P под действием ∇𝜓 : R𝐷 → R𝐷. Это следует из теоремы
Бренье [13]. Таким образом, для непрерывного распределения P с выбороч­
ным доступом и известным выпуклым 𝜓 в качестве эталонной пары можно
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использовать (P,∇𝜓♯P). Получение выборки из ∇𝜓♯P можно осуществлять
путем взятия выборки из P и применением ∇𝜓.

В диссертационной работе разрабатываются пары P,∇𝜓♯P с ана­
литически известным (представленным градиентом выпуклой по входу
нейронной сети) ОТ отображением: (a) многомерные пары непрерывных
вероятностных распределений в размерностях 𝐷 = 2, 4, 8, . . . , 256; (b)
три пары вероятностных распределений на высокоразмерном пространстве
64 × 64 × 3 изображений. Далее на разработанных парах осуществляется
количественное тестирование существующих численных методов.

Результаты главы – пары непрерывных распределений с известным
по построению эталонным ОТ отображением. Данная разработка позволя­
ет устранить имеющийся пробел в тестировании непрерывных численных
методов для задачи 1. Как результат ожидается, что разработанная мето­
дика тестирования может улучшить качество и надежность методов ОТ.

В заключении подводятся итоги результатов работы, а также об­
суждаются потенциальные дальнейшие направления исследований.
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