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Введение

Основной целью генеративного моделирования является построение мате­
матических моделей, описывающих сложную структуру многомерных данных,
и дальнейшее использование этих моделей для симуляции новых данных со
схожими статистиками или для изменения характеристик исходных данных
[1]. За последние десять лет в области генеративного моделирования широкое
распространение получили численные методы на основе математической тео­
рии оптимального транспорта [1; 2], одним из основоположников которой
является советсткий математик и экономист Леонид Витальевич Канторович.

Оптимальный транспорт (ОТ) — это общее название обширного класса
задач нахождения эффективного способа перемещения массы между вероятност­
ными распределениями. В наши дни численные методы ОТ преимущественно
используются для вычисления функций потерь при обучении генеративных
моделей на основе глубоких нейросетей для синтеза искусственных данных [1],
например, изображений. Другое важное применение численных методов ОТ –
доменная адаптация [3], то есть адаптация модели (например, классификацион­
ной) для применения к данным с нового источника. Эта задача крайне важна,
например, в медицине, где типичный размер выборок данных не превышает
сотни объектов и необходимо комбинировать знания, полученные с нескольких
выборок из разных источников. Для решения таких задач используются ОТ
отображения, а также центры масс (ОТ барицентры) для агрегации выборок [4].

Наиболее популярна задача ОТ с квадратичной функцией стоимости, опре­
деляющая известную Васерштейн-2 метрику. Градиентные потоки функционалов
на пространстве распределений, оснащенном этой метрикой, позволяют моде­
лировать решения ряда дифференциальных уравнений, например, уравнения
Фоккера-Планка, используемого для описания процессов в физике, финансах,
демографии. Моделирование градиентных потоков можно осуществлять, ис­
пользуя численные методы ОТ [5].

Несмотря на значительные достижения в вычислительном ОТ за послед­
нее десятилетие, существующие вычислительные методы решения задач ОТ
по-прежнему обладают рядом критичных недостатков (описываемых далее),
ограничивающих их эффективное применение в ряде вышеупомянутых задач
моделирования распределений данных.
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Большинство методов [6] в области вычислительного ОТ предназначены
для данных, описываемых дискретными вероятностными распределениями.
Такие методы способны аппроксимировать решения задачи ОТ для распреде­
лений с дискретным носителем из 105 − 106 точек. При больших количествах
точек проблема неразрешима из-за большой вычислительной сложности. Таким
образом, дискретные методы не могут обеспечить точную аппроксимацию ре­
шения задачи ОТ для данных высокой размерности, имеющих непрерывные
распределения, поскольку требуются большие размеры выборок.

В то же время машинное обучение все чаще применяется для решения задач
ОТ [2; 7]. Построение математических моделей на основе глубоких нейронных
сетей для параметризации транспортных отображений позволяет масштаби­
ровать применения ОТ на высокороразмерные пространства и практические
задачи, в которых дискретные методы работают неудовлетворительно [8]. В
частности, численные методы ОТ на основе глубоких нейронных сетей позво­
ляют получать решения задач ОТ для непрерывных распределений. Такие
методы обычно называются непрерывными или параметрическими, а процесс
вычисления ОТ – обучением модели.

Численные непрерывные методы ОТ условно делятся на две группы: ме­
тоды на основе энтропийной регуляризации [2] и минимаксные методы [7].
Энтропийные методы из-за регуляризации находят решение задачи ОТ, ко­
торое смещено относительно истинного решения, что ведет к большой ошибке
решения задачи ОТ и усложняет использование методов на практике. Мини­
максные непрерывные методы не имеют этой проблемы, но требуют решения
задачи поиска седловой точки некоторого функционала. На практике такая
оптимизация может быть неустойчива, что усложняет процесс обучения с ис­
пользованием этих методов.

Важно отметить, что хотя в области вычислительного ОТ активно ведется
разработка новых непрерывных методов, вопрос оценки качества их функциони­
рования все еще остается открытым. Связано это с тем, что существует лишь
ограниченное число непрерывных задач ОТ, в которых аналитически известно
истинное решение задачи, с которым можно сравнить решение вычисленное
непрерывным методом.

Таким образом, существует необходимость разработки новых численных
методов, которые позволили бы находить решения непрерывных задач ОТ
в больших размерностях без смещения и без решения минимаксной задачи
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оптимизации. Для оценки точности таких методов требуется разработка ко­
личественной методики тестирования непрерывных методов вычисления ОТ.

Основными математическими задачами является аналитический вывод
двойственных формулировок задач ОТ, позволяющих осуществлять вычисление
транспортных отображений с помощью нейросетей без необходимости использо­
вать энтропийную регуляризацию или решать минимаксную задачу. Важной
подзадачей является получение теоретических результатов, связывающих точ­
ность нахождения оптимума двойственного функционала (в смысле его значения)
с ошибкой восстановленного решения прямой задачи ОТ. Построение надежных
и теоретически обоснованных нейросетевых методов вычисления ОТ позволит
усовершенствовать применения ОТ к ранее упомянутым практическим задачам.

Целью диссертационной работы является разработка математических
моделей на основе нейросетей для решения задач непрерывного ОТ с квадра­
тичной функцией стоимости (называемой Васерштейн-2 метрикой): вычисление
ОТ отображения и расстояния между непрерывными вероятностными распре­
делениями, нахождение барицентров семейств вероятностных распределений и
вычисление градиентных потоков функционалов на пространстве вероятност­
ных распределений. Для достижения цели в работе были поставлены и решены
следующие задачи:

1. Разработать численный метод на основе двойственной формулиров­
ки ОТ для поиска Васерштейн-2 оптимальных отображений между
непрерывными распределеними с помощью нейросетей; получить тео­
ретические оценки того, как связаны ошибки аппроксимации решений
предложенной двойственной и исходной задач.

2. Разработать численный метод на основе двойственной формулиров­
ки ОТ для поиска Васерштейн-2 барицентров семейства непрерывных
распределений с помощью нейронных сетей; получить теоретические
оценки того, как связаны ошибки аппроксимации решений предложен­
ной двойственной и исходной задач.

3. Разработать численный метод на основе дискретизации времени и ней­
ронных сетей для моделирования Васерштейн-2 градиентных потоков
функционалов на пространстве распределений.

4. Разработать методологию для количественного сравнения непрерывных
методов ОТ; предложить и математически обосновать метод создания
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эталонных пар непрерывных распределений с аналитически известным
Васерштейн-2 ОТ отображением.

Научная новизна:
1. Впервые предложен масштабируемый метод вычисления Васерштейн-2

оптимальных отображений между непрерывными распределениями в
пространствах большой размерности, который состоит из одного эта­
па обучения и не требует минимаксной оптимизации. В основе метода
лежит новый подход на основе введения нового циклического регу­
ляризатора в двойственную постановку задачи ОТ и использования
нейросетей с выпуклой по входу архитектурой. В отличие от существу­
ющих регуляризаторов циклический регуляризатор не вносит смещение
в решение задачи.

2. Впервые предложен масштабируемый метод вычисления Васерштейн-2
барицентров непрерывных вероятностных распределений, который со­
стоит из одного этапа обучения и не требует минимаксной оптимизации.
В основе подхода лежит комбинация циклического регуляризатора (см.
выше), нового регуляризатора на конгруэнтность решений двойственной
задачи и выпуклых по входу нейронных сетей. В отличие от существу­
ющих регуляризаторов, предложенная комбинация не вносит смещение
в решение.

3. Впервые предложен масштабируемый численный метод для моделиро­
вания Васерштейн-2 градиентных потоков на пространстве высокораз­
мерных вероятностных распределений. Метод является практической
реализацией теоретической схемы JKO [5], для которой ранее не были
известны эффективные численные методы для её реализации в про­
странствах высокой размерности.

4. Предложена оригинальная методология синтеза пар многомерных непре­
рывных вероятностных распределений, для которых аналалитически
известно эталонное Васерштейн-2 транспортное отображение между
ними. Разработанная методология и предложенные пары распределений
позволяют сравнивать непрерывные численные методы ОТ в больших
размерностях и устраняют недостатки существующих методик, свя­
занные с узостью классов используемых тестовых распределений и не
позволяющие объективно оценивать качество численных методов ОТ.
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Теоретическая значимость работы заключается в том, что предло­
женные новые подходы на основе нейронных сетей и численных методов ОТ
позволяют эффективно решать ряд задач математического моделирования,
избавляясь от недостатков существующих подходов таких как использование
численно нестабильной минимаксной оптимизации или наличие систематиче­
ских ошибок в решении. Принципиальной особенностью предложенных подходов
является то, что разработанные в работе решения для не требуют минимаксной
оптимизации и не смещают оптимальное решение задачи, что приводит к более
вычислительно эффективному и точному нахождению решения по сравнению с
существующими численными методами ОТ на основе нейронных сетей. В част­
ности, эти улучшения значительно упрощают теоретический анализ полученных
решений, и, как следствие, позволяют выводить оценки ошибки оптимизации по
ограниченному классу функций, например, представленному нейросетями.

Практическая значимость. Предложенные подходы математического
моделирования на основе нейронных сетей и численных методов ОТ име­
ют потенциал для решения практически важных научно-исследовательских
и промышленных задач. Например, разработанный метод, протестированный в
задачах доменной адаптации и переноса стиля на искусственных и модельных
данных, имеет ряд потенциальных приложений в задачах компьютерного зрения,
таких как обучение моделей для улучшения разрешения изображений, устра­
нения шума и пр. Другим возможным применением разработанных подходов
является агрегация данных из нескольких источников, например, медицинских
сканеров разных производителей, что позволит улучшить качество моделей
классификации и сегментации медицинских изображений, построенных на них.

Методология и методы исследования. Для достижения поставленных
в диссертационной работе целей используются:

1. Подходы теории оптимального транспорта для аналитического вывода
двойственных формулировок задач ОТ и соотношений между прямы­
ми/двойственными переменными, а также для построения методов
регуляризации двойственных задач, позволяющих эффективно находить
их решение.

2. Численные методы стохастической оптимизации для построения практи­
чески эффективных алгоритмов нахождения решений рассматриваемых
задач ОТ с помощью нейронных сетей.
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3. Подходы глубинного обучения для построения нейронных сетей с вы­
пуклой по входу архитектурой для аппроксимации минимизаторов
разработанных целевых функций.

4. Методы выпуклого анализа, линейной алгебры, математического и
функционального анализа, теории вероятностей и теории меры для тео­
ретического обоснования предложенных целевых функций оптимизации,
анализа соотношений решений прямых и предложенных регуляризован­
ных двойственных задач.

5. Способы количественной и качественной оценки результатов эксперимен­
тов, используемых в области вычислительного оптимального транспорта
и генеративного машинного обучения.

6. Подходы объектно-ориентированного программирования с использова­
нием языка программирования Python и фреймворка Pytorch глубинного
обучения и численной оптимизации для практической реализации и
тестирования предложенных методов.

Основные положения, выносимые на защиту:
1. Предложен алгоритм для вычисления Васерштейн-2 оптимального

отображения и расстояния между непрерывными распределениями,
базирующийся на нейросетях с выпуклой по входу архитектурой и при­
менении разработанной циклической регуляризации в двойственной
задаче. Получены теоретические оценки, связывающие ошибку мини­
мизации разработанного целевого функционала с ошибкой решения
исходной задачи нахождения ОТ отображения.

2. Предложен алгоритм для вычисления Васерштейн-2 барицентра се­
мейства непрерывных распределений, базирующийся на нейросетях с
выпуклой по входу архитектурой и использовании разработанных цикли­
ческой регуляризации и регуляризации на конгруэнтность двойственных
переменных задачи поиска барицентра. Получены теоретические оценки,
связывающие ошибку минимизации разработанного целевого функцио­
нала с ошибкой решения исходной задачи нахождения барицентра.

3. Предложен численный метод моделирования Васерштейн-2 градиентных
потоков функционалов на пространствах вероятностных распределений,
основанный на дискретизации градиентного потока по времени и на
использовании выпуклых по входу нейросетей.
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4. Разработана методология на основе нейронных сетей с выпуклой по
входу архитектурой для синтеза пар непрерывных распределений с
аналитически известным ОТ отображением между ними. Данная ме­
тодология позволяет устранить имеющийся пробел в тестировании
непрерывных методов решения задачи ОТ и исследования математиче­
ских моделей, на которых они основаны.

Полученные результаты соответствуют следующим пунктам пас­
порта специальности 1.2.2 (математическое моделирование, численные
методы и комплексы программ):

1. Результаты 1-3 соответствуют п.1 «Разработка новых математиче­
ских методов моделирования объектов и явлений», п.3 «Разработка,
обоснование и тестирование эффективных вычислительных методов с
применением современных компьютерных технологий» и п.4 «Реализа­
ция эффективных численных методов и алгоритмов в виде комплексов
проблемно-ориентированных программ для проведения вычислительно­
го эксперимента».

2. Результат 4 соотв. п.2 «Развитие качественных и приближенных анали­
тических методов исследования математических моделей».

Достоверность полученных результатов обеспечивается корректностью
применения апробированного в научной практике математического аппарата
теории оптимального транспорта и других смежных теоретических областей,
а также экспериментальной проверкой разработанных численных методов на
большом количестве модельных и практических задач оптимального транспорта.
Полученные теоретические результы обосновываются математически строгими
доказательствами, а для проведенных вычислительных экспериментов даются
детальные описания, обеспечивающие их воспроизводимость. Результаты опуб­
ликованы в трудах ведущих рецензируемых международных конференций по
машинному обучению и искусственному интеллекту.

Публикации. Список публикаций приведен в конце диссертации. Резуль­
таты диссертации изложены в 5 работах [A1-A5]. Все работы опубликованы в
трудах Core rank A* ведущих международных конференций по машинному
обучению. Работы [A1, A2] индексируются системой Scopus.

Апробация работы. Результаты работы доложены на 3 ведущих меж­
дународных научных конференциях ранга A* (суммарно 5 докладов) по
машинному обучению и искусственному интеллекту:
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1. The 9th International Conference on Learning Representations (ICLR 2021,
Core A*, онлайн) – 2 презентации по работам [A3, A4];

2. The 35th Conference on Neural Information Processing Systems (NeurIPS
2021, Core A*, онлайн) – 2 презентации по работам [A1, A2];

3. The 10th International Conference on Learning Representations (ICLR 2022,
Core A*, онлайн) – 1 презентация по работам [A5];

Результаты работы были представлены на 5 следующих научных семинарах по
машинному обучению и искусственному интеллекту:

– Huawei Machine Learning Workshop (2019, Сочи, Россия);
– Семинар по байесовским методам (2020, НИУ ВШЭ, онлайн);
– Geometry Data Processing Group Seminar (2020, MIT, онлайн);
– SMILES Machine Learning Summer School (2020, онлайн);
– Math of Machine Learning Summer School (2020, Сочи, Россия).

За научные результаты, включая результаты диссертации, автор в 2019 и 2021
годах становился лауреатом премии им. Ильи Сегаловича для поддержки моло­
дых исследователей в области машинного обучения и искусственного интеллекта
от компании Яндекс.

Личный вклад. Все положения, выносимые на защиту, получены автором
лично. Все алгоритмы и теоретические результаты, приведенные в диссертации
и работах [A1-A5], сформулированы и обоснованы непосредственно автором
диссертации. В диссертации использованы результаты совместных исследований:
экспериментальное тестирование метода для нахождения ОТ отображения [A3]
проведено совместно с соавторами В. Егиазаряном, А. Асадулаевым и А. Сафи­
ным; тестирование метода для вычисления барицентров [A4] проведено совместно
с соавтором Л. Ли; автор диссертации осуществил предварительную реализацию
и тестирование разработанного метода для вычисления градиентных потоков
[A2], адаптация кода для рассматриваемых в экспериментальной части практи­
ческих задач сравнения с альтернативными подходами осуществлена соавтором
П. Мокровым; все вычислительные эксперименты в работе [A1] осуществлены
непосредственно автором диссертации, а в работе [A5] – соавтором Л. Роут.

Примечание. Диссертационная работа выполнена автором в автономной
некоммерческой образовательной организации высшего образования «Сколков­
ский институт науки и технологий».
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Объем и структура работы. Диссертация состоит из введения, 5 глав
и заключения. Полный объём диссертации составляет 148 страниц, включая
30 рисунков и 17 таблиц. Список литературы содержит 138 наименований.
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Глава 1. Постановка задач исследования

В данной главе приводится общее описание 4 основных задач, решаемых в
диссертационной работе: вычисление Васерштейн-2 оптимальных транспортных
отображений и расстояний (задача 1), вычисление Васерштейн-2 барицентров
(задача 2), вычисление Васерштейн-2 градиентных потоков функционалов
(задача 3) и построение эталонных пар вероятностных распределений для
Васерштейн-2 оптимального транспорта (задача 4). Ниже мы приводим ма­
тематические постановки вышеописанных задач, а также кратко приводим
недостатки существующих подходов к их решению. Детальное обсуждение при­
водится в последующих главах работы.

Далее, через (R𝐷, ‖ · ‖) обозначим 𝐷-мерное евклидово пространство с
евклидовой метрикой ‖ · ‖. Через 𝒫2(R𝐷) обозначим множество всех борелевских
вероятностных распределений на R𝐷 с конечным вторым моментом. Также через
𝒫2,ac(R𝐷) ⊂ 𝒫2(R𝐷) обозначим подмножество всех абсолютно непрерывных
распределений (относительно меры Лебега). Образ распределения P ∈ 𝒫2(R𝐷)

под действием измеримого отображения 𝑇 : R𝐷 → R𝐷 обозначим через 𝑇♯P.

1.1 Вычисление Васерштейн-2 оптимального отображения

Задача 1 (Вычисление оптимального транспорта с квадратичной ценой). Для
пары вероятностных распределений P,Q ∈ 𝒫2(R𝐷) задача оптимального транс­
порта с квадратичной ставится следующим образом:

W2
2(P,Q)

def
= min

π∈Π(P,Q)

∫︁
R𝐷×R𝐷

‖𝑥− 𝑦‖2

2
𝑑π(𝑥,𝑦), (1.1)

где Π(P,Q) – множество транспортных планов, то есть вероятностных
распределений на R𝐷 × R𝐷, чьи маргиналы суть P,Q соответственно.

Решение задачи (1.1) предполагает нахождение оптимального плана
π* ∈ Π(P,Q), доставляющего минимум. Соответствующие минимальное зна­
чение называется оптимальной транспортной стоимостью, а её корень
называется расстоянием Васерштейн-2 и обозначается через W2.
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а) Постановка Канторовича. б) Постановка Монже.
Рисунок 1.1 — Схематически изображенная задача 1 оптимального транспорта

между распределениями P,Q с квадратичной функцией стоимости.

Формулировка (1.1) задачи оптимального транспорта часто называется
формулировкой Канторовича задачи ОТ (Рис. 1.1а) и представляет собой
оптимизацию линейного функционала от π (интеграла по π) на пространстве
вероятностных мер на R𝐷 × R𝐷 в линейных ограничениях π ∈ Π(P,Q). Однако
аналитические решения (1.1) для пар P,Q общего вида неизвестны, а решать
данную задачу оптимизации на практике вычислительно сложно.

В случае, когда P,Q – дискретные вероятностные распределения с ко­
нечным носителем, задача обычно решается численными методами линейного
программирования или же используются дополнительные регуляризаторы, при­
водящие к итеративным матричным методам [6]. К сожалению, когда P и Q
непрерывные распределения (доступные через конечные или бесконечные слу­
чайные выборки), вышеупомянутые дискретные методы не дают достаточного
качества, так как необходимые точные дискретизации распределений вычис­
лительно недостижимы.

Далее мы кратко рассмотрим основные существующие методы решения
задачи (1.1) в случае непрерывных P,Q и обозначим их ключевые недостатки,
которые устраняются в данной диссертации. Для начала отметим, что если
P ∈ 𝒫2,𝑎𝑐(R𝐷), то ОТ план π единственным образом определяется в виде π* =
[idR𝐷 , 𝑇 *]♯P, где 𝑇 * : R𝐷 → R𝐷 – единственный минимизатор задачи ОТ в
форме Монжа (Рис. 1.1б) [9]:

W2
2(P,Q) = min

𝑇♯P=Q

∫︁
R𝐷

‖𝑥− 𝑇 (𝑥)‖2

2
𝑑P(𝑥), (1.2)

где минимум берется по измеримым отображениям 𝑇 : R𝐷 → R𝐷, удовлетворяю­
щим условию переноса распределения 𝑇♯P = Q. Таким образом, в непрерывном
случае задача (1.1) сводится к нахождению оптимального транспортного
отображения 𝑇 * : R𝐷 → R𝐷.
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Существующие непрерывные методы основываются на решении двой­
ственной задачи к (1.1) и (1.2) и дальнейшем восстановлении оптимального
транспортного отображения 𝑇 * (решения прямой задачи) из найденных двой­
ственных переменных. Для P,Q ∈ 𝒫2(R𝐷) двойственная формулировка
задачи квадратичного ОТ имеет следующий вид (см. [9]):

W2
2(P,Q) = max

𝑓⊕𝑔⩽ 1
2‖·‖2

[︂ ∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

𝑔(𝑦)𝑑Q(𝑦)

]︂
, (1.3)

где максимум берется по всем P-интегрируемым функциям 𝑓 : R𝐷 → R ∪ {∞}
и Q-интегрируемым 𝑔 : R𝐷 → R ∪ {∞} (потенциалам), для которых выполнено
𝑓(𝑥) + 𝑔(𝑦) ⩽ 1

2‖𝑥− 𝑦‖2 при всех 𝑥, 𝑦 ∈ R𝐷. Существуют альтернативные к (1.3)
двойственные формы, например,

W2
2(P,Q) = Const(P,Q)− min

ψ∈Convex

Corr(P,Q|ψ)⏞  ⏟  [︂ ∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

ψ(𝑦)𝑑Q(𝑦)

]︂
, (1.4)

где минимум берется по выпуклым потенциалам ψ. При этом ψ(𝑦)
𝑑𝑒𝑓
=

max𝑥∈R𝐷

[︀
⟨𝑥,𝑦⟩ − ψ(𝑥)

]︀
– сопряженная функция к ψ, которая тоже является

выпуклой функцией. Второе слагаемое Corr(P,Q|ψ) в (1.4) называется корре­
ляцией, а функции ψ,ψ – потенциалами Бренье.

В случае, когда P ∈ 𝒫2,𝑎𝑐(R𝐷), P-почти всюду выполнено 𝑇 *(𝑥) = ∇ψ*(𝑥),
то есть градиент оптимального потенциала Бренье является оптимальным транс­
портным отображением из P в Q. Этот факт позволяет для решения задач ОТ
(1.1), (1.2) фокусироваться лишь на решении двойственной задачи, которая пред­
ставляется более простой, так в задаче устраняется нетривиальное граниченое
условие π ∈ Π(P,Q) в (1.1) или 𝑇♯P = Q в (1.2). Однако решение (1.4), то
есть нахождение двойственных потенциалов, все еще нетривиально, т.к. задача
представляет собой оптимизацию по пространству выпуклых функций ψ. При
этом вычисление сопряженной функции ψ представляет собой внутреннюю
задачу оптимизации.

В работе [7] авторы предлагают аппроксимировать ψ*, ψ* с помощью
выпуклых по входу нейронных сетей (англ. input-convex neural networks, со­
кращенно – ICNNs) и свести задачу к оптимизации параметров нейронных
сетей. Однако для использования метода предполагается решение минимаксной
задачи поиска седловой точки некоторого функционала. Полученная задача
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представляется сложной на практике из-за численной нестабильности мини­
максной оптимизации.

В работе [2] авторы рассматривают классическую двойственную форму
(1.3) вместо (1.4) и ослабляют условие 𝑓 ⊕ 𝑔 ⩽ 𝑐 с помощью наложения регу­
ляризации (энтропийной и пр.), которая мягко штрафует потенциалы 𝑓, 𝑔 за
нарушение этого условия. Из-за регуляризации решение задачи (оптимальный
𝑓 *) смещается относительно истинного решения, что не позволяет из него точно
находить решение исходной задачи ОТ (1.2).

В данной диссертации предлагается численный метод (глава 2 работы),
который устраняет недостатки вышеописанных непрерывных методов, а именно:
(1) оптимизируется неманимаксный критерий, (2) решением которого является
истинный несмещенный потенциалψ*, градиент∇ψ* которого является искомым
ОТ отображением 𝑇 *.

1.2 Вычисление Васерштейн-2 барицентра

Задача 2 (Задача поиска Васерштейн-2 барицентра). Рассмотрим распре­
деления P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷). Тогда их барицентр P относительно весов
α1, . . . ,α𝑁 (при α𝑛 > 0 и

∑︀𝑁
𝑛=1 α𝑛 = 1) определяется через (рис. 1.2а)

P def
= argmin

P∈𝒫2(R𝐷)

ℱBar(P)
def
= argmin

P∈𝒫2(R𝐷)

𝑁∑︁
𝑛=1

α𝑛W2
2(P𝑛,P). (1.5)

Здесь ℱBar называется барицентрическим функционалом, и его минимальное
значение обозначается через ℱ*Bar

𝑑𝑒𝑓
= ℱBar(P).

Проблемы существующих методов вычисления барицентров аналогичны
проблемам методов решения задачи ОТ (1.2). В случае, когда P1, . . . ,P𝑛 яв­
ляются многомерными непрерывными распределениями, дискретные методы
не дают достаточного качества, так как необходимые точные дискретизации
распределений вычислительно недостижимы. Непрерывные же методы для
вычисления барицентров либо требуют решения сложной minmaxmin задачи
оптимизации [10], либо используют энтропийную регуляризацию [8], ведущую
к смещеннию решения.
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а) Задача 2: вычисление
барицентра P семейства

{P𝑛}.

б) Задача 3:
моделирование град.

потока ρ𝑡 функц. ℱ(ρ).

в) Дискретизация град.
потока по времени (схема

JKO).
Рисунок 1.2 — Схематически изображенные задачи 2, 3 и схема JKO [5].

В данной диссертации предлагается численный метод (глава 3 работы),
который лишен недостатков вышеописанных методов, а именно: (1) оптимизи­
руется неманимаксный критерий, (2) решение которого позволяет восстановить
истинный несмещенный барицентр.

1.3 Вычисление Васерштейн-2 градиентного потока

Задача 3 (Вычисление Васерштейн-2 градиентного потока функционала
на пространстве распределений). Рассмотрим функционал на пространстве
вероятностных распределений ℱ : 𝒫2(R𝐷)→ R. Кривая, состоящая из распре­
делений {ρ𝑡}𝑡∈R+

и являющаяся решением уравнения

𝜕ρ𝑡
𝜕𝑡

= div(ρ𝑡∇𝑥ℱ ′(ρ𝑡)), s.t. ρ0 = ρ0, (1.6)

называется Васерштейн-2 градиентным потоком функционала ℱ , стартую­
щим из точки ρ0 ∈ 𝒫2(R𝐷), см. рис. 1.2б. Здесь ℱ ′(ρ𝑡) : R𝐷 → R обозначает
первую вариацию функционала ℱ в точке ρ𝑡 [9] (см. определение в п. 4.2 далее).

Научно-практический интерес в вычислении градиентных потоков заклю­
чается в том, что многие диффузионные процессы, возникающие на практике,
являются Васерштейн-2 градиентными потоками определенных фуцнкционалов.
В данной диссертационной работе основной объект исследования представляют
диффузии, являющиеся градиентными потоками функционала ℱFP свободной
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энергии Фоккера-Планка (β > 0)

ℱFP(ρ)
𝑑𝑒𝑓
=

∫︁
R𝐷

Φ(𝑥)𝑑ρ(𝑥) + β−1
∫︁
R𝐷

log
𝑑ρ

𝑑𝑥
(𝑥)𝑑ρ(𝑥), (1.7)

являющегося разностью потенциальной энергии и энтропии. Соответствующий
градиентный поток удовлетворяет 𝜕ρ𝑡

𝜕𝑡 = div(∇Φ(𝑥)ρ𝑡) + β−1Δρ𝑡 при ρ0 = ρ0.
Отметим, что при β = ∞ выражение является классическим уравенением
переноса, а в случае Φ(𝑥) ≡ 0 – уравнением теплопроводности.

В общем случае задача вычисления градиентных потоков Васерштейна-2
является сложной. Обычно аналитическое решение получить не удается, и
поэтому приходится применять методы численной аппроксимации. Джордан,
Киндерлерер и Отто предложили подход (позже получивший сокращенное
название “JKO-интегрирование”) для аппроксимации динамики ρ𝑡 в (1.6), см.
[5]. В этом методе осуществляется дискретное по времени итеративное уточнение
непрерывного потока (рис. 1.2в):

ρ(𝑘) ← argmin
ρ∈𝒫2(R𝑛)

[︂
ℱ(ρ) + 1

ℎ
W2

2(ρ
(𝑘−1), ρ)

]︂
, (1.8)

где ρ(0) = ρ0 – начальное условие и ℎ > 0 – величина шага дискретизации по
времени. Дискретный временной градиентный поток сходится к непрерывному
потоку при ℎ → 0, т.е. ρ(𝑘) ≈ ρ𝑘ℎ.

Cтоит отметить, что выполнение JKO-итераций является сложной задачей
из-за наличия минимизации по W2

2. Типичный подход к выполнению JKO-шага
основан на дискретизации пространственного домена. При размере носителя
⪅ 106 задача (1.8) может быть решена стандартными дискретными алгорит­
мами ОТ [6], упомянутыми в предыдущих разделах. В размерностях 𝐷 ⩾ 3

дискретные распределения обычно неточно аппроксимируют непрерывные рас­
пределения и, как следствие, динамику градиентных потоков. Чтобы обойти эту
трудность, в [11] предложен параметрический метод для аппроксимации ρ𝑡 на
основе энтропийного OT, который приводит к смещению найденного решения.

В данной диссертации предлагается численный метод (глава 4 работы)
для моделирования несмещенной динамики JKO с помощью замены оптимизации
(1.8) по вероятностным распределениям на эквивалентную, но практически более
обозримую оптимизацию по выпуклым функциям.
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1.4 Построение эталонных пар для Васерштейн-2 транспорта

Задача 4 (Построение эталонных пар непрерывных распределений для
Васерштейн-2 оптимального транспорта). Построить пары непрерывных ве­
роятностных распределений (P,Q), для которых оптимальное решение 𝑇 *

задачи 1 (ОТ отображение) аналитически известно. Подразумевается, что
построенные распределения P,Q на практике должны быть доступны через
случайные независимые выборки.

Эталонные пары могут быть использованы для количественного тестирова­
ния численных методов для решения задачи 1 поиска ОТ плана или отображения.
На данный момент возможности такого тестирования значительно ограничены.
Этот пробел в научной области вычислительного ОТ не позволяет объектив­
но оценить качество существующих численных методов для решения задач
ОТ. В литературе для оценки качества существующих непрерывных методов
используются два типа метрик.

В явных метриках вычисленное транспортное отображение 𝑇 сравнива­
ется с истинным 𝑇 *. В настоящее время имеется сравнительно немного явных
метрик, поскольку число примеров P,Q с известным эталоном 𝑇 * (т.е. решений
задачи 4) достаточно мало: 𝑇 * может быть получено в дискретном, 1-мерном
и линейно-разбросанном случаях.

Неявные метрики применяют численный метод ОТ как компоненту в
многоэтапной схеме обучения. При этом качество конечного решения задачи ис­
пользуется как косвенная оценка качества самого численного метода. Например,
в генеративном моделировании, при котором ОТ используется как фукнция
потери нейронной сети генератора, качество генератора оценивают через по­
пулярные метрики генеративного моделирования [1]. Такие метрики не дают
четкого понимания о качестве самого численного метода, так как зависят от
компонентов модели, не связанных с ОТ.

Таким образом, возникает необходимость разработки нетривиальных пар
непрерывных вероятностных распределений (P,Q), которые могли бы быть
использованы для явной оценки качества численных методов ОТ, то есть имели
бы аналитически известное ОТ отображение. В данной диссертационной работе
предлагается метод (глава 5 работы) построения эталонных непрерывных
пар P,Q с известным 𝑇 *.
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Глава 2. Метод для вычисления Васерштейн-2 оптимальных
транспортных отображений

В данной главе предлагается новый одноэтапный неминимаксный алгоритм
для обучения отображений оптимального транспорта относительно квадратич­
ной функции стоимости (расстояния Васерштейна-2, задача 1). Предложенный
алгоритм использует выпуклые по входу нейронные сети и циклически согласо­
ванную регуляризацию для аппроксимации расстояния Васерштейн-2. В отличие
от популярных энтропийных и квадратичных регуляризаторов циклическая
согласованность не приводит к появлению смещения и хорошо масштабируется
на случай больших размерностей. Мы даем теоретические оценки свойств транс­
портного отображения, обученного нашим алгоритмом. С практической точки
зрения наш алгоритм тестируется на большом числе задач: перенос цвета между
изображениями, оптимальный транспорт в латентном пространстве, перенос
стиля между изображениями, адаптация домена.

2.1 Введение

За последние пару лет, прошедших после введения генеративных состяза­
тельных сетей (GAN) в работе [12], они приобрели большую популярность. С их
помощью можно определить стохастическую процедуру для получения выборок
из заданного сложного вероятностного распределения Q на пространстве R𝐷

(например, на пространстве изображений). Обычная схема работы генеративной
сети включает в себя моделирование выборки из простого распределения P и
применение транспортного (генеративного) отображения 𝑇 , которое отображает
P в требуемое распределение Q.

Во многих случаях для вероятностных распределений P,Q имеются
несколько различных транспортных отображений. Например, отображение на
рис. 2.1б выглядит лучше, чем отображение на рис. 2.1а, так как оно хорошо
структурировано и является обратимым.

В существующих подходах к генеративному обучению мало внимания
уделяется структурным свойствам отображения. Например, в подходах, осно­
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а) Произвольное
отображение.

б) Монотонное
отображение.

Рисунок 2.1 — Два возможных генеративных отображения, переводящих рас­
пределение P в распределение Q.

ванных на сетях GAN (таких, как 𝑓 -GAN [13; 14], W-GAN [1] и других [15; 16]),
транспортное отображение аппроксимируется нейронной сетью с архитектурой,
зависящей от конкретной задачи.

Возникает естественный вопрос: как найти хорошо структурирован­
ное транспортное отображение 𝑇♯P = Q. Как правило, чем лучше структура
отображения, тем такое отображение легче найти. Есть много способов опреде­
ления того, что является хорошо структурированным отображением. Обычно
такое отображение считается по определению непрерывным и, часто, обрати­
мым. Можно отметить, что в случае, когда P и Q оба одномерны, единственный
класс отображений 𝑇 : R1 → R1 с такими свойствами составляют монотонные
отображения,1 т.e. отображения со свойством:

(︀
𝑇 (𝑥)− 𝑇 (𝑥′)

)︀
·
(︀
𝑥− 𝑥′

)︀
> 0 для

любых 𝑥, 𝑥′ ∈ R1 (𝑥 ̸= 𝑥′). Случай одномерных отображений можно интуитивно
легко распространить на случай пространств R𝐷. В этом случае накладывается
следующее условие:

⟨𝑇 (𝑥)− 𝑇 (𝑥′), 𝑥− 𝑥′⟩ > 0 ∀𝑥, 𝑥′ ∈ R𝐷 (𝑥 ̸= 𝑥′), (2.1)

называемое условием монотонности. Отметим, что любая сюръективная функ­
ция, удовлетворяющая этому условию, является обратимой. В одномерном
случае для любой пары абсолютно непрерывных P,Q с всюду положительной
плотностью существует единственное монотонное транспортное отображение,
задаваемое формулой 𝑇 (𝑥) = 𝐹−1Q

(︀
𝐹P(𝑥)

)︀
(см. [17]), где 𝐹(·) – кумулятивная

1Мы рассматриваем только монотонные возрастающие отображения. Убывающие отображения
имеют аналогичные свойства.
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функция распределения для P или Q. Для 𝐷 > 1 монотонных транспортных
отображений может быть много. Например, если P = Q – стандартные дву­
мерные гауссовские распределения, то все вращения на углы из промежутка
−π2 < α < π

2 являются монотонными и сохраняют распределение.
Единственность можно достичь путем рассмотрения только максимальных

(см. [18]) монотонных отображений 𝑇 : R𝐷 → R𝐷 , удовлетворяющих условию

𝑁∑︁
𝑛=1

⟨𝑇 (𝑥𝑛), 𝑥𝑛 − 𝑥𝑛+1⟩ > 0 (2.2)

для любых 𝑁 = 2, 3 . . . и 𝑁 различных точек 𝑥1, . . . ,𝑥𝑁 ∈ R𝐷 (𝑁 + 1 ≡ 1).
Условие (2.2), известное под именем циклической монотонности, также
влечет “обычную” монотонность (2.1).

