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Введение

Распознавание изображений вместе с компьютерами прошло путь от спе­
циализированных научных и индустриальных систем к технологиям повседнев­
ным и общедоступным. Большой вклад в развитие релевантного научного на­
правления внесли такие отечественных и зарубежных учёные, как Ю.И. Жу­
равлев, В.Л. Арлазаров, Ю.В. Визильтер, Д.П. Николаев, В.А. Сойфер, О.А.
Славин, И.Б.Гуревич, К.В. Воронцов, D.G. Lowe, R. Szeliski, P. Fua и другие.

Значимую долю объектов интереса составляют плоские или квази-плоские
объекты – документы, регистрационные знаки транспорта, двумерные коды и
графика, отдельные стороны-грани предметов. В некоторых вариантах задачи
распознавания требуется определить точный тип объекта внутри общей катего­
рии, т.е. идентифицировать конкретный объект среди ему подобных. Напри­
мер, на изображении из возможных документов – «паспорт РФ, дипломатиче­
ский», а на снимке с экспозиции из всей представленной живописи – «Вокзал
Сен-Лазар, номер W438». Внутри такого типа допускаются зоны изменяемых
данных, в которых наблюдаемые особенности (признаки) могут варьироваться
от экземпляра к экземпляру. Остальные, стабильные признаки образуют фикси­
рованную структуру. Локализация объекта может быть и независимой задачей,
и необходимым этапом для его дальнейшего качественного распознавания. Ес­
ли считать эталоном объекта его фронтальное изображение в фиксированном
разрешении без элементов фона, то определение параметров преобразования
между образом и эталоном позволяют точно локализовать объект. Точность
особенно значима при решении задач, связанных с анализом подлинности объ­
ектов и их образов, поскольку область объекта, сцена и граница между ними на
изображении исследуются по отдельности. При «грубой» локализации как пра­
вило устанавливают только центр объекта и приблизительный размер, а значит
граница не соответствует реальной.

С распространением мобильных устройств, которые объединили в себе воз­
можности захвата, передачи и обработки изображения, возник естественный
запрос выполнять съёмку и распознавание «на лету», отвязавшись от стаци­
онарных компьютеров и сканирующих устройств. Мобильные устройства как
правило комплектуют малоформатными цифровыми камерами. Снимки с та­
ких камер, полученные обычными пользователями, существенно отличаются и
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от сканов, и от изображений со стационарных камер. Условия съёмки – про­
извольное освещение, ракурс и окружение – способствуют появлению таких
дефектов, как блики, смазы и перепады яркости. Изображение может захваты­
вать существенно большую область, чем занимает объект интереса, а значит –
содержать элементы сцены. Поворот камеры относительно плоскости объекта
порождает образ с искажением геометрии, в общем случае – проективным.

Достижение высокой точности распознавания объектов на снимках с мало­
форматных камер потребовало создания новых методов анализа изображений,
устойчивых к перечисленным дефектам и особенностям. Проблемам распозна­
вания образов на мобильных устройствах посвящены работы В. В. Арлазарова,
Д.В. Полевого, К.Б. Булатова, Е.Е. Лимоновой, K. Mikolajczyk, V. Lepetit и
других исследователей. На текущий момент международным сообществом про­
ведена большая работа по адаптации существующих методов к характерным
особенностям фото- и видеокадров, а также по созданию новых методов для их
анализа и распознавания.

Есть два подхода к анализу изображений с помощью мобильных
устройств. Первый заключается в передаче изображения на удалённый сер­
вер для последующего распознавания. Исполнение на сервере не накладывает
жёстких ограничений на вычислительную эффективность метода и позволяет
работать с большими базами данных. Недостатками такого подхода является
необходимость стабильного интернет-соединения и возможный расход средств
на передачу данных. Помимо этого, изображения могут содержать приватные
данные (изображения документов, удостоверяющих личность), а их передача и
хранение в любой форме регулируется законодательно в РФ и других странах.
Второй подход заключается в выполнении распознавания непосредственно на
мобильном устройстве, что ограничивает допустимую сложность методов и
размер используемых данных в сравнении с первым (серверным) подходом.
Выбор подхода зависит от задачи, и в современных системах распознавания
изображений представлены оба варианта.

Таким образом, помимо точности идентификации и локализации возни­
кают требования к эффективности методов в отношении скорости и расхода
памяти. Это необходимо для исполнения на большинстве пользовательских
устройств, в т.ч. малопроизводительных, т.е. прямо связано с доступностью за­
щиты информации. Законодательно регулируется порядок взаимодействия не
только с информацией ограниченного доступа, но и с объектами авторского
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права, и с культурными ценностями особого значения. Это осложняет форми­
рование репрезентативных наборов данных. В ряде случаев на этапе создания
решения доступно единственное изображение-образец при сотнях и тысячах
возможных типов.

Методы сквозного обучения (end-to-end) сегодня позволяют получить до­
статочно точные решения. Ряд архитектур искуственных нейронных сетей под­
ходит для исполнения на самых современных мобильных устройствах, однако
для их обучения требуются репрезентативные данные. Модели, построенные с
переносом обучения, характеризуются пониженной точностью и ориентирова­
ны к исполнению на GPU. Кроме того, дообучение необходимо при изменении
набора типов (добавления новых и исключения неактуальных), что влечёт до­
полнительные затраты по времени. Это делает инструментарий сквозных ней­
ронных сетей слабо применимым к решаемой задаче.

Другой известный подход, достигающий высокой точности - сравнение
изображений как наборов признаков локальных окрестностей - дескрипторов,
их координат и размеров. При построении набора можно выбросить зоны с ва­
риативными данными и дефектами съёмки, что позволяет задать тип в таком
представлении даже одним изображением-эталоном. За счёт геометрического
согласования признаков с похожими дескрипторами можно исключить некото­
рые коллизии определения типа и локализовать объект. В процессе разбора
подхода отмечено следующее: хотя и методы дескрипции, и методы согласо­
вания развиваются в контексте достижения большей точности, компактности и
скорости, они абстрагированы от реальных задач и совместного использования.
Поэтому подход может быть улучшен в целом по точности, скорости и памяти
за счёт ограничений задачи.

Представление изображения в виде дескрипторов окрестностей само по
себе позволяет оптимизировать вычисления и память при сопоставлении изоб­
ражений. При этом в самом представлении, как правило, только один тип при­
знаков. Это означает, что устойчивость к шуму и искажениям достигается за
счёт дескрипторов с бóльшей информативной ёмкостью (что отражается в т.ч.
на увеличении размера дескриптора в битах). Процесс геометрического согла­
сования признаков со своей стороны должен исключить не только параметры,
нереализуемые камерой, но и ракурсы с сильным искажением, мешающим рас­
познаванию деталей объектов.
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В то же время для ригидного объекта его границы, характерные протя­
жённые (линейные и текстовые) признаки даже при неполной видимости поз­
воляют оценить масштаб, поворот и отбросить часть сцены. Такие признаки
могут быть представлены только геометрическими примитивами, т.е. малым
набором параметров без описательной составляющей (дескриптора). Это суще­
ственно экономней в отношении памяти, чем локальные признаки, т.о. основные
затраты при выделении и хранении состоят в дополнительных операциях.

Совокупность указанных факторов делает актуальным исследование ме­
тодов идентификации и локализации плоских ригидных объектов, направлен­
ное на устранение недостатков существующих решений.

Основные результаты диссертации были получены в процессе выполнения
работ по следующим научным грантам РФФИ:

– 19-29-09066 — Методы анализа и обработки изображений для индекса­
ции видеоданных и их устойчивого поиска в режиме реального времени

– 18-29-26035 — Методы позиционирования и ориентирования изучаемо­
го объекта путём анализа локальных геометрических особенностей отдельных
проекций

– 17-29-03514 — Алгоритмы лимитированной сложности для поиска и ло­
кализации объектов интереса полностью автономными системами на базе бес­
пилотных летательных аппаратов

– 17-29-03370 — Методы биометрической идентификации в реальном вре­
мени на мобильном устройстве по удостоверяющей фотографии

– 17-29-03161 — Каскадные алгоритмы локализации и прослеживания
протяженных объектов на мобильных устройствах

– 16-07-00616 — Исследование возможности создания новых методов по­
иска нечетких дубликатов в видеопотоке

– 14-07-00730 — Математическое моделирование шумовых помех при рас­
познавании

– 13-07-12173 — Исследование методов сегментации изображений доку­
ментов на структурные блоки методами цветового и морфологического анализа

– 13-07-12172 — Распознавание документов удостоверяющих личность с
помощью веб камер и камер мобильных устройств

Целью данной работы является повышение точности, скорости и умень­
шение затрат памяти для семейства методов идентификации и локализации
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плоских ригидных объектов, основанных на сопоставлении изображений в ком­
пактном представлении.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Исследовать методы выделения и использования признаков различной
природы на изображениях для решения задач локализации и идентификации
объектов.

2. Разработать быстрые методы выделения протяжённых признаков,
устойчивые к искажениям изображений, порождёнными особенностями съём­
ки, для плоских ригидных объектов.

3. Разработать способ учёта протяжённых признаков для повышения точ­
ности и скорости классификации и локализации плоских ригидных объектов.

4. Исследовать возможность учёта краевых условий задачи при оценке
параметров модели преобразования для повышения точности и скорости оцен­
ки.

Научная новизна:
1. Впервые предложен быстрый аналитический метод поиска машиночи­

таемых зон (МЧЗ), устойчивый к искажениям, порождаемым при съёмке в
неконтролируемых условиях.

2. Разработан новый метод, использующий локальные и протяжённые
признаки, и их комбинации для более точной оценки параметров проективного
преобразования образа плоского ригидного объекта.

3. Выполнено оригинальное исследование влияния различных комбина­
ций протяжённых и локальных признаков на точность локализации и класси­
фикации плоского ригидного объекта на изображении.

4. Для семейства методов оценки параметров модели на основе случай­
ных выборок *-SAC предложен обобщённый метод учёта краевых условий для
широкого класса задач.

Практическая значимость Разработанные в рамках диссертации ме­
тоды выделения четырёхугольников, поиска машиночитаемых зон, и класси­
фикации и локализации плоских ригидных объектов были реализованы в ви­
де программных компонентов и внедрены в программное обеспечение «Smart
IDReader» и «Smart Code Engine». Данные продукты интегрированы в инфор­
мационную решения ряда коммерческих организаций, а также государственных
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структур Российской Федерации. Значимость подтверждается полученными па­
тентами в РФ и США, а также актами о внедрении.

Методология и методы исследования. В диссертационной работе ис­
пользовались методы системного анализа, анализа изображений, теории гра­
фов, аналитической геометрии и линейной алгебры.

Основные положения, выносимые на защиту:
1. Предложенные методы поиска протяжённых текстовых признаков поз­

воляют с высокой точностью обнаруживать структурированные тексты (на при­
мере МЧЗ) за счёт анализа и сопоставления структур на изображениях с рефе­
рентными данными.

2. Использование краевых условий в задаче оценки проективного преоб­
разования образа плоского ригидного объекта позволяет существенно повысить
точность и скорость решения.

3. Представление изображения с помощью комбинации локальных при­
знаков (особые точки и дескрипторы) и протяжённых признаков (прямые, сег­
менты, четырёхугольники) позволяет:
- повысить точность и скорость локализации и классификации
- смягчить требования к объёму памяти, необходимому для хранения ресурсов
и анализа изображений (с учётом затрат на выделение и хранение протяжённых
признаков).

4. Для всех предложенных методов предложены реализации, эффектив­
ные по памяти и скорости для исполнения на мобильных устройствах в режиме
реального времени.

Достоверность полученных результатов обеспечивается согласованно­
стью теоретических ожиданий с полученными экспериментальными результа­
тами, апробацией результатов на тематических научных международных кон­
ференциях, и внедрением в реальные системы распознавания. Результаты нахо­
дятся в соответствии с результатами, полученными членами научного сообще­
ства при использовании опубликованных методов, заявленных в диссертации,
и сравнении с ними.

Апробация работы. Основные результаты работы были доложены и
обсуждены на:

1. Международной конференции «International Conference on Document
Analysis and Recognition» (ICDAR) в 2017 и 2019 годах;
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2. Международной конференции «International Conference on Machine
Vision» (ICMV) в 2018, 2019, 2020 годах;

Личный вклад. Результаты диссертационной работы получены соиска­
телем. Постановка задач и обсуждение результатов проводились совместно с
научным руководителем. В коллективных работах (публикациях) соискателем
выполнены построение моделей и методов для решения задач, релевантных те­
ме диссертации, а также анализ и оценка полученных результатов. Метод по­
иска МЧЗ [1] был разработан, исследован и опубликован без соавторства, в
работе [2] автор предложил его улучшение с помощью оценки наклона и се­
паратора. В [3] автору принадлежит метод поиска для существующего графа
компонент и план оценки точности. В работе [4; 5] автору принадлежат метод
фильтрации границ, методы обнаружения в пространстве Хафа нескольких ли­
ний-кандидатов, методы ранжирования и фильтрации гипотез, идеи восстанов­
ления и оценки 4й стороны и методы без оптимизации параметров. В работе
[6] автору принадлежит метод выделения границ с фильтрацией, методы филь­
трации гипотез по геометрии прообраза, восстановленного с использованием
фокусного расстояния. В работе [7] автором выполнен анализ особенностей ре­
шения задачи локализации документов на снимках с камер. В работах [8; 9]
использованы авторские методы для фильтрации точек и предложенное упро­
щения модели преобразования. В работах [10; 11] автору принадлежат идеи и
методы использования геометрических примитивов при выделении локальных
признаков в RANSAC, а так же отдельные критерии отбраковки моделей и ги­
потез; в [12] автором выполнена оценка влияния этих методов и критериев для
разных методов дескрипции. В работах [13; 14] использованы авторские крите­
рии отбраковки, автором выполнена оценка их влияния на скорость и точность
оценки параметров. В работе [15] автору принадлежит идея фильтрация то­
чек с нечётким классификатором объект-фон и способ оценки зоны объекта на
отфильтрованных данных. Кроме того, автор участвовал в создании наборов
данных, использованных в [8; 10; 14].

Соответствие работы паспорту научной специальности. Диссерта­
ционная работа соответствует направлениям исследований паспорта научной
специальности 2.3.1 - «Системный анализ, управление и обработка информа­
ции, статистика» (п. 3 «Разработка критериев и моделей описания и оценки
эффективности решения задач системного анализа, оптимизации, управления,
принятия решений и обработки информации», п. 4 «Разработка методов и ал­
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горитмов решения задач системного анализа, оптимизации, управления, при­
нятия решений и обработки информации», п. 5 «Разработка специального ма­
тематического и алгоритмического обеспечения систем анализа, оптимизации,
управления, принятия решений и обработки информации»).

Публикации. Основные результаты по теме диссертации изложены
в 15 работах, 3 из которых изданы в журналах, рекомендованных ВАК, вклю­
чая 2 в изданиях категории К2 , 3 — в научных журналах, индексируемых
Springer, Web of Science, Scopus, и приравненных к категориям К1 и К2, 9 —
в сборниках трудов конференций (индексируемых Web of Science и Scopus). За­
регистрированы 3 патента и 3 программы для ЭВМ.

Объем и структура работы. Диссертация состоит из введения, 3 глав,
заключения и 2 приложений. Полный объём диссертации составляет 128 стра­
ниц, включая 27 рисунков и 13 таблиц. Список литературы содержит 159 на­
именований.
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Глава 1. Признаки изображений, их типы и методы детекции.
Интерпретация и анализ признаков для локализации и

классификации объектов на изображениях.

1.1 Введение: Особенности распознавания объектов на
изображениях на сегодняшний день

Системы анализа и распознавания (обработки) изображений с развити­
ем вычислительных мощностей и устройств регистрации изображений из еди­
ничных промышленных решений превратились в обычное дополнение к ком­
плексным системам в различных областях [16]. Государственные и коммерче­
ские предприятия, промышленность, финансовые, медицинские и прочие ор­
ганизации массово используют такие системы как для внутренних процессов
(автоматический ввод и организация данных [17; 18], решение проблем инфор­
мационной, производственной и государственной безопасности [19—21]), так и
для упрощения взаимодействия с внешними контрагентами (удалённая реги­
страция, аутентификация, оплата и др. [22]).

При таком многообразии систем и запросов одно и то же изображение
может требовать откликов различной степени детализации. Для задач клас­
сификации это хорошо отражено в системах и работах, посвящённых анализу
изображений документов, живописи, фото- и видеоконтента [23—26]. Документ
может быть отнесён к одной из широких категорий, таких как «страница журна­
ла», «платёжный документ» или «удостоверение личности». Но также возмож­
но определить более точный тип – «паспорт страны X назначения Y года Z»,
или «счёт-фактура от компании X». В случае картины может потребоваться как
информация о стиле или возможном авторе для исследовательских целей, так
и точное название, необходимое для мобильных гидов. При высокой полноте ин­
формации классы могут быть представлены частично или полностью зрительно
сопоставимыми изображениями. В распознавании образов такие классы назы­
ваются жёстко структурированными (ригидными). Таким образом, документы,
удостоверяющие личность, в целом представляют собой неструктурированный
класс. Однако биометрический паспорт РФ 2023 года выпуска частично струк­
турирован.
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Согласно [27] структуру объектов на изображении могут задавать доста­
точно простые (непроизводные) признаки, такие как пересечения, пятна, гра­
ницы и линии, разрывы в яркостных переходах. Жёсткость связана с тем, на­
сколько эквивалентны сами признаки и связи между ними внутри экземпля­
ров класса. Совокупность признаков обеспечивает возможность использования
локальной и глобальной информации, содержащейся в изображении, включая
геометрические характеристики.

Преимущественно в задачах анализа и распознавания изображений [16; 27]
рассматриваются двумерные растровые изображения. В качестве средств реги­
страции могут выступать как стационарные (промышленные) камеры и скане­
ры, так и малые цифровые камеры. Именно последние применяются при осна­
щении общеиспользуемых устройств – смартфонов, веб-камер, видеорегистра­
торов. В работе [28] рассмотрены особенности формирования изображений для
различных устройств. Малые цифровые камеры, при более высокой скорости
получения изображения, вносят больше искажений в процессе оцифровки сигна­
ла. Это связано как со сложностью оптической системы, так и с особенностями
процесса съёмки камерой. Сам процесс преобразования аналогового сигнала в
цифровой является источником цифрового шума (из-за ошибок квантования
и т.п.). Одним из факторов являются слабо контролируемые условия съёмки:
недостаточное или неравномерное освещение, неизвестный поворот камеры от­
носительно глобальной системы координат, неравномерное и непредсказуемое
движение камеры либо объекта. В результате на изображениях могут возни­
кать блики, перепады яркости и смазанные области. Кроме того, наблюдаемая
сцена может быть геометрически искажена, если поза камеры не соответствует
вектору наблюдения. На рисунке 1.1 показано, как одна и та же сцена может
выглядеть при перемене освещения и ракурса.

Рисунок 1.1 — Вариации освещения и точки съёмки для сцены

Хотя объекты, представляющие интерес, могут быть произвольной формы
и объёма, у преимущественной части создаваемых человеком конструкций про­
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образом являются прямоугольники и параллелепипеды. Сцены с характерными
признаками – прямолинейными границами, расположенными преимуществен­
но по трём взаимно ортогональным направлениям – называют «манхэттенским
миром» (по аналогии с тем, как расстояние городских кварталов Минковского
называют манхэттенским). В работе [29] показано, что несмотря на первона­
чальную привязку к рукотворным сценам, на естественных сценах образующие
направления также хорошо прослеживаются. При проецировании трёхмерных
сцен «манхэттенского» мира на изображение появляются точки схода – точки
пересечения проекций параллельных прямых, по одной на каждое направле­
ние, как показано на 1.2. Точки схода, согласно принципам, указанным в [27]
являются признаком наравне с прямыми.

а) б)
Рисунок 1.2 — Городская сцена как пример манхэттенского мира

а) исходное изображение; б) линии сцены, задающие 3 точки схода

1.2 Задача локализации и идентификации на изображениях

Формальная постановка задачи классификации (идентификации) объекта
на изображении, часто встречающаяся в литературе, выглядит следующим об­
разом: Требуется определить такой класс изображений 𝑐 из множества классов
𝐶, что

𝐹 (𝐼, 𝑐) < 𝐹 (𝐼, 𝑐′),∀ 𝑐′ : 𝑐′ ̸= 𝑐, 𝑐′ ∈ 𝐶 (1.1)

где 𝐹 - функция, определяющая близость изображения 𝐼 к классу. Функция
𝐹 зависит того, какое структурное представление выбрано для формирования
классов. Класс может задавать как широкую категорию (документы, рисунки,
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обложки), так и точный экземпляр объекта (знак «стоп» среди дорожных зна­
ков).

Задача локализации объекта также может формулироваться с разной сте­
пенью точностью. Простая локализация требует приблизительное знание о пози­
ции и размере объекта. В работах она чаще всего задаётся с помощью окаймляю­
щего прямоугольника. Точная локализация подразумевает определение контура
его внешних границ на изображении. Для определения точности локализации
произвольных объектов существует ряд показателей, такие как коэффициент
сходства Жаккара. Если истинный (размеченный) объект покрывает множе­
ство пикселей 𝐴, а метод обнаружил множество 𝐵, то точность локализации по
Жаккару определяется следующим образом:

IoU =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
, IoU ∈ [0, 1]. (1.2)

Без привязки к глобальной системе координат объекты, точно локализованные
по этой мере, нельзя соотнести между собой, поскольку множества пикселей не
упорядочены. Привязку определяют параметрами преобразования. Наиболее
общим преобразованием, подходящим для всех регистраторов изображений, яв­
ляется проективное преобразование.

В работах, посвящённых данным задачам, предлагаются как последова­
тельные, так параллельные схемы решения:

– Последовательная схема: сначала локализация либо нормализация изоб­
ражения, затем идентификация

– Параллельная схема: локализация и идентификация объекта выполня­
ются одновременно

Проективная нормализация – это получение изображения, на котором образ
объекта подобен прототипу, а границы окаймляющего прямоугольника парал­
лельны осям изображения. За счёт этого для идентификации можно использо­
вать методы, слабо устойчивые к проективным искажениям (например, класси­
фикаторы Виолы-Джонса). Финальные параметры локализации при этом скла­
дываются из параметров нормализации, сдвига на нормализованном изображе­
нии и установленном масштабе.

При параллельной схеме гипотеза преобразования 𝐻 и оценка близости
𝐹 рассчитываются одновременно. Так спроектированы наиболее точные на се­
годняшний день решения: end-to-end модели, полученные методами сквозного
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обучения, и аналитические решения, основанные на сопоставлении наборов ло­
кальных признаков. Как отмечено во введении, аналитический подход более
применим в нашей задаче как с точки зрения ожидаемой вычислительной эф­
фективности, так и ввиду требований к данным.

Рассмотрим далее в главе методы и алгоритмы, используемые для выде­
ления на изображениях признаков разных типов и их последующего сопостав­
ления.

1.3 Типы признаков и методы их выделения

1.3.1 Границы, края

Наблюдаемые прямолинейные границы, в зависимости от их протяжён­
ности и непрерывности, могут быть описаны как прямые или сегменты. Ана­
литические методы детекции прямых, как правило, оперируют не исходным
изображением, а картой границ. В обзорной работе [30] рассматриваются типы
границ (край, хребет и т.п.) и набор базовых методов для выделения как прямо­
линейных границ, так и иных контуров. На рисунке 1.3 показаны изображения
и графики интенсивности, соответствующие различным типам границ.

а) б) в) г)
Рисунок 1.3 — Примеры границ различных видов. По оси X - смещение, перпен­
дикулярное границе, по Y - значение интенсивности на изображении: а) идеаль­
ный край; б) размытый край (скат); в) идеальный хребет; г) размытый хребет

(сгиб)
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Пусть 𝐼(𝑥, 𝑦) здесь и далее обозначает яркость (интенсивность) изображе­
ния 𝐼 в пикселе 𝑥, 𝑦. Для выделения границ могут быть использованы следую­
щие базовые операторы:

– дискретный аналог производной по направлению на изображении

𝐼 ′𝑦(𝑥,𝑦) = |𝐼(𝑥,𝑦)− 𝐼(𝑥,𝑦 + 1)| (1.3)

Выражение (1.3) задаёт стандартный оператор производной для вертикально­
го направления. Чем выше значение 𝐼 ′, тем более выражена граница между
пикселями соседних строк.

