
Федеральное государственное учреждение «Федеральный исследовательский
центр «Информатика и управление» Российской академии наук»

На правах рукописи

Муравьев Кирилл Федорович

Исследование методов и разработка алгоритмов
топологического картирования и локализации

Специальность 1.2.2 —
«Математическое моделирование, численные методы и комплексы программ»

Диссертация на соискание учёной степени
кандидата технических наук

Научный руководитель:
канд. физ.-мат. наук

Яковлев Константин Сергеевич

Москва — 2025

2

Оглавление

Стр.

Введение . 4

Глава 1. Обзор и анализ методов и алгоритмов
топологического картирования и локализации 11

1.1 Восприятие окружающей среды роботами 11
1.2 Методы и алгоритмы картирования 16
1.3 Методы и алгоритмы локализации 30
1.4 Выводы по главе . 40

Глава 2. Постановка задачи топологического картирования и
локализации . 43

2.1 Математическая модель окружающей среды и наблюдений 44
2.2 Метрическая модель задачи ОКЛ 47
2.3 Топологическая модель задачи ОКЛ 51
2.4 Выводы по главе . 58

Глава 3. Разработка алгоритма топологического картирования
и локализации . 60

3.1 Общая схема алгоритма . 60
3.2 Процедура локализации в топологической карте 62
3.3 Процедура построения и обновления топологической карты . . . 69
3.4 Выводы по главе . 72

Глава 4. Программный комплекс топологического
картирования и локализации 74

4.1 Структура программного комплекса 74
4.2 Параметры . 84
4.3 Пример использования . 88
4.4 Выводы по главе . 90

Глава 5. Экспериментальное исследование 92
5.1 Постановка численного эксперимента в симуляционной среде . . . 92

3

Стр.

5.2 Численные эксперименты в симуляционной среде 97

5.3 Эксперименты на данных с реальных роботов 105
5.4 Выводы по главе . 109

Заключение . 111

Список публикаций автора . 113

Список литературы . 115

Приложение A. Свидетельство о госурадственной регистрации
программы для ЭВМ № 2025662382 125

4

Введение

Актуальность темы. Задача одновременного картирования и лока­
лизации (ОКЛ) является одной из важнейших для обеспечения навигации
робототехнических систем. Ее решение позволяет робототехнической системе
определять свое положение в пространстве, не опираясь на системы глобально­
го позиционирования, а также строить карту местности, учитывая изменения
среды. Таким образом, успешное решение задачи ОКЛ дает возможность при­
менять робототехнические системы в таких областях, как автоматизированная
доставка грузов в условиях нестабильной работы систем спутникового позици­
онирования, поисково-спасательные операции, мониторинг и патрулирование
различных объектов и др.

В настоящее время, как правило, задача ОКЛ решается методами, кото­
рые строят карту в виде плотных метрических структур, таких как двумерная
сетка занятости или трехмерные воксельные сетки. Однако, в случае, к приме­
ру, автоматизированной доставки, робототехнические системы преодолевают
большие расстояния и картируют большие площади. В такой ситуации поддер­
жание плотной метрической карты и коррекция ошибки одометрии требуют
значительных затрат памяти и вычислительных ресурсов, что может привести
к переполнению памяти, задержке обновления карты, накоплению ошибки по­
зиционирования. Все это может привести к некорректной работе алгоритмов и,
как следствие, — к остановке робота либо к столкновению его с препятствиями.

Альтернативным подходом к решению задачи ОКЛ является тополо­
гическое картирование и локализация. Идея такого подхода заключается в
представлении окружающей среды в виде разреженных топологических струк­
тур, таких как граф локаций, вместо плотных метрических структур. За счет
разреженности графа такой подход обеспечивает быстрое планирование пути
и позволяет избавиться от накопления ошибки позиционирования при дол­
говременной навигации. Таким образом, построение топологической карты и
локализация в ней позволят обеспечить эффективную долговременную авто­
номную навигацию робототехнических систем в средах большой площади.

В связи с этим актуальной является проблема разработки алгоритмов
построения топологической карты по данным бортовых сенсоров робототех­

5

нической системы, а также проблема разработки алгоритмов локализации
робототехнической системы в топологической карте.

Степень разработанности темы. Существует множество методов,
которые используют графовые структуры для создания глобальной геомет­
рической модели окружающей среды (метрической карты). Среди наиболее
известных методов такого класса можно выделить ORB-SLAM3, Cartographer
и RTAB-Map, которые используют графы позиций для глобальной оптимиза­
ции оценки траектории робота и коррекции построенной метрической карты, и
методы Voxgraph и GLIM, которые строят граф локальных метрических карт,
объединяемых в общую глобальную метрическую карту. Существует довольно
обширный класс методов, которые строят совместно метрическую и топологиче­
скую карту. Среди таких методов – Hydra, S-graphs+, IncrementalTopo. Общими
недостатками подобных методов являются высокие затраты памяти и вычис­
лительных ресурсов при построении плотной глобальной метрической карты
пространств большой площади, а также неизбежное накопление ошибки гло­
бального позиционирования при долговременной работе метода.

Развитие технологий глубокого обучения и рост мощности вычислителей
привели к появлению обучаемых методов, решающих задачу ОКЛ с помощью
построения графа локаций без использования метрических координат. Лока­
лизация в таких графах и перемещение между локациями осуществляется
нейросетевыми методами. В качестве примеров таких методов можно привести
NTS, ETP-Nav, VGM, TSGM. Однако такие методы, как правило, разрабатыва­
ются для решения определенной краткосрочной задачи, такой как навигация до
одного целевого объекта, и работают преимущественно в симуляционных сре­
дах в небольших помещениях. Использование полностью нейросетевых методов
при долгосрочной навигации может привести к ложным срабатываниям нейро­
сетевой локализации, и, как следствие, к соединению ребрами удаленных друг
от друга локаций и к ошибкам навигации. В работе исследователей из Мон­
реаля представлен обучаемый алгоритм топологического картирования LTVN,
пригодный для долгосрочной навигации, однако для начала его работы необхо­
дима предварительно построенная карта.

Еще одним направлением развития топологического картирования и лока­
лизации являются методы, которые строят глобальную топологическую карту
в виде графа локаций с использованием локальной метрической информации.
К настоящему моменту разработаны такие методы, предназначенные как для

6

исследования и картирования помещений, так и для картирования открытых
пространств, локализации и навигации по построенной карте в разное время
суток.

