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ВВЕДЕНИЕ 

Актуальность темы исследования. Исследование и моделирование 

биосистем и их подсистем имеют ключевое значение в современном мире. В 19 

веке механизмы великого русского математика П.Л. Чебышёва, и в частности 

«стопоходящая машина», задали вектор в изучении и создании новых механизмов 

и механик. В области биомеханики исследования А.В. Хилла, Б.С. Эббота, Д.Р. 

Уилки, А.Ф. Хаксли и В.И. Дещеревского имеют огромное значение и положили 

начало развитию науки в данном направлении. Например, модель А.В. Хилла 

является одной из основополагающих теорий в области физиологии мышц и 

описывает механизмы, которые лежат в основе сокращений скелетной мышцы, она 

базируется на предположении о постоянной длине мышцы и постоянной скорости 

движения, а модель А.Ф. Хаксли описывает механизм сокращения мышц на 

молекулярном уровне. В.И. Дещеревский разработал модель, которая описывает 

процесс сокращений миофиламентов в мышечных волокнах и учитывает влияние 

внешних сил на движение. Несмотря на значительный прогресс в моделировании 

биомеханических систем, остается нерешенным ряд задач, связанных со 

сложностью и недетерминированностью реализации двигательных актов. В 20 веке 

исследования вышли на совершенно новый уровень благодаря созданию более 

совершенных систем регистрации данных о том или ином процессе и развитию 

научного знания в таких областях, как математика, физика, биология и медицина. 

Биомеханическая система, как и любая другая функциональная подсистема 

организма, обладает рядом специфических особенностей и является крайне 

сложной для изучения и диагностики. Особое место при этом занимает задача, 

связанная с созданием моделей биомеханических систем. 

Параллельно с развитием математических моделей в биомеханике 

проводились исследования в области изучения функциональных систем организма 

человека, которые сейчас необходимо учитывать при разработке и 

совершенствовании математических моделей. Гипотеза «повторения без 

повторений» Н.А. Бернштейна, системы третьего типа У. Уивера и непрерывное 

изменение вероятностей у биосистем В.С. Степина являются важными 
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теоретическими разработками в области биомеханики и моделирования. Они 

помогают понимать, как биологические системы могут адаптироваться к 

изменяющимся условиям и как они могут регулировать свою динамику.  

Следует отметить, что двигательная функция относится к числу важных 

функций организма человека. В процессе жизнедеятельности человек подвергается 

воздействию различных психологических, физических, метеорологических и 

других факторов, способных в определённых условиях существенно влиять на 

реализацию того или иного двигательного акта, например, низкие температуры в 

северных широтах приводят к снижению точности выполнения операций, 

существенное влияние может оказывать и психоэмоциональный фон. От точности 

и эффективности реализации двигательных актов зависят эффективность и 

качество выполнения той или иной работы. Кроме того, реализация механических 

движений является одним из самых ярких диагностических признаков, 

определяющих состояние наблюдаемого объекта. Моделирование как нормальных 

физиологических, так и патологических процессов в биомеханике (раздел 

механики) является в настоящее время одним из актуальных направлений в 

научных исследованиях современной математики, механики, биомеханики, 

медицины и биофизики. Создание более совершенных моделей и систем 

симуляционного моделирования динамики движений биомеханической системы 

человека позволит решить целый спектр задач, связанных с диагностикой, 

прогнозом развития того или иного процесса, а также созданием новых систем 

регулирования и человеко-машинного взаимодействия. 

Объединение современных теоретических представлений, математических 

методов и вычислительной техники позволяет говорить о возможности решения 

задачи на новом уровне. Разработка симуляционной модели для биомеханической 

системы организма человека является актуальной и важной задачей, имеющей 

теоретическую и практическую значимость для большого спектра направлений 

народного хозяйства. Несмотря на достигнутый прогресс в этой области, 

существуют нерешённые проблемы в уже разработанных моделях, которые не 

позволяют решать определённый спектр задач. В этой связи исследования в 
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области изучения функциональных систем организма человека и теоретические 

разработки в области биомеханики и симуляционного моделирования являются 

важными для дальнейшего совершенствования моделей и создания более точных и 

универсальных методов моделирования динамики движений биомеханической 

системы человека.  

Повышение эффективности методов и подходов к анализу и моделированию 

динамики движений человека позволит по-новому создавать человеко-машинный 

интерфейс. Теоретическое и практическое решение этой проблемы могут быть 

достигнуты с помощью новых подходов к моделированию динамики движений 

биомеханической системы человека на основе теории дифференциальных 

уравнений с разрывной правой частью. Создание систем моделирования и анализа 

позволит разработать серию программ и технических средств для 

автоматизированного и автоматического тестирования эффективности человеко-

машинных интерфейсов. 

Степень разработанности темы исследований. При разработке 

математического обеспечения и симуляционной модели необходимо учитывать 

сложную структуру и организацию работы внутренних процессов биосистем. Для 

понимания этого аспекта можно отметить исследования трех ученых: Н.А. 

Бернштейна, У. Уивера и В.С. Степина. Имеются также многочисленные попытки 

описывать сложные биосистемы в рамках термодинамики неравновесных систем, 

фрактальной размерности, мультифракталами и т.д. в работах И.Р. Пригожина, М. 

Гелл-Мана и Д.А. Уилера. За развитие теории хаоса-самоорганизации и уточнение 

наличия неопределенностей в динамике изменения параметров функциональных 

систем можно отметить научную школу В.М. Еськова и его учеников и 

последователей О.Е. Филатову, В.В. Еськова, М.А. Филатова и В.В. Козлову. Также 

следует отметить ученых П.К. Анохина, И.И. Горбаня, В.В. Смолянинова, У.Б. 

Кеннона, Г.Р. Иваницкого за существенный вклад в понимание работы 

функциональных систем организма человека. 

Значительный вклад в разработку моделей мышечных сокращений на уровне 

сокращений отдельных мышечных волокон и их групп внесли А.В. Хилл, Б.С. 
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Эббот, Д.Р. Уилки, А.Ф. Хаксли и В.И. Дещеревский. Для воспроизведения 

динамики движений конечности человека требуются новые подходы к анализу и 

созданию моделей. Одним из вариантов моделирования является применение 

решений А.Ф. Филиппова, который активно развивал теорию дифференциальных 

уравнений с разрывной правой частью для решения задач различного уровня, в том 

числе для проектирования и разработки технических систем управления. 

Применение теории дифференциальных уравнений с разрывной правой частью для 

моделирования биомеханической системы человека стало возможным благодаря 

доказательству В.А. Галкина о том, что метод ломаных Эйлера равномерно 

сходится к F-решениям. 

Целью диссертационной работы является исследование и разработка 

математического и алгоритмического обеспечения и симуляционной модели 

биомеханической системы человека на их основе для повышения эффективности 

воспроизведения динамики движений конечности, а также совершенствование 

методов и алгоритмов анализа и оценки гомеостаза биомеханической системы 

человека. 

Для достижения указанной цели в работе поставлены и решены следующие 

задачи: 

1. Сбор и анализ статистических данных по произвольным и 

непроизвольным движениям конечности человека для выявления и верификации 

закономерностей в их динамике. 

2. Разработка метода проверки эффективности симуляционной модели. 

3. Разработка математического и алгоритмического обеспечения на основе 

теории дифференциальных уравнений с разрывной правой частью по результатам 

анализа параметров движений конечности человека с учетом биофизики 

мышечных сокращений. 

4. Реализация специального программного обеспечения для генерации и 

последующего сравнительного анализа экспериментальных и модельных данных. 
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5. Применение методов и критериев математической статистики и теории 

хаоса-самоорганизации для проверки эффективности получаемых результатов 

симуляционного моделирования динамики движений конечности человека. 

Научная новизна. В процессе исследований получены следующие новые 

научные результаты: 

1. Разработан метод построения математического обеспечения на основе 

теории дифференциальных уравнений с разрывной правой частью с учетом 

установленных закономерностей в динамике движений биомеханической системы, 

зафиксированных в натурных экспериментах. Отличительной особенностью 

данного метода является то, что необходимо установить ограничение 

стационарного состояния системы, а также учесть движение границ области, 

внутри которой осуществляется определение траектории движения конечности.  

2. Впервые разработаны математическое и алгоритмическое обеспечение и 

реализована симуляционная модель динамики движений конечности человека на 

их основе.  В отличие от существующих подходов и методов моделирования 

разработанные обеспечения и симуляционная модель реализованы на основе 

теории дифференциальных уравнений с разрывной правой частью и позволяют 

повысить эффективность воспроизведения динамики движений биомеханической 

системы человека с учетом установленных особенностей. 

3. Метод оценки эффективности разработанной симуляционной модели для 

биомеханической системы человека на основе математической статистики и 

теории хаоса-самоорганизации. В отличие от существующих методов оценки 

адекватности моделей, предложенный метод позволяет оценивать результаты 

моделирования параметров биомеханических систем в соответствии с 

выявленными особенностями динамики изменения параметров движения 

конечности человека. 

Практическая значимость работы заключается в исследовании и 

разработке математического и алгоритмического обеспечения, а также 

симуляционной модели биомеханической системы человека на их основе, что 

существенно повышает эффективность воспроизведения динамики движений 
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конечности. Созданная симуляционная модель может быть использована для 

решения инженерно-технических задач, требующих моделирования динамики 

движений конечности человека, например, для проведения тонкой настройки 

системы управления в контуре человеко-машинных систем. Результаты 

диссертационного исследования также имеют практическое значение в медицине 

для исследований причин возникновения патологических процессов опорно-

двигательного аппарата человека за счет изменения параметров модели 

(характеристики из биофизики мышечных сокращений), например, таких 

заболеваний, как болезнь Паркинсона, болезнь Альцгеймера, эссенциальный 

тремор и др. Дополнительно результаты диссертационной работы имеют серьезное 

значение для спортсменов, чья деятельность связана с точностью выполнения 

двигательных функций со спортивным инвентарем (например, бильярд, биатлон, 

стрельба из лука и тд.). Следует отметить то, что модификация алгоритмов 

движений конечности позволит осуществлять моделирование в пространстве. 

Внедрение результатов исследований. Разработанные подходы, алгоритмы 

и программы для ЭВМ для генерации и анализа параметров произвольных и 

непроизвольных движений человека внедрены в деятельность Сургутского 

филиала Федерального государственного учреждения «Федеральный научный 

центр «Научно-исследовательский институт системных исследований Российской 

академии наук» и в учебный процесс бюджетного учреждения высшего 

образования Ханты-Мансийского автономного округа – Югры «Сургутский 

государственный университет» по направлениям подготовки 09.03.01 

«Информатика и вычислительная техника», профиль «Автоматизированные 

системы обработки информации и управления» и 09.04.01 «Информатика и 

вычислительная техника», профиль «Информационное и программное 

обеспечение автоматизированных систем». 

Основные результаты, полученные автором и выносимые на защиту: 

1. Метод построения математического обеспечения на основе теории 

дифференциальных уравнений с разрывной правой частью. 
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2. Математическое и алгоритмическое обеспечение, а также симуляционная 

модель динамики движений конечности человека на их основе, позволяющие 

повысить эффективность воспроизведения динамики движений биомеханической 

системы человека. 

3. Метод оценки эффективности разработанной симуляционной модели 

биомеханической системы человека на основе математической статистики и 

теории хаоса-самоорганизации, позволяющий оценивать результаты 

симуляционного моделирования динамики движений конечности в соответствии с 

выявленными особенностями. 

Объектом исследования являются произвольные и непроизвольные 

движения биомеханической системы конечности человека. 

Предметом являются методы математического моделирования, численные 

методы и алгоритмы, математические методы и алгоритмы валидации 

математических моделей, методы и алгоритмы анализа движений 

биомеханической системы. 

Методология исследования базируется на основах методов 

математического моделирования, численных методов, методов математической 

статистики, теории хаоса-самоорганизации, термодинамики неравновесных систем 

и теории дифференциальных уравнений с разрывной правой частью. 

Соответствие паспорту научной специальности. Диссертационная работа 

соответствует паспорту специальности 2.3.1. – Системный анализ, управление и 

обработка информации, статистика: п. 2 «Формализация и постановка задач 

системного анализа, оптимизации, управления, принятия решений, обработки 

информации и искусственного интеллекта», п. 3 «Разработка критериев и моделей 

описания и оценки эффективности решения задач системного анализа, 

оптимизации, управления, принятия решений, обработки информации и 

искусственного интеллекта», п. 4 «Разработка методов и алгоритмов решения задач 

системного анализа, оптимизации, управления, принятия решений, обработки 

информации и искусственного интеллекта», п. 5 «Разработка специального 

математического и алгоритмического обеспечения систем анализа, оптимизации, 
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управления, принятия решений, обработки информации и искусственного 

интеллекта», п. 7 «Методы и алгоритмы структурно-параметрического синтеза и 

идентификации сложных систем». 

Достоверность полученных результатов работы подтверждена данными 

экспериментов и основана на анализе и оценке движений биомеханической 

системы человека с помощью апробированных научных положений и методов 

исследований, корректном применении теории дифференциальных уравнений с 

разрывной правой частью при разработке математического и алгоритмического 

обеспечения и последующей реализации его в виде симуляционной модели, 

согласованности новых результатов исследования с известными теоретическими 

положениями, а также результатах экспериментальной проверки разработанных 

методов и алгоритмов. 

Апробация результатов исследования. Основные результаты и положения 

диссертации представлены и обсуждены на 15 международных и российских 

конференциях: Всероссийской научно-практической конференции «Север России: 

стратегии и перспективы развития» (г. Сургут, 2015 г.); IV Всероссийской 

конференции (г. Нижний Новгород, 2015 г.); V Съезде биофизиков России 

(г. Ростов-на-Дону, 2015 г.); Russian conference with international participation in 

memory of professor Vladimir S. Markhasin «Experimental and Computational 

Biomedicine» (г. Екатеринбург, 2016 г.); 20 Международной Пущинской школе-

конференции молодых ученых «Биология – наука ХХI века» (г. Пущино, 2016 г.); 

XII Международном междисциплинарном конгрессе «Нейронаука для медицины и 

психологии» (г. Судак, 2016 г.); XI Международной школе-конференции 

«Хаотические автоколебания и образование структур» (г. Саратов, 2016 г.); 

VI Всероссийском симпозиуме с международным участием, посвященном 85-

летию образования Удмуртского государственного университета (г. Ижевск, 

2016 г.); XIII Международном междисциплинарном конгрессе «Нейронаука для 

медицины и психологии» (г. Судак, 2017 г.); XXIII Съезде Физиологического 

общества имени И.П. Павлова (г. Воронеж, 2017 г.); V Всероссийской 
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конференции «Нелинейная динамика в когнитивных исследованиях» (г. Нижний 

Новгород, 2017 г.). 

Работа была поддержана грантами РФФИ: мол_а 18-37-00113 «Разработка 

новых информационных и математических методов оценки медико-биологических 

параметров» (руководитель гранта); А 18-07-00162 «Вычислительные системы для 

идентификации параметров нормогенеза и патогенеза в биомеханике на примере 

тремора и теппинга» (исполнитель гранта); р_урал_а 15-41-00034 «Разработка 

новых информационных моделей и вычислительных алгоритмов для 

идентификации параметров порядка в описании и прогнозах сложных медико-

биологических систем» (исполнитель гранта). 

Публикации по теме исследования. По теме диссертации опубликовано 17 

работ, из них: 8 публикаций в журналах, рекомендованных ВАК Минобрнауки 

России [4-8], 2 статьи в других рецензируемых журналах [17, 18], 4 публикации в 

сборниках трудов и тезисах докладов конференций [19-22], 3 свидетельства о 

государственной регистрации программ для ЭВМ [14-16]. Опубликовано 5 статьи 

в других научных журналах, рекомендованных ВАК при Минобрнауки России [9-

13]. 

Личный вклад автора. Научные публикации [9, 10, 17] подготовлены лично 

автором. В работах [15, 16, 39, 44, 51, 59, 63, 69, 75, 80, 93] участие автора 

заключается в сборе и обработке данных натурных экспериментов, а также 

формулировании выводов. В работах [13, 14, 17, 18] представлено разработанное 

автором математическое и алгоритмическое обеспечение, алгоритмы и их 

реализации в виде программ [47, 48, 49], включая выбор оптимальных значений 

параметров модели, тестирование и проведение вычислительного эксперимента 

[13, 14, 17]. В совместных исследованиях автор принимал участие на всех этапах 

работы: постановка задачи, выявление и верификация закономерностей в динамике 

движений конечности на основе натурного эксперимента, выбор и формулировка 

модели. В совместных работах научному руководителю к.т.н. Т.В. Гавриленко 

принадлежит первоначальная постановка задачи моделирования динамики 

движений биомеханической системы человека на примере произвольных и 

https://kias.rfbr.ru/index.php
https://kias.rfbr.ru/index.php
http://www.rfbr.ru/rffi/ru/rffi_contest_announces/o_1917960
https://kias.rfbr.ru/index.php
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непроизвольных движений конечности. В статьях [15, 16, 39, 44, 51, 59, 63, 69, 75, 

80, 93] автор организовывал проведение натурного эксперимента, обработку 

данных и формулировал основные выводы по результатам исследований для 

выявления основных закономерностей в динамике поведения произвольных и 

непроизвольных движений, которые легли в основу метода математического 

моделирования, математической модели, выбора численных методов и алгоритмов 

моделирования опубликованных в работах [13, 14, 18]. Автор самостоятельно 

реализовывал методы и алгоритмы на высокоуровневом языке программирования 

C# в виде комплекса проблемно-ориентированных программ [47, 48, 49]. При 

проведении дополнительных исследований в смежных областях, в том числе и 

исследования других функциональных систем организма человека, были 

опубликованы работы [7-10, 19, 20, 22, 30, 34, 40, 41, 42, 43, 53, 57, 60, 61, 62, 70, 

71, 74, 76-79, 81, 82], в которых автор принимал участии при проведении натурных 

экспериментов, осуществлял обработку данных, консультировал по интерпретации 

результатов расчета и формулировке выводов. 

Структура и объем работы. Диссертация состоит из введения, четырех глав, 

выводов и списка литературы. Объем диссертации составляет 164 страницы, 

включая 65 рисунков и 25 таблиц. Список литературы содержит 101 наименование. 
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 1 АНАЛИТИЧЕСКИЙ ОБЗОР МЕТОДОВ, МОДЕЛЕЙ ИССЛЕДОВАНИЙ 

И ОПИСАНИЯ ЖИВЫХ СИСТЕМ  

В первой главе рассматриваются методы и подходы к изучению живых 

систем, а также проблемы анализа в области исследований функциональных 

систем организма человека, в частности биомеханической системы (БМС), 

включающий обоснование наличия хаоса в динамике произвольных и 

непроизвольных движений человека и проблему статистической неустойчивости 

функций распределения. Также в представленной главе изложены основы 

термодинамики неравновесных систем, теории хаоса-самоорганизации и теории 

дифференциальных уравнений с разрывной правой частью в качестве методов 

анализа динамики движений БМС человека для выявления и верификации 

закономерностей в динамике произвольных и непроизвольных движений 

конечности и разработки математического и алгоритмического обеспечения систем 

анализа и обработки данных.  

1.1 Обзор методов и подходов изучения живых систем 

Функциональные системы организма человека являются сложными 

биологическими системами и для их изучения требуется разработка новых моделей 

для описания динамики движений биомеханической системы человека. Их 

применение позволит более детально изучить взаимодействие подсистем 

организма человека. Многие механизмы работы подсистем организма человека, в 

частности биомеханической системы и ее подсистем, до конца не изучены, как и 

неизвестны механизмы взаимодействия этих подсистем между собой (например, 

БМС с центральной нервной системой). Соответственно, при детальном изучении 

отдельных подсистем появляется некоторая неопределенность в динамике 

поведения тех или иных параметров, а при агрегации этих подсистем проявляется 

свойство эмерджентности. 

Следует отметить, что неопределенность в динамике произвольных и 

непроизвольных движений БМС человека, на примере движений конечности, 

можно объяснить с помощью гипотезы Н.А. Бернштейна  «повторения без 
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повторений» [4]. Наличие этой неопределенности в изучении поведения 

гомеостатических систем существенно осложняет изучение подобных биосистем с 

помощью математической статистики [3, 58]. Необходимо более детально изучать 

подобные сложные биосистемы, в том числе для разработки методов анализа, 

визуализации и алгоритмов, способных качественно воспроизводить хаотическую 

динамику произвольных и непроизвольных движений человека. 

Характерные примеры временной развертки выборок непроизвольных 

движений представлены на рисунке 1.1, они иллюстрируют и подтверждают 

гипотезу Н.А. Бернштейна «повторения без повторений». На рисунке 1.1а 

представлена серия треморограмм (ТМГ) дискретных сигналов, полученных 

подряд от одного испытуемого в неизменном гомеостазе. На рисунке 1.1b 

представлены ТМГ этих же дискретных сигналов, представленных в виде кривых, 

значения которых соединены отрезками для эффективной визуальной оценки 

движения конечности. Аналогично на рисунке 1.2a представлены треморограммы 

дискретных сигналов того же испытуемого под воздействием груза массой 300 

грамм, и на рисунке 1.2b эти же треморограммы, на которых значения соединены 

отрезками. Следует подчеркнуть, что для более эффективного отображения 

движения в дальнейшем на всех иллюстрациях движений конечности дискретных 

сигналов будет использоваться указанная нотация. Необходимо отметить, что при 

статистическом анализе все регистрируемые выборки не принадлежат одной 

генеральной совокупности (подтверждение данного утверждения представлено 

более подробно во 2 главе). Соответственно, подобные сложные биосистемы 

являются уникальными и в рамках представлений И.Р. Пригожина [96] не могут 

быть объектами исследования детерминированного или стохастического подходов 

и теории детерминированного хаоса [25]. 
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Рисунок 1.1 – Временная развертка треморограммы испытуемого: а – дискретный 

сигнал, b – дискретный сигнал, представленный в виде кривой, значения 

соединены отрезками 

а 

   

b 

   

Рисунок 1.2 – Временная развертка треморограммы испытуемого под 

воздействием груза: а – дискретный сигнал, b – дискретный сигнал, 

представленный в виде кривой, значения соединены отрезками 

В известных научных работах И.Р. Пригожина [96, 97] продемонстрировано 

ограничение возможности изучать системы третьего типа (СТТ) в рамках 

детерминистских и стохастических подходов. К такому выводу подошел и 

нобелевский лауреат М. Гелл-Манн [87], который пытался сформировать описание 

сложных биосистем в рамках указанных подходов, но при этом у него возникали 

существенные сложности, на которые обращал свое внимание У. Уивер в 

фундаментальной научной работе о сложности живых систем [98]. 
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Проблемы теории сложных биосистем, глобальной неопределенности СТТ и 

невозможности описания сложных систем с помощью математической статистики 

составляют основу теории хаоса-самоорганизации (ТХС) [25]. В ТХС для сложных 

биосистем введены 5 особых принципов (свойств) [25]. Для сложных биосистем 

справедлив принцип кооперативности (компартментно-кластерная организация 

гомеостатических систем). Это означает, что подобные системы являются 

сложными, и динамика поведения этих систем не зависит от динамики поведения 

отдельных подсистем. Особенно это касается иерархических систем, где поведение 

иерарха должно создавать подобное поведение всех подсистем, находящихся на 

нижних уровнях. При такой организации вся система работает как единое целое. 

Этот 1-й принцип организации и функционирования сложных биосистем является 

главным системным принципом и успешно работает в общей теории систем. 

Представленный принцип дает возможность построить компартментно-

кластерную теорию биосистем [25], которая во многом послужила развитию 

теории хаоса-самоорганизации [24, 25, 65].  

Второй принцип: любая выборка, а не только конкретное значение 

x(t)=(x1,x2,…,xm)T вектора состояния системы (ВСС), не имеет информационного 

значения [65], т.е. каждая получаемая выборка уникальна. Для подобных 

биосистем невозможно повторить как начальное состояние вектора состояния x(t0), 

так и любую выборку xi(t). Можно получить подряд n выборок xi и большую часть 

выборок (83-98%) невозможно отнести к одной генеральной совокупности. С 

уникальными системами детерминистские и стохастические подходы не работают, 

это отмечали и И.Р. Пригожин [96], и Р. Пенроуз [95]. 

Третий принцип ТХС заключается в особой и непрерывной эволюции 

сложных биосистем, что не характерно для физических или технических систем. 

Следует подчеркнуть, что эта эволюция протекает в рамках хаоса и 

самоорганизации, а для любых биосистем она имеет телеологичный характер. 

Наличие цели (телеологический принцип) подчеркивает и М.Б. Менский [33], когда 

говорит о живых системах (физика чаще ищет причины возникновения процесса, а 

в живых системах важна цель процесса). 
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Эволюция биосистем имеет направленный характер, и она закономерна. Это 

четвертое свойство сложных биосистем (телеологичность эволюции 

гомеостатических систем) [25]. Необходимо отметить, что свойство эволюции 

(третий принцип) и телеологичность характерны именно для сложных живых 

систем. 

Гомеостатическим системам свойственен 5-й принцип, который применим 

только к сложным биосистемам. Это выход за пределы не только 3-х σ, но и  

10-ти σ, 20-ти σ и более. Это свойство можно продемонстрировать на примере 

сердечно-сосудистой системы. В среднем у человека сердце совершает 60 ударов в 

минуту, т.е. период сокращения сердца T=1 сек. [25]. При этом у многих людей 

стандартное отклонение будет σ=0,1 сек., т.е. 10% от периода T. Существуют 

медицинские методы задержки, остановки сердцебиения, например, на 10 секунд. 

Очевидно, что эта пауза τ=10 сек. по отношению к σ=0.1 сек. составляет 100-

кратное различие, т.е. τ/σ=100, и это намного превышает известное 3σ. Вероятность 

такого события очень мала, но само это событие можно воспроизвести 

в физиологии сердечно-сосудистой системы человека. Живые системы допускают 

в своих процессах превышение 10 или 20 σ [25]. 

Необходимо сразу отметить, что представленные особые свойства сложных 

биосистем и особенности поведения динамики СТТ в целом обеспечивают 

понимание понятия «гомеостаз». Это понятие трудно описать в детерминистском 

плане (𝑑𝑥/𝑑𝑡 =  0) или в стохастическом подходе (неизменность 𝑓𝑖(𝑥𝑖) для всех 

компонент 𝑥𝑖 вектора состояния системы (ВСС)) в фазовом пространстве 

состояний (ФПС). Такое утверждение доказывает приведенный ранее пример 

(рисунок 1.1). Таким образом, невозможно описывать подобные системы в рамках 

детерминированного хаоса [52], о котором говорили  

М. Гелл-Манн [87], Д.А. Уилер [99, 100] и И.Р. Пригожин [97]. Сложность 

биосистем обусловлена наличием особой динамики изменения параметров 

подсистем и совершенно другим пониманием стационарных режимов живых 

систем. 
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Динамический хаос – явление в теории динамических систем, при котором 

поведение нелинейной системы выглядит случайным, несмотря на то, что оно 

определяется детерминистическими законами. Причиной появления хаоса является 

неустойчивость по отношению к начальным условиям и параметрам. Малое 

изменение начального условия со временем приводит к сколь угодно большим 

изменениям динамики системы. 

В связи с тем, что начальное состояние физической системы невозможно 

задавать абсолютно точно, то начальные условия необходимо рассматривать в виде 

некоторой (пусть и очень маленькой) области. При движении системы в некоторой 

ограниченной области пространства состояний экспоненциальная расходимость 

близких орбит со временем однозначно приведет к перемешиванию начальных 

точек по всей области. После такого перемешивания бессмысленно говорить 

о состоянии сложной системы. 

Для подтверждения отличия детерминированного хаоса от хаоса живых 

систем можно представить характерный пример (рисунок 1.3). На рисунке 1.3а 

представлен классический пример детерминированного хаоса по Лоренцу, а на 

рисунке 1.3b представлен фазовый портрет движения вектора состояния 

биосистемы. Из-за особенности движения ВСС визуальное восприятие облака 

точек осложнено, поэтому для более эффективного визуального анализа и оценки 

дискретные точки xn с точкой xn+1 объединены кривыми (рисунок 1.3с). Это 

позволяет визуально определить траекторию движения в фазовом пространстве от 

xn к xn+1, которое при такой оценке имеет явно выраженную структуру. 

Руководствуясь аналогичными соображениями в дальнейшем все фазовые 

портреты будут представлены в виде кривой. Как видно из этого рисунка, в 

детерминированном хаосе все-таки существует некоторая закономерность в 

движении его вектора, т.е. зная точное начальное состояние x(t0), можно 

воспроизвести его дальнейшее перемещение (промежуточное состояние x(t) или 

конечное состояние x(tk)). Причем при изменении начального состояния траектория 

https://dic.academic.ru/dic.nsf/ruwiki/1254099
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тоже будет изменяться, но ее все равно можно рассчитать при условии точной 

фиксации начального состояния.  

 
  а b с 

Рисунок 1.3 – Фазовые портреты состояний системы: а – детерминированного 

хаоса; b – хаоса живых систем (дискретный вид); с – хаоса живых систем 

(соединенные точки движения вектора состояния системы x(t)=(x1,x2)
T) 

При изучении динамики биосистемы такое невозможно. Задать начальное 

положение x(t0), вычислить промежуточное состояние x(t) или конечное состояние 

x(tk) не получится. Таким образом, живые системы являются непрогнозируемыми 

системами в рамках детерминированного хаоса. Траектория движения ВСС 

непредсказуема. Вектор состояния системы живых организмов не может двигаться 

по фиксированной траектории. 

Для демонстрации отсутствия прогнозируемости и хаотической 

изменчивости параметров биосистемы представлен рисунок 1.4. На этом рисунке 

1.4 представлены три квазиаттрактора, построенные по трем выборкам: рисунок 

1.4a − ТМГ для испытуемого в спокойном состоянии, рисунок 1.4b − ТМГ 

испытуемого при удержании груза и рисунок 1.4c – квазиаттрактор для выборки, 

полученной на генераторе случайных чисел. Если же строить аналогичные фазовые 

плоскости для других выборок, но в тех же состояниях, получится, что для 

реальных выборок ограниченные области на фазовых плоскостях будут 

варьироваться, но для выборок, полученных на генераторе случайных чисел, такой 

флуктуации не будет. Из этого следует, что направление движения конечности 

человека непрерывно меняется. Следует обратить внимание и на то, что два разных 

состояния имеют уникальные траектории движений ВСС как в спокойном 

состоянии испытуемого (рисунок 1.4а), так и при удержании груза (рисунок 1.4b). 

При этом наблюдается некоторая закономерность в размере ограниченной области, 

в которой движется вектор x(t)=(x1, x2)
T. При удержании груза размер такой 
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ограниченной области, в которой движется ВСС, значительно больше, чем в 

спокойном состоянии.  

 
 а b c 

Рисунок 1.4 – Фазовые траектории движения вектора состояния системы:  

а – испытуемого, находящегося в спокойном состоянии; b – испытуемого, 

удерживающего груз; c – модельные данные, полученные на генераторе 

случайных чисел 

На рисунке 1.4c представлен квазиаттрактор, построенный на основе 

выборки, полученной на генераторе случайных чисел. Этот генератор был настроен 

таким образом, чтобы случайные числа генерировались из заданного интервала, 

причем интервал генерации выбран по усредненному значению максимумов и 

минимумов реальных выборок треморограмм. Следует обратить внимание на 

деление осей координат: для модельных данных ось ординат отличается от 

реальных данных, т.к. из равномерного распределения нет возможности ее 

корректировать за счет изменения настроек модели, на которой производилась 

генерация. Это еще один пример того, что хаос живых систем существенно 

отличается от детерминированного хаоса. 