– градиент по изображению[︃
1 0

0 −1

]︃
,

[︃
0 1

−1 0

]︃
→

𝐺1(𝑥, 𝑦) = 𝐼(𝑥,𝑦)− 𝐼(𝑥+ 1,𝑦 + 1)

𝐺2(𝑥, 𝑦) = 𝐼(𝑥,𝑦 + 1)− 𝐼(𝑥+ 1,𝑦)
(1.4)

|𝐺(𝑥,𝑦)| = |𝐺1(𝑥,𝑦)|+ |𝐺2(𝑥,𝑦)| (1.5)

⎡⎢⎣ 1 2 1

0 0 0

−1 −2 −1

⎤⎥⎦ ,

⎡⎢⎣−1 0 1

−2 0 2

−1 0 1

⎤⎥⎦→

𝐺𝑥(𝑥, 𝑦) = 𝐼(𝑥− 1,𝑦 − 1) + 2𝐼(𝑥− 1,𝑦) + 𝐼(𝑥− 1,𝑦 + 1)

−𝐼(𝑥+ 1,𝑦 − 1)− 2𝐼(𝑥+ 1,𝑦)− 𝐼(𝑥+ 1,𝑦 + 1)

𝐺𝑦(𝑥, 𝑦) = 𝐼(𝑥− 1,𝑦 − 1) + 2𝐼(𝑥,𝑦 − 1) + 𝐼(𝑥+ 1,𝑦 − 1)

−𝐼(𝑥− 1,𝑦 + 1)− 2𝐼(𝑥,𝑦 + 1)− 𝐼(𝑥+ 1,𝑦 + 1)

(1.6)

|𝐺(𝑥,𝑦)| =
√︁
𝐺𝑥(𝑥,𝑦) +𝐺𝑦(𝑥,𝑦) θ = arctg

𝐺𝑥

𝐺𝑦

(1.7)

Выражения (1.4) и (1.6) задают градиент через матричные операторы по на­
правлениям. Приведённые варианты предложены Робертсом(по диагоналям) и
Собелем(осям). Модуль градиента в формулах ((1.5) и (1.7)) соответствует вы­
раженности границы, а угол θ – её наклону к OX. Для устойчивости к шуму
любой из операторов можно расширить на большую область, либо модифициро­
вать дополнительными фильтрами. Например, для (1.6) существует модифика­
ция, которая улучшает его вращательную симметрию. В обзорной работе под­
чёркнута необходимость дальнейшей фильтрации после применения базовых
операторов.

Классическим среди несетевых детекторов границ считается метод, пред­
ложенный Канни [31]. В работе сформулированы критерии эффективности оп­
тимальных операторов для границ типа «край»: высокая точность и полнота
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детекции, истинность границы (координатная точность) и отсутствие избыточ­
ных откликов (одной реальной границе соответствует одна найденная). Показа­
но, что первая производная фильтра Гаусса является хорошим приближением к
оптимальным операторам. Для изображения, ввиду ассоциативности свёртки,
можно выполнить сначала выполнить фильтрацию, а затем рассчитать гради­
ент. После вычисления градиента используется фильтрация с двумя порогами,
высоким и низким. На первом этапе выявляются надёжные, выраженные грани­
цы – пиксели, значения которых превышают высокий порог. После этого выпол­
няется следующее правило: пиксель, соседний к граничному, также считается
границей, если его значение превышает слабый порог.

Определение надёжных границ легло стало основой подхода на осно­
ве нечёткой логики, в котором два порога 𝑇𝑚𝑎𝑥 и 𝑇𝑚𝑖𝑛 определяют границу
(𝐼(𝑥,𝑦) ⩾ 𝑇𝑚𝑎𝑥) либо фон (𝐼(𝑥,𝑦) < 𝑇𝑚𝑖𝑛), а для определения принадлежности
оставшихся пикселей задают набор правил вида «если-то». Например, в рабо­
те [32] значения морфологического градиента цветного изображения [33] задают
вероятность принадлежности пикселя границе. Нечёткий детектор [34] в рабо­
те использует одновременно нечёткую дивергенцию и минимизацию нечёткой
энтропии при выделении начального «надёжного» множества на сером изобра­
жении.

Информативность многоканальных изображений может быть использова­
на для существенного улучшения выделенных границ. Особенности расчёта гра­
диента для цветного изображения рассмотрены в работе [35]. Вместо комбина­
ций независимых результатов операторов в каждом канале (максимум, средне­
квадратичное), предлагается рассчитать тензорный градиент. Для этого много­
канальное изображение рассматривается как векторное поле. В результате на
границы влияет не только интенсивность в разных каналах, но и совпадение на­
правления. Это порождает более точные границы, чем комбинация операторов,
но и вычислительно сложней. В [36] градиент по яркости предлагают комби­
нировать с цветовым градиентом и текстурными признаками. По данной ком­
бинации признаков по разметке обучен линейный классификатор с помощью
SVM. Показано, что результат такого классификатора ближе к человеческому
восприятию границ (разметке), чем детектор Канни и другие операторы.

Использование машинного обучения мотивировано в том числе сложно­
стью с выбором порогов для аналитических методов [37]. В последних иссле­
дованиях много внимания уделяют построению карт границ с использованием
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искусственных нейросетей (ИНС). Разработки в данном направлении тормозит
сложность получения референсных данных в больших объёмах. К примеру,
при рассмотрении работы [38] можно отметить, что повышение метрических
показателей качества (F-measure) в сравнении с иными методами выглядит,
как результат переобучения: на рисунках 1.4 в статье можно обнаружить, что
как выделенные, так и размеченные границы не всегда соответствуют реально
наблюдаемым. Тем не менее, ИНС, предложенная в [39], убедительно демон­

а) б) в)
Рисунок 1.4 — Карта границ а) исходное изображение б) разметка в) результат

сети.
Изображения из работы [38]

стрирует хороший результат при реимплементации, в т.ч. на новых наборах
данных [40; 41]. Особенность данной ИНС в том, что для итоговой карты гра­
ниц используется комбинация из выходов в т.ч. промежуточных слоёв, а не
только выход последнего свёрточного слоя. При этом замедление вычислений
(на CPU, относительно с аналитических методов) хотя ожидаемо, но слишком
велико для случаев, когда поиск границ лишь один из промежуточных этапов.
Детализация экспериментов (оборудование и результаты) показывает, что про­
блема сохраняется для многих ИНС [42], несмотря на ускорения.

1.3.2 Прямые линии и сегменты

Многофункциональным для задач поиска примитивов является двумер­
ное преобразование Хафа (ПХ), при котором всему примитиву на 𝑥𝑦 плос­
кости соответствует точка в некотором пространстве параметров. Для детек­
ции прямых устоявшимся решением является нормальная параметризация:
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ρ = 𝑥 sin(θ) + 𝑦 cos(θ)

где ρ - расстояние от центра координат до прямой («радиус»), θ - угол между
радиусом и осью 𝑂𝑥. Использовать ρ-θ параметризацию вместо 𝑘-𝑏 (угловой
коэффициент и сдвиг) для ПХ предложили в работе [43] для того, чтобы а) из­
бежать неограниченных значений параметров б) каждой прямой соответствова­
ла единственная точка в пространстве параметров. Это достигается, поскольку
ρ ⩾ 0 и ограничено сверху размерами изображения, а уникальность обеспечива­
ет ограничение θ ∈ [0,π). Пример преобразования Хафа для прямой, заданной
точками, по 𝑘-𝑏 параметризации приведён на рис. 1.5.

а) б) в)
Рисунок 1.5 — а) бинарное изображение б) преобразование Хафа для бинарного

изображения (а) в) аккумулятор преобразования Хафа (б)

Предполагалось, что преобразование выполняется на бинарном изображе­
нии границ. В работе [44] предложено расширение метода для работы с по­
лутоновыми изображениями, где интенсивность пикселя учитывается при по­
строении отображения в пространство Хафа. ПХ в тривиальных реализациях
затратно как по числу операций (т.е. времени исполнения), так и по необходи­
мой памяти. Поэтому большую практическую значимость имеют последующие
работы, посвящённые оптимизации вычислений. Брейди в работе [45] сравнил
существующие ускорения и представил способ вычисления аппроксимированно­
го преобразования за 𝑁 log𝑁 2 (против 𝑁 3 в лучших прошлых случаях). Был
предложен новый метод объединения частичных результатов, благодаря кото­
рому получаемая аппроксимации вычисляется с доказуемой (и достаточно высо­
кой) точностью. На данный момент существуют и более точные аппроксимации,
необходимые для обработки медицинских изображений, однако вычислительно
они более затратны [46]. Кроме того, алгоритм Брейди может быть реализован



21

нерекурсивно с ускорением за счёт архитектурных расширений [47], позволяю­
щих обрабатывать за 1 операцию вектор данных (векторизация SIMD).

Методы контурного анализа позволяют вычленять из границ прямолиней­
ные участки – отрезки. Каждый отрезок формируется с отдельного граничного
пикселя и попиксельно наращивается, чтобы получить связный контур, удовле­
творяющий критериям прямолинейности. В отличие от ПХ, учёт прерывистых
границ в таких методах затруднён, поскольку на коротких участках недостаточ­
но информации для проверки критерия. Один из базовых методов данного типа
представлен в работе [48]. Края выделяют с помощью свёртки, а затем утонча­
ют и фильтруют по пороговому значению. После этого определяют связность
соседних пикселей по схожести ориентации градиента. Связный контур пошаго­
во аппроксимируют сегментом. Если на контуре возникает ошибка отклонения,
превышающая пороговое значение, сегмент «разламывают» в точке наиболь­
шей ошибки. Метод был усовершенствован в [49]: с помощью компонент связно­
сти можно группировать соседние точки с одинаковой ориентацией градиента,
что ускоряет дальнейшее построение. В методе LSD [50] итеративно наращи­
ваются целые прямоугольные области. Рассчитывается градиент изображения
по ур. (1.7), и создание новой области начинается с непросмотренного пиксе­
ля с наивысшей магнитудой. Каждая область начинается с одного пикселя, и
угол области считается равным ориентации градиента в этом пикселе. Затем
оцениваются ближайшие пиксели-соседи: если ориентация градиента в пикселе
близка к углу области, то он присоединяется к области и маркируется как про­
смотренный. Значение угла области обновляется с каждым добавленным пик­
селем. Центр прямоугольника области определяет центр искомого сегмента, а
основное направление соответствует главной оси инерции прямоугольника, где
магнитуда задаёт вес. Границы области определяют концы сегмента.

Для достижения лучшей скорости метода EDLines [51] авторы заявили
свой подход к порождению карты границ. Для градиента изображения вычис­
ляют набор пикселей-якорей – пикселей, которые с большей вероятностью ока­
жутся элементами границы. В качестве якорей предложено использовать пики
градиента. Якоря соединяют, прорисовывая границы между ними. Начиная с
одного якоря, метод пользуется величинами и направлениями градиента в со­
седних пикселях, перемещаясь к следующему якорю по максимумам. Для извле­
чения сегментов авторами используется метод наименьших квадратов (МНК).
Алгоритм рекурсивно обрабатывает все оставшиеся пиксели в цепочке, вписы­
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вая линии в имеющийся набор, до тех пор пока ошибка не превысит заданного
порога, либо пока не будут обработаны все. Т.е. идея в том, чтобы сгенерировать
минимальную длину начального отрезка, а затем итеративно удлинять отрезок.
Заявлено, что EDLines в 10 раз быстрее, чем LSD, при идентичной детализации
(рис. 1.6).

а) б)
Рисунок 1.6 — Результат работы детекторов отрезков а) LSD б) EDLines

Изображения из работ [50] и [51]

Ускорение EDLines, предложенное в работе [52], достигается за счёт до­
страивания линии компонентой связности и использования её направления. Та­
кой ход также позволяет перепрыгивать разрывы градиента и обнаруживать
целые линии или отдельные сегменты без скачков. Метод AG3line [53] исполь­
зует стратегию активной группировки пикселей. Пиксель-кандидат к сегменту
оценивается с учётом геометрии линии, точность может достигать одного пик­
селя. Чтобы уменьшить разрывность, вызванную откинутыми нестабильными
пикселями, зона пикселей-кандидатов расширяется по линии, согласно ограни­
чениям геометрии.

Последние работы сосредоточены на исследованиях возможностей нейро­
сетей, в т.ч. для выделения подобных примитивов. В работе [54] для поиска
линий применяют архитектуру Transformer [55], в которой каркасный анализ
(с участием выделения признаков-границ) заменён на многомерное кодирова­
ние-декодирование. Для постепенного уточнения линий используются т.н. слои
«внутреннего внимания». Популярность метода LSD отражается на сетевых ме­
тодах. В работе [56] предлагается детектор LSDNet с локализованным приме­
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нением ИНС. Лёгкая сеть встраивается в классический алгоритм LSD. Авторы
заменяют первый шаг алгоритма - построение тепловой карты отрезков линий и
поля касательных из необработанных градиентов изображения — на облегчён­
ную ИНС, которая способна рассчитывать более сложные и ёмкие признаки.
Второй этап - выделение сегментов по карте - несколько модифицирован. Кар­
та границ бинаризуется комбинированным методам - с глобальным и локаль­
ным порогами. Построение базовым прямоугольников модифицировано с учё­
том изменений карты, введена иная мера сходства для пикселей. DeepLSD [57]
обрабатывает изображения с помощью глубокой сети для создания поля притя­
жения линий, а затем преобразует его в суррогатную величину и угол градиента
изображения, которые затем передаются в любой существующий линейный де­
тектор ручной работы. Авторы также предлагают новый инструмент оптимиза­
ции для уточнения сегментов линий на основе поля притяжения и точек схода.
Усовершенствование значительно повышает точность современных глубинных
детекторов.

1.3.3 Точки схода и прямоугольники

Прямые линии и сегменты могут служить базисом для выделения более
сложных признаков, таких как точки схода и четырёхугольники. Как отмече­
но в 1.1, основной интерес вызывают такие четырёхугольники, которые соот­
ветствуют прямоугольникам и параллелограммам на реальном прототипе и его
изображении-эталоне. Методы поиска четырёхугольников с использованием сег­
ментов и прямых устанавливают соответствия между его сторонами и найден­
ными примитивами. После поиска примитивов значимыми этапами в подобных
(контурно-линейных ) методах являются генерация, оценка и фильтрация гипо­
тез – комбинаций примитивов, образующих угол либо целый четырёхугольник.

Одной из базовых работ считается [58], в которой локализуют прямоуголь­
ную доску с произвольным заполнением. Авторами предложен алгоритм, осно­
ванный на контурно-линейном подходе, который включает следующие этапы:
детекция границ типа «край», поиск прямых, формирование четырёхугольни­
ков (вариантов расположения документа), их фильтрация, ранжирование и,
наконец, уточнение в большем разрешении. Четырёхугольник формируют из
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прямых линий, найденных с использованием модифицированного БПХ. В мо­
дификации параметр угла θ находится в интервале [−180°,180°] и привязан к
направлению градиента: θ = 𝑎𝑡𝑎𝑛2(𝐺𝑦, 𝐺𝑥). Определены ограничения на θ для
прямых, что используется для ускорения перебора:

а) прямые противоположных сторон имеют противоположные направле­
ния (разница в 180°(±30°)),

б) угол между соседними сторонами составляет 90°(±30°),
в) направления линий непротиворечивы, образуют цикл по часовой стрел­

ке либо обратный.
Кроме того, направление используется для оценки четырёхугольника. Вес пря­
мой ПХ рассчитан на целом изображении, поэтому может возникнуть случай,
когда нет границ вдоль какой-либо стороны, как на рисунке 1.7. Авторы пред­

Рисунок 1.7 — Пример некорректного четырёхугольника. Реальные края пока­
заны сплошным чёрным, прямые ПХ - прерывистыми линиями.

ложили проверять наличие краёв между углами четырёхугольника, при этом
направление градиента должно соответствовать общему направлению вдоль
образующей прямой. Так же в работе используется предположение, что угол
прообраза четырёхугольника прямой, для восстановления реального соотноше­
ния сторон, а также оценки фокусного расстояния. Кроме того, для большей
вычислительной эффективности авторы выполняют основной анализ при гру­
бой дискретизации для ПХ и в масштабе, существенно меньшем реального. За­
тем полученное грубое решение уточняют на исходном масштабе с помощью
МНК.

В более новых работах вопрос быстродействия методов поднимается, как
правило, в контексте исполнения на мобильных устройствах. В публикации [59]
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для уменьшения времени работы алгоритма авторы снижают разрешения вход­
ного изображения и аккумулятора ПХ, используют таблицу поиска и эвристики
при вычислении карты границ, и вводят регион интереса для уменьшения зоны
поиска документа. Авторы используют детектор границ Канни с адаптивным
порогом, а затем фильтруют найденные границы в зоне текста – при сильном
сжатии строки порождают ложные прямые на ПХ. Зоны текста определяют с
помощью анализа компонент связности.

Локализация на изображении плоских прямоугольных объектов без внут­
ренних текстур рассмотрена в [60]. Модель объекта задана совокупностью при­
митивов-сегментов, соответствующих прямолинейным границам. Авторы опери­
руют выделенными сегментами для генерации гипотез углов. Пара сегментов
образует угол, если расстояние от точки пересечения образующих до концов
сегмента меньше порога. Пары углов образуют 2 варианта корректных сочета­
ний:

– пара углов имеет общую сторону, тогда сегмент для 4-й стороны выби­
рается, как наиболее близкий;

– пара углов формирует четырёхугольник.
Гипотезы четырёхугольников ранжируются по суммарному отклонению сегмен­
тов модели от найденных при проецировании.

Несколько состыкованных ячеек-рамок комиксов детектируют в [61]. Рам­
ки могут быть частично перекрыты текстовыми выносками. Предложено вы­
делить сегменты и кластеризовать их, если пересекается окаймляющая зона.
Кластер может быть разбит на несколько в зависимости от типа, который опре­
деляют по стыкам сегментов. Для формирования четырёхугольника секции из
кластера берут по 2 горизонтальные и вертикальные прямые. Чтобы избежать
избыточной генерации, сегменты фильтруют длине (не должно быть мелких),
а гипотезы - по соотношению сторон, минимальному размеру и «типу соеди­
нения» сегментов (рис. 1.8). Как и в [58] оценивают «полноту» гипотезы, т.е.
насколько покрыт периметр реальными границами.

Некоторые типы методов не требуют явного выделения базиса. В рабо­
те [62] предлагается дополнить нейросеть, извлекающую признаки линий, гео­
метрическими отображениями – преобразованием Хафа и отображением Гаус­
са (сферическое). Вектора признаков, полученные сетью, отображаются в про­
странство Хафа, задавая линии. Ячейки аккумулятора Хафа с свою очередь
отображаются на сферу, где прямые переходят в окружности, а точки схода, со­
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Рисунок 1.8 — Пример а) T- и б) L-соединений сегментов. Разрешённым счита­
ется только L. Изображение из работы [61]

ответственно, расположены в точках пересечения окружностей. Преимущество
использования окружностей в переходе из неограниченной плоскости изображе­
ния в ограниченную единичную сферу. Это облегчает обнаружение точки схода
за пределами изображения. Четырёхугольники также могут быть выделены с
использованием нейросетевых методов, например в [63; 64] используется ориги­
нальная U-net нейронная сеть для сегментации изображений. В данных сетях,
как правило, миллионы параметров, поэтому множество исследований направ­
лено на достижение высокой точности с уменьшением их числа. В работе [65]
авторы модифицировали U-net архитектуру сети, уменьшив число параметров
более чем на 70%. В исследовании [66] достигнуто уменьшение числа парамет­
ров в 100 раз за счёт применения прямого и обратного преобразования Хафа.

1.3.4 Локальные признаки. Особые точки и дескрипторы

Непротяженные локальные признаки изображения условно типизовали на
углы, пятна и точки. Такое разделение было достаточно условным, поскольку
признаки визуально перетекают друг в друга при разных масштабах и шумах.
В научных работах последних лет фигурируют преимущественно понятие осо­
бой (ключевой) точки. Предполагается, что у особой точки, помимо координат
центра, могут быть дополнительные параметры - размер (от пятна), ориента­
ция/маркер неориентированности (от угла) и вес. Особой точке ставят в со­
ответствие функцию от её локальной окрестности - дескриптор. Каждой точке
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соответствует небольшая часть изображения, соответствующая её окрестностям
- патч (рис. 1.9).

1 0 1 . . . 1

0 1 2 ... n-1

0.115 0.27 0.04 . . . 0.3
0 1 2 ... n-1

RGB патч

x0 x1 x2 . . . xn-1

вектор-дескриптор

f(I): w×h×3 E→ n

f(I): w×h×3 R→ n

f(I)

w

h

Рисунок 1.9 — Преобразования патча в дескриптор

В работе [67] Моравец представил детектор углов - признаков, которым
характерен высокий контраст в ортогональных направлениях. Для квадратно­
го окна рассчитывают суммы квадратов разностей интенсивностей пикселей
для 8 смещений. Направление и оценка окна соответствуют смещению с мини­
мальной суммой, а углами считаются центры тех окон, у которых минимальная
оценка - локальный максимум среди соседних окон. Харрис в работе [68] дора­
ботал детектор углов, рассчитав структурный тензор для более точной оценки
направлений. Если у Моравеца отклик анизотропен только по направлениям
смещений, то у Харриса отклик анизотропен по всем направлениям при квад­
ратном окне и изотропен при гауссовом окне. Помимо этого, в работе Харриса
были сформулированы требования к особым точкам:

– Повторяемость – точка находится в том же месте сцены несмотря на
изменения точки обзора и освещения

– Значимость – каждая точка имеет уникальное описание
– Компактность и эффективность – количество точек существенно мень­

ше числа пикселей изображения
– Локальность – точка с размером занимает маленькую область изобра­

жения, поэтому работа с ней не чувствительна к перекрытиям
В дальнейшем для оператора Харриса было предложено несколько улуч­

шений. Для устойчивости к изменениям масштаба в работе [69] предлагается
использовать масштаб-нормированный оператор Лапласа на этапе выбора ша­
га масштабирования. Ограничения задач в ранних работах позволяли исполь­
зовать в качестве дескриптора яркость пикселей окрестности в явном виде и
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сравнивать только близкие по координатам точки – для этого определяли во­
круг точек окно поиска и окно корреляции. Мерой близости считали попик­
сельно рассчитываемую корреляцию. В [70] авторы показывают показывается,
что метод расчёта матрицы с поиском особых точек работает на изображениях
типов и разными типами преобразований (движение вбок и вперёд, вращение,
отличие камер и др.). Рассматриваются вопросы множества сопоставленных
точек-кандидатов, их проверки, ранжирования и согласованности.

Переходной работой к общему поиску является [71], в которой локальные
признаки используются для поиска нечёткой копии изображения из набора –
более 1000 изображений. Авторы используют для расчёта дескрипторов век­
тора гауссовых производных в точках. Устойчивость к масштабу достигается
за счёт гауссовой пирамиды масштабов – набора изображений с масштабирова­
нием от точного к грубому соответствующей σ𝐺. Дескриптор рассчитывается
в точке, проецируемой на каждый уровень пирамиды. Инвариантность и ком­
пактность полученного дескриптора позволила избавиться от условия геомет­
рической близости у точек на сравниваемых изображениях, и, соответственно,
ограничительных окон поиска. Для быстрого сравнения изображений, представ­
ленных наборами многомасштабных дескрипторов, использовали преобразова­
ние расстояния Махаланобиса в Евклидово. Евклидово расстояние позволило
авторам повысить эффективность поиска за счёт индексирующих структур.
Сопоставление с базой изображений проходит по схеме голосования – каждо­
му дескриптору изображения-запроса ставятся в соответствие дескрипторы из
базы, расстояние до которых меньше порога. Дескриптор голосует за то изоб­
ражение, из которого был извлечён. В результат идёт изображение, набравшее
максимум голосов. Может существовать несколько альтернатив с одинаковым
или близким количеством голосов. В этом случае предлагается:

1. у каждой точки изображения в базе есть 𝑝 соседей, 50% из них должны
быть сопоставлены,

2. углы векторов к между сопоставленными точками-соседями должны
быть согласованы .

На рис. 1.10 показан упрощённый пример такого сопоставления точек.
Такой поиск оказался устойчив к преобразованиям подобия, небольшим

проективным искажениям и частичным заслонениям. Последующие работы в
области направлены на уменьшение чувствительности детектором к перепадам
масштаба и устойчивости дескрипторов к аффинным преобразованиям. Одним
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Рисунок 1.10 — Сопоставление точек. Угол α1 согласован с α2.