Таким образом, на настоящий момент разработано множество методов
решения задачи картирования и локализации с применением топологических
структур, однако отсутствуют методы, обеспечивающие долговременную на­
вигацию как в помещениях, так и на открытых пространствах с низкими
затратами вычислительных ресурсов, что обуславливает необходимость данно­
го исследования.

Целью работы является исследование и разработка вычислительно
эффективных алгоритмов ОКЛ на основе топологических структур для повы­
шения автономности мобильных робототехнических систем.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Провести анализ существующих методов топологического картирова­
ния и локализации.

2. Построить математическую модель задачи топологического картирова­
ния и локализации и оценки качества ее решения.

3. Разработать вычислительно эффективный алгоритм топологического
картирования и локализации, обладающий высоким качеством локали­
зации и построенной карты.

4. Создать программный комплекс топологического картирования и ло­
кализации, провести экспериментальные исследования разработанных
алгоритмов с использованием предложенной математической модели в
симуляционных средах и на реальных робототехнических системах.

Научная новизна работы состоит в следующем:
Предложен новый алгоритм построения и поддержания топологической

карты в реальном времени. Карта представляется в виде графа локаций, не со­
держащих глобальных метрических координат. Такое представление позволяет
выполнять долговременную навигацию без накопления ошибки позициони­
рования и снижает потребление вычислительных ресурсов и памяти при
долговременной навигации.

Предложен двухэтапный алгоритм локализации в построенной карте, ос­
нованный на нейросетевых методах распознавания места (локации) и поиске
относительной позиции путем сопоставления двумерных сканов местности. В

7

отличие от аналогичных методов, предложенный подход позволяет фильтро­
вать ложно распознанные нейросетевыми моделями локации и корректировать
ошибку одометрии в реальном времени.

Реализован двухуровневый алгоритм планирования пути по построен­
ной карте, который позволяет значительно ускорить планирование пути по
сравнению с алгоритмами, использующими глобальную метрическую карту.
Проведено экспериментальное исследование комплекса предложенных алгорит­
мов картирования, локализации и планирования пути в симуляционной среде
и на данных с реальных робототехнических систем.

Предложена новая математическая модель оценки качества графов ло­
каций. В отличие от аналогов, опирающихся на глобальные метрические
координаты, предложенная модель позволяет оценивать качество графа с
точки зрения путевой эффективности в случае отсутствия глобальных мет­
рических координат в локациях графа. Предложена новая модель оценки
качества локализации, которая помимо точности вычисления относительной по­
зиции учитывает еще успешность локализации и долю ложно сопоставленных
локаций. Проведено экспериментальное исследование известных алгоритмов то­
пологического картирования и локализации с помощью предложенных моделей
оценки качества. Показано преимущество разработанного комплекса алгорит­
мов перед другими современными алгоритмами.

Теоретическая значимость работы обуславливается комплексом раз­
работанных алгоритмов и моделей, которые создают основу как для создания
новых топологических методов решения задачи ОКЛ, так и для улучшения
существующих.

Практическая значимость работы заключается в реализации разра­
ботанных алгоритмов и моделей в виде комплекса программных средств для
реальных робототехнических систем. Реализованные алгоритмы могут быть
использованы для повышения автономности робототехнических систем различ­
ного типа и назначения.

Соответствие диссертации паспорту научной специальности. В
соответствии с формулой специальности 1.2.2 «Математическое моделирова­
ние, численные методы и комплексы программ» (технические науки) в работе
предложена математическая модель задачи топологического картирования и
локализации и выполнены разработка, исследование и реализация алгоритмов
и методов решения этой задачи. Работа соответствует следующим пунктам

8

паспорта специальности: п. 2. «Разработка, обоснование и тестирование эффек­
тивных вычислительных методов с применением современных компьютерных
технологий», п. 3. «Реализация эффективных численных методов и алгорит­
мов в виде комплексов проблемно-ориентированных программ для проведения
вычислительного эксперимента», п. 8. «Комплексные исследования научных и
технических проблем с применением современной технологии математического
моделирования и вычислительного эксперимента», п. 9. «Постановка и прове­
дение численных экспериментов, статистический анализ их результатов, в том
числе с применением современных компьютерных технологий (технические на­
уки)».

Методология и методы исследования. Методы исследования и разра­
ботки алгоритмов топологического картирования и локализации основаны на
теории графов, теории вероятностей, математической статистике, линейной ал­
гебре, аналитической геометрии, компьютерном зрении, методах разработки и
тестирования программного обеспечения для ЭВМ.

Основные положения, выносимые на защиту:
1. Предложена математическая модель задачи топологического карти­

рования и локализации, как построения графа локаций по входным
данным с датчиков робота и определения текущей локации в построен­
ном графе и положения внутри локации. Разработана модель оценки
качества графа локаций, не требующая наличия глобальных метриче­
ских координат в локациях. Предложена новая модель оценки качества
локализации в графе локаций.

2. Предложен алгоритм построения и поддержания карты местности в
виде графа в реальном времени, обеспечивающий долговременную на­
вигацию. Предложенный алгоритм основан на построении графа лока­
ций без глобальных метрических координат, что позволяет избавиться
от накопления ошибки позиционирования и повысить вычислительную
эффективность методов автономной навигации.

3. Предложен двухэтапный алгоритм локализации в построенном графе
локаций, основанный на глобальном поиске похожих локаций в гра­
фе с помощью нейросетевых методов и одновременной фильтрации
результатов и нахождении относительной позиции с помощью сопостав­
ления сканов. Предложенный алгоритм позволяет повысить точность

9

локализации и уменьшить количество ложных сопоставлений текущего
положения робота с локациями в графе.

4. Предложенные алгоритмы картирования и локализации реализованы в
виде комплекса программных средств и выложены в открытый доступ.
Программный комплекс позволяет сохранять и загружать построен­
ные карты, настраивать параметры алгоритмов и запускать реализации
алгоритмов на различных робототехнических системах без доработки
исходного кода.

Достоверность полученных результатов подтверждается данными чис­
ленных экспериментов, проведенных в симуляционных средах с помощью
разработанных алгоритмов, математических моделей и комплекса программ, а
также успешной апробацией разработанных алгоритмов и комплекса программ
на данных с реальных робототехнических систем.