Приближение к пониманию гомеостаза и доказательству уникальности 

биосистем существенно помогли первые предпосылки Клода Бернара (1813-

1878 гг.), который при описании живых систем выделял особое состояние живого 

организма, и это особое состояние не зависит от окружающей среды обитания. 

Основные идеи этой теории представлены в его научной работе «Введение в 

экспериментальную медицину» [84]. В этой книге Бернар отмечал: «Постоянство 

или стойкость внутренней среды, гармонический набор процессов, являются 

условием свободной жизни организма» [84]. Стоит обратить внимание, что Бернар 

не просто так ввел два понятия как одно целое «постоянство как стойкость». В 
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гомеостазе наблюдается изменчивость или непостоянство ВСС. Это подтверждает 

целый ряд научных публикаций по данному направлению [7, 8, 20, 41, 42, 43, 57, 

79]. 

Проводя исторический экскурс, необходимо упомянуть еще одного 

знаменитого ученого – У.Б. Кеннона (1871-1945). При анализе висцеральных 

функций организма и целого ряда нейрогуморальных процессов У.Б. Кеннон ввел 

относительно новое понятие для физиологических процессов – «саморегуляция». 

В известном научном труде «Мудрость тела» [85] он впервые использовал новое 

понятие «гомеостазис» и расширил это понятие до общих кибернетических 

рубежей. Позднее У.Р. Эшби (1903-1972) уже применял понятие «гомеостазис» ко 

всем сложным биосистемам, которые находятся в динамическом равновесии. 

Также необходимо упомянуть знаменитого ученого У. Уивера [98], который 

в 1948 г. ввел новое понятие о трёх типах систем. 

Стоит обратить внимание на то, что У.Б. Кеннон понимал неустойчивость 

сложных систем: «… у живых существ, включая, возможно, мозг, нервы, сердце, 

легкие, почки, селезенку, действующие совместно (взаимодействующие), … я 

предложил особое определение этих состояний, гомеостазис. Это слово не 

предполагает что-либо постоянное или какое-то застойное явление. Оно означает 

условие, которое может изменяться, но которое относительно постоянно» [85]. 

Понятие «относительно постоянно» до сих пор так никем и не было расшифровано, 

но именно это понятие легло в основу при изучении сложных биосистем в ТХС [65, 

43].  

В приведенном историческом обзоре положения дел в области изучения 

сложных систем необходимо обратить внимание и на теорию функциональных 

систем организма (ФСО) человека, которую разрабатывал П.К. Анохин [2]. 

Несмотря на различные подходы известных ученых, гомеостаз изучается с позиции 

классической математической статистики, а это ограничивает возможность 

исследований т.к. в ТХС для таких систем введены неопределённости 1-го и 2-го 

типов. Неопределённость 1-го типа заключается в том, что гомеостаз организма 
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человека изменился (например, под внешним воздействием среды), а с помощью 

математической статистики эти изменения установить не удается. 

Неопределенность 2-го типа возникает, когда математическая статистика 

установила изменения гомеостаза человека, но на самом деле он не изменился.  

В историческом развитии понятия «гомеостазис» оставалась за гранью 

изучения не менее важная проблема свойств (особых) гомеостатических объектов 

(С.П. Курдюмов [31] и В.С. Степин [54, 55] обозначают их как человекомерные 

системы). Стоит упомянуть, что к этим особым свойствам К. Бернар [84] и 

У.Б. Кеннон [85] относили: гетерогенность сред, возможность саморегулирования 

и развития, наличие особых механизмов, которые могут поддерживать градиенты 

в процессе свободной жизни [37]. 

При детальном изучении гомеостаза человека должно быть понимание 

жесткой необходимости удержания определенных уровней устойчивых потоков 

энергии. Таким образом, гомеостазис человека однозначно будет требовать 

создания искусственных потоков в окружающей среде обитания. Иначе это 

приведет к термодинамическому равновесию, что означает гибель живой системы 

[25]. При этом главной особенностью сложных биосистем является постоянная 

изменчивость или хаотическое движение ВСС 𝑥(𝑡) в ФПС и его эволюция. Эта 

эволюция проявляется в непрерывном движении области ФПС, внутри которой 

движется ВСС и непрерывно изменяет траекторию движения [25, 54, 65, 68]. 

Одна из основных проблем изучения СТТ проявляется в виде 

неопределенности, которая легла в основу ТХС и в разработку методов и 

алгоритмов анализа сложных биосистем. Эта неопределённость имеет 4 

фундаментальных направления: неопределённость стационарных режимов, два 

типа неопределённости (1-й и 2-ой типы), неопределённость, возникающая с 

течением времени, и неопределённость определения СТТ [25]. Для раскрытия этих 

неопределенностей требуется признание принципов функционирования сложных 

биосистем и создание математического обеспечения для их описания, которое 

позволит оценивать состояния сложных живых систем и разработать модель 



25 

 
 

динамики поведения отдельных подсистем [24]. На это также обращали свое 

внимание ученые Г.Р. Иваницкий [26, 27, 92] и В.В. Смолянинов [56], все эти 

работы посвящены систематизации признаков жизни. 

Наиболее важное отличие СТТ от объектов математической статистики 

заключается в том, что произвольно повторить начальные параметры 𝑥(𝑡0) ВСС 

в виде 𝑥 = 𝑥(𝑡) невозможно. В m-мерном ФПС невозможно попасть в точку 𝑥(𝑡0) 

при 𝑡 ≠ 𝑡0. Начальное значение 𝑥(𝑡0) в 𝑡0 у СТТ уникально и его можно 

воспроизвести в пределах ограниченного квазиаттрактора (КА) [29, 35, 58]. 

Сложные биосистемы являются уникальными системами с уникальной динамикой 

поведения ВСС 𝑥(𝑡). Для таких систем нет задачи Коши т.к. 𝑥(𝑡0) ≠ 𝑐𝑜𝑛𝑠𝑡, и их 

невозможно описывать с помощью функционального анализа [29, 35]. 

1.2 Статистическая неустойчивость параметров функциональных 

систем организма человека и стационарные режимы биосистем 

Свойства неустойчивых биосистем основаны на статистической 

неустойчивости параметров любых гомеостатических систем. К последним 

относятся любые регуляторные подсистемы, у которых отсутствуют стационарные 

режимы в виде dx/dt=0 и нет сохранения статистических функций распределения 

f(x) для подряд получаемых выборок, их АЧХ, автокорреляций A(t) и других 

характеристик. Фактически ставится вопрос о возможности существования 

стационарных режимов (точек покоя в виде dx/dt=0) у живых систем [24, 25].  

До настоящего времени считалось, что регуляторные, динамические системы 

в биологии и медицине можно описывать в рамках математической статистики или 

хотя бы в рамках моделей динамического хаоса. Имеются также многочисленные 

попытки описывать такие особые СТТ в рамках фрактальной размерности, 

мультифракталами и т.д. В последнем были убеждены два нобелевских лауреата 

(И.Р. Пригожин [88] и М. Гелл-Манн [87]), а также Д.А. Уилер [99]. Оказалось, что 

многие параметры регуляторных систем человека, в том числе биомеханической 

системы при организации движения конечности, не могут генерировать 
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инвариантность мер или стремление автокорреляций A(t) к нулю с течением 

времени [29]. Сложные биосистемы имеют особый хаос в виде непрерывно 

изменяющихся функций распределения f(x). Если для СТТ нет выполнения А(t)→0, 

константы Ляпунова меняют знак непрерывно, нет инвариантности мер (нет 

свойства перемешивания), то хаос СТТ не описывается аттрактором Лоренца. 

Динамический хаос Лоренца не может моделировать динамику поведения СТТ. 

В этом случае возникает проблема неустойчивости. Для сложных биосистем все-

таки имеются некоторые стохастические закономерности, но особый хаос этих 

систем не является объектом современной науки (именно это высказал 

И.Р. Пригожин в своей известной работе [96]). Именно это пытался представить в 

своих публикациях И.И. Горбань [12, 89], но проблема выходит за рамки 

неустойчивости при больших интервалах наблюдения. Речь идет о неустойчивости 

гомеостатических систем, к которым относятся не только биосистемы [28, 36]. 

Процедура расчёта статистических величин и их оценки может быть 

выполнена, если имеется выполнение двух принципиальных условий. Во-первых, 

процесс не должен участвовать в эволюции своих параметров, в противном случае, 

все величины будут непрерывно изменяться по определенным законам или 

хаотически, но без флуктуаций вокруг некоторых средних величин [25]. В этом 

случае выборочное среднее и выборочные моменты более высокого порядка будут 

закономерно и целенаправленно изменяться, например, в сторону их увеличения 

или уменьшения [25]. По этой причине трудно использовать методы 

математической статистики для анализа статистической устойчивости процессов 

живых систем, в частности для биомеханических систем при изучении движений 

конечности человека [65]. 

Во-вторых, необходимо подтвердить наличие параметрического 

распределения, для которых возможен расчет статистических параметров функций 

распределения f(x). Установлено, что для любого произвольного или 

непроизвольного движения конечности человека при повторе их измерения 

получаются выборки x1, x2, …, xi, которые только в 1-2% подчиняются закону 
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параметрического распределения [37]. В остальных 98-99% случаев наблюдаются 

непараметрические распределения. Одновременно с учётом возможности 

эволюции сложных биосистем, задача оценки динамики поведения параметров 

этих биосистем усложняется многократно т.к. сами f(x) и другие характеристики 

могут хаотически изменяться. Именно это выводит такие системы за пределы 

традиционной математической статистики. Однако отказываться от методов 

математической статистики в изучении биосистем рано и нецелесообразно [23, 35, 

58]. 

Представленную проблему статистической неустойчивости в параграфе 1.1 

еще более усугубляет проблема однородности получаемых выборок параметров 

движения конечности человека [16, 78]. С проблемой однородности получаемых 

параметров сталкиваются ученые, которые занимаются исследованиями в области 

естественных наук (например, биологи, экологи, медики и др.). В медицине, как 

правило, при формировании групп испытуемых (здоровых или больных людей) 

опираются на такие данные, как пол, возраст, заболевание и т.д. При этом вопрос 

об оценке однородности групп не может быть решен с помощью существующих 

критериев в рамках детерминированных или стохастических подходов. Такой 

подход не может продемонстрировать объективные результаты исследований т.к. 

неоднородность группы испытуемых может привести к тому, что экспериментатор 

получит некорректные результаты. 

Также следует отметить, что основоположник термодинамики 

неравновесных систем (ТНС) И.Р. Пригожин не оставлял попытки в описании 

сложных биосистем в рамках таких понятий, как энтропия (H), скорость прироста 

энтропии (в виде 𝑃 = 𝑑𝐻/𝑑𝑡), устойчивость стационарных состояний сложных 

биосистем и эволюция СТТ. Для систем доказан принцип минимального 

производства H (в виде 𝑑𝑃/𝑑𝑖 ≤ 0), т.е. для энтропии скорость изменения 𝑃 =

𝑑𝐻/𝑑𝑡. Однако для нелинейных процессов и особых сложных биосистем это 

неравенство может не выполняться, и в этом случае общий критерий эволюции 

термодинамических биосистем Пригожина-Гленсдорфа (в виде 𝑑𝑥𝑃/𝑑𝑡 ≤ 0) тоже 
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может не выполняться [23, 62, 80]. В этом случае возникает неопределенная задача 

в оценке эволюции (направления и скорости этой эволюции) для нелинейных 

сложных биосистем. 

На данный момент остаются открытыми вопросы определения для сложных 

биосистем обобщенных сил и потоков, эффективно использующихся в ТНС. 

Согласно доказанной теореме Пригожина-Гленсдорфа для термодинамического 

равновесия энтропия всегда должна быть максимальной (т.е. 𝐻 → 𝑚𝑎𝑥 ), а её 

скорость производства (𝑃 = 𝑑𝐻/𝑑𝑡) − минимальной в стационарных состояниях. 

В рамках детерминизма или стохастики нельзя говорить о стационарности 

сложных биосистем для случаев когда функции распределения 𝑓(𝑥) меняются от 

выборки (гомеостаз 𝐺1) к выборке (к аналогичному состоянию 𝐺1) [10]. 

Если СТТ невозможно отнести к описываемым аналитически (в 

традиционном смысле) линейным или нелинейным системам, то появляется 

проблема оценки эволюции и устойчивости в новой интерпретации для таких 

биосистем. Экспериментальное определение обобщенных сил и потоков для 

сложных биосистем сложно провести и поэтому прямые термодинамические 

расчеты для таких систем выполнить весьма затруднительно. Один из вариантов 

аналитических решений поставленной задачи − это прямой расчет значений 

энтропии и их анализ [80].  

Для нелинейных систем в стационарном режиме производство энтропии не 

всегда должно быть минимальным. В ТНС И.Р. Пригожина [96], устойчивые 

стационарные режимы установлены как «текущее равновесие» и приводится 

график для его описания (рисунок 1.5) [96]. 



29 

 
 

 

Рисунок 1.5 – Пример нелинейной системы и ее стационарные состояния:  

xk
(1) – равновесие в текущий момент времени; xk

(2) – неустойчивое стационарное 

состояние 

Однако в СТТ координаты 𝑥𝑘
(1)

 и 𝑥𝑘
(2)

 могут непрерывно и хаотически 

изменяться без изменения термодинамических сил или внешних (окружающих) 

условий. Это связано с внутренними перестройками в системах регуляции ФСО 

человека [25]. Вся структура связей в системе управления ФСО находится в 

непрерывном и хаотическом изменении. Подобная структурная организация 

происходит в нейроэмуляторах [47] если хаотически и непрерывно изменять 

начальные веса Wio признаков (например, произвольно задавать из хаотического 

интервала (0, 1)) или подобная хаотическая динамика (в виде моделей тремора) 

получается при хаотической генерации параметров модели в компарментных 

моделях тремора [24]. 

Согласно теореме о производстве H в открытой системе и с не зависящими 

от времени краевыми условиями для бесконечно малых вариаций производство Р 

энтропии должно удовлетворять условиям минимума ее скорости изменения [88]:  

 𝑃 = 𝑑𝐻/𝑑𝑡 = 𝑚𝑖𝑛. (1) 

При равновесии системы (в этом случае условие изменения скорости 

производства энтропии и вариаций Р должно выполняться) в виде 2-го условия по 

приросту:  

 𝑑𝑃 = 0. (2) 
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В гипотезе линейности всех исследуемых процессов на малых интервалах 

времени t можно выполнить проверку этого требования (2) для процессов с 

изменением параметров тремора (ТМГ) и теппинга (ТПГ) у здоровых и больных 

людей (например, болезнью Паркинсона), с сокращением мышц 

(электромиография (ЭМГ) при разных усилиях сокращения мышц), с изменением 

биопотенциалов электроэнцефалограмм (ЭЭГ) у здоровых и больных (например, 

эпилепсией) людей под внешним воздействием. Во всех указанных случаях можно 

выполнить проверку динамики поведения скорости P изменения энтропии 

Шеннона, которая аналогична (эквивалентна с точностью до констант) энтропии 

Больцмана или термодинамической энтропии S. В целом общее утверждение 

о равенстве этих трех видов энтропий остается больше общепринятым 

утверждением чем доказанной теоремой, но для всех известных процессов оно 

выполняется, и поэтому такое утверждение считается верным.  

Если эти условия (в виде (1) и (2)) не будут выполняться, то можно говорить 

о потере линейных свойств изучаемой биосистемы или о нарушении 

независимости от времени краевых условий (что более реально для СТТ, учитывая 

их квазилинейные свойства на малых интервалах времени t), или вообще о выходе 

биосистем за пределы ТНС И.Р. Пригожина. Одновременно при этом 

в диссертационном исследовании проводилась проверка и условия эволюции когда 

должно выполняться условие 𝑑𝐻 ≤ 0. Во многих научных работах подчеркивается, 

что ТНС весьма сложно применять к нелинейным живым системам, у которых 

практически невозможно выделить понятие «силы» (термодинамической силы 𝑋𝑠) 

и термодинамического потока (скорости реакций) из-за большой гетерогенности и 

неопределенности самого понятия «силы» [23, 96]. 

Обычно величина 𝑋𝑠 оценивается по результатам управления динамикой 

компонентов ВСС, подразумевая, что известное линейное выражение: 

 𝐽𝑟 = ∑ 𝐿𝑟𝑠𝑋𝑠
𝑘
𝑆=1  (3) 

будет справедливо для любых сложных биосистем. Необходимо отметить, что 

понятия «стационарное состояние» или «эволюция СТТ» приобретают другой 

смысл, отличный от детерминистского или стохастического [58].  
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Согласно ТНС любое эволюционное движение сложной живой системы в 

силу условия (2) должно двигаться в сторону уменьшения отклонения P от 

стационарного состояния с минимальным производством энтропии. Опираясь на 

этот тезис, возможно рассматривать отклонения от гомеостаза с помощью расчета 

энтропии и измерения ее скорости изменения, т.е. 𝑃 = 𝑑𝐻/𝑑𝑡. Таким образом, 

можно ожидать, что при оздоровительных мероприятиях (переход от патогенеза 

к нормогенезу) значения энтропии для параметров 𝑥(𝑡), которые реально 

описывают ФСО человека, при возмущении должны уменьшаться. Такие эффекты 

укладываются в понятие перехода ФСО от патогенеза к нормогенезу (или 

экологической адаптации) [45, 46], когда после длительных внешних воздействий 

наблюдается снижение энтропии. Так должно происходить, если сложные 

биосистемы можно было бы описывать в рамках термодинамики и ТНС 

И.Р. Пригожина.  

1.3 Метод оценки состояний сложных биосистем в рамках теории хаоса-

самоорганизации 

В рамках ТХС возможно изучать движение ВСС в ФПС в рамках расчета 

параметров КА. Этот метод является аналогом принципа неопределенности 

Гейзенберга в квантовой механике [35]. Для начала необходимо заострить 

внимание на самом определении КА. Квазиаттрактор [58] – ненулевое 

подмножество Q фазового n-мерного пространства D (𝑙 = 1,𝑚) динамической 

биологической системы, являющееся объединением всех значений 𝑓𝑖(𝑡) состояния 

биологической динамической системы на конечном отрезке времени [𝑡𝑗 , … , 𝑡𝑒] ( 

𝑗 ≪ 𝑒, где 𝑡𝑗 – начальный момент времени, а 𝑡𝑒 – конечный момент времени 

состояний 𝑥(𝑡)): 

 𝑄 = ⋃ ⋃ 𝑓𝑙(𝑡𝑖)
𝑒
𝑖=𝑗

𝑚
𝑙=1 , Q≠0, Q𝜖D, (4) 

где m – размерность фазового пространства состояний. 
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Основной мерой КА является объем 𝑉𝐺 области Q m-мерного фазового 

пространства, внутри этого m-мерного пространства заключены значения 𝑓(𝑡𝑖) 

состояния биосистемы в промежутке времени [𝑡𝑗 , … , 𝑡𝑒]: 

  𝑉𝐺 = 𝑚𝑒𝑠(𝑄) = ∏ (𝑚𝑎𝑥 (𝑓𝑙(𝑡𝑗),… ,
𝑚
𝑖=1 𝑓𝑙(𝑡𝑒)) − 𝑚𝑖𝑛 (𝑓

𝑙(𝑡𝑗), … , 𝑓
𝑙(𝑡𝑒))).  (5) 

Предлагаемая мера 𝑉𝐺 может характеризовать разные состояния (например, 

нормы и патологии, произвольное и непроизвольное движение), экологический 

стресс (например, гипотермия) и состояние психофизиологических функций 

организма человека (например, ощущение нагрузки). Параметры КА показывают 

существенные изменения состояний там, где классические методы и подходы 

математической статистики не могут выявить статистически достоверные отличия. 

В этом случае КА служат эффективной мерой в оценке изменения состояния 

организма (например, при проведенных лечебных мероприятиях, при оценке 

физических нагрузок или при идентификации двигательного акта человека). 

Расчет параметров КА для сложных биосистем тесно связан с некоторыми 

подходами квантовой механики [25, 35]. СТТ ограничены в m-мерном фазовом 

пространстве: 

 ∏ ∆𝑥𝑖
𝑚
𝑖=1 ≥ 𝑉𝐺

𝑚𝑖𝑛, (6) 

где VG
min – это минимальный m-мерный фазовый объём, в рамках которого 

движется ВСС. Это неравенство подобно принципу Гейзенберга в квантовой 

механике [35]. Для фазовых координат (x1 – перемещение и x2 – скорость 

перемещения x1) в физике элементарных частиц установлены ограничения 

принципа неопределённости Гейзенберга в виде:  

 ∆𝑥1 ∗ ∆𝑝 ≥ ℎ/4𝜋, (7) 

где 𝑝 = 𝑚𝑣 – импульс частицы. Если m (массу) перенести в другую часть 

неравенства, то отношение (7) будет иметь вид неравенства (6), где роль VG
min будет 

играть величина ℎ/4𝜋𝑚 = 𝑍, т.е. получается: 

 ∆𝑥1 ∗ ∆𝑥2 ≥ 𝑍 = ℎ/4𝜋𝑚. (8) 

Величина Z несет такой же смысл, что и VG
min, т.к. описывает минимальный 

объём двухмерного фазового пространства вектора (x1, x2)
T, который ограничивает 
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изменение фазовых координат x1 и x2. В квантовой механике неравенство (8) может 

нести смысл «индивидуального» неравенства для каждой отдельной частицы т.к. в 

правой части неравенства есть масса, которая так же зависит от скорости, и в этом 

случае Z станет «индивидуальной» величиной. С этой же позиции неравенство (6) 

также является индивидуальным, специфичным для каждого испытуемого. Более 

того, VG
min характеризует и «индивидуальную» специфику физиологического или 

психического состояния испытуемого. В итоге VG
min берет на себя роль 

универсальной константы для любого испытуемого, находящегося в неизменных 

условиях наблюдения, и эта «индивидуальная» константа является 

индивидуальной для каждого испытуемого, как и Z в (8) для каждой элементарной 

частицы с массой m и скоростью v. 

Для биосистем имеется еще одно существенное отличие от объектов физики 

элементарных частиц [35]. Так как сложные биосистемы являются 

самоорганизующимися, то динамика их поведения такова, что x(t) движется в 

замкнутом пространстве некоторого объёма ФПС, т.е. неравенство (6) примет вид:  

 𝑉𝐺
𝑚𝑎𝑥 ≥ ∏ ∆𝑥𝑖

𝑚
𝑖=1 ≥ 𝑉𝐺

𝑚𝑖𝑛. (9) 

Следует отметить, что чаще всего используется именно левая часть 

представленного неравенства (9) для любых гомеостатических систем в виде:  

 𝑉𝐺
𝑚𝑎𝑥 ≥ ∏ ∆𝑥𝑖

𝑚
𝑖=1 , (10) 

т.к. самоорганизация ограничивается движением ВСС в ФПС не только слева, но и 

справа, то проиллюстрировать такое утверждение проще всего на примере БМС. В 

этом случае всегда будет наблюдаться особая ограниченная область фазового 

пространства в виде КА внутри которой выполняется непрерывное движение 

конечности с хаотической динамикой. Параметры КА – это характеристика 

физиологического, психического, биохимического состояния живого объекта. 

Область такого ФПС используется в медицине для оценки нормы и патологии для 

одного пациента и для оценки состояния групп пациентов.  

В ТХС свойство «мерцания» является базовым принципом организации и 

функционирования СТТ [25, 35]. Более того, характер и направление сдвига 
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координат точек «текущего равновесия» не зависит от предыдущих состояний 

биосистем, т.е. это чисто хаотический процесс, но этот хаос не является 

детерминированным хаосом (ранее приводились характерные примеры на рисунке 

1.3 и рисунке 1.4). Возникает ситуация, когда имеется не просто несколько разных 

устойчивых состояний, а их число бесконечное, и они заключены в некоторой 

ограниченной области КА, внутри которой комбинируются все статистические 

функции fj(x) для всех j-х выборок x(t) на каждом интервале времени tj [25, 35]. На 

выходе получается хаотический набор выборок [35, 58]. Для функций 

распределения fj(x) сложных биосистем это демонстрируется при построении 

матриц парных сравнений выборок, когда имеется разное число пар выборок, 

которые можно отнести к одной генеральной совокупности [73]. 

1.4 Аналитический обзор традиционных моделей биомеханических 

систем 

При разработке метода построения математического и алгоритмического 

обеспечений для воспроизведения динамики движений конечности человека 

изучались работы А. Хилла [72]. Само уравнение А. Хилла имеет вид:  

  (P+a)(υ+b)=b(P0+a), (11) 

где υ – скорость сокращения мышцы при нагрузке P, P0 – максимальное значение 

изометрической силы при тетаническом раздражении всей мышцы, а и b – 

эмпирические величины. Это уравнение способно описать большое количество 

видов движений при известной прилагаемой силе P или скорости ускорения υ. 

В работе были приведены характерные примеры того, что тремор и теппинг не 

могут продемонстрировать устойчивость значений этой силы или скорости, или 

ускорения с необходимым постоянством и нет возможности прогнозировать эти 

величины (параграф 1.1, рисунок 1.1 и рисунок 1.3). В связи с тем, что для каждого 

движения, осуществляемого человеком сознательно или бессознательно, нет 

возможности на практике измерить эту силу и определить момент времени Δt 

переключения режима движений (концентрическое или эксцентрическое), и было 

принято решение рассматривать движение любых подсистем БМС по некоторой 
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траектории в коридоре по подобию поиска Ф-решений (решений А.Ф. Филиппова) 

[18].  

Для понимания принципов построения моделей описания динамики движений 

биомеханической системы человека в области мышечных сокращений стоит 

обратить внимание и на теории Э. Хаксли [90, 91] и В.И. Дещеревского [21]. Хотя 

теория Э. Хаксли является достаточно упрощенной и в настоящее время не 

соответствует данным о молекулярной структуре мостика, Э. Хаксли смог 

получить соотношение между нагрузкой P и скоростью скольжения нитей υ, 

совпадающее уравнению А. Хилла [72]. Далее теорию Э. Хаксли [90, 91] несколько 

упростил и усовершенствовал В.И. Дещеревский [21]. Его теория подразумевала 

трехстадийный кинетический цикл (свободное состояние мостика и два замкнутых 

– тянущий при x>0 и тормозящий при x<0). При решении задачи по 

воспроизведению динамики движений биомеханической системы человека можно 

использовать теорию скользящих нитей, но ее трудно реализовать в рамках 

гипотезы Н.А. Бернштейна «повторения без повторений» [4]. В основную задачу 

диссертационной работы не входит математическое моделирование биофизики 

отдельного мышечного волокна. Методы и алгоритмы должны воспроизводить 

динамику движения на сознательном и бессознательном уровнях. 

1.5 Биологические основы биомеханической системы человека 

Прежде чем переходить к рассмотрению метода построения математического 

и алгоритмического обеспечений, необходимо разобраться с минимальными 

основами: как работают мышцы и как происходит регистрация движений 

конечности человека. Любое движение человека начинается с возбуждения 

двигательной единицы, расположение и количество связей которой зависит от 

размера и функции мышцы. Соответственно, мышечный пучок состоит из 

определенного набора мышечных волокон разных двигательных единиц. 

Структура мышечного пучка неоднородна, она состоит из мышечных волокон 3-х 

типов. Причем все типы равномерно распределены по всему пучку, и рядом могут 

находиться не более 3-х мышечных волокон одного типа [6, 66].  
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Чтобы определиться с концептуальной частью симуляционной модели, 

необходимо рассмотреть биологическую составляющую принципов работы мышц. 

БМС человека функционально связана с другими функциональными системами 

организма. Одним из основных элементов БМС является двигательная единица. С 

биологической точки зрения двигательная единица состоит из некой двигательной 

клетки, называемой мотонейроном, с ее аксоном и группы иннервируемых аксоном 

мышечных волокон. Все элементы двигательной единицы функционально 

одинаковы. Одиночные мышечные волокна подчиняются закону «все или ничего». 

Подпороговое раздражение не вызывает сокращение, а пороговое – вызывает 

максимально возможное сокращение. Таким образом, амплитуда мышечного 

сокращения не зависит от силы раздражения. В свою очередь, целый мышечный 

пучок закону «все или ничего» не подчиняется. Такая динамика мышечного пучка 

связана с тем, что мышечный пучок состоит из множества моторных единиц, 

обладающих разным порогом деполяризации. Схематически декомпозиция 

структуры мышечного пучка представлена на рисунке 1.6 [6, 66]. 

 

Рисунок 1.6 – Двигательные единицы скелетной мышцы и их типы: 1 – 

медленные, слабые, неутомляемые мышечные волокна. Низкий порог активации 

мотонейрона; 2 – промежуточный тип; 3 – быстрые, сильные, быстро утомляемые 

мышечные волокна. Высокий порог активации мотонейрона 
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Мышечное сокращение – ускорение мышцы, в результате которого оно 

приводит к выполнению какого-либо механического действия. Соответственно, 

мышечное сокращение обеспечивает способность организма к произвольным 

движениям. Следует отметить, что у человека присутствует и другой тип движений 

– непроизвольные. Осуществлять изучение динамики произвольных и 

непроизвольных движений человека можно как на основе экспериментальных 

данных, так и на основе анализа воспроизведенной динамики движений 

биомеханической системы человека, полученной с помощью систем 

моделирования с более глубоким погружением в механизмы взаимодействия 

подсистем. В процессе программной реализации математического и 

алгоритмического обеспечения можно наблюдать и такую составляющую 

системного анализа, как эмерджентность, при агрегировании различного рода 

подсистем в одной информационной среде.  

Основные принципиальные моменты биофизики мышечных сокращений, 

которые легли в основу метода построения математического обеспечения, были 

представлены выше. Далее необходимо разобраться непосредственно с механикой 

совершения двигательного акта и с тем, что считать двигательным актом, а что 

проявлением тремора. Как известно, тремор – это непроизвольное колебательное 

движение частей тела или всего тела, которые вызываются мышечным 

сокращением. Обычно тремор связывают с некоторой временной задержкой 

корректирующих афферентных сигналов. Соответственно, реализация движения и 

сохранения позы осуществляется за счет постоянной подстройки к некоторому 

среднему значению, такой процесс можно назвать самоорганизацией. По этой 

причине тремор БМС человека можно рассматривать на примере конкретной 

конечности, а выявленные закономерности распространить на всю БМС. 

Программная реализация симуляционной модели на основе разработанных 

математического и алгоритмического обеспечений тоже должна реализовать 

механизм самоорганизации. Воспроизведение двигательного акта (перемещение 

конечности из точки А в точку В) − это задача, при решении которой можно 

пренебречь некоторыми параметрами. Такой подход моделирования можно 
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реализовать, например, с помощью уравнения А. Хилла [72]. Воспроизведение 

динамики двигательного акта − задача другого уровня, так как в системе должны 

быть реализованы в информационной среде некоторые механизмы взаимодействия 

подсистем, которые в настоящее время до конца не изучены. При воспроизведении 

динамики движений БМС человека можно пренебречь структурой и механикой 

сокращений отдельных мышечных волокон, так как рассматривается 

непосредственно сокращение мышечного пучка в целом, а отдельные мышечные 

волокна, как уже было сказано ранее, подчиняются закону «все или ничего», т.е. 

мышечное волокно сокращается или нет. Для реализации математического и 

алгоритмических обеспечения решения задач по воспроизведению динамики 

движения подсистем БМС этой информации достаточно.  

На основе вышеизложенного, по сути своей, математического обеспечение 

симуляционной модели может быть разработано на основе поиска решений А.Ф. 