Важно, что для почти всех пар непрерывных вероятностных распределе­
ний P,Q на R𝐷 существует единственное циклически монотонное отображение
𝑇 : R𝐷 → R𝐷 такое, что 𝑇♯P = Q (см. [17]). Таким образом, вместо поиска
произвольного транспортного отображения можно существенно уменьшить ап­
проксимирующий класс отображений путем рассмотрения только циклически
монотонных отображений.

Согласно работе [19] каждое циклически монотонное отображение 𝑇 со­
держится в субградиенте некоторой выпуклой функции ψ : R𝐷 → R. Таким
образом, по любому выпуклому классу функций можно строить циклически
монотонные отображения (путем рассмотрения субградиентов функций). На
практике в качестве класса выпуклых функций можно использовать глубокие
выпуклые по входу нейронные сети (ICNN, см. [20]).

Формально для обучения циклического монотонного генеративного отоб­
ражения можно применять существующие подходы, например, сети GAN (см.
[12]), в которых множество генераторов сужается до градиентов сетей ICNN.
Однако обычно при работе с сетями GAN требуется решение сложной задачи
минимаксной оптимизации.

Оказывается, что циклические монотонные генераторы тесно связаны с
расстоянием Васерштейна-2 (задача 1). В работах [7; 21] используется двой­
ственная форма W2 для нахождения оптимального транспортного отображения,
являющегося циклически монотонным. Прототипом обоих подходов является
алгоритм градиентного спуска для вычисления расстояния W2 из работы [22].
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Недостатком всех таких методов является схожесть с GAN, т.е. целевая задача
оптимизации является минимаксной.

Для циклически монотонных генераторов требуется, чтобы распределения
P,Q были на пространствах одной и той же размерности. Это требование не
представляет собой практического ограничения. Действительно, генеративное
отображение оказывается возможным скомбинировать с декодером предвари­
тельно обученного автокодировщика, т.e. обучить генеративное отображение
в латентном пространстве. Следует также отметить, что случай равных размер­
ностей достаточно распространен в задачах компьютерного зрения. Типичным
примером здесь является перенос стиля между изображениями. В этой задаче
входные и выходные изображения имеют одинаковый размер и одинаковое число
каналов. Среди других примеров упомянем перенос цвета между изображени­
ями, задачу адаптации домена и т.п.

В настоящей главе мы развиваем подход, связанный с циклически моно­
тонным генеративным обучением, то есть решением задачи 1. Основной вклад
главы заключается в следующем:

1. Разработка одноэтапного неминимаксного алгоритма для обучения цик­
лически монотонных транспортных отображений, т.e. оптимальных
отображений для квадратичной стоимости Васерштейн-2 (п. 2.4).

2. Доказательство теоретической оценки для свойств аппроксимации транс­
портного отображения, обученного предложенным методом (п. 2.5).

3. Демонстрация работоспособности метода на модельных и практиче­
ских задачах: ОТ между двумерными распределениями, ОТ между
многомерными гауссовскими распределениями, ОТ для переноса цветов
между изображениями, транспорта массы в латентных пространствах,
переноса стиля между изображениями, адаптации домена (п. 2.6).

4. Исследование класса выпуклых по входу нейронных сетей, градиенты
которых используются для приближения ОТ отображений (п. 2.7).

Наш алгоритм обобщает подход работы [7] и не использует минимальную
оптимизацию, в нем применяется циклическая регуляризация и решается неми­
нимаксная оптимизационная задача. Как результат, наш алгоритм хорошо
масштабируется на случай в больших размерностей и сходится до 10 раз быст­
рее, чем предыдущие аналогичные алгоритмы.
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2.2 Обзор существующих методов

Современное генеративное обучение в основном использует генеративные
состязательные сети (GAN) (см. [1; 12]). Основная модель сетей GAN состоит
из двух конкурирующих сетей: генератора 𝑇 и дискриминатора 𝑑. Генератор 𝑇

получает входные выборки 𝑥 из заданного распределения P и пытается выдать
реалистичные образцы из реального распределения данных Q. Дискриминатор 𝑑

пытается найти различие между сгенерированными и реальными распределения­
ми 𝑇♯P и Q соответственно. Формально он аппроксимирует меру отличия между
𝑇♯P и Q (например, 𝑓 -дивергенцию в смысле [13] или расстояние Васерштейна-1
[1]). Хотя для многих сетей GAN заявляется их превосходное качество (см. [23;
24]), обучение таких моделей всегда сопряжено с трудностями из-за минимаксной
природы рассматриваемой оптимизационной задачи.

Другая важная ветвь генеративного обучения связана с теорией опти­
мального транспорта (OT) [6; 25]. В методах теории оптимального транспорта
ищется генеративное отображение 𝑇 : R𝐷 → R𝐷, оптимальное в смысле задан­
ной стоимости транспорта 𝑐 : R𝐷 × R𝐷 → R:

Cost(P,Q) = min
𝑇♯P=Q

∫︁
R𝐷

𝑐
(︀
𝑥,𝑇 (𝑥)

)︀
𝑑P(𝑥). (2.3)

Задача (2.3) также известна как формулировка Монже задачи оптимального
транспорта [25] для цены 𝑐 общего вида.

Популярный метод оптимального транспорта [2] основан на оптимизации
регуляризованной двойственной к (2.3) формы (1.3), упомянутой ранее.
В этом методе обучаются два потенциала 𝑓, 𝑔 (двойственные переменные задачи
ОТ), после чего применяется метод барицентрических проекций для получения
требуемой (третьей) генеративной сети 𝑇 . Хотя в этом методе используется
неминимаксная оптимизация, он состоит из двух последовательных шагов и
находит смещенное решение задачи ОТ из-за энтропийной регуляризации.

В случае квадратичной стоимости транспорта 𝑐(𝑥,𝑦) = ‖𝑥−𝑦‖2
2 величина

(2.3) известна как квадрат расстояния Васерштейна-2 (1.2). Это расстояние
исследовалось в работах [17; 25—27] и обладает многими полезными свойствами,
которые мы обсудим более детально в п. 2.3. Отметим, что оптимальное отобра­
жение для квадратичной функции стоимости является циклически монотонным.
Для нахождения такого отображения имеется ряд алгоритмов: [7; 21; 28].
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Недавно предложенный в работе [21] метод использует алгоритм гради­
ентного спуска из работы [22] для вычисления расстояния W2. Ключевой идеей
метода является аппроксимация оптимального потенциала ψ* в (1.4) сетью
ICNN (см. [20]) и извлечение оптимального генератора 𝑇 * из его градиента ∇ψ*.
Однако этот подход является практически нецелесообразным из-за высокой
вычислительной сложности: во время основного оптимизационного цикла в нем
решается дополнительная оптимизационная подзадача, которая вычислительно
затратна, хотя и выпукла. Это было отмечено в оригинальной статье и де-факто
подтверждается отсутствием экспериментов со сложными распределениями.
Уточнение этого подхода предлагается в [7]. В этой работе внутренняя опти­
мизационная подзадача отсутствует, и дополнительная нейросеть используется
для аппроксимации ее решения. Это ускоряет вычисления, но при этом задача
все равно остается минимаксной.

2.3 Предварительные сведения

В этом параграфе мы напомним свойства W2-расстояния (1.2) и укажем на
его связь с монотонными отображениями. В настоящей работе мы предполагаем,
что P,Q ∈ 𝒫2,𝑎𝑐(R𝐷). Это условие гарантирует, что задача (2.3) корректно
поставлена в том смысле, что оптимальное отображение 𝑇 * всегда существует.
Из Теоремы 2.12 в [27] следует, что его ограничение на носитель P единственно (с
точностью до значений на малых множествах) и обратимо. Свойства симметрии
также верны для его обратного отображения (𝑇 *)−1, что влечет симметрию
в определении (2.3) квадратичной функции стоимости (1.2). Напомним, что
согласно [27] двойственная форма (1.4) к (1.2) имеет вид

W2
2(P,Q) =

∫︁
R𝐷

‖𝑥‖2

2
𝑑P(𝑥) +

∫︁
R𝐷

‖𝑦‖2

2
𝑑Q(𝑦)⏟  ⏞  

Const(P,Q)

−

min
ψ∈Convex

[︂ ∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

ψ(𝑦)𝑑Q(𝑦)

]︂
⏟  ⏞  

Corr(P,Q)

, (2.4)
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где минимум берется по всем выпуклым функциям (потенциалам) ψ : R𝐷 →
R ∪ {∞} и ψ(𝑦) = max𝑥∈R𝐷

(︀
⟨𝑥, 𝑦⟩ −ψ(𝑥)

)︀
– выпуклая сопряженная функция

[29] to ψ, также являющейся выпуклой функцией ψ : R𝐷 → R ∪ {∞}.
Значение минимума в (1.3) мы будем называть циклически монотонными

корреляциями и обозначать посредством Corr(P,Q). Приравнивая (1.2) и (2.4),
мы приходим к формуле

Corr(P,Q) = max
𝑇♯P=Q

∫︁
R𝐷

⟨𝑥, 𝑇 (𝑥)⟩𝑑P(𝑥). (2.5)

Отметим, что
(︀
− Corr(P,Q)

)︀
может рассматриваться как стоимость оптималь­

ного транспорта для билинейной функции стоимости 𝑐(𝑥,𝑦) = −⟨𝑥,𝑦⟩, см. [17].
Таким образом, поиск отображения оптимального транспорта 𝑇 * для W2 экви­
валентен нахождению отображения, максимизирующего корреляции в (2.5).

Напомним также, что для расстояния W2 градиент 𝑇 * = ∇ψ* опти­
мального потенциала ψ* непосредственно минимизирует (1.1), см. [27]. Будучи
градиентом выпуклой функции, он автоматически является циклически моно­
тонным. В частности, обратное отображение может быть получено путем взятия
градиента по входу сопряженного оптимального потенциала ψ*(𝑦) (см. [17]), т.е.

(𝑇 *)−1(𝑦) =
(︀
∇ψ*

)︀−1
(𝑦) = ∇ψ*(𝑦). (2.6)

На практике основной потенциал ψ можно аппроксимировать параметрическим
классом Θ входных выпуклых функций ψθ и затем оптимизировать корреляции

min
θ∈Θ

Corr(P,Q | ψθ) = min
θ∈Θ

[︂ ∫︁
R𝐷

ψθ(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

ψθ(𝑦)𝑑Q(𝑦)

]︂
(2.7)

для нахождения приближения оптимального генератора ∇ψ̂ из приближен­
ного потенциала ψ̂.

Для оптимизации (2.7) можно использовать стандартный метод стохастиче­
ского градиентного спуска. При этом, можно получить аналитическую формулу
для градиента (2.7) относительно параметра θ с использованием только ψθ (по
поводу соответствующих выкладок см. [21; 22]):

𝜕Corr(P,Q | ψθ)
𝜕θ

=

∫︁
R𝐷

𝜕ψθ(𝑥)

𝜕θ
𝑑P(𝑥)−

∫︁
R𝐷

𝜕ψθ(𝑥̂)

𝜕θ
𝑑Q(𝑦),

где производная 𝜕ψθ

𝜕θ во втором интеграле вычисляется в точке 𝑥̂ = (∇ψθ)−1(𝑦),
т.e. 𝑥̂ – прообраз 𝑦 для ∇ψθ.
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На практике оба интеграла заменяются их оценками по методу Монте-Кар­
ло по случайным выборкам из P и Q. Тем не менее, для вычисления второго
интеграла необходимо восстановить обратные значения текущего отображения
∇ψθ при всех 𝑦 ∼ Q в выборке. Для этой цели следует решить следующую
оптимизационную подзадачу:

𝑥̂ = (∇ψθ)−1(𝑦)⇔ 𝑥̂ = argmax
𝑥∈R𝐷

(︀
⟨𝑥,𝑦⟩ −ψθ(𝑥)

)︀
(2.8)

для каждого 𝑦 ∼ Q в выборке. Оптимизационная задача (2.8) выпукла, но
сложна, поскольку в ней требуется многократное вычисление градиента ψθ.
Она также вычислительно затратна, поскольку в общем ψθ является большой
нейронной сетью. Помимо этого каждый раз при выполнении итераций по θ воз­
никает новая независимая выборка. Это затрудняет использование информации
о решении (2.8) с предыдущего шага метода градиентного спуска по θ в (2.7).

2.4 Одноэтапный неминимаксный алгоритм

В п. 2.4.1 мы описываем наш новый одноэтапный алгоритм с немини­
максной оптимизацией для обучения циклически монотонных генеративных
отображений. В п. 2.4.2 мы приводим наши основные теоретические результаты
по свойствам аппроксимации предложенного алгоритма.

2.4.1 Алгоритм

Для упрощения внутренней оптимизационной процедуры обращения значе­
ний градиента ∇ψθ рассмотрим следующую вариационную аппроксимацию
основной задачи:

min
ψ∈Convex

Corr(P,Q|ψ)= min
ψ∈Convex

[︂∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥)+
∫︁
R𝐷

=ψ(𝑦)⏞  ⏟  
max
𝑥∈R𝐷

[︀
⟨𝑥, 𝑦⟩−ψ(𝑥)

]︀
𝑑Q(𝑦)

]︂
= min
ψ∈Convex

[︂ ∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥)+ max
𝐻:R𝐷→R𝐷

∫︁
R𝐷

[︀
⟨𝐻(𝑦), 𝑦⟩ −ψ(𝐻(𝑦))

]︀
𝑑Q(𝑦)

]︂
,(2.9)
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где, рассматривая произвольные измеримые функции 𝐻 : R𝐷 → R𝐷, мы получа­
ем вариационную оценку снизу, которая согласуется с действительным значением
при 𝐻 =

(︀
∇ψ

)︀−1
(𝑦) = ∇ψ(𝑦). Таким образом, возможным подходом здесь явля­

ется аппроксимация как основного ψ, так и двойственного ψ потенциалов двумя
различными сетями ψθ и φω с последующим решением оптимизационной задачи
по параметрам θ,ω, например, путем метода стохастического градиентного
спуска/подъема (см. [7]). Однако такая задача все еще остается минимаксной и,
как следствие, обладает недостатками, присущими таким задачам: сходимость к
локальным седловым точкам и неустойчивость во время обучения. Также в ней
обычно требуется осуществлять нетривиальный подбор гиперпараметров.

Мы предлагаем безминимаксиный метод, основанный на введении допол­
нительной регуляризации. Ключевой идеей нашего метода является введение
регуляризационого члена ℛQ

2 (ψ,φ), при котором стимулируется циклическая
состоятельность [30], т.e. в нем оптимизированные транспортные отображения
∇ψ и ∇φ должны быть взаимно обратны:

ℛQ
2 (ψ,φ)

𝑑𝑒𝑓
=

∫︁
R𝐷

‖∇ψ
(︀
∇φ(𝑦)

)︀
− 𝑦‖2𝑑Q(𝑦). (2.10)

Из предыдущих рассуждений и уравнения (2.6) мы получаем, что циклическая
состоятельность является вполне естественным условием для задач, связан­
ных с W2-расстоянием. Более конкретно, если ∇ψ и ∇φ являются в точности
обратными друг к другу, то φ – выпуклая сопряженная функция к ψ с точ­
ностью до константы.

В отличие от регуляризации, использованной в работе [2], в предлагаемых
штрафах используются не сами значения потенциалов ψ,φ, а значения их гради­
ентов (генераторов). Это помогает стабилизировать значение регуляризационого
члена, который в случае [2] может принимать экстремально большие значения
вследствие того, что выпуклые потенциалы быстро растут по модулю2.

Предлагаемая нами регуляризация приводит к следующей задаче неми­
нимаксной оптимизации (λ > 0):

min
φ,ψ∈Convex

Corr(P,Q | ψ,φ; λ) 𝑑𝑒𝑓
=

min
φ,ψ∈Convex

(︂∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥)+
∫︁
R𝐷

[︀
⟨∇φ(𝑦), 𝑦⟩−ψ(∇φ(𝑦))

]︀
𝑑Q(𝑦)

)︂
+
λ

2
ℛQ

2 (φ,ψ).(2.11)

2Например, в случае 𝑇 (𝑥) = ∇ψ(𝑥) = 𝑥 мы имеем квадратичный рост: ψ(𝑥) = ‖𝑥‖2
2 + 𝑐.
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Алгоритм 1: Численная процедура оптимизации регуляризованных
корреляций (2.11)

Вход :Распределения P,Q с выборочным доступом; коэффициент
циклически согласованного регуляризатора λ > 0; пара выпуклых
по входу нейронных сетей ψθ и φω; размер случайных выборок
𝐾 > 0;

for 𝑡 = 1,2, . . . do
1. Получение выборки 𝑋 ∼ P и 𝑌 ∼ Q;
2. Вычисление оценок по методу Монте–Карло для корреляций:

ℒCorr =
1

𝐾

[︂∑︁
𝑥∈𝑋

ψθ(𝑥) +
∑︁
𝑦∈𝑌

[︀
⟨∇φω(𝑦), 𝑦⟩ −ψθ

(︀
∇φω(𝑦)

)︀]︀]︂
;

3. Вычисление оценки по методу Монте–Карло для циклически
согласованного регуляризатора:

ℒCycle :=
1

𝐾

∑︁
𝑦∈𝑌

‖∇ψθ
(︀
∇φω(𝑦)

)︀
− 𝑦‖22;

4. Вычисление общей суммы потерь ℒTotal := ℒCorr +
λ
2 · ℒCycle;

5. Выполнение шага метода градиентного спуска по {θ,ω} с
использованием 𝜕ℒTotal

𝜕{θ,ω} ;

end

Метод практической численной оптимизации дается в алгоритме 1. Для аппрок­
симации ψ,φ мы используем две выпуклые по входу нейронные сети ψθ,φω [20].
Все интегралы заменяются их оценками по методу Монте-Карло на выборках
из P и Q. Оптимизация осуществляется применением стохастического градиент­
ного спуска по параметрам θ,ω основного ψθ и сопряженного φω потенциалов.

Для оценки градиентов ∇φω, ∇ψθ и градиентов в (2.11) по параметрам
θ,ω мы используем процедуру автоматического дифференцирования. Время для
вычисления градиента в (2.11) по θ,ω отличается по порядку (на мультиплика­
тивную константу) от времени для вычисления значения ψθ(𝑥). Эмпирически
найденное значение этой константы равно 8–12 (это значение зависит от кон­
кретной архитектуры сети ICNN ψθ(𝑥)). В п. 2.6.3 мы показываем, что наш
неминимаксный подход сходится до 10 раз быстрее, чем минимаксные ме­
тоды из работ [7] и [21].
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2.4.2 Аппрокcимация

Наш подход, основанный на методе градиентного спуска, представлен
в п. 2.4.1. В нем вычисляется Corr(P,Q) путем аппроксимации с ограниченным
множеством выпуклых потенциалов. Пусть (ψ̂,φ̂) – пара потенциалов, полу­
ченных путем оптимизации корреляции. Обученные отображения ∇ψ̂ (прямое)
и ∇φ̂ (обратное) формально являются побочными продуктами оптимизации
(2.11). Мы показываем, что на самом деле выполнено ∇ψ̂ ≈ ∇ψ* и ∇φ̂ ≈ ∇ψ*.

Теорема 2.4.1 (транспортное свойство для приближений регуляризованных
корреляций). Пусть P,Q ∈ 𝒫2,𝑎𝑐(R𝐷). Пусть ψ* : R𝐷 → R – оптимальный
выпуклый потенциал Бренье:

ψ*=argmin
ψ∈Convex

Corr(P,Q|ψ)= argmin
ψ∈Convex

[︂ ∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥)+
∫︁
R𝐷

ψ(𝑦)𝑑Q(𝑦)

]︂
. (2.12)

Пусть дифференцируемые выпуклые функции ψ̂ : R𝐷 → R и φ̂ : R𝐷 → R тако­
вы, что, при некотором ε ∈ R,

Corr
(︀
P,Q | ψ̂, φ̂; λ

)︀
⩽

[︂ ∫︁
R𝐷

ψ*(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

ψ*(𝑦)𝑑Q(𝑦)

]︂
+ ε =

Corr(P,Q | ψ*) + ε. (2.13)

Предположим, что ψ̂ является β-сильно выпуклой (β > 1
λ
> 0) и ℬ-гладкой

(ℬ ⩾ β). Предположим также, что φ̂ имеет биективный градиент ∇φ̂. Тогда
имеют место следующие неравенства:

1. Оценка сверху для корреляции (регуляризованные корреляции ма­
жорируют истинные)

Corr
(︀
P,Q | ψ̂,φ̂; λ

)︀
⩾ Corr

(︀
P,Q | ψ*

)︀
(т.e. ε ⩾ 0);

2. Прямое транспортное свойство (отображение ∇ψ̂ является
𝑂(ε)-близким к оптимальному отображению ∇ψ*)

1

2

∫︁
R𝐷

‖∇ψ̂(𝑥)−∇ψ*(𝑥)‖2𝑑P(𝑥) ⩽ (ℬ)2 · ε
λβ− 1

·
[︀ 1√
β
+
√
λ
]︀2

= 𝑂(ε);

3. Обратное транспортное свойство (отображение ∇φ̂ является
𝑂(ε)-близким к обратному оптимальному (∇ψ*)−1)

1

2

∫︁
R𝐷

‖∇φ̂(𝑦)−∇ψ*(𝑦)‖2𝑑Q(𝑦) ⩽
ε

β− 1
λ

= 𝑂(ε).
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Неформально говоря, теорема 2.4.1 утверждает, что чем лучше мы ап­
проксимируем корреляции между P и Q при помощи потенциалов ψ̂,φ̂, тем
более близкими к ∇ψ* и ∇ψ* ожидаются быть полученные ∇ψ̂ и ∇φ̂, соответ­
ственно (в смысле квадрата ℒ2 расстояния между функциями). В следующей
секции мы докажем теорему 2.4.1 и обсудим вопросы, связанные с гладкостью
и сильной выпуклостью.

В теореме 2.14 демонстрируется, что в действительности корреляции можно
аппроксимировать требуемым образом, если аппроксимирующий класс функций
для потенциалов является достаточно большим.

Теорема 2.4.2 (аппроксимируемость корреляций). Пусть P,Q ∈ 𝒫2,𝑎𝑐(R𝐷).
Пусть ψ* : R𝐷 → R – оптимальный выпуклый потенциал. Далее, пусть
Ψ,Φ – классы дифференцируемых выпуклых функций R𝐷 → R соответственно.
Предположим, что

1. ∃ψ1 ∈ Ψ с ε1-близким градиентом прямого отображения ∇ψ* в смысле
ℒ2(R𝐷 → R𝐷,P):

‖∇ψ1 −∇ψ*‖2P
def
=

∫︁
R𝐷

‖∇ψ2(𝑥)−∇ψ*(𝑥)‖2𝑑P(𝑥) ⩽ ε1,

где ψ1 является ℬ-гладкой;
2. ∃φ2 ∈ Φ с ε2-близким градиентом к обратному отображению ∇ψ*

в смысле ℒ2(R𝐷 → R𝐷,Q):

‖∇φ2 −∇ψ*‖2Q
def
=

∫︁
R𝐷

‖∇φ2(𝑦)−∇ψ*(𝑦)‖2𝑑Q(𝑦) ⩽ ε2.

Пусть (ψ̂,φ̂) – минимизаторы регуляризованных корреляций в Ψ× Φ:

(ψ̂,φ̂) = argmin
ψ∈Ψ,ψ∈Φ

Corr
(︀
P,Q | ψ,φ; λ

)︀
. (2.14)

Тогда регуляризованные корреляции для (ψ̂,φ̂) удовлетворяют следующему
неравенству:

Corr
(︀
P,Q | ψ̂,φ̂; λ

)︀
⩽ Corr(P,Q) +

[︀λ
2
(ℬ
√
ε2 +

√
ε1)

2 + (ℬ
√
ε2 +

√
ε1) · (

√
ε2) +

ℬ
2
ε2
]︀
, (2.15)

т.e. регуляризованные корреляции не превышают истинных плюс 𝑂(ε1 + ε2).
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Применяя теоремы 2.4.2 и 2.4.1, мы заключаем, что приближенные решения
ψ̂, φ̂ задачи (2.14) являются 𝑂(ε1 + ε2)-близкими к ∇ψ* и ∇ψ* соответственно.
На практике разумно использовать выпуклые по входу нейронные сети в качестве
классов функций Ψ,Φ. Полносвязные сети ICNN удовлетворяют универсальному
аппроксимационнму свойству, см. работу [31].

2.5 Доказательства теоретических результатов

В данной главе мы докажем наши основные теоремы 2.4.1 и 2.4.2. Далее
в работе через ℒ2(R𝐷 → R𝐷,P) мы будем обозначать гильбертово пространство
квадратично интегрируемых функций 𝑓 : R𝐷 → R𝐷 относительно вероятностной
меры P. Соответствующее скалярное произведение для 𝑓1, 𝑓2 ∈ ℒ2(R𝐷 → R𝐷,P)
обозначается посредством

⟨𝑓1,𝑓2⟩P
𝑑𝑒𝑓
=

∫︁
R𝐷

⟨𝑓1(𝑥),𝑓2(𝑥)⟩𝑑P(𝑥).

Пусть ‖ · ‖P =
√︀
⟨·,·⟩P – норма, порожденная скалярным произведением. Для

доказательства основных результатов нам понадобится следующая лемма.

Lemma 2.5.1 (ℒ2 неравенство для расстояния Васерштейна-2). Пусть P –
вероятностное распределение на R𝐷. Пусть 𝑇1,𝑇2 ∈ ℒ2(R𝐷 → R𝐷,P). Тогда
выполнено следующее неравенство:

1

2
‖𝑇1(𝑥)− 𝑇2(𝑥)‖2P ⩾ W2

2(𝑇1♯P,𝑇2♯P).

Доказательство. Определим транспортный план µ = [𝑇1,𝑇2]♯P между 𝑇1♯P и
𝑇2♯P и воспользуемся фактом, что его стоимость не меньше, чем оптимальная
стоимость, то есть W2

2(𝑇1♯P,𝑇2♯P).

Сначала мы докажем нашу основную теорему 2.4.1. Далее мы докажем
основную теорему 2.4.2. В конце параграфа мы обсудим константы, возникающие
в теоремах: параметры сильной выпуклости и гладкости.

Доказательство теоремы 2.4.1. Мы разобъем доказательство на три части.
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Часть 1. Оценка сверху для корреляций.
Для начала мы получим оценку снизу для регуляризованных корреляций

Corr
(︀
P,Q | ψ̂,φ̂; λ

)︀
, опуская регуляризационый член:∫︁
R𝐷

ψ̂(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

[︀
⟨𝑦,∇φ̂(𝑦)⟩ − ψ̂

(︀
∇φ̂(𝑦)

)︀]︀
𝑑Q(𝑦) =∫︁

R𝐷

ψ̂
(︀
∇ψ*(𝑦)

)︀
𝑑Q(𝑦) +

∫︁
R𝐷

[︀
⟨𝑦,∇φ̂(𝑦)⟩ − ψ̂

(︀
∇φ̂(𝑦)

)︀]︀
𝑑Q(𝑦) = (2.16)∫︁

R𝐷

[︀
ψ̂
(︀
∇ψ*(𝑦)

)︀
− ψ̂

(︀
∇φ̂(𝑦)

)︀]︀
𝑑Q(𝑦) +

∫︁
R𝐷

[︀
⟨𝑦,∇φ̂(𝑦)⟩

]︀
𝑑Q(𝑦) ⩾∫︁

R𝐷

[︀
⟨∇ψ̂

(︀
∇φ̂(𝑦)

)︀
,∇ψ*(𝑦)−∇φ̂(𝑦)⟩+ β

2
‖∇ψ*(𝑦)−∇φ̂(𝑦)‖2]𝑑Q(𝑦) +(2.17)∫︁

R𝐷

⟨𝑦,∇φ̂(𝑦)⟩𝑑Q(𝑦) +

[︂ ∫︁
R𝐷

⟨𝑦,∇ψ*(𝑦)⟩𝑑Q(𝑦)⏟  ⏞  
Corr(P,Q)

−
∫︁
R𝐷

⟨𝑦,∇ψ*(𝑥)⟩𝑑Q(𝑦)⏟  ⏞  
Corr(P,Q)

]︂
= (2.18)

⟨∇ψ̂ ∘ ∇φ̂,∇ψ* −∇φ̂⟩Q +
β

2
‖∇ψ* −∇φ̂‖2Q − ⟨idR𝐷 ,∇ψ* −∇φ̂⟩Q +

Corr(P,Q) = (2.19)

⟨∇ψ̂ ∘ ∇φ̂− idR𝐷 ,∇ψ* −∇φ̂⟩Q +
β

2
‖∇ψ* −∇φ̂‖2Q + Corr(P,Q) =

1

2β
‖∇ψ̂ ∘ ∇φ̂− idR𝐷‖Q + ⟨∇ψ̂ ∘ ∇φ̂− idR𝐷 ,∇ψ* −∇φ̂⟩Q +

β

2
‖∇ψ* −∇φ̂‖2Q + Corr(Q,P)− 1

2β
‖∇ψ̂ ∘ ∇φ̂− idR𝐷‖2Q =

Corr(Q,P) +
1

2

⃦⃦⃦⃦
1√
β

[︀
∇ψ̂ ∘ ∇φ̂− idR𝐷

]︀
+
√︀
β
[︀
∇ψ* −∇φ̂

]︀⃦⃦⃦⃦2
Q
−

1

2β
‖∇ψ̂ ∘ ∇φ̂− idR𝐷‖2Q.(2.20)

Здесь при переходе к (2.16) мы воспользовались заменой переменных P = ∇ψ*♯Q,
а при выводе (2.17) использовали β-сильную выпуклость функции ψ̂ и потом
добавили нулевой член в (2.18). Далее, начиная с (2.19), для простоты мы
заменили интегральные обозначения на обозначения с ℒ2(R𝐷 → R𝐷,Q).

Добавляя опущенный ранее регуляризационый член в (2.20), мы получаем
следующий результат:

Corr
(︀
P,Q | ψ̂,φ̂; λ

)︀
⩾ Corr(Q,P) +

1

2
(λ− 1

β
) · ‖∇ψ̂ ∘ ∇φ̂− idR𝐷‖2Q +

1

2

⃦⃦⃦⃦
1√
β

[︀
∇ψ̂ ∘ ∇φ̂− idR𝐷

]︀
+
√︀
β
[︀
∇ψ* −∇φ̂

]︀⃦⃦⃦⃦2
Q
. (2.21)
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Так как λ > 1
β
, то из полученного неравенства вытекает, что истинные кор­

реляции Corr(P,Q) дают оценки сверху для регуляризованных корреляций
Corr

(︀
P,Q | ψ̂,φ̂; λ

)︀
. Отметим, что если оптимальное отображение ∇ψ* является

⩾ β-сильно выпуклым, то оценка (2.21) является точной. Действительно, эта
оценка превращается в равенство при подстановке ∇φ̂ = (∇ψ̂)−1 = ∇ψ*.

Часть 2. Обратное генеративное свойство.
Продолжим вывод свойства из части 1. Пусть 𝑢 = ∇ψ̂ ∘ ∇φ̂ − idR𝐷 и

𝑣 = ∇ψ* −∇φ̂. Сопоставляя (2.21) with (2.13), получаем

ε ⩾
1

2
(λ− 1

β
)‖𝑢‖2Q +

1

2

⃦⃦⃦⃦
1√
β
𝑢+

√︀
β𝑣

⃦⃦⃦⃦2
Q
. (2.22)

Теперь получим оценку сверху для ‖𝑣‖2Q. При фиксированном 𝑢 имеем⃦⃦⃦⃦
1√
β
𝑢+

√︀
β𝑣

⃦⃦⃦⃦2
Q
⩽ 2ε− (λ− 1

β
)‖𝑢‖2Q.

Далее, применяя неравенство треугольника, получаем, что

‖
√︀
β𝑣‖Q⩽

⃦⃦⃦⃦
1√
β
𝑢+

√︀
β𝑣

⃦⃦⃦⃦
Q
+‖ 1√

β
𝑢‖Q⩽

√︂
2ε− (λ− 1

β
)‖𝑢‖2Q+‖

1√
β
𝑢‖Q. (2.23)

Выражение в правой части (2.23) принимает свое максимальное значение
√︁

2ε
1− 1

λβ

в ‖𝑢‖Q =
√︁

2ε
λ2β−λ . Как следствие,

‖∇ψ* −∇φ̂‖2Q = ‖𝑣‖2Q ⩽
2ε

β− 1
λ

.

Применяя ℒ2-неравенство из леммы 2.5.1 к распределению Q, отображениям
∇ψ* и∇φ̂, получим W2

2(∇φ̂♯P,Q) ⩽ ε
β− 1

λ

, что дает оценку сверху для расстояния
между сгенерированным и целевым распределением.

Часть 3. Прямое генеративное свойство.
Нам потребуется оценка (2.22). Поскольку в ней все слагаемые неотрица­

тельны, имеем

‖𝑢‖2Q ⩽
2ε

λ− 1
β

. (2.24)

Для оценки сверху ‖∇ψ* −∇ψ̂‖P воспользуемся (2.24).
Для начала отметим, что так как функция ψ̂ β-сильно выпуклая, то

выпуклая сопряженная к ней функция ψ̂ является 1
β
-гладкой. Таким образом,
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градиент ∇ψ̂ является 1
β
-липшицевым. Мы заключаем, что при всех 𝑥, 𝑥′ ∈ R𝐷:

‖∇ψ̂(𝑥)−∇ψ̂(𝑥′)‖ ⩽ 1

β
‖𝑥− 𝑥′‖. (2.25)

Возводя обе части (2.25) в квадрат, подставляя 𝑥 = 𝑦 и 𝑥′ = ∇ψ̂
(︀
∇φ̂(𝑦)

)︀
и

интегрируя по R𝐷 по распределению Q, мы приходим к следующему неравенству:∫︁
R𝐷

‖∇ψ̂(𝑦)−∇φ̂(𝑦)‖2𝑑Q(𝑦) ⩽

1

(β)2

∫︁
R𝐷

‖𝑦 −∇ψ̂
(︀
∇φ̂(𝑦)

)︀
‖2𝑑Q(𝑦) (2.26)

Далее, имеем

‖∇ψ̂−∇φ̂‖2Q =

∫︁
R𝐷

‖∇ψ̂(𝑦)−∇φ̂(𝑦)‖2𝑑Q(𝑦) ⩽∫︁
R𝐷

1

(β)2
‖ 𝑦 −∇ψ̂

(︀
∇φ̂(𝑦)

)︀⏟  ⏞  
=−𝑢(𝑦)

‖2𝑑Q(𝑦) =
‖𝑢‖2Q
(β)2

. (2.27)

Здесь при переходе к (2.27) мы воспользовались неравенством (2.26).
Далее, используя неравенство треугольника для ‖ · ‖Q, получаем

‖∇ψ̂−∇ψ*‖Q ⩽ ‖∇ψ̂−∇φ̂‖Q + ‖∇φ̂−∇ψ*⏟  ⏞  
=𝑣

‖Q ⩽

√︃
2ε

λ− 1
β

· 1
β
+

√︃
2ε

β− 1
λ

=

√︃
2ε

λ− 1
β

· ( 1
β
+

√︃
λ

β
) =√︂

2ε

λβ− 1
· ( 1√

β
+
√
λ) (2.28)

Далее, мы получим оценку снизу левой части (2.28), используя ℬ-гладкость
функции ψ̂. При всех 𝑥, 𝑥′ ∈ R𝐷 имеем

‖∇ψ̂(𝑥)−∇ψ̂(𝑥′)‖ ⩽ ℬ‖𝑥− 𝑥′‖. (2.29)

Возводя в квадрат обе части (2.29), подставляя 𝑥 = ∇ψ̂(𝑦) и 𝑥′ = ∇ψ*(𝑦) и
интегрируя по Q, получим∫︁

R𝐷

‖∇ψ̂
(︀
∇ψ̂(𝑦)

)︀
−∇ψ̂

(︀
∇ψ*(𝑦)

)︀
‖2𝑑Q(𝑦) ⩽ ℬ2

∫︁
R𝐷

‖∇ψ̂(𝑦)−∇ψ*(𝑦)‖2𝑑Q(𝑦)

Далее находим, что

‖∇ψ̂−∇ψ*‖2Q =

∫︁
R𝐷

‖∇ψ̂(𝑦)−∇ψ*(𝑦)‖2𝑑Q(𝑦) ⩾
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∫︁
R𝐷

1

(ℬ)2
‖∇ψ̂

(︀
∇ψ̂(𝑦)

)︀⏟  ⏞  
=𝑦

−∇ψ̂
(︀
∇ψ*(𝑦)

)︀
‖2𝑑Q(𝑦) =

1

(ℬ)2

∫︁
R𝐷

‖∇ψ*(𝑥)−∇ψ̂(𝑥)‖2𝑑P(𝑥) ⩾ 2

(ℬ)2
W2

2(∇ψ̂♯P,Q). (2.30)

Здесь при выводе (2.30) мы воспользовались ℒ2-свойством расстояния Васер­
штейна-2 (лемма 2.5.1). Как следствие,

W2
2(∇ψ̂♯P,Q) ⩽

1

2

∫︁
R𝐷

‖∇ψ*(𝑥)−∇ψ̂(𝑥)‖2𝑑P(𝑥) ⩽ (ℬ)2 · ε
λβ− 1

·
(︀ 1√
β
+
√
λ
)︀2
,

что завершает доказательство.