Апробация работы. Основные результаты работы докладывались
на следующих научных конференциях: The 9th International Conference on
Interactive Collaborative Robotics (ICR 2024), The 16th International Conference
on Machine Vision (ICMV 2023), The 7th International Conference on Interactive
Collaborative Robotics (ICR 2022), ХХ Всероссийская научно-практическая
конференция «Перспективные системы и задачи управления» (Домбайская
конференция 2025), XIV Всероссийское совещание по проблемам управления
(ВСПУ 2024). Результаты были получены в процессе выполнения работ по гран­
там: №075-15-2020-799 «Методы построения и моделирования сложных систем
на основе интеллектуальных и суперкомпьютерных технологий, направлен­
ные на преодоление больших вызовов» и №075-15-2024-544 «Математические
модели и численные методы как основа для разработки робототехнических ком­
плексов, новых материалов и интеллектуальных технологий конструирования»
Министерства науки и высшего образования РФ.

Личный вклад. Все положения, выносимые на защиту и изложенные
в диссертации, принадлежат лично автору. Постановка задач и обсуждение
результатов проводились совместно с научным руководителем. В [1] автором
проведено подробное экспериментальное исследование двух современных алго­
ритмов ОКЛ и проведен анализ их эффективности. В [2] автором предложен
набор критериев для оценки качества графа локаций и проведено обширное экс­
периментальное исследование современных топологических алгоритмов ОКЛ
с использованием предложенного набора критериев. В [3] автором предложен

10

алгоритм построения и обновления графа локаций и проведены численные
эксперименты. В [4; 5] автором доработан предложенный ранее алгоритм
построения и обновления графа локаций, а также предложен алгоритм лока­
лизации робота в графе локаций и проведено экспериментальное исследование
комплекса разработанных алгоритмов. В [6] автором предложен подход к пла­
нированию пути в графе локаций и проведено экспериментальное исследование
предложенного подхода.

Публикации. Основные результаты по теме диссертации изложены
в 10 печатных изданиях, в том числе 3 работы опубликованы в изданиях из
списка ВАК категории К1 и приравненных к ним, из которых 2 – индексиру­
ются в Scopus (Q1), 6 работ опубликованы в трудах конференций, из которых
4 – индексируются в Scopus. Зарегистрирована 1 программа для ЭВМ.

Объем и структура работы. Диссертация состоит из введения, 5 глав,
заключения и 1 приложения. Полный объём диссертации составляет 125 стра­
ниц, включая 40 рисунков и 19 таблиц. Список литературы содержит 101
наименование.

11

Глава 1. Обзор и анализ методов и алгоритмов топологического
картирования и локализации

Автономная навигация является одним из ключевых аспектов для функ­
ционирования мобильных роботов и беспилотных транспортных средств. За­
дача автономной навигации обычно формулируется как достижение роботом
заданной целевой точки. Для успешного достижения целевой точки необходи­
мо решить следующие подзадачи навигации:

1. Определение положения робота и целевой точки;
2. Построение маршрута от положения робота до целевой точки;
3. Движение робота вдоль построенного маршрута с избеганием столкно­

вений с препятствиями.
Внешнее позиционирование робота (например, с помощью глобальных на­

вигационных спутниковых систем, далее – ГНСС) зачастую бывает недоступно
или нестабильно (в частности, при навигации внутри помещений или в плотной
городской застройке). Карта местности, на которой выполняется навигация,
может отсутствовать или быть устаревшей. Таким образом, возникают задачи
локализации (определения положения робота на карте) и картирования (созда­
ния карты местности, используемой для локализации и построения маршрутов)
по данным с бортовых датчиков робота. В данной главе рассматриваются
методы и алгоритмы решения указанных задач с использованием данных с раз­
личных бортовых датчиков. Оцениваются преимущества и недостатки методов,
их применимость в различных условиях навигации.

1.1 Восприятие окружающей среды роботами

В процессе автономной навигации роботам приходится решать комплекс
задач, таких как картирование окружающего пространства, определение своего
местоположения на карте, планирование пути до целевой точки и движение
вдоль спланированного пути. Для построения карты и оценки местоположения
робота в ней могут использоваться данные с различных типов датчиков. Чаще
всего используются следующие виды датчиков:

12

– Монокулярные камеры, генерирующие трехканальное изображение пу­
тем проецирования предметов окружающего пространства на плоскость
матрицы. Они обладают неограниченной дальностью действия, однако
зависят от освещенности окружающей среды и по данным с ним невоз­
можно определить расстояния до окружающих предметов.

– Стереокамеры – пара камер, расположенных на определенном рас­
стоянии друг от друга. Стереокамеры так же чувствительны к осве­
щенности, однако позволяют оценивать расстояние до окружающих
предметов путем вычисления диспаритета (разности в положении про­
екций объектов) между изображениями с левой и с правой камер. Таким
образом, на практике с помощью стереокамер можно оценивать рассто­
яния до нескольких метров.

– Камеры глубины, или RGB-D (от англ. Red, Green, Blue, Depth), по­
мимо цветного трехканального изображения дают его карту глубин –
матрицу проекций расстояний до изображенных объектов на главную
оптическую ось. Карта глубин строится с помощью инфракрасной сет­
ки, излучаемой камерой, что позволяет оценивать расстояния даже на
изображениях без четких контуров объектов в пределах нескольких мет­
ров.

– Лазерные сканеры, или лидары (от англ. Light Detection and Ranging)
– позволяют оценить расстояния до объектов вокруг робота. Так как
принцип работы основан на измерении времени отражения испуска­
емого датчиком лазерного луча, то лидары не зависят от внешнего
освещения, однако дальность их действия составляет не более 100-200
м.

– Датчики инерциальной навигационной системы (гироскопы, акселеро­
метры, магнитометры) позволяют измерить ускорение и поворот робота
и таким образом оценить его перемещение в пространстве. Однако такой
способ оценки перемещения робота имеет значительную погрешность.

– Датчики вращения колес (энкодеры) позволяют отследить число обо­
ротов и угол поворота каждого колеса и таким образом оценить
перемещение робота в пространстве. Такой способ позволяет довольно
точно вычислить пройденное расстояние при движении по прямой без
проскальзывания, однако обладает большой погрешностью в случае по­
воротов робота.

13

Рисунок 1.1 — Пример робототехнической системы AgileX Scout Mini с лидаром,
камерой глубины и энкодерами колес.

Пример робототехнической системы с набором датчиков для картирова­
ния и определения положения в пространстве показан на рисунке 1.1. Набор
датчиков включает в себя трехмерный лазерный сканер, камеру глубины, сов­
мещенную с инерциальной навигационной системой, а также датчики вращения
колес.