Филиппова при решении дифференциальных уравнений с разрывной правой 

частью. Еще раз необходимо отметить, что биологические системы находятся в 

непрерывном изменении. Эти изменения очень близки к решению 

дифференциальных уравнений с разрывной правой частью. Например, в случаях, 

когда при решении такого уравнения, попав при t=t1 на линию разрыва правой 

части системы дифференциальных уравнений, уже нет возможности с нее сойти, 

возникает вопрос о возможности продолжения решения при t>t1. Из определения 

решения А.Ф. Филиппова следует, что решение определенным образом 

продолжается вблизи линии разрыва. Линией разрыва в биологической системе 

выступает потенциальная траектория движения конечности в виде некоторого 

сгенерированного сигнала, который был послан по нервной сети организма 

определенным мышечным пучкам. Этот сигнал приводит к физическому 

перемещению конечности. В этой связи двигательный акт человека можно 

рассматривать как некоторую систему с запаздыванием при условии, что Δt→0. Как 

известно, потенциал действия отдельных мышечных волокон очень мал, только 

в совокупности мышечные волокна, объединенные в мышечный пучок, способны 

произвести физическое перемещение конечности в пространстве.  
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1.6 Основы теории дифференциальных уравнений с разрывной правой 

частью 

В настоящее время большое число задач при описании процессов в реальных 

системах базируются на теории дифференциальных уравнений с разрывной правой 

частью. Примеры таких задач можно встретить в механике, электротехнике, теории 

автоматического управления. Применение различных видов переключателей (реле) 

в системах автоматического управления приводит к тому, что требуется 

постоянное развитие теории дифференциальных уравнений с разрывной правой 

частью [67]. Различным вопросам при решении подобного уровня задач посвящены 

главы в книгах. Таким системам уделяется повышенное внимание. Существенно 

то, что многие утверждения классической теории дифференциальных уравнений 

справедливы и для уравнений с разрывной правой частью [67]. Сейчас, ввиду того, 

что были установлены некоторые особенности работы функциональных систем 

организма человека, в частности биомеханической системы на примере движений 

конечности человека, открывается возможность применения теории 

дифференциальных уравнений с разрывной правой частью для разработки метода 

построения математического обеспечения для решения задачи симуляционного 

моделирования динамики тех или иных параметров. 

Для начала необходимо изложить суть теории дифференциальных уравнений 

с разрывной правой частью и провести аналогии с работой ФСО человека. 

Известно, что решением в классической теории дифференциальных уравнений с 

непрерывной правой частью [67]: 

  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥)  (12) 

является функция x(t). Эта функция x(t) на определенном интервале имеет 

производную и удовлетворяет уравнение (12). Соответственно, для 

дифференциальных уравнений с разрывной правой частью такое определение 

неверно. Для примера можно представить рисунок 1.7 из книги А.Ф. Филиппова 

[67]. Таким образом, решение дифференциального уравнения: 

  
𝑑𝑥

𝑑𝑡
= 𝑠𝑔𝑛 𝑡  (13) 
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при t<0, 
𝑑𝑥

𝑑𝑡
=-1 и выражается формулой x=-t+c1, а при t>0, 

𝑑𝑥

𝑑𝑡
=1 и решение имеет 

вид x=t+c2 (рисунок 1.7а). Соответственно, руководствуясь требованием 

непрерывности при t=0, получится: 

  𝑥(0) = 𝑙𝑖𝑚
𝑡→−0

(−𝑡 + 𝑐1) = 𝑙𝑖𝑚
𝑡→+0

(𝑡 + 𝑐2), 𝑥(0) = 𝑐1 = 𝑐2.  (14) 

решение можно выразить как x(t)=|t|+c, а при t=0 производной 
𝑑𝑥(𝑡)

𝑑𝑡
 не существует. 

Второй характерный пример из [67] заключается в том, что при решении 

дифференциального уравнения вида: 

  
𝑑𝑥

𝑑𝑡
= 1 − 2𝑠𝑔𝑛 𝑥,  (15) 

получим при x<0, 
𝑑𝑥

𝑑𝑡
=3, решение x(t)=3t+c1, соответственно, при x>0, 

𝑑𝑥

𝑑𝑡
=-1 и 

решение будет иметь вид x(t)=-t+c2 (рисунок 1.7b). При возрастании t каждое 

значение дойдет до прямой x=0, а поле направлений не позволит решению 

двигаться ни вниз, ни вверх. При попытке продолжить решение по прямой, 

функция x(t) не удовлетворит уравнение (15) т.к. для нее x’(t)=0, а правая часть 

дифференциального уравнения при x=0 не равна 0 (1-2sgn 0=1≠0). 

 

  а b 

Рисунок 1.7 – Пример решений: а – уравнения (13); b – уравнения (15) 

В этой связи дифференциальные уравнения с разрывной правой частью 

требуют обобщений понятия решения. Существенно то, что в случаях, когда правая 

часть уравнения (12) непрерывна по x и разрывна по t, обычно можно обойтись 

обобщением понятия решения с помощью математических соображений. В 

случаях, когда правая часть разрывна по x, зачастую простейшие математические 

соображения оказываются бессильны. Решение подобных уравнений в этом случае 
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может быть определено с помощью предельного перехода с учетом физического 

смысла рассматриваемой задачи [67]. 

Если динамика параметров функциональных систем организма человека 

ведет себя непредсказуемо с позиций математической статистики (функции 

распределения непрерывно изменяются), то можно полагать, что эта динамика 

связана с разрывной правой частью по x (по аналогии поиска решений 

дифференциальных уравнений с разрывной правой частью, в которых правая часть 

не является непрерывной по x). Для понимания решения подобных уравнений 

необходимо рассмотреть их связь с дифференциальным включением. 

Следует обратить внимание на то, что использование решения как абсолютно 

непрерывной функции, которая почти всюду удовлетворяет уравнению, не всегда 

применимо для уравнений с разрывной правой частью на линии или поверхности S 

разрыва. Такое решение применимо в случаях, когда решение, с одной стороны, 

приближается к линии или плоскости S разрыва, а с другой − сходит, т.е. случай, 

представленный на рисунке 1.7а. Таким образом, решение существует всюду, за 

исключением точки пересечения когда решение не имеет производной. 

Согласно примеру, представленному на рисунке 1.7b, решение приближается 

к линии или плоскости S разрыва. Здесь подход к поиску решения имеет другой 

механизм т.к. заранее неизвестно, как продолжится решение, попав на линию или 

плоскость S разрыва. Соответственно, чтобы обеспечить существование и 

возможность продолжения решения, необходимо каким-либо образом изменить 

значение правой части уравнения или доопределить ее там, где эта правая часть 

была не определена. Существенно то, что необходимо определить решение, 

которое формировалось бы независимо от расположения линий или поверхностей 

Si разрыва. Приближаясь к пониманию поиска решения дифференциальных 

уравнений с разрывной правой частью, необходимо более детально заострить 

внимание на доопределении правой части. 

1.6.1 Общее определение решения дифференциальных уравнений с 

разрывной правой частью 

Рассмотрим уравнение или систему в векторной форме из [67]: 
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𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥). (16) 

Здесь функция f является кусочно непрерывной в области G; x∈Rn. В этом 

случае, большинство определений решения можно получить следующим образом: 

каждой точке (t, x) области G соответствует множество F(t, x) в n-мерном 

пространстве; если в конкретной точке (t, x) функция f(t, x) непрерывна, то F(t, x) 

содержит одну точку эквивалентную функции f в этой точке; если точка (t, x) 

является точкой разрыва функции f(t, x) , то F(t, x) должно задаваться тем или иным 

способом. Соответственно, решение уравнения (16) называется решение 

дифференциального включения и имеет вид: 

  
𝑑𝑥

𝑑𝑡
∈ 𝐹(𝑡, 𝑥). (17) 

Таким образом, абсолютно непрерывная функция x(t) определенная на 

интервале или отрезке l для которого почти всюду на l   
𝑑𝑥(𝑡)

𝑑𝑡
∈ 𝐹(𝑡, 𝑥(𝑡)).  

Неоспоримый интерес вызывают способы доопределения F(t, x) в точках 

разрыва функции f при которых дифференциальное включение (17) применимо для 

приближенного описания процессов в реальных физических системах. 

Приближение должно осуществляться в достаточно малой δ-окрестности 

множества точек разрыва функции f тогда систему можно описать с помощью 

уравнений или системы (16). 

Следует обратить внимание на то, что А.Ф. Филиппов отмечал, что для 

построения множества F(t, x) необходимо обладать некоторыми сведениями о 

поведении физической системы в δ-окрестности [67]. Соответственно, для того 

чтобы осуществить переход к математическому описанию с помощью 

дифференциального включения (17) физической системы необходимо 

продемонстрировать, что при достаточно малых δ, движение физической системы 

сколь угодно близко к некоторому решению (17). 

1.6.2 Простейшее выпуклое доопределение правой части 

Далее необходимо рассмотреть простейшее доопределение правой части 

[1, 67]. Данный способ доопределения правой части дифференциального уравнения 
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с разрывной правой частью применим к системе с малым запаздыванием. В этой 

связи стоит обратить внимание на процесс самоорганизации биосистем. По сути 

своей, задача удержания некоторых внутренних градиентов ∇b (температура тела, 

тремор, положение стоя или сидя, движение конечности по траектории – теппинг) 

является процессом с запаздыванием. Проявления запаздывания заключаются в 

следующем: если ∇b отклоняется на x>δ, то включается механизм регуляции для 

того чтобы вернуть этот ∇b в условно исходное положение. На примере из 

биомеханики в этом контексте положение конечности в пространстве можно 

рассматривать как нахождение системы в некоторой δ-окрестности и при 

приближении к границе δ или выходе за пределы δ биосистема прилагает 

некоторые действия, чтобы вернуть биосистему в эту δ-окрестность. Какие именно 

действия предпринимает система, заранее неизвестно, по аналогии поиска решения 

дифференциального уравнения с разрывной правой частью, когда неизвестно, как 

продолжится решение при нахождении на линиях или плоскостях Si разрыва. 

В таком контексте, как уже говорилось ранее, наиболее подходящий подход 

в биосистемах к решению дифференциальных уравнений с разрывной правой 

частью это простейшее выпуклое доопределение. Стоит сразу обратить внимание, 

что данный подход будет основополагающим для реализации метода построения 

математического обеспечения для симуляционной модели с некоторыми 

дополнительными условиями для приближенного описания процессов в реальных 

физических системах, в том числе при исследовании произвольных и 

непроизвольных движений конечности человека. Суть данного доопределения 

заключается в том, что для каждой точки (t, x)∈G, F(t,x) является наименьшим 

выпуклым замкнутым множеством, которое содержит все предыдущие значения 

вектор-функции f(t, x*) когда (t, x*)∉M (М – множество (меры нуль) точек разрыва 

функции f), x*→x, t=const. Соответственно, решением уравнения (16) называется 

дифференциальное включение (17) с построенным множеством F(t, x) [67]. 

Следует отметить то, что если f – функция непрерывна, то множество F(t, x) 

состоит из одной точки f(t, x) и в этом случае решение удовлетворяет уравнению 

(17) в обычном смысле. В случаях, когда точка (t, x)∈M лежит на границах сечений 
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нескольких областей Gi,…,Gk,, k≥2 плоскостью t=const, то множество F(t, x) 

является отрезком, выпуклым многоугольником или многогранником с вершинами 

fi(t, x), i≤k, где: 

  𝑓𝑖(𝑡, 𝑥) = 𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑖,𝑥

∗→𝑥
𝑓(𝑡, 𝑥∗).  (18) 

Все точки fi(t, x), i=1,…,k содержатся в F(t, x), но не обязательно, чтобы все 

эти точки были вершинами. 

Далее необходимо рассмотреть случай, когда f(t, x) разрывна на гладкой 

поверхности S, которая задается при помощи уравнения φ(x)=0. Поверхность S 

делит окрестность в пространстве x на две области: G- и G+. Пусть при 

приближении точки x* к точке x∈S из областей G- и G+ и при t=const функция  

f(t, x*) имеет предельное значение: 

  𝑙𝑖𝑚
𝑥∈𝐺−,𝑥∗→𝑥

𝑓(𝑡, 𝑥∗) = 𝑓−(𝑡, 𝑥) , 𝑙𝑖𝑚
𝑥∈𝐺+,𝑥∗→𝑥

𝑓(𝑡, 𝑥∗) = 𝑓+(𝑡, 𝑥).  (19) 

Соответственно, в этом случае множество F(t, x) является отрезком, который 

соединяет концы векторов f-(t, x) и f+(t, x), проведенные из точки х. 

При детальном изучении данного подхода поиска решений 

дифференциального уравнения с разрывной правой частью в контексте разработки 

симуляционной модели описания принципов работы биологических систем 

наибольший интерес вызывает случай, связанный с переключением плоскости. 

Таким образом, если отрезок пересекается с плоскостью P, то точка пересечения 

является концом вектора f0(t, x), который определяет скорость движения 
𝑑𝑥

𝑑𝑡
=

𝑓0(𝑡, 𝑥) по поверхности S в пространстве x. Фактически функция x(t) удовлетворяет 

уравнение 
𝑑𝑥

𝑑𝑡
= 𝑓0(𝑡, 𝑥) в силу дифференциального включения (17) и считается 

решением уравнения (16) (рисунок 1.8) [67]. При условиях f0≠f- и f0=f+ решение 

часто называется скользящим решением. Соответственно, непрерывная функция 

x(t) на одной части рассматриваемого интервала времени проходит в области G- или 

G+ и удовлетворяет уравнение (16), а на оставшейся части проходит по 

поверхности S и удовлетворяет уравнение 
𝑑𝑥

𝑑𝑡
= 𝑓0(𝑡, 𝑥), и оно также считается 

решением (16) в смысле определения дифференциального включения (17). 
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Рисунок 1.8 – Пример простейшего выпуклого доопределения правой части 

дифференциального уравнения с разрывной правой частью 

Стоит отметить, что различают два подхода реализации такого вида 

доопределения и они зависят от движения, которое осуществляется в реальных 

физических системах. Для понимания варианта поиска решений пусть f-
N(t, x) и 

f+
N(t, x) – проекция векторов f-(t, x) и f+(t, x) на нормаль к поверхности S в точке x и 

нормаль направлена в сторону области G+. Соответственно, если f-
N<0 и f+

N>0, то 

решения при t=t1 проходят через некоторую точку поверхности S, при t>t1 решение 

может или сойти с поверхности S в область G- или G+, или остаться на S [67]. 

В некоторых случаях множество F(t, x) в дифференциальном включении (17) 

в точках разрыва функций f нельзя определить зная только значения функции f в 

точках ее непрерывности. Например, в механической системе с сухим трением [67]: 

  
𝑑𝑢

𝑑𝑡
= 𝑣,

𝑚𝑑𝑣

𝑑𝑡
= 𝑔(𝑢) − 𝑓(𝑣) + 𝑒(𝑡),  (20) 

где m – масса тела, u – его отклонение, g(u) – упругая сила, f(v) – сила трения, 

являющаяся нечетной и разрывной при v=0 функций скорости v, e(t) – внешняя 

сила [67]. При f(0) система может принимать значения f0 или –f0. Соответственно, 

если 𝑓0= 𝑙𝑖𝑚
𝑣→+0

𝑓(𝑣), то сложно применить простейшее выпуклое доопределение, а 

если  𝑓0> 𝑙𝑖𝑚
𝑣→+0

𝑓(𝑣), то движение с нулевой скоростью будет зависеть и от f(v), и от 

величины f0, и в этом случае простейшие выпуклое доопределение уже не 

применимо. Таким образом, множество F(t, x) при v≠0 является точкой, а при v=0 

– отрезок (длина зависит от f0) [67]. 

На основе рассмотренного примера (20) можно отметить, что множество  

F(t,x) не всегда определяется предельными значениями функции f(t,x) из уравнения 
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(16), а в общем случае это множество F(t,x) необходимо задавать, используя 

определенные сведения о рассматриваемой системе. Применение данного подхода 

к биологическим системам в физическом смысле может описать динамику ФСО 

с помощью дифференциальных уравнений с разрывной правой частью при 

условии, что сведений о системе достаточно для формирования множества F(t, x). 

Необходимо рассматривать еще один пример (21) представлений в работе 

[67]: 

  
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏𝑦1 + 𝑐𝑦2, 𝑦2 = 𝑠𝑔𝑛 𝑥1, 𝑦2 = 𝑠𝑔𝑛 𝑥1,  (21) 

где А – матрица, b, c и x – векторы, x1 – первая координата вектора x. Функция y1 и 

y2 в данном примере реализуются в виде реле и при x1=0 величины могут 

принимать любые значения от -1 до 1. Соответственно, в виде дифференциального 

включения (17), то при x1=1, F(x) это множество точек: 

  𝐴𝑥 + 𝑏𝑢1 + 𝑐𝑢2, (−1 ≤ 𝑢1 ≤ 1; −1 ≤ 𝑢2 ≤ 1)  (22) 

Если векторы b и c разнонаправлены, то множество F(x) намного шире множества 

точек Ax+(b+c)u, (-1≤u≤1), получаемого при простейшем выпуклом 

доопределении. 

Необходимость охвата подобных систем приводит к еще одному способу 

построения множества точек F(t, x). Для этого можно рассмотреть систему вида 

[67]: 

  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)),  (23) 

где x∈Rn, f(t, x, u1,…,ur) – непрерывная по совокупности аргументов вектор-

функция, а ui(t, x) – векторные и скалярные функции разрыва на множествах Mi 

(i=1,…,r), могут иметь общие точки а также совпадать. В точках (t, x) разрыва 

функции ui должно быть задано замкнутое множество Ui(t, x), которое является 

множеством возможных значений аргумента ui функции f(t, x, u1,…, ur). В этом 

случае, при i≠j, аргументы ui и uj могут независимо пробегать множества Ui(t, x) и 

Uj(t, x) соответственно. Это условие обычно выполнено, если функции ui(t,x) и 

uj(t,x) описывают различные составные части физической системы. 

Соответственно, в точках, где ui(t, x) непрерывна, множество Ui(t, x) состоит из 
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точки ui(t, x), а в точках разрыва ui(t, x) необходимо, чтобы в Ui(t, x) были включены 

все точки, предельные для точек любых последовательностей вида [67]: 

  

𝑣𝑘 ∈ 𝑈𝑖(𝑡, 𝑥𝑘), 𝑥𝑘 → 𝑥, 𝑘 = 1, 2,…
или

𝑣𝑘 ∈ 𝑈𝑖(𝑡𝑘, 𝑥𝑘), 𝑡𝑘 → 𝑡, 𝑥𝑘 → 𝑥, 𝑘 = 1, 2,…
.  (24) 

На практике обычно требуется, чтобы Ui(t, x) было выпуклым 

(соответственно, если ui(t, x) – скалярная функция, то Ui(t, x) является или отрезком, 

или точкой). Пусть дано уравнение: 

  𝐹1(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑈1(𝑡, 𝑥), … , 𝑈𝑟(𝑡, 𝑥)),  (25) 

которое является множеством значений функции f(t, x, u1, …, ur) в случаях, когда t 

и x постоянны, а u1, …,ur независимо пробегают множества U1(t, x),…,Ur(t, x) 

соответственно. Решением дифференциального уравнения (12) называется 

дифференциальное включение (17), где F(t, x)≡F1(t, x). Следует обратить внимание, 

что частные случаи такого способа построения функции F(t, x) являются 

простейшим выпуклым доопределением (рассмотренным выше) и доопределением 

эквивалентного уравнения (представленного в параграфе 1.6.3). 

1.6.3 Доопределение правой части методом эквивалентного уравнения 

Существенно то, что данный способ доопределения правой части методом 

эквивалентного уравнения [67] применяется для решения уравнения (23) 

(рассмотренного в параграфе 1.6.2), где f – непрерывная вектор-функция, ui(t, x) – 

разрывные скалярные функции, причем разрывные только на гладких 

поверхностях Si (φi(x)=0), i=1,…,r. Допускается пересечение и совпадение 

поверхностей Si. В точках, которые принадлежат поверхности Si или поверхностям 

Si,…,Sm (1≤m≤r), полагают [67]: 

  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝑢1

𝑒𝑞(𝑡, 𝑥),… , 𝑢𝑚
𝑒𝑞(𝑡, 𝑥), 𝑢𝑚+1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)),  (26) 

где определяются эквивалентные уравнения 𝑢1
𝑒𝑞(𝑡, 𝑥),… , 𝑢𝑚

𝑒𝑞(𝑡, 𝑥) так чтобы вектор 

f в уравнении (26) касался поверхности Si,…,Sm и, в то же время, чтобы значения 

𝑢𝑖
𝑒𝑞(𝑡, 𝑥) содержалось в отрезке между 𝑢𝑖

−(𝑡, 𝑥) и 𝑢𝑖
+(𝑡, 𝑥), где 𝑢𝑖

− и 𝑢𝑖
+ – предельные 

значения ui с обеих сторон Si, i=1,…,m. 
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Соответственно, функции 𝑢𝑖
𝑒𝑞
(𝑦, 𝑥), i=1,…,m, определяются из системы 

уравнений: 

  ∆𝜑𝑖(𝑥)𝑓 (𝑡, 𝑥, 𝑢1
𝑒𝑞
, … , 𝑢𝑚

𝑒𝑞
, 𝑢𝑚+1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 0, 𝑖 = 1, … ,𝑚,  (27) 

В этом случае решением называется абсолютно непрерывная вектор-

функция, которая вне поверхностей Si удовлетворяет уравнению (23) (параграф 

1.6.2), а на этих поверхностях Si и их пересечениях удовлетворяет уравнение (26) 

[67]. 

1.6.4 Зависимость решения дифференциального уравнения с разрывной 

правой частью от начальных условий и правой части 

Прежде чем приступать к рассмотрению зависимости решений от начальных 

условий и правой части дифференциальных уравнений с разрывной правой частью, 

стоит акцентировать внимание на особенности сложной динамики поведения 

параметров ФСО на примере биомеханической системы человека. Существенно то, 

что повторить эту динамику даже в рамках одного испытуемого весьма 

проблематично. В подавляющем большинстве случаев (для треморограмм >87%, 

для теппинграмм >82%) даже функции распределения различны (причем если и 

находятся статистические совпадения функций распределения с определенной 

вероятностью, то они принадлежат конкретным парам сравнения), т.е. 

воспроизвести начальные условия биосистемы невозможно. Если в контексте 

решаемой задачи описания динамики произвольных и непроизвольных движений 

требовать единственности решения, то оно будет непрерывно зависеть от 

начальных условий и правой части уравнения или дифференциального включения. 

Если же произвольно допускать не единственность множества решений (что на 

самом деле важно для описания динамики любой ФСО человека) с данными 

начальными условиями, то решение полунепрерывно зависит от начальных 

условий. 

Далее необходимо отметить важную теорему [67]: «Пусть F(t, x) 

удовлетворяет основным условиям в области G (многозначная функция F(t, x) в 

области G удовлетворяет условиям, если при всех (t, x)∈G множество F(t, x) – 
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непустое, ограниченное, замкнутое, выпуклое и функция F β-непрерывна по (t, x); 

t0∈[a, b], [t0,x0]∈G; все решения задачи примут вид: 

  
𝑑𝑥

𝑑𝑡
∈ 𝐹(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0,  (28) 

при a≤t≤b существуют, и их графики содержатся в G. 

Тогда для любого ξ>0 найдется такое δ>0, что для любых 𝑡0
∗ ∈ [𝑎, 𝑏], 𝑥0

∗ и 

F*(t, x), удовлетворяющих условиям: 

  |𝑡0
∗ − 𝑡0| ≤ 𝛿, |𝑥0

∗ − 𝑥0| ≤ 𝛿, 𝑑𝐺[𝐹
∗, 𝐹] ≤ 𝛿,  (29) 

и основным условиям, каждое решение задачи: 

  
𝑑𝑥∗

𝑑𝑡
∈ 𝐹∗(𝑡, 𝑥∗), 𝑥∗(𝑡0

∗) = 𝑥0
∗, (30) 

при a≤t≤b существует и отличается от некоторого решения задачи (28) не больше 

чем на ξ» [67]. 

Представленная теорема означает, что каждое решение x*(t) задачи (30) либо 

существует на [a, b], либо его можно продолжить на весь отрезок [a, b], и для него 

найдется такое решение x(t) задачи (28), что получается: 

  𝑚𝑎𝑥
𝑎≤𝑡≤𝑏

|𝑥∗(𝑡) − 𝑥(𝑡)| ≤ 𝜉.  (31) 

Следует подчеркнуть, что дифференциальные уравнения с разрывной правой 

частью часто применяют для упрощенного математического описания некоторых 

физических систем. Выбор способа доопределения правой части уравнения на 

линии или поверхности разрыва зависит от характера движения рассматриваемой 

физической системы вблизи рассматриваемой линии или поверхности. В работе 

[67] представлен пример: «пусть вне некоторой окрестности поверхности разрыва 

функции f(t, x) движение происходит в соответствии с уравнением 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥). В 

этой окрестности закон движения может быть известен не полностью. Например, 

известно, что в этой окрестности движение может происходить только в двух 

режимах, а переключение с одного режима на другой происходит с запаздыванием, 

о величине которого известно лишь то, что она мала. Требуется с помощью этих 

неполных сведений выбрать способ доопределения правой части уравнения на 

поверхности разрыва таким образом, чтобы при достаточно малой ширине 

окрестности движения физической системы сколь угодно мало отличались от 
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решений уравнения 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥), доопределенного выбранным способом» [67]. 

Представленная выше теорема позволяет обосновать выбор способа 

доопределения для ФСО, в частности БМС в виде биомеханической системы 

человека. 

Далее необходимо рассмотреть случай из [67]: пусть вне δ-окрестности Mδ 

множества M, на котором функция f разрывна, y(t) удовлетворяет уравнению  

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), а в самой окрестности при почти всех t выполняется: 

  |
𝑑𝑦(𝑡)

𝑑𝑡
− 𝑓(𝑡, 𝑧(𝑡))| ≤ 𝛿,  (32) 

где z(t) – любая функция, такая, что |z(t)-y(t)|≤δ. В частности, в каждой точке из Mδ, 

которая находится на расстоянии не большем δ от областей Gi, Gj, Gk, … движение 

может происходить по любому из законов: 

  
𝑑𝑦

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑓𝑗(𝑡, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑓𝑘(𝑡, 𝑦), …  , (33) 

Переход от движения по закону 
𝑑𝑦

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑦) к движению по закону  

𝑑𝑦

𝑑𝑡
= 𝑓𝑗(𝑡, 𝑦) может происходить в любой точке δ-окрестности Mδ, которая 

находится на расстоянии не большем δ от областей Gi и Gj (рисунок 1.9 [67]). В 

силу простейшего выпуклого доопределения уравнение 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦) равносильно 

дифференциальному включению 
𝑑𝑥

𝑑𝑡
∈ 𝐹(𝑡, 𝑥). Согласно (32), 

𝑑𝑦(𝑡)

𝑑𝑡
∈ [𝐹(𝑡, (𝑦(𝑡))𝛿]𝛿, 

и из представленной ранее теоремы следует доказываемое утверждение. 

 

Рисунок 1.9 – Процесс перехода некоторой физической системы с одного закона 

на другой 
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1.7 Выводы по главе 

Результаты проведенного анализа по проблематике диссертационного 

исследования позволяют сделать вывод об актуальности исследования как в 

теоретическом, так и в практическом направлениях. В ряде анализируемых 

научных работ, посвященных вопросам изучения сложных биологических систем, 

показано, что известные методы анализа параметров функциональных систем 

организма, в том числе биомеханической системы, на основе классических методов 

математической статистики не всегда могут установить наличие изменений в 

динамике тех или иных исследуемых параметров. В сложных биосистемах 

присутствует неопределенность, которую необходимо дополнительно исследовать 

на основе совершенствования методов анализа и подходов к симуляционному 

моделированию. 

Одним из эффективных методов анализа для преодоления 

неопределенностей является расчет параметров квазиаттракторов в рамках теории 

хаоса-самоорганизации. Расчет параметров квазиаттракторов может не только 

выявить и верифицировать закономерности в динамике параметров движения 

человека, но и осуществить сравнительный анализ результатов симуляционного 

моделирования с данными реального эксперимента. 

Изучение различных методов и подходов к моделированию движений 

позволило установить, что хаотическая динамика произвольных и непроизвольных 

движений существенно осложняет создание эффективных моделей 

биомеханической системы человека. Известное уравнение мышечного сокращения 

А. Хилла эффективно при описании сокращения мышечного волокна, но 

построить, модель описывающую именно динамику произвольных и 

непроизвольных движений, на его основе затруднительно. Это относится и к 

моделированию динамики движений в теории скользящих нитей (Э. Хаксли, В.И. 

Дещеревский). Задачу изучения и построения модели для динамического процесса 

работы биомеханической системы существенно осложняет важный процесс 

самоорганизации, который непрерывно влияет на все процессы.  
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Для разработки симуляционной модели необходимо выбрать или разработать 

математическое и алгоритмическое обеспечение, которые позволят учесть 

неопределенности в динамике движений конечности человека и процесс 

самоорганизации биосистем. Основой математического обеспечения может 

послужить теория дифференциальных уравнений с разрывной правой частью. Для 

его разработки необходимо определить закономерности динамики поведения 

рассматриваемой системы. 
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 2 СБОР, ОБРАБОТКА И АНАЛИЗ ДИНАМИКИ ДВИЖЕНИЙ 

БИОМЕХАНИЧЕСКОЙ СИСТЕМЫ ЧЕЛОВЕКА НА ПРИМЕРЕ 

КОНЕЧНОСТИ 

Вторая глава посвящена описанию методики проведения натурного 

эксперимента для формирования базы данных параметров произвольных и 

непроизвольных движений человека а также методам и алгоритмам анализа и 

выявления закономерностей в динамике движений БМС человека на примере 

произвольных и непроизвольных движений конечности для разработки 

математического и алгоритмического обеспечения симуляционной модели в 

решении задачи по воспроизведению динамики движений БМС человека.  

Для разработки математического и алгоритмического обеспечения и 

последующей их реализации в виде симуляционной модели на основе теории 

дифференциальных уравнений с разрывной правой частью необходимо установить 

и верифицировать закономерности в динамике движений БМС на примере 

произвольных и непроизвольных движений конечности человека. В настоящей 

главе также представлен результат анализа движений БМС человека в рамках 

математической статистики, термодинамики неравновесных систем и теории 

хаоса-самоорганизации, направленного на выявление и верификацию 

закономерностей в работе БМС.  

2.1 Методика первичной обработки и анализа данных 

Для организации сбора и последующего анализа данных была проведена 

серия экспериментов на основе разработанного дизайна исследования для 

выявления и верификации закономерностей в динамике движений БМС человека 

на примере движений конечности. При исследовании БМС в качестве основных 

показателей выбраны параметры произвольных и непроизвольных движений 

конечности x=(x1, x2)
T, где x1 – перемещение конечности в пространстве, x2=dx1/dt 

– скорость перемещения x1. В трехмерном варианте в ВСС добавляется еще одна 

координата x=(x1, x2, x3)
T, где x3=dx2/dt – ускорение этого перемещения. Процедура 

проведения исследования представлена на рисунке 2.1.  
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В самом начале исследования была отобрана группа условно здоровых 

испытуемых. Из рисунка 2.1 видно, что сначала производилась регистрация 

параметров произвольных и непроизвольных движений для каждого испытуемого 

в режиме многократных повторений эксперимента (всего 15-ть серий 

экспериментов по 30 выборок в каждой серии). Для того чтобы приступить к 

анализу данных потребовалось их систематизировать и провести первичную 

обработку данных для формирования единой базы данных. Следующие шаги 

включали в себя различные способы анализа данных (выбраны методы и 

алгоритмы, которые соответствуют цели и поставленным задачам). 