из ключевых алгоритмов на этом пути является SIFT, представленный в ра­
боте [72]. SIFT одновременно локализует особые точки и рассчитывает для их
дескриптор. Рассматриваются пирамида гауссиан и их разности. Точка счита­
ется особой, если она локальный экстремум разности гауссиан. В отличие от
точек Харриса, такие точки считают «пятном» и они имеют «размер», опреде­
ляемый через уровень пирамиды и коэффициент размытия. Помимо этого, для
точки рассчитывают направление (ориентацию) (1.9) и магнитуду (1.8) исходя
из направлений градиентов соседних точек.

𝑚(𝑥, 𝑦) =
√︀
(𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1))2 (1.8)

θ(𝑥, 𝑦) = tg−1 (𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1))

(𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦))
(1.9)

В формулах (1.8) и (1.9) 𝐿(𝑥,𝑦)) является свёрткой 𝐼(𝑥,𝑦) с фильтром Гаусса
с σ𝐺 определённого уровня пирамиды. Дескриптор рассчитывается на уровне
пирамиды, где точка является экстремумом. Окно поворачивается на направ­
ление точки, за счёт чего достигается инвариантность к повороту. Дескриптор
рассчитывается как гистограмма градиентов в 4 регионах окна вокруг точки, а
затем домножается на σ𝐺 соответствующего уровня. Таким образом получается
128-мерный вещественный дескриптор.

Алгоритм SURF [73] разработан как ускоренная замена SIFT. Для детек­
ции предлагается ускорить метод детекции за счёт простой аппроксимации при
расчёте матрицы Гессе – вторая производная Гаусса приближается прямоуголь­
ным фильтром, что по качеству близко к результатам обычных расчётов после
дискретизации. Для дескриптора используют распределение откликов вейвлета
Хаара в окрестности точки. Ключевым для ускорения и детекции и дескрипции
является использование интегральных изображений [74]. Также размерность
вектора признаков может быть уменьшена до 64, для ускорения сопоставления
и повышения устойчивости, т.к. в этом случае дескриптор всё ещё выигрывает
у SIFT по информативности.
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SURF и SIFT до сегодняшнего дня являются актуальными для сопоставле­
ния. Вместе с уменьшением размерности для оптимизации вычислительных за­
трат было предложено квантование дескрипторов из вещественных к коротким
целым, либо даже к бинарному виду [75] со сменой метрики на расстояние Хэм­
минга, для которого существуют высокопроизводительные реализации. Однако
бинарные дескрипторы можно и специально проектировать. Однако бинарные
дескрипторы можно и специально проектировать. В работе [76] предлагается
эвристический дескриптор BRIEF, вектор признаков которого формируется из
сравнений яркостей пикселей внутри размытого по Гауссу патча:

𝑓(𝑝1, 𝑝2) =

{︃
1 : 𝐼(𝑝1) < 𝐼(𝑝2);

0 : 𝐼(𝑝1) ⩾ 𝐼(𝑝2),
(1.10)

где 𝐼 - изображение, 𝑝1, 𝑝2 - координаты пикселей. Выбор точек для сравнения
происходит случайным образом Гауссовским распределением вокруг центра осо­
бой точки, последовательность выбирается и фиксируется. Такой дескриптор
оказался устойчив к смене освещения и искажениям, связанным со смещением
точки наблюдения (сдвиг, поворот по вертикальной оси), но крайне неустойчив
к вращению плоскости изображения. Для метода BRIEF предложено множество
улучшений, которые стали классическими и актуальны в использовании. В ра­
боте [77](ORB) вернулись к использованию ориентации точки для устойчивости,
однако вместо патча изображения поворачивают последовательность точек. По­
мимо этого, авторы предлагают брать для формирования последовательности
не все пары точек подряд, а добавлять по очереди так, чтобы их корреляция
была меньше порога. В то же время (на той же конференции) представлена
работа [78], где последовательность точек для бинарных тестов изменена со
случайной на последовательно-концентрическую. Пары точек делят на 2 типа
- «длинные» - для расчёта ориентации точки, и «короткие» - для построения
дескриптора. Наконец, дескриптор FREAK [79] сочетает в себе наработки [77;
78] и представление о модели сетчатки (плотность точек в последовательности
уменьшается по мере удаления от центра).

Однако аналитические наработки на базе тривиальных признаков (1.10)
не позволили получить дескриптор, выигрывающий по различительной способ­
ности у дескрипторов SURF и SIFT. В то же время методы машинного обу­
чения позволили продвинуться в получении более точных вещественных де­
скрипторов. В [80] обращают внимание, что многие существующие являются
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комбинацией блоков, которые можно разбить на явные группы – сглаживание,
преобразование (разница гауссиан и т.п.) и объединение (усреднение). Поэто­
му можно построить оптимальную комбинацию из блоков, а также подобрать
для них оптимальные параметры. В результате удалось получить дескрипто­
ры, превосходящие SIFT по точности более чем в 2 раза (по метрике TPR95) и
в 4 раза более компактные. Единственным вопросом остаётся скорость вычис­
ления самих дескрипторов – авторы отмечают, что снижение размерности это
отдельный шаг.

В работе [81] авторы предлагают использовать машинное обучение, в част­
ности AdaBoost [82], для формирования финального классификатора как линей­
ной комбинации слабых классификаторов. В качестве слабых классификаторов
предложено использовать градиентные признаки. Каждый такой признак на
патче X параметризуется прямоугольной областью 𝑅, ориентацией градиента 𝑒

и порогом 𝑇 :

ℎ(𝑋;𝑅, 𝑒, 𝑇 ) =

{︃
1,φ(𝑅, 𝑒) ⩽ 𝑇 ;

−1,φ(𝑅, 𝑒) > 𝑇
(1.11)

где φ(𝑅, 𝑒) – функция выраженности градиента направления 𝑒 в каждой
точке патча. В силу дискретности изображения можно задать 𝑞 направ­
лений чтобы квантованное значение 𝑒 принимало значение из множества{︁
0, 2π𝑞 . . . (𝑞 − 1)2π𝑞

}︁
. В таком представлении признаки легко считать с помо­

щью всё тех же интегральных изображений. Классификаторы, получаемые с
помощью такого обучения, существенно превосходят все прошлые наработки:
дескриптор BinBoost размерностью всего 8 байт точнее SIFT не менее чем в
2 раза. При этом время вычисления такого дескриптора, по словам авторов,
эквивалентно времени расчёта SIFT. Подход был улучшен с участием авторов
в RFD [83], где бустинг заменили на жадный алгоритм выбора признаков, по­
парно наименее скореллированных. Обучение для признаков RFD проходит на
уровне выбора порога 𝑇 , что требует меньше данных для обучения, чем бустинг.

Современные обучаемые дескрипторы также используют схему бустин­
га. Дескриптор BEBLID [84] сначала обучается на слабых классификаторах
с AdaBoost как вещественный, а затем упрощается до бинарного. Вычислитель­
ная эффективность достигается слабыми классификаторами формата парных
тестов на квадратных областях (как в случае ORB). Ограниченность открытых
датасетов приводит к перенасыщению и переобучению. Для тестирования вы­
числительной эффективности, точности и универсальности дескрипторов пред­
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ложен набор критериев и дополнительный датасет непосредственно патчей изоб­
ражений HPatches [85]. Критериями будут считать полноту и точность на сле­
дующих задачах – проверка похожести пары дескрипторов, сопоставление изоб­
ражений, поиск дескриптора в большом наборе. Кроме того, показано, что нор­
мализация аналитических дескрипторов может повысить их точность до обуча­
емых в сценариях реального использования.

Машинное обучение также породило множество нейросетевых дескрипто­
ров. Основными архитектурами ИНС в данном случае являются сиамские и
триплетные сети. При расчёте сетевых дескрипторов может быть добавлен пол­
носвязный слой, реализующий обучаемую метрику, вместо использования стан­
дартных метрик Евклида и Хэмминга. Сиамская сеть MatchNet [86] технически
состоит из пары сетей: патч преобразуется в вектор с помощью малопарамет­
рической версии сети AlexNet, а метрическая часть состоит из 3 полносвязных
своём с нелинейностью и логистической функцией (softmax) на последнем слое.
Полученная сеть показывает лучшие результаты чем SIFT, его сетевые аппрок­
симации и дескрипторы из работ [78—80], и достаточно близок по точности к
BinBoost. В силу вещественной реализации и особенностей метрики, подобные
дескрипторы проигрывают тому же BinBoost по вычислительной эффектив­
ности. Триплеты – тройки данных в обучающей выборке, которые состоят из
основного патча «якоря»), его негатива (непохожего патча), и позитива (похо­
жего патча). Триплетная функция потерь максимизирует расстояние от якоря
к негативу, и минимизирует расстояние от якоря к позитиву. Для локальных
дескрипторов такую функцию предлагается использовать, например, в работе
с описанием TFeat [87]. Он реализован с помощью мелких свёрточных сетей и
стратегии быстрого жёсткого отрицательного анализа. Сегодня попытки улуч­
шить результаты дескрипторов на базе BRIEF продолжаются. В работе [88]
предложена модификация ORB, в которой при построении дескриптора исполь­
зуются не бинарные, а тернарные тесты. Если в базовом решении на патче есть
𝑛 пар «точек»:

(𝐴𝑖, 𝐵𝑖), 𝑖 ∈ [0..𝑛− 1] : 𝐴𝑖 > 𝐵𝑖 → 1 в i-м бите, иначе 0 (1.12)

то в новой работе авторы предлагают использовать 𝑛 троек вида:

(𝐴𝑖, 𝐵𝑖, 𝐶𝑖)𝑖 ∈ [0..𝑛− 1] : 𝐴𝑖 > 𝐵𝑖 & 𝐴𝑖 > 𝐶𝑖 → 1 в i-м бите, иначе 0. (1.13)

Хотя в заключении авторы заявляют, что из версия эффективнее других
дескрипторов в т.ч. SURF и SIFT, приведённые ими же графики не позволяют
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согласиться. ORB-TPLCG не является самым эффективным ни по скорости
(рис. 1.11), ни по соотношению точность/полнота(см. [88]).

Рисунок 1.11 — Сравнение времени вычисления разных дескрипторов. Изобра­
жение из работы [88].

Детекторы, разработанные вручную, можно обучить путём случайной вы­
борки в пространстве свёрточных фильтров. В работе [89] попытались найти
оптимальный фильтр, используя стратегию обучения с учетом ограничений ча­
стотной области. Однако обучение использовалось только для надежного выбо­
ра признаков посредством обучения классификаторов, а не для их извлечения
непосредственно из изображений. В работе [90] Key.Net объединяет ручные и
обучаемые фильтры внутри неглубокой сети и предлагает лёгкий/эффектив­
ный обучаемый детектор. Ручные фильтры предоставляют якорные структу­
ры для локализации, оценки и ранжирования повторяющихся признаки, кото­
рые подаются в обучаемые фильтры. В [91] свёрточная нейронная сеть D2-Net,
которая также одновременно является дескриптором признаков и детектором
признаков. Большая стабильность точек достигается за счёт переноса оценки
координат на более поздний этап вместо начального. Модель обучали с исполь­
зованием пиксельных соответствий, извлеченных из доступных реконструкций
SfM, без дополнительной разметки. В [92] концепция D2-Net совершенствует­
ся для повышения точности. ASFeat предложили исследовать информацию о
локальной форме характерных точек. Вместо ожидания сложной деформации,
заложенной в комбинации свёрток, предлагается использовать простые преоб­
разования – проективное, аффинное и подобия.
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1.4 Сравнение представлений. Поиск ближайших соседей

Результирующее количество векторов признаков зависит как от представ­
ления, так и от области приложения задачи классификации. В распознавании
живописи количество классов можно ограничить текущей экспозицией (до 3500
полотен одновременно выставлено в Лувре), а вот поиск видеоконтента может
требовать ориентирования в миллиардах признаков (коллекция Youtube ещё в
2006 году превышала 80 миллионов роликов). Если в первом случае перебор
стабильно неэффективен, то во втором затраты трудоёмкости огромны и будут
непрерывно увеличиваться. Использование индексирующих структур позволя­
ет избегать полного перебора всех классов, с разменом времени на память. С
помощью таких структур и методов их обхода можно получить усечённый спи­
сок из кандидатов, ближайших к запросу по выбранной метрике.

Поиск с помощью древовидных структур – полноценное направление в ме­
тодах поиска ближайших соседей. Одним из первых методов являются kd-дере­
вья [93] – многомерная версия бинарных деревьев поиска. Широко используемая
библиотека FLANN [94] – это улучшенная модификация именно kd-дерева и по­
иска по нему. Авторы предлагают рандомизировать выбор начальных вершин и
использовать иерархическую кластеризацию, т.е. элементы кластеризуются по
k-средних на каждом уровне дерева. В работе [95] предлагается использовать
R-деревья. Дерево разделяет n-мерное пространство на n-мерными параллеле­
пипедами, которым допустимо пересекаться между собой. С помощью этого
обеспечивают размещение близких элементов в одну листовую вершину. В част­
ности, новый объект попадёт в тот лист, параллелепипеду которого потребуется
наименьшее расширение при добавлении.

В работе [96] предлагается использовать для поиска ближайших соседей
локально-чувствительное хеширование (LSH, locality-sensitive hashing). LSH по
сути инвертировано обычному хешированию, т.е. вместо «раскидывания» похо­
жих элементов сильно отличающимися хэшами, хеш-функции подбирают таким
образом, чтобы похожие объекты с высокой степенью вероятности попадали в
один кластер. Если LSH может быть использован для дескрипторов с любой
метрикой, то хеш множества индексов (MIH, multi-index hashing) в примене­
нии к изображениям [97] подразумевает работу с бинарными дескрипторами.
Хешами в этом случае являются подстроки дескриптора. Деление дескрипто­
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ра на участки, из которых берутся подстроки, определяет число хеш-таблиц и
точность поиска. Заметим, что интересным свойством такого индекса является
возможность точного быстрого поиска до определённого расстояния.

Той же командой авторов в 2011 предложен поиск IVFADC [98], заявлен­
ный как единственный метод для поиска по миллиардам векторов признаков.
В пространстве поиска по всем дескрипторам рассчитывают диаграмму Воро­
ного, т.е. разбиение на непересекающиеся регионы. Для разбиения предлагают
использовать кластеризацию методом К-средних. Ключевыми для поиска явля­
ются центроиды регионов. Для каждого центроида хранится список векторов
признаков, принадлежащих его кластеру (региону Вороного). Авторы предла­
гают для компактности хранить номер дескриптора и его разницу («невязку»)
с центроидом. При поиске соседей для конкретного запроса сначала фильтру­
ются центроиды – выбирается несколько ближайших при сравнении квантован­
ных значений. Затем списки векторов, принадлежащих соответствующим кла­
стерам, объединяются и сравниваются с запросом в квантованном или полном
(при неопределённости) виде. Эксперимент авторов, проведённый на открытой
коллекции в 128 млрд. векторов показывает, что их метод точнее и быстрее
FLANN. Позднее команда авторов, предложившая IVFADC, представила [99]
ряд методов для поиска k-ближайших (как точного, так и приближенного) с
оптимизированной схемой для эффективного параллельного вычисления.

В [100] приведён пример сетевого преселектора решения для поиска бли­
жайших. Предложена свёрточная нейронная сеть со сквозным обучением для
устранения неоднозначности совпадений признаков, которую в классическом
случае решают использованием полулокальных ограничений. Сеть идентифи­
цирует наборы пространственно согласованных совпадений путём анализа мо­
делей консенсуса соседей в четырёхмерном пространстве всех возможных соот­
ветствий между парой изображений без необходимости использования глобаль­
ной геометрической модели. Показано, что модель можно эффективно обучать
с помощью слабого контроля – в форме совпадающих и несовпадающих пар
изображений – без необходимости ручного аннотирования соответствий между
точками. В работе [101] авторы предложили совместную оптимизацию коди­
рования запросов и квантования продукта, чтобы сохранить эффективность
моделей нейронного ранжирования при сжатии размеров индексов. Кодиров­
щик запросов и индекс 𝑃𝑄 обучаются совместно сквозным способом на основе
трёх стратегий оптимизации, а именно: потери, ориентированной на ранжиро­
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вание, оптимизации центроида 𝑃𝑄 и сквозной отрицательной выборки. Авторы
показали, что такая стратегия превосходит обучение на основе ошибки рекон­
струкции для многих методов сжатия.

1.5 Пространственная верификация сопоставлений

Для оценки модели преобразования простым решением уравнения по ми­
нимально-достаточному количеству сопоставленных точек требуется фильтра­
ция ошибок сопоставления. В общем случае допускается, что из-за локально­
сти признаков и маломерности пространства дескрипторов на сложных сценах
и объектах возникнет нерелевантных, шумных точек, которые образуют лож­
ные сопоставления. Подходы к оценке модели на зашумленных данных зависят
ожидаемого характера шума. МНК и метод полных квадратов (МК) приме­
нимы для нормального и гауссова распределения шума соответственно. Для
неизвестных распределений предлагаются подходы на базе робастных М-оце­
нок, схем голосования и ограничения выборок [102].

Робастные M-оценки учитывают, что влияние выбросов следует умень­
шать тем больше, чем сильней его невязка с моделью. Хьюбер [103] предложил
обобщённое решение как минимизацию функционала:∑︁

𝑖

ρ (𝑒𝑖(θ),σ) , (1.14)

где σ - параметр масштаба (шума), 𝑒𝑖(θ) значение ошибки 𝑖-го сопоставления в
модели с параметрами θ, и ρ функция невязки, которая отвечает требованиям:

ρ(𝑥) = ρ(−𝑥); ρ(0) = 0; ∀𝑥 ρ(𝑥) ⩾ 0;

|𝑥1| ⩾ |𝑥2|, ρ(𝑥1) ⩾ ρ(𝑥2); ∀𝑥 ∃ ρ′(𝑥) =
𝜕ρ(𝑥)

𝜕(𝑥)

(1.15)

Для ряда определённых распределений – Коши, Лапласа, нормального с зашум­
лениями [104] – предложены специализированные функции ρ, для которых на
рассчитаны параметры, с которыми оценки достигают 95% точности. В случаях
неизвестного распределения могут быть использованы либо более устойчивые
в среднем оценки [105], либо последовательное итеративное приближение. То­
гда при расчёте σ для (1.14) вводится набор весов 𝑤𝑖 для 𝑒𝑖(θ) с некоторым
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начальным приближением. Наиболее частым решением является МНК с итера­
тивным пересчётом весов. Ограничение использования [102] при работе с сопо­
ставлениями локальных признаков изображений обосновывается следующими
моментами:

– конкурентность устойчивости и точности – чем устойчивей оценка, тем
менее точна

– необходимость хорошего первого приближения
Кроме того, статистические методы подразумевают не более 50% выбросов, что
не всегда выполняется в случае сопоставлений.

Использование схемы голосования для выбора геометрически согласован­
ных признаков представлено в [72]. Автор кластеризовал с помощью преобразо­
вания Хафа сопоставленные точки, для которых кроме координат определены
размер и угол-ориентация. Кластеры при таких параметрах задают варианты
только для преобразования подобия как грубой аппроксимации реального пре­
образования. Точное преобразование строится с помощью МНК по точкам из
выигравшего кластера. Преимуществом подобного подхода является высокая
устойчивость к шуму – автор заявляет, что удалось достигнуть обнаружения
для объектов, представленных 1% от всех локальных признаков. К недостаткам
относится во-первых необходимость использовать алгоритмы детекции точек,
дающие ёмкие данные – недостаточно только координат и относительного раз­
мера, и во-вторых пересчёт в точное решение из достаточно грубого приближе­
ния.

Базовый метод на основе неполных данных RANSAC (RANdom SAmple
Consensus) [106] предлагает итерационную процедуру оценки параметров и вво­
дит следующие термины:

– гипотеза – параметры модели, полученные на одной из итераций;
– консенсус – оставшиеся данные (не из выборки) тестируются на соответ­

ствие гипотезе с заданной точностью и, в итоге, делятся на те, которые
подтверждают модель (далее - инлаеры (inliers)), и те, которые опро­
вергают её (выбросы);

– остановка – прекращение итерационной процедуры по внутренним кри­
териям (число итераций либо достаточное число подтверждающих дан­
ных для модели).

Общая процедура алгоритма RANSAC:
1. Сформировать случайную выборку из входного набора данных.
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2. По выборке вычислить параметры текущей гипотезы.
3. Для рассчитанной гипотезы проверить оставшиеся данные с модельной

функцией потерь, порождая наборы инлаеров и выбросов.
4. Проверить условия остановки и вернуться к 1 либо выдать набор-кон­

сенсус.
Для 𝑖-го сопоставления, соответствие модели оценивается с помощью

функционала ошибки ρ и порога 𝒯 :

ρ
(︀
𝑒2𝑖 (θ)

)︀
=

⎧⎨⎩ 0, если 𝑒2𝑖 (θ) < 𝒯 2, (инлаер)

𝑐𝑜𝑛𝑠𝑡, иначе, (выброс)
(1.16)

где 𝑒𝑖(θ) значение ошибки 𝑖-го сопоставления в модели с параметрами θ.
Значение функционала 𝒞 рассчитывается как сумма ошибок:

𝒞(θ) =
∑︁
𝑖

ρ
(︀
𝑒2𝑖 (θ)

)︀
. (1.17)

Пусть 𝒫 - это вероятность появления выборки без выбросов. Обозначив
как ε вероятность выбора инлаера из входного набора и ℳ минимальный раз­
мер выборки, без ограничений для неё и допуская её вырожденность, получим
вероятность независимой выборки из инлаеров, εℳ. Вероятность не получить
нужную выборку за ℐ итераций получается (1 − εℳ)ℐ , или 1 − 𝒫 . Таким об­
разом теоретическая минимальная оценка ℐ числа необходимых итераций для
получения с вероятностью 𝒫 выборки из инлаеров:

ℐ* ⩾
log (1− 𝒫)

log (1− εℳ)
. (1.18)

С момента публикации оригинального метода было предложено множе­
ство различных модификаций для улучшения точности, скорости и устойчиво­
сти, а также варианты их обобщения.

1.5.1 Модификации RANSAC с улучшениями отдельных этапов

RANSAC может быть чувствительным к выбору правильного порога шу­
ма, который отделяет инлаеры от выбросов. Если порог слишком велик, то все
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гипотезы оцениваются одинаково (хорошо). С другой стороны, если порог слиш­
ком мал, инлаеров может быть недостаточно для получения устойчивых пара­
метров модели. В работе [107] предложены модификации MSAC (M-оценка)
и MLESAC (максимальное правдоподобие), которые уменьшают эту чувстви­
тельность. Авторы предложили оценивать качество консенсуса по вероятности
(в исходной работе [106] оценивают только мощность набора).

В работе [108] с описанием LO-RANSAC (локально оптимизированный),
ключевое наблюдение состоит в том, что минимальные выборки могут усилить
основной шум и привести к появлению гипотез, далёких от истины. Эта пробле­
ма решается путём введения процедуры локальной оптимизации при достиже­
нии наилучшей модели. В исходной статье локальная оптимизация реализована
как итерационный процесс аппроксимации методом наименьших квадратов с
уменьшающимся порогом выброса внутри RANSAC.

Модификация Graph-Cut [109] локальной оптимизации включает новую
оценку модели. Оценка основана на идее формулирования задачи выбора ин­
лаеров как задачи минимизации энергии с учётом расстояния между точками.
Авторы предлагают на этапе локальной оптимизации (для лучшей в момен­
те гипотезы) пересчитывать инлаеры с помощью алгоритма рассечения графа.
Под графом понимают граф соседей, с рёбрами между точками, расположен­
ными на расстоянии не больше порога. Авторы предлагают для эффективного
использовать методы поиска ближайших соседей, описанные ранее.

В работе [110] (MAGSAC) предложен подход к избавлению от пользова­
тельского порога на инлаеры, названный σ-консенсус. Рассматривая шум, как
случайную величину с функцией плотности, предлагается не оценивать его на­
прямую, а маргинализировать по его же диапазону масштабов. Авторы заявля­
ют, что даже единичный расчёт σ-консенсуса на финальном этапе всегда даёт
более точную модель для широкого спектра задач без замедления.