Данные об окружающем мире с монокулярных и стереокамер подаются
на вход алгоритмам в виде цветных трехканальных изображений. Данные с
камер глубины подаются на вход в виде карт глубин, содержащих расстояния
в метрах. Изображения и карты глубин требуют дополнительных методов для
интеграции данных с них в карту – например, преобразование карты глубин
в облако точек с помощью обратной проекции и выделение особых точек на
изображении. Трехмерные многолучевые лидары выдают набор расстояний для
каждого луча, которые легко преобразуются в готовое облако точек, картиру­
ющее участок окружающей среды вокруг робота. Такие облака точек, снятые
в различных локациях, могут быть объединены в одну общую карту (глобаль­
ное облако точек), а также спроецированы на плоскость для создания карты
препятствий. Пример данных с датчиков робота (изображение, карта глубины,
облако точек) изображен на рисунке 1.2.

14

Рисунок 1.2 — Пример данных с датчиков робота: изображение (слева внизу),
карта глубин (слева вверху), облако точек (справа).

Для определения положения робота в пространстве, как правило, ис­
пользуются данные одометрии – оценки перемещения и/или скорости робота.
Одометрия может вычисляться по датчикам инерциальной навигационной
системы (далее – ИНС) путем интегрирования показаний акселерометра и гиро­
скопа и соотнесения их с показаниями магнетометра. Также одометрия может
вычисляться по датчикам вращения колес (в случае робота с дифференци­
альным приводом угол поворота определяется по разности вращения левых
и правых колес), либо по данным с камер (визуальная одометрия), либо по
данным с лидаров (лидарная одометрия).

Методы вычисления визуальной одометрии (например, ORB-SLAM3 [10]),
как правило, основаны на извлечении особых точек из изображений и отслежи­
вании перемещения робота по перемещению особых точек от кадра к кадру.
Методы вычисления лидарной одометрии (например, LOAM [11]) могут быть
основаны на вычислении особых точек в облаках точек, либо на вычислении
прямых и плоскостей (если движение происходит внутри помещений), либо
на полном сопоставлении сканов или других методах. Распространение полу­
чили и алгоритмы, комплексирующие различные источники для вычисления
одометрии. Например, алгоритм VINS-Fusion [12] использует данные инерциаль­
ной навигационной системы для уточнения визуальной одометрии, а алгоритм
GLIM [13] может использовать инерциальные данные для уточнения лидарной
одометрии. Однако одометрия в любом случае имеет некоторую относительную
ошибку определения смещения и поворота. На больших расстояниях и/или при

15

большом количестве поворотов накопление ошибки приводит к невозможности
точной оценки положения робота по данным одометрии. Для коррекции на­
капливающейся ошибки, как правило, используется привязка робота к карте
(локализация в карте).

Карты, используемые на роботах, представляют собой модели окружаю­
щей среды и используются для локализации робота и планирования пути до
целевой точки. Модель окружающей среды может представляться в виде раз­
личных структур, среди которых преобладают геометрические структуры. В
частности, нередко используется представление среды в виде двумерной или
трехмерной сетки занятости. В такой сетке каждая ячейка имеет значение 0 или
1 – значения в ячейках определяют, свободен или занят для проезда соответству­
ющий квадрат поверхности или куб пространства. При навигации по неровной
поверхности могут использоваться карты высот – матрицы, в которых каждая
ячейка содержит высоту соответствующего квадрата поверхности. Такие карты
высот можно преобразовать в сетки занятости для конкретного робота с учетом
его характеристик (габариты, радиус колес, дорожный просвет и т.д.).

Еще одним распространенным способом представления местности явля­
ется облако точек. При наличии информации о позиции робота облака точек с
лидара легко объединяются в общее облако точек, которое и представляет собой
трехмерную модель окружающей среды со всеми объектами. Плотное облако то­
чек для среды большой площади занимает значительные объемы памяти, и для
экономии памяти и ускорения алгоритмов локализации может быть использова­
но разреженное или дискретизованное облако точек. Для наиболее детального
представления окружающей среды могут использоваться трехмерные полиго­
нальные сетки (англ. 3D Mesh), однако такой способ представления является
наиболее затратным по памяти. Виды метрических представлений окружаю­
щей среды представлены на рисунке 1.3.

Метрические карты удобны для алгоритмической обработки и позициони­
рования робота в пространстве R2 или R3. Однако при большой площади среды
такие карты требуют значительных объемов памяти для хранения и значитель­
ных вычислительных ресурсов для построения и обработки. Альтернативным
способом представления окружающей среды является топологический подход,
при котором моделью среды является граф. Вершинами графа могут быть лока­
ции (области пространства), каждая из которых представлена описанной выше
геометрической структурой или вектором признаков. Также вершинами могут

16

Рисунок 1.3 — Виды метрических представлений среды, используемых на ро­
ботах: (а) двумерная сетка занятости; (б) карта высот; (в) трехмерное облако

точек; (г) трехмерная полигональная сетка.

быть позиции выделенных ключевых кадров, в таком случае каждая из вершин
будет представлена наблюдением с робота. Методы и алгоритмы построения
метрических и топологических карт и локализации в них подробно рассмот­
рены ниже.

1.2 Методы и алгоритмы картирования

Методы и алгоритмы картирования подразделяются на два больших
класса в соответствии с картами, которые они строят: метрические и топо­
логические. Топологические методы, в свою очередь, подразделяются на две
большие группы: онлайн-методы и офлайн-методы. Первая группа методов
строит топологическую карту с нуля в реальном времени по наблюдениям с бор­
товых датчиков робота. Вторая группа строит топологическую карту по заранее
собранному набору наблюдений или по предварительно построенной глобаль­
ной метрической карте. Среди онлайн-методов топологического картирования
встречается множество методов, использующих глобальные метрические ко­
ординаты (т.н. топометрические методы) и чисто топологические методы, не
опирающиеся на глобальные метрические координаты. Чисто топологические
методы могут опираться на локальные метрические координаты (например, по­
ложение робота относительно центра локации) или не использовать координаты
вообще. Схема классификации методов картирования представлена на рисун­
ке 1.4. Подробный обзор классов методов приведен ниже.

17

Рисунок 1.4 — Классификация методов картирования.

Метрические методы История методов автоматического картирования бе­
рет свое начало в 1980-х годах [14]. Первые методы картирования были
метрическими. Например, в работе [15] описан метод построения карты за­
нятости (Occupancy Grid) в виде двумерной сетки по данным с сонаров —
акустических сенсоров, определяющих расстояния до объектов посредством эхо­
локации. Метод [15] позволил получить плотные карты окружающей среды, в
которых области классифицировались как свободные, занятые и неизвестные.
Такие карты были пригодны для автономной навигации и планирования на
высоком уровне. Для построения карт использовалась интерпретация измере­
ний дальности с сонарных датчиков, моделирование информации о занятости
с помощью вероятностных профилей и последующее проецирование информа­
ции на двумерную карту. Пример такой двумерной карты занятости показан
на рисунке 1.5.