Группа испытуемых

Регистрация параметров 

произвольных движений

Регистрация параметров 

непроизвольных движений

Систематизация и первичная обработка 

данных (формирование базы данных)

Проверка на 

однородность

Статистическая 

обработка 

данных

Расчет значений 

энтропии 

Шеннона

Обработка данных 

методами теории 

хаоса-самоорганизации

Сравнение 

результатов 

статистической 

обработки 

неоднородных 

и однородных 

выборок 

параметров 

движений

Статистическое 

сравнение 

результатов

Статистическое 

сравнение результатов

Выводы, основанные на полученных 

результатах различными способами 

обработки

 

Рисунок 2.1 – Процедура проведения исследования 

Один из вариантов изучения реальной системы – это когда изучаемая система 

заменяется ее моделью, которая смогла бы с высокой точностью воспроизводить 

хаотическую динамику движений БМС человека. Причем построить такую 

симуляционную модель на основе классических дифференциальных уравнений 

затруднительно. Также необходимо апробировать новые способы и методы 

сравнительного анализа результатов моделирования с данными экспериментов. 
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Для разработки метода построения математического обеспечения способствуют 

методы и подходы ТХС. Соответственно, проведение анализа и верификации 

закономерностей в рамках ТХС для сложных биологических систем является 

необходимостью для создания подобных симуляционных моделей. Необходимость 

обусловлена тем, что для реализации математического и алгоритмического 

обеспечения на основе дифференциальных уравнений с разрывной правой частью 

необходимо обладать достаточным количеством сведений о процессе работы 

рассматриваемой системы.  

Для проведения любого эксперимента необходимо отработать все стадии его 

проведения. При проведении исследования в области анализа динамики движения 

конечности человека (произвольных и непроизвольных движений) необходимо 

выбрать способ регистрации этих параметров. Для регистрации параметров 

движений выбран биоизмерительный комплекс на основе токовихревого датчика 

[5, 80]. На момент регистрации движений измерительный прибор был поверен 

согласно его методике поверки. Принцип его работы основан на изменении 

индуктивности токовихревой катушки. Таким образом, регистрация ТМГ и ТПГ 

происходит за счет изменения индуктивности токовихревого датчика. Результаты 

исходных данных записывались в ряд в микровольтах, этот показатель может быть 

переведен в миллиметры, которые представляют реальное перемещение 

конечности в пространстве. Биоизмерительный комплекс представлен на рисунке 

2.2. 

АЦП (3)

Токовихревой датчик (1)

Металлическая пластинка (2)

ЭВМ, ПО(4)

 

Рисунок 2.2 – Схематическое изображение биоизмерительного комплекса для 

регистрации параметров движений человека 
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Сразу необходимо отметить, что регистрация движений человека 

производилась с частотой μ=100 Гц. Такая частота выбрана для наиболее точной и 

детальной регистрации движения конечности в пространстве. Для того чтобы 

зафиксировать объективное движение сигнала, по теореме Котельникова, 

достаточно частоты равной μ=24 Гц т.к. частота непроизвольных движений 

колеблется от 3 до 12 Гц. Выборки xi=xi(t), полученные в ходе регистрации, 

определяли положение пальца с закрепленной металлической пластиной (2) в 

пространстве по отношению к датчику (1). После регистрации сигнал x1(t) 

преобразовывался в вектор x(t)=(x1, x2)
T, где x1 – координата пальца в пространстве 

по отношению к датчику, а x2=dx1/dt – скорость перемещения x1. Установка состоит 

из токовихревого датчика (1), усилителя сигнала, аналого-цифрового 

преобразователя – АЦП (3) и электронно-вычислительной машины – ЭВМ (4).  

На представленном биоизмерительном комплексе проводилась регистрация 

произвольных и непроизвольных движений конечности испытуемых с различными 

вариациями состояния гомеостаза. Испытуемые были отобраны в возрасте от 25 до 

30 лет без патологий. Перед началом проведения исследования проводился опрос, 

направленный на выявление заболеваний. Испытуемые, имеющие какие-либо 

отклонения в состоянии здоровья, исключались из исследования. Каждому 

испытуемому выдавалась инструкция (рекомендации) поведения в период 

регистрации движений в различных состояниях. Инструкция включала в себя 

рекомендательный распорядок дня (режим приема пищи, режим сна, режим отдыха 

и т.д.) для максимального приближения состояний организма испытуемых к 

«одному» гомеостазу. Проведение исследования соответствует нормам 

Хельсинской декларации Всемирной медицинской ассоциации.  

Все испытуемые проходили процедуру регистрации движений в режиме 

многократных повторов, т.е. подряд в одном гомеостазе (не менее 30 выборок и не 

менее 15 серий таких повторов). Для объективной оценки гомеостаза испытуемых 

были выбраны следующие состояния: спокойное состояние, удержание груза, 

холодовое воздействие. При этом сравнение разных состояний гомеостаза 

производилось с исходным в спокойном состоянии, которое всегда 
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регистрировалось отдельно (например, регистрация ТМГ в спокойном состоянии и 

при удержании груза). Для проведения исследований с гипотермией 

регистрировались непроизвольные движения до охлаждения в спокойном 

состоянии и после охлаждения кисти руки так же в спокойном состоянии. Такой 

подход выбран специально, т.к., произведя регистрации параметров в спокойном 

состоянии в один момент времени Δti, то результат регистрации параметров 

движений в другой момент времени Δtj будет описывать другой гомеостаз 

испытуемого. Процедура регистрации параметров произвольных и 

непроизвольных движений в различных состояниях представлена на рисунке 2.3. 

Группа испытуемых

Регистрация параметров 

произвольных движений

Регистрация параметров 

непроизвольных движений

Регистрация параметров в 

спокойном состоянии

Регистрация параметров после 

холодового воздействия

Регистрация параметров при 

удержании груза

Проверка на корректность 

выборок

Формирование базы данных
 

Рисунок 2.3 – Процедура проведения регистрации параметров произвольных и 

непроизвольных движений человека 

Для проведения исследования при удержании груза регистрировались ТМГ в 

спокойном состоянии. Затем на пальце фиксировался груз массой 300 граммов и 

производилась повторная регистрация ТМГ при удержании этого груза. Масса 

груза выбрана 300 граммов для того, чтобы изменилось состояние испытуемого, но 
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при этом груз не должен вызывать существенный дискомфорт и способствовать 

развитию усталости. 

Для исследования гипотермии, все испытуемые проходили процесс 

регистрации произвольных и непроизвольных движений до охлаждения и после 

него. Охлаждалась только кисть руки (охлаждение было локальным). Испытуемые 

погружали кисть руки в емкость с водой, охлажденной до 4оС на 2 минуты. 

Температурный режим выбран такой, при котором испытуемые не испытывали 

существенный дискомфорт. В таблице 2.1 представлены состояния испытуемых и 

количество повторов проведения исследования.  

Таблица 2.1 – Информация о проведении экспериментальной части исследования 

Состояние 
Вид 

движения 

Кол-во 

повторов 

Кол-во 

серий 

Кол-во 

испытуемых 

Кол-во 

выборок 

Спокойное 

состояние 
ТМГ 30 15 25 11250 

Спокойное 

состояние 
ТПГ 30 15 25 11250 

Удержание 

груза 
ТМГ 30 15 25 11250 

После 

охлаждения 
ТМГ 30 15 25 11250 

После 

охлаждения 
ТПГ 30 15 25 11250 

Итого - 150 75 25 56250 

Далее все полученные данные от всех испытуемых проходили первичную 

обработку. Она включала в себя формирование базы данных для исключения 

ошибки и упрощения дальнейшей обработки. Для каждой выборки строилась 

временная развертка сигнала. Затем эти данные проверялись на корректность. Если 

была обнаружена некорректная выборка, то она исключалась из анализа т.к. по ней 

невозможно получить достоверные результаты. Пример временной развертки 

сигнала представлен на рисунке 2.4. Соответственно, на рисунке 2.4а представлена 

корректно зафиксированная выборка, а на рисунке 2.4b, наоборот, выборка, 

которая не может участвовать в углубленном анализе, на временной развертке 

сигнала видны выбросы, которые не относятся к движениям конечности. 
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  а b 

Рисунок 2.4 – Временная развертка сигнала: а – корректно зафиксированная 

выборка; b – выборка, которая не может участвовать в дальнейшем анализе 

2.2 Методы математической статистики для анализа динамики 

движения конечности человека 

После первичной проверки выборок и формирования базы данных 

необходимо провести анализ данных методами математической статистики для 

выявления и верификации закономерностей, которые необходимы для разработки 

метода построения математического и алгоритмического обеспечения для 

симуляционной модели. Для того чтобы определиться, какие статистические 

критерии использовать, все выборки необходимо проверить на закон 

распределения. Необходимо отметить, что практически все выборки не 

подчиняются нормальному закону распределения согласно критерию Шапира-

Уилка. В соответствии с этим при статистической обработке данных необходимо 

использовать критерии непараметрической статистики. Был разработан алгоритм 

для построения матриц парных сравнений, который представлен на рисунке 2.5. 

Разработанный алгоритм подходит и для анализа других параметров ФСО 

человека. 

Согласно алгоритму, представленному на рисунке 2.5, анализ данных 

осуществлялся методами математической статистики в программном продукте 

Statistica. В соответствии с теорией обработки данных с помощью математической 

статистики выбирались те или иные критерии сравнения. Например, для зависимых 

выборок необходимо использовать критерий Вилкоксона, а для независимых 

выборок критерий Ньюмана-Кейлса. 
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В рамках статистического анализа параметров произвольных и 

непроизвольных движений человека строились матрицы парных сравнений 

согласно критериям, представленным на рисунке 2.5. С помощью данного подхода 

можно количественно представить гипотезу Н.А. Бернштейна «повторения без 

повторений» [73]. Парное сравнение позволяет осуществить проверку 

возможности отнесения сравниваемых пар выборок к одной генеральной 

совокупности. Соответственно, при таком подходе оценивается и наличие какой-

либо функции распределения f(x).  
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Рисунок 2.5 – Алгоритм статистической обработки данных 
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2.3 Энтропия Шеннона для анализа динамики движения конечности 

человека 

Далее производился дополнительный анализ и верификация 

закономерностей в динамике поведения параметров произвольных и 

непроизвольных движений в рамках ТНС И.Р. Пригожина, а именно расчет 

энтропии Шеннона [34, 76, 80]. Энтропия Шеннона − это мера упорядоченности 

выборок 𝑥𝑖 – компонент вектора состояния системы 𝑥(𝑡) в ФПС. Для независимых, 

случайных событий 𝑥 с 𝑛 возможными состояниями расчет энтропии 

осуществляется по формуле: 

   𝐻 = ∑ 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖)
𝑛
𝑖=1 ,  (34) 

где 𝑝 – функция вероятности. Соответственно, при расчете энтропии возникает 

проблема выбора количества интервалов для функции вероятности. Учитывая 

результаты построения матриц парных сравнений, почти все выборки являются 

уникальными. Забегая вперед, необходимо отметить, что число пар выборок, 

которые можно отнести к одной генеральной совокупности невелико. Для всех 

выборок параметров движений конечности человека менее 20% даже для одного 

испытуемого в режиме регистрации параметров подряд. Также берется в расчет и 

то, что подавляющее большинство выборок не подчиняются нормальному закону 

распределения. Соответственно, и интервал необходимо брать для каждой выборки 

уникальный, а именно по вариационному размаху анализируемой выборки, т.е. 

интервал z=[min(x(t)); max(x(t))]. Далее требуется определить на какое количество 

равных интервалов необходимо делить выборку. В связи с тем, что для 

биологических систем нет строгого руководства и ограничений, то было принято 

решение считать значения энтропии Шеннона для разного количества разбиений. 

Таким образом, было выбрано количество разбиений: 10, 20, 50, 200 и 1000 

интервалов. Алгоритм расчета энтропии Шеннона представлен на рисунке 2.6, а 

результаты анализа приведены в главе 3. 
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Рисунок 2.6 – Алгоритм расчета энтропии Шеннона  

Выбор расчета именно энтропии Шеннона обусловлен тем, что энтропия 

Шеннона включена в класс f-энтропий, что позволяет ее использовать для анализа 

сигналов, в том числе полученных с помощью биоизмерительного комплекса в 

виде параметров движений. Также существенно то, что энтропия Шеннона 

является единственной аддитивной энтропией в классе f-энтропий. Выбор вида 

энтропии для расчета также осложняется тем, что нет возможности определить, 

какая именно функция распределения f(x) была получена. Таким образом, анализ 

БМС человека возможен с помощью энтропии Шеннона. 

Для примера расчета энтропии Шеннона на рисунке 2.7 и рисунке 2.8 

представлены гистограммы разбиения интервала z на отрезки l для выборки ТМГ 

(рисунок 2.7) и выборки ТПГ (рисунок 2.8). В таблице 2.2 представлены значения 

энтропии Шеннона для этих же выборок при разном количестве разбиений 

интервала на отрезки.  
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Рисунок 2.7 – Гистограммы разбиения выборки треморограммы для интервала 

z=[min(x(t)); max(x(t))] на отрезки l: а – l=20; b – l=50; c – l=200; d – l=1000 

 

 а b 

 

 c d 

Рисунок 2.8 – Гистограммы разбиения выборки теппинграммы для интервала 

z=[min(x(t));max(x(t))] на отрезки l: а – l=20; b – l=50; c – l=200; d – l=1000 
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Таблица 2.2 – Значения энтропии Шеннона для выборок параметров нервно-

мышечной системы (треморограмма, теппинграмма) для разного количества 

разбиения интервала z=[min(x(t)); max(x(t))] на отрезки l 

Кол-во отрезков 

Вид движения 
l=20 l=50 l=200 l=1000 

треморограмма 3,9599 5,2012 6,9508 6,9409 

теппинграмма 4,1606 5,4079 7,1601 8,2176 

2.4 Расчет параметров квазиаттракторов в рамках теории хаоса-

самоорганизации для анализа динамики движения конечности человека 

Для расчета параметров КА был разработан алгоритм (рисунок 2.9). 

Предложенный алгоритм позволил структурированно обработать большое 

количество выборок параметров движений конечности человека [16]. 
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Рисунок 2.9 – Алгоритм расчета параметра квазиаттракторов 
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Необходимо понимать, что биофизика отличается от классической физики. 

В биофизике нет универсальных объектов исследования. Универсальными могут 

выступать динамика и законы поведения сложных систем: непредсказуемое 

(хаотическое) и непрерывное движение 𝑥(𝑡) в ФПС, отсутствие начальных 

условий, ограничение на координаты вектора состояния биосистем в виде (6) или 

(10). Таким образом, специфика ТХС заключается в том, что СТТ имеют 𝑉𝐺
𝑚𝑖𝑛 и 

𝑉𝐺
𝑚𝑎𝑥, т.е. максимальный и минимальный объемы ФПС, внутри этого 

ограниченного фазового пространства хаотически и непрерывно движется 𝑥 =

𝑥(𝑡) = (𝑥1, 𝑥2, … , 𝑥𝑚)
𝑇. Именно это и отличает сложные биосистемы от 

физических, химических или технических систем. 

Стоит отметить, что постуральный тремор и теппинг рассматриваются как 

непроизвольные и произвольные движения. Однако с позиций механики, ТХС и 

расчета неравенств вида (6) и (10) эти движения не могут считаться 

произвольными, т.к. с механической точки зрения они выполняются 

непроизвольно. Однократную траекторию постурального тремора или теппинга 

нет возможности воспроизвести. Любая траектория движения конечности для 

координат 𝑥1(𝑡) и 𝑥2(𝑡) в фазовом пространстве неповторима и невоспроизводима. 

Природа этих движений хаотическая, но всегда в ограниченных пределах фазового 

пространства. Ввиду этого стохастические подходы анализа данных слабо 

чувствительны к СТТ. Пример построения фазовой плоскости был представлен в 

параграфе 1.1 на рисунке 1.4а и рисунке 1.4b. 

Также расчет параметров КА для выборок параметров СТТ, получаемых от 

разных испытуемых или от одного человека в режиме многократных повторов 

регистрации параметров движений конечности в одном эксперименте, позволяет 

оценить эти выборки на однородность. Следует подчеркнуть, что проблема 

однородности выборок присутствует уже на уровне формирования выборок, 

полученных от одного испытуемого. Поэтому был разработан метод проверки 

выборок на однородность в рамках ТХС [38, 78]. На рисунке 2.10 представлен 

алгоритм проверки однородности на основе разработанного метода. 
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Из алгоритма (рисунок 2.10) понятен механизм исключения неоднородных 

выборок из общей совокупности выборок. Таким образом, в дальнейшем не 

возникает вопросов о достоверности получаемых результатов, т.к. все выборки, 

которые участвуют в расчетах и анализе, являются однородными. Из общего числа 

выборок исключаются все выборки, которые не удовлетворяют условиям: центр 

КАi 𝑥𝑖
𝑐 выходит за пределы любого другого КАj из общего числа выборок (i≠j); все 

выборки также должны удовлетворять условие: 

  0,5≤VGi/VGj≤2,  (35) 

где VGi – любой i-й КА из одной совокупности выборок, а VGj – любой j-й КА этой 

же совокупности выборок, причем i≠j. 
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Рисунок 2.10  – Алгоритм проверки выборок на однородность с помощью метода 

теории хаоса-самоорганизации, расчет параметров квазиаттракторов. 
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В результате проверки на однородность было установлено, что выборки 

могут быть неоднородными, даже полученные от одного испытуемого в режиме 

многократного повтора регистрации движений конечности человека. Таким 

образом, сравнительный анализ был проведен повторно для отобранных 

однородных выборок и представлен в соответствующих параграфах. Динамика 

результатов расчета для однородных выборок несколько отличается от динамики 

результатов расчетов для выборок, которые не проверялись на однородность. В 

связи с этим рекомендуется использовать предложенный метод проверки выборок 

на однородность в рамках ТХС в исследованиях, связанных с изучением сложных 

биосистем. 

2.5 Анализ динамики движений биомеханической системы на основе 

методов математической статистики 

Для подтверждения существования статистической неустойчивости и 

проблемы однородности выборок представлена таблица 2.3. Из этой таблицы 

видно, что всего k=10 пар «совпадений», т.е. статистически совпадают только 10 

сравниваемых пар, остальные все разные (подобные результаты демонстрируют и 

другие группы испытуемых). Более того, каждые пары сравнения имеют свои 

генеральные совокупности, т.е. число k=10 свидетельствует о наличии 10 разных 

генеральных совокупностей [9].  

В этой связи следует привести еще один характерный пример матрицы 

парных сравнений, построенной на основе выборок, полученных от одного 

испытуемого в режиме многократных повторов регистрации данных (таблица 2.4). 

В этой таблице 2.4 число таких «совпадений» k=4. Это также свидетельствует о 

статистической неустойчивости функций распределения 𝑓(𝑥). Необходимо 

подчеркнуть, что такие матрицы парных сравнений для ТМГ получаются без 

проверки выборок на однородность. Проблема однородности проявляется как на 

уровне проведения эксперимента с одним испытуемым (регистрация параметров 

подряд), так и при проведении исследования с группой испытуемых. Результаты 

анализа в таблице 2.3 и таблице 2.4 свидетельствуют о том, что проблема 
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однородности выборок применима не только при формировании группы разных 

людей, но и на уровне одного испытуемого.  

Таблица 2.3 – Характерный пример матрицы парных сравнений треморограмм 

группы испытуемых, использовался критерий Ньюмана-Кейлса  

(число «совпадений» k=10) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

2 .00  .00 .00 .00 .58 .00 .33 .00 .00 .00 .00 .00 .00 .00 

3 .00 .00  .00 .00 .00 .01 .00 .00 .00 .00 .79 .00 .17 .00 

4 .00 .00 .00  .00 .00 .00 .00 .51 .00 .00 .00 .00 .00 .00 

5 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

6 .00 .58 .00 .00 .00  .00 .81 .00 .00 .02 .00 .00 .00 .00 

7 .00 .00 .01 .00 .00 .00  .00 .00 .00 .00 .98 .00 .25 .00 

8 .00 .33 .00 .00 .00 .81 .00  .00 .00 .04 .00 .00 .00 .00 

9 .00 .00 .00 .51 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 

10 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 

11 .00 .00 .00 .00 .00 .02 .00 .04 .00 .00  .00 .00 .00 .00 

12 .00 .00 .79 .00 .00 .00 .98 .00 .00 .00 .00  .00 .78 .00 

13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 .48 

14 .00 .00 .17 .00 .00 .00 .25 .00 .00 .00 .00 .78 .00  .00 

15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .48 .00  

Таблица 2.4 – Характерный пример матрицы парных сравнений треморограмм 

испытуемого, полученных в режиме многократных повторов измерения, 

использовался критерий Вилкоксона (число «совпадений» k=4) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

2 .00  .00 .00 .00 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 

3 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

4 .00 .00 .00  .00 .00 .00 .00 .00 .82 .00 .00 .00 .00 .00 

5 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

6 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .57 

7 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .95 .00 .00 

8 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 

9 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 

10 .00 .00 .00 .82 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 

11 .00 .07 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 

12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 

13 .00 .00 .00 .00 .00 .00 .95 .00 .00 .00 .00 .00  .00 .00 

14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 

15 .00 .00 .00 .00 .00 .57 .00 .00 .00 .00 .00 .00 .00 .00  
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На основе построения матриц парных сравнений подтверждается, что из 

многократных повторов для тремора среднее число пар совпадений <k>≈5% (без 

учета однородности выборок). Повторение без повторений Н.А. Бернштейна [3, 4] 

для ТМГ закономерно. Изучение подобных закономерностей необходимо для 

разработки способов и методов сравнительного анализа результатов 

симуляционного моделирования с экспериментальными данными. 

Следует обратить внимание на эффект Еськова-Зинченко [9, 81] для ТМГ, 

когда функция распределения f(x), АЧХ и их автокорреляции A(t) демонстрируют 

непрерывное движение без изменения гомеостаза организма человека. Полученные 

результаты доказывают строгое ограничение детерминистских и стохастических 

подходов в описании сложных биосистем. Эффект Еськова-Зинченко представляет 

количественную интерпретацию гипотезы Н.А. Бернштейна «повторения без 

повторений» [73]. 

Традиционно считается, что ощущения имеют субъективную основу. Иными 

словами, количественно оценить силу ощущений довольно сложно в различных 

психологических опытах. Возникает закономерный вопрос о разработке некоторых 

объективных критериев оценки реальных изменений в системе регуляции 

биомеханической системы на примере движений конечности. В этом случае речь 

идёт о состояниях субъективных и объективных показателей в науке об измерении 

двигательных функций [37]. 

С позиции ТХС эффект Еськова-Зинченко составляет основу биомеханики и 

психофизиологии человека [29]. В организации движений на объективном уровне 

существует фундаментальная проблема идентификации движений. В такой 

интерпретации может быть установлено различие между ТМГ и ТПГ. Главной 

особенностью системы регуляции ТМГ и ТПГ является отсутствие стационарных 

состояний в традиционном детерминистском или стохастическом смысле. 

В результате построения матриц парных сравнений для выборок ТМГ или 

ТПГ для 15-ти экспериментов (по 30 выборок в каждом) возможность отнесения 

сравниваемых пар выборок к одной генеральной совокупности очень мала. 

Практически все выборки статистически разные, но всегда число k пар 

«совпадений» двух выборок для треморограмм не превышает 6-7%, а для 
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теппинграмм 16-17%, это и обеспечивает уникальность сложных биосистем для 

непроизвольных или произвольных движений человека [75, 81, 82, 93]. 

Необходимо отметить, что такое процентное соотношение числа k пар 

«совпадений» справедливо для выборок, которые не проходили предварительную 

проверку на однородность. В таблице 2.5 представлен эффект Еськова-Зинченко в 

виде одной матрицы парных сравнений выборок ТМГ. Число пар «совпадений» k=5 

для выборок «одинаковых» ТМГ (таблица 2.5), т.е. испытуемый находился в одном 

неизменном гомеостазе (биомеханическом и физиологическом). В режиме 

многократных повторов эксперимента и построения подобных матриц парных 

сравнений у других испытуемых число k пар «совпадений» незначительно меняется 

и всегда из 105 пар только 6-7% «совпадают». Число совпадений k фактически 

определяет долю стохастики в оценке состояния высшей нервной деятельности 

БМС. Стоит обратить внимание на ограниченное число k пар «совпадающих» 

выборок в каждом эксперименте, оно всегда удерживается на определенном уровне 

и изменяется в диапазоне [3;7]. 

Таблица 2.5 – Характерный пример матрицы парных сравнений треморограмм 

испытуемого ГДВ, полученных в режиме многократных повторов измерения, 

использовался критерий Вилкоксона (число «совпадений» k=5) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .00 .00 .26 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 

2 .00  .00 .37 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

3 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

4 .26 .37 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

5 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

6 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 

7 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 

8 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 

9 .00 .00 .00 .00 .00 .00 .00 .00  .81 .00 .00 .00 .00 .00 

10 .00 .00 .00 .00 .00 .00 .00 .00 .81  .00 .00 .00 .00 .00 

11 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 

12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .37 .00 .00 

13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .37  .00 .00 

14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 

15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  

Наиболее ярко демонстрирует эффекта Еськова-Зинченко таблица 2.6, в 

которой представлена матрица парных сравнений выборок треморограмм с 

нагрузкой для одного испытуемого (число серий испытаний N=15). Как видно из 
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этой таблицы, число k пар совпадений выше (k=11), чем для треморограмм в 

спокойном состоянии. Для каждого испытуемого таких матриц строилось не менее 

15-ти, и среднее <k>≈11% от общего числа пар совпадений, что свидетельствует о 

некоторой устойчивости данного показателя. 

Неустойчивость функций распределения 𝑓(𝑥), их АЧХ и автокорреляций 

𝐴(𝑡), построение матриц парных сравнений для одного биомеханического 

гомеостаза демонстрируют статистическую устойчивость числа < 𝑘 > пар 

«совпадений». Такая устойчивость для числа k количественно представляет 

устойчивость и всего гомеостаза (это гомеостаз БМС).  

Таблица 2.6 – Характерный пример матрицы парных сравнений треморограмм 

испытуемого ГДВ, полученных в режиме многократных повторов измерения при 

нагрузке F=3N, использовался непараметрический критерий Вилкоксона (число 

«совпадений» k=11) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .00 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 

2 .00  .02 .00 .00 .17 .05 .00 .03 .02 .08 .00 .00 .00 .00 

3 .00 .02  .00 .00 .00 .54 .00 .69 .00 .00 .00 .00 .58 .00 

4 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

5 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .42 .00 .38 

6 .00 .17 .00 .00 .00  .00 .00 .00 .01 .03 .00 .00 .00 .00 

7 .00 .05 .54 .00 .00 .00  .00 .39 .00 .00 .00 .00 .00 .00 

8 .03 .00 .00 .00 .00 .00 .00  .00 .03 .04 .00 .00 .00 .00 

9 .00 .03 .69 .00 .00 .00 .39 .00  .00 .00 .00 .00 .00 .00 

10 .00 .02 .00 .00 .00 .01 .00 .03 .00  .65 .00 .00 .00 .00 

11 .00 .08 .00 .00 .00 .03 .00 .04 .00 .65  .00 .00 .00 .00 

12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 

13 .00 .00 .00 .00 .42 .00 .00 .00 .00 .00 .00 .00  .00 .55 

14 .00 .00 .58 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 

15 .00 .00 .00 .00 .38 .00 .00 .00 .00 .00 .00 .00 .55 .00  
 

Продолжая развивать тему объективной оценки различных ощущений стоит 

обратить внимание на объективное различие произвольных и непроизвольных 

движений. Поскольку возникает задача оценки объективных и субъективных 

изменений в системе регуляции движений, необходимо более внимательно изучить 

механизмы регуляции сознательного и бессознательного движений [37]. В рамках 
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математической статистики также строились матрицы парных сравнений для 

выборок ТМГ и ТПГ. 

Для решения поставленной задачи необходимо проводить статистический 

анализ выборок, которые регистрировались у одного и того же человека при 

регистрации движений биомеханической системы. Типовая матрица, как 

характерный пример для одного и того же испытуемого, представлена в 

таблице 2.7, здесь число пар «совпадений» k=17 [81]. 

Таблица 2.7 – Характерный пример матрицы парных сравнений теппинграмм 

испытуемого ГДВ, полученных в режиме многократных повторов измерения, 

использовался непараметрический критерий Вилкоксона  

(число «совпадений» k=17) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .56 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 
2 .56  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 
3 .00 .00  .00 .01 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 

4 .00 .00 .00  .73 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00 
5 .00 .00 .01 .73  .00 .05 .00 .00 .00 .00 .00 .00 .00 .00 

6 .00 .00 .04 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 
7 .00 .00 .00 .02 .05 .00  .00 .00 .02 .00 .00 .00 .12 .00 
8 .00 .00 .00 .00 .00 .00 .00  .44 .01 .72 .00 .62 .11 .70 

9 .00 .00 .00 .00 .00 .00 .00 .44  .00 .96 .00 .03 .00 .48 
10 .00 .00 .00 .00 .00 .00 .02 .01 .00  .01 .00 .11 .33 .00 

11 .00 .00 .00 .00 .00 .00 .00 .72 .96 .01  .00 .28 .03 .36 
12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 

13 .00 .00 .00 .00 .00 .00 .00 .62 .03 .11 .28 .00  .48 .16 
14 .00 .00 .00 .00 .00 .00 .12 .11 .00 .33 .03 .00 .48  .09 
15 .00 .00 .00 .00 .00 .00 .00 .70 .48 .00 .36 .00 .16 .09  

Такой подход позволил подтвердить ограниченное число пар совпадений в 

матрицах парных сравнений как для ТМГ, так и для ТПГ. Соответственно, 

подтверждено объективное различие произвольных и непроизвольных движений 

человека в виде статистической устойчивости числа пар совпадений в рамках 

математической статистики. Для ТМГ <kтмг>≈5%, а для ТПГ число совпадений 

<k>≈17%. 

Далее, в результате проверки выборок на однородность, согласно критерию 

однородности, представленному в параграфе 2.4, был проведен дополнительный 

анализ в рамках математической статистики. На рисунке 2.11 представлена 
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гистограмма для числа совпадений 15-ти матриц парных сравнений одного 

испытуемого, построенная по выборкам, которые не проходили проверки на 

однородность. Результаты исследования демонстрируют вариационный размах по 

числу k пар «совпадений» для всех 15-ти экспериментов на отрезке k𝜖[3,7]. Стоит 

еще раз подчеркнуть, что статистические функции f(x), полученные в ходе 

экспериментов, статистически разные. В этой связи использование f(x) в оценке 

тремора весьма проблемно. 

 

Рисунок 2.11 – Распределений z числа пар совпадающих выборок k для 

испытуемого ГДВ в режиме многократного повторения эксперимента (число 

повторов N=15, по 15-ть выборок треморограмм в каждом повторе эксперимента). 

Здесь z – число одинаковых k в 15-ти матрицах парных сравнений 

В целом из рисунка 2.11 следует, что сами числа k могут описываться 

статистически, т.е. имеется некоторая статистическая устойчивость числа пар k 

«одинаковых» выборок ТМГ для отдельного испытуемого, находящегося в 

спокойном состоянии. При этом место стохастичности – это 6-7% от всей 

хаотической динамики самих статистических функций распределения f(x) при 

условии, что регистрируемые выборки не проверялись на однородность. Это 

крайне низкая величина, если в статистике все процессы начинаются с 

доверительной вероятностью β=0.95 и эта величина характеризует хаос в системе 

регуляции БМС со стороны высшей нервной деятельности [24]. 