Доказательство теоремы 2.4.2. Мы будем рассуждать, как при выводе первой
части теоремы 2.4.1, но вместо свойства сильной выпуклости функции ψ1 для
получения оценки сверху для регуляризованных корреляций мы воспользуемся
ℬ-гладкостью для получения оценки снизу. В результате аналог (2.31) оценки
(2.21) имеет вид:

Corr
(︀
P,Q | ψ1,φ2, λ

)︀
− Corr(P,Q) ⩽

1

2
(λ− 1

ℬ
) · ‖∇ψ1 ∘ ∇φ2 − idR𝐷‖2Q +

1

2

⃦⃦⃦⃦
1√
ℬ
[︀
∇ψ1 ∘ ∇φ2 − idR𝐷

]︀
+
√
ℬ
[︀
∇ψ* −∇φ2

]︀⃦⃦⃦⃦2
Q
⩽ (2.31)

1

2
(λ− 1

ℬ
) · ‖∇ψ1 ∘ ∇φ2 − idR𝐷‖2Q +

1

2

[︂
1√
ℬ
‖∇ψ1 ∘ ∇φ2 − idR𝐷‖Q +

√
ℬ‖∇ψ* −∇φ2‖Q

]︂2
= (2.32)

λ

2
· ‖∇ψ1 ∘ ∇φ2 − idR𝐷‖2Q + ‖∇ψ1 ∘ ∇φ2 − idR𝐷‖Q · ‖∇ψ* −∇φ2‖Q +

ℬ
2
‖∇ψ* −∇φ2‖2Q (2.33)

Здесь при переходе от (2.31) к (2.32) мы воспользовались неравенством тре­
угольника. Для каждого 𝑦 ∈ R𝐷 имеем

‖∇ψ1

(︀
∇φ2(𝑦)

)︀
−∇ψ1

(︀
∇ψ*(𝑦)

)︀
‖ ⩽ ℬ · ‖∇φ2(𝑦)−∇ψ*(𝑦)‖.

Возводя обе части неравенства в квадрат и интегрируя по Q, мы получаем

‖∇ψ1 ∘ ∇φ2 −∇ψ1 ∘ ∇ψ*‖2Q ⩽ (ℬ)2 · ‖∇φ2 −∇ψ*‖2Q ⩽ (ℬ)2 · ε2. (2.34)
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Далее, учитывая ∇ψ*♯Q = P, имеем

‖∇ψ1 ∘ ∇ψ* −∇ψ* ∘ ∇ψ*⏟  ⏞  
idR𝐷

‖2Q = ‖∇ψ1 −∇ψ*‖2P ⩽ ε1. (2.35)

Применяя (2.34), (2.35) и неравенство треугольника, мы получаем оценку

‖∇ψ1 ∘ ∇φ2 − idR𝐷‖Q ⩽

‖∇ψ1 ∘ ∇φ2 −∇ψ1 ∘ ∇ψ*‖Q + ‖∇ψ1 ∘ ∇ψ* −∇ψ* ∘ ∇ψ*⏟  ⏞  
idR𝐷

‖Q ⩽

ℬ
√
ε2 +

√
ε1. (2.36)

Подставляя эти оценки в (2.31), получаем

Corr
(︀
P,Q | ψ1,φ2, λ

)︀
− Corr(P,Q) ⩽

λ

2
(ℬ
√
ε2 +

√
ε1)

2 + (ℬ
√
ε2 +

√
ε1) · (

√
ε2) +

ℬ
2
ε2. (2.37)

Используя неравенство

Corr
(︀
P,Q | ψ̂, φ̂, λ

)︀
⩽ Corr

(︀
P,Q | ψ1,φ2, λ

)︀
,

которое следует из определения ψ̂, φ̂, мы завершаем доказательство.

Можно сформулировать и доказать аналогичный результат для основного
оптимизационного метода c одним потенциалом (2.7). Однако мы не приводим
его здесь ввиду наличия в литературе соответствующего результата (см. [21]).

Во всех наших теоретических результатах требовалась гладкость или
сильная выпуклость потенциалов. Следует отметить, что аналогичное предпо­
ложение о гладкости и сильной выпуклости также имеется в других работах о
оптимальном транспорте для расстояния Васерштейна–2 (см., например, [32]).

Свойство ℬ-гладкости выпуклой функции ψ означает, что константа Лип­
шица ее градиента ∇ψ ограничена величиной ℬ. В нашем случае, константа ℬ
служит в качестве адекватной меры сложности обученного отображения ∇ψ:
она оценивает то, насколько сильно изображение может искажать пространство.

Свойство сильной выпуклости является двойственным к гладкости в том
смысле, что выпуклая сопряженная функция ψ к β-сильно выпуклой функции ψ
является 1

β
-гладкой (и наоборот) [33]. В нашем случае, β-сильная выпуклость по­

тенциала означает, что обратный к нему градиент (∇ψ)−1 = ∇ψ существенно не
деформирует пространство, т.e. его константа Липшица ограничена величиной 1

β
.
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Воспользуемся нашей теоремой 2.4.2. Предположим, что отображение
оптимального транспорта ∇ψ* между P и Q является градиентом β-сильно
выпуклой (β > 0) и ℬ-гладкой (ℬ <∞) функции. В этом случае, рассматривая
классы Ψ = Φ всех min(β, 1ℬ)-сильно выпуклых и max(ℬ, 1

β
)-гладких функций

и используя наш метод (при любом λ > 1
β
), мы сможем точно вычислить

корреляции и найти оптимальное ∇ψ*.

2.6 Вычислительные эксперименты

В этом параграфе мы экспериментально тестируем предложенный чис­
ленный метод вычисления Васерштейн-2 ОТ отображений. Программный код,
реализованный на фреймворке PyTorch, доступен публично по адресу

https://github.com/iamalexkorotin/Wasserstein2GenerativeNetworks.

Сети были обучены c использованием одной видеокарты GTX 1080Ti.
Описание обучения приводится в первом параграфе. В каждом последую­

щем параграфе рассматривается конкретная задача, представляются результаты
экспериментов и детали обучения: синтетические эксперименты в п. 2.6.2,
оптимальный транспорт между гауссианами 2.6.3, оптимальный транспорт
в латентном пространстве в п. 2.6.6, перенос цветов между изображениями
в 2.6.4, адаптация домена в п. 2.6.5, непарный перенос стиля между изобра­
жениями в п. 2.6.7.

Архитектуры используемых входных выпуклых сетей (Dense/Conv ICNN)
описываются в п. 2.7. Целью экспериментов является демонстрация возможности
технической реализации нашего подхода и архитектур.

2.6.1 Общие детали экспериментов

В каждом из экспериментов оба потенциала (основной ψθ и сопряжен­
ный φω) имеют одну и ту же нейросетевую архитектуру. Минимизация (2.11)
осуществляется с использованием стохастического метода градиентного спуска
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с обрезкой весов (за исключением свободных членов) на слоях в CP-блоке на
[0, +∞), см. п. 2.7. Был использован оптимизатор Adam [34].

Для каждой конкретной задачи мы предварительно обучаем потен­
циальную сеть ψθ путем минимизации квадрата ошибки для выполнения
приближенного равенства ∇ψθ(𝑥) ≈ 𝑥 и копируем веса на φω. Таким обра­
зом, мы получаем хорошую инициализацию для основного обучения, т.e. ∇ψθ
и ∇φω взаимно обратны.

В экспериментах с многомерными данными (оптимальный транспорт
в латентном пространстве, адаптация домена, перенос стилей) добавляется
следующий дополнительный регуляризатор к основной целевой функции (2.11):

ℛP
2(ψ,φ) =

∫︁
R𝐷

‖∇φ
(︀
∇ψ(𝑥)

)︀
− 𝑥‖2𝑑P(𝑥). (2.38)

Член (2.38) аналогичен члену ℛQ
2 из (2.10). Он также сохраняет взаимную

обратность прямого и обратного генеративных отображений. С теоретической
точки зрения не представляет труда обобщить результаты теорем 2.4.1 и 2.4.2,
но для оптимизации с двумя членами: ℛP

2 и ℛQ
2 . Однако мы не рассматриваем

ситуацию с членом ℛP
2 для большей прозрачности доказательств.

2.6.2 Синтетические эксперименты в 2D

В этом параграфе мы тестируем наш алгоритм на 2𝐷 синтетических
распределениях из [2; 35]. Во всех экспериментах распределение P – стандартный
гауссов шум и Q – смеси гауссовских распределений или “швейцарский рулет”.
Примеры полученных результатов показаны на рис. 2.3а, 2.3б и 2.2.

Как основные, так и сопряженные потенциалы ψθ и φω обладают ар­
хитектурой DenseICNN [2; 128; 128, 64]. Каждая сеть имеет приблизительно
25000 обучаемых параметров. Некоторые из них зануляются при обучении из-за
обрезания весов (weight clipping). Для каждой конкретной задачи сеть была
обучена 30000 итераций с размером случайных выборок 1024. Использовался
оптимизатор Adam [34] с lr = 10−3. В нашей циклической регуляризации мы
полагали λ = 1 и использовали дополнительную 10−10 ℒ1 регуляризацию.
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Рисунок 2.2 — Смесь 100 гауссовских распределений Q и распределение ∇ψθ♯P,
вычисленное нашим алгоритмом.

а) Смесь 49 гауссиан Q и
распределение ∇ψθ♯P ≈ Q,

полученное нашим алгоритмом.

б) Распределение “швейцарский рулет”
Q и распределение ∇ψθ♯P ≈ Q,
обученных нашим алгоритмом.

Рисунок 2.3 — Синтетические распределения, обученные нашим алгоритмом.

2.6.3 Оптимальный транспорт между гауссовскими
распределениями

Мы рассматриваем гауссовскую постановку P,Q = 𝒩 (0,ΣP),𝒩 (0,ΣQ), для
которой эталонное решение задачи оптимального транспорта известно аналитиче­
ски, см. Теорему 2.3 в [36]. Отметим, что здесь рассмотрение нецентрированных
P,Q не является необходимым, поскольку W2

2(P,Q) = 1
2‖µP− µQ‖

2 +W2
2(P0,Q0),

где P0,Q0 – центрированные копии P,Q. В 𝐷-мерном пространстве,
√
ΣP (

√︀
ΣQ -

аналогично) инициализируется как 𝑆𝑇
PΛ𝑆P, где 𝑆P ∈ 𝑂𝐷 – случайное вращение, Λ



42

– диагональная матрица с собственными значениями [12 , . . . ,
1
2𝑏

𝑘, . . . ,2], 𝑏 = 𝐷−1
√
4.

Эталонное отображение оптимального транспорта из P в Q линейно и имеет вид

∇ψ*(𝑥) = Σ
− 1

2

P
(︀
Σ

1
2

PΣQΣ
1
2

P
)︀ 1

2Σ
− 1

2

P 𝑥.

Мы сравниваем наш подход с методом работы [2] [LSOT] и минимаксными
методами из [21] [MM-1] и [7] [MM-2]. Положим λ = min(𝐷,50) для нашего метода
и ε = 0.01 (см. [2]) для метода LSOT (эти величины выбраны эмпирически). Во
всех методах мы используем DenseICNN[1;𝐷,𝐷,𝐷2 ] из п. 2.7.2. В методе LSOT
мы не овыпукляем сети (веса не обрезаются), т.e. рассматриваются "обычные"
нейронные сети без ограничений (эмпирически этот подход работает лучше),
что и делается в работе по LSOT.

Для оценки качества восстановленного транспортного отображения ∇ψ̂
мы рассматриваем процент необъясненной дисперсии (unexplained variance
percentage): ℒ2-UVP(∇ψ̂) = 100 ·

[︀
‖∇ψ̂−∇ψ*‖2P/Var(Q)

]︀
%. Здесь ∇ψ* – отоб­

ражение оптимального транспорта. Для значений ≈ 0% ∇ψ̂ является хорошей
аппроксимацией отображения оптимального транспорта. Для значений ⩾ 100%

отображение ∇ψ̂ практически бесполезно. Действительно, тривиальный ответ
∇ψ0(𝑥) = EQ[𝑦] дает ℒ2-UVP(∇ψ0) = 100%.

Таблица 1 показывает, что метод LSOT приводит к большим ошибкам, кото­
рые сильно растут с увеличением размерности. Методы W2GN (наш), MM-1 and
MM-2 функционируют практически одинаково в терминах метрики. Это, впро­
чем, и ожидалось, поскольку они все оптимизируют аналогичные функционалы.
Эти методы вычисляют отображения оптимального транспорта с маленькой
ошибкой (ℒ2-UVP<3% даже в R4096). Однако, как видно из рис. 2.4 (сходимость),
наш подход сходится в несколько раз быстрее: это естественно следует из
того, что методы типа MM содержат внутренний оптимизационный цикл.



43

Dim 2 4 8 16 32 64 128 256 512 1024 2048 4096

LSOT <1 3.7 7.5 14.3 23 34.7 46.9 >50

MM-1 <1 <1 <1 <1 <1 1.2 1.4 1.3 1.5 1.6 1.8 2.7

MM-2 <1 <1 <1 <1 <1 <1 1 1.1 1.2 1.3 1.5 2.1

W2GN <1 <1 <1 <1 <1 <1 1 1.1 1.3 1.3 1.8 1.5

Таблица 1 — Сравнение ℒ2-UVP (%) для методов LSOT, MM-1, MM-2 и (нашего)
метода W2GN в размерностях 𝐷 = 2,4, . . . ,212.

Рисунок 2.4 — Сравнение скорости сходимости для методов W2GN, MM-1 и
MM-2 для размерностей 𝐷 = 64,256,1024,4096.

2.6.4 Передача цветов

Задача передачи цветов между изображениями3 состоит в отображении
цветовой палитры одного изображения в палитру другого для того, чтобы
изображение выглядело и “ощущалось” как оригинал.

Задача оптимального транспорта может быть применена и к задаче пе­
редачи цветов, но она является чувствительной к шуму и выбросам. Чтобы
избежать этих сложностей, были предложены релаксации [32; 37]. При таких
подходах решается дискретный вариант задачи оптимального транспорта Ва­

3Изображения могут иметь неравные размеры. Тем не менее, предполагается, что у них равное
число каналов (например, каналов RGB).
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серштейна-2. Вычисление стоимости оптимального транспорта при больших
изображениях вряд ли технически осуществимо или даже вовсе неосуществи­
мо из-за чрезвычайно большого размера цветовой палитры. Таким образом,
обычно выполняется сжатие пиксельной цветовой палитры при помощи метода
𝑘-средних для того, чтобы сделать технически возможным вычисления в задаче
оптимального транспорта. И все же при таком способе редукции может быть
потеряна информация о цвете.

Наш алгоритм использует стохастическую оптимизацию на случайных
выборках. Таким образом, в нем нет ограничений по размеру цветовой палитры.
При обучении мы последовательно подаем выборки из пикселей изображений
(∈ R3) в потенциальные сети с архитектурой DenceICNN с параметрами [3; 128,
128, 64]. Сеть была обучена за 5000 итераций с 1024 пикселями в случайной
выборке. Использовался оптимизатор Adam с lr = 10−3. В качестве параметра
циклической регуляризации мы брали λ = 3. Мы налагаем дополнительный
10−10 ℒ1-штраф на веса.

Результаты передачи цветов для изображений размером ≈ 10 мегапикселей
представлены на рис. 2.5а. Соответственные цветовые палитры приведены на
рис. 2.5б. Ещё один пример передачи цветов представлен на рис. 2.6.

2.6.5 Адаптация домена

Задача адаптации домена заключается в обучении модели 𝑓 (например,
классификатора) на исходном распределении Q. Модель должна хорошо функ­
ционировать на другом (но близком) распределении P.

Большинство методов, основаных на теории оптимального транспорта,
явно решают задачу адаптации домена путем преобразования распределения P
в Q с последующим применением модели 𝑓 для генерации образцов. В некоторых
случаях отображение 𝑇 : R𝐷 → R𝐷 (преобразующее P в Q) получается путем
решения дискретной задачи оптимального транспорта [3; 38; 39], в то время как
при некоторых подходах используется адаптация нейронных сетей для оценки
отображения 𝑇 (см. [2; 40]).

Мы рассмотрим задачу адаптации домена без учителя – эта задача пред­
ставляет собой наиболее сложный вариант. В этой постановке метки класса
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а) Исходные изображения (слева) и изображения, полученные путем передачи
цветов (справа). Изображения имеют размеры: 3300× 4856 (первое) и

2835× 4289 (второе).

б) Цветовые палитры (3000 случайных пикселей) для оригинальных
изображений (слева) и для изображений с перенесенными цветами (справа).

Рисунок 2.5 — Результаты передачи цветов между изображениями с высоким
разрешением (размера ≈ 10 мегапикселей) при помощи циклически монотонных

отображений.

имеются в исходном домене. При обучении данная информация не используется.
Наш метод обучает отображение 𝑇 как градиент выпуклой функции. После
обучения его можно применить ко вновь поступающим образцам, не представ­
ленным в обучающей выборке.

Наша модель тестируется на наборах данных рукописных цифр MNIST
(≈ 60000 изображений; 28 × 28) и USPS (≈ 10000 изображений, масштабиро­
ванных к размеру 28 × 28). Далее выполняется адаптация домена USPS →
MNIST. Для этой цели мы обучаем классификатор LeNet с ⩾ 99%-процентной
точностью на наборе данных MNIST. Далее мы применяем ℎ к обоим наборам
данных и выделяем 84 признаков последнего слоя. После этого формируются
распределения Q (признаки для набора данных MNIST) и P (признаки для
набора данных USPS).
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а) Исходные изображения (слева) и изображения, полученные путем передачи
цветов (справа).

б) Цветовые палитры (3000 случайных пикселей) для оригинальных
изображений (слева) и для изображений с перенесенными цветами (справа).

Рисунок 2.6 — Результаты передачи цветов между изображениями с помощью
циклически монотонного отображения.

Чтобы обучить циклически монотонное отображение для адаптации домена,
мы используем потенциалы DenseICNN с параметрами [32; 128; 128, 128]. Наша
модель обучалась на случайных выборках размера 64 с 10000 итерациями с
циклической регуляризацией λ = 1000. Использовался оптимизатор Adam с
lr = 10−4 и накладывался ℒ1-штраф 10−7 на веса сетей.

Аналогично [2] мы сравниваем точность метода MNIST 1-NN (1 ближайший
сосед) классификатора 𝑓 , примененного к признакам 𝑥 ∼ P of USPS с тем же
классификатором, примененным к отображенным признакам 𝑇 (𝑥). Метод 1-NN
выбирался в качестве модели классификации для исключения любого влияния
модели базовой классификации на адаптацию домена.

Результаты эксперимента представлены в табл. 2. Поскольку качество
адаптации домена зависит в высокой степени от качества извлеченных призна­
ков, мы повторили эксперимент 3 раза, т.e. мы обучали 3 классификатора LeNet
для эталонного набора данных MNIST для извлечения признаков. Результаты
представлены с учетом дисперсии. Для сравнения с лучшими методами мы
также добавляли показатели классификатора 1-NN, примененного к признакам
исходного набора данных USPS, отображенных в признаки MNIST через дис­
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Повтор 1 Повтор 2 Повтор 3 Среднее (µ± σ)
Target features 75.7% 77% 75.4% 76± 0.8%

Отображенные признаки
(W2GN, наш)

80.6% 80.3% 82.7% 81.2± 1%

Отображенные признаки
(дискретный ОТ)

76% 75.7% 76.1% 75.9± 0.4%

Отображенные признаки [2] - - - 77.92%

Таблица 2 — Точность классификации (больше = лучше) 1-NN на наборах
данных USPS → MNIST в задаче адаптации домена.

Рисунок 2.7 — Пара главных компонент пространства признаков. Слева направо:
пространство признаков MNIST; признаки USPS, отображенные W2GN; ориги­
нальные признаки USPS. Главные компоненты получены из признаков MNIST.

Цвета соответствуют различным классам цифр 0− 9.

кретный оптимальный транспорт. Это может рассматриваться как “наиболее
прямое” отображение оптимального транспорта4.

Результаты для нашего метода сравнимы с результатами из [2]. Однако мы
не повторяли эксперименты из [2], поскольку в этой работе не был представлен
исходный код для адаптации домена. Таким образом, мы отсылаем читателя
напрямую к представленным результатам этой работы (табл. 1 [2], первый
столбец с полученными значениями).

Для наглядности мы графически изображаем две основные компоненты
метода анализа главных компонент (PCA) пространства признаков (использован­

4В отличие от нашего метода этот подход не может быть напрямую применен к примерам вне
обучающей выборки (out-of-train-sample examples). Более того, сравнение оказывается технически
неосуществимым для больших наборов данных.
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Method FID
AE: 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑋)) 7.5

AE Raw Decode: 𝐷𝑒𝑐(𝑍) 31.81
W2GN+AE: 𝐷𝑒𝑐(𝑇 (𝑍)) 17.21

WGAN-QC : 𝐺𝑒𝑛(𝑍) 14.41

Таблица 3 — Значения метрики FID для сгенерированных изображений.

ного в проведенных экспериментах) на рис. 2.7: признаки MNIST, отображенные
признаки USPS по нашему методу, оригинальные признаки USPS.

2.6.6 Оптимальный транспорт в латентном пространстве

Мы тестируем наш алгоритм на генерации изображений CelebA [41]
(64 × 64). Для начала мы строим распределение над латентным простран­
ством путем использования невариационного сверточного автокодировщика
для кодирования изображений в латентные вектора размерности 128. Далее мы
используем пару сетей DenseICNN для обучения циклически монотонного отоб­
ражения для преобразования стандартного нормального шума в распределение
над латентным пространством (рис. 2.8).

Мы используем сеть DenseICNN с параметрами [4; 256; 256; 128; 64] для обу­
чения циклически монотонного генеративного отображения для преобразования
стандартного нормального шума в распределение над латентным пространством.
Для каждой задачи сеть была обучена для 100000 итераций с размером случай­
ных выборок 128. Был использован оптимизатор Adam с lr = 3×10−4. В качестве
параметра циклической регуляризации возьмем λ = 100.

На рис. 2.9 представлены изображения, сгенерированные непосредственно
путем взятия выборки из стандартного нормального шума до (1-я строка) и после
(2-я строка) применения нашего транспортного отображения. Наше генеративное
отображение не приводит к кардинальным изменениям изображения, но разница
до и после его применения хорошо видна визуально, а также подтверждается
улучшением расстояния Fréchet Inception Distance (FID, см. [42]), см. табл. 3. Для
сравнения мы также указываем полученные результаты для недавно введенной
сети WGAN-QC в [43].
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Рисунок 2.8 — Схема транспорта массы в латентном пространстве.

Рисунок 2.9 — Изображения, декодированные из стандартного латентного
гауссовского шума (1-я строка) и из того же шума, перенесенного нашим цикли­

ческим монотонным отображением (2-я строка).

2.6.7 Перенос стилей между изображениями

В проблеме непарного переноса стилей алгоритм получает два набора
изображений (каждый со своими атрибутами), например, каждый набор данных
состоит из ландшафтов, относящихся к какому-либо сезону года. Целью явля­
ется обучение отображения, которое должно быть способно к решению задачи
переноса атрибутов из одного набора данных в другой, например, замене
зимнего ландшафта на соответствующий летний ландшафт.

Мы проводили наши эксперименты с потенциалами ConvICNN на публично
доступных5 наборах данных Winter2Summer и Photo2Cezanne (256×256
pix). Наша модель обучалась на случайных выборках из 8 случайно обрезанных
частей RGB-изображений размером 128× 128 пикселей. В качестве дополни­
тельной аугментации мы используем случайные вращения (± π

18), случайные
отражения по горизонтали и небольшой гауссовский шум (σ = 0.01). Сети были
обучены 20000 итераций с циклической регуляризацией λ = 35000. Был исполь­
зован оптимизатор Adam, вводился дополнительный 10−1 ℒ1-штраф для весов
сетей. Наша схема перенесения стилей между наборами данных представлена
на рис. 2.10. На рис. 2.11 и 2.12 представлены результаты для наборов данных
Winter2Summer and Photo2Cezanne.

5https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Рисунок 2.10 — Схема переноса стилей между наборами изображений с помощью
пары ConvICNN обученных нашим методом.

а) Результаты для набора данных
Winter2Summer.

б) Результаты для набора данных
Photo2Cezanne.

Рисунок 2.11 — Результаты переноса стиля между изображениями, полученными
при использовании сети ConvICNN для изображений 128× 128 пикселей.

Наша генеративная модель обучает циклическое монотонное отображение.
Однако требуемый перенос стилей может не быть циклически монотонным.
Таким образом, наша модель может передавать только некоторые из требуемых
атрибутов. Например, для передачи стиля “зима–лето” наша модель обучилась
закрашивать деревья в зеленый цвет. Однако проблемным для нашей модели
оказалось заполнение снежных покровов зеленой травой.

В работе [2] отмечается, что задача оптимального транспорта является
перестановочно инвариантной. В ней не учитывается связь между размерно­
стями, например, не учитываются окрестности пикселей или каналы в одном
пикселе. Таким образом, теория оптимального транспорта старается обучить оп­
тимальное генеративное отображение с использованием сверточной архитектуры
(предназначенной для сохранения локальной структуры изображения).

Для того, чтобы обойти эту проблему, можно рассмотреть задачу опти­
мального транспорта для квадратичной функции стоимости, определенной на
гауссовской пирамиде изображения (см. [44]) или аналогично перцепционным
потерям, используемым для достижения сверхвысокого разрешения [45], рас­
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а) Дополнительные результаты для
набора данных Winter2Summer.

б) Дополнительные результаты для
набора данных Photo2Cezanne.

Рисунок 2.12 — Дополнительные результаты переноса стиля между изображени­
ями для наборов данных Winter2Summer and Photo2Monet.

смотреть перцептуальную квадратичную функцию стоимости. Это замечание
указывает на одну из потенциальных тем дальнейших исследований.

2.7 Нейронные сети. Выпуклые Архитектуры

В п. 2.7.1, мы описываем общую архитектуру выпуклых по входу сетей.
Затем мы описываем частные случаи общей архитектуры, используемой в даль­
нейших экспериментах: DenseICNN в п. 2.7.2 и ConvICNN в п. 2.7.3.

2.7.1 Общая архитектура с выпуклым входом

Мы аппроксимируем выпуклые потенциалы входными выпуклыми ней­
ронными сетями [20]. Соответствующая общая архитектура схематично пред­
ставлена на рис. 2.13.

Выпуклая по входу сеть состоит из двух основных блоков:
1. Линейный (L) блок состоит из линейных слоев. Функции активации

и оператор пулинга в блоке также являются линейными, например,
тождественная активация или пулинг средним значением.
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Рисунок 2.13 — Общая архитектура выпуклой по входу нейронной сети.

2. Блок сохранения выпуклости (CP) состоит из линейных слоев с неот­
рицательными весами (за исключением свободных членов). Операции
активации и пулинг в этом блоке являются выпуклыми и монотонными.

Внутри блоков возможно использовать произвольные обходные связи (skip
connections), удовлетворяющие указанным правилам. Нейроны L-блока могут
быть произвольно связаны с нейронами CP-блока путем применения выпук­
лой активации6 и добавления положительного веса к полученному результату.
Согласно правилам действий над выпуклыми функциями каждый нейрон (вклю­
чая и выходной) в архитектуре, показанной на рис. 2.13, является выпуклой
функцией входных данных7.

В нашем случае, мы ожидаем, что сеть будет способна легко обучать
тождественное генеративное отображение

𝑇 (𝑥) = ∇ψ(𝑥) = 𝑥,

т.e. ψ(𝑥) = 1
2‖𝑥‖

2 + 𝑐 – квадратичная функция. Таким образом, мы в основном
используем квадратичные активациями между L- and CP-блоками. Этот под­
ход отличается от подхода [20], в котором такая активация не использовалась.
Градиенты входных квадратичных функций соответствуют линейным деформа­
циям входных функций и интуитивно весьма полезны как строительные блоки
(в частности, для обучения тождественного отображения).

Мы используем специфичные архитектуры для обучения общей схемы,
показанной на рис. 2.13. Потенциал ConvICNN используется для задач, свя­

6В отличие от активации в блоках, сохраняющими выпуклость, выпуклая активация между
L- и CP-блоками может не быть монотонной, например, в качестве активации можно рассмотреть
σ(𝑥) = 𝑥2.

7Можно использовать нормализацию батча и дропаут для L- and CP- блоков, а также между
ними. Введение таких слоев не влияет на выпуклость, поскольку их можно рассматривать (при
тестировании) как линейные слои с неотрицательными весами.
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занных с обработкой изображений, а DenseICNN – в других целях. Более
подробно эти архитектуры будут описаны в последующих разделах.

Функция CELU будет использована как выпуклая и монотонная активация
(в CP-блоке) во всех сетях. Мы также рассмотрели SoftPlus среди некото­
рых других непрерывных и дифференцируемых функций, однако это дало
отрицательный эффект на функционирование. Возможно также использова­
ние функции ReLU, но в этом случае градиент потенциала будет разрывным.
Таким образом, он не будет липшицевым, поэтому наши теоремы 2.4.1 и 2.4.2
не могут быть применимы.

В качестве выпуклого и монотонного пулинга (в CP-блоке) возможно
использование пулингов Average и LogSumExp (сглаженных max-пулингов). При
этом следует избегать использования чистого пулинга Max по тем же причинам,
что и активации ReLU. Однако в архитектуре ConvICNN мы используем свертки
со страйдом (stride) вместо пулинга, см. п. 2.7.3.

Для того, чтобы воспользоваться теоремой 2.4.1, мы предполагаем, что
потенциалы являются сильно выпуклыми и гладкими. Как отмечается в предыду­
щей секции, ℬ-гладкость выпуклой функции равносильна 1

ℬ сильной выпуклости
ее сопряженной функции (и наоборот). Таким образом, мы считаем обе сети
ψθ,φω β := 1

ℬ сильно выпуклыми, при этом циклическая регуляризация достав­
ляет ⪅ 1

β
= ℬ гладкость для ∇ψθ ≈ (∇φω)−1 и ∇φω ≈ (∇ψθ)−1. На практике

мы достигаем сильной выпуклости путем добавления дополнительного значения
β
2‖𝑥‖

2 к выходу финального нейрона сети. Во всех экспериментах мы полагаем
β−1 = 1000000. Накладываемые условия гладкости и сильной выпуклости мож­
но рассматривать в качестве регуляризации отображения: оно не дает слишком
больших или малых деформаций входных данных. См., например, [32]. В до­
полнение к сглаживанию сильная выпуклость гарантирует, что ∇ψθ и ∇φω
биективны, что использовано в теоремах 2.4.1, 2.4.2.

2.7.2 Полносвязная нейронная сеть, выпуклая по входу

Для сети DenseICNN мы реализуем слой Convex Quadratic, в кото­
ром каждый выходной нейрон является выпуклой квадратичной функцией
входных данных. Более точно, для каждого входа 𝑥 ∈ R𝑁in его выходы



54

Рисунок 2.14 — Полносвязная выпуклая по входу нейронная сеть.

(cq1(𝑥), . . . ,cq𝑁out
(𝑥)) ∈ R𝑁out с

cq𝑛(𝑥) = ⟨𝑥,𝐴𝑛𝑥⟩+ ⟨𝑏𝑛,𝑥⟩+ 𝑐𝑛

для неотрицательно определенной квадратичной формы 𝐴 ∈ R𝑁in×𝑁in, вектора
𝑏 ∈ R𝑁in и константы 𝑐 ∈ R. Отметим, что при больших 𝑁in размер такого слоя
быстро возрастает, т.e. ⩾ 𝑂(𝑁 2

in ·𝑁out). Для того, чтобы обойти эту сложность,
мы представим каждую квадратную матрицу как произведение 𝐴𝑛 = 𝐹 𝑇

𝑛 𝐹𝑛, где
𝐹 ∈ R𝑟×𝑁in – матрица ранга ⩽ 𝑟. Это помогает ограничить оптимизацию только
положительными квадратичными формами (в частности, симметричными) и
свести число весов в квадратичной части до порядка 𝑂(𝑟 ·𝑁in ·𝑁out). Полученные
квадратичные формы 𝐴𝑛 будут иметь ранг ⩽ 𝑟.

Соответствующая архитектура указана на рис. 2.14. Мы используем выпук­
лые квадратичные слои (Convex Quadratic Layers) для потенциалов DenseICNN
для организации прямого соединения входа с промежуточными слоями пол­
носвязной сети. Отметим, что такие слои (даже полного ранга) не сильно
увеличивают размер сети при небольшой размерности входных данных (на­
пример, в задаче о передаче цветов).

Гиперпараметрами для DenseICNN являются ширины слоев и ранги квад­
ратичных выпуклых по входу слоев. Для простоты мы используем тот же ранг 𝑟
для всех слоев. Через ℎ0 мы обозначим ширину первого выпуклого квадратич­
ного слоя и ширину 𝑘 + 1-го выпуклого квадратичного слоя и 𝑘-го линейного
слоя по ℎ𝑘. Полный набор гиперпараметров сети имеет вид [𝑟;ℎ0;ℎ1, . . . ,ℎ𝐾 ].
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Рисунок 2.15 — Выпуклая нейронная сеть cо сверточным входом. Все сверточные
слои имеют 128 каналов.

2.7.3 Сверточная выпуклая по входу нейронная сеть

Мы применяем сверточные сети в проблеме непарного переноса стиля
между изображениями. Архитектура сети ConvICNN показана на рис. 2.15.
В качестве входного в сеть поступает изображение размером (128 × 128 с 3

каналами RGB), на выходе выдается одно значение. Градиент сети по входу
рассматривается как генератор в нашем алгоритме.

В сети последовательно чередуются линейные блоки и блоки, сохраняющие
выпуклость. При этом, связи с пропуском слоя не используются. Блок L состоит
из двух отдельных частей с расположенными друг над другом свертками без
промежуточной активации. Квадрат второй части добавляется к первой части
и используется как вход для CP-блока. Все сверточные слои сети имеют 128
каналов (используется дополнение нулями со смещением = 1).

2.8 Обсуждение

В настоящей главе разработан одноэтапный алгоритм с неминимаксной
целевой функцией для обучения циклически монотонных генеративных отобра­
жений, т.e. отображений оптимального транспорта для квадратичной функции
стоимости. Дополнительно мы даем теоретическое обоснование нашего метода
с точки зрения аппроксимации. Результаты вычислительных экспериментов
подтверждают потенциал нашего алгоритма для различных практических задач:
транспорт массы в латентном пространстве, перенос цветов и стилей между
изображениями, адаптация домена.
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Глава 3. Метод для вычисления Васерштейн-2 барицентров

Геометрически барицентры Васерштейна суть взвешенные средние веро­
ятностных мер в задаче об оптимальном транспорте. В настоящей главе мы
представляем масштабируемый алгоритм для вычисления барицентров Васер­
штейна-2 по заданной выборке входных мер, которые не обязательно являются
дискретными. В то время, как предыдущие методы для решения этой задачи
использовали энтропийные или квадратичные регуляризации, мы используем
выпуклые по входу нейронные сети и циклически согласованную регуляризацию,
чтобы избежать введение смещения. Как результат наш подход не включает в
себя минимаксную оптимизацию. Мы представляем теоретические результаты
по оценкам ошибок, а также даем эмпирическое подтверждение эффективности
предложенного подхода в случае маломерных качественных сценариев и для
многомерных количественных экспериментов.

3.1 Введение

Барицентры Васерштейна приобрели свою популярность из-за способности
к представлению усреднений вероятностных мер в геометрически содержа­
тельном смысле. Методы нахождения барицентров Васерштейна с успехом
применяются во многих вычислительных задачах. В задачах обработки изобра­
жений барицентры Васерштейна используются для раскраски изображений и
переноса стиля [37; 46], а также для синтеза текстур [47]. В задачах геометриче­
ской обработки изображений задача интерполяции форм может быть решена
путем вычисления барицентров [48]. В задачах машинного обучения в реальном
времени барицентры используются для агрегации вероятностных прогнозов
экспертов [49]. В контексте байесовского вывода барицентр апостериорных рас­
пределений по подмножествам сходится к апостериорному распределению всего
набора данных. На основе этого факта были получены эффективные вычисли­
тельные методы, основанные на нахождении барицентров (см. [50; 51]).