Методы картирования, основанные на сетках занятости, впоследствии
были использованы во множестве робототехнических систем. В современных ме­
тодах картирования (например, RTAB-Map [16]) используется построение сетки
занятости с вероятностными оптимизациями. Двумерные сетки занятости яв­
ляются интуитивно понятным представлением окружающей среды и требуют
небольшого количества памяти для хранения. По ним можно легко планировать
маршруты с помощью алгоритмов поиска пути в графе, например, алгоритма
А* [17]. Однако при больших размерах сетки (1000 ячеек и более) планирование
маршрута занимает значительное время, что может привести к затруднени­

18

Рисунок 1.5 — Пример карты занятости помещения, состоящего из комнат,
холлов и коридоров (сверху, белым показаны свободные области, черным – заня­
тые, серым – неизвестные). Внизу слева показано изображение с камеры робота,

внизу справа – облако точек с лидара.

ям при навигации роботов. Таким образом, при навигации в средах большого
размера необходимо либо увеличивать размеры ячейки сетки занятости, либо
использовать другие методы.

Двумерные сетки занятости являются удобным и легким инструментом
представления окружающей среды. Однако в случае навигации малого беспи­
лотного летательного аппарата или наземного робота по неровной местности,
2D-карты не являются достаточно надежными из-за неполной информации о
поверхности и отсутствия отображения уровней. Для полного отображения
окружающего пространства может быть использована трехмерная сетка за­
нятости, состоящая из вокселей (небольших кубиков). Значения в кубиках
показывают, свободна для прохода или занята соответствующая область про­
странства. Первые методы трехмерного картирования появились в конце 1980-х
годов [18]. В методе [18] каждая ячейка воксельной сетки помечается как сво­
бодная, занятая или неизвестная. Обновление сетки по данным с сенсоров
происходит с помощью вероятностных алгоритмов и методов сглаживания.

С развитием лидарных технологий в 1990-х годах появились методы по­
строения трехмерной метрической карты в виде облака точек (Point Cloud) —
набора точек с координатами (x, y, z) и вспомогательными атрибутами (цвет
и т. д.). Один из первых таких методов был представлен в работе [19] в 2000
году. Методы построения карт в виде облака точек популярны по сей день,
поскольку облака точек поступают напрямую с сенсоров робота (лидаров или
камер глубины). Глобальное облако точек строится в методе RTAB-MAP и дру­

19

гих современных методах метрического картирования, например, GLIM [13],
ORB-SLAM3 [10], Cartographer [20]. Еще одним форматом данных, часто исполь­
зуемым в современных методах 3D-картирования, является поле евклидовых
расстояний со знаком (Euclidean Signed Distance Field, ESDF). ESDF пред­
ставляет собой разновидность воксельной сетки, в кубиках которой записаны
расстояния от центра кубика до ближайшего препятствия. Такой формат карты
позволяет строить безопасные пути для роботов. Карта в виде ESDF строится
в том числе в методе Voxblox [21], который является составной частью других
методов картирования.

Топологические методы Метрические карты удобны для алгоритмической
обработки и понятны для человека, тем не менее, они обладают рядом суще­
ственных недостатков. Во-первых, метрические карты пространств большого
размера занимают большие объемы памяти (особенно в виде трехмерных вок­
сельных сеток), а их обработка требует значительных вычислительных затрат.
Во-вторых, планирование пути по сеткам большой размерности требует зна­
чительных вычислительных ресурсов и занимает достаточно много времени.
В-третьих, из-за несовершенства датчиков и накопления ошибки, метрические
карты большого размера, как правило, получаются неточными. И в-четвертых,
метрическое представление местности хоть и понятно людям, но не использу­
ется людьми при навигации на нативном уровне. Когда человек идет по улице
или по коридору здания, он не считает количество метров, которое ему нужно
пройти, и не задает направление по компасу. Он использует визуальные ориен­
тиры и представление о расположении улиц или коридоров относительно друг
друга, т. е. топологическое представление местности.

Автоматизированное представление топологических карт может позво­
лить устранить вышеописанные недостатки при навигации роботов. Работы по
топологическому картированию ведутся с начала 1990-х годов. Среди первых
методов топологического картирования можно выделить работы [22—24]. В ра­
боте [22] строится топологическая карта в процессе исследования неизвестной
местности, и затем по топологической карте строится метрическая. Процесс по­
строения карты включает в себя детекцию похожих мест и замыкание циклов.
В работе [23] представлен и опробован на реальном роботе полный алгоритм
навигации с построением топологической карты. В работе [24] для повыше­
ния точности построения топологической карты использовались технологии

20

машинного обучения. В настоящее время разработано множество методов и
алгоритмов построения топологической карты, работающих в реальном време­
ни или на основе предварительно собранного и обработанного набора данных.
Обзор основных современных методов и алгоритмов приведен ниже.

Офлайн-методы топологического картирования Одним из наиболее из­
вестных офлайн-методов построения топологической карты является метод
TopoMap [25], разработанный в 2018 году. В качестве предварительно по­
строенной карты на вход методу подается глобальное разреженное облако
точек, которое может быть получено, например, с помощью алгоритма ORB­
SLAM [10]. По этому облаку точек строится трехмерная воксельная сетка с
помощью трассировки лучей от позиции робота до координаты точки и метода
Voxblox [21]. Полученное с помощью метода Voxblox усеченное поле расстояний
со знаком (англ. Truncated Signed Distance Field, TSDF) дополнительно филь­
труется по порогу, равному 0.9, также удаляются небольшие изолированные
группы вокселей.

По полученной воксельной сетке строится метрическая карта в виде гло­
бальной сетки занятости и топологическая карта в виде графа выпуклых
кластеров свободного пространства. Пример исходного разреженного облака
точек и построенной по нему топологической карты показан на рисунке 1.6.
Выпуклые кластеры строятся так: за центр принимается случайная точка на
траектории робота, затем вокруг нее “раздувается” кластер с помощью мето­
да главных компонент и итеративного расширения вдоль его главной оси. Два
кластера объединяются в один, если их совместная выпуклая оболочка содер­
жит не более чем 1-5% вокселей препятствия. Эксперименты, проведенные на
симуляционных сценах помещений, показали, что построенная топологическая
карта обеспечивает в 2000 раз более быстрое планирование пути, чем метри­
ческая карта.