PROSAC [111] устанавливает ранг «ожидания» сопоставленных пар точек
и гипотез в соответствии с некоторой мерой качества данных. По мере выпол­
нения процедуры проверки гипотез, уверенность в адекватности показателей
качества снижается, и стратегия порождения выборок смещается в сторону ис­
ходного RANSAC. Более ожидаемые выборки вылезают на более ранних этапах,
но далее постепенно включаются данные с более низкими оценками. Авторы
заявляют, что достигают значительного ускорения по сравнению с RANSAC
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(порядка сотен раз), благодаря тому, что хорошие гипотезы генерируются на
ранних этапах.

В [112] приведена сетевая реализация (NG-RANSAC), который использует
априорную информацию для поиска гипотез, чтобы повысить вероятность гипо­
тезы без выбросов или с малым количеством. В несетевых вариантах априорная
информация получается эвристическими методами, по рукотворным дескрип­
торам, разработанным с учётом знаний исследователя. Самоконтроль процесса
достигается с использованием доли инлаеров как части обучающих данных, а
добавление дифференцируемой версии RANSAC позволяет осуществлять даль­
нейшие улучшения. Эксперименты по оценке фундаментальной матрицы, пере­
мещения камеры и оценке линии горизонта дают самые современные результа­
ты.

1.5.2 Модификации RANSAC с обобщением улучшений

К 2012 было предложено множество независимых улучшений разного ро­
да. В работе [113] их объединили в единый модульный подход, который вклю­
чал накопленные практические соображения и вычислительные оптимизации.
Структура USAC состоит из 5 шагов:

1. префильтрация
2. генерация и проверка сэмпла
3. генерация и проверка гипотезы
4. оценка гипотезы
5. уточнение гипотезы (локальная оптимизация)
Последующие работы преимущественно рассматривают именно обобщён­

ные решения как базовые, модифицируя одновременно в несколько модулей для
достижения улучшений по нескольким критериям.

В работе [114] (MAGSAC++) предлагается ускорение расчёта
σ-консенсуса, выполняя маргинализацию распределения шума с помощью
введения метода итеративно перевзвешиваемых квадратов. Помимо этого,
предложен генератор выборок P-NAPSAC. Предложенные улучшения при
тестировании объединены авторами с возможностями USAC.
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В [115] (VSAC) предложено улучшение структуры USAC с учётом новых
исследований. Авторы внедряют концепцию независимых инлаеров для более
эффективной фильтрации ложных гипотез. Независимые инлаеры – это выбор­
ка, порождающая параметры модели, плюс подвыборка над всеми инлаерами
в контексте пространственной независимости – точка помечается независимой,
если достаточно удалена от уже существующих независимых. Таким образом
сохраняется точность MAGSAC++, а скорость повышается в 2 раза.

Для модификации Graph-Cut в работе [116] проведены расширенные экс­
перименты, на базе MAGSAC++/USAC.

В работе [117] предложен генератор выборок с нейроподдержкой, в кото­
ром вероятности принадлежности данных к инлаерам определяются с помощью
сети и пересчитываются при каждой неудачной итерации. Кроме того, предло­
жено использовать дополнительные параметры локальных признаков (масштаб
и угол) для повышения надёжности на сложных сценах.

Последние обзоры показывают [118], что исследования SAC-методов про­
должаются – как общего направления, так и касающиеся только анализа изоб­
ражений, либо даже отдельных структур и типов объектов.

1.6 Иные методы сопоставления

Понятие инлаера существует не только в контексте консенсусных методов
и гипотезы модели. В ряде методов авторы формируют саму гипотезу как на­
бор инлаеров – строгих соответствий между точкам – для дальнейшей оценки
параметров по ним. Так, в работе [119] предложено выделять такие строгие
соответствия между двумя наборами локальных признаков (особых точек и де­
скрипторов любого типа). Соответствия оцениваются путём решения дифферен­
цируемой задачи оптимального транспорта, стоимость которой прогнозируется
с помощью графовой нейронной сети. В [120] предлагается строить инлаеры без
явного этапа выделения и дескрипции точек. Авторы определяют с помощью
архитектуры Transformer глобальное рецептивное поле, благодаря которому сов­
падения можно искать в т.ч. между областями с невыраженной структурой. В
работе [121] отмечают, что сегменты – мощный признак, дополняющий точки.
Однако создание устойчивых дескрипторных описаний и их сопоставление в
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случае сегментов существенно более сложно, чем для точек. Проблемы возни­
кают из-за частичного заслонения, слабовыраженной либо периодичной тексту­
ры вокруг сегмента. Авторы предлагают графовую нейросеть, которая извле­
кает комплексное представление из изображений. При сопоставлении точки и
прямые обрабатываются независимо друг от друга. В работе [122] представ­
лена система поиска печатных документов, которая использует как текстовые
функции, так и локальные признаки (малобитные). Текст обнаруживается с
помощью алгоритма, основанного на максимально стабильных экстремальных
областях с расширенными возможностями. Патч изображения текста заголовка
исправляется с использованием алгоритма на основе градиента и распознаётся
с помощью оптического распознавания символов. Локальные признаки извле­
каются из изображения запроса. Текст заголовка используется для поиска, а
характеристики используются для сравнения изображений. Совместное исполь­
зование текста и признаков позволило значительно уменьшить размер общего
представления. В работе [123] показывается, что сочетание текстовых и яркост­
ных признаков значительно выигрывает у поиска по отдельно яркостных при­
знакам. Авторы справедливо отмечают, что текст – высокоуровневый признак,
который улучшает понимание содержимого изображения. Также авторами по­
казано, что в этом случае важнее полнота детекции тексте, нежели f-score. В
работах [124; 125] предлагается сочетать текстовые и яркостные признаки для
улучшения классификации. Вектор признаков изображения извлекают с помо­
щью нейросетей типа AlexNet, слова извлекают с помощью сети, после чего
кодируют векторным кодированием Фишера, которое фиксирует морфологию
текста.

1.7 Выводы. Постановка задачи

В первой главе рассмотрены существующие методы выделения, представ­
ления, комбинирования и сопоставления разных типов признаков, разработан­
ные для решения задачи выделения и классификации объектов на изображе­
нии. Для каждого направления методов и каждого типа признаков прослежи­
вается переход: от ранних аналитических методов, параметризуемых вручную,
к нейросетевым методам, которыми преимущественно представлены современ­
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ные решения. Несмотря на высокие показатели точности на отдельных наборах
данных, нельзя сказать, что задачу классификации и локализации можно счи­
тать решённой даже в применении к группе плоских ригидных объектов (хотя
часто заявляются более общие цели).

Аналитические методы отличаются скоростью и точны в контексте пик­
сельной точности. Такое выделение границ и точек устойчиво к точке съёмки
и перепаду яркостей. В то же время точность таких дескрипторов существен­
но меньше, чем у обученных версий, а при выделении велико влияние шума
и сцены. В процессе решения задач, как правило, оперируют признаками (как
геометрическими, так и дескрипторными) одного типа. В то же время много­
кратно отмечено преимущество мультимодальной классификации (совмещение
текста и дескрипторов изображения) над одномодальной любого типа.

В свою очередь нейросетевые модели и методы могут достигать превосход­
ного качества. Однако, в большинстве случаев, их исполнение требует больших
ресурсов, чем может предоставить даже самое современное мобильное устрой­
ство. Таки образом пользовательское решение, основанное на таких методах,
будет ограничено в автономности использования из-за зависимости от соеди­
нения с исполняющим сервером. Помимо этого, следует учитывать и пробле­
мы обучения. Касательно классификации и локализации ригидных объектов
на изображении, наблюдаются следующие проблемы:

1. Необходимые объёмы данных. Для точной классификации репрезента­
тивные данные нужно собрать, что не всегда возможно. (В отличие от
классификаций по категориям, где изображение недоступного должно
и может быть аппроксимировано изображениями доступных.)

2. Обновление классов. Каждое добавление класса требует дообучения,
при ряде удалений оно также желательно для сохранения точности.

3. Число классов. Реальные задачи точной классификации могут опери­
ровать сотнями и тысячами классов. Большинство архитектур не спо­
собно сохранять точность при таком расширении, либо расширение со­
пряжено с ростом вычислительных и временных затрат.

В завершении можно отметить, что разрабатываемые методы имеют весьма об­
щий характер. Это расширяет сферу их применимости, но не даёт основы для
поиска и использования специфических свойств идентифицируемых объектов.
Целью данной работы является улучшение классификации и локализации изоб­
ражений плоских четырёхугольных объектов. В качестве модельных объектов
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будем рассматривать документы (ID-документы в частности) и произведения
2D-искусства (картины разных жанров).

Для достижения поставленной цели решим следующие задачи:
1. Разработать методы быстрого устойчивого выделения глобальных при­

знаков плоского ригидного объекта.
2. Разработать метод понижения размерности при классификации с учё­

том признаков разного типа (глобальных и локальных, дескрипторы и
текст).

3. Разработать метод классификации и локализации плоских ригидных
объектов с учётом природы объектов и способов съёмки.
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Глава 2. Выделение признаков с учётом структуры объекта и
модели формирования изображения

2.1 Формирование изображения. Камера обскура.

Базовой моделью формирования изображения при разработке методов
анализа изображений является модель камеры-обскуры. В данной модели точка
х на плоскости изображения образуется из точки Х пространства по преобразо­
ванию 𝑥 = 𝐾𝐴𝑋. 𝐾 – калибровочная матрица камеры для случая квадратного
пикселя, 𝐴 – матрица параметров позы камеры:

𝐾 =

⎛⎜⎝𝑓 0 𝑝𝑥

0 𝑓 𝑝𝑦

0 0 1

⎞⎟⎠ 𝐴 = 𝑅|𝑐, (2.1)

где 𝑓 - фокусное расстояние, 𝑝 - принципиальная точка, 𝑅 - матрица поворота
3× 3, 𝑐 - вектор сдвига 3× 1.

На рисунке 2.1 показан пример формирования изображения документа,
где 𝑂 - центр системы координат, 𝑓 - фокусное расстояние, 𝐼 - изображение,
𝑃 - принципиальная точка, проекция 𝑂 на плоскость изображения. Углы до­
кумента 𝐴0𝐵0𝐶0𝐷0, заданные в 3-мерных координатах, переходят в 2-мерные
точки 𝐴𝐵𝐶𝐷 изображения.

Такая модель определяет только проективное искажение, исключая из
рассмотрения аберрации сложных оптических систем (например, радиальную
дисторсию, порождаемую кривизной линзы). Геометрические аберрации могут
быть компенсированы как предварительной калибровкой камеры, так и авто­
матически на уровне программируемых решений, вариант которого рассмотрен
в [126]. Поэтому камера-обскура достаточно хорошо аппроксимирует сканеры
и малые цифровые камеры и достаточна для решения задач, не связанных с
изображениями ультра-высокого разрешения.
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Рисунок 2.1 — Формирование изображения в модели камера-обскура на примере
документа.

2.2 Методы выделения четырёхугольников

В отличие от работ, посвящённых задачам выделения примитивов на про­
извольных изображениях, нас интересуют не все допустимые линии и четырёх­
угольники, а соответствующие границам объекта либо близкие к ним. Наиболее
релевантными по сути являются работы [58; 59] – авторы так же опираются на
модели изображений и объектов. При построении методов будем учитывать сле­
дующие моменты:

– границы объекта могут быть частично заслонены;
– существуют квази-четырёхугольные объекты, которые так же являются

объектом интереса.
При построении решения это означает, что нельзя полагаться на детекцию углов
как базисных примитивов, поскольку потеря детектором 1 угла может быть
критичной для метода.
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Выделим некоторые варианты условий, при которых может решаться за­
дача:

1. известные и строгие ограничения
– весь объект располагается внутри кадра
– объект занимает значительную часть кадра
– известны линейные размеры либо соотношение сторон объекта

2. неизвестные / нестрогие ограничения (размеры объекта и положение
внутри кадра заданы широким диапазоном значений либо неопределе­
ны)

Исходя из данных ограничений были разработаны 2 метода, оба включают
следующие общие этапы:

– построение полутоновой карты границ
– использование преобразования Хафа для выделения линий
– пересечение линий, маркировка полученных углов и построение четы­

рёхугольников-кандидатов
– отбрасывание кандидатов по геометрическим критериям

2.2.1 Поиск четырёхугольников в строгих ограничениях

Описанные ограничения на размещение объекта в кадре вполне естествен­
ны для задач распознавания и легко реализуемы при взаимодействии с пользо­
вателем: на 2.2 они выражены в формате областей интереса (далее - регионы,
regions of interest, ROI), которые на кадре видны пользователю. Каждый регион
должен содержать по одной стороне объекта. Одновременно, регулируя только
размеры ROI, можно выразить дополнительное ограничение на наклон и сдвиг
сторон.

Воспользуемся допущенными ограничениями. В предложенном методе ис­
пользуются ROI, представляющие собой прямоугольные зоны изображения со
сторонами, параллельными осям координат. Каждый ROI содержит только од­
ну сторону объекта целиком, углы лежат внутри пересечений регионов. Огра­
ничение наклона, обеспечиваемое ROI, означает, что искомые границы можно
считать ортотропными, т.е. имеющими сравнительно небольшое отклонение от
горизонтального или вертикального направления. Совокупность таких ограни­
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Рисунок 2.2 — Варианты ROI и их отображения в кадре.

чений позволяет искать каждую сторону независимо внутри соответствующего
региона, и упрощает некоторые этапы этого поиска.

Этапы метода ниже описаны для ROI, содержащего верхнюю часть объ­
екта. Для остальных трёх ROI процесс идентичен, с точностью до поворота на
90 градусов.

1. Расчёт начальной карты границ. Рассчитаем производную изобра­
жения в регионе, предварительно подавив шум с помощью высокочастотного
фильтра (например, фильтра Гаусса). Для поиска горизонтально-ортотропных
границ нам нужно только изменение вдоль оси OY. Такую производную, в от­
личие от полного градиента Di Zenzo [35], можно достаточно просто рассчитать
на цветном изображении:

𝐺(𝑥,𝑦) =
1

3
(𝐼 ′𝑅(𝑥,𝑦) + 𝐼 ′𝐺(𝑥,𝑦) + 𝐼 ′𝐵(𝑥,𝑦)) (2.2)

- производная для цветного изображения (RGB), где 𝐼 ′(𝑥,𝑦) - производная для
1 канала, рассчитывается по формуле (1.3).

На рисунке 2.3 показано, как граница, выраженная на цветном изображе­
нии, исчезает на изображении, преобразованном в полутоновое.

2. Фильтрация карты границ. Анализ реальных данных выявил огром­
ный класс случаев, когда фон сцены изображения плотно прорисован и имеет
множество краёв. Эти края часто острее, чем настоящие края объекта. Эту осо­
бенность назвали «эффектом ковра», имея в виду первые проанализированные
примеры. Такие случайные края возле границы объекта в основном встречают­
ся на фоновой части изображения. Для каждого пикселя границы предложено
рассчитать коэффициент близости границ 𝑑(𝑥,𝑦) как расстояние до ближайших
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Рисунок 2.3 — Отличие градиента, рассчитанного на цветном и сером изобра­
жении.

границ, расположенных выше и ниже (для границ, вытянутых вдоль оси 𝑂𝑋).

∀𝐺(𝑥, 𝑦) > 0 : 𝑑(𝑥,𝑦) =
(𝑦2 − 𝑦1)

ℎ𝑟

𝐺(𝑥, 𝑦1), 𝐺(𝑥, 𝑦2) > 0, 𝑦1 < 𝑦, 𝑦2 > 𝑦;

(2.3)

Если сверху или снизу нет границ, используется расстояние до верхней или ниж­
ней границы области интереса. При нормировании на высоту ROI ℎ𝑟 получает­
ся коэффициент от (0, 1.0] для корректирования значения каждого граничного
пикселя. Поскольку сцена с «ковром» расположена только с одной стороны
от границы объекта, данный коэффициент будет в среднем выше для истин­
ной границы, чем для побочных границ, обусловленных фоном. Изменения при
фильтрации показаны на рисунке 2.4.

Рисунок 2.4 — Выделение границ в регионе.
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3. Фильтрация связных границ. Собираем граничные пиксели в свя­
занные компоненты, а затем применяем пороговую обработку к этим компо­
нентам вместо отдельных пикселей. Ортотропия границ позволяет выполнять
поиск связанных компонентов за один проход через область интереса вдоль
предпочтительного направления границы [127]. По сравнению с отдельными
пикселями, компоненты предоставляют больше свойств для отсечений, напри­
мер яркость (минимальная/средняя/максимальная) и длина. В моей реализа­
ции используется фильтрация по длине компоненты и средней яркости.

В результате получается полутоновая карта границ, где интенсивность
каждого пикселя в компоненте одинакова и представляет собой средний кон­
траст соответствующего края.

4. Поиск прямых линий. Чтобы найти прямую линию, соответствую­
щую границе объекта, карта границ преобразуется БПХ [45]. Алгоритм БПХ
по [45] обрабатывает независимо четыре угловых диапазонах по 45 градусов
для расчёта весов всех линий. В случае региона с ортотропной границей рабо­
чим будет только диапазон [−45, 45] градусов, и исключение неиспользуемого
диапазона позволяет в 2 раза снизить вычислительную сложность. Более того,
для изображения 𝑤×ℎ, где 𝑤 > ℎ, требуется меньший диапазон углов. Предпо­
лагается, угол объекта лежит в пересечении двух ROI. Тогда граница объекта
пересекает зону угла размером ℎ × ℎ слева и справа. При сжатии отфильтро­
ванного изображения карты границ по ОХ так, чтобы (𝑤 − 2ℎ) × ℎ → ℎ × ℎ,
диапазон углов касания целевой линии составит [−45, 45].

В итоге сложность преобразования будет 𝑂(𝑤·ℎ+ℎ2+2ℎ2 log(ℎ)) операций
для изображения 𝑤 × ℎ, (𝑤 > ℎ) с учётом масштабирования (вместо 𝑂(4𝑤 ·
ℎ log(ℎ))).

Недостаточно выбрать одну лучшую прямую в пространстве Хафа, по­
скольку допустимо, что даже на отфильтрованной карте границ самая сильная
линия соответствует внутренней части документа или фона сцены. Для преодо­
ления этого предложена следующая итерационная процедура:

1. Карта границ преобразуется БПХ, и наиболее сильный кандидат гра­
ницы объекта выбирается как линия с наивысшей оценкой Хафа.

2. Подавляем окрестность линии на отфильтрованной карте.
3. Если нужно больше линий-кандидатов, возвращаюсь к шагу 1.

Следуя этой процедуре, можно получить достаточно линий-кандидатов, кото­
рые будут достаточно разными за счёт этапа подавления, т.е. «стирания» учтён­
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ных границ с карты. Оценка Хафа присваивается кандидату как вес, который
будет использоваться на следующих этапах.

5. Составление четырёхугольника. На данном этапе для каждого ROI
образован набор линий, составляющих множество 𝐿 = {𝑙 : 𝑎, 𝑏, 𝑐, 𝑤}, где 𝑤 - вес
прямой. Составление всех возможных четырёхугольников попарным пересече­
нием прямых требует 𝑛4 операций для |𝐿| = 𝑛. Пусть 𝐿𝑞 ⊂ 𝐿 образуют четы­
рёхугольник 𝑞 = {𝑞𝑖}4𝑖=1. Тогда в качестве базового веса 𝑤𝑞 четырёхугольника
принимается сумма составляющих весов линий:

𝑤𝑞 =
∑︁
𝑙 ∈ 𝐿𝑞

𝑤𝑙 (2.4)

Линии истинных границ объекта не должны выходить на карте границ за
пределы четырёхугольника, поэтому такие комбинации линий следует подав­
лять. Штраф 𝑝 рассчитывается для угла четырёхугольника 𝑞𝑖 : 𝑙𝑎 ∩ 𝑙𝑏 → 𝑞𝑖

как сумма значений 𝐾 ближайших пикселей вне точек пересечения сторон:

𝑝(𝑞𝑖) = 𝑝(𝑥,𝑦) =
𝐾∑︁
𝑗=1

𝐺((𝑥, 𝑦) + 𝑗 · 𝑙𝑎) +𝐺((𝑥, 𝑦) + 𝑗 · 𝑙⃗𝑏),

|𝑙𝑎| = |𝑙⃗𝑏| = 1

(2.5)

При расчёте штрафа по (2.5) единичные вектора 𝑙𝑎, 𝑙⃗𝑏 вдоль прямых направлены
из центра относительно 𝑞𝑖.

6. Восстановление четвёртой стороны по трём известным. Предпо­
ложим, что истинная прямая (либо) сегмент для одной из сторон не обнаружен
– край объекта выходит за кадр, либо недостаточно выражен на карте границ.
Тогда пусть четырёхугольник 𝐴𝐵𝐶𝐷 является проекцией прямоугольника 𝑅 с
соотношением сторон 𝑟. Известные стороны заданны отрезками 𝐴𝐷, 𝐴𝐵′ и 𝐷𝐶 ′

в трёхмерной системе координат камеры c фокусным расстоянием 𝑓 . Известно,
что точки 𝐵 и 𝐶 лежат в той же полуплоскости что 𝐵′ и 𝐶 ′ относительно пря­
мой, заданной отрезком 𝐴𝐷. Необходимо восстановить положение точек 𝐵 и
𝐶.

Для решения этой задачи необходимо, для начала, восстановить направле­
ния на обе точки схода (см. 2.5). Для этого вычислим положение первой точки
схода: 𝑉1 = 𝐴𝐵′ ∩ 𝐷𝐶 ′. Для второй точки схода 𝑉 2 известно: 𝑉2 ∈ 𝐴𝐷,
𝑂𝑉1 ⊥ 𝑂𝑉2 (поскольку объект прямоугольный).

Поэтому: 𝑉2 = 𝐴𝐷 ∩ β , β ⊥ 𝑂𝑉1 (в общем случае, когда 𝐷 /∈ β -
иначе 𝑉2 в бесконечности на 𝐴𝐷).
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Рисунок 2.5 — Восстановление точек схода и стороны.

Вектора 𝑂𝑉1 и 𝑂𝑉2 не только задают плоскость α, параллельную плоско­
сти прообраза, но и формируют ортогональный базис объекта, т.е. параллель­
ны его сторонам. Воспользуемся этим для восстановления четырёхугольника
𝐴0𝐵0𝐶0𝐷0, подобного прообразу 𝑅. Зафиксируем точку 𝐷0 : на луче 𝐷0 ∈ 𝑂𝐷,
так что 𝐷0 > 𝐷 > 𝑂. 𝐴0 : 𝐴0𝐷0 ∈ 𝐷0𝑂𝑉2 , 𝐴0𝐷0 ‖ 𝑂𝑉2

𝐴0 = 𝑂𝐴∩𝐴0𝐷0 (т.е. 𝐴0 на прямой, проходящей через точку 𝐷0 в направлении
𝑂𝑉2).
𝐶0 : 𝐶0𝐷0 ∈ 𝐷0𝑂𝑉1, 𝐶0𝐷0 ‖ 𝑂𝑉1

𝐶0𝐷0 ⊥ 𝐴0𝐷0

|𝐴0𝐶0| = 𝑟 · |𝐴0𝐷0| (т.е. 𝐶0 на прямой, проходящей через точку 𝐷0 в направле­
нии 𝑂𝑉1 и в одном полупространстве относительно плоскости 𝑂𝐴𝐷, что и точка
𝐶 ′). Положение точки 𝐵0 определяется аналогичным образом. Искомые точки
𝐵 и 𝐶 являются проекциями точек 𝐵0 и 𝐶0 на плоскость изображения 𝐼. Если
найденная сторона лежит внутри изображения, то можно «честно» оценить её
вес по карте границ. В ином случае считаем, что её вес меньше, чем вес худшей
из прямых в данном ROI (для методов, описанных далее – в вертикальной либо
горизонтальной ориентации).