В настоящее время имеются алгоритмы быстрого и точного нахождения
барицентра для дискретных распределений (см. обзор [6]). Однако для непре­
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рывных распределений ситуация более сложна и продвижения в этой задаче
появились лишь недавно (см. [8; 52; 53]). Стоит отметить, что дискретные методы
обладают плохой способностью к масштабированию при увеличении количества
точек носителя барицентра и не могут использоваться для хорошей аппроксима­
ции непрерывных барицентров, особенно в случае больших размерностей.

В настоящей главе мы представляем метод нахождения барицентров Ва­
серштейна-2 для непрерывных распределений. Наш метод основан на новой
регуляризованной двойственной постановке, в которой выпуклые потенциалы
параметризуются выпуклыми по входу нейронными сетями (см. [20]). Наш
алгоритм является одноэтапным, не порождает смещения результатов (см., на­
пример, [8]) и не задействует минимаксную оптимизацию (см., например, [52]).
Это достигается за счет комбинации нового регуляризатора на конгруэнтность
с циклически согласованной регуляризацией (из главы 2). Мы показываем, что
благодаря свойствам расстояния Васерштейна-2, градиенты получающихся вы­
пуклых потенциалов “отображают” входные распределения близко к истинному
барицентру, что позволяет строить хорошую аппроксимацию барицентра.

3.2 Предварительные сведения

Для полноты изложения в этой главе, в данной секции мы вновь напом­
ним читателю основные свойства расстояния Васерштейн-2. Затем определим
Васерштейн-2 барицентры, исследуемые в данной главе.

Напомним, что через 𝒫2(R𝐷) мы обозначаем множество всех борелевских
вероятностных мер на R𝐷 с конечным вторым моментом, а через 𝒫2,ac(R𝐷) ⊂
𝒫2(R𝐷) – подмножество всех абсолютно непрерывных мер (относительно Ле­
беговой меры).

Для P,Q ∈ 𝒫2(R𝐷) расстояние Васерштейна-2 определяется следу­
ющим образом:

W2
2(P,Q)

def
= min

π∈Π(P,Q)

∫︁
R𝐷×R𝐷

‖𝑥− 𝑦‖2

2
𝑑π(𝑥,𝑦), (3.1)

где Π(P,Q) – множество вероятностных мер на R𝐷×R𝐷, чьи маргиналы суть P,Q
соответственно. (см. [17; 26]). Для дальнейших шагов нам снова понадобится
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двойственная постановка (см. [27]):

W2
2(P,Q) =

∫︁
R𝐷

‖𝑥‖2

2
𝑑P(𝑥) +

∫︁
R𝐷

‖𝑦‖2

2
𝑑Q(𝑦)−

min
ψ∈Convex

[︂ ∫︁
R𝐷

ψ(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

ψ(𝑦)𝑑Q(𝑦)

]︂
, (3.2)

где минимум берется по всем выпуклым функциям (потенциалам) ψ : R𝐷 →
R∪{∞} и ψ̄(𝑦) = max𝑥∈R𝐷

(︀
⟨𝑥,𝑦⟩−ψ(𝑥)

)︀
: R𝐷 → R∪{∞} – выпуклая сопря­

женная функция к ψ [29], которая также является выпуклой функцией. Здесь
оптимальный потенциал ψ* определяется с точностью до аддитивной константы.

В работе [26] показано, что если P ∈ 𝒫2,𝑎𝑐(R𝐷), то оптимальный план π
единственным образом определяется в виде π* = [idR𝐷 , 𝑇 *]♯P, где 𝑇 * : R𝐷 → R𝐷

– единственное решение задачи Монже:

𝑇 * = argmin
𝑇♯P=Q

∫︁
R𝐷

‖𝑥− 𝑇 (𝑥)‖2

2
𝑑P(𝑥). (3.3)

Между 𝑇 * и двойственной задачей (3.2) имеется следующая связь: 𝑇 * = ∇ψ*,
где ψ* – оптимальное решение задачи (3.2). Дополнительно, если Q ∈ 𝒫2,𝑎𝑐(R𝐷),
то отображение 𝑇 * обратимо и

𝑇 *(𝑥) = ∇ψ*(𝑥) = (∇ψ*)−1(𝑥), (𝑇 *)−1(𝑦) = ∇ψ*(𝑦) = (∇ψ*)−1(𝑦).

Барицентр Васерштейна–2. Пусть P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷). Тогда их бари­
центр относительно весов α1, . . . ,α𝑁 (α𝑛 > 0 и

∑︀𝑁
𝑛=1 α𝑛 = 1) определяется

следующим образом:

P def
= argmin

P∈𝒫2(R𝐷)

𝑁∑︁
𝑛=1

α𝑛W2
2(P𝑛,P). (3.4)

На протяжении настоящей главы мы предполагаем, что по крайней мере одно
из распределений P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷) имеет ограниченную плотность. При
таком предположении распределение P единственно и абсолютно непрерыв­
но, т.е. P ∈ 𝒫2,𝑎𝑐(R𝐷) и имеет ограниченную плотность (см. определение 3.6
и теорему 5.1 в [4]).

Для 𝑛 ∈ {1,2, . . . ,𝑁} пусть (ψ*𝑛,ψ
*
𝑛) – оптимальная пара (взаимно) со­

пряженных потенциалов, которые отображают P𝑛 в P, т.е. ∇ψ*𝑛♯P𝑛 = P и
∇ψ*𝑛♯P = P𝑛. Тогда {ψ*𝑛} удовлетворяют уравнениям

𝑁∑︁
𝑛=1

α𝑛∇ψ*𝑛(𝑥) = 𝑥 и
𝑁∑︁
𝑛=1

α𝑛ψ*𝑛(𝑥) =
‖𝑥‖2

2
+ 𝑐 (3.5)



59

при всех 𝑥 ∈ R𝐷 [4; 36]. Так как оптимальные потенциалы определены
с точностью до константы, для удобства мы полагаем 𝑐 = 0. Условие (3.5) явля­
ется базисным для нашего алгоритма вычисления барицентров Васерштейна-2.
Мы говорим, что потенциалы ψ1, . . . ,ψ𝑁 конгруэнтны относительно весов
α1, . . . ,α𝑛, если их сопряженные потенциалы удовлетворяют условию (3.5), т.е.
если

∑︀𝐷
𝑛=1 α𝑛ψ𝑛(𝑥) = ‖𝑥‖2

2 при всех 𝑥 ∈ R𝐷.

3.3 Обзор существующих методов

Большинство вычислительных алгоритмов оптимальной транспортировки
разработаны для дискретных постановок задач, в которых входные распределе­
ния имеют конечный носитель (см. недавний обзор [6]). Особенно популярным
является семейство алгоритмов, основанных на энтропийной регуляризации. На
их основе был разработан известный итерационный метод Синкхорна (Sinkhorn)
[54; 55]. Использование таких методов обычно ограничивается носителем поряд­
ка 105−106 точек, поскольку при большем числе точек задача вычислительно
не решается. Аналогично, дискретные методы нахождения барицентра [55]
и особенно методы, основанные на фиксированном носителе барицентра [56;
57], не могут выдавать точную аппроксимацию непрерывных барицентров для
больших размерностей, поскольку в этом случае требуется очень большой дис­
кретный носитель (см., например, экспериментальные исследования в п. 4.3
работы [52]). Таким образом, мы дадим краткий обзор литературы только для
непрерывного случая.

Вычисление расстояния Васерштейна-2 и отображений. В работе
[58] демонстрируется возможность вычисления расстояний Васерштейна при
наличии только выборочного доступа к распределениям путем параметриза­
ции двойственных потенциалов с помощью ядерных разложений. В работе [2]
предлагается аналогичный метод с использованием нейронных сетей для пара­
метризации потенциалов и использования энтропийной или ℒ2 регуляризации
относительно P×Q для сохранения приближенной сопряженности потенциалов.
При этом транспортное отображение восстанавливается из оптимизированных
потенциалов с помощью барицентрической проекции.
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Как было отмечено в п. 3.2, расстояние W2 обладает рядом полезных
теоретических свойств. Например, оптимальный потенциал ψ* является вы­
пуклым. При этом соответствующее отображение оптимального транспорта
задается в виде ∇ψ*. В работе [7] с использованием этих свойств был предло­
жен алгоритм минимаксной оптимизации для восстановления транспортных
отображений для выпуклых по входу нейронных сетей (ICNN) [20] в задаче
аппроксимации потенциалов.

Альтернативой энтропийной регуляризации служит циклически согла­
сованная регуляризация, предложенная в главе 2 настоящей диссертационной
работы. Напомним, что в этом методе используется то свойство, что градиенты
оптимальных двойственных потенциалов являются взаимно обратными. В таком
регуляризаторе требуется интегрирование только по маргинальным мерам P
и Q, а не по P × Q, как требуется в альтернативах, основанных на энтропии.
Такой метод сходится быстрее, чем минимаксный метод, поскольку в нем не
задействуется внутренний оптимизационный цикл.

В работе [59] предлагается использование двух генеративных моделей,
c общим латентным пространством для неявного вычисления оптимального
транспортного соответствия между P и Q. Основываясь на полученном соот­
ветствии, авторы вычисляют оптимальное транспортное расстояние между
распределениями.

Вычисление барицентров Васерштейна-2. В ряде недавних работ рассмат­
ривается задача нахождения барицентра (3.4) с использованием непрерывных
(а не дискретных) аппроксимаций барицентра:

– Оптимизация, основанная на мерах (генеративная оптимиза­
ция). Задача (3.4) оптимизируется по вероятностным мерам. Для этой
цели можно использовать общий алгоритм из работы [53] с применением
генеративных сетей для вычисления барицентров. Этому подходу прису­
щи обычные проблемы генеративных моделей, например, коллапс мод.
Применение этого метода к задаче о W2-барицентрах требует оценки
W2

2(P𝑛,P). В работе [52] этот подход был протестирован с использовани­
ем минимаксного метода из [7]. Однако в этой работе авторы получили
труднорешаемую min-max-min-задачу.

– Оптимизация, основанная на потенциалах: в работе [8] оптималь­
ные потенциалы восстанавливаются {ψ*𝑛} через решение неминимаксной
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регуляризованной задачи. При этом генеративная модель не требуется:
барицентр восстанавливается через отображения прямых мер с исполь­
зованием градиентов потенциалов или барицентрической проекции.

3.4 Одноэтапный неминимаксный алгоритм

Следуя [8], мы используем подход, основанный на потенциалах и восстанав­
ливаем барицентр с использованием градиентов потенциалов как транспортных
отображений. Основные отличия нашего подхода: (1) мы рассматриваем только
выпуклые потенциалы; (2) конгруэнтность достигается через слагаемое регуля­
ризации; (3) в нашей постановке задачи не вводится смещение, т.е. оптимальное
решение нашей задачи дает истинный барицентр.

3.4.1 Вывод двойственной задачи

Пусть P – истинный барицентр. Нашей целью является восстановление
оптимальных потенциалов {ψ*𝑛,ψ*𝑛}, отображающих входные меры P𝑛 в P.

Для начала мы выразим задачу поиска барицентра (3.4) через двойствен­
ную задачу (3.2):

𝑁∑︁
𝑛=1

α𝑛W2
2(P𝑛,P) =

[︂ 𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

‖𝑥‖2

2
𝑑P𝑛(𝑥)

]︂
+

∫︁
R𝐷

‖𝑦‖2

2
𝑑P(𝑦)−

min
{ψ𝑛}∈Convex

[︂ 𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛(𝑥)𝑑P𝑛(𝑥) +
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛(𝑦)𝑑P(𝑦)
]︂

(3.6)

Здесь минимум достигается не только среди выпуклых потенциалов {ψ𝑛}, но
и среди конгруэнтных потенциалов (см. рассуждения после формулы (3.5));
таким образом, мы можем добавить ограничение, что {ψ𝑛} конгруэнтны (3.6).
Как следствие имеем

𝑁∑︁
𝑛=1

α𝑛W2
2(P𝑛,P) =

[︂ 𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

‖𝑥‖2

2
𝑑P𝑛(𝑥)

]︂
−
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min
{ψ𝑛} конгруэнтны

[︂ 𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛(𝑦)𝑑P𝑛(𝑦)⏟  ⏞  
MultiCorr({α𝑛,P𝑛}|{ψ𝑛})

]︂
. (3.7)

Для перехода от (3.6) к (3.7) мы использовали тот факт, что для конгруэнт­
ных {ψ𝑛} выполнено

∑︀𝑁
𝑛=1 α𝑛ψ𝑛(𝑥) =

‖𝑥‖2
2 , откуда

∑︀𝑁
𝑛=1

∫︀
R𝐷 α𝑛ψ𝑛(𝑦)𝑑P(𝑦) =∫︀

R𝐷

‖𝑦‖2
2 𝑑P(𝑦).
Величину под знаком минимума в (3.7) мы будем называеть множе­

ственной корреляцией {P𝑛} с весами {α𝑛} относительно потенциалов {ψ𝑛}.
Отметим, что истинный барицентр P нигде не появляется в правой части (3.7).
Таким образом, оптимальные потенциалы {ψ*𝑛} могут быть восстановлены пу­
тем решения следующей задачи:

min
{ψ𝑛} конгруэнтны

MultiCorr({α𝑛,P𝑛}|{ψ𝑛}) =

min
{ψ𝑛} конгруэнтны

[︂ 𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛(𝑦)𝑑P𝑛(𝑦)

]︂
. (3.8)

3.4.2 Условие конгруэнтности

Как можно наложить условие конгруэнтности на потенциалы на прак­
тике? Наша следующая теорема дает оценку близости множества выпуклых
потенциалов {ψ𝑛} к {ψ*𝑛} в терминах отличия множественной корреляции.

Теорема 3.4.1. Пусть P ∈ 𝒫2,𝑎𝑐(R𝐷) – барицентр P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷) с веса­
ми α1, . . . ,α𝑁 и пусть {ψ*𝑛} – оптимальные конгруэнтные потенциалы задачи
нахождения барицентра. Предположим, что нам заданы ℬ-гладкие1 выпуклые
потенциалы {ψ𝑛} при некотором ℬ ∈ (0,+∞). Положим

Δ = MultiCorr({α𝑛,P𝑛} | {ψ𝑛})−MultiCorr({α𝑛,P𝑛} | {ψ*𝑛}).
1Напомним, что дифференцируемая функция 𝑓 : R𝐷 → R является ℬ-гладкой. если ее градиент

∇𝑓 является ℬ-липшицевым.
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Тогда выполняется

Δ+

∫︁
R𝐷

𝑁∑︁
𝑛=1

[︀
α𝑛ψ𝑛(𝑦)−

‖𝑦‖2

2

]︀
𝑑P(𝑦)⏟  ⏞  

Дисбаланс конгруэнтности

⩾
1

2ℬ

𝑁∑︁
𝑛=1

α𝑛‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2P𝑛
. (3.9)

Здесь ‖ · ‖µ – норма, индуцированная скалярным произведением в гильбертовом
пространстве ℒ2(R𝐷 → R𝐷,µ).

Второе слагаемое в левой части (3.9) мы будем называть дисбалансом
конгруэнтности. Мы докажем этот результат в п. 3.5. Отметим, что если
дисбаланс конгруэнтности неположителен, то

Δ ⩾
1

2ℬ

𝑁∑︁
𝑛=1

α𝑛‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2P𝑛
⩾

1

ℬ

𝑁∑︁
𝑛=1

α𝑛W2
2(∇ψ𝑛♯P𝑛,P), (3.10)

где последнее неравенство в (3.10) обеспечивается леммой 2.5.1. Из (3.10) мы
заключаем, что W2

2(∇ψ𝑛♯P𝑛,P) ⩽ ℬΔ
α𝑛

при всех 𝑛 ∈ {1, . . . ,𝑁}. Это показывает,
что если дисбаланс конгруэнтности неположителен, то Δ (различие во мно­
жественных корреляциях) дает оценку сверху для расстояния Васерштейна-2
между истинным барицентром и отображением ∇ψ𝑛♯P𝑛 для всех 𝑛. Это делает
правомерным использование ∇ψ𝑛♯P𝑛 для восстановления барицентра. Отметим,
что для оптимальных потенциалов дисбаланс конгруэнтности равен нулю.

Таким образом, для штрафа положительного дисбаланса конгруэнтности
мы введем следующее слагаемое регуляризации:

ℛP
1({α𝑛},{ψ𝑛})

def
=

∫︁
R𝐷

[︃
𝑁∑︁
𝑛=1

α𝑛ψ𝑛(𝑦)−
‖𝑦‖2

2

]︃
+

𝑑P(𝑦). (3.11)

Так как мы берем положительную часть от подынтегрального выражения в (3.9)
для получения (3.11) и так как правая часть в (3.9) неотрицательна, имеем:[︀
MultiCorr({α𝑛,P𝑛} | {ψ𝑛})+1·ℛP

1({α𝑛},{ψ𝑛})
]︀
−MultiCorr({α𝑛,P𝑛} | {ψ*𝑛}) ⩾ 0

при всех выпуклых потенциалах {ψ𝑛}. С другой стороны, для оптимальных
потенциалов {ψ𝑛} = {ψ*𝑛} неравенство должно превращаться в равенство. Это
влечет то, что добавление слагаемого регуляризации 1 · ℛP

1({α𝑛},{ψ𝑛}) в (3.8)
не приводит к появлению смещенности – оптимальное решение по-прежнему
задается через {ψ*𝑛}.
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Однако для точного вычисления (3.11) требуется априорное знание истин­
ного барицентра P. Для преодоления этой трудности мы можем заменить P на
другую абсолютно непрерывную меру τ · ̂︀P (τ ⩾ 1 и ̂︀P – вероятностная мера),
чья плотность оценивает плотность P сверху почти всюду. В этом случае имеем

τ · ℛ̂︀P1({α𝑛},{ψ𝑛}) = τ ·
∫︁
R𝐷

[︀ 𝑁∑︁
𝑛=1

α𝑛ψ𝑛(𝑦)−
‖𝑦‖2

2

]︀
+
𝑑̂︀P ⩾ ℛP

1({α𝑛},{ψ𝑛}). (3.12)

Как следствие мы получаем следующий регуляризованный вариант (3.8) (где
{ψ*𝑛} – оптимальное решение задачи):

min
{ψ𝑛}∈Convex

[︀
MultiCorr({α𝑛,P𝑛} | {ψ𝑛}) + τ · ℛ

̂︀P
1({α𝑛},{ψ𝑛})

]︀
. (3.13)

Однако выбор меры τ · ̂︀P не столь очевиден. Рассмотрим случай, когда
носители {P𝑛} содержатся в компактных множествах 𝒳1, . . . ,𝒳𝑁 ⊂ R𝐷 и плот­
ность для P1 оценивается сверху величиной ℎ < ∞. В этом случае плотность
барицентра оценивается сверху величиной ℎ ·α−𝐷1 (см. замечание 3.2 работы [36]).
Таким образом, мера τ · ̂︀P с носителем ConvexHull(𝒳1, . . . ,𝒳𝑁) с такой плотно­
стью дает оценку сверху на P. Вопрос корректного выбора τ, ̂︀P в практических
задачах будет рассмотрен ниже в п. 3.4.4.

3.4.3 Выполнение условия сопряженности для пар потенциалов

В этом этом параграфе мы будем предполагать известной конечную меру
τ · ̂︀P, дающую оценку сверху для P. Оптимизационная задача (3.13) включает в
себя не только потенциалы {ψ𝑛}, но также и их сопряженные величины {ψ𝑛}.
Это приводит к сложностям в ее практической реализации, поскольку задача
вычисления сопряженных потенциалов является трудной (см. главу 2).

Мы рассмотрим потенциалы ψ𝑛 и ψ𝑛, как две отдельные выпуклые функ­
ции и обозначим их черезψ𝑛 иφ𝑛 соответственно. Следуя главе 2, для наложения
условия сопряжения на ψ𝑛 и φ𝑛 добавим дополнительный циклически согла­
сованный регуляризатор

ℛP𝑛
2 (ψ𝑛,φ𝑛)

def
=

∫︁
R𝐷

‖∇φ𝑛

(︀
∇ψ𝑛(𝑥)

)︀
− 𝑥‖22 𝑑P𝑛(𝑥) = ‖∇φ𝑛 ∘ ∇ψ𝑛 − idR𝐷‖2P𝑛

.
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Отметим, что ℛP𝑛
2 (ψ𝑛,φ𝑛) = 0 является необходимым условием для того, чтобы

ψ𝑛 и φ𝑛 были взаимно сопряженными. Также это условие является достаточным
условием для того, чтобы выпуклые функции были сопряженными с точностью
до аддитивной константы.

Мы будем использовать одностороннюю регуляризацию. В нашем случае
вычисление регуляризатора другого направления ‖∇ψ𝑛 ∘∇φ𝑛− idR𝐷‖2P техниче­
ски невозможно, поскольку мы не знаем P. В главе 2 мы наблюдали, что такое
одностороннее условие является достаточным.

На этом пути мы используем 2𝑁 выпуклых функций для {ψ𝑛,φ𝑛}. Путем
добавления нового циклически состоятельного регуляризатора в (3.13), получаем
нашу окончательную целевую задачу:

min
{ψ𝑛,φ𝑛}

Приближенная множественная корреляция⏞  ⏟  
𝑁∑︁
𝑛=1

[︂
α𝑛

∫︁
R𝐷

[⟨𝑥,∇ψ𝑛(𝑥)⟩ −φ𝑛(∇ψ𝑛(𝑥))⏟  ⏞  
≈φ𝑛(𝑥)

]𝑑P𝑛(𝑥)

]︂
+

τ·ℛ̂︀P1({φ𝑛})⏟  ⏞  
Конгр. рег..

+ λ

𝑁∑︁
𝑛=1

α𝑛ℛP𝑛
2 (ψ𝑛,φ𝑛)⏟  ⏞  

Циклический регуляризатор

. (3.14)

Отметим, что мы выражаем приближенную множественную корреляцию
через оба потенциала {ψ𝑛} и {φ𝑛}. За счет этого мы избавляемся от
произвольности в зависимости аддитивной константы от {ψ𝑛} (этого нель­
зя достичь циклической регуляризацией, см. главу 2). Обозначим через
MultiCorr

(︀
{P𝑛} | {ψ}, {φ}; τ,̂︀P, λ)︀ всю целевую функцию. Аналогично теореме

3.4.1 имеет место следующий результат, который показывает, что эта новая целе­
вая функция имеет те же свойства, как и ее нерегуляризованный вариант из (3.8).

Теорема 3.4.2. Пусть P ∈ 𝒫2,𝑎𝑐(R𝐷) – барицентр для P1, . . . ,P𝑁 ∈ 𝒫2,𝑎𝑐(R𝐷)

с весами α1, . . . ,α𝑁 и пусть {ψ*𝑛} – оптимальные конгруэнтные потенциалы
для задачи о барицентре. Предположим, что τ, P̂ таковы, что τ ⩾ 1 и τ·̂︀P ⩾ P.
Пусть нам также даны выпуклые потенциалы {ψ̂𝑛} и β-сильно выпуклые и
ℬ-гладкие выпуклые потенциалы {φ̂𝑛} с 0 < β ⩽ ℬ <∞ и λ > ℬ

2β2 . Тогда

MultiCorr
(︀
{α𝑛,P𝑛} | {ψ̂𝑛}, {φ̂𝑛}; τ, ̂︀P, λ)︀ ⩾ MultiCorr

(︀
{α𝑛,P𝑛} | {ψ*𝑛}

)︀
. (3.15)

Положим

Δ = MultiCorr
(︀
{α𝑛,P𝑛} | {ψ̂𝑛}, {φ̂𝑛}; τ, ̂︀P, λ)︀−MultiCorr

(︀
{α𝑛,P𝑛} | {ψ*𝑛}

)︀
.
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Тогда Δ ⩾ 0 и при всех 𝑛 ∈ {1, . . . ,𝑁} имеем

W2
2

(︀
∇ψ̂𝑛♯P𝑛,P

)︀
⩽

Δ

α𝑛
·

(︃√︂
1

β
+

√︃
1

λβ2 − ℬ2

)︃2

= 𝑂(Δ). (3.16)

Неформально говоря, теорема 3.4.2 утверждает, что чем лучше мы реша­
ем регуляризованную двойственную задачу (3.14), тем более близким можно
ожидать любое ∇ψ̂𝑛♯P𝑛 к истинному барицентру P в W2. Из (3.15) следует,
что наша окончательная целевая функция (3.14) является несмещенной, т.е.
оптимальное решение получается при {ψ*𝑛,ψ*𝑛}.

3.4.4 Алгоритм. Практическая реализация. Оптимизация

Для параметризации потенциалов {ψ𝑛,φ𝑛} мы используем сети DenseICNN
{ψθ𝑛,φω𝑛

} (полносвязные выпуклые по входу нейросети) с квадратичными
обходными связями, см. п. 2.7. В качестве начального шага мы предварительно
обучаем потенциалы так, чтобы выполнялись следующие условия:

ψθ𝑛(𝑥) ≈
‖𝑥‖2

2
и φω𝑛

(𝑦) ≈ ‖𝑦‖
2

2
.

Такое предварительное обучение дает хороший старт для сетей: каждый потенци­
ал ψθ𝑛 является приближенно сопряженным к соответствующему φω𝑛

. С другой
стороны, начальные сети {ψθ𝑛} приближенно конгруэнтны в силу (3.5).

Мы используем стохастический метод градиентного спуска на случайной
выборке для решения (3.14), где интегрирование выполняется при помощи вы­
борок по методу Монте–Карло по входным мерам {P𝑛} и мере регуляризации̂︀P аналогично [8]. Мы даем подробное описание оптимизационной процедуры
(алгоритм 2).

Оказывается, что на практике, даже если условие τ · ̂︀P ⩾ P не удовле­
творяется при выборе τ, ̂︀P , часто получается, что меры отображения ∇ψθ𝑛♯P𝑛

сходятся к P. Для того, чтобы частично устранить разрыв между теорией и
практикой, мы динамически корректируем меру ̂︀P таким образом, что после
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Алгоритм 2: Численная процедура для оптимизации множественных
корреляций (3.14)

Вход :Распределения P1, . . . ,P𝑁 с выборочным доступом;
Веса α1, . . . ,α𝑁 ⩾ 0 с

∑︀𝑁
𝑛=1 α𝑛 = 1;

Распределение регуляризации ̂︀P с выборочным доступом;
Коэффициент конгруэнтности на согласованность τ ⩾ 1;
Балансировочный коэффициент γ ∈ [0,1];
Коэффициент циклической согласованности λ > 0;
2𝑁 ICNN {ψθ𝑛,φω𝑛

}; Размер случайных выборок 𝐾 > 0;
for 𝑡 = 1,2, . . . do

1. Получение выборки 𝑋𝑛 ∼ P𝑛 при всех 𝑛 = 1, . . . ,𝑁 ;
2. Вычисление отображений 𝑌𝑛 = ∇ψθ𝑛♯𝑋𝑛 при всех 𝑛 = 1, . . . ,𝑁 ;
3. Получение выборки 𝑌0 ∼ ̂︀P;
4. Вычисление оценки по методу Монте–Карло для регуляризатора
конгруэнтности:

ℒCongruence :=
1

𝐾
·

𝑁∑︁
𝑛=1

γ𝑛
∑︁
𝑦∈𝑌𝑛

[︀ 𝑁∑︁
𝑛′=1

α𝑛′φω𝑛′(𝑦)−
‖𝑦‖2

2

]︀
+
,

где γ0 = γ и γ𝑛 = α𝑛 · (1− γ) для 𝑛 = 1,2, . . . ,𝑁 ;
5. Вычисление оценки по методу Монте–Карло для циклически
согласованного регуляризатора:

ℒCycle :=
1

𝐾

𝑁∑︁
𝑛=1

α𝑛

[︂ ∑︁
𝑥∈𝑋𝑛

‖∇φω𝑛

(︀
∇ψθ𝑛(𝑥)

)︀
− 𝑥‖22

]︂
;

6. Вычисление оценки по методу Монте–Карло для множественных
корреляций:

ℒMultiCorr :=
𝑁∑︁
𝑛=1

[︂
α𝑛 ·

1

𝐾

∑︁
𝑥∈𝑋𝑛

[︀
⟨𝑥,∇ψθ𝑛(𝑥)⟩ −φω𝑛

(∇ψθ𝑛(𝑥))]
]︂
;

7. Вычисление полных потерь:

ℒTotal := ℒMultiCorr + λ · ℒCycle + τ · ℒCongruence;

8. Выполнение градиентного шага по {θ𝑛,ω𝑛} с использованием
𝜕ℒTotal

𝜕{θ𝑛,ω𝑛} ;

end
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каждого оптимизационного шага мы полагаем (при γ ∈ [0,1])

̂︀P′ := γ · ̂︀P+ (1− γ) ·
𝑁∑︁
𝑛=1

α𝑛 ·
[︀
∇ψθ𝑛♯P𝑛

]︀
,

т.е. вероятностная мера ̂︀P′ является смесью заданной начальной меры ̂︀P и те­
кущей оценки барицентра {∇ψθ𝑛♯P𝑛}. Для начального ̂︀P можно использовать
барицентр {𝒩 (µP𝑛

,ΣP𝑛
)}. Его можно эффективно вычислить, используя ите­

рационный алгоритм, основанный на поиске неподвижной точки (см. [36; 60]).
При оптимизации эти оценки становятся ближе к истинному барицентру, что, в
свою очередь, может улучшить регуляризатор конгруэнтности (3.12).

3.5 Доказательства теоретических результатов

В этом параграфе мы доказываем наши основные теоремы 3.4.1 и 3.4.2. На­
помним, что через ℒ2(R𝐷 → R𝐷,µ) мы обозначаем гильбертово пространство
функций 𝑓 : R𝐷 → R𝐷, интегрируемых с квадратом по вероятностной мере µ.
Соответствующее скалярное произведение для 𝑓1, 𝑓2 ∈ ℒ2(R𝐷 → R𝐷,µ) опре­
деляется через ⟨𝑓1,𝑓2⟩µ

def
=
∫︀
R𝐷⟨𝑓1(𝑥),𝑓2(𝑥)⟩𝑑µ(𝑥), где ⟨𝑓1(𝑥), 𝑓2(𝑥)⟩ – евклидово

скалярное произведение. Через ‖ · ‖µ =
√︀
⟨·,·⟩µ обозначим норму, индуцирован­

ную скалярным произведением ℒ2(R𝐷 → R𝐷,µ).
Напомним следующее полезное свойство полунепрерывных снизу выпуклых

функций ψ : R𝐷 → R:

∇ψ(𝑥) = argmax
𝑦∈R𝐷

[︀
⟨𝑦, 𝑥⟩ −ψ(𝑦)

]︀
. (3.17)

Это свойство вытекает из того, что

𝑦 = argmax
𝑦∈R𝐷

[︀
⟨𝑦, 𝑥⟩ −ψ(𝑦)

]︀
⇐⇒ 𝑥−∇ψ(𝑦) = 0.

Доказательство теоремы 3.4.1. Мы рассматриваем разницу между оцененны­
ми и истинными корреляциями:

Δ =
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛(𝑥)𝑑P𝑛(𝑥)−
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ*𝑛(𝑥)𝑑P𝑛(𝑥) =
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𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

[︀
⟨∇ψ𝑛(𝑥),𝑥⟩ −ψ𝑛

(︀
∇ψ𝑛(𝑥))

]︀
𝑑P𝑛(𝑥)−

𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

[︀
⟨∇ψ*𝑛(𝑥),𝑥⟩ −ψ*𝑛

(︀
∇ψ*𝑛(𝑥))

]︀
𝑑P𝑛(𝑥). (3.18)

Здесь мы дважды воспользовались (3.17) для 𝑓 = ψ𝑛 и 𝑓 = ψ*𝑛. Отметим, что
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

⟨∇ψ*𝑛(𝑥),𝑥⟩𝑑P𝑛(𝑥) =
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

⟨𝑦,∇ψ*𝑛(𝑦)⟩𝑑P(𝑦) =∫︁
R𝐷

⟨𝑦,
𝑁∑︁
𝑛=1

α𝑛∇ψ*𝑛(𝑦)⟩𝑑P(𝑦) =
∫︁
R𝐷

⟨𝑦,𝑦⟩𝑑P(𝑦) = ‖idR𝐷‖2P, (3.19)

где мы используем формулу замены переменных для ∇ψ*𝑛♯P𝑛 = P и (3.5).
Аналогично

𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ*𝑛
(︀
∇ψ*𝑛(𝑥))𝑑P𝑛(𝑥) =

𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ*𝑛
(︀
𝑦)𝑑P(𝑦) =

∫︁
R𝐷

𝑁∑︁
𝑛=1

α𝑛ψ*𝑛
(︀
𝑦)𝑑P(𝑦) =

∫︁
R𝐷

‖𝑦‖2

2
𝑑P(𝑦) =

1

2
‖idR𝐷‖2P. (3.20)

Так как каждый потенциал ψ𝑛 является ℬ-гладким, то ψ𝑛 является 1
ℬ -сильно

выпуклым (см. [33]). Таким образом, имеем

ψ𝑛

(︀
∇ψ*𝑛(𝑥))) ⩾

ψ𝑛

(︀
∇ψ𝑛(𝑥))) + ⟨

=𝑥⏞  ⏟  
∇ψ𝑛

(︀
∇ψ𝑛(𝑥)

)︀
,∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)⟩+

1

2ℬ
‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2 =

ψ𝑛

(︀
∇ψ𝑛(𝑥))) + ⟨𝑥,∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)⟩+

1

2ℬ
‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2, (3.21)

или эквивалентно

−ψ𝑛

(︀
∇ψ𝑛(𝑥)) ⩾

−ψ𝑛

(︀
∇ψ*𝑛(𝑥))) + ⟨𝑥,∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)⟩+

1

2ℬ
‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2. (3.22)

Интегрируя (3.22) по P𝑛 и суммируя по 𝑛 = 1,2, . . . ,𝑁 с весами α𝑛, получаем

−
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛

(︀
∇ψ𝑛(𝑥))𝑑P𝑛(𝑥) ⩾



70

−
𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

ψ𝑛

(︀
∇ψ*𝑛(𝑥))𝑑P𝑛(𝑥) +

𝑁∑︁
𝑛=1

α𝑛⟨𝑥,∇ψ*𝑛(𝑥)⟩P𝑛
−

𝑁∑︁
𝑛=1

α𝑛⟨𝑥,∇ψ𝑛(𝑥)⟩P𝑛
+

𝑁∑︁
𝑛=1

α𝑛
1

2ℬ
‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2P𝑛

=

−
∫︁
R𝐷

𝑁∑︁
𝑛=1

α𝑛ψ𝑛

(︀
𝑦)𝑑P(𝑦) +

𝑁∑︁
𝑛=1

α𝑛⟨𝑥,∇ψ*𝑛(𝑥)⟩P𝑛
−

𝑁∑︁
𝑛=1

α𝑛⟨𝑥,∇ψ𝑛(𝑥)⟩P𝑛
+

𝑁∑︁
𝑛=1

α𝑛
1

2ℬ
‖∇ψ*𝑛(𝑥)−∇ψ𝑛(𝑥)‖2P𝑛

. (3.23)

Отметим, что

−
∫︁
R𝐷

𝑁∑︁
𝑛=1

α𝑛ψ𝑛

(︀
𝑦)𝑑P(𝑦) =

∫︁
R𝐷

[︀‖𝑦‖2
2
−

𝑁∑︁
𝑛=1

α𝑛ψ𝑛

(︀
𝑦)
]︀
𝑑P(𝑦)−

∫︁
R𝐷

‖𝑦‖2

2
𝑑P(𝑦)

∫︁
R𝐷

[︀‖𝑦‖2
2
−

𝑁∑︁
𝑛=1

α𝑛ψ𝑛

(︀
𝑦)
]︀
𝑑P(𝑦)− 1

2
‖idR𝐷‖2P. (3.24)

Подставляя (3.23), (3.24), (3.19) и (3.20) в (3.18), мы получаем (3.9).

Доказательство теоремы 3.4.2. Так как функция φ̂𝑛 является β сильно выпук­
лой, ее сопряженная φ̂𝑛 является 1

β
-гладкой, т.e. ее градиент ∇φ̂𝑛

1
β
-липшицев

[33]. Таким образом, при всех 𝑥, 𝑥′ ∈ R𝐷:

‖∇φ̂𝑛(𝑥)−∇φ̂𝑛(𝑥
′)‖2 ⩽ (

1

β
)2 · ‖𝑥− 𝑥′‖2.