В работе [26] опубликован еще один офлайн-метод, позволяющий по­
строить топологическую карту окружающей среды масштабов города. Для
построения топологической карты используются данные общедоступных гло­
бальных карт города (например, OpenStreetMap 1). Вершинами топологической
карты являются объекты городской инфраструктуры (лифт, пешеходный пере­
ход, станция и т.д.), информация о которых извлекается из общедоступных

1https://www.openstreetmap.org/

21

Рисунок 1.6 — (а) Разреженное облако точек, подаваемое на вход методу
TopoMap; (б) выпуклые кластеры свободного пространства; (в) граф локаций,

по каждой из которых строится выпуклый кластер. Источник [25].

карт. В процессе навигации по общедоступным глобальным картам и трехмер­
ным облакам точек, приходящим с лидара робота, строится двумерная сетка
занятости для каждого этажа здания и для каждого квартала города. Экспери­
менты, проведенные на участке города площадью 17 км2, показали, что время
планирования сокращается в среднем в три раза по сравнению со стандартной
навигацией по двумерной карте, а количество потребляемой памяти сокращает­
ся до 10 раз. При этом длина построенного маршрута в сравнении с глобальной
двумерной картой почти не изменилась.

В работе [27] представлен офлайн-метод построения топологической кар­
ты многоэтажного здания. На вход методу подается плотная трехмерная модель
здания в виде облака точек. По облаку точек строится многоуровневая метрико­
топологическая карта, состоящая из графа комнат, графа локаций, а также
разбиения на двумерные и трехмерные регионы. Сначала здание разбивается на
этажи, далее для каждого этажа строится воксельная сетка. Затем в воксельной
сетке этажа ищутся вертикальные столбики, которые объединяются в регионы.
Между соседними регионами ищутся проходы, которые становятся вершина­
ми топологической карты. Далее по аналогии с методом TopoMap [25] регионы
делятся на кластеры свободного пространства. В экспериментах, проведенных
на трехмерных моделях реальных зданий, удалось достичь точности разбиения
на комнаты, измеренной с помощью коэффициента корреляции Мэттью [28],
равной 0.99.

В работе [29] представлен метод построения трехуровневой карты (метри­
ческой, топологической и семантической). На вход методу подаются данные с
лидара и RGB-D камеры. Топологическая карта строится как граф комнат и
дверей, и для каждой комнаты строится семантический граф сцены. Вершина­
ми графа сцены являются объекты, такие как стол, кружка и т.д., а ребрами –
отношения между объектами, например, «кружка стоит на столе». По данным

22

Рисунок 1.7 — (а) Скелетный граф, строящийся с помощью метода TaichiSLAM,
на фоне разреженного облака точек; (б) выпуклые многогранники свободного

пространства. Источник [30].

экспериментов, проведенных в симуляционной среде, время генерации графа
для различных помещений составило от 15 минут до 3 часов.

В работе [30] представлен еще один офлайн-алгоритм построения то­
пологической карты по плотному глобальному облаку точек, названный
TaichiSLAM, обеспечивающий более быструю генерацию графа. Топологи­
ческая карта строится в виде скелетного графа и графа многогранников
свободного пространства. Пример такой топологической карты показан на
рисунке 1.7. Построение графа происходит итеративно методом поиска в ши­
рину, на каждой итерации проводится поиск по границам между построенным
многогранником и неоткартированным пространством. Вершины скелетного
графа задаются как центры границ многогранников и центры самих много­
гранников. Время генерации графа для многоэтажного здания по данным
экспериментов составило 2.8 с.

В работе [31] представлен обучаемый алгоритм Lifelong Topological Visual
Navigation (LTVN), предназначенный для долгосрочной навигации в тополо­
гической карте. На вход алгоритму подается изображение с камеры робота, а
также предварительно построенная топологическая карта, в каждой локации
которой хранится снятое из нее изображение. Движение вдоль ребер графа
локаций и проверка достижимости локаций осуществляются с помощью ней­
росетевых моделей. В процессе навигации ребра обновляются (стираются или
добавляются) в зависимости от фактического достижения локаций. Проведен­
ные авторами эксперименты показали успешную навигацию в симуляционных
помещениях и на реальном роботе.

23

Онлайн-методы топологического картирования Помимо офлайн-мето­
дов топологического картирования, на настоящий момент разработано большое
количество онлайн-методов, которые строят топологическую карту с нуля в
реальном времени по данным с бортовых датчиков робота. Онлайн-методы под­
разделяются на две большие группы: методы, использующие при построении
топологической карты глобальные метрические координаты (так называемые
топометрические методы), и топологические методы, в которых глобальные мет­
рические координаты не используются (но может использоваться локальная
метрическая информация, например, локальная сетка занятости для каждой
локации).

Топометрические методы, помимо топологической карты, как правило,
предоставляют плотную метрическую карту, которая является высокодетализи­
рованным представлением окружающей среды. Использование топологических
свойств среды наряду с метрическими позволяет более эффективно проводить
коррекцию накапливающейся ошибки одометрии, однако за счет построения
глобальной метрической карты топометрические методы зачастую ресурсоза­
тратны, и их применение на больших расстояниях или в средах большой
площади затруднительно. Так, в работе [32] представлен метод GLocal, решаю­
щий задачу исследования неизвестной местности в условиях высокой ошибки
одометрии. Метод строит топологическую карту в виде графа подкарт. Каж­
дая подкарта представляется в виде TSDF. Подкарты сшиваются в глобальную
карту с помощью алгоритма Voxgraph [33], который проводит глобальную
оптимизацию карты по трем группам ограничений: основанных на данных
одометрии, на данных замыкания циклов и на сопоставлении пар точек на
подкартах.

Метод GLocal был протестирован на симуляционных средах, представля­
ющих собой сети тоннелей и лабиринты. В ходе экспериментов на вход методу
подавались данные одометрии, в которых моделировались ошибки разной ве­
личины. Даже при самой высокой степени ошибки одометрии метод успешно
завершил исследование среды, избегая столкновения с препятствиями в хо­
де навигации, при этом методы, основанные на классическом картировании и
планировании, допустили столкновения и не смогли завершить исследование
среды. Однако вычислительные затраты метода GLocal в ходе эксперимента
росли пропорционально времени, прошедшему с начала исследования. Таким
образом, исследование сред большой площади с помощью данного метода мо­

24

жет привести к нехватке вычислительных мощностей на обновление карты, и,
как следствие, — к некорректному построению карты.