7. Фильтрация по согласованию параметров геометрии. Не все
четырёхугольники, полученные алгоритмом, могут оказаться проекцией прямо­
угольника 𝑅 с фиксированным соотношением сторон 𝑟. Установим для каждого
прообраз и соответствие параметров прообраза идеалу включим в оценку кан­
дидатов. Известно, что любой тетраэдрический угол имеет только одно (с точ­
ностью до гомотетии) сечение 𝐴′𝐵′𝐶 ′𝐷′, имеющее вид параллелограмма [128] и
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оно всегда существует. Множество выпуклых четырёхугольников {Q} на изоб­
ражении будем рассматривать в модели камеры-обскуры для камеры с извест­
ными внутренними параметрами - фокусным расстоянием и принципиальной
точкой (см. рис. 2.1). В центрально-симметричной модели [129] изображения
образуется тетраэдрический угол с вершиной 𝑂 в центре объектива камеры и
сечением 𝐴𝐵𝐶𝐷, образуемым плоскостью изображения и пересекающим кате­
ты угла в углах полученного четырёхугольника. Таким образом построенного
параллелограмма 𝐴0𝐵0𝐶0𝐷0 (см. 2.5) достаточно для сопоставления с прообра­
зом. Обратите внимание, что для тестируемой четырёхугольной альтернативы
может не быть прямоугольного прообраза. Поэтому наряду с соотношением сто­
рон учитываются также отклонение углов:

𝑟′ = max

{︂
𝐴0𝐵0

𝐵0𝐶0
,
𝐵0𝐶0

𝐴0𝐵0

}︂
𝑟 · 𝑡𝑙 < 𝑟′ < 𝑟 · 𝑡𝑟

α = ∠𝐴0𝐵0𝐶0 = ∠𝑉1𝑂𝑉2 |α− 90∘| < 𝑡𝑎,

(2.6)

где 𝑟 — известное соотношение сторон объекта; 𝑡𝑙, 𝑡𝑟, 𝑡𝑎 — параметры алгоритма.
Помимо фильтрации нереализуемых четырёхугольников, веса оставшихся

корректируются с учётом отклонения от прообраза. Коэффициент несоответ­
ствия прообразу определён как:

𝑃𝑟 =
|𝑟′ − 𝑟|

max{𝑟, 𝑟′}
(2.7)

Таким образом, с учётом (2.5), финальный вес четырёхугольника 𝑞:

𝐶(𝑞) =
𝑤𝑞 · (1− 𝑃𝑟)

1 +
∑︀

𝑖(1− 𝑐(𝑞𝑖, 𝑞𝑖+1))
−
∑︁
𝑖

𝑝(𝑞𝑖)

𝑐(𝑞𝑖, 𝑞𝑖+1) =
1

|𝑞𝑖 − 𝑞𝑖+1|
∑︁

(𝑥,𝑦) ∈ [𝑞𝑖,𝑞𝑖+1]

𝐺(𝑥,𝑦)
(2.8)

Метод обозначен в сравнении и далее как АЧ1.

2.2.2 Модификация 2.2.1 в более слабых ограничениях

Можно предположить, что на положение объекта наложены более слабые
ограничения: ROI отсутствуют, но противоположные стороны либо «преимуще­
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ственно горизонтальные» (диапазон тангенса угла наклона [−1; 1]), либо «пре­
имущественно вертикальные». Такое допущение учитывается на всех этапах
расчёта четырёхугольников. Метод модифицируется следующим образом:

1. Карта границ. В результате извлечения рёбер получаются две кар­
ты границ: с «преимущественно горизонтальными» и «преимущественно верти­
кальными» краями соответственно. Затем оба изображение размываются филь­
тром Гаусса вдоль направления градиента.

2. Выделение прямых. Изображение с вертикальными границами
(условно те, которые вдоль длинной стороны изображения) перед поиском ли­
ний делится на три равные части по горизонтали. Таким образом поддержива­
ется качество обнаружения прямых на коротких отрезках. Для поиска линий­
кандидатов также используется БПХ. Затирание с пересчётом БПХ на полном
изображении слишком затратно, поэтому в данном случае имеет смысл вычис­
лить множество прямых за один проход. Для этого на каждом изображении
пространства Хафа:
1. Определяются точки - локальные максимумы, затем сортируются по весу
2. Начиная с наибольшего веса, точка определяет прямую-кандидат, если она
не лежит в окрестности ранее добавленных точек (т.е. более значимых)
В результате было получается K прямых для горизонтального БПХ-изображе­
ния и 3K для вертикального БПХ-изображения (по K с каждой части).

3. Построение четырёхугольников. Выполняется построение пар ли­
ний (вертикальных и горизонтальных), а затем их пересечения для формиро­
вания четырёхугольников. В данном случае нет предварительной информации,
какую из сторон объекта формирует прямая, поэтому четырёхугольник-канди­
дат дополнительно проверяется на выпуклость.

Остальные проверки и ранжирование выполняются идентично заявленно­
му в разделе 2.2.1.

2.2.3 Поиск четырёхугольников в неизвестных ограничениях

Для неизвестных ограничений предлагается следующий метод:
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1. Предварительная обработка изображения. Изображение масшта­
бируется, а мелкие элементы, такие как буквы и шум, удаляются использова­
нием морфологического закрытия.

2. Выделение сегментов. Карта границ строится для всего изображе­
ния, как предложено в части 2.2.2. На карте границ нужно выделить прямоли­
нейные сегменты. При этом будет сначала использоваться её бинарное представ­
ление, т.е. только информацию о принадлежности пикселя границе [130]. Рас­
смотрим последовательный набор точек контура, в окрестности каждой точки
которого гипотеза о прямолинейности контура признана верной. Чтобы прове­
рить гипотезу, нужно вычислить ковариационную матрицу для каждой точки
контура {(𝑥𝑖, 𝑦𝑖)} , 𝑖 ∈ [0, 𝑁 ] в окрестности фиксированного размера 𝑙:

𝑋 = {𝑥𝑘}, 𝑌 = {𝑦𝑘}, 𝑖 = [𝑖− 𝑙, 𝑖+ 𝑙]

Σ(𝑋,𝑌 ) =

(︃
𝐷𝑋 𝑐𝑜𝑣(𝑋, 𝑌 )

𝑐𝑜𝑣(𝑋, 𝑌 ) 𝐷𝑌

)︃
𝑐𝑜𝑣(𝑋, 𝑌 ) = 𝑀 [𝑋𝑌 ]−𝑀𝑋 ·𝑀𝑌

(2.9)

Собственные векторы и собственные значения позволяют оценить распре­
деление точек на каждом участке контура путем его аппроксимации эллипсом
𝑒. Гипотезу о прямолинейности текущего участка контура будет считаться вер­
ной, если соотношение длин осей эллипса больше порога: 𝑒𝑥/𝑒𝑦 > 𝑡𝑟

Поскольку использование только бинарного изображения может привести
к пропуску некоторых частей правой границы, дополнительно [131] использу­
ется БПХ на изображении с серыми границами и детектор линейных сегмен­
тов [50]. Сегменты, полученные в результате преобразования Хафа и анализа
контуров, используются вместе. Важно отметить, что они настроены не на то,
чтобы работать с максимальной эффективностью по отдельности, а на то, что­
бы дополнять друг друга.

Каждому сегменту присваивается вес, равный его длине, и сегменты, ле­
жащие на одной линии, объединяются. Два отрезка считаются лежащими на
одной прямой, если максимальное расстояние от конечных точек одного отрез­
ка до линии, содержащей другой отрезок, меньше порогового значения. Объ­
единённый сегмент имеет концы в крайних концах этих сегментов, а его вес
равен сумме их весов. Использование суммы весов позволяет уменьшить вес
объединённого сегмента, состоящего из двух удалённых непересекающихся ча­
стей, и увеличить вес сегмента, полученного при одновременном использовании
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двух алгоритмов. Не более чем K наибольших по весу отрезков остаются для
построения четырёхугольника объекта.

3. Построение графа пересечений. Для построения четырёхугольни­
ка по найденным отрезкам строится граф (граф возможных пересечений). Вер­
шины данного графа соответствуют найденным отрезкам, ребра — точкам пере­
сечения прямых, содержащих эти отрезки. Для построения графа все сегменты
делятся на преимущественно вертикальные и преимущественно горизонталь­
ные в зависимости от углов, которые они составляют с осями изображения.
Если отрезок можно отнести к обоим классам (диагональный), то вместо него
добавляются два отрезка: горизонтальный и вертикальный (например, левый
отрезок D на рис. 2.6а соответствует двум вершинам DH и DV на рис. 2.6б).
Также каждой вершине присвоен вес 𝑤𝑣, равный весу соответствующего сегмен­
та.

Ребра графа строятся как пересечения всех горизонтальных отрезков со
всеми вертикальными. Если предположить, что граф построен на N сегментах,
то весь граф содержит 𝑂(𝑁 2) рёбер. Каждое ребро в графе классифицируется
в соответствии с типом угла документа, который может быть соответствующей
точкой пересечения (левый верхний LT, правый нижний RB и т.п.). Ребра клас­
сифицируются относительно положения точки пересечения сегментов, которые
ее создали. Когда точка является точкой пересечения самих сегментов, а не
только линий, на которых они лежат, она может соответствовать произволь­
ному углу (LTRB) или, например, когда она лежит слева от горизонтального
сегмента и на вертикальном сегменте это может быть левый верхний или ниж­
ний левый (BLT). Каждому ребру присваивается вес 𝑤𝑒, равный минимальному
расстоянию между концами отрезков, образующих соответствующую точку пе­
ресечения.

Построенный таким образом граф можно разложить в четырёхдольный
ориентированный граф, так что каждое ребро имеет определенный и уникаль­
ный тип (рис. 2.6в)). В таком графе каждому циклу, состоящему из четырех
ребер и не проходящему через одни и те же вершины, будет соответствовать воз­
можный четырехугольник на изображении. Обнаружение циклов можно орга­
низовать, например, радиальными обходами с максимальной глубиной обхода,
равной четырем, которые начинаются в одной из частей графа и могут неод­
нократно заходить в одну вершину. Сложность этого обхода составит 𝑂(𝑁 4),
что накладывает дополнительные ограничения на количество начальных сег­
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а) б) в)
Рисунок 2.6 — Пример графа для 6 отрезков: а) точки пересечения сегментов и
назначение типов; б) граф пересечений, каждое ребро соответствует одной точ­
ке пересечения; в) расширенный граф пересечений, каждое ребро соответствует

возможной стороне четырехугольника.

ментов. Каждому четырехугольнику присваивается вес, равный разности сумм
весов всех ребер и сумм весов всех вершин:

𝑤𝑞 = 𝐴 ·
∑︁

(𝑤𝑣)−𝐵 ·
∑︁

(𝑤𝑒), (2.10)

где 𝐴,𝐵 - параметры взвешивания. В конце алгоритма выбирается необходимое
количество циклов в графе, наибольших по весу, и для каждого из них строится
четырёхугольник-кандидат. Проверка геометрии и дальнейшее ранжирование
выполняется по методу из раздела 2.2.1.

2.3 Методы выделения текстовых признаков

Помимо признаков, формируемых из произвольных текстов на объекте, су­
ществуют тексты, которые размещены именно в целях автоматической / упро­
щённой детекции/идентификации объекта. Для таких признаков задан стан­
дарт (к примеру, число и тип символов, шрифт, контрольная сумма и алгоритм
её вычисления), по которому можно отличить их от произвольных текстов и
подлога. К известным примерам можно отнести номера автомобилей, вагонов,
банковских карт. Документы с жёсткой структурой являются характерными
представителями интересующих нас объектов. Отдельно среди них можно вы­
делить документы, удостоверяющие личность, содержащие МЧЗ. МЧЗ внедрён
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ICAO [132] для автоматизации ввода данных пассажиров, а его стандарт спро­
ектирован таким образом, чтобы минимизировать помехи для распознавания
текста в зоне. Машиночитаемые зоны, МЧЗ или MRZ в международном вари­
анте, размещаются на документах, удостоверяющих личность. Существует ряд
стандартов формирования МЧЗ, таких как ICAO и национальные стандарты
для паспортов, разработка которых была направлена на массовое внедрение
систем распознавания на контрольно-пропускных пунктах.

Согласно ICAO, фон (бланк документа в зоне) должен быть белым в ИК­
спектре, используемый шрифт – OCR-B, размер символов и высота междустроч­
ного интервала фиксированы. Допустимые паттерны МЧЗ:

– TD1 (ID карты) - 3 строки по 30 символов
– TD2 (ID карты), MRVB (визы) - 2 строки по 36 символов
– TD3 (паспорта), MRVA (визы) - 2 строки по 44 символа
Примеры приведены на рисунке 2.7.

Рисунок 2.7 — Примеры МЧЗ.

Заметим, что по стандарту расположение зоны МЧЗ в структуре доку­
мента зафиксировано и известно. Решение задачи локализации всего докумен­
та задает и положение МЧЗ на изображении. Однако, локализация самой МЧЗ
менее ресурсозатратна. Поэтому в случае ограниченной вычислительной мощ­
ности устройства, на котором выполняется распознавание, целесообразно рас­
сматривать исключительно задачу локализации и распознавания МЧЗ, так как
эта зона зачастую содержит все основные персональные данные, дублирован­
ные на документе.

Базовым регистратором изображений в таких системах был специализи­
рованный паспортный сканер. Они позволяют получать изображение за суще­
ственно меньшее время в сравнении с обычными сканерами, но качество изобра­
жения может быть существенно ниже. В зависимости от типа сканера, получае­
мые изображения содержат либо непосредственно машиночитаемую зону, либо
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по типу обычного сканера документ целиком без элементов сцены. Методы для
таких изображения позволяют достигать очень высокой точности за счёт учёта
стандартов МЧЗ.

Так, в работе [133] предложено двухэтапное решение по локализации зоны.
Первый этап – грубая оценка – основан на анализе гистограмм интенсивности
и модуля градиента из части изображения. Оценка выполняется на части изоб­
ражения – вертикальной полосе, проходящей через центр документа. Второй -
уточнение - использует преобразование Хафа над выбранной грубой зоны, в т.ч.
для оценки наклона. При этом низким считается разрешение порядка 150 dpi,
и известно что документ повернут в диапазоне -10 – +10 градусов либо +170 –
+190. В работе [134] предложен метод для документов с незначительно малым
наклоном (1-2 градуса). Для поиска зоны используют проекцию на вертикаль­
ную ось в красном канале. Аналогично работе [133], для ускорения вычисле­
ния проекции используют только центральную полосу документа. Уменьшение
выбросов на графике проекции достигается с помощью фильтра скользящей
средней (как быстрая замена для фильтра Гаусса на всем изображении). В
случае расширенного изображения, когда документ занимает не всю площадь
изображения, подходы на базе вертикальный проекций дополняют аналогичной
обрезкой по пикам на горизонтальной проекции [135].

Ограничение вычислительной сложности – не единственная проблема, воз­
никающая в задаче распознавания МЧЗ с помощью смартфона. Стандарт тре­
бует, чтобы в инфракрасном диапазоне фон МЧЗ был однородным и светлым.
Это облегчает распознавание МЧЗ специализированными устройствами, рабо­
тающими в ИК-диапазоне. При этом камеры мобильного устройства снимают в
видимом диапазоне, и наличие неоднородного фона на некоторых типах маши­
ночитаемых документов служит помехой для автоматической обработки изоб­
ражений. Существует также ряд более общих проблем [28], возникающих при
попытке распознать документ, снятый камерой мобильного телефона. К ним от­
носятся: блики, проективное искажение, изгиб документа и слабое освещение,
часто приводящее к размытости снимков.

В статьях [28; 136] авторы подробно разобрали проблемы, возникающие
при съёмке машиночитаемых документов с малоформатных цифровых камер,
такие как:

– проявления «цифрового шума» и артефактов алгоритмов сжатия
– перепады яркости, блики и цветовые искажения
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– поворот документа и проективное искажение
– изгиб строк документа

Первым предложенным подходом к решению задачи локализации МЧЗ была
адаптация методов, основанных на проекциях и разработанных для сканиро­
ванных изображений. Предполагалось, что модель искажений, появляющихся
при съемке камерой, может быть редуцирована до поворота, который оценивает­
ся с помощью преобразования Хафа и Фурье [137]. Однако такой подход имеет
значительные ограничения, так как в нем не учитываются перепады освещения
и наличие сложной сцены на изображении.

Поиск МЧЗ с помощью выделения особых точек и сопоставления дескрип­
торов предложен в работе [138]. Хотя авторы демонстрируют высокую точность
поиска, предложенные опорные зоны ограничивают применимость алгоритма
одним типом и одной страной. Подходов для универсализации данного метода
авторами не было предложено.

Работа [139] с выделением текстовых блоков морфологическим фильтром
и вычленением из них строк МЧЗ выполнена в предположении всех реальных
проблем. Однако покадровая точность метода весьма низкая даже на синтези­
рованных данных, в которые не были включены такие искажения как сгибы
документов и перепады освещения.

При разработке методов случаи были разграничены по предпочитаемым
устройствам и условиям регистрации изображения:

– метод для видеокадров (в т.ч. полученных в условиях недостаточной
освещённости)

– метод для смешанного потока данных (сканы, фото, видеокадры с пре­
имущественно равномерным освещением)

Оба метода включают следующие общие этапы:
– выделение примитивов, соответствующих символам
– фильтрация примитивов
– построение графа с вершинами-примитивами
– построение минимального остовного дерева графа
– выделение кластеров на остовном дереве
– отбрасывание кандидатов по геометрическим критериям
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2.3.1 Поиск МЧЗ на видеокадрах

Разработанный метод локализации машиночитаемой зоны на изображе­
нии основан на выделении и кластеризации особых точек с последующим ана­
лизом, преобразованием и отсечением кластеров по геометрическим признакам.

1. Выделение точек. Помимо базовых требований к методам выделения
особых точек 1.3.4, для решения задачи были предъявлены следующие:

– быстродействие
– высокая плотность покрытия печатного текста
– игнорирование участков с прямолинейными границами
Предложено использовать метод YAPE [140], подходящий под все требо­

вания. Входное изображение предварительно масштабируем к фиксированному
размеру (800 px по ширине), переводим в серое и сглаживаем с помощью филь­
тра Гаусса. Масштабирование, помимо дополнительного подавления шумов, свя­
зано с одним из параметров YAPE – максимальным радиусом области анализа
для каждой точки. Результат работы детектора YAPE приведён на рис. 2.8.

а) б)
Рисунок 2.8 — а) исходное изображение б) точки, выделенные YAPE

2. Фильтрация точек. Точки, заведомо не принадлежащие искомой
зоне, следует отбросить. Для этого используем следующую информацию:

– строки машиночитаемой зоны - наиболее протяжённый текстовый объ­
ект на документе

– выбранный детектор особых точек не выделяет точки, принадлежащие
непрерывным границам (прямым на изображении)

Тогда применима следующая схема:
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1. Вычислим на бинарной карте точек прямые-кандидаты, используя
БПХ.

2. Для каждой точки определяем ближайшую прямую среди кандидатов.
3. Точка отбрасывается, если расстояние до ближайшей прямой больше

порога.
Поскольку ожидаемые прямые проходят по строке, порог было предложено при­
вязать к высоте символа ℎ𝑠𝑦𝑚 на изображении (максимальной на изображении
зафиксированного размера). В данной работе используется 0.5ℎ𝑠𝑦𝑚.

3. Кластеризация точек. Точки объединяются в кластеры по схеме:
1. Построим полный граф, в котором точки будут вершинами, а вес ребра

между точками 𝑝𝑖 и 𝑝𝑗 будет рассчитываться по следующей формуле:

𝑤𝑖𝑗 = 𝑔(𝑎)|𝑝𝑖 − 𝑝𝑗|, (2.11)

где 𝑔(𝑥) - некоторая монотонная функция, 𝑎 - угол между ближайши­
ми прямыми для 𝑝𝑖 и 𝑝𝑗. Функция g(a) штрафует ребро за непарал­
лельность ближайших прямых у его вершин, т.к. вероятно, что одна из
точек не соответствует МЧЗ.

2. Определим на графе минимальное остовное дерево
3. Разобьём дерево на несколько частей (кластеров), выкинув рёбра, вес

которых больше порога (например 𝑡 = 2 𝑤𝑠𝑦𝑚, где 𝑤𝑠𝑦𝑚 - максимально
возможная ширина символа МЧЗ на изображении зафиксированного
размера).

4. Анализ кластеров, выбор результирующего прямоугольника.
Если размер кластера (количество точек в нём) меньше, чем минимально до­
пустимое количество символов МЧЗ в строке, то отбрасываем его. Для каждо­
го из полученных кластеров находится угол наклона к сторонам изображения
как среднее из углов прямых, соответствующих точкам, входящим в кластер.
После этого находится описанный вокруг точек кластера прямоугольник, рас­
положенный под этим углом. Из полученных прямоугольников выбирается тот,
который лучше всего соответствует известным геометрическим ограничениям
какого-либо из типов МЧЗ.

В случае, когда несколько кластеров структурно идентичны, анализируем
растр внутри каждого кластера. Символ «<» является специфичным для МЧЗ
разделителем, т. е. в подавляющем большинстве случаев он встречается как
минимум 2 раза и не представлен в других полях ID документов. Сепаратор
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а) б)
Рисунок 2.9 — а) линии Хафа, найденный на карте точек б) кластеры-кандида­

ты для выбора результата

стабильно распознается как характерная точка, поэтому достаточно проанали­
зировать локальные окрестности точек в начале и конце кластера. Для этого мы
представляем эталонное изображение символа «<» как локальный дескриптор
𝑓<. Метод дескрипции в данном случае не требует крайней скорости и устой­
чивости, поскольку масштаб и поворот определены прямоугольником, а число
сопоставлений невелико. Остальные 36 символов алфавита МЧЗ не могут ис­
пользоваться в качестве локальных дескрипторов – шрифт OCR-B может встре­
чаться не только в МЧЗ, но и в заполняемых полях документов, что вместе с
увеличением числа вычислений может привести к коллизиям выбора кластера.

Патчи-окрестности изображения вокруг нужных точек рассчитываются с
учётом размера и поворота кластера. Т.к. известны для сепаратора известны ме­
ста обязательного размещения, то не требуется анализировать окрестности всех
точек кластера - достаточно рассчитать дескрипторы {𝑓𝑖} для ограниченного
интервала (1/4 конец и начало, в случае перевёртыша). Для каждого такого
дескриптора вычисляется расстояние с эталонным дескриптором 𝑓<. Обнару­
жение символа успешно, если расстояние меньше порога. Вес кластера рассчи­
тывается следующим образом:

𝑤 =

(︂
1− 𝑁𝑚

𝑁𝑐

)︂
·

𝑁𝑐∑︁
𝑖=0

𝐷(𝑓𝑖, 𝑓<), (2.12)

где 𝑁𝑚 - число расстояний меньше порога, 𝑁𝑐 - число сравнений, 𝐷(𝑎, 𝑏) - мет­
рика расстояния между парой дескрипторов 𝑎 и 𝑏.
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2.3.2 Поиск МЧЗ на произвольных изображениях

1. Поиск компонент символов. Символ рассматривается как связная
компонента, тёмная на светлом фоне, за положение символы примем центр
массы компоненты. Для их поиска входное изображение преобразуется в би­
нарное изображение 𝐼: ∀(𝑥,𝑦) : 𝐼(𝑥,𝑦) ∈ [0,1], где 0 соответствует чёрному.
На практике, требования к использованному при этом алгоритму бинариза­
ции оказываются минимальными: на бинаризованном изображении 2.10 одно­
му печатному символу должна соответствовать одна компонента связности, а
ее площадь должна быть сопоставимой с площадью символа. Последнее нуж­
но для фильтрации компонент связности и увеличения устойчивости к шуму
типа «соль и перец». В реализации метода поиска МЧЗ используется метод
Niblack, поскольку он незначительно превосходил аналоги (NICK и исполь­
зующийся в [139] toggle mapping) по качеству и скорости. Построим началь­
ный граф связности пикселей 𝐺0 =< 𝑉0,𝐸0 >, где 𝑉0 = {(𝑥,𝑦) : 𝐼(𝑥,𝑦) = 0},
𝐸0 =< (𝑥0,𝑦0),(𝑥1,𝑦1) >: |𝑥0 − 𝑥1|+ |𝑦0 − 𝑦1| = 1.
Обозначим 𝐶0 множество компонент связности графа 𝐺0. Координаты центра
масс для компоненты связности 𝑐 ∈ 𝐶0:

𝑝(𝑐) =< 𝑝𝑥, 𝑝𝑦 >: 𝑝𝑥 =
1

|𝑐|
∑︁

(𝑥,𝑦) ∈ 𝑐

𝑥, 𝑝𝑦 =
1

|𝑐|
∑︁

(𝑥,𝑦) ∈ 𝑐

𝑦 (2.13)

На рис. 2.10 показаны центры компонент для бинаризованного изображения.
2. Построение основного графа. Определим множество вершин основ­

ного графа 𝐺1 =< 𝑉1,𝐸1 > через 𝐶0:

𝑉1 = {𝑐 ∈ 𝐶0 : |𝑐| > 𝑡𝑟𝑉 }, (2.14)

т.е. компоненты связности, размер которых превосходит пороговое значение 𝑡𝑟𝑉 .
Тогда множество рёбер основного графа можно определить с ограничением дли­
ны:

𝐸1 =< (𝑐𝑖, 𝑐𝑗) :
√︁
(𝑝(𝑐𝑖)− 𝑝(𝑐𝑗))2 < 𝑡𝑟𝐸, 𝑐𝑖, 𝑐𝑗 ∈ 𝑉1 (2.15)

При построении графа для каждого ребра вычисляется соответствующий ему
угол наклона. Рёбра не направленные, поэтому этот угол может принимать зна­
чения от 0 до 180°. Этот граф состоит из небольшого числа вершин и ребер, что
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а) б)
Рисунок 2.10 — а) бинаризованное входное изображение б) отображение центров

его компонент

позволит в дальнейшем анализировать его, используя минимальное количество
вычислительных ресурсов. Пример графа на рис. 2.11а.