Подставляя 𝑥′ = ∇φ̂𝑛

(︀
∇ψ̂𝑛(𝑦)

)︀
=
(︀
∇φ̂𝑛

)︀−1(︀∇ψ̂𝑛(𝑦)
)︀
, получаем

‖∇φ̂𝑛(𝑥)−∇ψ̂𝑛(𝑥)‖2 ⩽ (
1

β
)2‖𝑥−∇φ̂𝑛

(︀
∇ψ̂𝑛(𝑥)

)︀
‖2. (3.25)

Так как функция φ̂𝑛 является ℬ-гладкой, то при всех 𝑥 ∈ R𝐷 имеем:

φ̂𝑛(∇ψ̂𝑛(𝑥)) ⩽

φ̂𝑛(∇φ̂𝑛(𝑥)) + ⟨∇φ̂𝑛

(︀
∇φ̂𝑛(𝑥)

)︀⏟  ⏞  
=𝑥

,∇ψ̂𝑛(𝑥)−∇φ̂𝑛(𝑥)⟩+
ℬ
2
‖∇ψ̂𝑛(𝑥)−∇φ̂𝑛(𝑥)‖2.

Это эквивалентно тому, что

⟨𝑥,∇ψ̂𝑛(𝑥)⟩ − φ̂𝑛(∇ψ̂𝑛(𝑥)) ⩾
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⟨𝑥,∇φ̂𝑛(𝑥)⟩ − φ̂𝑛(∇φ̂𝑛(𝑥))⏟  ⏞  
φ̂𝑛(𝑥)

−ℬ
2
‖∇ψ̂𝑛(𝑥)−∇φ̂𝑛(𝑥)‖2. (3.26)

Теперь из (3.26) и (3.25) находим, что

⟨𝑥,∇ψ̂𝑛(𝑥)⟩ − φ̂𝑛(∇ψ̂𝑛(𝑥)) ⩾ φ̂𝑛(𝑥)−
ℬ
2β2
· ‖𝑥−∇φ̂𝑛

(︀
∇ψ̂𝑛(𝑥)

)︀
‖2. (3.27)

Для каждого 𝑛 = 1,2, . . . ,𝑁 , интегрируя (3.27) по P𝑛 и суммируя соответ­
ствующий циклически согласованный регуляризационый член, находим:∫︁

R𝐷

[︀
⟨𝑥,∇ψ̂𝑛(𝑥)⟩ − φ̂𝑛(∇ψ̂𝑛(𝑥))]𝑑P𝑛(𝑥) + λ · ‖∇φ̂𝑛 ∘ ∇ψ̂𝑛 − idR𝐷‖2P𝑛

⩾∫︁
R𝐷

φ̂𝑛(𝑥)𝑑P𝑛(𝑥) +
(︀
λ− ℬ

2β2

)︀
· ‖∇φ̂𝑛 ∘ ∇ψ̂𝑛 − idR𝐷‖2P𝑛⏟  ⏞  

ℛP𝑛
2 (ψ̂𝑛,φ̂𝑛)

. (3.28)

Суммируя (3.28) при 𝑛 = 1,2, . . . ,𝑁 по весам α𝑛, получаем

𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

[︀
⟨𝑥,∇ψ̂𝑛(𝑥)⟩ − φ̂𝑛(∇ψ̂𝑛(𝑥))]𝑑P𝑛(𝑥) + λ

𝑁∑︁
𝑛=1

α𝑛ℛP𝑛
2 (ψ̂𝑛, φ̂𝑛) ⩾

𝑁∑︁
𝑛=1

α𝑛

∫︁
R𝐷

φ̂𝑛(𝑥)𝑑P𝑛(𝑥)⏟  ⏞  
MultiCorr({α𝑛,P𝑛}|{φ̂𝑛})

+
𝑁∑︁
𝑛=1

α𝑛

(︀
λ− ℬ

2β2

)︀
· ℛP𝑛

2 (ψ̂𝑛, φ̂𝑛).

Прибавляя τ · ℛ̂︀P1({φ̂𝑛}) к обеим частям (3.29), имеем:

MultiCorr
(︀
{α𝑛,P𝑛} | {ψ̂𝑛}, {φ̂𝑛}; τ,̂︀P, λ)︀ ⩾ MultiCorr({α𝑛,P𝑛} | {φ̂𝑛}) +

τ · ℛ̂︀P1({φ̂𝑛}) +
𝑁∑︁
𝑛=1

α𝑛

(︀
λ− ℬ

2β2

)︀
· ℛP𝑛

2 (ψ̂𝑛, φ̂𝑛).(3.29)

Вычитая MultiCorr({α𝑛,P𝑛} | {φ*𝑛}) из обеих частей и используя теорему 2.4.1,
получаем, что

Δ ⩾

−
∫︁
R𝐷

𝑁∑︁
𝑛=1

[︀
α𝑛φ̂𝑛(𝑦)−

‖𝑦‖2

2

]︀
𝑑P(𝑦) +

β

2

𝑁∑︁
𝑛=1

α𝑛‖∇ψ*𝑛(𝑥)−∇φ̂𝑛(𝑥)‖2P𝑛
+ (3.30)

τ · ℛ̂︀P1({φ̂𝑛}) +
𝑁∑︁
𝑛=1

α𝑛

(︀
λ− ℬ

2β2

)︀
· ℛP𝑛

2 (ψ̂𝑛, φ̂𝑛) ⩾ (3.31)
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𝑁∑︁
𝑛=1

α𝑛

(︀
λ− ℬ

2β2

)︀
· ℛP𝑛

2 (ψ̂𝑛, φ̂𝑛) +
β

2

𝑁∑︁
𝑛=1

α𝑛‖∇ψ*𝑛(𝑥)−∇φ̂𝑛(𝑥)‖2P𝑛
. (3.32)

При переходе от (3.31) к (3.32) мы использовали тот факт, что сумма первого
члена в (3.30) с регуляризатором τ · ℛ̂︀P1({φ̂𝑛}) неотрицательна. Так как λ > ℬ

2β2 ,
то из (3.32) мы непосредственно заключаем, что Δ ⩾ 0, что дает оценку сверху
для множественных корреляций (3.15). С другой стороны, для каждого
𝑛 = 1,2, . . . ,𝑁 имеем:

‖∇ψ*𝑛(𝑥)−∇φ̂𝑛(𝑥)‖2P𝑛
⩽

2Δ

α𝑛β
и ‖∇φ̂𝑛 ∘ ∇ψ̂𝑛 − idR𝐷‖2P𝑛

⩽
2Δ

α𝑛 · (λ− ℬ
2β2 )

.(3.33)

Используя вторую часть (3.33), с учетом (3.25), проинтегрированного по P𝑛,
получим

‖∇φ̂𝑛 −∇ψ̂𝑛‖2P𝑛
⩽

2Δ

α𝑛 · (λβ2 − ℬ2 )
. (3.34)

Окончательно, применяя неравенство треугольника для ‖ · ‖P𝑛
, имеем:

‖∇ψ*𝑛 −∇ψ̂𝑛‖P𝑛
⩽ ‖∇φ̂𝑛 −∇ψ̂𝑛‖P𝑛

+ ‖∇φ̂𝑛 −∇ψ*𝑛‖P𝑛
⩽√︂

2Δ

α𝑛
·
(︀√︂ 1

β
+

√︃
1

λβ2 − ℬ2

)︀
, (3.35)

т.е.

2W2
2(∇ψ̂𝑛♯P𝑛,P) ⩽ ‖∇ψ*𝑛 −∇ψ̂𝑛‖2P𝑛

⩽
2Δ

α𝑛
·
(︀√︂ 1

β
+

√︃
1

λβ2 − ℬ2

)︀2
= 𝑂(Δ),

где первое неравенство вытекает из леммы 2.5.1.

3.6 Вычислительные эксперименты

Все эксперименты осуществлены c использованием одной видеокарты GTX
1080Ti. Программный код реализован на фреймворке PyTorch и публично
доступен по адресу

https://github.com/iamalexkorotin/Wasserstein2Barycenters.
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Мы сравниваем наш метод [CW2B] с основанным на потенциалах методе
[CRWB] из работы [8] (с расстоянием Васерштейна-2 и ℒ2-регуляризацией), а
также с основанным на мерах генеративным методом [SCW2B] из работы [52]. Все
рассмотренные методы восстанавливают 2𝑁 потенциалов {ψ̂𝑛,φ̂𝑛} ≈ {ψ*𝑛,ψ*𝑛}
и приближают барицентр мерами {∇ψ̂𝑛♯P𝑛}. Метод [SCW2B] дополнительно
выдает сгенерированный барицентр 𝑔♯S ≈ P, где 𝑔 – генеративная сеть и S
– распределение входного шума.

Для оценки качества вычисленного барицентра разумно рассмотреть
процент необъясненной дисперсии (unexplained variance percentage), опре­
деляемый следующим образом: UVP(P̃) = 100 W2

2(P̃,P)
1/2Var(P)%. При UVP ≈ 0%, P̃

является хорошей аппроксимацией P. Для значений ⩾ 100% распределение P̃
является неподходящим: при тривиальном базовом выборе (baseline) P0 = δEP[𝑦]

мы получаем UVP(P0) = 100%. Вычисление метрики UVP для больших раз­
мерностей технически неосуществимо: эмпирические оценки для W2

2 являются
недостоверными из-за высокой выборочной сложности [61]. Для преодоления
этой сложности для барицентров, заданных ∇ψ̂𝑛♯P𝑛, мы используем метрику
ℒ2-UVP, определяемую следующим образом:

ℒ2-UVP(∇ψ̂𝑛,P𝑛)
def
= 100

‖∇ψ̂𝑛 −∇ψ*𝑛‖2P𝑛

Var(P)
%

[︂
⩾ UVP(∇ψ̂𝑛♯P𝑛)

]︂
, (3.36)

где неравенство в скобках следует из леммы 2.5.1. В метрике ℒ2-UVP происходит
сравнение не только отображенного распределения ∇ψ̂𝑛♯P𝑛 c барицентром P, но
также и полученного транспортного отображения с отображением оптимального
транспорта ∇ψ*𝑛. В ней дается оценка для UVP(∇ψ̂𝑛♯P𝑛) сверху. Кроме того для
метрики ℒ2-UVP можно естественно получать несмещенные оценки по методу
Монте-Карло, используя случайные выборки из P𝑛.

Для барицентров, заданных в неявной форме 𝑔♯S, мы вычисляем метрику
Буреса–Васерштейна UVP, определяемую следующим образом:

BW2
2-UVP(𝑔♯S) def

= 100
BW2

2(𝑔♯S,P)
1
2Var(P)

%

[︂
⩽ UVP(𝑔♯S)

]︂
, (3.37)

где BW2
2(P,Q) = W2

2

(︀
𝒩 (µP,ΣP),𝒩 (µQ,ΣQ)

)︀
– метрика Буреса–Васерштейна,

здесь µP,ΣP обозначают среднее и ковариацию распределения P [60]. Для мер
P,Q с невырожденными матрицами ковариации она задается формулой

BW2
2(P,Q) =

1

2
‖µP − µQ‖2 +

[︀1
2
TrΣP +

1

2
TrΣQ − Tr(Σ

1
2

PΣQΣ
1
2

P)
1
2

]︀
.
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В метрике Буреса–Васерштейна сравнение P и Q осуществляется только по их
первым и вторым моментам. Известно, что BW2

2(P,Q) представляет собой оценку
снизу для W2

2(P,Q) (см. [62]). Таким образом, имеем BW2
2-UVP(𝑔♯S) ⩽ UVP(𝑔♯S).

На практике при вычислении BW2
2-UVP(𝑔♯S) используются оценки средних и

матрицы ковариаций распределений с использованием 105 случайных выборок.

3.6.1 Линейно-разбросанные семейства в большой размерности

В этом параграфе в качестве весов мы рассматриваем 𝑁 = 4

с (α1, . . . ,α4) = (0.1, 0.2, 0.3, 0.4). Изучим линейно-разбросанное семейство
распределений [36, §4], для которого можно вычислить истинный барицентр.
Пусть P0 ∈ 𝒫2,ac. Рассмотрим следующее линейно-разбросанное семейство
распределений ℱ(P0) = {𝑓𝑆,𝑢♯P0 | 𝑆 ∈ ℳ+

𝐷×𝐷, 𝑢 ∈ R𝐷}, где 𝑓𝑆,𝑢 : R𝐷 → R𝐷 –
линейное отображение 𝑓𝑆,𝑢(𝑥) = 𝑆𝑥+ 𝑢 с положительно определенной матрицей
𝑆 ∈ℳ+

𝐷×𝐷. При {P𝑛} ⊂ ℱ(P0) барицентр P также лежит в ℱ(P0) и может быть
вычислен через итерационный процесс приближений к неподвижной точке [36].

На рис. 3.1а мы показываем 2-мерное линейно-разбросанное семейство,
сгенерированное с использованием распределения типа “швейцарский рулет” P0.
Истинный барицентр показан на рис. 3.1б. Сгенерированный барицентр 𝑔♯S из
[SCW2B] представлен на рис. 3.1в. Отображенные меры ∇ψ̂𝑛♯P𝑛 для каждого
из методов показаны на рис. 3.1г, 3.1д и 3.1е соответственно. В этом примере
все отображенные меры ∇ψ𝑛♯P𝑛 дают хорошую аппроксимацию для P, в то
время как для сгенерированного барицентра 𝑔♯S для [SCW2B] (см. рис. 3.1в)
визуально видна недостаточность обучения.

Для количественного сравнения мы рассматриваем два выбора P0:
𝐷-мерное стандартное гауссовское распределение и равномерное распределение
на [−

√
3,+
√
3]𝐷. Каждое P𝑛 строится как 𝑓𝑆𝑇

𝑛Λ𝑆𝑛,0♯P0 ∈ ℱ(P0), где 𝑆𝑛 – матрица
случайных вращений и Λ – диагональная матрица с элементами [12𝑏

0,12𝑏
1, . . . ,2],

где 𝑏 = 𝐷−1
√
4. Мы рассматриваем только центрированные распределения (т.e.

с нулевым средним), поскольку барицентр нецентрированного {P𝑛} ∈ 𝒫2,ac(R𝐷)

есть барицентр {P′𝑛}, сдвинутый на
∑︀𝑁

𝑛=1 α𝑛µP𝑛
, где {P′𝑛} – центрированные

копии {P𝑛} [36]. Полученные результаты указаны в табл. 4 и 5.
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а) входные
распределения {P𝑛}

б) истинный
барицентр P

в) SCW2B, сген.
распред. 𝑔♯S

г) SCW2B,
распределения
∇ψ̂𝑛♯P𝑛

д) CRWB,
распределения
∇ψ̂𝑛♯P𝑛

е) CW2B,
распределения
∇ψ̂𝑛♯P𝑛

Рисунок 3.1 — Барицентр линейно-разбросанной популяции “швейцарский рулет”,
вычисленный по трем методам.

В этих экспериментах наш метод работает лучше, чем [CRWB] and [SCW2B].
Для [CRWB] размерность ∼ 16 является точкой перелома: метод плохо мас­
штабируется на большие размерности. Метод [SCW2B] лучше масштабируется
с увеличением размерности, но его ошибки ℒ2-UVP и BW2

2-UVP в два раза
превосходят ошибки нашего метода. По-видимому, это можно объяснить гене­
ративной аппроксимацией и сложной min-max-min оптимизацией в [SCW2B].
Для полноты мы также сравниваем наш алгоритм с предложенным в [55] алго­
ритмом, в котором барицентр аппроксимируется дискретным распределением
на фиксированном числе точек. В наших экспериментах, аналогично [8], в ка­
честве размера носителя мы берем 5000. Как и ожидалось, ошибка BW2

2-UVP
метода сильно возрастает при увеличении размерности, так что этот метод
проигрывает нашем подходу.

Для демонстрации способности нашего метода к масштабированию (при
числе 𝑁 входных распределений) мы проводим аналогичный эксперимент
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Метрика Метод D=2 4 8 16 32 64 128 256

BW2
2-UVP, %

[FCWB], [55] 0.7 0.68 1.41 3.87 8.85 14.08 18.11 21.33

[SCW2B], [52]
0.07 0.09 0.16 0.28 0.43 0.59 1.28 2.85

ℒ2-UVP, %
(потенциалы)

0.08 0.10 0.17 0.29 0.47 0.63 1.14 1.50
[CRWB], [8] 0.99 2.52 8.62 22.23 67.01 >100

[CW2B], наш 0.06 0.05 0.07 0.11 0.19 0.24 0.42 0.83

Таблица 4 — Сравнение UVP в случае {P𝑛} ⊂ ℱ(P0), P0 = 𝒩 (0, 𝐼𝐷), 𝑁 = 4.

Метрика Метод D=2 4 8 16 32 64 128 256

BW2
2-UVP, %

[FCWB], [55] 0.64 0.77 1.22 3.75 8.92 14.3 18.46 21.64

[SCW2B], [52]
0.12 0.10 0.19 0.29 0.46 0.6 1.38 2.9

ℒ2-UVP, %
(потенциалы)

0.17 0.12 0.2 0.31 0.47 0.62 1.21 1.52

[CRWB], [8] 0.58 1.83 8.09 21.23 55.17 > 100

[CW2B], наш 0.17 0.08 0.06 0.1 0.2 0.25 0.42 0.82

Таблица 5 — Сравнение UVP в случае
{P𝑛} ⊂ ℱ(P0), P0 = Uniform

(︀
[−
√
3,+
√
3]𝐷
)︀
, 𝑁 = 4.

Метрика Метод D=32 64 128

BW2
2-UVP, %

[FCWB], [55] 14.09 26.21 38.43

[SCW2B], [52]
0.62 0.93 1.83

ℒ2-UVP, %
(потенциалы)

0.60 0.86 1.52

[CW2B], наш 0.31 0.58 1.45

Таблица 6 — Сравнение UVP в случае
{P𝑛} ⊂ ℱ(P0), P0 = Uniform

(︀
[−
√
3,+
√
3]𝐷
)︀
, 𝑁 = 20.

с линейно-разбросанным семейством большой размерности при 𝑁 = 20. Поло­
жим α𝑛 = 2𝑛

𝑁(𝑁+1) для 𝑛 = 1,2,...,20 и выберем равномерное распределение на
[−
√
3,+
√
3]𝐷 как P0 и, как и выше, построим распределения P𝑛 ∈ ℱ(P0). Резуль­

таты для размерностей 32, 64 и 128 представлены в табл. 6. Как и в таблицах 4
и 5, мы получаем, что наш метод работает лучше, чем альтернативны.

3.6.2 Агрегация апостериорных распределений на подмножествах

Мы применим наш метод для агрегации апостериорных распределений
по подмножествам данных. Барицентр апостериорных распределений подмно­
жеств сходится к истинному апостериорному распределению [51]. Таким образом,
вычисление барицентра апостериорных распределений подмножеств является
эффективной альтернативой для получения полного апостериорного распреде­
ления для задач больших данных [8; 50; 57].
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Аналогично работе [8], мы рассматриваем пуассоновские и отрицательные
биномиальные регрессии для задачи предсказания почасового числа аренд ве­
лосипедов, используя такие признаки, как день недели и погодные условия2.
Мы рассматриваем апостериорное распределение 8-мерных коэффициентов ре­
грессии для пуассоновских и отрицательных биномиальных регрессий. Данные
случайно разбиваются на 𝑁 = 5 подмножеств одинакового размера, берутся 105

выборок из каждых апостериорных распределений подмножеств с использова­
нием библиотеки “Stan” [63]. В результате получаем дискретное равномерное
распределения {P𝑛} с носителем на выборках. В качестве эталонного барицен­
тра P мы рассматриваем апостериорное распределение по всей выборке, также
состоящее из 105 точек.

Мы используем BW2
2-UVP(P̃,P) для сравнения полученного барицентра P̃

(образ меры ∇ψ̂𝑛♯P𝑛 или сгенерированная мера 𝑔♯S) с истинным барицентром.
Результаты приведены в табл. 7. Все рассмотренные методы работают хорошо
(UVP< 2%), однако наш метод дает лучшие результаты.

Регрессия
SCW2B, [52] [CRWB], [8] CW2B, наш
P̃ = 𝑔♯S P̃ = ∇ψ𝑛♯P𝑛

BW2
2-UVP, %

пуассоновск. 0.67 0.41 1.53 0.1

отр. бином. 0.15 0.15 1.26 0.11

Таблица 7 — Сравнение UVP для восстановленных барицентров в нашей задаче
агрегации апостериорных распределений подмножеств.

3.6.3 Усреднение цветовой палитры

Для понимания качественной картины мы применяем наш метод для усред­
нения цветовой палитры изображений. Для RGB-изображения ℐ его цветовая
палитра определяется дискретным равномерным распределением P(ℐ) по всем
его пикселям ∈ [0,1]3. Для 3 изображений {ℐ𝑛} мы вычисляем барицентр P для
каждой из цветовых палитр P𝑛 = P(ℐ𝑛) относительно равномерных весов α𝑛 = 1

3 .
Каждый вычисленный потенциал ∇ψ̂𝑛 применяется попиксельно к ℐ𝑛 для полу­
чения “отображенного” изображения ∇ψ̂𝑛♯ℐ𝑛. Эти “отображенные” изображения
должны быть близки к барицентру P распределения {P𝑛}.

2http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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а) Исходные изображения {ℐ𝑛}.
б) Цветовые палитры {P𝑛}

оригинальных изображений.

в) Изображения с усредненной цветовой
палитрой {∇ψ̂𝑛♯ℐ𝑛}.

г) Барицентры палитр
{∇ψ̂𝑛♯P𝑛}.

Рисунок 3.2 — Результаты работы нашего метода, примененного к усреднению
цветовых палитр изображений.

Полученные результаты приведены на рис. 3.2. Отметим, что изображение
∇ψ̂1♯ℐ1 наследует некоторые атрибуты изображений ℐ2 и ℐ3: небо становится
более синим и деревья становятся более зелеными. С другой стороны, солнечный
свет в изображениях ∇ψ̂2♯ℐ2,∇ψ̂3♯ℐ3 становится более оранжевым благодаря
преобладанию этого цвета в ℐ1.

3.6.4 Технические детали экспериментов

Метод CW2B (наш метод). Мы используем τ = 5 и P̂ = 𝒩 (0,𝐼𝐷) в
нашем условии регуляризатора на конгруэнтность τ · ℛP̂

1 . Мы также используем
λ = 10 для циклической регуляризации λ · ℛP𝑛

2 при всех 𝑛 = 1,2, . . . , 𝑁 . Для
аппроксимации потенциалов {ψ̂𝑛,φ̂𝑛} в размерности 𝐷 мы используем сеть

DenseICNN[2;max(64, 2𝐷),max(64, 2𝐷),max(32, 𝐷)]

с функцией активации CELU. Сеть DenseICNN обладает выпуклой по входу
полной архитектурой с дополнительными выпуклыми квадратичными обход­
ными связями. Здесь 2 – ранг гессиана обходных связей. Каждое последующее
число max(·,·) представляет собой размер скрытого полносвязного слоя в по­
следующей части сети. По поводу подробного обсуждения архитектуры см. п.
2.7. Обучение выполнялось в соответствии с алгоритмом 2. Пусть 𝐾 = 1024 –
размер случайных выборок и γ = 0.2 – балансировочный коэффициент. Мы
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используем оптимизатор Adam из [34] с фиксированной скоростью обучения
10−3. Общее число итераций 50000.

Алгоритм SCW2B. Для распределения входного шума в генеративной
модели мы используем S = 𝒩 (0,𝐼𝐷). Для генеративной сети 𝑔 : R𝐷 → R𝐷 мы
используем полносвязную последовательную сеть ReLU с числом скрытых слоев

[max(100,2𝐷),max(100,2𝐷),max(100,2𝐷)].

До начала основной оптимизации мы предварительно обучаем сеть для вы­
полнения приближенного равенства 𝑔(𝑧) ≈ 𝑧 при всех 𝑧 ∈ R𝐷. Это условие
было эмпирически проверено и превосходит случайную инициализацию весов
сети. Для потенциалов были использованы в точности те же сети, что и в на­
шем методе. Процесс обучения был выполнен согласно min-max-min-процедуре,
описанной в алгоритме 1 работы [52]. Размер случайной выборки был выбран
равным 1024. Мы использовали оптимизатор Adam из [34] с фиксированной
скоростью обучения 10−3 для потенциалов и 10−4 для генеративной сети 𝑔. Число
итераций во внешнем (min-max-min) цикле полагается равным 15000. Следуя
[52], мы использовали 10 итераций для внутреннего (min-max -min) цикла и 6

итераций для внутреннего (min-max-min) цикла.
Алгоритм CRWB. Метод [CRWB] использует регуляризацию

для сохранения сопряженности потенциалов. Используется энтропия или
ℒ2-регуляризация по некоторой предложенной мере P̂ (по поводу дальнейших
деталей см. п. 3 в [8]). Используя предоставленный авторами код, мы приме­
нили ℒ2-регуляризацию (эксперименты показывают, что ее применение дает
лучшую устойчивость, чем энтропийная регуляризация). В качестве меры
регуляризации P̂ бралась равномерная мера на пространстве, содержащем
носитель всех исходных распределений; оценка производилась по выборке.
Параметр регуляризации Δ был выбран равным 10−4. Для аппроксимации
потенциалов {ψ̂𝑛,φ̂𝑛} в размерности 𝐷 мы используем полносвязные нейронные
сети ReLU с размерами слоев

[max(128, 4𝐷),max(128, 4𝐷),max(128, 4𝐷)].

Мы также попытались применить архитектуру DenseICNN, но не получили
никакого улучшения работы. Обучение выполнялось по алгоритму 1 из [8]
при размере случайных выборок 1024. Был использован оптимизатор Adam
из [34] с фиксированной скоростью обучения 10−3. Общее число итераций вы­
биралось равным 50000.
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Глава 4. Метод для моделирования Васерштейн-2 градиентных
потоков функционалов

Градиентные потоки Васерштейна представляют собой мощный инстру­
мент для понимания и решения многих диффузионных уравнений. В частности,
решение уравнения Фоккера–Планка, которое моделирует диффузию веро­
ятностных мер, можно рассматривать как градиентный поток относительно
функционалов энтропии в пространстве Васерштейна. Эта эквивалентность,
которая была введена Джорданом, Киндерлерером и Отто, послужила отправ­
ной точкой для создания так называемой JKO-схемы для аппроксимации этих
диффузионных процессов посредством неявной дискретизации градиентного
потока в пространстве Васерштейна. Однако решение оптимизационной задачи,
связанной с каждым шагом схемы JKO, представляет собой серьезную вычис­
лительную проблему. Мы вводим масштабируемый метод, аппроксимирующий
градиентные потоки Васерштейна и нацеленный на приложения в задачах
машинного обучения. Наш подход опирается на использование выпуклых по
входу нейронных сетей (ICNN) для дискретизации JKO-шагов, после чего опти­
мизация достигается при использовании стохастического метода градиентного
спуска. В отличие от предыдущих работ наш метод не требует дискретизации
домена или моделирования по методу частиц. В результате на каждом времен­
ном этапе диффузии может быть осуществлена выборка из меры и вычислена ее
плотность вероятности. Для оценки производительности нашего алгоритма мы
рассматриваем задачу вычисления диффузии для уравнения Фоккера-Планка и
применяем его к задаче моделирования апостериорного распределения.

4.1 Введение

Стохастические дифференциальные уравнения (SDE), использующиеся
для моделирования эволюции во времени случайных диффузионных процессов,
имеют приложения в физике [64], финансовой математике [65; 66] и динамике
популяций [67]. В машинном обучении диффузионные процессы также возни­
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кают в задачах фильтрации [68; 69] и задачах ненормированной выборки из
апостериорных распределений путем дискретизации диффузии Ланжевена [70].

Поведение нестационарной по времени плотности ρ𝑡 таких диффузионных
процессов описывается уравнением Фоккера–Планка. В работе [5] Джордан,
Киндерлерер и Отто показали, что уравнение Фоккера–Планка эквивалентно
градиентному потоку функционала энтропии в пространстве Васерштейна, т.е.
в пространстве вероятностных мер c конечными вторыми моментами, снабжен­
ном расстоянием Васерштейна. Это наблюдение привело к созданию простой
минимизационной схемы (называемой JKO-схемой), в которой используется
неявная эйлерова дискретизация градиентного потока Васерштейна. Однако
каждый шаг JKO-схемы является весьма затратным с вычислительной точки
зрения, поскольку в нем требуется решение минимизационной задачи, связанной
с расстоянием Васерштейна.

Одним из способов вычисления диффузии является использование фикси­
рованной дискретизации домена и применение стандартных методов численного
интегрирования [71—75] для нахождения ρ𝑡. Например, в [76] предлагается
метод аппроксимации диффузии, основанный на шагах схемы JKO и регуляри­
зации по энтропии в задаче оптимального транспорта. Однако применение этих
методов ограничивается лишь небольшими размерностями, поскольку требуемая
дискретизация пространства растет экспоненциально.

Альтернативой дискретизации домена является моделирование методом
частиц. В этом методе случайные выборки (частицы) получаются из начального
распределения, а их эволюция описывается такими стандартными методами,
как схема Эйлера–Маруямы (см. [77, M9.2]). После сходимости оказывается, что
распределение частиц приблизительно соответствует стационарному распреде­
лению, но при этом метод не дает оценку плотности.

Другим способом отказа от дискретизации является параметризация плот­
ности ρ𝑡. Большинство существующих методов приближают только первые и
вторые моменты плотности ρ𝑡 (т.е. используют гауссовскую аппроксимацию).
После этого требуемую динамику можно получить, используя подходы, опираю­
щиеся на технику фильтров Кальмана (см. [68; 78—80]). Также исследовались
более сложные аппроксимации смеси гауссовских распределений [81; 82] и более
общие параметрические семейства [83]. В работе [84] вариационные методы ис­
пользуются для минимизации расхождения между прогнозируемой и истинной
плотностями.
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В работе [11] был введен параметрический метод для вычисления JKO­
шагов при помощи регуляризованного энтропией оптимального транспорта.
В этой работе регуляризация расстояния Васерштейна осуществлялась на
каждом JKO-шаге и обеспечивала строгую выпуклость задачи, а плотность
представлялась как линейная комбинация базисных функций и оценивалась с
помощью стохастических методов. Этот метод дает ненормированную плотность
вероятности без прямого доступа к возможности получения выборки.

Недавно был предложен ряд масштабируемых методов задачи опти­
мального транспорта между непрерывными вероятностными распределениями,
в которых решения параметризуются при помощи воспроизводящих ядер
(reproducing kernels) [85], полносвязных нейронных сетей (fully-connected neural
networks) [2], или выпуклых по входу нейронных сетей (Input Convex Neural
Networks, ICNN) [7]. В частности, использование сетей ICNN привлекло внима­
ние к задаче транспорта относительно расстояния Васерштейна-2 , поскольку
в этой постановке градиенты ∇ψθ : R𝐷 → R𝐷 могут представлять отображе­
ния задачи оптимального транспорта для квадратичной функции стоимости.
Такие методы обладают лучшей способностью к масштабированию на случай
высоких размерностей без дискретизации входных мер, но в общем их использо­
вание очень вычислительно затратно, что не позволяет обеспечить их прямое
применение на JKO-шагах.

Основные результаты, полученные в главе. Мы предлагаем масшта­
бируемый параметрический метод для аппроксимации градиентных потоков
Васерштейна с использованием JKO-шагов и выпуклых по входу нейронных
сетей (ICNN) [20]. В частности, мы используем теорему Бренье, чтобы избежать
дорогостоящих вычислений расстояния Васерштейна. При этом оптимальное
транспортное отображение параметризуется как градиент сети ICNN. При
наличии выборочного доступа к начальной мере ρ0 мы используем метод
стохастического градиентного спуска (SGD) для последовательного обучения
дискретизованной по времени динамики JKO для ρ𝑡. Обученная модель об­
ладает способностью получать выборки из непрерывной аппроксимации ρ𝑡 и
вычислять ее плотность 𝑑ρ𝑡

𝑑𝑥 (𝑥). Мы вычисляем градиентные потоки для функ­
ционала свободной энергии Фоккера–Планка ℱFP, заданного (4.5), однако наш
метод обобщается и на другие случаи. Производительность нашего подхода
оценивается путем вычисления диффузии для уравнения Фоккера-Планка и ее
применения к задаче получения выборок из ненормированной плотности.
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Обозначения. 𝒫2(R𝐷) – множество борелевских вероятностных мер на R𝐷

c конечными вторыми моментами. 𝒫2,𝑎𝑐(R𝐷) – подмножество 𝒫2(R𝐷), состоящее
из вероятностных мер, абсолютно непрерывных относительно лебеговой меры.
Для ρ ∈ 𝒫2,𝑎𝑐(R𝐷) через 𝑑ρ

𝑑𝑥(𝑥) мы обозначаем ее плотность относительно меры
Лебега. Через Π(µ,ν) мы обозначаем множество вероятностных мер на R𝐷×R𝐷

с маргиналами µ и ν. Для измеримого отображения 𝑇 : R𝐷 → R𝐷 через 𝑇♯ мы
обозначаем соответствующий оператор отображения между мерами.

4.2 Основные сведения о градиентных потоках Васерштейна

Мы рассматриваем градиентные потоки в пространстве Васерштейна
(𝒫2(R𝐷),𝒲2), т.е. в пространстве вероятностных мер c конечными вторыми
моментами R𝐷, наделенном метрикой Васерштейна-2 𝒲2.

Расстояние Васерштейна-2. Для мер µ,ν ∈ 𝒫2(R𝐷) (квадрат) метрики
Васерштейна-2 𝒲2 между ними определяется следующим образом:

𝒲2
2 (µ,ν)

def
= min

π∈Π(µ,ν)

∫︁
R𝐷×R𝐷

‖𝑥− 𝑦‖22 𝑑π(𝑥,𝑦), (4.1)

где минимум берется по мерам π на R𝐷×R𝐷 с маргиналами µ и ν соответствен­
но [25]. Отметим, что в данной главе квадрат расстояния Вассерштейн-2 мы
определяем без множителя 1

2 , то есть 𝒲2
2 = 2W2

2, где W2
2 определено в (1.1).

Для µ ∈ 𝒫2,𝑎𝑐(R𝐷) существует µ-единственное отображение ∇ψ* : R𝐷 →
R𝐷, являющееся градиентом выпуклой функции ψ* : R𝐷 → R ⊔ {∞}, удо­
влетворяющей ∇ψ*♯µ = ν (см. [17]). Из теоремы Бренье [26] следует, что
π* = [idR𝐷 ,∇ψ*]♯µ – единственный минимизатор для (4.1), т.е.

𝒲2
2 (µ,ν) =

∫︁
R𝐷

‖𝑥−∇ψ*(𝑥)‖22 𝑑µ(𝑥).

Градиентные потоки Васерштейна. В евклидовом случае градиентные
потоки для функции 𝑓 : R → R направлены в направлении ее наибольше­
го убывания и определяются дифференциальным уравнением 𝑑𝑥𝑡

𝑑𝑡 = −∇𝑓(𝑥𝑡).
Дискретизация этого потока приводит к алгоритму минимизации по мето­
ду градиентного спуска. Если функционалы действуют на пространстве мер,
снабженном метрикой Васерштейна-2, то аналогичный поток называется гра­
диентным потоком Васерштейна. Здесь идея аналогична: поток направлен
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в направлении наибольшего убывания, но теперь градиент определяется более
сложно. По поводу некоторых сведений о градиентных потоках в метрических
пространствах мы отсылаем читателя к [86]; доступное введение в эту теорию
дается в главе 8 работы [9].

Функция 𝑓ρ : R𝐷 → R называется первой вариацией [87] функционала ℱ :

𝒫2(R𝐷)→ R∪{∞} в точке ρ, если выполняется 𝑑
𝑑εℱ(ρ+εχ)|ε=0 =

∫︀
R𝐷 𝑓ρ(𝑥)𝑑χ(𝑥)

для любой меры χ со знаком на R𝐷 такой, что
∫︀
1𝑑χ(𝑥) = 0 и существует ε0 > 0,

при котором для любого ε ∈ [0,ε0] выполнено ρ + εχ ∈ 𝒫2(R𝐷), то есть мера
ρ + εχ является вероятностной. Первая вариация не всегда существует. При
этом, если первая вариация в точке ρ существует, то она определена с точностью
до константы и обозначается через ℱ ′(ρ) = 𝑓ρ.

Васерштейн градиентным потоком функционала ℱ называется кривая,
состоящая из мер {ρ𝑡}𝑡∈R+

, являющаяся решением уравнения [87]:

𝜕ρ𝑡
𝜕𝑡

= div(ρ𝑡∇𝑥ℱ ′(ρ𝑡)), s.t. ρ0 = ρ0. (4.2)

Член в правой части можно понимать, как градиент ℱ в пространстве Васер­
штейна, т.е., векторное поле, двигающее массу ρ𝑡 с целью получения наиболее
крутого возможного локального изменения ℱ .