Таким образом, представленные выше результаты анализа проводились для 

выборок без проверки на однородность. Для достоверности утверждения, что 

современные методы и подходы детерминизма и стохастики не способны в полной 

мере описывать СТТ, была выполнена проверка выборок на однородность 
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регистрируемых параметров БМС согласно критерию однородности в ТХС 

(критерий оценки однородности получаемых выборок представлен в параграфе 

2.4). Вследствие такой проверки установлено, что выборки ТМГ, изначально 

полученные в режиме многократных повторов регистрации параметров, не могут 

продемонстрировать однородность. В этом случае выборки, которые не 

удовлетворяют критерию однородности, были заменены на другие выборки, 

полученные в ходе многократных повторов регистрации. Стоит отметить, что в 

одном эксперименте регистрировалось более 30 выборок, но отбирались для 

анализа только 15-ть, вследствии чего появляется возможность заменять 

неоднородные выборки на другие, полученные в рамках одного эксперимента.  

При построении матриц парных сравнений для однородных выборок 

результаты несколько отличаются от результатов, полученных для неоднородных 

выборок параметров ТМГ [16, 78]. Число пар k «совпадений» выше для 

однородных выборок, здесь <k>=11. Хотя значение k больше, но это все равно 

несущественно и доля стохастики по-прежнему мала. Следует отметить, что число 

пар совпадений для выборок однородных ТМГ устанавливается в диапазоне 9-13%. 

На рисунке 2.12 представлены результаты для 15 матриц парных сравнений 

однородных выборок ТМГ. 

Подобные результаты исследования, которые представлены на рисунке 2.12, 

демонстрируют вариационный размах по числу k пар «совпадений» для всех 15-ти 

экспериментов однородных выборок ТМГ на отрезке k𝜖[8,13]. Анализ всех 15-ти 

экспериментов, в которых были построены матрицы парных сравнений выборок 

для этого же испытуемого и для 25-ти других испытуемых устанавливает 

ограничения в виде число k≤7% для неоднородных выборок и k≤13% для 

однородных выборок.  
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Рисунок 2.12 – Распределение z числа пар совпадающих выборок k для 

однородных выборок от одного испытуемого, в режиме многократного 

повторения эксперимента (число экспериментов N=15, по 15-ть выборок 

треморограмм). Здесь z – число одинаковых k в 15-ти матрицах парных сравнений 

2.6 Анализ динамики движения конечности человека в рамках 

термодинамики неравновесных систем 

В рамках термодинамики неравновесных систем был получен определенный 

результат. Он заключается в следующем: термодинамика неравновесных систем 

обладает достаточно низкой диагностической ценностью в аспектах оценки 

состояний организма человека [82], но при этом способна установить некоторую 

хаотичность в получаемых выборках. Существенно то, что такая закономерность 

распространяется практически на все функциональные системы организма [7, 22, 

39, 41, 78]. Соответственно, в настоящем параграфе осуществляется верификация 

этой закономерности и оценка возможности применения этой закономерности для 

сравнительного анализа результатов математического моделирования с данными 

натурных экспериментов. 

Расчет энтропии Шеннона выполнялся для координаты 𝑥1(𝑡). Полученные 

значения энтропии Шеннона для 225 (15 экспериментов по 15 выборок в каждом) 

выборок, полученных от одного испытуемого, представлены в таблице 2.8. 
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Таблица 2.8 – Результаты расчета энтропии Шеннона для треморограмм 

полученных от испытуемого ГДВ 

№ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 3,96 3,81 4,25 3,85 3,78 4,01 3,60 3,59 4,15 3,96 4,15 4,04 3,92 4,03 3,86 

2 3,98 4,02 4,12 4,10 3,58 3,99 3,91 3,96 3,91 4,04 4,01 3,98 3,47 3,87 4,02 

3 4,07 3,66 3,91 3,93 3,75 4,00 4,01 3,87 4,05 3,81 3,95 4,12 3,59 4,13 3,67 

4 3,82 4,04 3,70 3,94 3,73 3,73 4,01 4,01 3,61 3,93 3,92 3,90 4,19 3,81 3,95 

5 3,60 4,04 3,76 4,00 4,02 3,81 3,73 3,73 3,99 3,78 3,90 3,93 3,80 3,85 4,10 

6 3,91 3,94 3,99 4,14 4,12 4,08 4,16 4,01 4,09 4,11 4,00 3,96 3,90 3,97 3,90 

7 4,07 4,10 3,66 4,07 4,03 3,80 3,79 4,13 4,02 3,91 3,91 4,04 4,02 4,08 4,15 

8 4,20 3,91 3,94 3,37 4,15 3,99 3,88 4,12 4,13 4,24 4,02 4,05 3,86 3,89 4,05 

9 3,96 3,48 3,81 4,02 3,97 3,80 4,15 4,11 3,72 4,05 4,03 3,83 4,17 4,02 4,20 

10 3,58 3,46 3,95 4,00 3,88 3,86 3,66 4,11 3,98 3,61 4,11 3,90 3,75 4,04 3,92 

11 3,91 3,86 3,95 4,10 3,69 3,61 3,91 3,94 3,92 3,67 4,06 4,07 4,00 4,05 3,72 

12 3,84 3,73 3,88 3,91 3,88 4,13 3,91 3,99 3,96 3,83 4,17 3,97 3,87 4,07 3,81 

13 3,58 4,10 3,64 3,78 4,13 3,97 3,75 4,03 3,61 3,68 3,59 3,51 3,98 4,24 3,64 

14 4,06 4,05 4,04 4,14 4,06 3,81 3,78 4,17 4,12 3,89 3,82 4,10 3,83 4,07 3,82 

15 3,71 3,94 3,92 3,88 3,98 3,97 3,92 3,87 3,83 3,78 4,20 4,02 4,19 3,79 4,13 

Также для выборок энтропии, представленных в таблице 2.8, строилась 

матрица парных сравнений. В результате было установлено, что число 

«совпадений» k=102 (таблица 2.9). Таким образом, таблица 2.9 демонстрирует 

почти абсолютную статистическую устойчивость параметров энтропии в 225 

выборках ТМГ для одного испытуемого, что диаметрально противоположно в 

сравнение с их статистическими функциями f(x). Согласно этим результатам, все 

выборки являются однородными, что противоречит результатам математической 

статистики, полученным при построении матриц парных сравнений. Такое же 

число пар «совпадений» установлено для детерминированного хаоса 

(формирование выборок на основе генератора случайных чисел, однородные 

выборки). Такие выборки имеют равномерное распределение и число k 

«совпадений» устанавливается на уровне 97-99%, в качестве примера можно 

привести сведения о том, что для модельной выборки длиной N=500, полученной с 

помощью генератора случайных чисел число <k>=104 из 105 сравниваемых пар.  
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Таблица 2.9 – Характерный пример матрицы парных сравнений выборок энтропии 

Шеннона, использовался непараметрический критерий Вилкоксона (число 

«совпадений» k=102) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .86 .65 .07 .82 .78 .95 .09 .36 .69 .14 .08 .82 .04 .53 

2 .86  .57 .26 .43 .61 .78 .26 .33 .78 .19 .14 .61 .21 .46 

3 .65 .57  .14 .57 .73 1.0 .17 .39 .69 .05 .21 .86 .17 .73 

4 .07 .26 .14  .17 .31 .23 .95 .28 .05 .91 .73 .57 .69 .46 

5 .82 .43 .57 .17  .65 .57 .28 .69 .50 .23 .36 .61 .19 .78 

6 .78 .61 .73 .31 .65  .50 .33 .39 .82 .05 .14 .95 .10 .57 

7 .95 .78 1.0 .23 .57 .50  .16 .43 .86 .10 .23 .39 .11 .39 

8 .09 .26 .17 .95 .28 .33 .16  .36 .16 .95 .78 .26 .73 .39 

9 .36 .33 .39 .28 .69 .39 .43 .36  .31 .31 .69 .65 .46 .78 

10 .69 .78 .69 .05 .50 .82 .86 .16 .31  .26 .21 .61 .13 .57 

11 .14 .19 .05 .91 .23 .05 .10 .95 .31 .26  .36 .21 .61 .31 

12 .08 .14 .21 .73 .36 .14 .23 .78 .69 .21 .36  .36 .95 .73 

13 .82 .61 .86 .57 .61 .95 .39 .26 .65 .61 .21 .36  .13 .73 

14 .04 .21 .17 .69 .19 .10 .11 .73 .46 .13 .61 .95 .13  .46 

15 .53 .46 .73 .46 .78 .57 .39 .39 .78 .57 .31 .73 .73 .46  

Стоит отметить, что результаты проверки на закон распределения выборок 

ТМГ (или ТПГ) испытуемых на основе критерия Шапиро-Уилка почти всегда 

демонстрируют непараметрическое распределение. В этой связи для установления 

различий между выборками произвольных и непроизвольных движений 

испытуемых применялись методы непараметрической статистики. Однако расчет 

энтропии H не может установить существенные различия выборок, полученных от 

одного испытуемого в режиме многократных повторений эксперимента. 

Движения БМС человека на примере движений конечности в пространстве 

для различных состояний человека также оценивались в рамках расчета энтропии. 

Как было сказано ранее, расчет энтропии осуществлялся для всех регистрируемых 

выборок в спокойном состоянии (гомеостаз G1) и с нагрузкой F=3N (гомеостаз G2). 

В таблице 2.10 приведены результаты расчета значений энтропии для выборок 

ТМГ при разбиении на 20 и 50 равных интервалов, как пример подобных расчетов 

(𝐻1 – без нагрузки на конечность (гомеостаз G1) и H2 – с грузом F=3N (гомеостаз 

G2)).  
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Таблица 2.10 – Значения энтропии Шеннона для треморограмм при разбиении на 

l2=20 равных интервалов и статистическое сравнение двух разных состояний 

(гомеостаза G1≠G2) испытуемого ГДВ, здесь G1 – спокойное состояние,  

G2 – с нагрузкой F=3N) 

№ 

z=[min(x(t));max(x(t))] на 

отрезки l=20 

z=[min(x(t));max(x(t))] 

на отрезки l=50 

H1, без 

нагрузки 

H2, с 

нагрузкой 

F=3N 

H1, без 

нагрузки 

H2, с 

нагрузкой 

F=3N 

1 3,9600 3,8676 5,2012 5,1378 

2 3,9763 3,8603 5,2347 5,1330 

3 4,0690 3,9316 5,3177 5,1986 

4 3,8245 4,0375 5,0728 5,3018 

5 3,6044 3,7386 4,8907 4,9975 

6 3,9127 3,9498 5,1883 5,2365 

7 4,0657 3,9913 5,3232 5,2520 

8 4,2017 3,9018 5,4151 5,1721 

9 3,9570 4,0167 5,1621 5,2818 

10 3,5806 4,0105 4,8306 5,2781 

11 3,9094 4,0765 5,1710 5,3523 

12 3,8382 3,9685 5,0519 5,2363 

13 3,5808 3,5787 4,8140 4,8497 

14 4,0614 3,9076 5,3294 5,1717 

15 3,7125 4,0014 4,9396 5,2905 

<H> 3,8836 3,9226 5,1295 5,1926 

Уровень 

значимости 
p=0.53 p=0.28 

Изменение гомеостаза можно рассматривать как эволюционное, т.к. во 

втором случае совершается движение под нагрузкой (расходуется энергия), но 

статистически два состояния не различаются, т.е. организм якобы находится в 

стационарном режиме и ничего не происходит. Это также свидетельствует о том, 

что выборки ТМГ в спокойном состоянии и при удержании груза однородны, что, 

в принципе, не может быть, т.к. человек испытывает ощущение нагрузки и это 

приводит к изменению гомеостаза БМС человека (и всего организма), и, как 

следствие, к изменению параметров непроизвольных движений. Стоит отметить, 

что такая динамика наблюдается если при расчете энтропии Шеннона использовать 

интервалы разбиения l1=10, l2=20 (таблица 2.10), l3=50 (таблица 2.10). 
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Таблица 2.11 – Значения энтропии Шеннона для треморограмм при разбиении на 

50 и 1000 равных интервалов и статистическое сравнение разных состояний 

(гомеостаза G1≠G2) испытуемого ГДВ, здесь G1 – спокойное состояние, 

 G2 – с нагрузкой F=3N) 

№ 

z=[min(x(t));max(x(t))] 

на отрезки l=200 

z=[min(x(t));max(x(t))] 

на отрезки l=1000 

H1, без 

нагрузки 

H2, с 

нагрузкой 

F=3N 

H1, без 

нагрузки 

H2, с 

нагрузкой 

F=3N 

1 6,9508 6,8544 6,9410 7,9393 

2 6,8923 6,9220 7,0208 7,8043 

3 6,9415 6,8580 7,3772 7,8360 

4 6,6563 7,0559 6,6563 8,0439 

5 6,3228 6,7713 6,3147 7,9890 

6 6,8333 6,9734 7,3688 7,8351 

7 6,9669 7,0144 7,3281 8,1763 

8 6,6264 6,8580 6,6264 7,7521 

9 6,4265 6,9648 6,4265 7,7609 

10 6,5147 7,0051 6,7985 7,8664 

11 6,8700 7,0404 7,3891 8,0138 

12 6,5725 6,9223 6,5725 7,9894 

13 6,5202 6,5832 6,5124 7,5429 

14 6,9856 6,8988 7,3857 7,6667 

15 6,6043 6,9505 6,6119 7,6826 

<H> 6,7123 6,9115 6,8887 7,8599 

Уровень 

значимости 
p=0.01 p=0.00 

 

На рисунке 2.13 продемонстрировано распределение выборки для разбиения 

на 20 и 50 равных интервалов. Результаты расчета энтропии с разбиением на 200 и 

1000 равных интервалов были представлены в таблице Таблица 2.11, а 

гистограммы распределения изображены на рисунке 2.13. 
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Рисунок 2.13 – Гистограммы разбиения выборки треморограммы для интервала 

z=[min(x(t)); max(x(t))] на отрезки l: а – l=20; b – l=50; c – l=200; d – l=1000 

В таблице 2.12 приведены результаты расчета энтропии для выборок одного 

испытуемого, полученных в режиме многократного повтора регистрации 

непроизвольных движений БМС на примере конечности человека в рамках одного 

эксперимента в спокойном состоянии (гомеостаз G1) и после холодового 

воздействия (гомеостаз G2). Как видно из этой таблицы 2.12, две выборки энтропии 

Шеннона статистически не различаются (уровень значимости p>0,05 при 

критическом значении p≤0,05). Согласно этим данным, БМС находится в одном 

стационарном состоянии и никакого влияния стресс-агент, в виде холодового 

воздействия, на БМС не оказывает. Это еще раз доказывает ограниченную 

возможность применения ТНС И.Р. Пригожина к сложным биосистемам. 

Очевидно, что с позиций теоремы Гленсдорфа-Пригожина не были получены 

статистически достоверные изменения энтропии, т.е. скорость прироста энтропии 

𝑃 = 𝑑𝐻/𝑑𝑡 почти нулевая. При выходе из положения равновесия энтропия не 

может продемонстрировать существенные изменения.  
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Таблица 2.12 – Результат расчета энтропии Шеннона для треморограмм при разном 

количестве разбиений l и их статистическое сравнение двух разных состояний 

(гомеостаза G1≠G2) испытуемого ГДВ, здесь G1 – спокойное состояние (Hi
cc),  

G2 – после холодового воздействие Hi
зв)) 

№ 
l=20 l=50 l=200 l=1000 

H1
сс H2

хв H1
сс H2

хв H1
сс H2

хв H1
сс H2

хв 

1 4,1186 4,0898 5,3304 5,3486 6,989 6,961 7,6311 7,3150 

2 3,6998 3,9496 4,8912 5,2094 6,607 6,901 7,3371 7,6542 

3 4,1505 4,1853 5,4258 5,4740 7,155 7,055 7,9880 7,4892 

4 3,4572 4,0364 4,7082 5,3176 6,294 6,967 6,8581 7,4556 

5 3,6905 3,6836 4,9671 4,9598 6,571 6,662 6,5628 7,2507 

6 4,1055 3,4787 5,3137 4,7368 6,632 6,424 6,6322 6,9940 

7 3,7249 3,6711 4,9501 4,9022 6,679 6,530 6,8186 6,8279 

8 3,9479 3,8314 5,1488 5,0583 6,872 6,665 6,9421 7,1330 

9 4,0110 4,0722 5,2617 5,3108 6,937 6,564 7,3231 6,5639 

10 3,8396 3,9086 5,0793 5,1805 6,678 6,857 7,2629 6,8638 

11 3,7590 3,9963 5,0319 5,2501 6,667 6,838 7,2481 7,2311 

12 3,9391 4,1034 5,2013 5,3338 6,767 6,977 6,7670 7,1238 

13 3,9970 3,8409 5,2556 5,1345 6,979 6,754 6,9921 6,7536 

14 4,1778 3,5888 5,3992 4,8486 6,722 6,543 6,7147 6,8553 

15 3,6236 3,6317 4,8162 4,9024 6,531 6,507 7,3543 6,8436 

<H> 3,8828 3,8712 5,1187 5,1312 6,739 6,747 7,0955 7,0903 

Уровень 

значимости 
p=0.77 p=0.46 p=0.77 p=0.95 

На основе результатов расчета энтропии можно определить, что при уходе 

сложной биосистемы из одного гомеостаза в другой, происходят несущественные 

изменения значений энтропии Шеннона. Это позволяет говорить о слабой 

чувствительности и, как следствие, о низкой диагностической ценности метода 

расчета энтропии на основе стохастических методов в изучении параметров 

гомеостаза, т.к. эти результаты всегда демонстрируют однородность выборок ТМГ. 

Низкая чувствительность энтропии H может не показать различий в состоянии 

системы регуляции тремора при физических воздействиях на испытуемого или эти 

различия будут статистически недостоверны (что и представлено в таблице 2.12). 

Оценку холодовых эффектов и изменений в периферическом звене БМС следует 

производить другими методами (например, расчет параметров КА). 
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Далее представлены результаты сравнения значений энтропии 

непроизвольных движений со значениями энтропии произвольных движений. В 

таком аспекте сравнительного анализа энтропия Шеннона статистически значимо 

различается. В первую очередь это связано с существенными изменениями в 

движении. В случае с произвольными движениями в работу БМС подключается 

сознание человека, в то время как непроизвольные движения осуществляются на 

бессознательном уровне. Подтверждением изменения энтропии является таблица  

2.13. Термодинамическая оценка показывает статистически достоверные различия 

между выборками при переходе от одного гомеостаза (G1 – постуральный тремор) 

к другому гомеостазу G2 (теппинг), который расходует больше энергии.  

Таблица 2.13 – Результат расчета энтропии Шеннона при разном количестве 

разбиений l для параметров движений (ТМГ и ТПГ) и статистическое сравнение 

двух разных состояний (гомеостаз G1≠G2) испытуемого ГДВ, здесь  

G1 – бессознательное движение, G2 – сознательное движение) 

№ 

l=20 l=50 l=200 l=1000 

H1, ТМГ H2, ТПГ 
H3, 

ТМГ 

H4, 

ТПГ 

H5, 

ТМГ 

H6, 

ТПГ 

H7, 

ТМГ 

H8, 

ТПГ 

1 3,9600 4,1606 5,2012 5,4079 6,9508 7,1602 6,9410 8,2176 

2 3,9763 4,2110 5,2347 5,4812 6,8923 7,2074 7,0208 8,3679 

3 4,0690 4,2104 5,3177 5,4972 6,9415 7,2472 7,3772 8,4116 

4 3,8245 4,1735 5,0728 5,4391 6,6563 7,1796 6,6563 8,2598 

5 3,6044 4,2564 4,8907 5,5305 6,3228 7,2552 6,3147 8,3596 

6 3,9127 4,2281 5,1883 5,5224 6,8333 7,2085 7,3688 8,2589 

7 4,0657 4,1698 5,3232 5,4179 6,9669 7,1405 7,3281 8,2685 

8 4,2017 4,2129 5,4151 5,4896 6,6264 7,1984 6,6264 8,2074 

9 3,9570 4,2510 5,1621 5,5295 6,4265 7,2197 6,4265 8,3549 

10 3,5806 4,1726 4,8306 5,4024 6,5147 7,1512 6,7985 8,2245 

11 3,9094 4,2138 5,1710 5,4938 6,8700 7,1874 7,3891 8,3471 

12 3,8382 4,2488 5,0519 5,5231 6,5725 7,2616 6,5725 8,2916 

13 3,5808 4,1304 4,8140 5,3872 6,5202 7,1335 6,5124 8,2427 

14 4,0614 4,1347 5,3294 5,4138 6,9856 7,1438 7,3857 8,2699 

15 3,7125 4,1023 4,9396 5,3865 6,6043 7,1277 6,6119 8,3235 

<H> 3,8836 4,1917 5,1295 5,4615 6,7123 7,1881 6,8887 8,2937 

Уровень 

значимости 
p=0.00 p=0.00 p=0.00 p=0.00 

 

Представленные результаты в таблице 2.13 демонстрируют значительные 

изменения энтропии (<H1>=3,8836≠<H2>=4,1917 для l=20). Полученные 
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результаты расчета энтропии свидетельствуют о том, что подключение сознания 

существенно изменяет состояние организма человека. С позиции ТНС БМС 

человека находится в одном неизменном стационарном состоянии при регистрации 

ТМГ и меняет его на другое стационарное состояние при регистрации ТПГ. 

Результаты расчёта энтропии Шеннона H (где критерий статистического сравнения 

этих двух выборок p=0.00), подтверждают статистическое различение выборок и 

для средних значений <H1> ТМГ и <H2> ТПГ. На рисунке 2.14 представлены 

гистограммы распределения выборок при разбиении на 20 и 50 равных интервалов 

соответственно. 

 

 
 а b 

 
 c d 
Рисунок 2.14 – Гистограммы разбиения выборки на интервалы: а – l=20 спокойное 

состояние, тремор; b – l=20 спокойное состояние, теппинг; c – l=50 спокойное 

состояние, тремор; d – l=50 спокойное состояние, теппинг 

Это еще одно доказательство ограниченных возможностей детерминистских 

и стохастических подходов в описании физиологических и психофизиологических 

систем [10]. Очевидно, что эти все результаты полностью относятся и к оценке 

состояния высшей нервной деятельности, и к пониманию особенностей 

психического гомеостаза, который не может быть описан величиной энтропии 

[22, 53]. Результаты исследований показывают особенности БМС, где 
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непроизвольные движения по параметрам энтропии Шеннона практически не 

различаются (при изменении гомеостаза, например, задача удержания груза), а в 

плане энергетических затрат это совершенно разные процессы. 

В свою очередь, энтропия Шеннона способна различить два разных типа 

движения тремор и теппинг, что свидетельствует о низкой диагностической 

ценности данного подхода. Исследователь не может достоверно знать, когда 

энтропия Шеннона покажет полное совпадение состояний (например, при 

сравнении спокойного состояния и удержания груза или до охлаждения в 

спокойном состоянии и после охлаждения), а когда их различит, как в случае с 

произвольными и непроизвольными движениями человека. 

Подводя итог вышеизложенного, можно сделать вывод, что энтропия H при 

переходе из одного стационарного состояния в другое неустойчивое состояние не 

всегда статистически изменяется, и этот факт является существенным 

ограничением применения метода расчета значений H в описании динамики 

движений БМС.  

2.7 Анализ динамики движений биомеханической системы на основе 

метода расчета параметров квазиаттракторов 

Анализ результатов, полученных на основе расчетов параметрам КА, 

позволяет оценить изменения гомеостаза при различных воздействиях и уточнить 

необходимые сведения о динамике движений БМС человека, которые необходимы 

для разработки математического обеспечения на основе теории 

дифференциальных уравнений с разрывной правой частью и симуляционной 

модели на его основе. Данный метод ТХС продемонстрировал высокую 

эффективность, что подтверждено достаточно большим количеством научных 

публикаций [3, 78]. Необходимо отметить, что представленный метод, несмотря на 

широкий охват и глубину степени изученности, необходимо дополнительно 

верифицировать. Такой подход позволит максимально точно и безошибочно 

создать симуляционную модель на основе математического и алгоритмического 
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обеспечения для воспроизведения динамики движений БМС человека на примере 

конечности человека. 

Для того чтобы определить эффективность двух подходов методами 

стохастики и ТХС, были определены параметры распределения ТМГ (изначально 

с позиций стохастики). Основные измерения, полученные от одного (и каждого) 

испытуемого при разбиении отрезка ТМГ (или ТПГ) длительностью τ=5 сек. на 

интервалы 𝜏1 = 𝜏2 = 𝜏3 (интервал τ делился на 3 отрезка 𝜏𝑖, т.е. 𝜏1 + 𝜏2 + 𝜏3 =

𝜏общ = 𝜏), показали непараметрический тип распределения [25]. В редких случаях 

к этим 3-м участкам 𝜏𝑖  можно было установить нормальное распределение. Каждый 

участок 𝜏𝑖 представляет уникальную функцию распределения 𝑓(𝑥) для каждого 

испытуемого на каждом отрезке 𝜏𝑖. Стоит подчеркнуть, что и при других 

измерениях у каждого испытуемого (в другие 5 сек.) результат был аналогичным, 

т.е. распределение постоянно меняется (то параметрическое, то непараметрическое 

в подавляющем большинстве), функции распределения 𝑓(𝑥) также хаотически и 

непрерывно изменяются на каждом интервале времени ∆𝑡𝑗, где j – номер выборки. 

Средние значения х̅ удовлетворяют критерию отнесения всех < 𝑥𝑖 > для 

отрезков 𝜏𝑖 к одной генеральной совокупности (но не более 20% от всех 

испытуемых). Однако дисперсии всегда демонстрируют различие между парными 

сравнениями отрезков 𝜏𝑖 = 𝜏/3. Если взять параметры непроизвольных или 

произвольных движений одного испытуемого в разные моменты времени ∆𝑡𝑖 

(например, в течение одного дня), то возможность совпадения < 𝑥 > и дисперсий 

𝐷∗ сводится к нулю. Таким образом, если один испытуемый на интервале 𝜏 = 5 сек. 

иногда может продемонстрировать подобие (по < 𝑥 > и 𝐷∗), то в другие моменты 

регистрации такое подобие воспроизвести невозможно. Любой интервал 𝜏 = 5 сек. 

уникален и неповторим, даже если испытуемый находится в спокойном состоянии 

[78]. Для демонстрации этого представлен рисунок 2.15, из которого видно, что 

сходства между выборками (подряд регистрируемых) нет. 
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Рисунок 2.15 – Характерные примеры временной развертки выбор треморограмм 

(а) и теппинграмм (б) разовых выборок подряд и наборов выборок из N=15 

Соответственно, в рамках ТХС предлагается для биосистем ввести аналог 

принципа неопределенности Гейзенберга в виде расчета параметров КА 

(представлено в параграфе 2.4) [25]. Это означает, что 𝑥(𝑡) непрерывно движется 



87 

 
 

внутри ограниченного объема фазовой плоскости, а функции распределения 𝑓(𝑥) 

непрерывно «мерцают» [35, 36, 58]. При этом ВСС хаотически меняет направление 

движения в этой ограниченной области ФПС. 

Углубленное исследование возможности применения методов ТНС в 

описании БМС на основе сравнения значений H не позволило сделать однозначный 

вывод для эксперимента с грузом. Аналогичные действия для анализа движений 

БМС человека осуществлялись и на основе метода расчета параметров КА. 

Результаты расчета площади КА для двух разных состояний (G1 – спокойное 

состояние, G2 – при удержании груза) представлены в таблице 2.14.  

Таблица 2.14 – Результат расчета площадей квазиаттракторов для выборок 

треморограмм испытуемого ГДВ, полученных в режиме многократных повторений 

измерений, находящегося в спокойном состоянии и с грузом F=3N 

№ 
S1*10-8, без 

нагрузки 

S2*10-8, с 

нагрузкой F=3N 

1 2,78 8,39 

2 3,84 6,02 

3 1,03 3,13 

4 0,58 4,12 

5 1,12 11,4 

6 2,22 6,90 

7 0,94 4,20 

8 2,34 3,76 

9 1,88 8,79 

10 2,25 9,46 

11 2,36 9,79 

12 1,93 3,91 

13 2,60 5,48 

14 5,12 10,6 

15 2,80 5,77 

<S> 2,25 6,78 

Уровень 

значимости 
p=0.00 

Из этой таблицы 2.14 видно, что выборки из 15-ти площадей КА для опыта с 

нагрузкой (S2) существенно отличаются (p=0.00) от выборки S1 без груза 

(<S1>=2.25*10-8 у.е. в спокойном состоянии, против <S2>=6.78*10-8 у.е. с грузом). 

Субъективные ощущения нагрузки сопровождаются количественным изменением 
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площади S КА (почти в 2 раза), но при этом энтропия H демонстрирует обратную 

динамику. Для КА до нагрузки и при нагрузке наблюдается двукратное увеличение 

S. На рисунке 2.16 представлен пример треморограммы до нагрузки (рисунок 2.16-

Iа) и с нагрузкой (рисунок 2.16-Ib), а также их фазовые портреты (рисунок 2.16-IIa 

и рисунок 2.16-IIb). 

I 

  

II 

  

 а b 

Рисунок 2.16 – Пример треморограммы без нагрузки (Iа) и с нагрузкой (Ib),  

а также их фазовых портретов (IIа без нагрузки, IIb с нагрузкой F=3N) 

С позиции ТХС в изменении параметров КА (таблица 2.14) были 

установлены существенные статистические изменения, которые можно 

интерпретировать как эволюцию состояния гомеостаза и высшей нервной 

деятельности. Это доказывается тем, что средняя площадь КА для ТМГ с грузом 

<S2> больше площади КА без груза <S1> более чем в 2 раза. По критериям 

эволюции [65] это показывает существенные изменения в состоянии системы 

регуляции тремора СТТ. Общепринятые критерии в математической статистике и 

термодинамике демонстрируют другую картину (хаос или стационарность H). 

Для анализа ТПГ при холодовом воздействии также рассчитывались 

параметры КА (таблица 2.15). Из этой таблицы 2.15 видно, что площади этих 

квазиаттракторов при холодовом воздействии в 1.51 раз больше, т.е.  
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< 𝑆1 > = 1.69 ∗ 10
−8 у.е. без холодового воздействия и < 𝑆2 > = 2.56 ∗ 10

−8 у.е. 

после холодового воздействия. При статистическом сравнении выборок S КА 

непараметрический критерий Вилкоксна p=0.04 (критический уровень значимости 

p<0.05). Такое значение уровня p позволяет сделать вывод, что представленные 

выборки имеют статистически достоверные отличаются. Соответственно, такая же 

динамика поведения параметров КА сохраняется и для других пар сравнений 

выборок S (в том числе и для других испытуемых). Все это позволяет считать 

данный метод достоверным для анализа и оценки различных состояний, что 

позволяет использовать его в качестве метода сравнительного анализа результатов 

математического моделирования с данными натурных экспериментов. 

Таблица 2.15 – Результат расчета площадей квазиаттракторов для выборок 

теппинграмм испытуемого ГДВ, полученных в режиме многократных повторений 

измерений, находящегося в спокойном состоянии (S1) и после холодового 

воздействия (S2) 

№ S1*10-8 S2*10-8  

1 3.11 5.71 

2 2.57 4.84 

3 1.45 2.76 

4 1.13 1.17 

5 0.98 1.15 

6 3.36 1.97 

7 1.55 3.08 

8 1.80 1.42 

9 0.92 0.94 

10 1.30 2.23 

11 1.12 4.25 

12 2.60 1.72 

13 2.26 1.76 

14 0.55 1.61 

15 0.71 3.86 

<S> 1.69 2.56 

Уровень 

значимости 
p=0.04 

Далее проводился сравнительный анализ параметров квазиаттракторов 

произвольных и непроизвольных движений. Для графического отображения 

полученных данных с помощью тремогрофа была построена временная развертка 
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этих выборок (рисунок 2.17-I). Анализ данных позволил установить, что каждый 

регистрируемый сигнал уникален для любого измерения. При этом сохраняется 

некоторая закономерность, которая связана с площадью КА (рисунок 2.17-II). 