3. Определение ориентации текста. Для определения ориентации тек­
ста строится минимальный остовный лес. Поскольку расстояние между сосед­
ними символами одного слова меньше, чем расстояние между строками, боль­
шинство рёбер в остовном лесу – рёбра, соединяющие соседние буквы одного
слова. На этом наблюдении основан алгоритм поиска направления строк текста
на изображении. Строится круговая гистограмма, показывающая распределе­
ние рёбер остовного леса по углам наклона. Мода полученного распределения
соответствует углу наклона линий текста. Для устойчивости вместо поиска ин­
тервала гистограммы с наибольшим числом элементов выполняется поиск пары
соседних интервалов с наибольшим суммарным числом элементов. Мода распре­
деления вычисляется как средневзвешенное значение углов, соответствующих
этим соседним интервалам.

Для большинства документов распределение получается унимодальным.
Однако в некоторых случаях на кадре изображен разворот документа, причем
на одной странице ориентация текста альбомная, а на другой – портретная. В
этом случае распределение бимодально, и найденная по гистограмме мода мо­
жет соответствовать как направлению строк МЧЗ, так и перпендикулярному
направлению. Таким образом, в общем случае предложенный метод находит
направление строк МЧЗ лишь с точностью до поворота на угол 90°. Для обхода
этой проблемы используется следующее простое правило: если к концу обра­
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ботки не найдено текстовых структур, напоминающих по свойствам известные
типы МЧЗ, предполагаемое направление текста меняется на перпендикулярное
и все следующие шаги алгоритма, начиная с фильтрации рёбер графа по на­
правлению, повторяются.

а) б)
Рисунок 2.11 — а) граф связности компонент 𝐺1, б) его остовное дерево и на­

правление текста

4. Поиск путей в графе, соответствующих строкам МЧЗ. Из мно­
жества путей в графе нужно выделить те, которые соответствуют строкам
МЧЗ. Сначала из исходного графа удаляются все рёбра, отклонение которых
от найденного направления текста превосходит пороговую величину. Минималь­
ный остовный лес строится заново. В полученном подграфе остаётся найти пу­
ти, которые соответствуют строкам МЧЗ. Опишем эвристику, использующуюся
для их поиска. Искомый путь должен удовлетворять следующим условиям:

1. Степень всех его вершин, кроме, возможно, крайних, должна быть рав­
на 2.

2. Количество рёбер в пути должно превосходить m. Для устойчивости
к ошибкам бинаризации m должно быть меньше, чем предполагаемое
число символов в строке МЧЗ. При этом оно должно оставаться до­
статочно большим, чтобы минимизировать количество строк обычного
текста, попадающего под данные критерии. На практике максимальное
качество достигается при m=10.

3. Длины любых двух соседних рёбер должны отличаться не более чем в
k раз.
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4. Углы наклона двух соседних ребер должны отличаться не более чем на
n градусов.

5. Путь максимален по включению.
Для удобства будем называть пути, удовлетворяющие перечисленным

условиям, цепями. На рис. 2.11б изображён минимальный остовный лес, в кото­
ром оставлены только рёбра, входящие в цепи. В силу малого размера графа,
поиск цепей может быть выполнен при помощи тривиальной модификации ал­
горитма обхода графа в глубину.

5. Кластеризация цепей. Это завершающий этап обработки, здесь зна­
ния о структуре МЧЗ используются для поиска наиболее консистентного под­
множества цепей. На вход подается совокупность цепей, выходом служит окайм­
ляющий прямоугольник. После завершения предыдущего этапа одной строке
МЧЗ может соответствовать несколько цепей. Это может произойти, например,
если символ строки МЧЗ некорректно бинаризовался из-за наличия блика и из
графа исчезла соответствующая вершина. Для корректной обработки таких
случаев вводится шаг объединения коллинеарных цепей. Цепи объединяются,
если они, во-первых, коллинеарны с учётом некоторой погрешности, во-вторых,
средние длины их рёбер схожи, в-третьих, расстояние между цепями не превос­
ходит пороговую величину.

6. Анализ кластеров. Последний шаг – поиск среди цепей кластеров,
соответствующих геометрическим свойствам МЧЗ. Цепи, объединённые в один
кластер, должны быть приближённо равны по углу наклона, длине и средней
длине входящих в них рёбер, а расстояние между двумя соседними цепями
одного кластера не должно превосходить пороговую величину. Окаймляющий
прямоугольник для большего по площади кластера является результатом рабо­
ты алгоритма.
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2.4 Эксперимент

2.4.1 Наборы данных

- SmartDoc 2015[141] - содержит изображения документов формата А4.
Состоит из 150 10-секундных видеороликов в разрешении 1920х1080, с доку­
ментами (в раскадровке образуют порядка 25000 изображений). Для создания
набора использовался Google Nexus 7. Ролики содержат 5 вариаций сцены, в
пакете документов 6 типов, по 5 документов каждого типа. В кадре только 1
документ, границы которого не выходят за границу изображения. На многих
кадрах присутствуют перепады освещения, дефокус, смаз, блики и тени. Дан­
ные явления характерны реальному сценарию съемки. Присутствуют как фоны
сливающиеся с документом, так и визуально перегруженные. Для всех изобра­
жений есть идеальная разметка, содержащая настоящие координаты углов на
изображении.

- MIDV-500[142] - содержит изображения документов, удостоверяющих
личность (ID). Состоит из 500 видеороликов в разрешении 1920х1080px (в рас­
кадровке образуют 15000 изображений). В MIDV-500 представлено 50 различ­
ных типов документов, по одному экземпляру на тип. Видеоролики отсняты
с использованием двух мобильных устройств (Apple iPhone 5, Samsung Galaxy
S3) в 5 разных условиях, по 30 кадров в каждом. В кадре не более одного доку­
мента, документ может выходить за границы и быть неразличимым (сильный
смаз). Также набор содержит 50 изображений-эталонов документов. Для всех
изображений есть идеальная разметка, содержащая тип документа и настоящие
координаты углов на изображении либо отметки, соответствующие неразличи­
мым изображениям.

- MRZ [139] - содержит полностью синтезированные изображения доку­
ментов с МЧЗ. Всего 456 000 изображений, для 422338 есть разметка, содержа­
щая данные МЧЗ – текст и координаты окаймляющего прямоугольника.
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Таблица 1 — Сравнение методов поиска четырёхугольников на SmartDoc 2015
Метод IoU Время на кадр Устройство
[АЧ1] 0.9100 ∼80 мс iPhone 6
[АЧ2] 0.9548 ∼120-150 мс iPhone 6
LRDE 0.9716 ∼ > 1 мин iPhone 4

ISPL-CVML 0.9658 ∼130-210 мс AMD 1055Т
NetEase 0.8820 - -
A2iA 0.8090 - -

RPPDI-UPE 0.7408 - -
SEECS-NUST 0.7393 - -

2.4.2 Поиск четырёхугольника

При оценке скорости и точности предложенных методов был использован
фиксированный набор параметров. Общие параметры:
Пороги для фильтрации четырёхугольников, несоответствующих прообразу:
𝑡𝑙 = 0.97, 𝑡𝑟 = 1.04 и 𝑡𝑎 = 2.5°. Для внешней оценки фокусного расстояния ис­
пользовано приближение 0.705

√
𝑊 2 +𝐻2. Параметры метода АЧ1: Масштаби­

рование: не более 240 пикселей по меньшей стороне. 𝑁ℎ = 15 «горизонтальных»
прямых, 𝑁𝑣 = 45 «вертикальных». Параметры метода АЧ2: Масштабирование:
не более 300 пикселей по меньшей стороне.

Для замеров скорости предложенных методов использовался iPhone 6, за
оценку времени работы принято среднее время по 100 случайным изображени­
ям.

В таблице 1 приведено сравнение с другими методами, заявленными на со­
ревнование методов в рамках конференции ICDAR [143] на одноимённом набо­
ре. В данном эксперименте этап восстановления одной стороны не использован.
Качество локализации оценивается по IoU (1.2). К сожалению, не все методы из
табл. 1 опубликованы независимо от конкурса, а в для опубликованных не отра­
жены данные о скорости. Тем не менее, можно проанализировать имеющуюся
информацию о методах, превзошедших авторский. Для ISPL-CVML заявлено,
что он основан на LSD, а при выборе кандидата авторы минимизируют оценку,
в которую входят характеристики цвета и интенсивности. Можно ожидать, что
его вычислительная сложность того же порядка, что и предложенный метод,
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Таблица 2 — Влияние восстановления четвёртой стороны при поиске четырёх­
угольников на MIDV-500

Метод 4 угла (9791) 3 угла (2200) весь (15000) время, мс
[АЧ1] без восстановления 0.9124 0.6432 0.7055 54.2
[АЧ1] с восстановлением 0.9466 0.8377 0.8050 67.8

что косвенно подтверждается более общей публикацией авторов [144], где метод
с такими же ключевыми особенностями оценивается в 130-210 мс в зависимо­
сти от типа плоского объекта на AMD Phenom II X6 1055T (вычислительная
эффективность в 2 раза выше Apple A8 в iPhone 6). Метод LRDE описан, как
использующий дерево форм (близости), для которого строят образы изображе­
ний в другом цветовом пространстве. Его скорость показана в более поздней
работе с участием соавторов [145] и превышает 1 минуту для IPhone 4. Таким
образом, предложенный метод обладает лучшей скоростью при достаточно вы­
сокой точности (3 место в общем зачёте).
Дополнительно в табл. 2 приведено влияние этапа восстановления стороны на
точность и скорость. Для исследования выбран MIDV-500, поскольку там встре­
чаются кадры, в которых частично или полностью скрыты границы объекта.
Отдельно оценены подвыборки, на которых документ виден целиком (9791 изоб­
ражений) либо видно 3 из 4 углов (2200 изображений). Таблица показывает, что
при замедлении 25% достигается снижение доли ошибок в 1.5-2.1 раз в зави­
симости от того, какая доля объекта за кадром или заслонена, а так же от
сложности сцены. Т.о. внедрение данного этапа сохраняет возможность вычис­
лений на мобильных устройствах в реальном времени.

2.4.3 Поиск МЧЗ

Результатом работы предложенных методов является окаймляющий четы­
рёхугольник. В работе [139] понятие окаймляющего четырёхугольника отсут­
ствует, а под качеством детектирования подразумевается «качество сегмента­
ции»: детектирование считается успешным, если количество строк и символов
найденной структуры, а также её геометрические характеристики согласуются с
априорной информацией о типе МЧЗ. Для достоверного сравнения внутри най­
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денного прямоугольника реализована морфологическая сегментация, использу­
емая в [139]. Для замеров скорости использован Iphone 5s (для всех методов
табл.3). Как и в разделе 2.4.2, отражено среднее по набору время. Показано,

Таблица 3 — Сравнение точности и скорость методов поиска МЧЗ на синтези­
рованном наборе MRZ

Метод поиска Качество сегментации Время детекции, мс
Hartl [139] (1 кадр) 0.561 ∼ 5

Hartl [139] (5 кадров) 0.881 ∼ 25

[АТ1] 0.942 ∼ 40

[АТ2] 0.978 ∼ 20− 40

что предложенные методы существенно точней обнаруживают МЧЗ по 1 изоб­
ражению, чем метод [139] при интеграции 5 кадров. Метод вычислительно более
затратен (требуется больше времени на анализ 1 кадра), но вне зависимости от
этого соответствует возможностям мобильных устройств.

2.5 Выводы по главе

В данной главе исследуются наблюдаемые примитивы «линия» и «прямо­
угольник», а также характерные текстовые признаки в контексте принадлеж­
ности плоскому ригидному объекту.

Для формирования изображения в модели камеры-обскуры показано, что
в случае прообраза-прямоугольника с известными геометрическими характе­
ристиками для наблюдаемого четырёхугольника сторона, отсутствующая по
наблюдению, может быть восстановлена аналитически по трём наблюдаемым
(найденным).

Приведено уточнение теоремы о существовании у четырёхгранного угла
сечения – параллелограмма для центрально-проективной модели формирова­
ния изображений: объект-параллелограмм порождает только образы-четырёх­
угольники, углы которых лежат а) в плоскости на расстоянии равном фокус­
ному от центра координат б) на катетах четырёхгранного угла, образованного
параллелограммом и центром координат. Это позволяет оценить наблюдаемый
четырёхугольник с точки зрения соответствия реальному прообразу.
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Предложен метод локализации прямоугольного объекта в реальном вре­
мени при заданных зонах для его сторон в кадре. Для большей устойчивости
метода к шумному фону предложена фильтрация граничных компонент. Ско­
рость достигается за счёт зонирования.

Предложен быстрый метод локализации прямоугольного объекта, произ­
вольно размещённого на кадре или скане. Для повышения точности использу­
ются границы разных детекторов. Скорость достигается за счёт ограничений
на графе генерации кандидатов при построении и обходе.

Оба метода используют оценку прообраза и возможность восстановления
стороны, описанные выше, для повышения устойчивости к проективным иска­
жениям и заслонениям. Оба метода допускают возможность отказа при отсут­
ствии четырёхугольника, соответствующего допустимому прямоугольнику.

МЧЗ рассматривается как текстовый признак с известным ограниченным
набором паттернов. Предложен быстрый метод поиска МЧЗ для кадров мобиль­
ных устройств при ограниченном повороте. Поиск основан на выделении строк
на карте таких особых точек, которые отображают символы как их скопление.
Предложено выделять с помощью преобразования Хафа кластеры точек, обра­
зующие прямые-строки, и фильтровать точки сцены.

Предложен быстрый метод поиска МЧЗ для кадров и сканов с произволь­
ным поворотом. Символы рассматриваются как точки - центры компонент би­
наризованного изображения. Точки сцены фильтруются по размеру, взаимной
удалённости и количеству.

Оба метода допускают отказ при отсутствии кластера, достаточно соот­
ветствующего одному из паттернов. Показано, что известные паттерны текста
в зоне позволяют выделить зону среди прочих без анализа и распознавания
всех символов.
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Глава 3. Метод идентификации и локализации объекта на
изображении

В данной главе определены параметры задачи классификации и локали­
зации плоских ригидных объектов в системах распознавания и представлен ме­
тод, удовлетворяющий реальным требованиям. Метод основан на сопоставлении
входного изображения с изображением - эталоном.

3.1 Параметры задачи

Определим параметры задачи для двух основных вариантов применения
систем распознавания. Как упомянуто во введении, в первом случае изображе­
ние (скан или фотография) объекта передаётся для анализа на сервер. Во вто­
ром случае распознавание выполняется непосредственно на мобильном устрой­
стве, а входными изображениями главным образом выступают кадры с камеры
этого устройства.

Различия во входных данных и требованиях подробно описаны в табли­
це 4.

Таблица 4 — Сравнение параметров мобильного и серверного подходов к распо­
знаванию

Устройство Мобильное (смартфон /
планшет)

Серверное

Входное изображение Видеокадр HD-фото с мобильного
устройства; скан

Положение объекта Все границы объекта внут­
ри кадра

Две границы могут отсут­
ствовать (если объект был
в углу сканера)

Характерное число пик­
селей

от 0.5МП до 8МП (Ultra HD
4K)

Скан: от 150 до 600 PPI, фо­
то от 2МП tдо 15МП

Максимальное время
работы

0.5 секунд (типовые устрой­
ства: Exynos 7420, Apple
A8)

1 секунда (типовые устрой­
ства: AMD FX-8350, Intel
Core i7 4770S)
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Требования к скорости исходят из следующих соображений:
– на сервере время распознавания изображения не должно превышать

время сканирования. Скорость работы современных потоковых скане­
ров составляет от 20-30 страниц в минуту (Canon imageFORMULA
DR-C, Kodak i1) до 200+ у высокопроизводительных моделей (Canon
imageFORMULA DR-G, Kodak Alaris i5 series), в среднем - 60 стр/мин.

– мобильные системы распознавания оперируют понятием «реальное вре­
мя» начиная с 1 кадра в секунду при анализе для полного кадра [146]
и 6-7 кадров в секунду при анализе отдельных зон интереса [147]; рас­
познавание паспорта на мобильных сканерах должно укладываться в 1
секунду [134].

3.2 Модель изображения

Для N типов объектов определим классы изображений 𝐶 = {𝐶𝑖}𝑖 ∈ [0,𝑁 ]

следующего вида:
𝐶𝑖 – класс изображений 𝑖-го типа объекта, при 𝑖 ∈ [1,𝑁 ]

𝐶0 – класс прочих изображений
Для каждого класса 𝐶𝑖 задано изображение-эталон 𝑇𝑖 , 𝑖 ∈ [1,𝑁 ].

Представление изображения 𝐼 в модели «созвездия признаков» можно за­
писать как:

ω = 𝑊 (𝐼) = {⟨𝑝𝑖,𝑓𝑖⟩}𝑖∈[1,𝑀 ] , (3.1)

где 𝑝𝑖 = ⟨𝑥𝑖,𝑦𝑖⟩ — координаты i-й точки, 𝑓𝑖 — дескриптор окрестности 𝑖-й точки,
𝑀 - число точек в представлении.

Требуется определить класс 𝐶𝑖 входного изображения 𝑄. В случае, если
𝑖 ∈ [1,𝑁 ] необходимо вычислить преобразование 𝐻 : 𝑄 → 𝑇𝑖 переводящее
точки объекта на запросе в точки соответствующего эталона. В нашей работе
будем рассматривать только проективные преобразования, порождаемые каме­
рой, параметры которых заданы матрицей 3× 3.
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3.3 Создание набора моделей

Далее для простоты представление изображения 𝑊 (𝑇𝑖) эталона будет обо­
значено как шаблон.

3.3.1 Создание шаблона

Эталоном, с учётом 3.2, будет выступать изображение, полученное в кон­
тролируемых условиях. Считаются предпочтительными следующие условия:

– изображение высокого разрешения, полученное при равномерном нор­
мальном освещении

– плоскость сенсора (камеры или сканера) параллельна плоскости объек­
та

– изображение обрезано по границам объекта
В ряде случаев объекты либо изображения объектов при ригидной струк­

туре имеют заполнение – признаки одного типа, значения которых меняются от
экземпляра к экземпляру. Так, в задаче классификации ID документов, бланк
паспорта задаёт структуру, а персональные данные являются заполнением. В
силу неустойчивости такие признаки скорее являются отвлекающим фактором
для методов, оперирующих стабильной структурой, а значит избыточны для
шаблона. Поэтому каждому эталону будет соответствовать разметка – набор
координат прямоугольных зон с маркировкой признаков внутри зоны. Марки­
ровка указывает, являются ли признаки внутри зоны опциональными (на запол­
нении), обычными или необходимыми. Отображение маркировки представлено
на рисунке 3.1. Опциональные признаки отбрасываются при построении ком­
пактного представления 𝑤𝑖 = 𝑊 (𝑇𝑖) для эталона 𝑇𝑖.

Ряд близких решений для фильтрации заполнений был предложен ранее.
Так, в работе [148] авторы вводят маскировку - заполнения перекрываются мо­
нотонными прямоугольными областями. Для ряда алгоритмов выделения при­
знаков это соответствует «слепой зоне». В работе [26] авторы предлагают ис­
пользовать несколько эталонов, сохраняя только признаки, присутствующие
на каждом из них.
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Рисунок 3.1 — Изображение-эталон с маркированными зонами. Красным отме­
чены опциональные зоны, зелёным – необходимые.

Изображения для шаблонов предварительно нормализуем следующим об­
разом: сначала масштабируем – длина изображения приводится к стандартному
значению при сохранении соотношения сторон, а затем сглаживаем фильтром,
сохраняющим границы (билатеральный). Такая предобработка упрощает вы­
числение масштаба для входного изображения, поскольку не допускает пары
шаблонов разных размеров при одинаковых пропорциях.

На нормализованном эталоне нужно выделить особые точки и их дескрип­
торы. В реализации метода для детекции точек, как и в разделе 2.3.1, выбран
алгоритм YAPE. Каждой точке соответствуют координаты и оценка, привязан­
ная к перепаду интенсивности в окрестности. После фильтрации по зонам остав­
шиеся точки сортируются по оценке, чтобы оставить не более M лучших. Вы­
бранный алгоритм не оценивает направление в точке, а по сегментам и прямым
на входном изображении поворот объекта можно определить с точностью до по­
ворота на 90°, что следует учитывать при выборе дескрипторов и дальнейшем
построении описания. Так, быстрые бинарные дескрипторы, рассмотренные в
части 1.3, устойчивы в пределах 15°-30°. В случае выбора таких дескрипторов
требуется рассмотреть повороты на 0, 90, 180 и 270 градусов для обеспечения
классификации изображений с повёрнутыми объектами. Вычислительно менее
затратно учитывать это на этапе работы с эталонами, которая проходит оф­
флайн. В итоге, каждому эталону будет соответствовать 4 описания.
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3.3.2 Создание поискового индекса

Тривиальное сопоставление дескрипторов «каждого с каждым» ставит
скорость метода в линейную зависимость от числа шаблонов. Этого можно из­
бежать, воспользовавшись следующими соображениями:

– как указано в 1.4, метрические дескрипторы позволяют заместить пол­
ное сравнение использованием алгоритмов аппроксимированного поис­
ка без значимой потери в точности;

– эталоны известны заранее, а значит время их предварительной обработ­
ки и построения индексов не имеют существенного значения – только
результирующий объём памяти индексов и время поиска в них.

Для реализации в методе предложено использовать иерархическую кластери­
зацию, подобную FLANN [94]. Такая структура может быть реализована для
произвольной метрики. Для построения индекса обработаем каждое из получен­
ных описаний 𝑊 (𝑇𝑖) следующим образом: для каждой точки 𝑝𝑗 ∈ [1,|𝑊 (𝑇𝑖)|] в
описании занесём запись вида ⟨ 𝑖, 𝑗, 𝑓 𝑖

𝑗 ⟩. В таком индексе для 1 дескриптора по­
иск ближайших выполняется за 𝑂(𝑙𝑜𝑔

∑︀𝑁
𝑖=0 |𝑇𝑖|). При этом для целочисленных

метрик, как метрика Хэмминга, формат поиска в индексе заменяется: вместо
«k-ближайших» используется поиск «в радиусе», т.к. в первом случае, при об­
наружении нескольких равноблизких признаков, нужный признак может быть
обрублен по принципу количества, а не расстояния.

3.4 Анализ входного изображения

3.4.1 Выделение глобальных признаков

На 1 этапе выполняется поиск глобальных признаков, поскольку эта ин­
формация позволяет улучшить скорость поиска локальных признаков и полу­
чить более точные сопоставления с шаблоном правильного типа. Выбор мето­
дов выделения прямых и четырёхугольников зависит от типа рассматриваемой
системы. Методы, разработанные в 2.2 и 2.3, спроектированы так, чтобы ис­
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пользоваться в описанных случаях. Так, метод поиска четырёхугольников на
видеокадрах удовлетворяет требованиям для мобильной системы. Результатом
их применения будет набор Q четырёхугольников-кандидатов и набор L линий,
их образующих.

Параметры обработки изображения при выделении точек и расчёте де­
скрипторов привязаны к оценкам прямых и четырёхугольников, найденных на
предыдущем этапе. Выделим следующие случаи:

а) четырёхугольник найден и помечен валидным (accepted) – вес четырёх­
угольника выше порога,

б) четырёхугольник найден и помечен невалидным (rejected) – вес четы­
рёхугольника ниже порога,

в) четырёхугольник не найден – недостаточно прямых, либо ни один из
кандидатов не мог быть получен из прямоугольника в результате про­
ективного преобразования, порождаемого камерой.