Одним из наиболее известных и применимых топометрических методов
картирования является метод Hydra [34], разработанный в 2022 году лабора­
торией из Массачусетского технологического института. Метод Hydra строит
трехмерный граф сцены [35], состоящий из многоуровневой топологической кар­
ты и плотной глобальной трехмерной метрико-семантической карты сцены в
виде полигональной сетки. Каждый элемент этой сетки принадлежит объекту
определенного типа.

Топологический граф, который строится методом Hydra, состоит из пяти
слоев. Первым слоем является полигональная сетка. В вершинах этой сетки
содержатся координаты, цвет, нормаль, и тип объекта. Второй слой графа опи­
сывает объекты (статические) и агенты (динамические). Вершины второго слоя
содержат позицию, ограничивающий параллелепипед (далее – ОП) и тип объ­
екта, ребра – отношения между объектами. Третий слой графа представляет
собой граф локаций и структур. Локации содержат позицию и ОП без пре­
пятствий, структуры – позицию, ОП и семантический класс. Четвертый слой
описывает помещения. У каждого помещения хранится позиция, ОП и тип поме­
щения, ребрами являются двери между помещениями. Пятый слой описывает
здания аналогично комнатам. Дополнительно каждый слой графа соединяется
ребрами с верхним и нижним слоем. Например, каждый объект второго слоя
соединен ребрами со всеми вершинами полигональной сетки, принадлежащими
ему. Пример такого графа показан на рисунке 1.8.

Для построения многоуровневого топологического графа методом Hydra
задействуется комплекс алгоритмов, реализующих как метрические, так и то­
пологические подходы. Первый слой графа строится с помощью алгоритм
Kimera-Semantic [36]. Третий слой графа (локации и структуры) строится с
помощью алгоритма, основанного на обобщенной диаграмме Вороного [37]. По­
строение четвертого слоя графа (разбиение на комнаты) проводится с помощью
«раздувания препятствий» (т.е. отнесения к классу препятствий всех вокселей
пространства, соседствующих с вокселями препятствия) и «схлопывания две­
рей» (поиска компонент связности в графе локаций после нескольких итераций
«раздувания препятствий»).

Замыкание циклов проходит «сверху вниз» по слоям графа. Каждой вер­
шине в графе позиций робота задается иерархический дескриптор, который

25

Рисунок 1.8 — Многоуровневый топологический граф, построенный по набору
помещений методом Hydra. Источник [34].

состоит из классического дескриптора на базе «мешка слов» [38] и дескрипторов
ближайших объектов и мест. При поиске замыкания сопоставляются сначала
дескрипторы мест, затем дескрипторы объектов и визуальные дескрипторы.
Подтверждение замыкания циклов и вычисление корректирующего преобра­
зования координат происходит «снизу вверх» – сначала по графу позиций
методом RANSAC [39], затем по графу объектов алгоритмом TEASER++ [40].

Метод Hydra и его обновленная динамическая версия Khronos [41] стро­
ят многоуровневую иерархическую карту, которая дает полное представление
об окружающей среде, обеспечивая таким образом решение различных за­
дач, связанных с поиском и перемещением объектов. Однако такое подробное
представление окружающей среды требует высоких затрат вычислительных
ресурсов и значительного времени на оптимизацию. В ходе экспериментов
глобальная оптимизация графа через 20 минут работы алгоритма занимала по­
рядка 2 с, а замыкание циклов – порядка 15 с. При этом с увеличением времени
работы алгоритма увеличивались и временные затраты на обновление графа
(см. рисунок 1.9). В работе [2] было показано, что при зашумленной одомет­
рии и при больших расстояниях, пройденных роботом, метод строит несвязный
граф. Таким образом, построение многоуровневой карты сред большой площади

26

Рисунок 1.9 — График времени работы обновления карты (mid-level) и глобаль­
ной оптимизации (high-level) метода Hydra. Источник [34].

с помощью метода Hydra затруднительно и требует наличия мощных вычисли­
телей и точных источников позиционирования.

В работе [42] был опубликован еще один метод построения многоуровневой
метрико-топологической карты S-graphs+. Данный метод строит топологиче­
скую карту из четырех слоев: граф позиций робота, стен, комнат и этажей.
Плоскости стен детектируются методом RANSAC. Комнаты детектируются по
графу стен. Замыкание циклов осуществляется на двух уровнях: “мягкое” (по
комнатам) и “жесткое” (по сопоставлению сканов). За счет исключения семанти­
ческой информации и плотной полигональной сетки из графа метод S-Graphs+
показывает меньшее время обновления карты по сравнению с Hydra (порядка
200 мс против 2 с). Однако он по-прежнему подвержен накоплению ошибки
одометрии и строит несвязные графы, как показано в работе [2].

Для избавления от накопления ошибки и роста вычислительных затрат,
свойственных топометрическим методам, было разработано множество методов
картирования, использующих только топологические свойства среды (такие,
как связность локаций) без опоры на глобальные метрические координаты.
Такие методы подразделяются на две группы: не использующие метрические ко­
ординаты вообще и использующие локальные метрические координаты. Первая
группа представлена большим разнообразием подходов, основанных на нейрон­
ных сетях и обучении с подкреплением. Принадлежность робота к локации
определяется по похожести вектора признаков, извлеченного нейросетью из
текущего наблюдения робота, на вектор признаков, извлеченный из локации.
Движение между локациями как правило осуществляется с помощью нейросе­

27

ти, которая принимает на вход пару наблюдений – текущее наблюдение робота
и наблюдение в целевой локации.

Большое количество нейросетевых методов топологического картирова­
ния было разработано для решения задачи однократной навигации до цели.
Цель в таких задачах может быть задана либо изображением целевого объек­
та (Image-Goal Navigation, IGN), либо текстовой инструкцией на естественном
языке (Visual-Language Navigation, VLN). Для решения задачи навигации в
обеих постановках было разработано множество топологических методов. В ка­
честве примера для задачи IGN можно привести методы NTS [43], SPTM [44],
VGM [45], TSGM [46], для задачи VLN – методы из работ [47; 48]. Одним
из наиболее известных методов решения задачи навигации до цели, задан­
ной изображением, является TSGM, разработанный лабораторией обучения
с подкреплением Сеульского национального университета. В качестве топо­
логической карты метод строит граф локаций совместно с графом объектов.
Каждой вершине в графе локаций приписывается нейросетевой вектор призна­
ков панорамного изображения, полученного с этой локации.