Градиентные потоки Васерштейна используются в различных прикладных
задачах, например, в задачах обучения [88—90] или улучшения [91] неявных
генеративных моделей. В обучении с подкреплением градиентные потоки упро­
щают оптимизационную политику [92; 93]. Другие применения включают в себя
моделирование движения толпы [76; 94; 95], оптимизацию наборов данных [96]
и промежуточную анимацию (in-between animation) [97].

Во многих приложениях используется связь между градиентными по­
токами Васерштейна и стохастическими дифференциальными уравнениями.
Рассмотрим R𝐷-значный стохастический процесс {𝑋𝑡}𝑡∈R+

, задаваемый следу­
ющим стохастическим дифференциальным уравнением Ито:

𝑑𝑋𝑡 = −∇Φ(𝑋𝑡)𝑑𝑡+
√︀
2β−1𝑑𝑊𝑡, s.t. 𝑋0 ∼ ρ0 (4.3)

где Φ : R𝐷 → R – потенциальная функция, 𝑊𝑡 — стандартный винеровский
процесс, β > 0 – его величина. Решение задачи (4.3) называется диффузионным
процессом адвекции-диффузии. В каждый момент времени маргинальная мера
ρ𝑡 описывающая распределение 𝑋𝑡 удовлетворяет уравнению Фоккера–Планка
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с фиксированным коэффициентом диффузии:

𝜕ρ𝑡
𝜕𝑡

= div(∇Φ(𝑥)ρ𝑡) + β−1Δρ𝑡, s.t. ρ0 = ρ0. (4.4)

Уравнение (4.4) есть градиентный поток Васерштейна (4.2) для ℱ , заданный
функционалом свободной энергии Фоккера–Планка [5]

ℱFP(ρ) = 𝒰(ρ)− β−1ℰ(ρ), (4.5)

где 𝒰(ρ) =
∫︀
R𝐷 Φ(𝑥)𝑑ρ(𝑥) называется потенциальной энергией, а ℰ(ρ) =

−
∫︀
R𝐷 log 𝑑ρ

𝑑𝑥(𝑥)𝑑ρ(𝑥) – энтропия. В результате для решения стохастического
дифференциального уравнения (4.3) можно вычислить градиентный поток Ва­
серштейна функционала ℱFP (4.5).

JKO-схема. В общем случае задача вычисления градиентных потоков
Васерштейна является сложной. Обычно решение в явной форме получить
не удается и поэтому приходится применять методы численной аппроксима­
ции. Джордан, Киндерлерер и Отто предложили метод (позже получивший
сокращенное название “JKO-интегрирование”) для аппроксимации динамики ρ𝑡
в (4.2) (см. [5]). В этом методе осуществляется дискретное по времени уточнение
непрерывного потока, заданного следующим образом:

ρ(𝑘) ← argmin
ρ∈𝒫2(R𝑛)

[︂
ℱ(ρ) + 1

2ℎ
𝒲2

2 (ρ
(𝑘−1), ρ)

]︂
, (4.6)

где ρ(0) = ρ0 – начальное условие и ℎ > 0 – величина шага дискретизации по
времени. Дискретный временной градиентный поток сходится к непрерывному
потоку при ℎ→ 0, т.е. ρ(𝑘) ≈ ρ𝑘ℎ. Этот метод был далее развит в [86; 87]. Тем
не менее, стоит отметить, что выполнение JKO-итераций является сложной
задачей из-за наличия минимизации по 𝒲2. Типичным подход к выполнению
JKO-шага основан на дискретизации пространственного домена. При размере
носителя ⪅ 106 уравнение (4.6) может быть решено стандартными алгоритма­
ми задачи оптимального транспорта [6]. В размерностях 𝐷 ⩾ 3 дискретные
носители в общем случае не точно приближают непрерывные распределения и,
как следствие, динамику градиентных потоков. Чтобы обойти эту трудность
в [11] предложен стохастический параметрический метод для аппроксимации
плотности ρ𝑡. В методе работы [11] используется регуляризованный по энтропии
оптимальный транспорт (OT). Однако его использование приводит к смещению.
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4.3 Вычисление градиентных потоков Васерштейна с
использованием сетей ICNN

Опишем наш подход к вычислению градиентных потоков Васерштейна
через JKO-схему с использованием сетей ICNN.

4.3.1 Переформулировка JKO-схемы с использованием
оптимальных операторов отображения

Наша ключевая идея состоит в том, чтобы заменить оптимизацию (4.6)
по вероятностным мерам на оптимизацию по выпуклым функциям – данная
идея навеяна работой [98]. Согласно теореме Бренье для любого ρ ∈ 𝒫2,𝑎𝑐(R𝐷)

существует единственный ρ(𝑘−1)-измеримый градиент ∇ψ : R𝐷 → R𝐷 выпук­
лой функции ψ, удовлетворяющий ρ = ∇ψ♯ρ(𝑘−1). Положим ρ = ∇ψ♯ρ(𝑘−1) и
запишем (4.6) как оптимизационную задачу с выпуклой ψ:

ψ(𝑘) ← argmin
Convex ψ

[︂
ℱ(∇ψ♯ρ(𝑘−1)) + 1

2ℎ
𝒲2

2 (ρ
(𝑘−1),∇ψ♯ρ(𝑘−1))

]︂
. (4.7)

Для перехода на следующий шаг JKO-схемы определим ρ(𝑘) def
= ∇ψ(𝑘)♯ρ(𝑘−1).

Так как ρ является образом под действием отображения ρ(𝑘−1) градиента
выпуклой функции ∇ψ, то член 𝒲2

2 в (4.7) может быть вычислен явно, что
приводит к упрощению члена для расстояния Васерштейна-2 в (4.7):

ψ(𝑘) ← argmin
Convex ψ

[︂
ℱ(∇ψ♯ρ(𝑘−1)) + 1

2ℎ

∫︁
R𝐷

‖𝑥−∇ψ(𝑥)‖22𝑑ρ(𝑘−1)(𝑥)
]︂
. (4.8)

При такой переформулировке мы избегаем сложностей, связанных с вычисле­
нием расстояния Васерштейна-2. Дополнительным преимуществом является
возможность получения выборки из ρ(𝑘). Так как ρ(𝑘) = [∇ψ(𝑘) ∘ · · · ∘ ∇ψ(1)]♯ρ0,
то можно выбрать 𝑥0 ∼ ρ(0), и тогда ∇ψ(𝑘) ∘ · · · ∘ ∇ψ(1)(𝑥0) дает выборку из
ρ(𝑘). Более того, если функции ψ(·) сильно выпуклы, то градиенты ∇ψ(·) обра­
тимы. В этом случае плотность 𝑑ρ(𝑘)

𝑑𝑥 для ρ(𝑘) = ∇ψ(𝑘) ∘ · · · ∘ ∇ψ(1)♯ρ0 может
быть вычислена по формуле замены переменных (в предположении, что ψ(·)
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дважды дифференцируема)

𝑑ρ(𝑘)

𝑑𝑥
(𝑥𝑘) = [det∇2ψ(𝑘)(𝑥𝑘−1)]

−1 · · · [det∇2ψ(1)(𝑥0)]
−1 · 𝑑ρ

(0)

𝑑𝑥
(𝑥0), (4.9)

где 𝑥𝑖 = ∇ψ(𝑖)(𝑥𝑖−1) для 𝑖 = 1, . . . ,𝑘 и 𝑑ρ(0)

𝑑𝑥 – плотность ρ(0).

4.3.2 Стохастическая оптимизация для JKO-схемы с
использованием сетей ICNN

В общем, решение ψ(𝑘) задачи (4.8) получить сложно, поскольку в нем
участвует оптимизация по всем выпуклым функциям. Чтобы обойти эту слож­
ность, в работе [98] используется дискретизация в пространства выпуклой
функции. При этом подход также требует дискретизации мер ρ(𝑘), что заведомо
ограничивает использование этого метода только на случай малых размерностей.

Мы предлагаем параметризацию пространства поиска с использованием
выпуклых по входу нейронных сетей (ICNN) [20], удовлетворяющих универ­
сальному свойству аппроксимации среди выпуклых функций [31]. Напомним,
что сети ICNN являются параметрическими моделями вида ψθ : R𝐷 → R, где
функция ψθ выпукла по входу. Сеть ICNN строится из обычных слоев ней­
ронных сетей с добавлением ограничений на веса и функции активации для
сохранения выпуклости по входу (см. [20, M3.1]). Параметры оптимизируются
с использованием оптимизационных методов глубокого обучения, таких, как
метод стохастического градиентного спуска (SGD).

В этой постановке шаг схемы JKO состоит в нахождении оптимальных
параметров θ* для ψθ:

θ* ← argmin
θ

[︂
ℱ(∇ψθ♯ρ(𝑘−1)) +

1

2ℎ

∫︁
R𝐷

‖𝑥−∇ψθ(𝑥)‖22𝑑ρ(𝑘−1)(𝑥)
]︂
. (4.10)

Если функционал ℱ может быть cтохастически оценен с использованием слу­
чайных пакетов из ρ(𝑘−1), то метод стохастического градиентного спуска может
быть использован для оптимизации θ. Примером такого функционала является
функционал ℱFP, заданный в (4.5).

Теорема 4.3.1 (оценка для ℱFP). Пусть ρ ∈ 𝒫2,𝑎𝑐(R𝐷) и 𝑇 : R𝐷 → R𝐷 –
диффеоморфизм и пусть 𝑥1, . . . ,𝑥𝑁 ∼ ρ –случайная выборка. Тогда выражение
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[̂︁𝒰𝑇 (𝑥1, . . . ,𝑥𝑁)− β−1̂︂Δℰ𝑇 (𝑥1, . . . ,𝑥𝑁)], где

̂︁𝒰𝑇 (𝑥1, . . . ,𝑥𝑁) def
=

1

𝑁

𝑁∑︁
𝑛=1

Φ
(︀
𝑇 (𝑥𝑛)

)︀
и

̂︂Δℰ𝑇 (𝑥1, . . . ,𝑥𝑁) def
=

1

𝑁

𝑁∑︁
𝑛=1

log | det∇𝑇 (𝑥𝑛)|,

является оценкой для ℱFP(𝑇♯ρ) с точностью до постоянного (относитель­
но 𝑇 ) сдвига, задаваемого β−1ℰ(ρ).

Доказательство. ̂︁𝒰𝑇 – несмещенная оценка для 𝒰(𝑇♯ρ). Пусть 𝑝 и 𝑝𝑇 — плот­
ности ρ и 𝑇♯ρ соответственно. Так как 𝑇 – диффеоморфизм, имеем 𝑝𝑇 (𝑦) =

𝑝(𝑥) · | det∇𝑇 (𝑥)|−1, где 𝑥 = 𝑇−1(𝑦). Используя формулу замены переменных,
получаем

ℰ(𝑇♯ρ) = −
∫︁
R𝐷

𝑝𝑇 (𝑦) log 𝑝𝑇 (𝑦)𝑑𝑦 =

−
∫︁
R𝐷

𝑝(𝑥) · | det∇𝑇 (𝑥)|−1 log
[︂
𝑝(𝑥) · | det∇𝑇 (𝑥)|−1

]︂
· | det∇𝑇 (𝑥)|𝑑𝑥 =

−
∫︁
R𝐷

𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥+

∫︁
R𝐷

𝑝(𝑥) log | det∇𝑇 (𝑥)|𝑑𝑥 =

ℰ(ρ) +
∫︁
R𝐷

𝑝(𝑥) log | det∇𝑇 (𝑥)|𝑑𝑥,

=⇒ Δℰ𝑇 (ρ)
def
= ℰ(𝑇♯ρ)− ℰ(ρ) =

∫︁
R𝐷

log | det∇𝑇 (𝑥)|𝑑ρ(𝑥)

что показывает, что ̂︂Δℰ𝑇 – несмещенная оценка для Δℰ𝑇 (ρ). В результате
получаем, что ̂︁𝒰𝑇 − β−1̂︂Δℰ𝑇 – оценка для ℱFP(𝑇♯ρ) = 𝒰(𝑇♯ρ) − β−1ℰ(𝑇♯ρ) с
точностью до сдвига β−1ℰ(ρ).

Для того, чтобы применить теорему 4.3.1 к нашему случаю, получим 𝑇 ←
∇ψθ и ρ← ρ(𝑘−1), что дает стохастическую оценку для ℱFP(∇ψθ♯ρ(𝑘−1)) в (4.10).
Здесь β−1ℰ(ρ(𝑘−1)) является θ-независимым и постоянным, поскольку ρ(𝑘−1)

фиксировано, и, значит, смещение оценки не играет роли в оптимизации по θ.
Наш стохастический JKO-метод для ℱFP реализован в алгоритме 3. Обу­

чение проводится исключительно на основе случайных выборок из исходной
меры ρ0 (её плотность не требуется).

В данном алгоритме предполагается, что ℱ – функционал Фоккера–Планка
(4.5). Стоит отметить, что наш метод допускает прямое обобщение на случай
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Алгоритм 3: Осуществление схемы JKO для уравнения Фоккера–План­
ка с помощью сетей ICNN

Вход :Начальная мера ρ0 с выборочным доступом;
шаг дискретизации схемы JKO ℎ > 0;
число шагов схемы JKO 𝐾 > 0;
целевой потенциал Φ(𝑥);
температура β−1 диффузионного процесса;
размер случайной выборки 𝑁 ;

Выход : обученные ICNN модели {ψ(𝑘)}𝐾𝑘=1, представляющие шаги
схемы JKO

for 𝑘 = 1,2, . . . , 𝐾 do
ψθ ← основная модель ICNN;
for 𝑖 = 1, 2, . . . do

Получение случайной выборки 𝑍 ∼ ρ0 размера 𝑁 ;
𝑋 ← ∇ψ(𝑘−1) ∘ · · · ∘ ∇ψ(1)(𝑍);̂︂𝒲2

2 ← 1
𝑁

∑︀
𝑥∈𝑋
‖∇ψθ(𝑥)− 𝑥‖22;̂︀𝒰 ← 1

𝑁

∑︀
𝑥∈𝑋

Φ
(︀
∇ψθ(𝑥)

)︀
;̂︁Δℰ ← 1

𝑁

∑︀
𝑥∈𝑋

log detΔψθ(𝑥);̂︀ℒ ← 1
2ℎ
̂︂𝒲2

2 +
̂︀𝒰 − β−1̂︁Δℰ ;

Выполнить градиентный шаг по θ, используя 𝜕 ̂︀ℒ
𝜕θ ;

end
ψ(𝑘) ← ψθ

end

любого функционала ℱ , допускающего стохастическое оценивание – изучение
таких функций составляет многообещающую тему для будущих исследований.

4.3.3 Вычисление плотности диффузионного процесса

Наш алгоритм позволяет вычислить плотность для ρ(𝑘). Как отмечалось
в п. 4.3.1, оказывается возможным получать выборку из ρ(𝑘) и одновременно
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вычислять её плотность. Однако этот подход не дает прямого способа для оценки
𝑑ρ(𝑘)

𝑑𝑥 (𝑥𝑘) при любом 𝑥𝑘 ∈ R𝐷. Ниже мы решаем эту проблему.
Если выпуклая функция также является сильно выпуклой, тогда ее гра­

диент биективен на R𝐷. Используя формулу замены переменных для 𝑥𝑘 ∈ R𝐷,
имеем 𝑑ρ(𝑘)

𝑑𝑥 (𝑥𝑘) =
𝑑ρ(𝑘−1)

𝑑𝑥 (𝑥𝑘−1) · [det∇2ψ(𝑘)(𝑥𝑘−1)]
−1 где 𝑥𝑘 = ∇ψ(𝑘)(𝑥𝑘−1). Для

вычисления 𝑥𝑘−1 требуется решить выпуклую оптимизационную задачу:

𝑥𝑘 = ∇ψ(𝑘)(𝑥𝑘−1) ⇐⇒ 𝑥𝑘−1 = argmax
𝑥∈R𝐷

[︀
⟨𝑥,𝑥𝑘⟩ −ψ(𝑘)(𝑥)

]︀
. (4.11)

Если мы знаем плотность ρ0, то для вычисления плотности ρ(𝑘) в 𝑥𝑘 нам следует
решить 𝑘 выпуклых задач

𝑥𝑘−1 = argmax
𝑥∈R𝐷

[︀
⟨𝑥,𝑥𝑘⟩ −ψ(𝑘)(𝑥)

]︀
. . . 𝑥0 = argmax

𝑥∈R𝐷

[︀
⟨𝑥,𝑥1⟩ −ψ(1)(𝑥)

]︀
для получения 𝑥𝑘−1, . . . ,𝑥0 и дальнейшей оценки плотности вида

𝑑ρ𝑘
𝑑𝑥

(𝑥𝑘) =
𝑑ρ0

𝑑𝑥
(𝑥0) ·

[︀ 𝑘∏︁
𝑖=1

det∇2ψ(𝑖)(𝑥𝑖−1)
]︀−1

.

Следует отметить, что приведенные выше шаги обеспечивают общий метод отсле­
живания положения частицы вдоль потока, а вычисление плотности является
просто побочным продуктом.

4.4 Вычислительные эксперименты

В этом параграфе мы оцениваем наш метод на синтетических и практиче­
ских приложениях. Наш программный код написан в среде PyTorch:

https://github.com/iamalexkorotin/LargeScaleWassersteinGradientFlows

Эксперименты выполнялись на видеокарте GTX 1080Ti. В большинстве случаев
мы выполняли несколько случайных перезапусков, чтобы получить среднее
значение и вариацию рассматриваемой метрики. В результате для экспериментов
потребовалось около 100–150 часов вычисления. Детали приведены в п. 4.5.

Архитектура нейронных сетей. Во всех экспериментах мы используем
архитектуру DenseICNN (п. 2.7) для ψθ в алгоритме 3 с SoftPlus активациями.
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Сеть ψθ дважды дифференцируема по входу 𝑥 и имеет биективный градиент
∇ψθ : R𝐷 → R𝐷 с неотрицательно определенным гессианом ∇2ψθ(𝑥) ⪰ 0

при каждом 𝑥. Для вычисления ∇ψθ и ∇2ψθ мы используем автоматическое
дифференцирование.

Метрика. Чтобы качественно сравнить меры, мы используем симметрич­
ную дивергенцию Кульбака–Лейблера

SymKL(ρ1,ρ2)
def
= KL(ρ1‖ρ2) + KL(ρ2‖ρ1), (4.12)

где KL(ρ1‖ρ2)
def
=
∫︀
R𝐷 log 𝑑ρ1

𝑑ρ2
(𝑥)𝑑ρ1(𝑥) – дивергенция Кульбака–Лейблера. Для

методов, основанных на симуляции частиц, мы получаем аппроксимацию рас­
пределения путем оценки ядерной плотности.

4.4.1 Сходимость к стационарному решению

Начиная с произвольной начальной меры ρ0, процесс адвекции-диффузии
(4.4) сходится к единственному стационарному решению ρ* [99] с плотностью

𝑑ρ*

𝑑𝑥
(𝑥) = 𝑍−1 exp(−βΦ(𝑥)), (4.13)

где 𝑍 =
∫︀
R𝐷 exp(−βΦ(𝑥))𝑑𝑥 – нормировочная константа. Это свойство открыва­

ет возможность для вычисления симметричной дивергенции Кульбака–Лейблера
между распределением, к которому наш метод сходится, и эталонным распре­
делением (при условии, что мы знаем 𝑍).

Мы используем 𝒩 (0, 16𝐼𝐷) в качестве начальной меры ρ0 и случайные
смеси гауссовских распределений в качестве стационарной меры ρ*. В нашем
методе мы выполняем 𝐾 = 40 шагов схемы JKO с величиной шага ℎ = 0.1. Вы­
полняется сравнение с методом, основанным на симуляции частиц (с 103, 104, 105

частицами), в котором используется аппроксимация Эйлера–Маруямы ⌊EM⌉
(см. [77, M9.2]). Эксперимент повторялся пять раз; усредненные результаты
показаны на рис. 4.1.

На рис. 4.2 представлены качественные результаты нашего метода, схо­
дящегося к эталону в размерностях 𝐷 = 13,32.
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Рисунок 4.1 — Симметричная дивергенция Кульбака–Лейблера SymKL между
вычисленной и стационарной мерой 𝐷 = 2, 4, . . . 12
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б) Размерность 𝐷 = 32

Рисунок 4.2 — Проекции на две первые PCA-компоненты (анализ главных
компонент) истинной стационарной меры и меры, полученной нашим методом

для размерностей 𝐷 = 13 (слева) и 𝐷 = 32 (справа).

4.4.2 Моделирование процесса Орнштейна–Уленбека

Процессы Орнштейна–Уленбека являются диффузионными процессами
адвекции-диффузии (4.4) с Φ(𝑥) = 1

2(𝑥 − 𝑏)𝑇𝐴(𝑥 − 𝑏) для симметричной по­
ложительно определенной матрицы 𝐴 ∈ R𝐷×𝐷 и 𝑏 ∈ R𝐷. Они представляют
собой один из немногих примеров, в которых аналитически известны ρ𝑡 для
любого 𝑡 ∈ R+, когда начальная мера ρ0 является гауссовой (см. [100]). Это
позволяет нам количественно оценить вычисленную динамику процесса, а не
только стационарную меру.

Пусть 𝐴, 𝑏 выбраны случайно и пусть ρ0 – стандартная гауссовская мера
𝒩 (0,𝐼𝐷). Мы аппроксимируем динамику процесса при помощи нашего мето­
да с шагом JKO-схемы ℎ = 0.05 и вычисляем дивергенцию compute SymKL
между истинной мерой ρ𝑡 и приближенной мерой в момент времени 𝑡 = 0.5 и
𝑡 = 0.9. Мы повторяем эксперимент 15 раз для размерностей 𝐷 = 1,2 . . . ,12;
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Рисунок 4.3 — Значения симметричной дивергенции Кульбака–Лейблера между
вычисленной мерой и истинной мерой ρ𝑡 при 𝑡 = 0.5 (слева) и 𝑡 = 0.9 (справа)

для размерностей 𝐷 = 1,2, . . . ,12.

степень эффективности его функционирования показана на рис. 4.3. Основные
используемые алгоритмы: ⌊EM⌉ с 103,104, 5 × 104 частицами, алгоритм ⌊EM
PR⌉ для моделирования частиц с оператором проксимальной рекурсии с 104

частицами [101], а также параметрический метод двойственного вывода ⌊Dual
JKO⌉ (см. [11]) для шагов схемы JKO.

4.4.3 Выборка из ненормированных апостериорных распределений
в байесовской логистической регрессии

Важной задачей в байесовском машинном обучении, к которому можно
применять наш алгоритм, является получение выборок из ненормированного
апостериорного распределения. При заданных модельных параметрах 𝑥 ∈ R𝐷 с
априорным распределением 𝑝0(𝑥) и условной плотностью 𝑝(𝒮|𝑥) =

∏︀𝑀
𝑚=1 𝑝(𝑠𝑚|𝑥)

данных 𝒮 = {𝑠1, . . . ,𝑠𝑀} апостериорное распределение имеет вид

𝑝(𝑥|𝒮) = 𝑝(𝒮|𝑥)𝑝0(𝑥)
𝑝(𝒮)

∝ 𝑝(𝒮|𝑥)𝑝0(𝑥) = 𝑝0(𝑥) ·
𝑀∏︁

𝑚=1

𝑝(𝑠𝑚|𝑥).

Вычисление нормировочной постоянной 𝑝(𝒮) обычно является трудноразреши­
мой задачей, что подчеркивает необходимость в методах оценки, в которых
необходимо получать выборки из 𝑝(𝒮|𝑥), известной с точностью до нормиро­
вочной постоянной.
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В нашей постановке выборка из 𝑝(𝑥|𝒮) может быть осуществлена, как
в задаче из п. 4.4.1. Из (4.13) следует, что процесс адвекции-диффузии с тем­
пературой β > 0 и Φ(𝑥) = − 1

β
log
[︀
𝑝0(𝑥) · 𝑝(𝒮|𝑥)

]︀
в качестве стационарного

распределения имеет 𝑑ρ*

𝑑𝑥 (𝑥) = 𝑝(𝑥|𝒮). Таким образом, мы можем использовать
наш метод для аппроксимации диффузионного процесса, получая в результате
выборку для 𝑝(𝑥|𝒮).

Потенциальную энергию 𝒰(ρ) =
∫︀
R𝐷 Φ(𝑥)𝑑ρ(𝑥) можно эффективно оце­

нить, используя прием, аналогичный приему из стохастической градиентной
динамики Ланжевена (stochastic gradient Langevin dynamics) [70]. В этом приеме
повторные выборки из 𝒮 осуществляются равномерно. Для оценки мы рассматри­
ваем байесовскую линейную регрессию из [102]. Используется 8 наборов данных
из [103]. Число признаков варьируется от 2 до 60, размер набора данных – от 700
до 7400 точек. Мы также используем набор данных Covertype1 с 500K точками
данных и 54 признаками. Априорное распределение для коэффициента регрес­
сии 𝑤 имеет вид 𝑝0(𝑤|α) = 𝒩 (𝑤|0,α−1) с 𝑝0(α) = Gamma(α|1,0.01), поэтому
априорное распределение с параметрами 𝑥 = [𝑤,α] модели задается формулой
𝑝0(𝑥) = 𝑝0(𝑤,α) = 𝑝0(𝑤|α)·𝑝0(α). Мы случайно разбиваем каждый набор данных
на обучаемую часть 𝒮train и тестируемую часть 𝒮test с отношением 4:1, после чего
применяется вывод для апостериорного распределения 𝑝(𝑥|𝒮train). В табл. 8 пока­
заны точность и логарифмическое правдоподобие прогнозного распределения на
𝒮test. В качестве основного метода для сравнения использовался метод Штейна
вариационного градиентного спуска с симуляцией на частицах (particle-based
Stein Variational Gradient Descent; см. [102]). Использована авторская реализация
с гиперпараметрами, заданными по умолчанию.

4.5 Технические детали экспериментов

Общие детали. Мы используем архитектуру DenseICNN (см. п. 2.7.2)
для ψθ с двумя скрытыми слоями и изменяем ширину модели в зависимости
от задачи. Также используется оптимизатор Adam, у которого скорость обу­
чения уменьшается с увеличением JKO-шагов. Инициализация модели ICNN
происходит или через предварительное обучение для удовлетворения условия

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Набор данных
Точность Лог. правдоподоб.

Наш ⌈SVGD⌋ Наш ⌈SVGD⌋
covtype 0.75 0.75 -0.515 -0.515
german 0.67 0.65 -0.6 -0.6
diabetis 0.775 0.78 -0.45 -0.46
twonorm 0.98 0.98 -0.059 -0.062
ringnorm 0.74 0.74 -0.5 -0.5
banana 0.55 0.54 -0.69 -0.69
splice 0.845 0.85 -0.36 -0.355

waveform 0.78 0.765 -0.485 -0.465
image 0.82 0.815 -0.43 -0.44

Таблица 8 — Сравнение нашего метода с ⌈SVGD⌋ [102] для байесовской логисти­
ческой регрессии.

∇ψθ(𝑥) ≈ 𝑥, или путем использования параметров θ, полученных из преды­
дущего JKO-шага.

Для ⌊Dual JKO⌉ мы использовали реализацию, предложенную авторами,
при этом гиперпараметры выбирались по умолчанию. Для ⌊EM PR⌉ оператор
проксимальной рекурсии (Proximal Recursion operator) был реализован согласно
псевдокоду из [101]. Для целей сравнения с простым алгоритмом ⌊EM⌉ мы
использовали этот оператор с гиперпараметрами, заданными по умолчанию, но
с увеличенным числом частиц. Отметим, что из-за высокой вычислительной
сложности метода число частиц было ограничено сверху константой 𝑁 = 104.
Для ⌊SVGD⌉ мы использовали официальную реализацию, доступную по адресу

https://github.com/dilinwang820/Stein-Variational-Gradient-Descent

В моделировании по методу частиц для ⌊EM⌉, ⌊BBF⌉ и ⌊EM PR⌉ мы исполь­
зовали временной шаг распространения частиц 𝑑𝑡 = 10−3.

Величина SymKL (см. (4.12)) оценивалась по методу Монте-Карло (MC)
на 104 выборках. В нашем методе оценка по методу Монте-Карло является
прямой, поскольку метод позволяет осуществлять как выборку, так и подсчет
плотности. В методах на основе симуляции частиц мы используем ядерную
оценку плотности для аппроксимации плотности с использованием реализации
scipy для gaussian_kde с шириной полосы (bandwidth), выбираемой по прави­
лу Скотта. В ⌊Dual JKO⌉ используется процедура выборки с оценкой важности
(importance sampling procedure) и оценкой нормировочной постоянной, как в [11].
Мы используем β = 1 во всех наших экспериментах.
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𝐷 𝑀 𝑙 𝑤

2 5 10 256
4 6 10 384
6 7 10 512
8 8 10 512
10 9 10 512
12 10 10 1024
13 10 10 512
32 10 6 1024

Таблица 9 — Гиперпараметры, используемые в эксперименте.

4.5.1 Сходимость к стационарному распределению

В качестве стационарной меры ρ* мы рассматриваем случайные смеси гаус­
совских распределений 1

𝑁𝑝

∑︀𝑀
𝑚=1𝒩 (µ𝑚, 𝐼𝐷), где µ1, . . . ,µ𝑀 ∼ Uniform

(︀
[− 𝑙

2 ,
𝑙
2 ]

𝐷
)︀
.

Предполагается, что ширина 𝑤 используемой сети ICNN ψθ зависит от размер­
ности 𝐷. Используемые параметры приведены в табл. 9.

На каждом JKO-шаге используется 1000 итераций градиентного спуска
в алгоритме 3. Для размерностей 𝐷 = 2, 4, . . . , 12 первые 20 JKO-переходов
оптимизируются с 𝑙𝑟 = 5 · 10−3, а на оставшихся шагах используется 𝑙𝑟 =

2 · 10−3. Для качественных экспериментов при 𝐷 = 13, 32 мы выполняем 50 и 70

JKO-шагов с длиной шага ℎ = 0.1. В этих случаях параметры для определения
скорости обучения аналогичны параметрам для проведения количественных
экспериментов, но в первом случае выполняется дополнительный цикл с 𝑙𝑟 =

5 · 10−4 на заключительных шагах JKO. Размер выборки: 𝑁 = 512.

4.5.2 Моделирование процессов процесса Орнштейна–Уленбека

Матрицы 𝐴 ∈ R𝐷×𝐷 случайно генерируются с использованием
sklearn.datasets.make_spd_matrix. Векторы 𝑏 ∈ R𝐷 выбираются из стан­
дартной гауссовской меры. Для всех сетей ICNN ψθ мы полагаем 𝑤 = 64;
каждая из них обучается за 500 итераций за один шаг JKO с 𝑙𝑟 = 5 · 10−3

и размером выборки 𝑁 = 1024.
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Набор данных 𝑤 𝑙𝑟 𝑖𝑡𝑒𝑟 batch 𝐾

covtype 512 2 · 10−5 104 1024 6

german 512 2 · 10−4 5000 512 5

diabetis 128 5 · 10−5 6000 1024 16

twonorm 512 5 · 10−5 5000 1024 7

ringnorm 512 5 · 10−5 5000 1024 2

banana 128 2 · 10−4 5000 1024 5

splice 512 2 · 10−3 2000 512 5

waveform 512 5 · 10−5 5000 512 2

image 512 5 · 10−5 5000 512 5

Таблица 10 — Гиперпараметры, используемые в экспериментах по байесовской
логистической регрессии.

4.5.3 Получение выборки из апостериорного распределения

Для избавления от условия положительности α мы рассматриваем
[𝑤, log(α)] в качестве параметров регрессионной модели (вместо [𝑤,α]). Для обу­
чения апостериорного распределения 𝑝(𝑥|𝑆train) мы используем размер JKO-шага
ℎ = 0.1. Пусть 𝑖𝑡𝑒𝑟 – число градиентных шагов по θ на каждый JKO-шаг. Ис­
пользованные гиперпараметры для каждого набора данных указаны в табл. 10.

Для оценки логарифмического правдоподобия и точности прогнозируемого
распределения на 𝑆𝑡𝑒𝑠𝑡 по 𝑝(𝑥|𝑆train) мы используем прямую оценку по методу
Монте-Карло на 212 случайных выборках параметров.

4.6 Обсуждение

Вычислительная сложность обучения и получения выборки. Пусть
𝑇 – число операций, требуемых для вычисления ψθ(𝑥) сетью ICNN. Предпо­
ложим, что временные затраты на вычисление Φ(𝑥) в потенциальной энергии
𝒰 составляют по порядку 𝑂(1).

Напомним, что вычислительные затраты на вычисление градиента пре­
восходят лишь на постоянный множитель затраты на вычисление самой
функции (см. [104]). Таким образом, вычисление градиента ∇ψθ(𝑥) : R𝐷 → R𝐷
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Операция Временная сложность

Вычисл. ψθ,∇ψθ,∇2ψθ 𝑇 , 𝑂(𝑇 ), 𝑂(𝐷𝑇 )

Вычисл. log det∇2ψθ 𝑂(𝐷𝑇+𝐷3)

Выборк. 𝑥 ∼ ρ(𝑘) 𝑂
(︀
(𝑘−1)𝑇

)︀
Вычисл. ̂︀ℒ на 𝑥 ∼ ρ(𝑘) 𝑂(𝐷𝑇 +𝐷3)

Вычисл. 𝜕 ̂︀ℒ
𝜕θ на 𝑥 ∼ ρ(𝑘) 𝑂(𝐷𝑇+𝐷3)

Sample 𝑥 ∼ ρ(𝑘) и
Eval. 𝑑ρ(𝑘)

𝑑𝑥 (𝑥)
𝑂
(︀
(𝑘−1)(𝑇𝐷+𝐷3)

)︀
Таблица 11 — Вычислительная сложность операций в нашем метод для вычис­
ления шагов схемы JKO с помощью сетей ICNN.

требует 𝑂(𝑇 ) операций, а временные затраты на вычисление гессиана
∇2ψθ(𝑥) : R𝐷 → R𝐷×𝐷 равны 𝑂(𝐷𝑇 ). Для вычисления log det∇2ψθ(𝑥) тре­
буется 𝑂(𝐷3) дополнительных операций. Получение выборки из ρ(𝑘−1) =

∇ψ(𝑘−1) ∘ · · · ∘ ∇ψ(1)♯ρ0 включает в себя прямое отображение 𝑥0 ∼ ρ0 при
помощи последовательности сетей ψ(·) длины 𝑘 − 1, что требует 𝑂

(︀
(𝑘 − 1)𝑇

)︀
операций. Прямое прохождение для вычисления целевой функции ̂︀ℒ в шаге
схемы JKO в алгоритме 3 требует 𝑂(𝐷𝑇 +𝐷3) операций, равно как и операция
обратного прохода для вычисления градиента 𝜕 ̂︀ℒ

𝜕θ по θ.
Более сложной оказывается оценка затрат памяти, поскольку они зависят

от реализации автодифференцирования. Затраты, связанные с памятью, не
превосходят временную сложность алгоритма и являются линейными по числу 𝑘

шагов схемы JKO.
Физическое время. Все основанные на моделировании частиц методы,

которые были рассмотрены в п.4.4 и ⌊Dual JKO⌉, требуют от нескольких секунд
до нескольких минут процессорного времени. Наш метод требует от нескольких
минут до нескольких часов процессорного времени на графическом процессоре
(это время объясняется необходимостью обучения новой сети на каждом шаге).

Преимущества. Благодаря использованию непрерывной аппроксима­
ции наш метод хорошо масштабируется на случай больших размерностей,
что будет показано в п. 4.4.1 и п. 4.4.2. После обучения можно организо­
вать бесконечное множество выборок 𝑥𝑘 ∼ ρ(𝑘) вместе с их траекториями
𝑥𝑘−1,𝑥𝑘−2, . . . ,𝑥0 вдоль потока градиента. Более того, плотности выборок в потоке
flow 𝑑ρ(𝑘)

𝑑𝑥 (𝑥𝑘),
𝑑ρ(𝑘−1)

𝑑𝑥 (𝑥𝑘−1), . . . ,
𝑑ρ(0)

𝑑𝑥 (𝑥0) могут быть вычислены непосредственно.
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Напротив, методы, основанные на моделировании частиц, и методы,
основанные на дискретизации доменов, обладают плохой способностью к мас­
штабированию с изменением размерности (рис. 4.3), и по ним нельзя получить
плотность. Несмотря на применяемую в ⌊Dual JKO⌉ параметрическую аппрок­
симацию, функциональные характеристики метода ⌊Dual JKO⌉ сравнимы с
характеристиками методов, основанных на моделировании методом частиц, но
хуже, чем у нашего метода (см. также рис. 3 в работе [11]).

Ограничения. Для обучения 𝑘 JKO-шагов временные затраты нашего
метода пропорциональны 𝑘2 из-за повышенной сложности, связанной с выборкой
𝑥 ∼ ρ(𝑘). Это может быть невыгодным при обучении длинных диффузий. Также
для очень больших размерностей 𝐷 точное вычисление log det∇2ψθ(𝑥) является
весьма затратным по времени.