В первом случае лучший четырёхугольник с высокой точностью опреде­
ляет масштаб и поворот объекта на входном изображении. Во втором случае
доверять лучшему четырёхугольнику нельзя, поэтому будем определять толь­
ко поворот изображения. Для этого выделим все образующие прямые четы­
рёхугольников-кандидатов, удовлетворяющих геометрическим ограничениям.
Полученные прямые отсортируем по углу и выберем ту прямую, для которой
наибольшее число других прямых вмещается в угловое окно размером α. Будем
считать α – углом поворота объекта. В случае, когда полученные геометриче­
ские признаки не позволяют уверенно определить один или оба параметров,
вместо них используют стандартные значения.

3.4.2 Выделение локальных признаков

На входном изображении, как ранее на эталонах, выделяются особые точ­
ки. Размеры и ориентация областей входного изображения при расчёте дескрип­
торов корректируются исходя из значений, полученных выше. Для алгоритмов
на базе особых точек могут представлять проблему случаи, когда фон содержит
существенно больше откликов детектора, чем объект. Расчёт дескрипторов для
фоновых точек и их сопоставление будут занимать значимое время. Предложе­
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но отфильтровать полученные точки перед этапом расчёта дескрипторов, т.е.
отделить фоновые точки от точек объекта. Если выделенные ранее четырёх­
угольники признаны валидными, то осмысленно сохранить только их внутрен­
ние точки. Если же четырёхугольник невалиден или ненайден, то требуется
дополнительный анализ.

Для этого была обучена и использована облегчённая модель сети глубоко­
го обучения для классификации точек на объект/фон. Используется свёрточ­
ная нейронная сеть с одноканальным входом размером 100×100. Архитектура,
размер входных данных, глубина сети и количество фильтров выбраны таким
образом, чтобы, во-первых, в поле зрения CNN попадало достаточно инфор­
мации для принятия точных решений, во-вторых, количество вычислительных
операций, а, следовательно, и время обработки, были приемлимы. Создание
конкретного экземпляра классифицирующей сети не относится к результатам
диссертации, её параметры детально описаны в [15].

а) б) в) г)
Рисунок 3.2 — Фильтрация точек: а) точки без меток, б) розовым – «основные»
точки, жёлтым «побочные», в) красным - «фон», синим - «конфликт», зелёным

- «объект», г) решение конфликта

Полутоновый участок с центром в ключевой точке подаётся в ИНС в ка­
честве входных данных. Размер патча принимается равным размеру ключевой
точки, а затем масштабируется до входного размера ИНС. Для ускорения филь­
трации предлагается применять сеть не ко всем ключевым точкам изображения,
а к определённому их подмножеству. Рассмотрим вектор 𝑝, содержащий все
ключевые точки изображения, упорядоченные в порядке невозрастания оценки
ключевой точки. Проходя по этому вектору от начала до конца, мы отнесём те­
кущую ключевую точку к классу «основная» или «побочная». Если рассматри­
ваемая точка ещё не помечена, ей присваивается класс «основная», а все точки в
некоторой δ-окрестности помечаются как «побочные». После выполнения этой
операции над всеми элементами вектора ключевых точек «основные» точки из
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разбиения рассматриваются как вход для ИНС (рис. 3.2б) Чем больше δ, тем
меньше точек подаётся на вход сети, и тем быстрее будет алгоритм фильтра­
ции. С другой стороны, выбор большого значения δ приводит к менее точной
фильтрации, поскольку, во-первых, могут возникнуть ошибки на границе объ­
ект-фон и, во-вторых, возможные ошибки сети будут более значимы. Сначала
«основные» точки классифицируются с помощью ИНС, а затем на основе полу­
ченного результата, присваиваются метки «побочным» точкам. Предлагается
следующий подход для разметки «побочных» точек. Выполняется проход по
вектору p, и в процессе прохода точки в δ-окрестности «основных» точек поме­
чаются их же метками: если «основная» точка - фон, то все в её окрестности
тоже фон. Если какая-либо из точек находится в пределах пересечения окрест­
ностей с разными метками, то такой точке присваивается метка «конфликт»
(рис. 3.2в). Если текущая рассматриваемая точка - «конфликтная», то она от­
правляется на вход CNN для уточнения метки, после чего полученная метка
пытается распространиться по всей её δ-окрестности (рис. 3.2г).

Все точки, оставшиеся «конфликтными» после завершения прохода по
вектору, помечаются как точки объекта, поскольку гораздо важнее сохранить
ключевые точки, которые могут принадлежать объекту, чем удалять точки,
которые, вероятно, принадлежат фону.

Рассчитаем зону покрытия объекта локальными признаками как окаймля­
ющий прямоугольник оставшихся точек. Если линейные размеры прямоуголь­
ника значимо отличаются от диапазона для шаблонов, то масштаб следует скор­
ректировать. Вычислив дескриптор 𝑓(𝑝𝑖) для каждой из оставшихся точек 𝑝𝑖,
получаем представление для входного изображения вида 𝑊 (𝑄) = {𝑝, 𝑓}

3.5 Сопоставление изображений в модели

3.5.1 Отсечение и ранжирование классов по локальным признакам

Если объект на входном изображении визуально соотносится с каким-либо
из эталонов, ожидается, что для некоторых особых точек с входного изображе­
ния будут существовать близкие (похожие) особые точки из эталонов. Пару де­
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скрипторов будем считать близкой, если расстояние между ними не превышает
заданный порог 𝑟𝑚𝑎𝑥:

|𝑓𝑖 − 𝑓𝑘| < 𝑟𝑚𝑎𝑥 (3.2)

Таким образом, для каждой особой точки ⟨ 𝑝,𝑓 ⟩ ∈ 𝑊 (𝑄) нужно найти по­
хожие среди особых точек эталонов. Для этого воспользуемся построенным ин­
дексом. Заметим следующее: наши предположения о возможной вариативности
признаков ограничены, т.к. изображение, соответствующее конкретному классу,
может быть в единственном экземпляре. К найденным дескрипторам применя­
ется процедура голосования: дескриптор 𝑓 𝑖

𝑗 ∈ 𝑊 (𝑇𝑖) добавляет голос эталону
𝑇𝑖. Как правило, оценка при ранжировании выполняется без фильтрации – рас­
считывается общее число близких дескрипторов либо оно же, нормированное
к числу точек шаблона. Но можно выделить следующие случаи, возникающие
при поиске ближайших:

1. дескриптор 𝑓𝑘 входного изображения имеет много близких дескрипто­
ров в целом

2. дескриптор 𝑓𝑘 имеет много близких дескрипторов на конкретном шаб­
лоне

3. дескриптор шаблона 𝑓 𝑖
𝑗 является близком для многих дескрипторов

входного изображения
Такие случае обрабатываем следующим образом:

1. если для 𝑓𝑘 число ближайших в радиусе больше порога, то локальный
признак малоинформативен и не участвует в расчёте оценок

2. 𝑓𝑘 участвует в оценке конкретного шаблона только 1 раз
3. дескриптор 𝑓 𝑖

𝑗 шаблона может быть учтён в его оценке ограниченное
число раз (не превышая порог)

Для выполнения такой обработки для каждой точки близкие дескрипторы сор­
тируем в порядке увеличения расстояния. Расстояние между близкими по (3.2)
𝑓𝑘 и 𝑓 𝑖

𝑗 учитывается при расчёте оценок шаблонов:

𝑆(𝑇𝑖) =

|𝑊 (𝑄)|∑︁
𝑘=0

𝑟𝑚𝑎𝑥 − |𝑓𝑘 − 𝑓 𝑖
𝑗 |

𝑟𝑚𝑎𝑥
, 𝑓𝑘 ∈ 𝑊 (𝑄), 𝑓 𝑖

𝑗 ∈ 𝑊 (𝑇𝑖) (3.3)

Шаблоны классов ранжируются по оценке (выше – лучше), затем отбираются
𝐾 лучших кандидатов.
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3.5.2 Отсечение классов по структурным текстам

Данный этап предложено выполнять до отсечения по локальным призна­
кам в целях лучшей общей вычислительной эффективности. Отсечение рассмат­
ривается на примере МЧЗ при классификации ID документов.

Текст МЧЗ содержит большую часть информации о типе документа, в
частности его вид (паспорт, виза и т.п.), страну и дату выдачи. Локализация
зоны при знании геометрии типа позволяет восстановить локализацию докумен­
та. Тем не менее, в одно и то же время в обращении могут находиться насколько
бланков, а сама зона может смещаться при погрешности печати, поэтому визу­
альное сопоставление остаётся необходимым.

Страна и вид документа закодированы в первых 5 символах верхней стро­
ки. На этапе построения поискового индекса добавляются записи соответствия
вида < 𝑋𝑋𝑋𝑋𝑋, {...,𝑇𝑖,...} >. Локализация зоны позволяет выделить точное
расположение данных символов, что позволяет выполнить распознавание очень
быстро. После выполнения OCR возможны 2 варианта:

1. символы задают код, которому соответствуют 𝐾𝑀 шаблонов;
2. нет соответствия между символами и возможными кодами

Если 𝐾𝑀 < 𝐾, то выполняется переход к геометрической валидации, иначе
выполняется отсечение по локальным признакам среди 𝐾𝑀 возможных типов.
Если МЧЗ не обнаружен, то отсечение по локальным признакам проходит сре­
ди 𝑁 − 𝐾𝑀 типов. В случае, когда среди классов все типы документов всех
стран, содержащие МЧЗ, достигается более чем в 100-кратное снижение числа
рассматриваемых классов на следующих этапах.

3.5.3 Геометрическая валидация

Локальные признаки истинного кандидата должны быть геометрически
согласованы с локальными признаками входного изображения, т.е. образовы­
вать «созвездия», похожие с точностью до преобразования камеры 𝐻. Для
каждого из 𝐾 отобранных кандидатов вычислим преобразование 𝐻, которое
переводит точки эталона в точки входного изображения в пределах заданной
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погрешности. Для гипотезы 𝐻 пара точек с близкими дескрипторами считается
верным сопоставлением (инлаером), если:

|𝐻(𝑝)− 𝑝′| < δ, 𝑝 ∈ 𝑊 (𝑄), 𝑝′ ∈ 𝑊 (𝑇 ). (3.4)

В общем случае :
- входное изображение и шаблон связаны проективным (центрально-проектив­
ным) преобразованием, параметры которого могут быть вычислены по 4-м со­
поставленным точкам.
- распределение шума, в данном случае - ложно сопоставленных точек, неиз­
вестно.

В отсутствие дополнительных данных для фильтрации сопоставлений,
оценить параметры преобразования можно с помощью методов семейства кон­
сенсусных выборок (-SAC, RANSAC и модификации), рассмотренные в 1.5.

Как показано в [26], базовых параметров RANSAC – числа итераций и
порога инлаеров – недостаточно для отсеивания ложных гипотез в подобных
задачах и моделях. Рассмотрим типы ошибок и причины их возникновения в
нашей задаче для построения решения:

– решение плохо обусловлено - точки, порождающие гипотезу, недоста­
точно удалены друг от друга (на входном изображении, шаблоне или в
обоих случаях)

– решение недопустимо либо не имеет смысла - например, преобразование
невыпуклое, вырожденное, либо не соответствует ни одному из возмож­
ных поворотов камеры

Данные проблемы можно решить, введя ограничения на выборки и до­
пустимые параметры модели. Скорость оценки также может быть улучшена.
Классический алгоритм RANSAC подразумевает, что для каждой гипотезы под­
считывается число инлаеров. Таким образом, отсеивая невалидные выборки на
раннем уровне, можно не только повысить качество метода, но и ускорить его.
Помимо этого, современные платформы позволяют ускорения за счёт архитек­
туры. Например, при поддержке расширения SIMD, CPU может обрабатывать
несколько элементов данных одновременно. Данные помещаются в векторы ши­
риной 128, 256 или 512 бит и обрабатываются специализированными встро­
енными командами (интринсики x86 SSE, ARM NEON и т.д.), что позволяет
ускорить вычисления в несколько раз. Большинство современных процессоров
имеют возможности векторной обработки.
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Еще одной важной особенностью процессоров является конструкция под­
системы памяти. Доступ к данным из оперативной памяти и их загрузка могут
занимать сотни тактов, тогда как арифметические операции в десятки и сотни
раз быстрее. Для решения этой проблемы используется иерархическая систе­
ма кэширования, когда локальные блоки данных загружаются в кэш быстрого
доступа.

Для части проблем независимо в ряде работ уже были предложены реше­
ния. Модульные фреймворки, такие как USAC (VSAC) позволяют объединить
достижения различных SAC-методов в одном решении . Некоторые проверки
выборок и моделей включены в USAC внутри модулей выборки минимального
подмножества и генерации модели. Хотя USAC учитывает ряд важных практи­
ческих и вычислительных соображений, тем не менее, он не использует векто­
ризацию SIMD и обеспечивает лишь ограниченную локальность памяти.

С учтём вышеперечисленного, предложено решение в формате фреймвор­
ка для семейства методов на основе RANSAC, которая подходит для процес­
соров SIMD и сохраняет локальность памяти без ограничений для конкрет­
ного метода. Фреймворк параллельного эффективного выборочного консенсу­
са (PESAC) имеет блочную структуру, основанную на структуре USAC [113].
Структура PESAC расширена блоками-ограничителями, которые значительно
сокращают количество выборок, передаваемых для расчета модели, и гипотез
модели, подлежащих проверке, что значительно ускоряет время выполнения.
Cчитаем такие проверки важным инструментом повышения точности и време­
ни алгоритма, поэтому включаем их в PESAC отдельными блоками и демон­
стрируем их эффективность экспериментально.

PESAC состоит из следующих блоков:
– блоки выборки и ограничения выборки
– блоки расчета модели и ограничителя модели
– блоки проверки модели, раннего прекращения и уточнения модели
Cхема структуры показана на рис. 3.3. Блоки, выделенные голубым фо­

ном, являются необязательными и не включены в исходный RANSAC.
Особенностью PESAC является особый способ хранения входных данных,

подходящий для удобной SIMD-векторизации. Чтобы сохранить локальность
памяти, обрабатываем 𝒦 ≫ 1 выборку за одну итерацию основного цикла. Сле­
дует отметить, что это может быть недостатком в случае, когда теоретически
необходимое число ℐ итераций, определяемое уравнением (1.18), сравнимо с 𝒦
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Входные данные:
последовательность S

Блок ограничения выборки

Блок генерации выборки

Блок ограничения модели

Блок расчёта модели

Блок раннего выхода

Блок уточнения модели

Выходные данные:
лучшая модель

I  I* ?

Создать K >> 1 выборок

Проверить K выборок по
критериям

Рассчитать модели по
K1 выборкам

Проверить К2 моделей
по  критериям

Пересчитать требуемое
число итераций I*

Уточнить параметры
моделей-кандидатов

Модель с лучшей оценкой -
- в список кандидатов

Текущее число итераций
I+=  K

Блок оценки модели Рассчитать оценки  К3
моделям

нет

да

Рисунок 3.3 — PESAC – принципиальная схема.

и не кратно 𝒦. В этом случае можно просто использовать больше выборок и до­
полнительные итерации. На практике, из-за зашумленности инлаеров, выборок
требуется достаточно много (т.е. такой случай не наступает).

Входные данные. Последовательность 𝒮 состоит из сопоставлений. Со­
поставление - пара точек <p, p’>, где p - со входного изображения, p’ - с шабло­
на, и данные - характеристики соответствия между ними. 𝒮 может храниться в
памяти разными способами. Здесь предложен метод, обеспечивающий локаль­
ность в памяти и возможность щадящей обработки векторных данных:

𝒮 = {ℛ,𝒬,𝒮𝒫 , ℰ𝒲} , (3.5)

где ℛ = {𝑟1, . . . , 𝑟𝒩}, 𝒬 = {𝑞1, . . . , 𝑞𝒩}, 𝒩 — длина последовательности, а
точки из пары (𝑟𝑖, 𝑞𝑖) должны преобразоваться друг в друга и образовать реб­
ро в графе совпадений. Массивы 𝒮𝒫 и ℰ𝒲 размера 𝒩 хранят вероятности и
пространственные характеристики соответствий. Их использование не является
обязательным.
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Заметим, что этот метод хранения позволяет повторять точки в ℛ и 𝒬.
Кроме того, точки могут быть разных типов (например, для задачи оценки
положения камеры по соответствиям точек 2D–3D).

Выходные данные. Результатом SAC-методов является одна или
несколько моделей и их характеристик, которые могут быть полезны для
дальнейших приложений. Чаще всего это будут коэффициенты модели H и
оценка C, но может быть и внешняя маска, индексы баллов, используемые для
построения модели, и т.д.

Блок выборки. Принимает на вход последовательность 𝒮 соответствий и
предназначен для генерации случайных n минимальных подмножеств совпаде­
ний, которые будут использоваться для дальнейшего расчёта модели. В наших
обозначениях выборка представляет собой конечное множество {𝑖1, . . . , 𝑖ℳ},
𝑖𝑗 ∈ 1,𝒩 , 𝑗 ∈ 1,ℳ, индексов из последовательности 𝒮, где ℳ – минималь­
ное количество совпадений, необходимое для вычисления гипотезы модели.

Выборка может быть разной:
– Исчерпывающая, когда выполняется полный перебор всех минималь­

ных подмножеств совпадений в заданном порядке; этот вид актуален
для небольшого количества соответствий, когда можно перебрать все
подмножества;

– Равномерная, когда совпадения в выборке получены путём равномер­
ной генерации ℳ случайных чисел, т.е. индексов соответствий, от 1
до 𝒩 ; этот вид используется, когда дополнительная информация о со­
ответствиях отсутствует, а также использовался в исходном подходе
RANSAC [106];

– Неоднородная, когда при выборе совпадений учитываются дополни­
тельные характеристики соответствий, чтобы раньше генерировать
более предпочтительные выборки; это самая современная стратегия
отбора проб, за которой последовали модификации PROSAC [111],
P-NAPSAC [114] и других.

Заметим, что блок генерирует 𝒦 выборок за одну итерацию основного цикла.
Использование 𝒦 ≫ 1 позволяет векторизовать генерацию случайных чисел
непосредственно в этом блоке и далее задействовать расширения SIMD.

Блок ограничения выборки. Расчёт модели может быть трудоёмким.
Если конкретная выборка малоосмысленна в контексте решаемой проблемы, то
едва ли по ней можно рассчитать точную модель. Мы можем избежать ненуж­
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ного расчёта параметров модели, добавив несколько предварительных прове­
рок для образцов. Подборка ограничителей выборки направлена на отбраковку
«плохих» выборок с минимальными вычислительными затратами. Из 𝒦 началь­
ных выборок формируется 𝒦1 < 𝒦 валидных. Проверки должны включать
относительно простые критерии валидности, в сравнении с расчётом модели и
оптимизациями, если таковые выполняются.

В существующих работах также предлагались геометрические ограниче­
ния на следующие свойства:

– относительный порядок (ориентация) точек выборки для оценки аф­
финного преобразования и 2D-гомографии [149; 150];

– площадь фигур, образованных точками образца: треугольники в аф­
финном преобразовании [151], четырёхугольники в оценке 2D-гомогра­
фии [152];

Блок расчёта модели. Для 𝒦1 выборок строится 𝒦2 моделей. Отмечу,
что 𝒦2может быть не равно 𝒦1, если какие-то выборки не порождают модель,
либо наоборот - порождают больше чем 1 (как в задаче расчёта фундаменталь­
ной и матриц по методам с 7 или 5 точками). Для 𝒦1 ⩾ 1 можно использовать
векторизацию алгоритма расчёта параметров модели. Простота использования
SIMD во многом зависит от конкретного преобразования - в нашем случае это
2D гомография. Благодаря совпадающей индексации в ℛ и 𝒬 можно одновре­
менно обрабатывать t элементов этих последовательностей. Значение t пред­
ставляет собой количество значений, хранящихся в регистре SIMD, в зависимо­
сти от размера регистра и типа используемых данных и обычно варьируется от
2 до 16.

Блок ограничения модели. Отсев на этом уровне позволяет пропустить
дорогостоящую проверку физически бессмысленных преобразований. Блок от­
браковывает «плохие» с точки зрения решаемой задачи модели. Из 𝒦2 получен­
ных моделей остаются 𝒦3 «хороших» перед этапом проверки модели. Геометри­
ческие ограничения зависят от конкретной задачи, в связанных работах были
предложения для расчётов:

– 2D-гомографии: сохранение выпуклости путём проверки того, что эл­
липс внутри выпуклого четырёхугольника по-прежнему остаётся эллип­
сом при гомографии [153], хиральное неравенство [154].

Блок валидации модели. После получения 𝒦3 моделей из блока огра­
ничения моделей, необходимо вычислить для них оценки и другую статистику.
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Для каждого преобразования блок вычисляет последовательность N невязок,
оценку модели 𝐶(θ) и вектор-маску инлаеров.

В исходной формулировке RANSAC функционал ошибки ρ берётся как в
уравнении (1.16). Были предложены различные варианты ρ: увеличить вклад
отдельного соответствия в общий балл ( [107]); применяются вероятностные
подходы (MLESAC [107]), моделирующие распределение вероятности ошибки
по выбросам и выбросам для оценки гипотезы модели, а также методы мак­
симального правдоподобия или оценки с использованием апостериорного мак­
симума; чтобы исключить необходимость определения пользователем порога
выбросов( [110]); и т. д. Независимо от этого, вычисление оценок и невязки так­
же допускает векторизацию с помощью предложенного представления для ℛ и
𝒬. Поскольку объем входных данных может быть довольно большим, а оценку
необходимо выполнять для каждого преобразования, проверка модели обычно
является более дорогим и трудоёмким блоком, чем выборка и расчёт модели.
В глобальном случае оценка модели C накапливается из значений некоторо­
го функционала в каждом соответствии (например, функционал ошибки ρ из
уравнения (1.16) и оценка из уравнения (1.17). Используя SIMD-параллелизм
благодаря совпадающей индексации в ℛ и 𝒬, можно одновременно обрабаты­
вать t соответствий и обновлять оценку по t значениям.

Оптимизировать верификацию модели можно с помощью приёмов, на­
правленных на досрочное отбрасывание якобы «плохих» гипотез модели (с со­
хранением гипотез 𝒦4 < 𝒦3) и при верификации определённой модели отбрасы­
вание соответствий, которые гарантированно несовместимы с ней. В литературе
описаны следующие подходы:

– тесты по подвыборке из d случайных сопоставлений;
– тест на базе последовательного критерия отношения вероятностей: для

каждого соответствия рассчитывается отношение правдоподобия, и ес­
ли оно становится больше определённого порога, то модель отбрасыва­
ется; и т.д.

Блок раннего выхода. Как правило, необходимое число итераций опре­
деляют экспериментально и дополняют методами раннего выхода, т.к. для точ­
ной оценки требуется знать долю выбросов, что редко случается на практике.
Условие остановки зависит от используемой модификации RANSAC и может
быть:
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– адаптивным числом итераций, что их число ℐ переоценивается с помо­
щью ур. (1.18), с учётом числа инлаеров лучшей в моменте модели;

– критерий случайности Вальда-Вольфовица или тесты, как в прошлом
блоке;

– критерии из PROSAC и др. модификаций
Для реализации раннего выхода мы собираем некоторую статистику, с

которой работает критерий (например, количество образцов, полностью сгене­
рированных и отклонённых ограничителем выборки, оценку лучшей на данный
момент модели, ее поддержки и т. д.) во время выполнения основного цикла.

Блок уточнения модели. Этот блок предназначен для уточнения полу­
ченных 𝒦4 моделей-кандидатов. Мы выбираем определённое количество «луч­
ших» моделей с точки зрения оценки и применяем к ним неминимальный оп­
тимизатор. Таким образом, мы оптимизируем модель на основе большего под­
множества входных данных, чем минимальная выборка, и уменьшаем влияние
случайного шума на окончательную гипотезу. Здесь можно использовать раз­
личные стратегии, например:

– многомерная нелинейная оптимизация (метод Гаусса-Ньютона) и т.п.;
– анализ главных компонентов (PCA) для неминимальной оценки.