Фазовые координаты (х1 и x2) позволяют описать динамику ВСС x=(x1, x2)
T в 

двумерном отображении. Очевидно, что движения БМС неоднородны. 

I 

  

II 

  
 а b 

 A B Рисунок 2.17 – Пример результата построения временной развертки сигнала для 

выборок, полученных от одного испытуемого треморограмм (Ia) и теппинграмм 

(Ib), а также их двухмерное изображение фазовой плоскости (IIа и IIb 

соответственно) 

Также были проведены исследования, в которых осуществлялось сравнение 

площадей КА и для ТМГ, и для ТПГ. В результате такого анализа было установлено 

закономерное увеличение площади КА в динамике поведения произвольных и 

непроизвольных движений (таблица 2.16). Из таблицы 2.16 видно, что выборка из 

15-ти площадей КА для ТПГ (S2) существенно отличается (p=0.00) от выборки S1 

для ТМГ (<S1>=1.24*10-6 у.е. для ТМГ, против <S2>=28.0*10-6 для ТПГ). 

Вмешательство сознания сопровождается количественным изменением S КА. 
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Таблица 2.16 – Результат расчета площадей квазиаттракторов для выборок 

треморограмм и теппинграмм испытуемого ГДВ полученных в режиме 

многократных повторений измерений 

№ 
S1*10-6 КА 

треморограмм 

S2*10-6 для 

теппинграмм 

1 1.37 22.0 

2 0.80 15.7 

3 1.49 25.6 

4 1.01 26.9 

5 1.26 31.3 

6 1.13 21.2 

7 0.51 18.3 

8 0.98 30.2 

9 0.75 26.4 

10 0.75 35.4 

11 2.05 31.6 

12 1.02 43.5 

13 1.42 35.2 

14 2.35 25.1 

15 1.64 31.5 

<S> 1.24 28.0 

Уровень 

значимости 
p=0.00 

Следует отметить, что расчет параметров квазиаттракторов можно 

использовать и для проверки выборок на однородность. Именно расчет площадей 

КА, координат их центров в виде 𝑥𝑖
𝑐 и расчет отношений площадей КА позволяет 

объединить однородные выборки в одну совокупность для последующего анализа. 

На рисуноке 2.18 представлен механизм отбора однородных выборок согласно 

алгоритму, приведенному на рисунке 2.10 (параграф 2.4). Для разгрузки 

восприятия графического отображения на рисунке 2.18 представлены только 6-ть 

областей КА, два из которых не удовлетворяют критерию однородности выборок. 

Таким образом, 𝑥5
𝑐 покинул пределы 3-х других ограниченных областей КА 

(𝑥1
𝑐 , 𝑥2,

𝑐 , 𝑥3
𝑐) и такая выборка не может быть однородной по отношению к ним. 

Наиболее яркий пример неоднородности демонстрирует КА6, т.к. область других 

квазиаттракторов покинул не только его центр 𝑥6
𝑐, но и вся его ограниченная 

область вышла за пределы других областей КАi. Более того, отношение VG6 к 
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остальным VGi больше чем в 2 раза. Таким образом, обе эти выборки, которым 

принадлежат эти КА, были исключены из общего числа однородных выборок, 

полученных в одном эксперименте от одного испытуемого [13, 16, 38, 39, 78, 79]. 

 

Рисунок 2.18 – Демонстрация отбора выборок по критерию однородности на 

примере 6-ти выборок с 2-мя неоднородными выборками 

В связи с тем, что в рамках одного эксперимента минимальное количество 

выборок должно быть не менее 15, то приводится характерный пример из 15 КА и 

их центров 𝑥𝑖
𝑐 (рисунок 2.19а для ТМГ). Таким образом, в рамках ТХС исключается 

возможность получения недостоверных результатов, т.к. все выборки изначально 

проходят проверку на однородность. Использование критерия проверки 

однородности выборок продемонстрировало, что выборки ТМГ, полученные даже 

от одного человека, изначально могут быть неоднородными. Также стоит отметить, 

что выборки теппинграмм, получаемые от одного человека практически всегда 

изначально однородны (рисунок 2.19b). В среднем на каждые 200 регистрируемых 

выборок ТПГ находится всего одна неоднородная выборка, но при этом она 

неоднородна к небольшому числу выборок из общей совокупности. 
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  а b 

Рисунок 2.19 – Пример из 15-ти однородных выборок параметров  

треморограмм (а) и теппинграмм (b) 

2.8 Анализ регистрируемых данных по движениям биомеханической 

системы на основе математического метода сглаживания 

Ввиду того, что при регистрации движений на биоизмерительном комплексе 

(представлен в главе 2.1) может присутствовать вероятность искажения сигнала за 

счет различного рода шумов, то было принято решение применить один из 

вариантов сглаживания сигнала в виде нахождения скользящей средней. Для 

расчета были выбраны усреднения по 3, 5 и 10 отсчетам. Как и ожидалось, точность 

регистрации параметров очень высокая (частота дискретизации μ=100 Гц) поэтому 

расчет скользящей средней не приводит к существенным изменениям сигнала,  

что и представлено на рисунке 2.20 для усреднения по разному количеству  

отсчетов. 

Далее производились расчеты скорости перемещения конечности в 

пространстве для каждой выборки в рамках исследования движений БМС человека. 

Для примера представлены фазовые траектории на рисунке 2.21 и рисунке 2.22, 

полученные по исходным данным и по данным расчета скользящих средних (CC) 

для ТМГ и ТПГ соответственно. Площади КА представлены в таблице 2.17 для 

примеров, представленных на рисунке 2.21 и рисунке 2.22. 
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 а b 

Рисунок 2.20 – Пример реального сигнала (синий график) и сглаженного сигнала 

с помощью метода скользящей средней (красный график): а – для выборки 

треморограммы, b – для выборки теппинграммы; I – по 3-м отсчетам, II – по 5-ти 

отсчетам, III – по 10-ти отсчетам 
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Рисунок 2.21 – Фазовая траектория для треморограммы: а – реальные данные;  

b – метод СС по 3-м отсчетам для координаты x2; c – метод СС по 5-и отсчетам 

для координаты x2; d – метод СС по 10-и отсчетам для координаты x2; e – метод 

СС по 3-м отсчетам для координаты x1; f – метод СС по 5-и отсчетам для 

координаты x1; g – метод СС по 10-и отсчетам для координаты x1 
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Рисунок 2.22 – Фазовая траектория для теппинграммы: а – реальные данные;  

b – метод СС по 3-м отсчетам для координаты x2; c – метод СС по 5-и отсчетам 

для координаты x2; d – метод СС по 10-и отсчетам для координаты x2; e – метод 

СС по 3-м отсчетам для координаты x1; f – метод СС по 5-и отсчетам для 

координаты x1; g – метод СС по 10-и отсчетам для координаты x1 
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Таблица 2.17 – Значение площадей квазиаттракторов для выборок треморограммы 

и теппинграммы с применением метода СС 

Параметры метода СС ТМГ ТПГ 

Исходные данные 0,00098 0,01957 

Применение метода СС по 3-м отсчетам для координаты x2 0,00085 0,01677 

Применение метода СС по 5-и отсчетам для координаты x2 0,00068 0,01262 

Применение метода СС по 10-и отсчетам для координаты x2 0,00033 0,00831 

Применение метода СС по 3-м отсчетам для координаты x1 0,00083 0,01672 

Применение метода СС по 5-и отсчетам для координаты x1 0,00063 0,01252 

Применение метода СС по 10-и отсчетам для координаты x1 0,00027 0,00797 

Как видно из рисунка 2.21, рисунка 2.22 и таблицы 2.17, применение метода 

СС для сглаживания регистрируемого сигнала существенно искажает исходные 

данные с увеличением количества отсчетов. Метод СС по сути своей является 

фильтром низких частот. Как и ожидалось, точность регистрации параметров очень 

высокая (частота дискретизации μ=100 Гц) и расчет скользящей средней 

существенно искажает реальную динамику движения БМС на примере конечности 

человека. Для подтверждения отсутствия существенных отклонений представлен 

рисунок 2.23, на котором изображены АЧХ для двух выборок. 

 
  а b 

Рисунок 2.23 – Амплитудно-частотная характеристика для: а – треморограммы;  

b – теппинграмм 

Очевидно, что результаты в виде площадей КА существенно изменяются при 

использовании фильтра низких частот. При этом на рисунке 2.23 на высоких 

частотах нет никаких проявлений, что свидетельствует о высокой точности 

биоизмерительного комплекса и об отсутствии помех. В этой связи применение 

фильтра высоких частот может привести к существенному искажению реальной 

траектории движения конечности. 
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2.9 Выводы по главе 

Разработана и описана методика проведения реального эксперимента для 

выявления закономерностей в динамике движений биомеханической системы. 

Результаты экспериментов являются основой для разработки математического 

обеспечения на основе теории дифференциальных уравнений с разрывной правой 

частью. Представленная методика предполагает организацию сбора 

экспериментальных данных, формирование базы данных для дальнейшего анализа, 

процедуру регистрации параметров биомеханической системы и процедуру 

проведения анализа данных. 

Исследование результатов экспериментов методами математической 

статистики, термодинамики неравновесных систем и теории хаоса-

самоорганизации позволило установить их эффективность в задачах по выявлению 

и верификации закономерностей. Новые сведения о динамике произвольных и 

непроизвольных движений человека должны использоваться при создании 

математического и алгоритмического обеспечения для симуляционной модели 

движений биомеханической системы на их основе. 

В главе также показаны выявленные закономерности в динамике движений 

биомеханической системы, являющиеся основой математического обеспечения и 

его реализации в виде симуляционной модели.  

На основе метода расчета энтропии Шеннона установлено, что значения 

энтропии Шеннона для выборок параметров биомеханической системы являются 

однородными в рамках одного гомеостаза всех испытуемых, т.е. все испытуемые 

находятся в одном квазистационарном состоянии и не отличаются. Это показывает 

низкую диагностическую ценность данного метода анализа данных в отношении 

идентификации гомеостаза. Такой подход эффективен в случае кардинального 

изменения динамики регистрируемого сигнала, например, при разных типах 

движений (энтропии Шеннона для треморограмм и теппинграмм). 

При анализе данных с помощью методов математической статистики 

выявлены закономерные изменения в количестве пар совпадений при анализе 

однородных выборок в рамках теории хаоса-самоорганизации для непроизвольных 
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движений. Установлено, что количество пар совпадений демонстрирует 

устойчивость для конкретного гомеостаза БМС человека. Матрицы парных 

сравнений для выборок треморограмм, не проходящих проверку на однородность 

число k≤7%, для отобранных однородных выборок треморограмм наблюдается 

незначительный рост числа совпадений до k≈9-13%, где k – количество пар, 

которые можно отнести к одной генеральной совокупности.  

Расчет параметров квазиаттрактора позволил подтвердить высокую 

эффективность подхода к анализу параметров произвольных и непроизвольных 

движений человека в различных состояниях. Представленный метод анализа 

можно использовать для идентификации состояния испытуемых, проверки 

выборок на однородность, а также в качестве метода сравнительного анализа 

результатов симуляционного моделирования и данных реальных экспериментов. 

Методом скользящей средней установлено, что нет необходимости 

применять фильтр низких частот для экспериментально полученных выборок по 

движениям биомеханической системы. Отсутствие такой необходимости 

подтверждается амплитудно-частотной характеристикой сигнала. Применение 

метода скользящей средней может существенно деформировать реальную 

траекторию движения вектора состояния системы.   
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 3 МАТЕМАТИЧЕСКОЕ И АЛГОРИТМИЧЕСКОЕ ОБЕСПЕЧЕНИЕ 

ОПИСАНИЯ ДИНАМИКИ ДВИЖЕНИЙ БИОМЕХАНИЧЕСКОЙ 

СИСТЕМЫ ЧЕЛОВЕКА 

Установленные закономерности в динамике движений БМС человека в 

главе 2 позволяют разработать математическое и алгоритмическое обеспечение на 

основе теории дифференциальных уравнений с разрывной правой частью для 

разработки и реализации симуляционной модели. Согласно представленному 

краткому обзору теории дифференциальных уравнений с разрывной правой частью 

в параграфе 1.6, можно рассматривать биологические системы и отдельные ФСО 

как физические системы или подсистемы. Следует обратить внимание на то, что в 

работе ФСО человека присутствует механизм самоорганизации, т.е. ФСО человека 

осуществляет регулирование внутренних ∇b в некоторой δ-окрестности при 

нахождении в некотором стационарном состоянии по принципу работы систем с 

некоторым запаздыванием Δt, при условии, что запаздывание должно быть сколь 

угодно малым (т.е. Δt→0). 

3.1 Математическое обеспечение для воспроизведения и последующей 

визуализации динамики движения биомеханической системы человека 

В работе ФСО человека наблюдается то, что вектор направления 

самоорганизации неизвестен заранее, т.е. он движется в ограниченной δ-

окрестности, а по какой траектории для ФСО человека неважно, главное не 

покинуть эту δ-окрестность при неизменности стационарного состояния. Следует 

подчеркнуть, что здесь наиболее важным является то, что вектор движения 

параметром ФСО не должен покидать эту δ, иначе можно говорить, что биосистема 

по тем или иным параметрам и причинам покинула одно стационарное состояние 

и перешла в другое. В задачах симуляционного моделирования такого сложного 

процесса, как смена стационарных состояний, пока достаточно сложно говорить о 

решении дифференциальных уравнений с разрывной правой частью, но в тоже 

время открывается возможность осуществлять симуляционное моделирование 

самих стационарных состояний. 
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Таким образом, появляется возможность создания математического 

обеспечения для построения симуляционной модели, способной воспроизводить 

динамику ФСО человека, в частности динамику движений БМС. Следует 

подчеркнуть, что математическое обеспечение позволяет воспроизводить работу 

любых параметров ФСО человека, а частные решения представляют упрощение 

для создания симуляционных моделей отдельных подсистем (например, БМС). 

При усложнении структуры модели не исключена возможность перехода к 

симуляционному моделированию смены стационарных состояний. 

Согласно некоторым определениям и теоремам из [67] в монографии [11], 

представлено два эквивалентных определения Ф-решений (решений 

А.Ф. Филиппова) [67]. Для начала необходимо воспроизвести некоторые 

обозначения из [11, 67]. Рассматривается система дифференциальных уравнений: 

  

𝑑𝑢

𝑑𝑡
= 𝑓(𝑡, 𝑢), 𝑢 = (𝑢(1), 𝑢(2), … , 𝑢(𝑛)) ∈ 𝑅𝑛,

𝑓 = (𝑓(1), 𝑓(2), … , 𝑓(𝑛)) ∈ 𝑅𝑛
  (36) 

Фазовое пространство Rn снабжено евклидовой метрикой, Uu(δ) обозначает 

замкнутый шар радиуса δ>0 с центром в точке u∈Rn, выпуклое множество E 

обозначается: convE. Полагается: 

  

𝑀{𝜑(𝑢)} = 𝑙𝑖𝑚 𝑣𝑟𝑎𝑖 𝑚𝑎𝑥 𝜑(𝑢′)
𝛿→0,𝑢′∈𝑈𝑢(𝛿)

,

𝑚{𝜑(𝑢)} = 𝑙𝑖𝑚 𝑣𝑟𝑎𝑖 𝑚𝑖𝑛𝜑(𝑢′)
𝛿→0,𝑢′∈𝑈𝑢(𝛿)

,
,  (37) 

где операции существенного максимума и минимума применяются к скалярной 

функции φ относительно меры Лебега du на Rn. 

Соответственно, определения из [11] сформулированы следующим образом: 

Определение 1: «Вектор-функция u(.), определенная на интервале (t1, t2), 

называется Ф-решением, если она абсолютно непрерывна и при почти всех t∈(t1, t2) 

значения: 

  
𝑑𝑢

𝑑𝑡
∈ ⋂ ⋂ 𝑐𝑜𝑛𝑣 𝑓 (𝑡, 𝑈𝑢(𝑡)(𝛿)\𝑁) 𝐾{𝑓, 𝑢(𝑡)}=   

𝑑𝑒𝑓
𝑑𝑢(𝑁)=0𝛿>0 .»  (38) 

Определение 2: «Вектор-функция u(.), определенная на интервале (t1, t2), 

называется Ф-решением, если она абсолютно непрерывна и если при почти всех 

t∈(t1, t2) при любом выборе ортогональной системы координат в пространстве Rn: 
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  𝑚{𝑓(𝑖)(𝑡, 𝑢(𝑡))} ≤
𝑑𝑢(𝑖)

𝑑𝑡
≤ 𝑀{𝑓(𝑖)(𝑡, 𝑢(𝑡))}, 𝑖 = 1,2,… , 𝑛,  (39) 

где f(i) – правые части системы уравнений (36), которая соответствует выбранной 

ортогональной системе координат.» 

Таким образом, на основе вышеизложенного и параграфа 1.6, пусть система 

дифференциальных уравнений: 

  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)),  (40) 

описывает механизм регуляции ∇b ФСО человека внутри некоторой δ-окрестности, 

где ui(t, x) – независимые части биологической системы, которые могут независимо 

пробегать множества Ui(t, x). Также необходимо наложить следующее 

ограничение: пусть физическая система вне δ-окрестности Mδ некоторого 

множества M, на которой функции уравнений (40) разрывны, x(t) должна 

удовлетворять уравнению (40), а в самой окрестности при почти всех t: 

  |
𝑑𝑥(𝑡)

𝑑𝑡
− 𝑓(𝑡, 𝑞(𝑡))|  ≤ 𝛿,  (41) 

где q(t) – любая функция из Mδ, которая находится на расстоянии, не большем δ, от 

областей непрерывности Gi, Gj, Gk, …. 

Движение системы может осуществляться по любому из законов (в 

зависимости от ФСО и известных сведений о процессах в этих ФСО): 

  

𝑑𝑥

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)),

𝑑𝑥

𝑑𝑡
= 𝑓𝑗(𝑡, 𝑥, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥))

𝑑𝑥

𝑑𝑡
= 𝑓𝑘(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)).

…

,  (42) 

Если точка (t, x)∈M лежит на границах сечения двух или нескольких областей 

G1, … ,Gk, то множество F(t, x), содержащее все предельные значения вектор-

функции f(t, x*), является отрезком или выпуклым многоугольником, или 

многогранником с вершинами fi(t, x), i≤k, где: 

  

𝑓𝑖(𝑡, 𝑥, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)) = 𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑖,𝑥

∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)),

𝑓𝑗(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑗,𝑥

∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

𝑓𝑘(𝑡, 𝑥, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥))= 𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑘,𝑥

∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥),… , 𝑢𝑟(𝑡, 𝑥)).

…

  (43) 
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В случае разрыва функции f на поверхностях Gi, Gj, Gk, …, эти поверхности 

делят свою окрестность в пространстве на области. Пусть при t=const и 

приближении точки x* к точке x∈G из областей функция 

𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) имеет предельные значения: 

  

𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑖

−,𝑥∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑓𝐺𝑖

−
(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑖

+,𝑥∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑓𝐺𝑖

+
(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑗

−,𝑥∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑓𝐺𝑗

−

(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑗

+,𝑥∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑓𝐺𝑗

+

(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑘

−,𝑥∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑓𝐺𝑘

−
(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

𝑙𝑖𝑚
(𝑡,𝑥∗)∈𝐺𝑘

+,𝑥∗→𝑥
𝑓(𝑡, 𝑥∗, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)) = 𝑓𝐺𝑘

+
(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)),

…

.  (44) 

Таким образом, согласно определениям, представленным выше, вектор-

функция x(.), которая определена на интервале (t1, t2)∈δ, непрерывна и при почти 

всех t∈(t1, t2) при любом выборе ортогональной системы координат в пространстве 

Rn (в зависимости от известных сведений о процессе работы ФСО): 

  
𝑚{𝑓(𝑖)(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥))} ≤

𝑑𝑥(𝑢𝑖)

𝑑𝑡
≤ 𝑀{𝑓(𝑖)(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥))},

 𝑖 = 1,2, … , 𝑟,
  (45) 

где f(i) – правые части системы уравнений (40). 

В случае математического описания процессов работы ФСО человека 

необходимо учесть и тот факт, что некоторые параметры 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥) в 

процессе самоорганизации удержания ∇b в определенной δ-окрестности могут 

независимо пробегать соответственные множества 𝑈1(𝑡, 𝑥),… , 𝑈𝑟(𝑡, 𝑥). Тогда 

пусть: 

 𝐹1(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑈1(𝑡, 𝑥), … , 𝑈𝑟(𝑡, 𝑥))  (46) 

является множеством значений функции 𝑓(𝑡, 𝑥, 𝑢1(𝑡, 𝑥), … , 𝑢𝑟(𝑡, 𝑥)), когда t и x 

постоянны. Решением дифференциального уравнения (40) называются решения 

дифференциального включения 
𝑑𝑥

𝑑𝑡
∈ 𝐹(𝑡, 𝑥), где F(t, x)≡F1(t, x). Таким образом, 

система дифференциальных уравнений (40) способна описать динамику удержания 
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внутренних градиентов ∇b внутри некоторой δ-окрестности, которая представляет 

собой некоторое стационарное состояние биосистемы.  

Соответственно, уравнение (40) является математической моделью для задач 

системного анализа по воспроизведению хаотической динамики изменения тех или 

иных параметров ФСО человека по некоторым известным процессам в реальных 

биосистемах. С некоторой упрощенной структурой, дифференциальное уравнение 

с разрывной правой частью перенесено на описание динамики движений 

конечности человека.  

Таким образом, детальное изучение теории дифференциальных уравнений с 

разрывной правой частью позволило разработать математическую модель для 

воспроизведения динамики изменения любых ФСО человека, представленную 

выше (40)-(46). Эта математическая модель легла в основу симуляционной модели 

движений БМС человека. В частности, в настоящем параграфе представлена 

математическая постановка задачи воспроизведения динамики стационарных 

режимов движений конечности человека. 

Пусть в формуле (40) ui(t, x), i=1,…,r представляют отдельные части БМС. По 

сути, с помощью этих функций ui(t, x), на основе известных сведений о механизме 

и динамике поведения этих параметров, можно определить ключевые параметры 

математической модели. Также необходимо отметить, что для каждой функции ui(t, 

x) существуют соответствующие множества Ui(t, x), которые пробегают эти 

функции независимо. Следует обратить внимание на то, что если ui(t, x) 

непрерывна, то Ui(t, x) является точкой. Соответственно, система 

дифференциальных уравнений для описания динамики движений человека имеет 

вид: 

   

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝑢1

𝑏𝑟(𝑡, 𝑥), 𝑢2
𝑏𝑟(𝑡, 𝑥), 𝑢1

𝑓𝑏𝑟
(𝑡, 𝑥, 𝑄+(𝑡, 𝑥)), 𝑢2

𝑓𝑏𝑟
(𝑡, 𝑥, 𝑄−(𝑡, 𝑥)),

 𝑢𝑡𝑟(𝑡, 𝑥, 𝑄𝑞(𝑡, 𝑥)), 𝑢1,𝑜
+ (𝑥, 𝑡, 𝑚1,𝑜

+ (𝑡, 𝑥), 𝑡𝑠𝑒
+ (𝑥, 𝑡)) , 𝑢2,𝑤

+ (𝑥, 𝑡, 𝑚2,𝑤
+ (𝑡, 𝑥), 𝑡𝑎𝑘

+ (𝑥, 𝑡)) ,

𝑢3,𝑠
+ (𝑥, 𝑡, 𝑚3,𝑠

+ (𝑡, 𝑥), 𝑡𝑙𝑗
+(𝑥, 𝑡)) , 𝑢1,𝑜

− (𝑥, 𝑡,𝑚1,𝑜
− (𝑡, 𝑥), 𝑡𝑠𝑒

− (𝑥, 𝑡)) ,

𝑢2,𝑤
− (𝑥, 𝑡, 𝑚2,𝑤

− (𝑡, 𝑥), 𝑡𝑎𝑘
− (𝑥, 𝑡)) , 𝑢3,𝑠

− (𝑥, 𝑡, 𝑚3,𝑠
− (𝑡, 𝑥), 𝑡𝑙𝑗

−(𝑥, 𝑡)))
,

,  (47) 

где o, w, s – количество мышечных волокон определенного типа, 𝑢1
𝑏𝑟(𝑡, 𝑥), 𝑢2

𝑏𝑟(𝑡, 𝑥) 

осуществляют установку верхней и нижней границы, являются непрерывными и 
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пробегают множества 𝑈1
𝑏𝑟(𝑡, 𝑥),  𝑈2

𝑏𝑡(𝑡, 𝑥). Особое внимание необходимо обратить 

на функции 𝑢1
𝑓𝑏𝑟
(𝑡, 𝑥, 𝑄+(𝑡, 𝑥)), 𝑢2

𝑓𝑏𝑟
(𝑡, 𝑥, 𝑄−(𝑡, 𝑥)), отвечающие за формирование 

коридора, в котором генерируется линия разрыва (траектория движения), при ее 

пересечении происходит переключение работы мышечных пучков, эти функции 

являются разрывными и пробегают соответствующие множества 

𝑈1
𝑓𝑏𝑟(𝑡, 𝑥, 𝑄𝑄𝐵), 𝑢2

𝑓𝑏𝑟(𝑡, 𝑥, 𝑄𝑄𝐻), здесь решением QQВ считаются значения из 

множества 𝑄𝑖−1
+ (𝑡, 𝑥), а решение QQН формируется на основе множества 𝑄𝑖−1

− (𝑡, 𝑥) 

по формулам соответственно: 

  
𝑄𝑖−1
+ (𝑡, 𝑥) ≥

𝑢𝑡𝑟𝑖−1

2
, 𝑄𝑄𝐵(−𝑞𝐵 + ∆𝑡)

𝑄𝑖−1
+ (𝑡, 𝑥) <

𝑢𝑡𝑟𝑖−1

2
, 𝑄𝑄𝐵(−𝑞𝐵 − ∆𝑡)

, ∆𝑡 = 𝑢𝑡𝑟𝑖−1,  (48) 

 
𝑄𝑖−1
− (𝑡, 𝑥) ≥

𝑢𝑡𝑟𝑖−1

2
, 𝑄𝑄𝐻(−𝑞𝐻 + ∆𝑡)

𝑄𝑖−1
− (𝑡, 𝑥) <

𝑢𝑡𝑟𝑖−1

2
, 𝑄𝑄𝐻(−𝑞𝐻 − ∆𝑡)

, ∆𝑡 = 𝑢𝑡𝑟𝑖−1.  (49) 

Соответственно, формирование траектории линии разрыва для 

воспроизведения динамики поведения произвольных и непроизвольных движений 

осуществляется на основе функции 𝑢𝑡𝑟(𝑡, 𝑥, 𝑄𝑞(𝑡, 𝑥)), где Qq(t,x) пробегает 

множество QQq(QQН, QQВ), а решение 𝑢𝑡𝑟 пробегает множество 𝑈𝑡𝑟(𝑡, 𝑥, 𝑄𝑄𝑞).  

Далее необходимо детально рассмотреть реализации работы мышечных 

волокон в системе дифференциальных уравнений с разрывной правой частью. 

Таким образом, 𝑢1,𝑜
+ (𝑥, 𝑡, 𝑚1,𝑜

+ (𝑡, 𝑥), 𝑡𝑠𝑒
+ (𝑥, 𝑡)) осуществляет контроль работы 

мышечных волокон одного типа (всего в модели присутствуют 3 типа мышечных 

волокон как и в мышечных пучках). Функция 𝑡𝑠𝑒
+ (𝑥, 𝑡) отвечает за величину 

потенциала мышечного волокна и пробегает множество 𝑇𝑠𝑒
+(𝑥𝑠𝑒 , 𝑦𝑠𝑒), а решение для 

функции 𝑚1,𝑜
+ (𝑡, 𝑥) записывается в виде 𝑈1,𝑜

+ (𝑥, 𝑡,𝑀1,𝑜
+ , 𝑇𝑠𝑒

+) и принимает значение по 

формуле: 

  

{
 
 

 
 𝑑𝑥𝑖−1

𝑑𝑡
< 𝑢𝑡𝑟 {

𝑚 > 0 𝑀1,𝑜
+ (𝑡, 𝑥) − 1,𝑀 ∈ 𝑅𝑛, 𝑇𝑠𝑒

+ (𝑥𝑠𝑒, 𝑦𝑠𝑒) 

𝑚 ≤ 0 {
𝑝 = 1 𝑀1,𝑜

+ (𝑡, 𝑥) ∗ −1,𝑀 ∈ 𝑅𝑛, 𝑇𝑠𝑒
+ (𝑥𝑠𝑒, 𝑦𝑠𝑒)

𝑝 < 1 𝑀1,𝑜
+ (𝑡, 𝑥), 𝑀 ∈ 𝑅𝑛, 𝑇𝑠𝑒

+ (𝑥𝑠𝑒, 𝑦𝑠𝑒)

𝑑𝑥𝑖−1

𝑑𝑡
> 𝑢𝑡𝑟 𝑀1,𝑜

+ (𝑡, 𝑥), 𝑇𝑠𝑒
+(0)

.  (50) 
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Аналогично и для 𝑢1,𝑜
− (𝑥, 𝑡, 𝑚1,𝑜

− (𝑡, 𝑥), 𝑡𝑠𝑒
− (𝑥, 𝑡)) за исключением условий 

формирования решения: 

 

{
 
 

 
 𝑑𝑥𝑖−1

𝑑𝑡
> 𝑢𝑡𝑟 {

𝑚 > 0 𝑀1,𝑜
− (𝑡, 𝑥) − 1,𝑀 ∈ 𝑅𝑛, 𝑇𝑠𝑒

− (𝑥𝑠𝑒, 𝑦𝑠𝑒) 

𝑚 ≤ 0 {
𝑝 = 1 𝑀1,𝑜

− (𝑡, 𝑥) ∗ −1, 𝑀 ∈ 𝑅𝑛, 𝑇𝑠𝑒
− (𝑥𝑠𝑒, 𝑦𝑠𝑒)

𝑝 < 1 𝑀1,𝑜
− (𝑡, 𝑥), 𝑀 ∈ 𝑅𝑛, 𝑇𝑠𝑒

− (𝑥𝑠𝑒, 𝑦𝑠𝑒)

𝑑𝑥𝑖−1

𝑑𝑡
< 𝑢𝑡𝑟 𝑀1,𝑜

− (𝑡, 𝑥), 𝑇𝑠𝑒
−(0)

.  (51) 

Руководствуясь такими же соображениями, формируем множества 

𝑈2,𝑤
+ (𝑥, 𝑡, 𝑀2,𝑤

+ , 𝑇𝑎𝑘
+ ), 𝑈3,𝑠

+ (𝑥, 𝑡,𝑀3,𝑠
+ , 𝑇𝑙𝑗

+), 𝑈2,𝑤
− (𝑥, 𝑡,𝑀2,𝑤

+ , 𝑇𝑎𝑘
− ), 𝑈3,𝑠

− (𝑥, 𝑡, 𝑀3,𝑠
+ , 𝑇𝑙𝑗

−) для 

𝑢2,𝑤
+ (𝑥, 𝑡,𝑚2,𝑤

+ (𝑡, 𝑥), 𝑡𝑎𝑘
+ (𝑥, 𝑡)), 𝑢3,𝑠

+ (𝑥, 𝑡,𝑚3,𝑠
+ (𝑡, 𝑥), 𝑡𝑙𝑗

+(𝑥, 𝑡)), , 𝑢2,𝑤
− (𝑥, 𝑡,𝑚2,𝑤

− (𝑡, 𝑥), 𝑡𝑎𝑘
− (𝑥, 𝑡)), 

𝑢3,𝑠
− (𝑥, 𝑡,𝑚3𝑠

− (𝑡, 𝑥), 𝑡𝑙𝑗
−(𝑥, 𝑡)). Соответственно, решением системы дифференциальных 

уравнений с разрывной правой частью (47) называется: 

  

𝐹1(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑈1
𝑏𝑟, 𝑈2

𝑏𝑟, 𝑈1
𝑓𝑏𝑟
, 𝑈2

𝑓𝑏𝑟
, 𝑈𝑡𝑟(𝑡, 𝑥, 𝑄𝑄𝑞), 𝑈1,𝑜

+ (𝑡, 𝑥,𝑀1,𝑜
+ , 𝑇𝑠𝑒

+),

 
𝑈2,𝑤
+ (𝑡, 𝑥,𝑀2,𝑤

+ , 𝑇𝑎𝑘
+ ), 𝑈3,𝑠

+ (𝑡, 𝑥,𝑀3,𝑠
+ , 𝑇𝑙𝑗

+), 𝑈1,𝑜
− (𝑡, 𝑥,𝑀1,𝑜

− , 𝑇𝑠𝑒
−), 𝑈2,𝑤

− (𝑡, 𝑥,𝑀2,𝑤
− , 𝑇𝑎𝑘

− )

𝑈3,𝑠
− (𝑡, 𝑥,𝑀3,𝑠

− , 𝑇𝑙𝑗
−))

,  (52) 

Следует обратить внимание на то, что по аналогии можно построить 

математические модели для любых ФСО человека при условии того, что будет 

известно достаточно сведений о некоторых процессах в таких системах. Более того, 

отдельные математические модели для функциональных систем можно 

группировать и изучать в комплексе. Естественно, предполагается, что при 

объединении нескольких подобных систем будет наблюдаться свойство 

эмерджентности, что, в свою очередь, позволит более детально изучить механизмы 

взаимодействия отдельных функциональных систем. 