Возможные направления дальнейших исследований. Для сниже­
ния вычислительной сложности процесса получения выборок из ρ(𝑘) на шаге 𝑘

можно обучить обратимую сеть 𝐻 : R𝐷 → R𝐷 [105; 106], для которой выполнено
𝐻(𝑥0) ≈ ∇ψ(𝑘) ∘ · · · ∘ ∇ψ(1)(𝑥0), и использовать 𝐻♯ρ0 → ρ(𝑘) для упрощения
процесса получения выборок. Другим вариантом является использование вари­
ационных выводов (см. [107—109] для аппроксимации ρ(𝑘). Чтобы уменьшить
сложность вычисления log det∇ψθ(𝑥), можно использовать быструю аппрокси­
мацию [110; 111]. Отметим, что разработка сетей ICNN с легко вычисляемыми
точными гессианами является чрезвычайно важна для дальнейших исследо­
ваний, поскольку сети ICNN продолжают привлекать внимание для задач,
связанных с машинным обучением [7; 52; 112; 113].

Возможные применения. Процессы диффузии имеют важное значение
в решении многочисленных научных и промышленных задач, включая машинное
обучение, финансы, физику и динамику популяций. Наш метод улучшает модели
в этих областях, обеспечивая лучшую масштабируемость. Производительность,
однако, может зависеть от сетей ICNN, что подчеркивает исключительную
важность теоретического анализа сходимости в будущих исследованиях для
увеличения доверия к нашей модели.

Подводя итог всему вышесказанному, мы разработали эффективный ме­
тод для моделирования диффузионных процессов, возникающих во многих
практических задачах. Мы применяем наш метод к общей байесовской задаче
семплирования из ненормированного апостериорного распределения (п. 4.4.3).
Также отметим ряд потенциальных приложений:
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– Динамика популяций. В этой задаче требуется восстановить Φ(𝑥)

в функционале свободной энергии Фоккера–Планка ℱFP, основываясь
на выборках из диффузии, полученной c временными шагами 𝑡1, . . . , 𝑡𝑛

(см. [114]). Такого рода задачи возникают в вычислительной биологии
(см. п. 6 в [114]). В недавней статье [115] для моделирования динамики
популяций используются JKO, основанные на сетях ICNN.

– Обучение с подкреплением (Reinforcement learning). Градиент­
ные потоки Васерштейна дают теоретически обоснованный способ для
оптимизации политики агента в обучении с подкреплением (см. [92;
93]). Идея этого метода состоит в максимизации ожидаемого общего
вознаграждения (см. (10) в [93]) с использованием градиента потока,
связанного c функционалом Фоккера–Планка (см. (12) в [93]). Авторы
оригинальной статьи предложили дискретный метод аппроксимации
решения соответствующей JKO-схемы с помощью симуляции частиц.
Можно ожидать улучшения полученных результатов при комбинации
их подхода с нашей JKO-схемой, основанной на сетях ICNN-based.

– Уточнение генеративных состязательных сетей. В задачах,
связанных с генеративными состязательными сетями (GAN), можно
использовать дискриминатор 𝐷 для улучшения выборки из 𝐺. Для
этого, можно рассмотреть градиентный поток относительно регуляризо­
ванной энтропией 𝑓 -дивергенции между реальными и сгенерированными
распределениями данных (см. [91], и, в частности, формулу (4)). Исполь­
зование дивергенции Кульбака–Лейблера позволит применить наш метод
для нахождения потока градиента: функционал ℱ , определяющий поток,
имеет только энтропийные члены и члены, входящие в потенциальную
энергию. Использование нашего метода вместо метода симуляции частиц
может улучшить модель генератора 𝐺.

– Молекулярный анализ. В работе [116], параллельно нашим иссле­
дованиям, также была предложена JKO-ICNN схема. В этой работе
в качестве приложения авторы рассматривают задачи молекулярного
анализа, и, в частности, задачу повышения лекарственных свойств
для заданного распределения ρ молекул при условии близости к ориги­
нальному распределению ρ0. Эта задача сводится к задаче оптимизации
функционала ℱ(ρ) = E𝑥∼ρΦ(𝑥) +𝒟(ρ,ρ0) при некотором потенциале Φ

(𝑉 в обозначениях работы [116]) и несоответствия (discrepancy) 𝒟. Метод



101

JKO-ICNN был применен для минимизации ℱ на наборе данных MOSES
[117] (молекулы). Полученные результаты являются весьма перспектив­
ными.
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Глава 5. Методология построения Васерштейн-2 эталонных пар
вероятностных распределений

В последнее время большой популярностью пользуются основанные на
нейронных сетях численные методы (решатели) для задачи 1 оптимального
транспорта (OT). Тем не менее в настоящее время до сих пор не существует
стандартный способ для оценки их функциональных характеристик. В настоя­
щей главе мы рассматриваем этот вопрос для задачи оптимального транспорта с
квадратичной стоимостью, более конкретно, для расстояния Васерштейн-2, ши­
роко используемого в задачах оптимального транспорта в машинном обучении.
Чтобы преодолеть проблему вычисления эталонных транспортных отображений
между непрерывными мерами, необходимыми для оценки этих решателей, мы
используем выпуклые по входу нейронные сети (ICNN), чтобы построить па­
ры мер, для которых эталонные транспортные отображения можно получить
аналитически (задача 4). Эта стратегия дает пары непрерывных эталонных
мер в таких многомерных пространствах, как пространства изображений. Мы
аккуратно оцениваем существующие оптимальные решатели для задачи опти­
мального транспорта с использованием этих эталонных мер. Несмотря на то,
что эти решатели хорошо работают в ряде текущих задач, многие из них плохо
восстанавливают оптимальные транспортные отображения. Чтобы исследовать
причину такого несоответствия, мы дополнительно проверяем решатели в зада­
чах генерации изображений. Наши исследования позволяют выявить основные
ограничения, присущие существующим решателям, и показывают, что повышен­
ная точность в задаче оптимального транспорта не обязательно коррелирует
с лучшими результатами по решению практических задач.

5.1 Введение

В настоящий момент в машинном обучении широко используются пара­
метрические (или т.н. непрерывные) методы для решения задач оптимального
транспорта (OT). Эти методы включают в себя методы для крупномасштаб­
ных задач оптимального транспорта [2; 58] и методы, связанные с популярной
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генеративной состязательной сетью Васерштейна (W-GAN) [1; 35]. В отличие
от методов, использующих дискретизацию задачи (см. [6]), в параметрических
алгоритмах оптимального транспорта применяются нейронные сети, а также
ядерные разложения (kernel expansions) для оценки транспортных отображений
или двойственных решений. Такой подход позволяет масштабировать задачи
оптимального транспорта на крупномасштабные и многомерные задачи, не реша­
емые дискретными методами. Существенный успех применения параметрических
методов решения задач оптимального транспорта достигнут в генеративном
моделировании [43; 118—120] и задачах адаптации доменов [59; 121; 122].

В таких приложениях стоимость оптимального транспорта обычно исполь­
зуется как функция потерь для генеративных нейронных сетей. Например, в
сетях W-GAN стоимость оптимального транспорта используется как функция
потерь для генератора; данная модель включает в себя основанный на нейрон­
ных сетях решатель задачи оптимального транспорта, используемый для оценки
потерь. Отметим, что недавно введенные сети W-GAN обеспечивают генератив­
ную производительность на современном уровне. Однако остается неясным, в
какой степени этот успех связан с задачей оптимального транспорта. Например,
в работах [123—125] показывается, что популярные решатели для расстояния
Васерштейна-1 (W1) в сетях GAN не могут корректно оценить расстояние W1.
Несмотря на то, что сети W-GANs были изначально введены для расстояния W1

в [1], в настоящее время современные решатели используют оба расстояния W1 и
W2 (W2 – расстояние Васерштейна-2, т.е. расстояние с квадратичной функцией
стоимости в задаче оптимального транспорта). Эксперименты показывают, что
для сетей GAN такие расстояния показывают сходные функциональные харак­
теристики, но W2-решатели имеют тенденцию сходиться быстрее (см. табл. 4
в работе [43]) и с лучшими теоретическими оценками [7; 43].

Краткое описание полученных результатов главы. В настоящей
главе разработан общий подход к оценке параметрических решателей задачи оп­
тимального транспорта с квадратичной стоимостью (W2). Основные результаты
состоят в следующем:

– Выпуклые по входу нейронные сети (ICNN [20]) используются для по­
строения эталонных пар непрерывных мер с аналитически известным
(по построению) ОТ отображением между ними (п. 5.4, п. 5.5.1).

– Эталонные меры используются для оценки популярных параметриче­
ских решателей оптимального транспорта с квадратичной стоимостью в
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пространствах большой размерности (п. 5.5.3), включая пространство
изображений лиц размера 64× 64 из набора данных CelebA (п. 5.5.4).

– Решатели задачи оптимального транспорта 1 тестируются в качестве
оценщиков функции потерь при генеративном моделировании изображе­
ний (п. 5.5.5).

Наши эксперименты показывают, что некоторые решатели задачи опти­
мального транспорта выдают большую ошибку даже в малых размерностях
(п. 5.5.3) и показывают результаты, сравнимые с тривиальными подходами (п.
5.5.2). В наиболее успешных решателях используется параметризация сетей
ICNN. Однако достаточно удивительным оказывается то, что решатели, пра­
вильно восстанавливающие W2, не достигают наилучших показателей в задачах
генеративного моделирования.

Наши эталонные меры могут быть использованы для оценки перспективных
W2-решателей в пространствах большой размерности, что является ключевым
шагом для улучшения прозрачности и воспроизводимости параметрических
численных методов оптимального транспорта. Отметим, что методология [126]
не удовлетворяет этой цели, поскольку она предназначена для тестирования
дискретных методов оптимального транспорта и использует дискретные меры
малой размерности с ограниченным носителем.

Обозначения. В главе 𝒫2(R𝐷) обозначает множество борелевских вероят­
ностных мер на R𝐷 c конечными вторыми моментами, 𝒫2,𝑎𝑐(R𝐷) — подмножество
всех абсолютно непрерывных вероятностных мер, Π(P,Q) – множество всех ве­
роятностных мер на R𝐷 ×R𝐷 с маргиналами P и Q. Для заданного измеримого
отображения 𝑇 : R𝐷 → R𝐷 через 𝑇♯ обозначим соответствующий оператор
отображения. Для функции φ : R𝐷 → R посредством φ обозначим ее преобразо­
вание Лежандра–Фенхеля [29], заданное формулой φ(𝑦) = max𝑥∈R𝐷 [⟨𝑥,𝑦⟩−φ(𝑥)].
Напомним, что φ есть выпуклая функция (даже при невыпуклой φ).

5.2 Некоторые сведения из теории оптимального транспорта

Для начала напомним определение и некоторые свойства задачи 1 оп­
тимального транспорта с квадратичной функцией стоимости. По поводу
формальных постановок и доказательств см. гл. 1 работы [9].
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Постановка задачи. Для P,Q ∈ 𝒫2(R𝐷) определение Монжа квадрата
расстояния Васерштейна-2, т.е. задачи оптимального транспорта с квадратичной
функцией стоимости, имеет следующий вид:

W2
2(P,Q)

def
= min

𝑇♯P=Q

∫︁
R𝐷

‖𝑥− 𝑇 (𝑥)‖2

2
𝑑P(𝑥), (5.1)

где минимум берется по измеримым функциям (транспортным отображениям)
𝑇 : R𝐷 → R𝐷, отображающим P в Q. Оптимальное значение 𝑇 * в этой задаче
называется отображением оптимального транспорта (отображением OT).
Отметим, что функционал (5.1) не является симметричным и что в этой фор­
мулировке не возможно расщепление массы, т.е. при некоторых P,Q ∈ 𝒫2(R𝐷)

может не существовать отображения 𝑇 со свойством 𝑇♯P = Q. В этой связи
Канторович [127] предложил следующую постановку задачи:

W2
2(P,Q)

def
= min

π∈Π(P,Q)

∫︁
R𝐷×R𝐷

‖𝑥− 𝑦‖2

2
𝑑π(𝑥,𝑦), (5.2)

где минимум берется по всем транспортным планам π, т.е. мерам на R𝐷×R𝐷, в ко­
торых P и Q – маргиналы. Оптимальное π* ∈ Π(P,Q) называется оптимальным
транспортным планом (OT-планом). Если π* имеет вид [idR𝐷 , 𝑇 *]♯P ∈ Π(P,Q)

при некотором 𝑇 *, то 𝑇 * – минимизатор в задаче (5.1).
Двойственная формулировка. Для P,Q ∈ 𝒫2(R𝐷) двойственная фор­

мулировка задачи W2
2 имеет следующий вид (см. [27]):

W2
2(P,Q) = max

𝑓⊕𝑔⩽ 1
2‖·‖2

[︂ ∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

𝑔(𝑦)𝑑Q(𝑦)

]︂
, (5.3)

где максимум берется по всем 𝑓 ∈ ℒ1(P,R𝐷 → R) и 𝑔 ∈ ℒ1(Q,R𝐷 → R),
удовлетворяющим 𝑓(𝑥) + 𝑔(𝑦) ⩽ 1

2‖𝑥− 𝑦‖2 при всех 𝑥,𝑦 ∈ R𝐷. По оптимальному
двойственному потенциалу 𝑓 * мы можем восстановить оптимальное отображение
𝑇 *(𝑥) = 𝑥 − ∇𝑓 *(𝑥) (см. пояснения в теореме 1.17 из [9]).

Существуют оптимальные 𝑓 * и 𝑔*, которые удовлетворяют условиям
(𝑓 *)𝑐 = 𝑔* и (𝑔*)𝑐 = 𝑓 *, где 𝑢𝑐 : R𝐷 → R – 𝑐-преобразование 𝑢, определенное
формулой: 𝑢𝑐(𝑦) = min𝑥∈R𝐷

[︀
1/2‖𝑥− 𝑦‖2 − 𝑢(𝑥)

]︀
. Задачу (5.3) можно переписать

в следующем виде:

W2
2(P,Q) = max

𝑓

[︂ ∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

𝑓 𝑐(𝑦)𝑑Q(𝑦)

]︂
, (5.4)
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где максимум берется по всем 𝑓 ∈ ℒ1(P,R𝐷 → R). Так как 𝑓 * и 𝑔* получаются
друг из друга 𝑐-преобразованием, каждая из этих функций является 𝑐-вогнутой
(см. [9, M1.6]), что эквивалентно тому, что функции ψ* : 𝑥 ↦→ 1

2‖𝑥‖
2 − 𝑓 *(𝑥) и

φ* : 𝑥 ↦→ 1
2‖𝑥‖

2 − 𝑔*(𝑥) выпуклы, см. предложение 1.21 в [9]. В частности, ψ* =
φ* и φ* = ψ*. Так как

𝑇 *(𝑥) = 𝑥−∇𝑓 *(𝑥) = ∇
(︂
‖𝑥‖2

2
− 𝑓 *(𝑥)

)︂
= ∇ψ*, (5.5)

мы получаем, что отображения оптимального транспорта являются градиентами
выпуклых функций. Этот результат известен как теорема Бренье [26].

Существующие подходы к “решению” задач оптимального транс­
порта. В приложениях для заданных P,Q ∈ 𝒫2(R𝐷) оптимальная транспортная
задача W2 обычно рассматривается в следующих трех аналогичных, но не эк­
вивалентных постановках:

– Вычисление W2
2(P,Q). Расстояние Васерштейна-2, представляет собой

геометрически осмысленный способ вычисления вероятностных мер и
задает метрику на 𝒫2(R𝐷).

– Вычисление оптимального отображения 𝑇 * или плана π*. Отоб­
ражение 𝑇 * дает интуитивный способ интерполяции между мерами. Оно
часто используется в качестве генеративного отображения между мера­
ми в таких задачах, как, например, адаптация доменов [2; 59] и перенос
стилей изображений (см. главу 2 или [59]).

– Использование градиента 𝜕W2
2(Pα,Q)/𝜕α для обновления генератив­

ных моделей. Производные W2
2 неявно используются в генеративном

моделировании, включающем в себя W2-потери [43; 128]; в этом слу­
чае P = Pα – параметрическая мера и Q – мера данных. В типичной
ситуации Pα = 𝐺α♯S – мера, сгенерированная из латентной меры S с
помощью параметризованной функции 𝐺α, т.е. нейронной сетью. Це­
лью является нахождение параметров α, минимизирующих W2

2(Pα,Q)

с использованием метода градиентного спуска.
В постановке задачи с использованием генеративных моделей по опреде­

лению отображения Pα = 𝐺α♯S имеем

W2
2(Pα,Q) =

∫︁
𝑧

𝑓 *(𝐺α(𝑧))𝑑S(𝑧) +
∫︁
R𝐷

𝑔*(𝑦)𝑑Q(𝑦),

где 𝑓 * и 𝑔* – оптимальные двойственные потенциалы. На каждом шаге обучения
генератора 𝑓 * и 𝑔* фиксируются, поэтому при взятии градиента по α по правилу
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дифференцирования сложной функции имеем

𝜕W2
2(Pα,Q)

𝜕α
=

∫︁
𝑧

Jα𝐺α(𝑧)
𝑇∇𝑓 *

(︀
𝐺α(𝑧)

)︀
𝑑S(𝑧), (5.6)

где Jα𝐺α(𝑧)𝑇 – транспонированная матрица Якоби для 𝐺α(𝑧) c параметром α. Ис­
пользуя теорему об огибающей (the envelope theorem) [129], можно доказать, что
этот результат также имеет место и без предположения, что потенциалы фикси­
рованы. Для нахождения градиента нам нужна хорошая оценка ∇𝑓 * = idR𝐷−𝑇 *,
для получения которой можно использовать (5.5). Эта задача немного отличает­
ся от задачи вычисления отображения оптимального транспорта 𝑇 *: поскольку
оценка ∇𝑓 * используется только при обновлении градиента для генератора, она
может отличаться, но всё равно давать хорошую генеративную модель.

Под фразой решатель задачи оптимального транспорта мы будем по­
нимать метод для решения любой из упомянутых выше задач.

Численная оценка решателей задачи оптимального транспорта.
Для дискретных методов задачи оптимального транспорта существует эталонный
набор данных (см. [126]), но при этом механизм для генерации набора данных
не переносится на случай задач оптимального транспорта между непрерывными
мерами. Существующие параметрические решатели обычно оцениваются на
множестве простых примеров или тестируются в генеративных моделях без
оценки ее фактической производительности в задаче оптимального транспорта.
Часто используются следующие две метрики:

В явных метриках вычисленное транспортное отображение 𝑇 сравнива­
ется с истинным 𝑇 *, например, с использованием ℒ2-метрики необъяснимого
процента расхождения (Unexplained Variance Percentage; ℒ2-UVP), см. главу
2. В настоящее время имеется сравнительно немного явных метрик, посколь­
ку число примеров P,Q с известным эталоном 𝑇 * достаточно мало. Известно,
что 𝑇 * может быть аналитически получено или явно вычислено в дискрет­
ном случае [6, M3], в 1-мерном случае [6, M2.6], а также в гауссовском или
линейно-разбросанном случаях [36].

Неявные метрики применяют решатель ОТ как компоненту в многоэтап­
ной схеме обучения. При этом качество конечного решения задачи используется
как косвенная оценка качества самого решателя. Например, в генеративном
моделировании, при котором оптимальный транспорт используется как функция
потерь для генератора [43; 130], качество генератора можно оценить через метри­
ки для сетей GAN, например, через метрику Fréchet Inception distance (FID) [42].
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Неявные метрики не дают ясного понимания о качестве самого решателя, но
зависят от компонент модели, не связанных с задачей оптимального транспорта.

5.3 Параметрические двойственные решатели для задач
оптимального транспорта с квадратичной функцией стоимости

Несмотря на то, что наш разрабатываемый бенчмарк (эталонный набор
пар мер) может быть использован для тестирования любого параметрического
решателя, вычисляющего отображение 𝑇 * или градиент ∇𝑓 *, в настоящей главе
вычисления выполняются только для параметрических решателей, использу­
ющих двойственных форму ОТ (5.3) или (5.4). Для таких решателей имеются
простые и понятные оптимизационные процедуры, которые могут быть адапти­
рованы к различным наборам данных без затратного поиска гиперпараметров.
Напротив, основанные на форме (5.1) решатели (см., например, [59; 131—133])
обычно параметризуют 𝑇 *, используя сложные методы теории генеративного
моделирования и требуют тщательного поиска гиперпараметров [134].

В табл. 12 мы приводим основные сведения о существующих параметриче­
ских решателях, использующих двойственную форму. Решатели обучают пара­
метрическую функцию 𝑓θ (или ψθ) для аппроксимации 𝑓 * (или ψ* = idR𝐷 − 𝑓 *).
Получающаяся в итоге функция 𝑓θ дает приблизительное отображение задачи
оптимального транспорта idR𝐷−∇𝑓θ=∇ψθ ≈ 𝑇 * и производную∇𝑓θ= idR𝐷−∇ψθ,
которая нужна для обучения генеративных моделей (5.6).

Насколько нам известно, ни один из представленных выше решателей не
был оценен в количественном отношении в негауссовской постановке. Для ⌊MM⌉,
⌊MM-B⌉ и ⌊QC⌉ качество восстановленных производных ∇𝑓 * для 𝜕W2

2(Pα,Q)/𝜕α

оценивалось только неявно через GAN-метрики. Более того, для этих трех
решателей не производилась их количественная оценка при решении задач оп­
тимального транспорта. Рассмотрим более подробно каждый из решателей
из табл. 12.

Решатель ⌊LS⌉ оптимизирует регуляризованную двойственную форму для
(5.3) без граничных условий [2]:

max
𝑓,𝑔

[︂ ∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

𝑔(𝑦)𝑑Q(𝑦)

]︂
−ℛ(𝑓,𝑔). (5.7)
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Решатель Ссылки
Параметризация
потенциалов или

отображений

Количественно
тестируется

как метод OT.

Тестирование
в GAN

Regularized ⌊LS⌉ [2; 58; 128] 𝑓θ,𝑔ω : R𝐷 → R - NNs
Гаусс. случай

(глава 2)

Энтроп.
регуляриз.

WGAN [128]

Maximin ⌊MM⌉ [135]
𝑓θ : R𝐷 → R - NN

𝐻ω : R𝐷 → R𝐷 - NN
-

WGAN [135]
с тремя

игроками
Maximin (Batch-wise)

⌊MM-B⌉
[130; 136] 𝑓θ : R𝐷 → R - NN - (q,p)-WGAN [130]

Квадратичн.
стоим.

⌊QC⌉ [43] 𝑓θ : R𝐷 → R - NN - WGAN-QC [43]

Maximin + ICNN
⌊MMv1⌉

[21] ψθ : R𝐷 → R - ICNN
Гаусс. случай

(глава 2)
-

Maximin + 2 ICNN
⌊MMv2⌉

[7; 52]
ψθ : R𝐷 → R - ICNN

𝐻ω : R𝐷 → R𝐷 - ∇ICNN
Гаусс. случай

(глава 2)
-

Non-Maximin ⌊W2⌉ Глава 2
ψθ : R𝐷 → R - ICNN

𝐻ω : R𝐷 → R𝐷 - ∇ICNN
Гаусс. случай

(глава 2)
-

Таблица 12 — Сравнение существующих параметрических двойственных реша­
телей задач оптимального транспорта 1.

Энтропийный или квадратичный регуляризатор ℛ штрафует потенциалы 𝑓,𝑔

за нарушение ограничений 𝑓 ⊕ 𝑔 ⩽ 1
2‖ · ‖

2 [2, M3]. На практике 𝑓 = 𝑓θ и 𝑔 = 𝑔ω

являются линейными комбинациями ядерных функций [58] или нейронных
сетей [2]. Параметры θ,ω получаются применением метода стохастического
градиентного подъема (SGA) по случайным выборкам из P,Q.

Большинство других решателей основано на разложении (5.4):

W2
2(P,Q) = max

𝑓

∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥) +
∫︁
R𝐷

=𝑓 𝑐(𝑦)⏞  ⏟  
min
𝑥∈R𝐷

[︂
1

2
‖𝑥− 𝑦‖2 − 𝑓(𝑥)

]︂
𝑑Q(𝑦). (5.8)

Сложностью (5.8) является внутренняя минимизация по 𝑥 ∈ R𝐷, т.е. вычисление
𝑓 𝑐(𝑦). Основное отличие от существующих решателей заключается в процедуре
решения внутренней задачи.

Решатель ⌊MM-B⌉ использует нейронную сеть 𝑓θ как потенциал, обученный
SGA [130] на случайных выборках. Для решения внутренней задачи миними­
зация по 𝑥 ограничивается текущей выборкой из P (вместо R𝐷). Этот подход
обеспечивает быстроту вычислений, но приводит к переоценке решения внут­
ренней задачи, поскольку минимум берется по подмножеству.

В решателе ⌊MM-v1⌉ используется следующее свойство: 𝑓 * = 1
2‖·‖

2−ψ*, где
ψ* — выпуклая функция [21]. В [21] используется параметризация 𝑓θ =

1
2‖·‖

2−ψθ,



110

где ψθ – выпуклая по входу нейронная сеть (ICNN) [20]. Следовательно, для
каждого 𝑦 ∈ R𝐷 внутренная подзадача в (5.8) становится выпуклой по 𝑥. Эта
задача может быть решена с использованием SGA с высокой точностью, но этот
подход очень затратен с вычислительной точки зрения (см. главу 2).

В решателе ⌊MM⌉ используется задача, эквивалентная (5.8) [135]:

W2
2(P,Q) = max

𝑓

∫︁
R𝐷

𝑓(𝑥)𝑑P(𝑥)+
∫︁
R𝐷

min
𝐻

[︂
1

2
‖𝐻(𝑦)−𝑦‖2−𝑓(𝐻(𝑦))

]︂
𝑑Q(𝑦), (5.9)

где минимизация производится по функциям 𝐻 : R𝐷 → R𝐷. Используются ней­
ронные сети 𝑓θ и 𝐻ω для параметризации потенциала и оптимизатора внутренней
задачи. Для обучения θ,ω применяется метод стохастического градиентного
подъема/спуска с использованием случайных выборок из P,Q. Метод ⌊MM⌉
является достаточно общим и может быть модифицирован для вычисления
произвольных транспортных стоимостей и производных (т.е. он может приме­
няться не только для расстояния W2

2), хотя в указанной работе рассматривалось
только расстояние Васерштейн-1 (W1).

Аналогично ⌊MMv1⌉, метод ⌊MMv2⌉ параметризует 𝑓θ =
1
2‖ · ‖

2 −ψθ, где
ψθ – сеть ICNN [7]. При фиксированном 𝑓θ оптимальное решение 𝐻 имеет
вид 𝐻 = (∇ψθ)−1 (обратный градиент выпуклой функции) и, следовательно,
также является градиентом выпуклой функции. С учетом этого в указанной
работе параметризуется 𝐻ω = ∇φω, где φω – сеть ICNN, а ⌊MM⌉ используется
для обучения t θ,ω.

В главе 2 данной работы мы предложили метод ⌊W2⌉. В нем используется
такая же параметризация ICNN, как и в [7], но, в отличие от этого подхода,
вводится циклически согласованная регуляризация во избежание появления
максиминной задачи.

В заключение этого краткого обзора упомянем также решатель ⌊QC⌉ из [43].
Как и в ⌊MM-B⌉, в нем нейронная сеть 𝑓θ используется, как потенциал. После
получения случайных выборок {𝑥𝑛},{𝑦𝑛} из P,Q в [43] решается дискретная
задача оптимального транспорта для получения двойственных переменных
{𝑓 *𝑛}, {𝑔*𝑛}, которые, в свою очередь, используются для регрессии 𝑓θ(𝑥𝑛) на 𝑓 *𝑛.

Отклонение градиентов. Указанные выше решатели применяются для
оптимизации потенциалов типа 𝑓θ (или ψθ), но именно градиент 𝑓θ (or ψθ)
используется для восстановления отображения оптимального транспорта по­
средством 𝑇 = 𝑥 − ∇𝑓θ. Даже если норма ‖𝑓 − 𝑓 *‖2ℒ2(P) мала, отклонение
‖∇𝑓θ −∇𝑓 *‖2ℒ2(P) может быть сколь угодно велико, поскольку градиент ∇𝑓θ
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участвует в оптимизационном процессе неявно. Такую возникающую пробле­
му мы будем называть проблемой отклонения градиентов. Для решателей
⌊MMv1⌉, ⌊MMv2⌉, ⌊W2⌉, основанных на сетях ICNN, это не является проблемой
(см. теорему 3.6 в работе [7] и главу 2 диссертации).

Реверсированные решатели. В решателях ⌊MM⌉, ⌊MMv2⌉, ⌊W2⌉ вос­
станавливаются не только прямое отображение задачи оптимального транспорта
∇ψθ ≈ ∇ψ* = 𝑇 *, но также и обратное отображение вида 𝐻ω ≈ (𝑇 *)−1 =

(∇ψ*)−1 = ∇ψ* (см. [7, M3] или главу 2). Данные решатели не являются сим­
метричными по P,Q, поэтому возможным подходом здесь является перемена
мест P и Q при обучении. Такие реверсированные решатели мы будем обозна­
чать следующим образом: ⌊MM:R⌉, ⌊MMv2:R⌉, ⌊W2:R⌉. В п. 5.5 мы покажем
(и это неожиданно!), что решатель ⌊MM:R⌉ работает лучше в генеративном
моделировании, чем решатель ⌊MM⌉.

5.4 Тестирование решателей для задачи оптимального транспорта

В этом параграфе мы предлагаем общий метод для создания эталонных
пар, т.е. таких мер (P,Q), что Q = 𝑇♯P с выборочным доступом и аналитически
известным решением задачи оптимального транспорта 𝑇 * между ними.

Ключевая идея. Наш метод основывается на том факте, что для диф­
ференцируемой выпуклой функции ψ : R𝐷 → R ее градиент ∇ψ является
оптимальным транспортным отображением между произвольным P ∈ 𝒫2,𝑎𝑐(R𝐷)

и его образом ∇ψ♯P под действием ∇ψ : R𝐷 → R𝐷. Это следует из теоремы
Бренье [26] (теорема 2.12 в [25]. Таким образом, для непрерывной меры P с вы­
борочным доступом и известным выпуклым ψ в качестве эталонной пары
можно использовать (P,∇ψ♯P). Выборка из ∇ψ♯P осуществляется путем взятия
выборки из P и применения ∇ψ.

Произвольные пары (P,Q). Для произвольной пары (P,Q) вычисле­
ние точного непрерывного решения задачи оптимального транспорта является
трудной задачей. В качестве компромисса мы вычисляем приближение транс­
портного отображения как градиент сети ICNN с использованием ⌊W2⌉. На этом
пути мы находим функцию ψθ с параметризацией, как у ICNN, и такую, что
∇ψθ♯P ≈ Q. Тогда модифицированная пара (P,∇ψθ♯P) может быть использова­
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на для тестирования решателя задачи оптимального транспорта. Здесь выбор
⌊W2⌉ обеспечивает хорошее функционирование в больших размерностях; при
этом остальные решатели также могут быть использованы при условии, что ψθ
выпукла. При таком выборе ⌊W2⌉ последующие вычисления могут оказаться
лучше для метода, основанного на сети ICNN.

Расширения. Выпуклые функции можно модифицировать для генерации
большего числа эталонных пар. Если ψ1, . . . ,ψ𝑁 выпуклы, то σ(ψ1, . . . ,ψ𝑁)

также выпукла при условии, что σ : R𝑁 → R выпукла и монотонна. Например,
𝑐 · ψ1 (𝑐 ⩾ 0),

∑︀
𝑛ψ𝑛, max

𝑛
ψ𝑛 выпуклы, поэтому по их градиентам можно

получить новые эталонные пары.
Обращение. Если функция ∇ψθ биективна, то обратное транспортное

отображение для (P,∇ψθ♯P) существует и имеет вид (∇ψθ)−1. Для каждо­
го 𝑦 ∈ R𝐷 значение (∇ψθ)−1(𝑦) можно получить, решая выпуклую задачу
[21, M6]. Все используемые нами сети ICNN ψθ имеют биективные градиенты
∇ψθ (см. п. 5.7.1).

5.5 Детали сравнительных тестов и полученные результаты

Тестирование проводилось на фреймворке PyTorch. Программный код
доступен публично по адресу

https://github.com/iamalexkorotin/Wasserstein2Benchmark

Наши эксперименты были выполнены на четырех видеокартах GTX 1080ti и
заняли около 100 ч. (на один графический процессор). Подробности реализа­
ции даются в п. 5.7.

5.5.1 Наборы данных

Меры большой размерности. Были разработаны эталонные пары для
проверки того, могут ли решатели задачи оптимального транспорта правильно
транспортировать массы между мерами. С этой целью мы использовали смеси
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Рисунок 5.1 — Пример создания эталонной пары для размерности 𝐷 = 16.
Сначала инициализируются 3 случайные смеси гауссовских распределений P
и Q1,Q2 и обучаются два приближенные отображения задачи оптимального
транспорта ∇ψ𝑖♯P ≈ Q𝑖, 𝑖 = 1,2. Усреднение потенциалов используется для
определения выходной меры: 1

2(∇ψ1 +∇ψ2)♯P. Каждый рисунок содержит 512
случайных точек, спроектированных на две принципиальные компоненты меры

1
2(∇ψ1 +∇ψ2)♯P.

гауссовских распределений для размерностей 𝐷 = 21,22, . . . ,28. В каждой размер­
ности 𝐷 мы рассмотрели случайную смесь P из 3 гауссовских распределений и
двух случайных смесей Q1,Q2 из 10 гауссовских распределений. Приближенное
транспортное отображение ∇ψ𝑖♯P ≈ Q𝑖 (𝑖 = 1,2) было обучено с использовани­
ем решателя ⌊W2⌉. Каждый потенциал являлся сетью ICNN с архитектурой
DenseICNN, см. п. 2.7. Тестовая пара определялась через полусумму вычис­
ленных потенциалов (P,12(∇ψ1 +∇ψ2)♯P). Первая мера P является смесью 3
гауссовских распределений, а вторая получена путем усреднения потенциалов,
которые преобразуют ее в приближенные смеси из 10 гауссовских распределений
(по поводу дальнейших деталей см. п. 5.6.1 и рис. 5.1).

Изображения. Мы используем выровненные изображения из набора
данных CelebA64 (лица)1 [41] для генерации дополнительных эталонных пар.
Для начала мы обучаем 3 генеративные модели (WGAN-QC [43]) на наборе
данных и выбираем промежуточные контрольные точки для получения непре­

1http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Рисунок 5.2 — Методология создания эталонных пар на пространстве изоб­
ражений. Мы используем 3 генеративных модели: P3

Final (хорошо обученная)
и Q1

Cpkt, Q2
Cpkt (недообученные). Для 𝑘 = 1,2 мы обучаем приближенное ОТ

отображение P3
Final → Q𝑘

Cpkt как ∇ψ𝑘
Cpkt, т.e. градиент сети ICNN. Определим

эталонную пару через (PCelebA,QCpkt)
𝑑𝑒𝑓
=
(︀
P3

Final,
1
2(∇ψ

1
Cpkt +∇ψ2

Cpkt)♯P3
Final

)︀
. На

визуализации представлена эталонная пара Early.

рывных мер Q𝑘
Early,Q𝑘

Mid,Q𝑘
Late для первых двух моделей (𝑘 = 1,2) и финальную

контрольную точку третьей модели (𝑘 = 3) для получения меры P3
Final. Для

обеспечения абсолютной непрерывности мер мы добавляем небольшой гаус­
совский шум на выход генератора. Каждая контрольная точка (Early, Mid,
Late, Final) представляет изображения лиц определенного качества. Далее, для
𝑘 ∈ {1,2} и точки Cpkt ∈ {Early, Mid, Late} мы используем решатель ⌊W2⌉
для обучения приближенного транспортного отображения ∇ψ𝑘

Cpkt для пары
(P3

Final,Q𝑘
Cpkt), т.е. ∇ψ𝑘

Cpkt♯P3
Final ≈ Q𝑘

Cpkt. Потенциал ψ𝑘
Cpkt есть сверточная сеть

ICNN с архитектурой ConvICNN64 (п. 5.7.1). Для каждой точки Cpkt мы полу­
чаем эталонную пару (PCelebA,QCpkt)

def
= (P3

Final,[(∇ψ1
Cpkt +∇ψ2

Cpkt)/2]♯P3
Final) (по

поводу деталей см. п. 5.6.2 и рис. 5.2).
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5.5.2 Метрики и базовые решатели

Базовые решатели (бейзлайны). Мы предлагаем следующие бейзлай­
ны: тождественный (identity) ⌊ID⌉, постоянный (constant) ⌊C⌉ и линейный (linear)
⌊L⌉. Тождественный решатель в качестве транспортного отображения выдает
𝑇 id = idR𝐷 . Постоянный решатель выдает среднее значение Q, т.е. 𝑇 0 ≡ EQ[𝑦] ≡
µQ. Линейный решатель выдает 𝑇 1(𝑥) = Σ

− 1
2

P
(︀
Σ

1
2

PΣQΣ
1
2

P
)︀ 1

2Σ
− 1

2

P (𝑥− µP) + µQ, т.е.
отображение задачи оптимального транспорта между мерами, укрупненными
до гауссовских распределений, см. теорему 2.3 [36].