3.5.4 Реализация PESAC для проективного преобразования

Рассмотрим возможную конфигурацию фреймворка для решаемой зада­
чи, в особенности - критерии в блоках ограничений. Выборка составляется на
основе вероятностей с помощью методов генерации чисел по произвольному
дискретному распределению. Т.к. требуется сгенерировать много чисел, необхо­
дим метод с низкой сложностью вычисления. Будем использовать метод псев­
донимов со сложностью О(1). Так же из соображений скорости и простоты
векторизации для генерации псевдослучайных чисел использован генератор
xoshiro128+.

Проективное преобразование в задаче локализации не может быть вырож­
денным или близко к тому, невыпуклым. Решение должно быть реализуемо ка­
мерой и устойчивым. Для отсечения на уровне выборок рассмотрим попарные
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расстояния:
𝑑 𝑟
𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|, 𝑑 𝑞

𝑖𝑗 = |𝑞𝑖 − 𝑞𝑗|, 𝑖, 𝑗 = 1,ℳ (3.6)

𝑑min - порог для невырожденности и устойчивого решения, тогда:

𝑑 𝑟
𝑖𝑗 > 𝑑min, 𝑑 𝑞

𝑖𝑗 > 𝑑min, 𝑖, 𝑗 = 1,ℳ. (3.7)

𝑠𝑖𝑗 =
𝑑 𝑞
𝑖𝑗

𝑑 𝑟
𝑖𝑗

, 𝑖, 𝑗 = 1,ℳ. (3.8)

𝑠𝑖𝑗 - коэффициент масштабирования, тогда рассогласованность масштабов:⃒⃒⃒𝑠𝑖𝑗
𝑠

− 1
⃒⃒⃒
< 𝑠max, 𝑖, 𝑗 = 1,ℳ, (3.9)

где 𝑠 =
(︀ℳ

2

)︀−1∑︀
𝑠𝑖𝑗. Визуализация выборок, которые будут отброшены по дан­

ным критериям, приведена на рис. 3.4. Параметры преобразования можно рас­
считать по 4 соответствиям через единичный квадрат, как предложено в рабо­
те [11]. Для проверки выпуклости будем проверять точку пересечения диагона­
лей. Кроме того, исходя из ожидаемой устойчивости дескрипторов к масштабу,
можно ввести порог на относительную площадь объекта на изображении.
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Рисунок 3.4 — Примеры выборок, которые будут отсеяны а) расстояния между
точками меньше порога б) изменение масштаба рассогласовано между сторона­

ми
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Кроме того, в экспериментальной части будем использовать оценку MSAC
для гипотез, ранний выход по адаптивному порогу, а так же PCA с неминималь­
ным решателем для уточнения параметров модели.

3.5.5 Использование комбинированных входных данных

В случае, когда найденные в разделе 3.4.1 прямые-кандидаты или четы­
рёхугольники задают корректный базис для нормализации или точную локали­
зацию, преобразованием между точками запроса и точками эталона является
изменение масштаба и сдвиг. Использование такой геометрической модели поз­
воляет:

– ускорить алгоритм оценки преобразования за счёт увеличения скорости
сходимости (поскольку для вычисления H достаточно 2 точек против 4
для проективного)

– уменьшить количество корректно сопоставленных запросов, отброшен­
ных по порогу, т.к. дополнительные 2 точки из базиса проективного
преобразования образуют корректные сопоставления.

Исходя из вышесказанного, будем рассчитывать H таким образом:
– если оценка четырёхугольника выше порога, то H – преобразование

сдвиг + масштаб
– иначе, H – проективное преобразование
Дополним классическую итеративную схему RANSAC для точек с помо­

щью выделенных четырёхугольников и прямых:
1. Каждый из геометрически корректных найденных четырёхугольников

порождает дополнительную гипотезу, углы четырёхугольника сопостав­
ляются с углами шаблона.

2. Из выделенных прямых составим пучки, определяющие точки схода.
Пара ортогональных точек схода определяют такое преобразование 𝐻0

по [155], что 𝐻 = 𝐻0 × 𝐻1, где 𝐻1 =

⃒⃒⃒⃒
⃒⃒𝑚𝑥 0 𝑠𝑥

0 𝑚𝑦 𝑠𝑦

0 0 1

⃒⃒⃒⃒
⃒⃒ – остаточное преоб­

разование сдвига (𝑠𝑥, 𝑠𝑦) и масштаба (𝑚𝑥,𝑚𝑦). С помощью RANSAC
оценим 𝐻1 - для построения гипотезы в данном случае достаточно 2
точек.
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Обозначим как 𝐺𝑖 (H) число инлаеров гипотезы H для эталона 𝑇𝑖. Резуль­
татом считается гипотеза с наибольшим количеством инлаеров. При этом, если
их количество меньше определённого порогового значения 𝑡𝑟𝐺, тип объекта бу­
дет считаться неопределённым. В случае, когда два кандидата имеют одинако­
вое число инлаеров, рассчитывается остаточная оценка преобразования:

𝑒𝑖(𝐻) =
1

𝐺𝑖(𝐻)

𝐺𝑖(𝐻)∑︁
𝑗=0

|𝐻(𝑝𝑄𝑗 )− 𝑝𝑖𝑗|
δ

, (3.10)

где δ > 0, 𝑝𝑄𝑗 ∈ 𝑊 (𝑄), и 𝑝𝑖𝑗 ∈ 𝑊 (𝑇𝑖).

3.6 Эксперимент

3.6.1 Наборы данных

- Artour – содержит изображения объектов 2D искусства. Набор данных
состоит из трёх частей:

– база эталонов, 10000 изображений
– положительная выборка, картина на фотографии присутствует в базе,

170 изображений (40 типов)
– отрицательная выборка, картина на фотографии в базе отсутствует, 30

изображений
В качестве эталонов выбраны сканированные изображения и фотографии, раз­
мещённые в открытом доступе (каталоги и онлайн-экспозиции [156]). Прототи­
пами являются картины, в выборке представлено 25 различных жанров (им­
прессионизм, поп-арт, неоклассицизм и т.д). Для экспериментальной оценки
влияния числа типов на скорость и точность метода были выделены случай­
ным образом поднаборы в 100 и 1000 изображений (из них 40 – эталоны классов
положительной выборки).

Тестовые выборки составлены из изображений, размещённых различными
пользователями в открытых источниках (GooglePhoto и т.п.), а также снимков,
сделанных авторов диссертации и соавторами по работам [8; 9]. Изображения –
фотографии, снятые на камеры мобильных устройств в музеях и галереях. На
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Рисунок 3.5 — Примеры тестовых изображений из набора данных Artour

каждом изображении видно ровно одну картину, сцена может содержать иные
объекты искусства, багетные рамы, людей. Пример представлен на 3.5.

- MIDV-500 [142] описан в разделе 2.4.1.
- MIDV-2020 [157] – набор изображений документов, основанный на 10

типах из MIDV-500. В наборе для каждого типа документа есть нескольких
экземпляров документа с разными персональными данными. Подвыборка фо­
то содержит 100 изображений разрешением 2268 × 4032 пикселей. Разметка
составлена по аналогии с MIDV-500.

3.6.2 Оценка точности и скорости локализации и идентификации
объектов

Для детекции использован алгоритм YAPE с радиусом 8 и порогом ин­
тенсивности 10. Предварительное сглаживание выполнено с помощью фильтра
Гаусса с σ𝐺 = 1.0. Ряд экспериментов проведён с использованием дескрипторов
SURF [73], BinBoost [81], RFD [83], а также RFDoc [158] – бинарный дескрип­
тор, разработанный с участием автора, в размерности 128 бит. Неавторские
дескрипторы выбраны из соображений популярности, простоты внедрения и
дальнейшей воспроизводимости результатов. Во всех замерах время поиска то­
чек и дескрипторов на шаблонах и добавление их в поисковые структуры не
учитывается.

Ввиду специфики используемых наборов данных, будем измерять допол­
нительный критерий точности локализации, предложенный в авторской публи­
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кации [11]:

D(𝑞,𝑚) = max
𝑖

‖𝑚𝑖 − 𝑞𝑖‖2
𝑝𝑚

, 𝑝𝑚 =
4∑︁

𝑗=1

|𝑚𝑗 −𝑚𝑗+1| (3.11)

В выражении (3.11) 𝑞 означает найденный четырёхугольник объекта, а 𝑚 –
корректный четырёхугольник из разметки. Критерий основан на том предпо­
ложении, что при распознавании документов (наборы MIDV-500 и MIDV-2020)
финальной целью, как правило, является распознавание полей данных.

Будем считать, что объект локализован правильно, если правильно опре­
делён его тип и выполняется:

𝐷* : D < 0.02

𝐼𝑜𝑈* : IoU > 0.9
(3.12)

Скорость исполнения и качество алгоритма, показанные в таблицах 5 и 6, были
достигнуты при следующих параметрах:

– 3 вариации масштаба (1, 2/3, 1/2), не более 5 · 104 точек на каждом
– дескриптор RFDoc 128-бит для окрестности размером 32 × 32, порог

𝑟𝑚𝑎𝑥 = 32

– ограничения выборки: минимальное расстояние между точками 𝑑𝑚𝑖𝑛 =

50 (10% от минимальной стороны шаблонов), максимальная невязка
масштаба 𝑠𝑚𝑎𝑥 = 0.5

– ограничения модели: минимальная площадь 𝑡𝑎𝑟𝑒𝑎 = 0.05 𝑤 ℎ для где
𝑤×ℎ - размеры изображения; максимальное несоответствие геометрии
по (2.7) 𝑡𝑟𝑎𝑡𝑖𝑜 = 0.5; 𝑡𝑝𝑟𝑜𝑗 = 0.5 для оценки проективности |𝐻31|+|𝐻32

|𝐻33| , где
𝐻 - матрица преобразования 3× 3.

– без построения поискового индекса (линейное сравнение)
Статистики 𝒦1 − 𝒦4 3.5.4, отражают количество промежуточных выборок и
моделей, подлежащих анализу на каждом из этапов. В таблице 5 приведена
зависимость их значения (а значит, и вычислительной сложности), от наличия
ограничений.

Данные 5 показывают, что при введении ограничений и на выборки, и на
модели, число моделей-кандидатов перед затратным этапом оценки по инлае­
рам уменьшается в более чем в 104 раз.

В таблице 6 приведены экспериментальные замеры для PESAC на процес­
сорах разного типа с использованием SIMD-векторизации для и без. Точность
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Таблица 5 — Таблица зависимости среднего числа промежуточных данных от
наличия ограничений разных типов

Модификация
Статистики по блокам ограничений

𝒦 𝒦1 𝒦2 𝒦3

PESAC, без ограничений 903398 903398 759982 759982
PESAC, ограничения выборки 918471 1342 1335 1335
PESAC, ограничения модели 918881 918881 773025 2081
PESAC, два ограничения 920113 1348 1341 91

Таблица 6 — Среднее время исполнения и точность PESAC на открытом наборе
данных MIDV2020.

Модификация
Среднее время одного запуска, мс Значения метрик

CPU: AMD FX-8350 CPU: ARM Cortex-A73
Точность D* IoU*

без SIMD −→ с SIMD без SIMD −→ с SIMD

PESAC, без ограничений
f32 13999.19 → 4631.29 (-66.91%) f32 21592.45 → 11039.61 (-48.87%)

0.907 0.882 0.883
f64 12270.14 → 6577.60 (-46.39%) f64 21592.45 → 19463.88 (-9.85%)

PESAC, ограничения выборки
f32 151.11 → 118.35 (-21.68%) f32 251.14 → 231.27 (-7.91%)

0.933 0.907 0.909
f64 167.29 → 160.31 (-4.17%) f64 300.00 → 291.17 (-2.94%)

PESAC, ограничения модели
f32 311.67 → 232.17 (-25.50%) f32 535.78 → 445.45 (-16.85%)

0.943 0.916 0.919
f64 316.28 → 270.31 (-14.53%) f64 688.45 → 638.33 (-7.28%)

PESAC, два ограничения
f32 136.08 → 114.31 (-15.99%) f32 217.88 → 212.54 (-2.45%)

0.962 0.924 0.927
f64 151.03 → 148.38 (-1.75%) f64 265.45 → 259.91 (-2.08%)

в таблице соответствует точности классификации. Для сравнения в таблице 7
приведены авторские замеры существующих открытых реализаций SAC-мето­
дов. Показано, что PESAC с предложенными критериями достигает наилучшей

Таблица 7 — Среднее время исполнения и точность SAC-методов на открытом
наборе данных MIDV2020.

Модификация
Среднее время одного запуска
RANSAC без вырождений, мс

Значения метрик

CPU: AMD FX-8350 CPU: ARM Cortex-A73 Точность IoU

RANSAC (OpenCV) 24584.61 48374.03 0.903 0.878
USAC_DEFAULT (OpenCV) 321.96 485.31 0.905 0.887
USAC_PROSAC (OpenCV) 254.65 373.09 0.895 0.848

USAC_FAST (OpenCV) 318.10 452.33 0.908 0.887
USAC_MAGSAC (OpenCV) 369.09 593.07 0.909 0.879

Latent RANSAC 120.03 241.78 0.894 0.794
Space-Partitioning RANSAC 81.60 138.61 0.865 0.750

точности при показателях скорости, близких к наиболее быстрым последним
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Таблица 8 — Точность классификации и локализации на MIDV-500
Метод MIDV-500 фото MIDV-500 сканы

Точность D* Точность D*

[159] 0.725 - 0.622 -
(1) 0.461 0.417 0.318 0.268

(1)+АЧ2 - - 0.676 0.590
(1)+АЧ1 0.760 0.700 - -

Таблица 9 — Среднее время классификации и локализации на MIDV-500
Метод Среднее время одного запуска, мс

iPhone 6 (Apple A8) Intel Core i7-4770S
[159] 4220 1060

(1)+АЧ2 2820 780
(1)+АЧ1 350 100

модификациям. При этом ускорение за счёт SIMD выражено тем меньше, чем
меньше заведомо ошибочных гипотез. Далее рассмотрим влияние поиска и
анализа протяжённых признаков (прямых и четырёхугольников) на точность и
скорость. Дополнительно был протестирован подход, описанный в [159]. Метод
реализован согласно предоставленному в работе описанию, исходные изображе­
ния-эталоны и зоны с персональными данными идентичны авторским. Авто­
ры используют точки и дескрипторы SURF, RANSAC и FLANN в реализации
OpenCV, а так же проверки углов и сторон для полученного четырёхуголь­
ника. Для тестирования был выбран оригинальный дескриптор RFD 297-бит
для окрестности размером 32 × 32, порог 𝑟𝑚𝑎𝑥 = 60, FLANN модифицирован
согласно 3.3.2. Число проверяемых классов-кандидатов 𝐾 = 8, прочие парамет­
ры идентичны. В таблицах 8 и 9 приведены результаты работы алгоритмов.
Обозначим как (1) базовый замер с YAPE, RFD, FLANN и PESAC. Заметим
следующее: а) хотя RFD показывает себя существенно слабей SURF из-за мень­
шей адаптивности к масштабу и повороту, это с превышением компенсируется
за счёт использования протяжённых примитивов; б) несмотря на этапы выде­
ления линий, четырёхугольников и 4 шаблона в индексе, предлагаемый метод
существенно быстрей.

В эксперименте, показанном в таблице 10, PESAC и RANSAC отрабаты­
вают одинаковое число итераций (не более 8000), т.е. ранний выход в PESAC не
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Таблица 10 — Вклад примитивов и ограничений на точность и скорость метода,
подвыборка MIDV-500

Параметры модификации
Точность D* Относительная

скорость
Дескриптор -SAC Ограничения

Прямые и
четырёхугольники

SURF

RANSAC (OpenCV) недоступно 82.08% 76.03% 100%
PESAC - - 81.93% 76.54% ∼87%
PESAC - + 82.38% 77.91% ∼115%
PESAC + - 82.60% 76.66% ∼21%
PESAC + + 83.18% 78.15% ∼29%

BinBoost-256

RANSAC (OpenCV) недоступно 81.84% 74.61% ∼100%
PESAC - - 81.75% 76.13% ∼87%
PESAC - + 82.37% 77.75% ∼115%
PESAC + - 82.50% 76.37% ∼21%
PESAC + + 83.14% 78.03% ∼29%

BinBoost-128

RANSAC (OpenCV) недоступно 77.21% 68.23% ∼100%
PESAC - - 77.00% 70.04% ∼87%
PESAC - + 78.60% 73.67% ∼115%
PESAC + - 79.01% 70.64% ∼21%
PESAC + + 80.19% 74.47% ∼29%

Таблица 11 — Размер коллекции шаблонов с дескрипторами SURF и BinBoost
Дескриптор Размер, бит Объём чистый, Мб Объём сжатый, Мб

SURF 2048 82.5 23.5
BinBoost-256 256 11.5 2.9
BinBoost-128 128 5.8 1.4

выполняется. Совокупность таблиц 10 и 11 показывает, что выделение протя­
жённых признаков можно повысить точность независимо от типа используемых
дескрипторов. В то же время, разумно, что наибольшее повышение отмечается
при слабых дескрипторах. Это позволяет достигать высокой точности при суще­
ственном ускорении расчётов на всех этапах, а также при более компактной базе
шаблонов (в 6 раз меньше памяти относительно SURF требует BinBoost-256).

В заключении рассмотрим классификацию снимков картин. Отличие дан­
ного замера в том, что можно проследить, как меняется точность и скорость
построенного метода в зависимости от допустимого числа классов. Использован
метод (1)+АЧ1.

Таблицы 12 и 13 показывают следующее:
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Таблица 12 — Точность классификации изображений Artour
Проективная модель Модель сдвиг-масштаб

Число типов без фильтра фильтр точек без фильтра фильтр точек
100 0.958 0.988 0.964 0.994
1000 0.947 0.970 0.947 0.976
10000 0.917 0.941 0.917 0.964

Таблица 13 — Зависимость времени классификации от числа типов и типа мо­
дели

Среднее время одного запуска
на Snapdragon 625 (8× ARM Cortex-A53), мс

Число типов Проективная модель Модель сдвиг-масштаб
100 280 255
1000 313 285
10000 361 333

– простая фильтрация точек за 𝑂(𝑛) их числа (по найденным четырёх­
угольникам, см. 3.4.2) позволяет уменьшить число ошибок классифика­
ции

– сочетание фильтрации и модель сдвига-масштаба позволяет компенси­
ровать ошибки классификации, возникающие при росте числа допусти­
мых типов.

Во всех случаях время работы метода на мобильном позволяет обрабатывать
более 1 кадра в секунду, что даёт возможность дальнейшего улучшения за счёт
интеграции покадровых результатов.

3.7 Выводы по главе

В данной главе предложен подход к построению SAC-методов, который
включает обобщённые краевые условия, определяемые предметной областью и
задачей. Для программной реализации подхода предложен формат представле­
ния данных, который обеспечивает локальность в памяти и возможность быст­
рой обработки с помощью векторных инструкций процессора.
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Разработанный метод позволяет выбрать из сопоставленных признаков
геометрически согласованный набор и оценить параметры преобразования. Ре­
ализация подхода для оценки проективного преобразования в рамках задачи
демонстрирует более высокую скорость и точность, чем другие фреймворки и
отдельные методы.

Предложен быстрый метод локализации и идентификации плоских объ­
ектов на основе сопоставления с шаблоном типа в компактном представлении.
Для задания типа достаточно 1 изображения-эталона, шаблон включает локаль­
ные признаки (точки и их дескрипторы) и размеры эталона. Для уменьшения
памяти, необходимой для хранения представлений предложено выделять такие
протяжённые признаки, как прямые и четырёхугольники, перед локальными.
Часть параметров преобразования (угловые искажения) оценивается через най­
денные четырёхугольники и оценки точек схода прямых. При реализации пря­
мые и четырёхугольники получены как промежуточные и финальные резуль­
таты методов, предложенных в 2.2. Оценки параметров моделей выполнены с
помощью реализации разработанного подхода (PESAC). На данных с объекта­
ми живописи и структурированными документами показано:

– введение протяжённых признаков повышает точность классификации
и локализации, независимо от типа локальных признаков

– менее устойчивые, эффективные по сложности и памяти локальные при­
знаки, в сочетании с протяжёнными, позволяют добиться точности вы­
ше, чем более информативные локальные признаки, допуская снижение
затрат памяти в 6 раз без потерь.
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Заключение

Основные результаты работы заключаются в следующем.
1. Для формирования изображения в модели камеры-обскуры и прообраза­

прямоугольника с известными геометрическими характеристиками показано:
– сторона образа-четырёхугольника, отсутствующая по наблюдению, мо­

жет быть восстановлена аналитически по трём наблюдаемым (найден­
ным)

– можно оценить соответствие образа-четырёхугольника прообразу: объ­
ект-параллелограмм порождает только образы-четырёхугольники, уг­
лы которых лежат а) в плоскости на расстоянии равном фокусному от
центра координат; б) на катетах четырёхгранного угла, образованного
параллелограммом и центром координат.

2. Предложен метод локализации прямоугольного объекта при заданных
зонах для его сторон в кадре с оригинальным фильтром границ. Предложен
быстрый метод локализации прямоугольного объекта, произвольно размещён­
ного на кадре или скане. В методе предложено сочетать границы разных детек­
торов для повышения точности за счёт типов границ, что подтверждено экспе­
риментально. Показано, что использование при локализации оценки прообраза
и восстановление стороны, повышают её устойчивость и точность.

3. Разработаны новые методы поиска текстовых признаков с известным
ограниченным набором паттернов на примере МЧЗ а) при ограниченном по­
вороте объекта (кадры мобильных устройств); б) при произвольном повороте
(смешанный поток кадров, фото и сканов). При ограниченном повороте поиск
основан на выделении строк на изображении, где символы представлены особы­
ми точками. Предложено выделять с помощью преобразования Хафа кластеры
точек, образующие прямые-строки, и фильтровать точки сцены. При произ­
вольном повороте символы рассматриваются как точки - центры компонент
связности. Элементы сцены фильтруются как компоненты по размеру и взаим­
ной удалённости. Оба метода допускают отказ при отсутствии кластеров, похо­
жих на паттерны. Показано, что известные паттерны текста в зоне позволяют
выделить зону среди прочих без анализа и распознавания всех символов.

4. Предложено обобщение для семейства методов консенсусных выборок
(PESAC). PESAC включает обобщённые краевые условия, определяемые пред­



101

метной областью и задачей. Также PESAC сохраняет локальность памяти и
оперирует данными в специальном представлении, что позволяет использовать
SIMD-векторизацию для более эффективного вычисления. Для программной
реализации подхода предложен формат представления данных, который обес­
печивает локальность в памяти и возможность быстрой обработки с помощью
векторных инструкций процессора. Разработанный метод позволяет выбрать из
сопоставленных признаков геометрически согласованный набор и оценить пара­
метры преобразования. Реализация подхода для оценки проективного преобра­
зования в рамках задачи демонстрирует более высокую скорость и точность,
чем другие фреймворки и отдельные методы.

5. Разработан быстрый метод локализации и идентификации плоских объ­
ектов на основе сопоставления с пар изображений, представленных наборами
характерных признаков (компактное представление). Для задания типа доста­
точно 1 изображения-эталона, модель включает локальные признаки - точки и
их дескрипторы - и размеры эталона. Предложено выделять прямые и четырёх­
угольники перед локальными признаками для предварительной оценки угловых
искажений и масштаба. Оценки параметров моделей выполнены с помощью ре­
ализации PESAC для проективного преобразования. Выполнены оригинальные
исследования на данных с объектами живописи и структурированными доку­
ментами, которые показали:

– введение протяжённых признаков повышает точность классификации
и локализации, независимо от типа локальных признаков

– вычислительно эффективные локальные признаки (менее затратные по
памяти, но и менее устойчивые), в сочетании с протяжёнными, позво­
ляют добиться точности выше, чем более информативные локальные
признаки, допуская снижение затрат памяти в 6 раз без потерь.

6. Показано, что реализация предложенных методов позволяет их испол­
нять в режиме реального времени на мобильных устройствах. Результаты ра­
боты реализованы на C++ в качестве программных компонент и внедрены в
программное обеспечение «Smart ARTour», «Smart IDReader» и «Smart Code
Engine» компании ООО «Смарт Энджинс Сервис». Данное ПО интегрировано
в мобильные и веб-приложения ряда компаний, в т.ч. АльфаБанк, ВТБ и др.,
а также является частью программно-аппаратного комплекса, который исполь­
зуется государственными структурами РФ.
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