3.2 Модель описания движения биомеханической системы человека в 

дискретной форме 

При проектировании и реализации симуляционной модели необходимо 

выбрать или разработать математическое обеспечение, включая построение 

математической модели. Также следует отметить, что для реализации 

симуляционной модели необходимо добиться воспроизведения динамики 

движений конечности человека с высокой точностью в рамках исследования БМС. 
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С биологической точки зрения воспроизвести начальное условие работы мышц 

невозможно. Такое утверждение доказано и подробно описано в ряде научных 

работ [10, 59, 77, 82]. Таким образом, имеется необходимость разработки 

математического обеспечения для реализации модели при исследовании 

механизмов взаимодействия мышечной структуры как в нормальной среде, так и в 

среде с явно выраженными патологическими процессами в работе мышц, а также 

для раскрытия адаптационных механизмов при изменении внешних условий 

(изменения окружающей среды, например, холодовое воздействие). 

В соответствии с представленной теоретической частью биофизики 

мышечных сокращений (параграф 1.5) была разработана модель, описывающая 

движения человека. На рисунке 3.1а и рисунке 3.1c схематически представлены 

мышечные пучки, состоящие из мышечных волокон 3-х типов. На рисунке 3.1b 

изображена траектория непроизвольного движения конечности человека [13, 14, 

17, 18]. 

 

  а b c 

Рисунок 3.1 – Мышечная структура модели 

В задачу по удержанию каждый раз включены определенные мышечные 

волокна. С одной стороны, это зависит от того, какой набор двигательных единиц 

был возбужден в конкретный момент времени, с другой − от утомления тех или 

иных мышечных волокон. На рис. 3.1b изображена прямая линия, фактически, это 

определенный уровень удержания позиции, который постоянно пересекает 
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исследуемый объект при движении конечности благодаря некоторому потенциалу 

напряжения в определенный момент времени. Вследствии того, что невозможно 

прогнозировать утомление отдельных мышечных волокон и работу отдельных 

двигательных единиц, то уровня удержания в виде x=const не существует. Сложная 

задача подобного уровня не имеет конкретного решения. 

Для разработки симуляционной модели использовалось обозначение 

мышечных волокон разных типов в виде схемы, представленной на рисунке 3.2. В 

соответствии с биологической составляющей, модель имеет 2 мышечных пучка и 

3 типа мышечных волокон в каждом пучке. Построение модели только на основе 

двух мышечных пучков является декомпозиционной частью биологической 

структуры, так как биологическое строение мышц БМС намного сложнее и 

перемещение в пространстве осуществляется по 3 координатам. 

 

Рисунок 3.2 – Схематическое изображение модели в интерпретации машинного 

алгоритма с уровнем удержания x=const 

Трехуровневая модель мышечных волокон фактически вписывается 

в биологическую концепцию строения мышечного пучка. Каждый уровень 

представляет определенный тип мышечного волокна согласно рисунку 1.6 

(параграф 1.5). Внешний уровень реализует быстрые, сильные, быстро утомляемые 

мышечные волокна, их количество s∈N. На среднем уровне расположен 

промежуточный тип мышечных волокон в количестве a∈N, a>s. Соответственно, 
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внутренний уровень мышечного пучка модели выполняет роль медленных, слабых, 

неутомляемых мышечных волокон, их количество также ограничено l∈N, l>a. 

Как уже было сказано ранее, решения задачи удержания определенного 

уровня мышечной структурой в виде x=const не существует. Соответственно, для 

определения уровня удержания позиции за основу были взяты данные 

экспериментов. Для наглядности представлена нормированная временная 

развертка сигнала экспериментальных данных (рисунок 3.3а). Из этого рисунка 

видно некоторое изменение положения конечности в пространстве. Для 

определения самой траектории движения требуется сглаживание сигнала. 

Применение метода скользящей средней позволило определить траекторию 

движения. Траектория для нормированной временной развертки представлена на 

рисунке 3.3b.  

 

  а b 

Рисунок 3.3 – Экспериментальные данные: а – нормированная временная 

развертка треморограммы, b – траектория движения конечности в пространстве 

Для наглядности взаимосвязи траектории движения представлен набор из 2-

х нормированных выборок ТМГ и их траекторий движения одного испытуемого 

(рисунок 3.4) и разных испытуемых (рисунок 3.5). Следует обратить внимание на 

то, что траектория движения − это уровень удержания позиции для модели. Таким 

образом, доказывается отсутствие стационарного уровня позиционирования 

подсистем БМС человека в пространстве (x≠const).  
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  I II 

Рисунок 3.4 – Нормированные экспериментальные выборки (I) с траекторией их 

движения (II) одного испытуемого 

 

 

 I II 

Рисунок 3.5 – Нормированные экспериментальные выборки (I) с траекторией их 

движения (II) разные испытуемые 

В работу модельных мышечных волокон заложено не только их хаотическое 

вовлечение в процесс удержания заданного уровня (преодоление порогового 
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значения двигательной единицы), т.е. определение движения вектор-функции, но и 

сам уровень удержания хаотически изменяется во времени по определенному 

алгоритму. 

В соответствии с описанной концепцией организации работы модели 

(рисунок 3.2) в работу включается тот мышечный пучок, который необходим для 

поддержания уровня траектории движения. Таким образом, в модели траектория 

уровня движения генерируется в режиме реального времени из диапазона с 

условием, что траектория не может изменяться скачкообразно, т.е. присутствует 

механизм сглаживания при генерации уровня траектории. В соответствии с этим 

рисунок 3.3 трансформируется в более корректный вид на рисуноке 3.6. 

sqp ... 6 5 4 3 2 1

aqp ... 8 6 5 4 3 2 1

... 12 11 10 9 8 7 6 5 4

6 7

3 2 1lqp

... 12 11 10 9 8 7 6 5 4 3 2 1lqn

sqn ... 6 5 4 3 2 1

aqn ... 8 6 5 4 3 2 16 7

x=Q(t,c)

POS

NEG

 

Рисунок 3.6 – Схематическое изображение модели в интерпретации машинного 

алгоритма с учетом генерации траектории удержания позиции в режиме 

реального времени из определенного диапазона по определенному правилу, 

основанному на генерации случайных чисел 

Условно, можно представить работу симуляционной модели с помощью 

рисунка 3.7, где штрих-пунктирная линия – идеальная траектория в задаче 

удержания конечности на определенном уровне, черные линии – верхняя и нижняя 

границы, внутри которых может изменяться коридор из пунктирных линий, 

пунктирные линии (синего цвета) – нижняя и верхняя границы коридора, в котором 

движется сплошная линия, сплошная линия (зеленого цвета) –траектория 

движения, играющая роль линии разрыва, а ломаная кривая (темно-синего цвета) – 

условное движение конечности. Существенно то, что при осуществлении 

прицеливания оба коридора (пунктирные линии синего цвета и черные линии) 
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существенно сужаются, а частота амплитудно-частотных характеристик резко 

возрастает. Таким образом, тремор человека можно представить как двигательный 

акт в задаче удержания определенного уровня. В связи с тем, что любое движение 

является непрерывным процессом жизнедеятельности человека, определить 

начальные условия нет возможности, но в этом и нет необходимости, т.к. если 

система будет начинать движение из определенных координат, то хаотическая 

динамика движений БМС человека будет осуществляться каждый раз по 

уникальной траектории в рамках гипотезы Н.А. Бернштейна «повторения без 

повторений» [4], что продемонстрировано на примерах движений конечности 

человека. 

 

Рисунок 3.7 – Условная работа модели в увеличенном масштабе: штрих-

пунктирная линия – идеализированная траектория в задаче удержания позиции; 

черные линии – коридор, за границы которого не может выходить коридор 

генерации траектории; пунктирные линии – верхняя и нижняя границы коридора 

для генерации траектории движения; сплошная линия – траектория движения 

конечности; ломаная линия – условное перемещение конечности в пространстве. 

В основу математического обеспечения и симуляционной модели легла идея 

о хаотической структуре взаимодействия ФСО и о поиске Ф-решений [13, 17]. 

Таким образом, модель построена на ряде функций, работающих с генератором 

случайных чисел. Начальное значение S0 генерируется из хаотического диапазона 

согласно основным параметрам модели. В соответствии с биологической 

составляющей работы мышц и математическим обеспечением, разработанную 

симуляционную модель можно представить в дискретной форме: 



113 

 
 

 𝑆𝑖 =

{
 
 

 
 𝑆𝑖−1 + ∑ ∑ ∑ 𝑓1(𝑚𝑝𝑒

+ , 𝑡𝑠𝑒
+ )𝑓2(𝑚𝑝𝑘

+ , 𝑡𝑎𝑘
+ )𝑓3(𝑚𝑝𝑗

+ , 𝑡𝑙𝑗
+)

𝑙𝑞𝑝
𝑗=1

𝑎𝑞𝑝
𝑘=1

𝑠𝑞𝑝
𝑒=1 ,

𝑆𝑖 ≤ 𝑔𝑧(𝑡),𝑚𝑝𝑒
+ − 1,𝑚𝑝𝑘

+ − 1,𝑚𝑝𝑗
+ − 1, 𝑧 ∈ 𝑁 , 𝑧 < ℎ, ℎ ∈ 𝑁;

𝑆𝑖−1 + ∑ ∑ ∑ 𝑓4(𝑚𝑛𝑒
+ , 𝑡𝑠𝑒

− )𝑓5(𝑚𝑛𝑘
+ , 𝑡𝑎𝑘

− )𝑓6(𝑚𝑛𝑗
+ , 𝑡𝑙𝑗

−)
𝑙𝑞𝑛
𝑗=1

𝑎𝑞𝑛
𝑘=1

𝑠𝑞𝑛
𝑒=1 ,

𝑆𝑖 > 𝑔𝑧(𝑡),𝑚𝑛𝑒
+ − 1,𝑚𝑛𝑘

+ − 1,𝑚𝑛𝑗
+ − 1, 𝑧 ∈ 𝑁, 𝑧 < ℎ, ℎ ∈ 𝑁.

, (53) 

где Si – моделируемый сигнал, 𝑠𝑞𝑝, 𝑎𝑞𝑝, 𝑙𝑞𝑝, 𝑠𝑞𝑛, 𝑎𝑞𝑛, 𝑙𝑞𝑛 – количество мышечных 

волокон определенной группы мышц, которые могут быть включены в работу 

модели, 𝑓𝑖 , 𝑖 = 1…6 – функция включения определенной группы мышц и 

генерации потенциала усилия, 𝑚𝑝𝑒
+ , 𝑚𝑝𝑘

+ , 𝑚𝑝𝑗
+ , 𝑚𝑛𝑒

+ , 𝑚𝑛𝑘
+ , 𝑚𝑛𝑗

+  – значения счетчика, 

отслеживающего утомление определенного мышечного волокна из определенной 

группы мышц, 𝑡𝑠𝑒
+ ∈ [𝑥𝑠𝑒; 𝑦𝑠𝑒], 𝑡𝑎𝑘

+ ∈ [𝑥𝑎𝑘; 𝑦𝑎𝑘], 𝑡𝑙𝑗
+ ∈ [𝑥𝑙𝑗; 𝑦𝑙𝑗] – случайное значение 

потенциала мышечного волокна из определенного диапазона, 𝑡𝑠𝑒
− ∈ [𝑥𝑠𝑒; 𝑦𝑠𝑒],   

𝑡𝑎𝑘
− ∈ [𝑥𝑎𝑘; 𝑦𝑎𝑘], 𝑡𝑙𝑗

− ∈ [𝑥𝑙𝑗; 𝑦𝑙𝑗]– случайное «отрицательное» значение потенциала 

мышечного волокна из определенного диапазона, gz(t) – генерация уровня 

удержания определенной позиции на i-ой итерации, h – значения счетчика 

удержания позиции gz(t). Счет удержаний h жизненно необходим для адекватной 

работы модели, т.к. хаотический принцип организации функциональных систем не 

позволяет на длительном интервале времени ∆t удерживать изолинию, т.е. уровень 

удержания позиции gz(t)≠const на определенном ∆t.  

Включение мышечного волокна определенной группы мышц в работу 

осуществляется в том случае, если мышечные волокна не утомлены (т.е. прошло 

время релаксации ∆t). Такой принцип работы мышечных волокон и групп мышц в 

целом можно представить в следующем виде: 

  

𝑓1(𝑚𝑝𝑒
− , 𝑡𝑠𝑒

+ ) = 𝑓1(𝑚𝑝𝑒
− ∗ −1, 𝑡𝑠𝑒

+ ), 𝑃 = 1

𝑓2(𝑚𝑝𝑘
− , 𝑡𝑎𝑘

+ ) = 𝑓2(𝑚𝑝𝑘
− ∗ −1, 𝑡𝑎𝑘

+ ), 𝑃 = 1

𝑓3(𝑚𝑝𝑗
− , 𝑡𝑙𝑗

+) = 𝑓3(𝑚𝑝𝑗
− ∗ −1, 𝑡𝑙𝑗

+), 𝑃 = 1
 
 𝑓
4
(𝑚𝑛𝑒

− , 𝑡𝑠𝑒
− ) = 𝑓4(𝑚𝑛𝑒

− ∗ −1, 𝑡𝑠𝑒
− ), 𝑃 = 1

𝑓5(𝑚𝑛𝑘
− , 𝑡𝑎𝑘

− ) = 𝑓5(𝑚𝑛𝑘
− ∗ −1, 𝑡𝑎𝑘

− ), 𝑃 = 1

𝑓6(𝑚𝑛𝑗
− , 𝑡𝑙𝑗

−) = 𝑓6(𝑚𝑛𝑗
− ∗ −1, 𝑡𝑙𝑗

−), 𝑃 = 1

, (54) 

где P – функция вероятности включения N={0,1}.  
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Уровень удержания позиции gz(t) устанавливается на основе генератора 

случайного значения и записан в виде: 

  𝑔𝑧(𝑡) = 𝑄(𝑡, 𝑐), 𝑆𝑖 < 𝑔𝑧(𝑡), 𝑧 = 0, ℎ ∈ 𝑁, 𝑧 + 1, 𝑧 < ℎ, (55) 

где Q(t) – случайное значение из определенного диапазона. Функция Q(t) 

производит генерацию нового уровня, если z=h или, когда наступает условие 

gz(t)<Si при включеннии в работе «отрицательных» мышц или gz(t)>Si при работе 

«положительных» мышц.  

Диапазон генерации уровня удержания позиции варьируется на каждой 

итерации генерации 𝑔𝑧(𝑡). Смещение диапазона генерации уровня удержания 

записывается в следующей форме: 

𝑄(𝑐) = {
𝐴 ∈ [−𝑥 + ∆𝑡; 𝑦 + ∆𝑡], 𝐴(𝑡) ≥

𝑔𝑧−1(𝑡)

2
, ∆𝑡 = 𝑔𝑧−1(𝑡), 𝑦 < 𝑦0 = 𝑐𝑜𝑛𝑠𝑡

𝐴 ∈ [−𝑥 − ∆𝑡; 𝑦 − ∆𝑡], 𝐴(𝑡) <
𝑔𝑧−1(𝑡)

2
, ∆𝑡 = 𝑔𝑧−1(𝑡), 𝑥 > −𝑥0 = 𝑐𝑜𝑛𝑠𝑡

, (56) 

где A – значение уровня удержания позиции, x, y – нижний и верхний диапазон 

генерации уровня удержания, ∆t – приращение к диапазону уровня удержания. 

Фактически, вектор-функции с(∙) определенная на интервале [t1,t2] является  

Ф-решением. 

Стоит отметить, что уравнения (55) и (56) описывают непроизвольные 

движения человека, т.е. тремор. Для описания произвольных движений необходим 

совершенно другой механизм генерации уровня удержания позиции. В случае 

воспроизведения теппинга использование фразы «механизм генерации уровня 

удержания позиции» некорректно, т.к. это произвольные движения по 

определенной траектории, то и при воспроизведении этой динамики необходимо 

задавать траекторию движения. Симуляционное моделирование произвольных 

движений осложняется тем, что это все-таки осознанное действие и необходимо 

проработать осознанный механизм построения траектории движения. Таким 

образом, чтобы траектория строилась в режиме реального времени. Траектория 

ТПГ должна осуществляться с подключением «сознания» (т.е. в работе 

математической модели должны появиться управляющие воздействия), как это и 
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происходит в сложных биологических системах. Необходимо обратить внимание и 

на хаотическую динамику поведения параметров произвольных движений [24]. 

Соответственно, и при генерации модельной траектории теппинга необходимо 

учитывать случайную составляющую осознанного движения.  

На основе полученных определенного рода закономерностей в области 

изучения произвольных движений [59, 70] было разработано математическое 

обеспечение, которое позволяет, с одной стороны, задавать однозначную 

траекторию движения, а с другой стороны, вносить хаос в эту траекторию. Именно 

некий «хаотический порядок» позволяет с большой точностью воспроизвести 

динамику движения БМС в виде произвольных движений конечности человека. 

Математическая форма воспроизведения траектории произвольных движений 

может быть представлена в следующем виде: 

𝑄(𝑐) =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

{
 
 

 
 𝐴𝑖−1 + ∆𝑎, ∆𝑎 ∈ 𝑅, 𝐴𝑖−1 ≥ (

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 + ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅, 𝐴𝑖−1 < (

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 − ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅. 𝑅[𝑢, 𝑤] < 𝑝, 𝐴𝑖−1 > ∆𝑎

, 𝐴 ∈ 𝑅+, 𝐴𝑖−1 ≥𝐴𝑖−2

{
 
 

 
 𝐴𝑖−1 − ∆𝑎, ∆𝑎 ∈ 𝑅, 𝐴𝑖−1 ≥ (

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 − ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅, 𝐴𝑖−1 < (

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 + ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅. 𝑅[𝑢, 𝑤] < 𝑝, 𝐴𝑖−1 > ∆𝑎

, 𝐴 ∈ 𝑅+, 𝐴𝑖−1 <𝐴𝑖−2

{
 
 

 
 𝐴𝑖−1 − ∆𝑎, ∆𝑎 ∈ 𝑅, 𝐴𝑖−1 ≥ −(

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 − ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅, 𝐴𝑖−1 < −(

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 + ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅. 𝑅[𝑢, 𝑤] < 𝑝, 𝐴𝑖−1 > −∆𝑎

, 𝐴 ∈ 𝑅−, 𝐴𝑖−1 ≤𝐴𝑖−2

{
 
 

 
 𝐴𝑖−1 + ∆𝑎, ∆𝑎 ∈ 𝑅, 𝐴𝑖−1 ≥ −(

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 + ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅, 𝐴𝑖−1 < −(

𝑅[𝑥,𝑦]

3
) ∗ 2

𝐴𝑖−1 − ∆𝑏, ∆𝑏 =
∆𝑎

2
∗ 3 ∈ 𝑅. 𝑅[𝑢, 𝑤] < 𝑝, 𝐴𝑖−1 > −∆𝑎

, 𝐴 ∈ 𝑅−, 𝐴𝑖−1 >𝐴𝑖−2

, (57) 

где ∆a, ∆b – приращение траектории движения А, R[x, y], R[u, w] – множество 

действительных чисел из диапазона, p – вероятность. 
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3.3 Алгоритмическое описание динамики движений биомеханической 

системы 

На основе математического обеспечения, представленного в параграфах 3.1 

и 3.2, было разработано алгоритмическое обеспечение для симуляционной модели 

движений БМС человека. На рисунках 3.8-3.10 представлены новые алгоритмы для 

решения задачи по воспроизведению динамики непроизвольных движений. 

Программа для ЭВМ реализована на высокоуровневом языке программирования 

C#. В основе реализации алгоритма лежат случайные величины из определенных 

диапазонов. Для генерации случайных чисел был выбран алгоритм «Вихрь 

Мерсенна» [94].  

Начало

ввод данных:

sqp,aqp,lqp,sqn,aqn,

lqn, iter, k=1, x, y

Генерация потенциалов 

мышц fi, i=1,     S0

Генерация gz(t) [x;y], h, 

z=0

k=iter

Конец

да

4

1

нет

 
Рисунок 3.8 – Алгоритм модели для генерации непроизвольного движения 

человека 
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S0>gz(t)

mne
+ >0

Si=Si+tse,

mne=mne+1

mne=mne+1

mne
+<sqn+1

mnk
+>0

Si=Si+tak,

mnk=mnk+1

mnk
+<aqn+1

mnk=mnk+1

да

нет

да

да

нет

нет

да

да
mnj

+>0

Si=Si+tal,

mnj=mnj+1

mnj
+<lqn+1

mnk=mnk+1
да

нет

нет

да

нет

mpe
+ >0

Si=Si+tse,

mpe=mpe+1

mpe
+<sqp+1

mpe=mpe+1

mpk
+>0

Si=Si+tak

mpk=mpk+1

mpk
+<aqp+1

mpk=mpk+1

mpj
+>0

Si=Si+tal

mpj=mpj+1

mpj
+<lqp+1

mpj=mpj+1

нет

нет

нет

да

нет

нет

да

да

нет

нет

да

да

да

1

3

2
 

Рисунок 3.9 – Алгоритм модели для генерации непроизвольного и произвольного 

движения человека (продолжение) 

Si>gz(t)

k=k+1

gz(t)>gz(t)/2

gz(t)>0

x=x+gz(t),

y=y+gz(t)

gz(t)>0

x=x-gz(t),

y=y-gz(t)

Si<gz(t)

4

5
да

нет

нет

да

да
нет

да

z=z+1

z<h

k=k+1

77

да

нет

да

4

7

нет

6

5

нет

6

2

3

 

Рисунок 3.10 – Алгоритм модели для генерации непроизвольного движения 

человека (продолжение) 
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Следует обратить внимание, что симуляционная модель для задач по 

воспроизведению динамики движений теппинга имеет несколько иной алгоритм, 

чем приведенный на рисунках 3.8-3.10, который описывает работу 

бессознательных движений. Принцип работы мышечных волокон модели един как 

для сознательных, так и для бессознательных движений. Моделирование 

сознательных движений человека осуществляется по алгоритму, представленному 

на рисунках 3.11, 3.9, 3.12.  

Начало

ввод данных:

sqp,aqp,lqp,sqn,aqn,lqn, 

iter, k=1, x, y, ltap, 

lprtap, lmin, lrnd lmrnd,lv

Генерация потенциалов 

мышц fi, i=1,     S0

k=iter

Конец

нет
lsum=ltap+lprtap

Генерация gz(t) [x;y], h, 

z=0

Генерация ltap, lprtap, lmin, 

lrnd lmrnd,lv

да

1

4

4

 

Рисунок 3.11 – Алгоритм модели для генерации произвольного движения 

человека  
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gz(t)  lsum

Si>Si+1, 

gz(t)<-lmin+lsum

gz(t)>(-lmin+lsum)*2/3

gz(t)=gz(t)+lmrnd

gz(t)=gz(t)+lrnd

pi<0.05, 

gz(t)>-lv+lsum

gz(t)=gz(t)-lrnd

gz(t)>(-lmin+lsum)*2/3

gz(t)=gz(t)-lmrnd

gz(t)=gz(t)-lrnd

pi<0.05, 

gz(t)>-lv+lsum

gz(t)=gz(t)+lrnd

Si>Si+1, 

gz(t)<lmin+lsum

gz(t)>(lmin+lsum)*2/3

gz(t)=gz(t)-lmrnd

gz(t)=gz(t)-lrnd

pi<0.05, gz(t)>lv+lsum

gz(t)=gz(t)+lrnd

gz(t)>(lmin+lsum)*2/3

gz(t)=gz(t)+lmrnd

gz(t)=gz(t)+lrnd

pi<0.05, gz(t)>lv+lsum

gz(t)=gz(t)-lrnd

да

да

4

да

да

4

да

да

4

да

да

4

нет

нет

нетда

нет

нет

нет

нет

да

да

32

4

4

4

4

нет

нет

нет

нет

 
Рисунок 3.12 – Алгоритм модели для генерации произвольного движения 

человека (продолжение) 
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3.4 Интерфейс программы для ЭВМ анализа и визуализации динамики 

движений биомеханической системы человека 

Интерфейс программы для ЭВМ [47], реализующей математическое и 

алгоритмическое обеспечение, представлен на рисунке 3.13. Из этого рисунка 3.13 

можно заметить, что его функционал можно разделить на 5 зон: ввод параметров; 

выбор типа движения и установка мощности выборок; выбор параметров 

построения графика; значения выборок; область построения графика. 

 

Рисунок 3.13 – Интерфейс программы по осуществлению проведения численного 

эксперимента математической модели 

Необходимо более детально рассмотреть первый блок – ввод параметров 

(Entering muscle parameters) (рисунок 3.14). Левая часть содержит наименование 

типа мышечных волокон и ввод их количества, а также указание тому, какому 

мышечному пучку они принадлежат. Центральная часть ввода параметров отвечает 

за ввод диапазона (Range) потенциала мышечных волокон. Правая часть отвечает 

за отслеживание «утомления» мышечных волокон. На основе параметра Fatigue 

реализован механизм проверки возможности мышечного волокна на сокращение. 

Параметр Level meter необходим, т.к. биосистема не может продемонстрировать 

постоянство в виде генерации любых параметров в виде констант, то и уровень 
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удержания конечности должен изменяться с течением времени. Следует отметить, 

что не всегда за некоторое время Δt моделируемое движение способно преодолеть 

уровень удержания позиции, поэтому в работу симуляционной модели встроен 

механизм подстройки. За границы диапазона генерации уровня удержания позиции 

отвечает параметр level. Также в программу включен выбор типа данных (Choice 

type data). Кнопка Setting parameters отвечает за установку этих параметров. 

 

Рисунок 3.14 – Блок ввода параметров модели 

Второй блок включает выбор типа моделируемого движения (тремор или 

теппинг) и установку значения мощности генерируемой выборки. Кнопка 

Modelling start осуществляет запуск моделирования. Третий блок отвечает за 

построение графика по конкретной выборке или нескольким выборкам. В этой зоне 

указывается номер выборки (Number of sample) и выбирается тип построения 

(Choice type graph). Четвертая зона программы отображает значения выборок. 

Реализован механизм генерации 15 независимых выборок. В пятом блоке 

размещена область построения графика. Интерфейс 2 и 3 блоков представлен на 

рисунке 3.15. 
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Блок 

2 

 

 

Блок 

3 

 

Рисунок 3.15 – Блок выбора типа движений и построения графика 

Интерфейс еще одной программы для ЭВМ представлен на рисунке 3.16. 

Данная программа предназначена для анализа и проверки равномерного 

распределения регистрируемых параметров, которые являются фазовыми 

координатами КА. Для этого необходимо рассчитать длины сторон 

квазиаттракторов, для оси x по формуле: Δx=xmax-xmin; для оси y по формуле; 

Δy=ymax-ymin. Далее квазиаттрактор разбивается на сетку 2x2 (Δx/2+xmin; Δy/2+ymin) 

или 3x3 (Δx/3+xmin=Δ1x; Δx/3+Δ1x; Δy/3+ymin=Δ1y; Δy/3+Δ1y), или 4x4 (Δx/4+xmin=Δ1x; 

Δx/4+Δ1x=Δ2x; Δx/4+Δ2x; Δy/4+ymin=Δ1y; Δy/4+Δ1y=Δ2y; Δy/4+Δ2y) и считается 

количество точек, попавших в ячейку сетки. 



123 

 
 

 

Рисунок 3.16 – Интерфейс программ по проверки равномерности распределения 

выборок 

Интерфейс представленной программы можно условно разделить на 3 блока. 

Первый блок содержит основную часть ввода параметров и установку размера 

сетки (рисунок 3.17). Также в программе реализован механизм генерации 

хаотической выборки в рамках детерминированного подхода. Следует отметить, 

что выборки, полученные в ходе проведения натурного и численного 

экспериментов, всегда имеют неравномерное распределение, что подчеркивает 

наличие особого хаоса в СТТ.  
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Рисунок 3.17 – Блок ввода параметров в программу проверки выборок на 

равномерность распределения 

Второй блок интерфейса программы отвечает за отображение результатов 

проверки равномерности распределения выборок. В поле Number отображается 

матрица с абсолютным числом попаданий координат ВСС в определенную ячейку 

сетки разбиения, а поле Frequency отображает матрицу с частотой попадания 

координат в ячейку (рисунок 3.18). Третий блок содержит область построения 

графика, где реализована возможность выгружать отчет в файл. Также в третьем 

блоке интерфейса программ отображаются значения текущей выборки (рисунок 

3.19).  

 

Рисунок 3.18 – Блок программ отображения матриц с количеством и частотой 

попадания координат в ячейку 
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Рисунок 3.19 – Блок программы по построению графика при проверке выборок на 

равномерность распределения 

3.5 Выводы по главе 

Разработаны математическое и алгоритмическое обеспечение для 

симуляционной модели биомеханической системы человека на основе теории 

дифференциальных уравнений с разрывной правой частью. Решением 

предложенных систем дифференциальных уравнений с разрывной правой частью 

являются решения Ф.А. Филиппова (Ф-решения). 

Симуляционная модель, реализующая разработанное математическое и 

алгоритмическое обеспечение, позволяет воспроизводить хаотическую динамику 

произвольных и непроизвольных движений биомеханической системы человека.  
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 4 ВИЗУАЛИЗАЦИИ И АНАЛИЗ ДАННЫХ ПОЛУЧЕННЫХ ПО 

РЕЗУЛЬТАТАМ ВОСПРОИЗВЕДЕНИЯ ДИНАМИКИ ДВИЖЕНИЙ 

БИОМЕХАНИЧЕСКОЙ СИСТЕМЫ ЧЕЛОВЕКА НА ПРИМЕРЕ 

КОНЕЧНОСТИ 

В представленной главе приведены результаты симуляционного 

моделирования и их сравнительный анализ с данными натурных экспериментов. 

Анализ данных осуществлялся с помощью представленных методов анализа в 

главе 2, а именно: сравнительный анализ траектории движений конечности в 

пространстве, построение матриц парных сравнений в рамках математической 

статистики, расчет параметров квазиаттракторов, расчет значений энтропии 

Шеннона. 