Метрики. Для оценки качества восстановленного транспортного
отображения 𝑇 : R𝐷 → R𝐷 из P в Q мы используем процент необъ­
ясненной дисперсии (unexplained variance percentage; UVP), см. главу 2:
ℒ2-UVP(𝑇 ) def

= 100 · ‖𝑇 − 𝑇 *‖2ℒ2(P)/Var(Q)%. Здесь 𝑇 * – эталонное отображе­
ние задачи оптимального транспорта. Для значений ≈ 0% отображение 𝑇

хорошо аппроксимирует 𝑇 *. Для значений ⩾ 100% отображение 𝑇 далеко от
оптимального. Постоянный решатель дает ℒ2-UVP(𝑇 0) = 100%.

Для оценки качества аппроксимации производной потенциала [idR𝐷 − 𝑇 ] ≈
∇𝑓 *, применяемого для обучения генеративных моделей (5.6), мы используем
косинусную близость (cos):

cos(id− 𝑇 , id− 𝑇 *)
def
=

⟨𝑇 − id,∇ψ* − id⟩ℒ2(P)

‖𝑇 * − id‖ℒ2(P) · ‖𝑇 − id‖ℒ2(P)
∈ [−1,1].

Для оценки ℒ2-UVP и метрик cos используются выборки из P размера 214.

5.5.3 Оценка решателей на многомерных эталонных парах

Мы обучаем решатели на разработанных эталонных парах и получаем
вычисленные значения метрик для обученного транспортного отображения. Для
объективного сравнения в каждом из методов потенциал 𝑓 и отображение 𝐻

(в применимых случаях) параметризуются как 𝑓θ =
1
2‖ · ‖

2 −ψθ и 𝐻ω = ∇φω,
соответственно, где ψθ,φω использует архитектуру DenseICNN (см. п. 2.7). В ре­
шателях ⌊QC⌉, ⌊LS⌉, ⌊MM-B⌉,⌊MM⌉ мы не налагаем никаких ограничений на
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веса θ,ω, т.e. ψθ,φω являются обычными полносвязными сетями с дополни­
тельными обходными связями. Вычисленные значения для метрик приведены в
табл. 13, графически (для 𝐷 = 64) результаты представлены на рис. 5.3.

В размерности 𝐷 = 2 все решатели показали хорошие результаты (ℒ2-UVP
≈ 0, cos ≈ 1). Однако для больших размерностей приемлемые результаты
дали только ⌊MMv1⌉, ⌊MM⌉, ⌊MMv2⌉, ⌊W2⌉ и их реверсированные варианты.
При этом решатель ⌊MMv1⌉ работает медленно, так как на каждом оптими­
зационном шаге решается сложная подзадача вычисления 𝑓 𝑐. Максиминные
решатели ⌊MM⌉,⌊MMv2⌉,⌊MM:R⌉ также трудно оптимизируются, поскольку
они или расходятся с самого начала (↛), или расходятся после схождения к по­
чти оптимальной седловой точке (↬). По-видимому, такое поведение, типичное
для задач оптимизации на максимум, можно улучшить при более тщательном
выборе гиперпараметров.

Для решателей ⌊QC⌉, ⌊LS⌉,⌊MM-B⌉ при возрастании размерности вели­
чина ℒ2-UVP существенно возрастает. В сравнении с тривиальным решателем
⌊L⌉ значительно лучшие результаты показывает только ⌊MM-B⌉. Ошибки при
работе решателя ⌊MM-B⌉ могут быть объяснены переоценкой решения внут­
ренней задачи в (5.8), что приводит к смещенным оптимальным потенциалам.
Ошибки в решателе ⌊LS⌉ могут быть объяснены смещением из-за регуляриза­
ции [2]. В решателе ⌊QC⌉ ошибки возникают вследствие того, что дискретная
задача оптимального транспорта (эта задача обычно приводит к смещению,
см. теорему 1 в [137]), решаемая на случайных выборках, используется для
обновления 𝑓θ. Стоит отметить, что хотя решатели ⌊QC⌉, ⌊LS⌉ не являются
точными в терминах показателя ℒ2-UVP, оказывается, что они дают высокие
значения для метрики cos.

Из-за сложностей, связанных с оптимизацией и различием в функцио­
нировании, физическое время сходимости не является репрезентативным. Все
решатели, за исключением ⌊MMv1⌉, сходятся за несколько часов. Для решате­
лей, существенно превосходящих линейный (т.e. для решателей ⌊MM⌉, ⌊MMv1⌉,
⌊MMv2⌉, ⌊W2⌉, ⌊MM-B⌉) наибольшую скорость сходимости показал ⌊MM-B⌉, но
для него результаты будут смещены. Решатели ⌊MM⌉, ⌊MMv2⌉, ⌊W2⌉ требуют
большего времени.
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Dim 2 4 8 16 32 64 128 256
⌊MMv1⌉ 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
⌊MM⌉ 0.1 0.3 0.9 2.2 4.2 3.2 3.1↬ 4.1↬

⌊MM:R⌉ 0.1 0.3 0.7 1.9 2.8 4.5 ↛ ↛
⌊MMv2⌉ 0.1 0.68 2.2 3.1 5.3 10.1↬ 3.2↬ 2.7↬

⌊MMv2:R⌉ 0.1 0.7 4.4 7.7 5.8 6.8 2.1 2.8
⌊W2⌉ 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7

⌊W2:R⌉ 0.2 0.9 4.0 5.3 5.2 7.0 2.0 2.7
⌊MM-B⌉ 0.1 0.7 3.1 6.4 12.0 13.9 19.0 22.5
⌊LS⌉ 5.0 11.6 21.5 31.7 42.1 40.1 46.8 54.7
⌊L⌉ 14.1 14.9 27.3 41.6 55.3 63.9 63.6 67.4
⌊QC⌉ 1.5 14.5 28.6 47.2 64.0 75.2 80.5 88.2
⌊C⌉ 100 100 100 100 100 100 100 100
⌊ID⌉ 32.7 42.0 58.6 87 121 137 145 153

Dim 2 4 8 16 32 64 128 256
⌊MMv1⌉ 0.99 0.99 0.99 0.99 0.98 0.97 0.99 0.99
⌊MM⌉ 0.99 0.99 0.99 0.99 0.99 0.99 0.99↬ 0.99↬

⌊MM:R⌉ 0.99 1.00 1.00 0.99 1.00 0.98 ↛ ↛
⌊MMv2⌉ 0.99 0.99 0.99 0.99 0.99 0.96↬ 0.99↬ 0.99↬

⌊MMv2:R⌉ 0.99 1.00 0.97 0.96 0.99 0.97 0.99 1.00
⌊W2⌉ 0.99 0.99 0.99 0.99 0.99 0.97 1.00 1.00

⌊W2:R⌉ 0.99 1.00 0.98 0.98 0.99 0.97 1.00 1.00
⌊MM-B⌉ 0.99 1.00 0.98 0.96 0.96 0.94 0.93 0.93
⌊LS⌉ 0.94 0.86 0.80 0.80 0.81 0.83 0.82 0.81
⌊L⌉ 0.75 0.80 0.73 0.73 0.76 0.75 0.77 0.77
⌊QC⌉ 0.99 0.84 0.78 0.70 0.70 0.70 0.69 0.66
⌊C⌉ 0.29 0.32 0.38 0.46 0.55 0.58 0.60 0.62
⌊ID⌉ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Таблица 13 — Значения метрик ℒ2-UVP (%, слева) и cos ∈ [−1,1] (справа)
для транспортных отображений, обученных при помощи решателей задачи
оптимального транспорта многомерных на эталонных парах в размерностях
𝐷 = 2,22, . . . ,28. Оранжевый цвет – ℒ2-UVP > 10% и cos < 0.95. Красный цвет
— функционирование хуже, чем у бейзлайна ⌊L⌉.

Рисунок 5.3 — Визуализация 64-мерной эталонной пары и ОТ отображений
обученных решателями. Диаграммы рассеяния содержат 512 случайных выборок,

спроектированных на две главные компоненты меры ∇ψ*♯P.

5.5.4 Оценка решателей на эталонных парах изображений размера
64× 64 из набора CelebA

При проведении сравнительных оценок на наборе CelebA мы не рассмат­
риваем решатели ⌊LS⌉ и ⌊MMv1⌉, поскольку первый является неустойчивым
в больших размерностях [128], а второй обладает слишком медленной скоростью
сходимости. Основанные на сетях ICNN решатели ⌊MMv2⌉, ⌊W2⌉ и их ревер­
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а) Обученные
отображения

QEarly → PCelebA.

б) Обученные
отображения

QMid → PCelebA.

в) Обученные
отображения

QLate → PCelebA.
Рисунок 5.4 — Отображения, обученные решателями на эталонных парах
(QCpkt,PCelebA). В первой строке даны случайные 𝑥 ∼ QCpkt. Вторая строка
содержит выборки из PCelebA, полученные прямым отображением 𝑥 посредством
ОТ отображения 𝑇 * = ∇ψ*. Далее показаны образы 𝑥 под действием отображе­

ний, обученных нашими решателями задачи оптимального транспорта.

Cpkt Early Mid Late
⌊W2⌉ 1.7 0.5 0.25
⌊MM⌉ 2.2 0.9 0.53

⌊MM:R⌉ 1.4 0.4 0.22
⌊ID⌉ 31.2 4.26 2.06

⌊MM-B⌉ 45.9 46.1 47.74
⌊C⌉ 100 100 100
⌊QC⌉ 94.7 ≫100 ≫100

Cpkt Early Mid Late
⌊W2⌉ 0.99 0.95 0.93
⌊MM⌉ 0.98 0.90 0.87

⌊MM:R⌉ 0.99 0.96 0.94
⌊ID⌉ 0.00 0.00 0.00

⌊MM-B⌉ 0.28 -0.08 -0.14
⌊C⌉ 0.03 -0.14 -0.20
⌊QC⌉ 0.17 -0.01 0.05

Таблица 14 — Значения метрик ℒ2-UVP (%, слева) и cos ∈ [−1,1] (справа) для
транспортных отображений QCpkt → PCelebA, обученных решателями оптималь­
ного транспорта на 3 разработанных CelebA64 W2-эталонных наборах.

сированные версии показали практически равные результаты. Для простоты
мы их будем просто называть решателем ⌊W2⌉.

В решателе ⌊W2⌉ мы параметризуем 𝑓θ = 1
2‖ · ‖

2 − ψθ и 𝐻ω = ∇φω,
где ψθ,φω – выпуклые по входу нейронные сети с выпуклой архитектурой
ConvexICNN64 (см. п. 5.7.1). Все другие решатели основаны на генеративном
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моделировании с применением сверточных архитектур для изображений. Таким
образом, в ⌊MM⌉, ⌊QC⌉, ⌊MM-B⌉ мы параметризуем сети 𝑓θ как ResNet и 𝐻ω

как U-Net (in ⌊MM⌉). В свою очередь, в ⌊MM:R⌉ сеть 𝑇θ – UNet, а 𝑔ω – ResNet.
Транспортное отображение QCpkt → PCelebA вычисляется для каждого

решателя на трех эталонных наборах изображений. Полученные результаты
показаны на рис. 5.4 и в табл. 14; они приблизительно аналогичны результа­
там, полученным на задачах большой размерности (см. п. 5.5.3). Недостатком
решателей ⌊QC⌉, ⌊MM-B⌉ является наличие сильной смещенности из-за раз­
мерности изображений, при этом вычисленные этими решателями производные
W2

2 почти ортогональны истинной производной (cos ≈ 0). Это означает, что
такие решатели не точно вычисляют W2

2. При этом решатели ⌊MM⌉, ⌊MM:R⌉,
⌊W2⌉ хорошо восстанавливают транспортное отображение. Отображение реша­
теля ⌊MM⌉ немного более зашумлено, чем отображение решателя ⌊MM:R⌉ (это
представляет собой незначительный пример отклонения градиентов).

5.5.5 Тестирование решателей в генеративном моделировании
изображений размера 64× 64

Предыдущие вычисления показывают, что много существующих реша­
телей задачи оптимального транспорта очень неточны. Поэтому возникает
вопрос: до какой степени качество решателя имеет значение в практиче­
ских приложениях?

Для ответа на этот вопрос мы оценим наиболее перспективные решате­
ли на задаче генеративного моделирования изображений лиц размера 64× 64

из набора данных CelebA. Для сравнения мы также рассмотрим решатель
⌊QC⌉, обладающий хорошими генеративными характеристиками [43]. Для каж­
дого решателя мы обучаем генеративную сеть 𝐺α с архитектурой ResNet из
[43] для отображения 128-мерного нормального распределения S в распреде­
ление данных Q. В качестве функции потерь для генератора мы используем
W2

2(Pα,Q) = W2
2(𝐺α♯S,Q), которое оценивается решателями. Обучение произво­

дилось по типу GAN, где уточнения генератора перемежаются c градиентными
шагами решателя задачи оптимального транспорта (дискриминатора). Вы­
бранные сгенерированные изображения показаны в первой строке каждого
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подрисунка на рис. 5.5; выдаются полученные показатели FID (см. [42]). В
последней строке показаны образы под действием отображения задачи опти­
мального транспорта из Pα = 𝐺α♯S в Q, извлеченные из решателя задачи
оптимального транспорта. Так как обучение сошлось (Pα ≈ Q), отображение
должно почти совпадать с тождественным.

Решатель ⌊W2⌉ не дает достаточного качества в этой задаче (рис. 5.5а).
Это может быть объяснено использованием сети ConvICNN (в других решателях
используется обычная сверточная архитектура, и они работают лучше). В общем,
для применения сетей ICNN в задачах, связанных с изображениями (см. главу
2), требуется разработка новых выпуклых сверточных архитектур, что является
перспективным направлением будущих исследований.

Генеративные свойства решателя ⌊QC⌉ хороши (рис. 5.5б). Однако, как
и в п. 5.5.3-5.5.4, восстановленное отображение далеко от оригинала. В этой
связи мы предполагаем, что решатель имеет хорошие генеративные свойства,
поскольку он аппроксимирует некоторую другую (не-W2

2) метрику на практике.
Решатель ⌊MM⌉ дает генеративную модель с размытыми изображениями

(рис. 5.5в). Вычисленное транспортное отображение idR𝐷 −∇𝑓θ существенно
отличается от оригинала из-за отклонений градиента. Это приводит к неточ­
ностям в вычислении градиента, используемого для обновления генератора,
а также объясняет, почему генератор не улучшается. Стоит отметить, что
результаты применения этого решателя в п. 5.5.4 не выявили ощутимых недо­
статков в смысле отклонения градиента. Возможно, это связано с тем, что меры
абсолютно непрерывны и имеют носитель на всем R𝐷. Однако эта ситуация
отлична от рассматриваемой нами в нашем генеративном моделировании, ко­
гда сгенерированные меры и меры данных имеют носители на маломерных
многообразиях в R𝐷.

Реверсированный решатель ⌊MM:R⌉ не имеет недостатков, присущих
из-за отклонения градиента решателю ⌊MM⌉, но всё равно приводит к появле­
нию размытых изображений (рис. 5.5г). Достаточно интересно, что обученное
транспортное отображение 𝑇θ значительно улучшает качество; при этом изобра­
жения 𝑇θ

(︀
𝐺α(𝑧)

)︀
сравнимы с изображениями, полученными с помощью ⌊QC⌉

(рис. 5.5б).
Следует отметить, что работа решателей ⌊MM⌉, ⌊MM:R⌉ основана на

решении максиминной задачи, поэтому их использование в сетях GAN требу­
ет решения сложной min-max-min оптимизационной задачи. Мы используем
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а) Решатель ⌊W2⌉
(ICNN ψθ, ∇ of ICNN 𝐻ω).

б) Решатель ⌊QC⌉
(ResNet 𝑓θ).

в) Решатель ⌊MM⌉
(ResNet 𝑓θ, UNet 𝐻ω).

г) Решатель ⌊MM:R⌉
(UNet 𝑇θ, ResNet 𝑔ω).

Рисунок 5.5 — Случайные изображения, полученные в результате обучения
генеративной модели с помощью решателя. В первой строке показаны случайные
сгенерированные изображения 𝑥 = 𝐺α(𝑧) ∼ Pα, 𝑧 ∼ S. Во второй строке
показано вычисленное транспортное отображение из сгенерированного 𝑥 =

𝐺α(𝑧) ∼ Pα в Q.

три вложенных цикла обучения и стохастический метод градиентного спуска­
подъема-спуска. В наших экспериментах обучение было нестабильным и часто
расходилось: в приведенных результатах использованы наилучшие найденные
нами гиперпараметры (хотя, возможно, существуют и лучшие). Соответственно,
имеющиеся сложности в выборе гиперпараметров и нестабильность процесса
обучения составляют проблему для таких решателей, с которой следует разо­
браться до начала их практического использования.

5.6 Технические детали построения эталонных пар

В п. 5.6.1 обсуждаются детали эталонных пар большой размерности. В
п. 5.6.2 изучаются изображения размера 64 × 64 эталонных пар из набора
данных Celeba.
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а) Случайная смесь из 3 гауссовских
распределений.

б) Случайная смесь из 10 гауссовских
распределений.

Рисунок 5.6 — Случайно сгенерированные смеси гауссовских распределений.
Проекция на первые две размерности.

5.6.1 Эталонные пары большой размерности

Пример эталонной пары дается на рис. 5.1. В каждой размерности мы
фиксируем случайные смеси гауссовских распределений P,Q1,Q2 (в программ­
ном коде мы определяем конкретные смеси и используем их для построения
эталонных пар).

Для генерации случайной смеси из 𝑀 гауссовских мер в размерности 𝐷

мы используем следующую процедуру. Пусть δ,σ > 0 (мы используем δ = 1,
σ = 2

5). Рассмотрим 𝑀 -мерную сетку

𝐺 = {−δ ·𝑀
2

+ 𝑖 · δ для 𝑖 = 1,2, . . . ,𝑀}𝐷 ⊂ R𝐷.

Мы выбираем 𝑀 случайных точек µ′1, . . .µ′𝑀 ∈ 𝐺 так, что никакая пара
точек не имеет одинаковых координат. Далее инициализируются случайные
матрицы 𝐴′1, . . . ,𝐴

′
𝑀 ∈ R𝐷×𝐷, где каждая строка любой матрицы случайно

выбирается из 𝐷 − 1-мерной сферы в R𝐷. Пусть Σ′𝑚 = σ2 · (𝐴′𝑚) · (𝐴′𝑚)⊤ для
𝑚 = 1,2, . . . ,𝑀 . Отметим, что [Σ′𝑚]𝑑𝑑 = σ

2 при 𝑑 = 1,2, . . . ,𝐷. Далее, мы рассмат­
риваем смеси гауссовских распределений 1

𝑀

∑︀𝑀
𝑚=1𝒩 (µ′𝑚,Σ

′
𝑚). Окончательно, мы

нормализуем смесь так, чтобы покоординатная дисперсия была равна 1, т.e.
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мы рассматриваем окончательную смесь 1
𝑀

∑︀𝑀
𝑚=1𝒩 (µ𝑚,Σ𝑚), где µ𝑚 = 𝑎µ′𝑚 и

Σ𝑚 = 𝑎2Σ𝑚. Значение 𝑎 ∈ R+ находится из равенства

𝑎−1 =

√︃∑︀𝑀
𝑚=1 ‖µ′𝑚‖2
𝑀 ·𝐷

+ σ2.

Смеси гауссовских распределений, получаемые по этой процедуре, имеют
𝐷 равных маргиналов (см. рис. 5.6).

5.6.2 Эталонные пары изображений

Мы обучаем три генеративные модели на наборе данных CelebA64 (вы­
ровненные лица) с 128-мерной латентной гауссовской мерой. Выборка из
распределения осуществляется с помощью WGAN-QC [43] с сетью генератора
ResNet. В испытаниях 𝑘 = 1,2 мы сохраняем контрольные точки генератора
после 1000, 5000, 10000 итераций для получения мер Q𝑘

Early, Q𝑘
Mid, Q𝑘

Late соответ­
ственно. В последнем испытании 𝑘 = 3 мы сохраняем только контрольные точки
финальной сети генератора после 50000 итераций, в результате чего получа­
ем меру P3

Final. Для обеспечения абсолютной непрерывности мер мы добавляем
нормальный белый шум (коэффициент по осям σ = 0.01) к выходам генераторов.

Мы используем сгенерированные меры для построения изображения эта­
лонных пар согласно подходу из п. 5.5.1. Графически схема представлена на
рис. 5.2.

5.7 Технические детали экспериментов

В п. 5.7.1 обсуждаются архитектуры нейронных сетей, использованные
в экспериментах. Гиперпараметры приведены в п. 5.7.2.
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Решатель Многомерный бенчмарк Бенчмарк (CelebA) Генерация изобр. CelebA
⌊LS⌉ ψθ,φω : R𝐷 → R - DenseICNN (U) N/A
⌊MM-B⌉ ψθ : R𝐷 → R - DenseICNN (U) 𝑓θ : R𝐷 → R - ResNet
⌊QC⌉ ψθ : R𝐷 → R - DenseICNN (U) 𝑓θ : R𝐷 → R - ResNet

⌊MM⌉ ψθ : R𝐷 → R - DenseICNN (U)
𝐻ω : R𝐷 → R𝐷 - ∇ of DenseICNN (U)

𝑓θ : R𝐷 → R - ResNet
𝐻ω : R𝐷 → R𝐷- UNet

⌊MM:R⌉ 𝑇θ : R𝐷 → R𝐷 - ∇ of DenseICNN (U)
φω : R𝐷 → R - DenseICNN (U)

𝑇θ : R𝐷 → R𝐷- UNet
𝑔ω : R𝐷 → R - ResNet

⌊MMv1⌉ ψθ : R𝐷 → R - DenseICNN N/A
⌊MMv2⌉
⌊W2⌉

ψθ : R𝐷 → R - DenseICNN
𝐻ω : R𝐷 → R𝐷 - ∇ of DenseICNN

ψθ : R𝐷 → R - ConvICNN64
𝐻ω : R𝐷 → R𝐷 - ∇ of ConvICNN64

⌊MMv2:R⌉
⌊W2:R⌉

𝑇θ : R𝐷 → R𝐷 - ∇ of DenseICNN
φω : R𝐷 → R - DenseICNN

𝑇θ : R𝐷 → R𝐷 - ∇ of ConvICNN64
φω : R𝐷 → R - ConvICNN64

Таблица 15 — Архитектуры сетей, используемых для параметризации потенциала
𝑓 (или ψ) и отображения 𝐻 в тестируемых решателях. B реверсированных
решателях мы параметризуем второй потенциал 𝑔 (илиφ) и прямое транспортное
отображение 𝑇 при помощи нейронных сетей.

5.7.1 Архитектуры нейронной сети

В табл. 15 мы приводим все архитектуры нейронных сетей, используемых
в решателях задачи оптимального транспорта. В каждом эксперименте мы пред­
варительно обучаем сети для удовлетворения условий ∇ψθ(𝑥) = 𝑥−∇𝑓θ(𝑥) ≈ 𝑥

и 𝐻ω(𝑦) ≈ 𝑦 в начале оптимизации. Мы эмпирически проверяем, что такая
стратегия приводит к более устойчивой оптимизации.

При многомерном бенчмарке мы используем архитектуру DenseICNN
из п. 2.7. Эта сеть есть полносвязная нейронная сеть с дополнительными квад­
ратичными по входу обходными связями. Эта архитектура может быть сделана
выпуклой по входу при требовании, что некоторые веса неотрицательны. Такое
ограничение накладывается на решатели ⌊MMv1⌉,⌊MMv2⌉,⌊W2⌉, в которых тре­
буется, чтобы сети были выпуклыми по входу. В других случаях ограничения
по сетям не накладываются, и мы обозначаем архитектуру через DenseICNN
(U). В экспериментах мы используем реализацию DenseICNN из главы 2. Более
точно, в экспериментах с вероятностными мерами на R𝐷 мы используем

DenseICNN[1;max(2𝐷,64),max(2𝐷,64),max(𝐷,32)].
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Здесь 1 – ранг квадратичных по входу обходных связей, при этом по другим
значениям определяются размеры полносвязных слоев последующей части сети.
Обозначения такие же, как в п. 2.7.2.

Следует отметить, что архитектура DenseICNN сети ψθ имеет диффе­
ренцируемые функции активации CELU [138]. Таким образом, градиент ∇ψθ
корректно определен. В частности, искусственное β · ‖𝑥‖2/2 для β = 10−4 добав­
ляется к выходу последнего слоя сети ICNN. Как следствие, сеть ψθ является
β-сильно выпуклой. Это влечет то, что ∇ψθ – биективная функция с константой
Липшица, ограниченной снизу величиной β.

В экспериментах c изображениями из набора данных CelebA для
параметризации потенциала 𝑓 = 𝑓θ : R𝐷 → R в ⌊MM⌉, ⌊QC⌉, ⌊MM-B⌉ мы
используем архитектуру ResNet из официального репозитория WGAN-QC [43]:

https://github.com/harryliew/WGAN-QC

Для параметризации отображения 𝐻 = 𝐻ω : R𝐷 → R𝐷 в решателе ⌊MM⌉ мы
используем архитектуру UNet из

https://github.com/milesial/Pytorch-UNet

В решателях ⌊MMv2⌉, ⌊W2⌉ мы параметризуем ψ = ψθ и 𝐻 = 𝐻ω = ∇φω,
где ψθ,φω имеют архитектуру ConvICNN64 (см. рис. 5.7). Мы искусственно
добавляем β ·‖𝑥‖2/2 (для β = 10−4) к выходу сети ConvICNN64 для обеспечения
биективности градиента.

В этой архитектуре слои PosConv2D являются обычными 2D-сверточными
слоями с неотрицательными весами (за исключением смещений). Conv2D-CQ
(выпуклые квадратичные) – полностью сверточные блоки, дающие на выходе
тензор, в котором элементами являются квадратичные по входу функции входно­
го тензора. На рис. 5.8 показана архитектура блока Conv2D-CQ. Здесь операция
GroupChannelSumPool соответствует расщеплению тензора по каналам на 𝑛𝑜𝑢𝑡

последовательных подтензоров (каждый из которых состоит из 𝑟 каналов) и
объединения каждого подтензора в один 1-канал путем суммирования тензоров 𝑟

отображений каналов. Слой можно представить как сверточный аналог полного
слоя ConvexQuadratic, предложенного в п. 2.7.2.

В экспериментах по генерации изображений CelebA мы также
использовали архитектуру ResNet для генерации сети 𝑔. Использована импле­
ментация из упомянутого выше репозитория WGAN-QC.
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Рисунок 5.7 — Архитектура сверточной сети ICNN, используемой для обработки
RGB-изображений размера 64× 64.

Рисунок 5.8 — 2D выпуклый квадратичный сверточный блок.

5.7.2 Гиперпараметры и детали имплементации

Оценка рассмотренных выше параметрических решателей не является
тривиальной по двум следующим причинам. Во-первых, не для всех решате­
лей имеется реализация на языке Python. Во-вторых, некоторые решатели не
используются вне сетей GAN. Таким образом, для использования их в бенч­
марке требуется правильное извлечение W2-решателя (части дискриминатора)
из сети GAN.

Имплементация большинства решателей выполняется с нуля. Во всех
случаях мы используем оптимизатор Adam [34] с заданными по умолчанию
гиперпараметрами (за исключением скорости обучения). Для решателя ⌊QC⌉
из [43] мы использовали программный код, предоставленный авторами в офи­
циальном репозитории GitHub.

Эталонные пары для большой размерности. В табл. 16 приведены
использованные нами гиперпараметры для эталонного тестирования в боль­
шой размерности. Столбец “общее число итераций” соответствует оптимизации
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Решатель
Размер

случайных
выборок

Число
итер.

Темп.
обучения

Примечание

⌊LS⌉ 1024 100000 10−3 Квадратич. регуляризация
с ε = 3 · 10−2, см. [2, (7)]

⌊MM-B⌉ 1024 100000 10−3 нет

⌊QC⌉ 64 100000 10−3 регуляризация задачи ОТ
с 𝐾 = 1, γ = 0.1, см. [43, (10)]

⌊MMv1⌉ 1024 20000 10−3

1000 итераций градиента (𝑙𝑟 = 0.3)
для нахождения argmin в(5.8), см. [21, M6].

Ранняя остановка при норме градиента < 10−3.
⌊MM⌉,
⌊MMv2⌉

1024 50000 10−3 15 внутр. циклич. итераций для обновления 𝐻ω,
(𝐾 = 15 в обозначениях [7, Algorithm 1])

⌊W2⌉ 1024 250000 10−3 Циклически состоятельная регуляризация,
λ = 𝐷, см. главу 2

Таблица 16 — Гиперпараметры решателей, используемые при их тестировании на
многомерном бенчмарке. Реверсированные решатели не представлены в таблице,
поскольку в них используются те же гиперпараметры, что и в оригинальных
версиях.

потенциала 𝑓θ (или ψθ) с целью максимизации двойственной формы (5.8). В
максиминных решателях также имеется внутренний цикл, соответствующий
решению внутренней задачи максимизации в (5.8). Гиперпараметры выбира­
лись эмпирически.

Для решателя ⌊QC⌉ большие размеры случайных выборок приводят к
вычислительно нереализуемой подзадаче, поскольку при этом требуется решение
линейной программы на каждом шаге оптимизации [43, M3.1]. Таким образом,
мы используем размер выборки 64, как в оригинальной статье. Решатель ⌊W2⌉
используется с теми же гиперпараметрами для целей обучения и сравнения.

Эталонные пары для изображений размера 64× 64 из набора дан­
ных CelebA. Гиперпараметры изображений, использованных при тестировании
решателей на бенчмарке, указаны в табл. 17.

Эксперимент по генерации изображений размера 64× 64 набора
данных CelebA. Для обучения генеративной модели мы используем обучение
по типу GAN: градиентные шаги сети генератора 𝐺α чередуются с шагами ре­
шателя для задачи оптимального транспорта (дискриминатора). Темп обучения
для сети генератора равен 3 · 10−4, общее число итераций генератора – 50000.

В решателе ⌊QC⌉ мы используем программный авторский код: выполняется
одно обновление градиента решателя для задачи оптимального транспорта за
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Решатель
Размер

случайных
выборок

Число итер. Скор. обуч. Примечание

⌊MM-B⌉ 64 20000 3 · 10−4 нет

⌊QC⌉ 64 20000 3 · 10−4 регуляризация задачи ОТ
с 𝐾 = 1, γ = 0.1, см. [43, (10)]

⌊MM⌉ 64 50000 3 · 10−4

5 внутр. циклич. итераций
для обновления 𝐻ω,

(𝐾 = 5 в обозначениях [7, Algorithm 1])

⌊W2⌉ 64 50000 3 · 10−4

Циклически-состоятельная
регуляризация,

λ = 104, см. главу 2

Таблица 17 — Гиперпараметры решателей, использованные при их тестировании
на бенчмарке с изображениями из CelebA.

одно обновление генератора. Во всех других методах одно обновление генератора
чередуется с 10 обновлениями решателя для задачи оптимального транспорта
(итерациями в обозначениях табл. 17). Все остальные гиперпараметры выбраны,
как в предыдущем эксперименте.

Градиент генератора по α на случайной выборке 𝑧1, . . . , 𝑧𝑁 ∼ S имеет вид

𝜕W2
2(Pα,Q)/𝜕α =∫︁

𝑧

Jα𝐺α(𝑧)
𝑇∇𝑓 *

(︀
𝐺α(𝑧)

)︀
𝑑S(𝑧) ≈ 1

𝑁

𝑁∑︁
𝑛=1

Jα𝐺α(𝑧𝑛)
𝑇∇𝑓θ

(︀
𝐺α(𝑧𝑛)

)︀
, (5.10)

где S – мера на латентном пространстве и 𝑓θ – текущий потенциал (дискрими­
натор) решателя задачи оптимального транспорта. Отметим, что в решателе
⌊MM:R⌉ потенциал 𝑓 не вычисляется; вместо этого параметризуется прямое
отображение задачи оптимального транспорта 𝑇θ. В этом случае мы оцениваем
градиент (5.10) на случайной выборке через 1

𝑁

∑︀𝑁
𝑛=1 Jα𝐺α(𝑧𝑛)

𝑇 (idR𝐷 − 𝑇θ).

5.8 Обсуждение

Наш метод генерирует пары непрерывных мер с эталонным отображе­
нием оптимального транспорта с квадратичной стоимостью. Это позволяет
устранить имеющийся пробел в эталонном тестировании параметрических ре­
шателей задачи оптимального транспорта. Полученные в настоящей работе
результаты позволяют нам оценить работу решателей задачи оптимального
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транспорта с квадратичной стоимостью в задачах, близких к задачам опти­
мального транспорта. Помимо сравнения решателей транспортной задачи наш
метод генеративного моделирования открывает неожиданное свойство: плохие
решатели задачи оптимального транспорта могут тем не менее иметь хорошие
генеративные функциональные характеристики, а простая реверсия несиммет­
ричных решателей может существенно повлиять на их производительность.

Ограничения. Мы рассматриваем градиенты ICNN как W2-отображения
оптимального транспорта для генерации пар эталонных мер. В настоящий
момент неясно, можно ли применить аналогичные конструкции для других
функций стоимости (таких, например, как W1). В проведенном исследовании
найдено несоответствие в функциональных характеристиках некоторых решате­
лей в применении к задачам оптимального транспорта и задачами генеративного
моделирования. Например, требуется более глубокое исследование для нахожде­
ния ответа на вопрос о том, чем объясняются хорошие генеративные свойства
⌊QC⌉, и в тоже же время, его плохие свойства W2-аппроксимации.

Возможные применения. Мы ожидаем, что наши эталонные пары ста­
нут стандартным набором тестов для задач оптимального транспорта. Как
результат, проведенная работа может улучшить качество и надежность решате­
лей в прикладных задачах ОТ. Одним из негативных потенциальных эффектов
может проявиться в том, что использование нашего бенчмарка может ограничить
оценку качества будущих решателей задач оптимального транспорта на наборы
данных нашего бенчмарка. Чтобы избежать этого, помимо конкретных наборов
данных, в п. 5.4 мы описали общий метод для генерации новых контрольных пар.
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Заключение

Существующие численные методы ОТ в основном предназначены для
данных, описываемых маломерными дискретными вероятностными распреде­
лениями. Это ограничение значительно сужает класс задач математического
моделирования, для решения которых эти методы могут быть применены. В
то же время существующие методы ОТ для непрерывных вероятностных рас­
пределений либо используют минимаксную оптимизацию, которая зачастую не
стабильна и усложняет процесс обучения, либо вносят систематическую ошибку
в решение (смещение), что ухудшает качество полученного решения.

Для устранения вышеупомяутых проблем в данной диссертационной работе
представлены новые масштабируемые численные методы ОТ на основе выпуклых
по входу нейронных сетей: предложены алгоритмы для вычисления отображений­
/расстояний OT между непрерывными вероятностными распределениями (глава
2), барицентров Васерштейна семейств непрерывных распределений (глава 3) и
Васерштейн градиентных потоков функционалов на пространстве вероятностных
распределений (глава 4). Разработанные методы позволяют находить решения
задач Вассерштейн-2 OT для непрерывных вероятностных распределений в
пространствах большой размерности, не прибегая к минимаксной оптимизации
или введению систематической ошибки в решение. Как следствие, они могут
быть применены к задачам математического моделирования, где существующие
численные методы ОТ работают неудовлетворительно или вовсе не применимы,
например, из-за большой вычислительной сложности.

Важно также отметить, что для задачи Васерштейн-2 ОТ не существует
нетривиального эталонного многомерного набора данных (бенчмарка). Таким
образом, разработанная методология создания эталонных пар распределений с
известным Васерштейн-2 ОТ отображением (глава 5) заполняет важный пробел
в области вычислительного ОТ, тем самым позволяя проводить количественную
оценку методов ОТ. Ожидается, что разработанные эталонные пары станут
стандартным бенчмарком для оценки непрерывных (параметрических) алго­
ритмов OT.

Дальнейшим направлением исследований является разработка эффек­
тивных алгоритмов для задач непрерывного ОТ для общих транспортных
стоимостей (помимо квадратичных).
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