4.1 Визуализация воспроизведенной динамики треморограмм движений 

биомеханической системы человека 

На основе полученных данных экспериментов был выполнен сравнительный 

анализ. На рисунке 4.1а представлена временная развертка реального сигнала, 

полученного от испытуемого при регистрации ТМГ на биоизмерительном 

комплексе [73]. На рисунке 4.1b представлен характерный пример работы 

симуляционной модели.  

 

 

  а b 

Рисунок 4.1 – Временная развертка сигнала: а – экспериментальные данные,  

b – модельные данные 
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Из этого рисунка видно, что модельный сигнал носит пилообразный 

характер, в связи с этим он кардинально отличается от экспериментально 

полученных треморограмм. Такая динамика модельного сигнала связана с 

особенностями дискретизации при регистрации данных. Если брать в расчет только 

данные натурных экспериментов, то частота дискретизации µ=100Гц. В свою 

очередь, моделирование происходит на основе тиков. В этом случае частота 

дискретизации существенно выше, чем работа биоизмерительного комплекса для 

регистрации движения человека. Для сглаживания модельного сигнала был 

применен метод скользящей средней. Результат сглаживания модельного сигнала 

(рисунок 4.1b) представлен на рисунке 4.2. 

 

 

Рисунок 4.2 – Сглаживание модельного сигнала методом скользящей средней 

 

Для наглядности на рисунке 4.3 представлены 2 набора выборок, полученных 

в результате работы модели. На рисунке 4.3-I модельная выборка без сглаживания, 

на рисунке 4.3-II и рисунке 4.3-III представлены сглаженные сигналы и траектория 

движения уровня удержания позиции соответственно. 

 



128 

 
 

I 

 

 
 

 
 

II 

 

 
 

 
 

III

I 

 

 
  

Рисунок 4.3 – Временная развертка модельного сигнала: I – модельный сигнал;  

II – сглаженный модельный сигнал; III – траектория движения уровня удержания  

Полученные результаты демонстрируют визуальное сходство 

экспериментов. Для более объективной визуальной оценки модельных данных 

приведены 15-ть временных разверток сигнала реальных (рисунок 4.4а) и 

модельных (рисунок 4.4b) выборок ТМГ. На основе временной развертки (рисунок 

4.4) можно сделать вывод, что модельный сигнал весьма правдоподобен, но 

научный подход требует детального анализа получаемых данных, что более 

подробно представлено далее. 
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Рисунок 4.4 – 15-ть временных разверток сигнала: а – реальных выборок 

треморограмм; b – модельных выборок треморограмм 

4.2 Сравнительный анализ воспроизведенной динамики треморограмм 

на основе математической статистики, теории хаоса-самоорганизации и 

расчета энтропии Шеннона 

Для полученных результатов был выполнен сравнительный анализ на основе 

математической статистики. В первую очередь проверялись выборки на закон 

распределения. В соответствии с проверкой было установлено, что закону 

нормального распределения подчиняются не более 3% выборок как реальных 

данных, так и модельных. Проверка закона распределения позволила определить 

критерий парного сравнения выборок. Результат парного сравнения представлен в 

таблице 4.1, при сравнении использовался критерий Вилкоксона (уровень 

значимости p<0,05). Число пар, которое можно отнести к одной генеральной 

совокупности k=17 (7,5%) из общего числа 225. Таким образом, полученный 
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результат свидетельствует о том, что данные вычислительных экспериментов 

соответствуют данным натурных экспериментов, т.к. имеются «совпадения» в том 

же процентном соотношении (k≤13% для ТМГ). 

Таблица 4.1 – Матрица парных сравнений экспериментальных и модельных 

выборок треморограмм (число «совпадений» k=17) 

№ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 .00 .00 .00 .00 .00 .00 .00 .05 .00 .00 .00 .00 .00 .00 .00 

2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

4 .00 .00 .00 .30 .04 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00 

5 .00 .21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

6 .00 .00 .97 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 

7 .00 .00 .00 .00 .00 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 

8 .00 .00 .00 .00 .00 .00 .00 .08 .00 .00 .00 .00 .05 .00 .00 

9 .25 .00 .00 .00 .02 .00 .00 .00 .60 .00 .60 .15 .00 .00 .00 

10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

11 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

13 .00 .12 .00 .00 .00 .00 .00 .06 .00 .00 .00 .00 .94 .00 .00 

14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

15 .00 .00 .00 .02 .33 .00 .00 .00 .38 .00 .03 .97 .00 .00 .00 

Для более детального анализа строились аналогичные матрицы парных 

сравнений отдельно для реальных выборок ТМГ и для выборок, полученных с 

помощью симуляционной модели. Число пар совпадений для реальных данных 

k≈11 из 105 возможных пар (11%) [9, 81]. Для модельных выборок k=10 (таблица 

4.2). Таким образом, на основе сравнительного анализа методами математической 

статистики можно сделать вывод, что модель способна воспроизводить динамику 

движения БМС на примере движений конечности человека. 

В параграфе 2.5 на рисунке 2.12 представлены значения числа k пар 

совпадений для однородных выборок треморограмм одного испытуемого. Для 

аналогичного сравнения реальных выборок с модельными были построены 15 

матриц парных сравнений выборок треморограмм, полученных на симуляционной 

модели. В результате статистического анализа было установлено, что среднее 

число пар совпадений для модельных выборок <kм>=11,9 против <kэ>=10,7 для 

реальных выборок ТМГ. Гистограмма распределения z числа пар совпадений 

представлена на рисунке 4.5.  
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Таблица 4.2 – Матрица парных сравнений модельных выборок треморограмм 

(число «совпадений» k=10) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .08 .00 .00 .00 .00 .00 .02 .00 .32 .24 .00 .00 .00 .00 

2 .08  .00 .00 .00 .00 .05 .00 .00 .68 .03 .00 .00 .00 .00 

3 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .11 .00 

4 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 

5 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .18 .00 .00 .00 

6 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 

7 .00 .05 .00 .00 .00 .00  .00 .00 .72 .02 .00 .00 .00 .00 

8 .02 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .73 .00 .00 

9 .00 .00 .00 .00 .00 .00 .00 .00  .00 .00 .00 .00 .00 .30 

10 .32 .68 .00 .00 .00 .00 .72 .00 .00  .10 .00 .00 .00 .00 

11 .24 .03 .00 .00 .00 .00 .02 .00 .00 .10  .00 .00 .00 .00 

12 .00 .00 .00 .00 .18 .00 .00 .00 .00 .00 .00  .00 .00 .00 

13 .00 .00 .00 .00 .00 .00 .00 .73 .00 .00 .00 .00  .00 .00 

14 .00 .00 .11 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00  .00 

15 .00 .00 .00 .03 .00 .00 .00 .00 .30 .00 .00 .00 .00 .00  

 

 

Рисунок 4.5 – Распределение z числа пар, совпадающих выборок k, для выборок 

треморограмм, полученных в результате моделирования. Здесь z – число 

одинаковых k в 15-ти матрицах парных сравнений. 

Таким образом, выборки ТМГ, полученные на основе разработанной модели, 

демонстрируют сходство с экспериментальными выборками при сравнении 

результатов обработки в рамках математической статистики. Такая динамика 

поведения числа пар совпадений наблюдается для данных, полученных в ходе 

проведения вычислительных экспериментов. 

Далее для объективной оценки и анализа данных был выполнен расчет 

параметров КА. Для данных реальных экспериментов были установлены 

определенные закономерности в рамках ТХС и отражены в параграфе 2.6. 

Соответственно, если осуществлять моделирование, которое способно 
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воспроизводить реальную динамику движения человека, то и закономерности 

реальных экспериментов должны прослеживаться в данных, полученных на основе 

симуляционного моделирования. На рисунке 4.6 представлен пример КА для 

реальных данных (рисунок 4.6а) и модельных данных (рисунок 4.6b). При 

визуальном анализе рисунок 4.6 можно заметить, что КА модельных данных 

«эквивалентен» (по параметрам) КА, построенному на основе экспериментальных 

данных. Значения самих площадей КА представлены в таблице 4.3. 

 

 

  а b 

Рисунок 4.6 – Квазиаттрактор выборок: а – экспериментальная выборка,  

b – модельная выборка 

Таблица 4.3 – Значение площадей квазиаттракторов для выборок треморограмм: 

экспериментальных (S1) и модельных (S2) данных 

№ S1 S1 S2 S2 

1 0,0009823 0,0018775 0,0020208 0,0033842 

2 0,0018775 0,0008374 0,0034013 0,0027503 

3 0,0008374 0,0010092 0,0026083 0,0026606 

4 0,0007315 0,000741 0,0035579 0,0031587 

5 0,000545 0,0008382 0,0039996 0,0035522 

6 0,0018293 0,0006454 0,002914 0,0036358 

7 0,0008382 0,0011638 0,0032083 0,002936 

8 0,0009384 0,0013784 0,0026303 0,0018256 

9 0,0004992 0,0010877 0,0032486 0,0030739 

10 0,0011638 0,0010327 0,003285 0,0019205 

11 0,0020703 0,00172 0,0043147 0,0034768 

12 0,0006109 0,0008899 0,0028466 0,002751 

13 0,00172 0,0005835 0,0036127 0,0040173 

14 0,0010877 0,0008056 0,0027749 0,0037301 

15 0,0010327 0,001296 0,0037057 0,0044658 

<S> 0,0011176 0,0010604 0,0032086 0,0031559 
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При изучении данных реальных экспериментов использовался метод расчета 

энтропии Шеннона в рамках ТНС И.Р. Пригожина [96]. В соответствии с этим, для 

данных, полученных на симуляционной модели, также осуществлялся расчет 

энтропии Шеннона. Результат расчета энтропии H представлен в таблице 4.4. 

Далее был выполнен дополнительный анализ с использованием 

математической статистики. При таком сравнении установлено, что динамика 

энтропии статистически не имеет различий. Уровень значимости в подавляющем 

большинстве (более 95%) пар (реальная выборка – модельная выборка) больше 

p=0.05, что дает основание сделать вывод о том, что такая пара принадлежит одной 

генеральной совокупности.  

Таблица 4.4 – Значения энтропии Шеннона для экспериментальных Hэ и 

модельных Hм выборок треморограмм при разном числе разбиений выборок  

на интервалы 

№ 
l1=10 l2=20 l3=50 l4=200 l5=1000 

Hэ
10 Hм

10 Hэ
20 Hм

20 Hэ
50 Hм

50 Hэ
200 Hм

200 Hэ
1000 Hм

1000 

1 2,8868 2,9867 3,8132 3,9421 5,0835 5,2182 6,7646 6,9832 6,9410 7,3952 

2 3,0425 2,8654 4,0229 3,7949 5,2693 5,0467 6,9018 6,8075 7,0208 7,1888 

3 2,7321 3,2107 3,6568 4,1708 4,9041 5,4271 6,5162 7,1913 7,3772 6,8097 

4 3,1180 3,2027 4,0734 4,1849 5,3210 5,4442 7,0323 7,2072 6,6563 7,0716 

5 3,0751 2,7724 4,0426 3,7140 5,2916 4,9792 6,9251 6,7476 6,3147 7,1573 

6 2,8706 3,1459 3,8130 4,1123 5,0185 5,3983 6,7000 7,0733 7,3688 6,8923 

7 3,1597 3,0152 4,0983 3,8843 5,3572 5,1557 6,9394 6,8843 7,3281 7,3960 

8 3,0608 3,1524 4,0461 4,0814 5,2965 5,3559 6,9176 7,0952 6,6264 7,4352 

9 2,5216 3,1680 3,4760 4,1472 4,7719 5,4255 6,4352 7,1716 6,4265 6,5857 

10 2,5127 3,0031 3,4578 3,9522 4,6856 5,2281 6,3482 7,0220 6,7985 6,5579 

11 2,9041 3,2195 3,8640 4,1887 5,1332 5,4458 6,7729 7,2263 7,3891 7,3033 

12 3,0576 3,1672 4,0245 4,1473 5,2415 5,4324 6,8006 7,1967 6,5725 7,2281 

13 3,1181 3,0361 4,0772 4,0088 5,3118 5,2759 6,8111 6,9864 6,5124 6,8183 

14 3,0862 3,0361 4,0530 4,0184 5,3160 5,2843 6,8096 7,0245 7,3857 6,8024 

15 2,9503 3,1397 3,8866 4,0735 5,1524 5,3143 6,7208 7,0601 6,6119 7,1486 

<H> 2,9397 3,0747 3,8937 4,0280 5,1436 5,2955 6,7597 7,0451 6,8887 7,0527 

p 0,09 0,13 0,09 0,01 0,23 

Также проводились дополнительные эксперименты, направленные на 

воспроизведение динамики патологических процессов. Один из выразительных 

примеров представлен на рис. 11. Для качественного анализа представлен пример 
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данных натурного эксперимента (человек с болезнью Паркинсона) рис. 11а-I, и 

результаты моделирования болезни Паркинсона рис. 11b-I. При проведении 

качественного анализа наблюдается весьма схожая динамика движений. Для 

углубленного анализа были построены фазовые портреты как представлено на рис. 

11а-II для натурного эксперимента и рис. 11b-II для вычислительного 

эксперимента.  

I 

  

II 

  

 а b 

Рис. 4.7. Пример тремора болезни Паркинсона: а – натурный эксперимент,  

b – вычислительный эксперимент; I – временная развертка сигнала; II – фазовый 

портрет 

4.3 Визуализация воспроизведенной динамики теппинграмм движений 

биомеханической системы человека 

Прежде чем переходить к рассмотрению результатов работы симуляционной 

модели, необходимо провести некоторый дополнительный анализ реальных 

выборок, а именно: построить траектории движения для ТПГ, полученных от 

испытуемых на биоизмерительном комплексе. Результат построения траекторий 

представлен на рисунке 4.8. 
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Таким образом, можно наблюдать, что траектория движения сознательных 

движений подчиняется тому, что уровень удержания позиции x≠const. Для 

определения траектории уровня удержания позиции был разработан алгоритм, 

который представлен на рисунках 3.11, 3.9, 3.12 и в математической формуле (53), 

параграф 4.2. 

 

 

 

 

  а b 

Рисунок 4.8 – Временная развертка реальных выборок теппинграмм (а) и их 

траектория движения (b). 

Для объективной оценки визуальных характеристик теппинграмм на  

рисунке 4.9а представлена реальная выборка теппинграммы испытуемого и 

модельная выборка (рисунок 4.9b). Модельный сигнал теппинграммы также имеет 

пилообразный характер. Как уже говорилось ранее, такая динамика модельной 

выборки связана с особенностями работы ЭВМ. Для сглаживания модельного 

сигнала был применен метод скользящей средней. Результат сглаживания 

модельного сигнала (рисунок 4.9b) представлен на рисунке 4.10. 



136 

 
 

 

 

  а b 

Рисунок 4.9 – Временная развертка сигнала: а – экспериментальные данные, b – 

модельные данные 

 

Рисунок 4.10 – Сглаживание модельного сигнала методом скользящей средней 

Также, как и для выборок бессознательных движений модельных данных, 

были построены временные развертки модельных выборок ТПГ, их сглаженный 

вариант и их траектории движения уровня удержания позиции. На рисунке 4.11 

представлены характерные примеры результатов моделирования. Соответственно, 

на рисунке 4.11-I представлены моделируемые сигналы, на рисунке 4.11-II − 

сглаженные модельные сигналы и на рисунке 4.11-III − траектории уровня 

удержания позиции. 
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Рисунок 4.11 – Временная развертка модельного сигнала: I – модельный сигнал; II 

– сглаженный модельный сигнал; III – траектория движения уровня удержания 

позиции 

Также, как и с моделированием бессознательных движений человека, 

достигнута высокая точность при моделировании ТПГ. Для примера реальных и 

модельных выборок теппинграмм представлен рисунок 4.12. На  

рисунке 4.12а изображены 15-ть временных разверток выборок ТПГ испытуемого, 

а на рисунок 4.12b представлены 15-ть модельных выборок теппинграмм. 
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Рисунок 4.12 – 15-ть временных разверток выборок: а – реальных выборок 

теппинграмм; b – модельных выборок теппинграмм. 

 

4.4 Сравнительный анализ воспроизведенных теппинграмм на основе 

математической статистики, теории хаоса-самоорганизации и энтропии 

Шеннона 

Все полученные данные анализировались с помощью математической 

статистики. Установлено, что модельные выборки не подчиняются нормальному 

закону распределения (более 97% всех выборок). В таких случаях необходимо 

использовать непараметрические критерии статистической обработки данных. 

В таблице 4.5 представлена типовая матрица парных сравнений реальных и 

модельных выборок теппинграмм. Как и предполагалось, число пар, которые 

можно отнести к некоторой одной генеральной совокупности, невелико: k=35 (в 

процентном эквиваленте 15,5%). Такая динамика очень близка к реальному 

теппингу, т.е. число пар совпадений k≈16%. 
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Таблица 4.5 – Матрица парных сравнений экспериментальных и модельных 

выборок теппинграмм (число «совпадений» k=35) 

№ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .67 .46 .00 .90 

2 .01 .00 .00 .01 .00 .00 .01 .00 .00 .16 .00 .00 .00 .00 .00 

3 .00 .01 .61 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .16 .00 

4 .16 .00 .00 .01 .04 .00 .00 .00 .00 .00 .75 .00 .00 .00 .00 

5 .00 .00 .00 .00 .00 .61 .00 .02 .06 .00 .00 .00 .00 .00 .00 

6 .51 .00 .00 .22 .00 .00 .00 .00 .00 .00 .57 .00 .00 .00 .00 

7 .02 .00 .00 .00 .57 .00 .00 .00 .00 .00 .16 .00 .00 .00 .00 

8 .00 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .74 .01 .00 

9 .18 .00 .00 .28 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 

10 .01 .00 .00 .00 .45 .00 .00 .00 .00 .00 .96 .01 .00 .00 .00 

11 .00 .63 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .22 .00 

12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .45 .33 .00 .17 

13 .00 .26 .00 .00 .00 .00 .00 .00 .00 .00 .00 .26 .45 .00 .18 

14 .00 .00 .00 .01 .00 .00 .54 .00 .00 .97 .00 .00 .00 .00 .00 

15 .00 .00 .86 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .29 .00 

Согласно результатам построения матриц парного сравнения, для модельных 

выборок динамика движений совпадает с реальными данными. Об этом 

свидетельствуют и другие подобные матрицы. Типовой пример представлен в 

таблице 4.6, здесь число пар совпадений k=17. 

Таблица 4.6 – Матрица парных сравнений модельных выборок теппинграмм (число 

«совпадений» k=17) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  .00 .00 .00 .00 .00 .00 .08 .00 .00 .00 .71 .38 .00 .00 

2 .00  .00 .00 .00 .06 .00 .00 .00 .00 .00 .00 .00 .59 .00 

3 .00 .00  .00 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .97 

4 .00 .00 .00  .00 .12 .02 .00 .10 .07 .00 .00 .00 .00 .00 

5 .00 .00 .00 .00  .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

6 .00 .06 .00 .12 .00  .05 .00 .24 .01 .00 .00 .00 .00 .00 

7 .00 .00 .00 .02 .00 .05  .00 .00 .43 .00 .00 .00 .00 .00 

8 .08 .00 .00 .00 .00 .00 .00  .00 .00 .02 .19 .28 .00 .00 

9 .00 .00 .00 .10 .00 .24 .00 .00  .00 .00 .00 .00 .05 .00 

10 .00 .00 .00 .07 .00 .01 .43 .00 .00  .00 .00 .00 .00 .00 

11 .00 .00 .02 .00 .00 .00 .00 .02 .00 .00  .00 .00 .00 .13 

12 .71 .00 .00 .00 .00 .00 .00 .19 .00 .00 .00  .98 .00 .00 

13 .38 .00 .00 .00 .00 .00 .00 .28 .00 .00 .00 .98  .00 .00 

14 .00 .59 .00 .00 .00 .00 .00 .00 .05 .00 .00 .00 .00  .00 

15 .00 .00 .97 .00 .00 .00 .00 .00 .00 .00 .13 .00 .00 .00  

Сводный расчет для 15 матриц (225 модельных выборок теппинграмм) в виде 

гистограммы представлен на рисунке 4.13. Согласно представленным результатам, 

среднее значение <k>=15,7 (15,9%). Такая динамика поведения числа k пар 
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совпадений для модельных выборок полностью совпадает с динамикой поведения 

числа k для реальных выборок теппинграмм. 

 
Рисунок 4.13 – Распределение z числа пар, совпадающих выборок k, для выборок 

теппинграмм, полученных в результате моделирования. Здесь z – число 

одинаковых k в 15-ти матрицах парных сравнений 

В качестве дополнительного метода анализа модельных выборок ТПГ 

использовался метод расчета параметров КА. Для примера на рисунке 4.14а 

представлена фазовая плоскость для реальной выборки ТПГ, а на рисунке 4.14b − 

фазовая плоскость для модельной выборки. При визуальной оценке фазовых 

портретов можно сделать вывод, что динамика выборок близка. 

Далее рассчитывались значения площадей S КА. Результаты расчетов S 

занесены в таблицу 4.7. Из этой таблицы видно, что значения площадей немного 

расходятся. Как и ожидалось, исходя из фазовых плоскостей, площади КА имеют 

незначительные различия. При этом математическая статистика не может 

установить достоверно значимые различия реальных и модельных данных. 

 

  а b 

Рисунок 4.14 – Фазовый портрет теппинграмм: а – реальная выборка; b – 

модельная выборка 
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Таблица 4.7 – Значение площадей квазиаттракторов для выборок теппинграмм: 

экспериментальных (𝑆1) и модельных (𝑆2) данных 

№ 𝑆1
1 𝑆1

2 𝑆2
1 𝑆2

2 

1 9.82 11.76 18.78 10.97 

2 18.77 13.82 8.37 14.29 

3 8.37 8.70 10.09 10.03 

4 7.32 12.29 7.41 11.04 

5 5.45 10.60 8.38 13.77 

6 18.29 14.99 6.45 13.07 

7 8.38 12.00 11.64 12.84 

8 9.38 9.98 13.78 10.15 

9 4.99 13.48 10.88 13.98 

10 11.64 9.89 10.33 15.10 

11 6.11 12.67 17.20 9.86 

12 20.70 12.92 8.90 12.48 

13 17.20 12.27 5.84 12.18 

14 10.88 10.00 8.06 15.54 

15 10.33 13.93 12.96 13.01 

<S> 11.18 11.89 10.60 12.47 

Уровень 

значимости 
p1=0.49 p2=0.19 

В таблице 4.7 представлены площади КА двух серий измерений по 15 

выборок для экспериментальных выборок (𝑆1
1, 𝑆2

1) и для модельных выборок (𝑆1
2, 

𝑆2
2). При парном сравнении выборок на основе математической статистики было 

установлено, что уровень значимости 𝑝1=0.49 и 𝑝2=0.19 для пар 𝑆1
1-𝑆1

2 и 𝑆2
1-𝑆2

2 

соответственно. Из представленных 4-х наборов КА можно составить еще две 

другие пары сравнения данных вычислительного и натурного экспериментов. Для 

пар 𝑆1
1-𝑆2

2 и 𝑆1
2-𝑆2

1 уровень значимости 𝑝3=0.39 и 𝑝4=0.23 соответственно. На основе 

проведенного анализа сделан вывод, что модель способна эффективно 

воспроизводить динамику произвольных движений конечности человека. 

Далее проводился сравнительный анализ реальных и модельных данных по 

произвольным движениям в рамках ТНС. Результаты расчета энтропии 

представлены в таблице 4.8. 
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Таблица 4.8 – Значения энтропии Шеннона для экспериментальных Hэ и 

модельных Hм выборок теппинграмм при разном числе разбиений выборок на 

интервалы 

№ 
10 20 50 200 1000 

Hэ
10 Hм

10 Hэ
20 Hм

20 Hэ
50 Hм

50 Hэ
200 Hм

200 Hэ
1000 Hм

1000 

1 3,1724 3,0677 4,1452 4,0557 5,4220 5,3297 7,1878 7,0913 8,2395 8,3820 

2 3,1929 3,0700 4,1607 4,0528 5,4106 5,3299 7,1133 7,0857 8,0334 8,3585 

3 3,1177 3,0747 4,0964 4,0606 5,3897 5,3132 7,1173 7,0766 8,1859 8,4370 

4 3,1298 3,1834 4,1159 4,1720 5,4013 5,4618 7,1147 7,2412 8,2488 8,5166 

5 3,1246 3,1495 4,0946 4,1222 5,3674 5,4009 7,1007 7,1543 8,2912 8,4521 

6 3,2077 3,1186 4,1877 4,0925 5,4548 5,3417 7,1874 7,1454 8,3360 8,4282 

7 3,0337 3,1299 4,0196 4,1211 5,2913 5,3837 6,9909 7,1603 8,2446 8,4259 

8 3,1252 3,1329 4,1012 4,1079 5,3880 5,4099 7,1461 7,1465 8,2704 8,3954 

9 3,1248 3,0939 4,1025 4,0719 5,3491 5,3778 7,1135 7,1251 8,2430 8,4484 

10 3,0346 3,1886 3,9952 4,1752 5,2880 5,4578 7,0011 7,2045 8,2045 8,4546 

11 3,2424 3,2302 4,2283 4,1974 5,5203 5,4837 7,2737 7,2134 8,3691 8,4743 

12 3,1463 3,0488 4,1039 4,0165 5,3740 5,2939 7,1575 7,0640 8,2195 8,3844 

13 3,2326 2,8542 4,2027 3,8159 5,4910 5,0639 7,2393 6,8287 8,1062 8,2534 

14 3,2381 2,9084 4,2236 3,8692 5,5217 5,1352 7,2437 6,9529 8,2520 8,3851 

15 2,9986 3,1017 3,9638 4,0894 5,2506 5,3671 6,9818 7,1566 8,0919 8,4071 

<H> 3,1414 3,0902 4,1161 4,0680 5,3947 5,3433 7,1313 7,1098 8,2224 8,4135 

p 0,28 0,36 0,42 0,77 0,01 

Полученные результаты дополнительно анализировались с помощью 

математической статистики. Такое сравнение позволило установить, что динамика 

энтропии статистически не имеет различий. Уровень значимости больше p=0.05 в 

подавляющем большинстве (более 96%) пар (реальная выборка – модельная 

выборка), что дает основание сделать вывод о том, что сравниваемая пара 

принадлежит одной генеральной совокупности.  

4.5 Выводы по главе 

В результате проведения экспериментов по воспроизведению хаотической 

динамики произвольных и непроизвольных движений человека установлено, что 

симуляционная модель с достаточно высокой точностью воспроизводит реальную 

динамику движений человека. На основе сравнительного анализа данных 

экспериментов подтверждена высокая эффективность получаемых результатов. 
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Сравнительный анализ данных экспериментов демонстрирует такое же 

процентное совпадение по количеству пар выборок, которые можно отнести к 

одной генеральной совокупности, как и для данных, полученных только в 

результате натурных экспериментов. Расчет параметров КА также помог 

установить высокую информативность получаемых результатов симуляционного 

моделирования. Движение конечности осуществляется в пределах ограниченной 

области квазиаттрактора, размеры которой соответствуют квазиаттракторам 

динамики движений реальных экспериментов. На основе термодинамики 

неравновесных систем также подтверждено соответствие динамики движений 

модельных и реальных данных экспериментов. Таким образом, можно сделать 

вывод об эффективности разработанных математического и алгоритмического 

обеспечения, реализованных в виде симуляционной модели. 
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ЗАКЛЮЧЕНИЕ 

В процессе проведения исследования были получены новые научные и 

практические результаты, направленные на повышение качества генерации 

параметров биомеханической системы человека на основе анализа 

закономерностей в динамике поведения параметров биомеханической системы 

человека и разработки модели и алгоритмов на основе теории дифференциальных 

уравнений с разрывной правой частью. 

1. Верифицированы закономерности и сведения биомеханической системы, 

лежащие в основе разработки алгоритмов и подхода к моделированию динамики 

поведения параметров произвольных и непроизвольных движений на основе 

анализа в рамках математической статистики, термодинамики неравновесных 

систем и теории хаоса-самоорганизации. 

2. Установлено, что траектория движения конечности в пространстве для 

каждой выборки произвольных и непроизвольных движений носит уникальный 

характер, и вектор направления траектории движения хаотически изменяется в 

некотором ограниченном коридоре. Данный результат стал основой алгоритма 

генерации уровня удержания позиции для моделирования динамики поведения 

параметров биомеханической системы человека с применением 

дифференциальных уравнений с разрывной правой частью. 

3. Разработано математическое обеспечение на основе дифференциальных 

уравнений с разрывной правой частью, позволяющее эффективно осуществлять 

моделирование параметров биомеханической системы человека с хаотической 

динамикой движений конечности в пространстве. Эффективность доказана на 

основе верифицированных закономерностей методами математической статистики 

и теории хаоса-самоорганизации.  

4. Установлено, что в рамках математической статистики для 

экспериментальных выборок треморограмм при парном сравнении число пар 

совпадений <ketr>=10,7%, для модельных выборок <kmtr>=11,9% (число пар для 

теппинграмм: экспериментальные выборки <kept>=17%, модельные выборки 

<kmtp>=16,8%). Также установлено, что на основе расчета параметров 
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квазиаттракторов движение вектора состояния систем происходит в одной 

ограниченной области, а средние значения площадей квазиаттракторов 

максимально близки (для треморограмм: <Setr>=0,002129 у.е., <Smtr>=0.002045 у.е.; 

для теппинграмм <Setp>=0,0287 у.е., <Smtp>=0,0267 у.е.). Предложенные подходы 

анализа параметров биомеханической системы человека в рамках математической 

статистики, термодинамики неравновесных систем и теории хаоса-

самоорганизации могут быть использованы в качестве проверки адекватности 

работы моделей и идентификации произвольных и непроизвольных устройств. 

5. Разработаны алгоритмы и специальное программное обеспечение, которые 

позволяют моделировать динамику поведения параметров произвольных и 

непроизвольных движений человека. Также в программе предусмотрен 

функционал по обработке данных, который включает в себя проверку 

распределения выборок, парное сравнение выборок, расчет площади 

квазиаттракторов, построение ограниченных областей квазиаттракторов для 

оценки однородности выборок, расчет энтропии Шеннона. 

Перспективы дальнейших исследования. На основе полученных научных 

и практических результатов исследований в области медицины открывается 

возможность разработки различных подходов к персонализированной 

реабилитации для восстановления двигательных функций после инсультов и травм. 

Также результаты исследования можно использовать в области спорта и 

биомеханики, в частности оптимизация тренировочных процессов (корректировка 

техники спортсменов, например, в беге, плавании, стрельбе), протезирование и 

экзоскелеты (например, применение результатов моделирования для повышения 

стабильности управления бионическими протезами). Стоит отметить, что 

результаты исследования важны и могут быть применены в области 

искусственного интеллекта: для разработки адаптивных алгоритмов управления 

роботами (например, создание роботов с естественной динамикой, таких как 

гуманоиды и медицинские ассистенты), а также для обучения ИИ с целью 

прогнозирования состояния сложных систем.  
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СПИСОК СОКРАЩЕНИЙ 

АЧХ − амплитудно-частотная характеристика  

ВСС − вектор состояния системы 

КА − квазиаттрактор 

СС − скользящая средняя 

СТТ − система третьего типа 

ТМГ − треморограмма 

ТНС − термодинамика неравновесных систем 

ТПГ − теппинграмма 

ТХС − теория хаоса-самоорганизации 

ФПС − фазовая плоскость состояния 

ЭМГ − электромиограмма 

ЭЭГ − электроэнцефалограмма 
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