Для локализации векторы признаков текущего изображения с робота и
локации сопоставляются методом TSGM по косинусной метрике. В первую оче­
редь текущее наблюдение робота сопоставляется с последней локализованной
вершиной. Если векторы признаков не близки, то выполняется поиск вершины с
близким вектором признаков по всему графу. Найденная вершина соединяется
ребром с последней локализованной вершиной. Если же такая не найдена – до­
бавляется новая вершина и соединяется ребром с последней локализованной
вершиной.

С помощью TSGM была достигнута успешность навигации более 80% на
коллекции симуляционных сцен Gibson [49], а также успешная навигация до
цели на реальном роботе. Однако в ходе экспериментов, проведенных в работе
[2], при долговременной навигации с полным объездом сцены метод TSGM со­
единял ребрами локации, удаленные и не связанные друг с другом в реальности
(см. рисунок 1.10). Его навигационная эффективность, измеренная по метрике
Success weighted by Path Length (SPL) [50], составила всего лишь 15%.

Вторая группа методов не столь многочисленна, как первая. Одним из ее
представителей является метод, опубликованный в работе [51]. Метод строит
комплексную топологическую карту здания, состоящую из графа свободного
пространства и графа помещений. Для каждого помещения строится своя мет­

28

Рисунок 1.10 — Пример некорректной работы локализации в графе локаций
(показан синим поверх метрической карты здания): ребрами соединены локации

в разных сторонах здания.

рическая карта. Для коррекции карты используется как метрическое, так и
топологическое замыкание циклов с помощью поиска изоморфизма графов.
Проведенные эксперименты показали трехкратное сокращение потребляемой
памяти в помещениях большой площади по сравнению с глобальной метри­
ческой картой, а также сокращение времени планирования пути более чем в
100 раз.

Другим известным топологическим методом картирования, использую­
щим локальную метрическую информацию, является TLF [52]. Метод строит
граф локаций, проводит глобальную локализацию в графе и привязку к те­
кущей вершине с обновлением относительной позиции по одометрии. Каждой
локации приписывается своя локальная метрическая подкарта. На ребрах запи­
сываются относительные позиции, а также опционально проходимость ребра.
В методе TLF имеется механизм учета изменений среды (время суток, погода,
динамические объекты и т.д.). Этот механизм добавляет новые вершины, если
робот из-за изменений среды не может локализоваться, а затем переключается
обратно на локализацию при ее восстановлении. При навигации предпочтитель­
но используются вершины, добавленные в похожее время суток на текущее.

Эксперименты проводились на улице на колесном роботе, навигация
осуществлялась по стереокамере. В ходе экспериментов один и тот же кило­
метровый маршрут был пройден 21 раз в разное время суток при наличии
динамических объектов. Среднее время локализации на всех прогонах соста­

29

Таблица 1 — Свойства рассмотренных методов картирования

Методы Онлайн
Выч.
эфф.

Работа на
большой
площади

Работа без
накопления

ошибки

Работа
внутри и вне
помещений

Открытая
реализация

Метрические
RTAB-Map [16] ✓ ✗ ✗ ✗ ✓ ✓

Voxblox [21] ✓ ✗ ✗ ✗ ✓ ✓

Топологические
офлайн

TopoMap [25] ✗ ✓ ✓ ✓ ✗ ✗

City-scale [26] ✗ ✓ ✓ ✓ ✓ ✗

Hierarchical [27] ✗ ✓ ✓ ✓ ✗ ✗

LTVN [31] ✗ ✓ ✗ ✓ ✗ ✗

Топометрические
GLocal [32] ✓ ✗ ✗ ✓ ✓ ✓

Hydra [34] ✓ ✗ ✗ ✗ ✗ ✓

S-graphs+ [42] ✓ ✗ ✗ ✗ ✗ ✓

Топологические
без координат

SPTM [44] ✓ ✓ ✗ ✓ ✗ ✓

VGM [45] ✓ ✓ ✗ ✓ ✗ ✓

TSGM [46] ✓ ✓ ✗ ✓ ✗ ✓

ETPNav [48] ✓ ✓ ✗ ✓ ✗ ✓

CMTP [47] ✓ ✓ ✗ ✓ ✗ ✗

Топологические
с локальными
координатами

Gomez et al. [51] ✓ ✓ ✓ ✓ ✗ ✗

TLF [52] ✓ ✓ ✓ ✓ ✗ ✗

вило порядка 100 мс. Средняя ошибка локализации составила порядка 0.5 м
и 4 градуса. Таким образом, метод TLF обеспечивает надежную долговремен­
ную навигацию на открытых пространствах, однако он не предназначен для
работы внутри помещений и не может использовать лидарные данные для бо­
лее точного позиционирования. Метод не имеет открытой реализации в виде
комплекса программ, что затрудняет его применение на практике и валидацию
описанных авторами результатов.

Обобщая приведенные выше описания методов и алгоритмов картиро­
вания, можно выделить ряд свойств, важных для использования методов в
навигации робота и присущих тем или иным методам или классам методов:

1. Построение карты в реальном времени (онлайн);
2. Вычислительная эффективность – низкое потребление памяти и малое

время обновления карты по наблюдениям с робота в течение всего пе­
риода работы алгоритма;

3. Применимость метода для картирования сред большой площади (рабо­
та на большой площади);

4. Устранение накопления ошибки позиционирования в ходе работы алго­
ритма (работа без накопления ошибки);

5. Применимость метода для картирования помещений и открытых сред;

30

6. Наличие в открытом доступе реализации метода в виде комплекса про­
граммных средств.

Характеристика рассмотренных методов с использованием указанных
свойств представлена в таблице 1. Ни один из рассмотренных методов не
обладает всеми перечисленными свойствами и не может обеспечить точное кар­
тирование закрытых и открытых сред большой площади в реальном времени.
Топологический метод TLF, использующий локальные метрические координа­
ты, обладает вычислительной эффективностью и применим для картирования
сред большой площади в реальном времени, однако не предназначен для
работы в помещениях и не имеет открытой реализации. В данной работе раз­
рабатывается новый вычислительно эффективный алгоритм топологического
картирования с использованием локальных метрических координат, пригодный
для картирования больших площадей как внутри, так и вне помещений.

1.3 Методы и алгоритмы локализации

Современные методы визуальной и лидарной одометрии позволяют отсле­
живать местоположения робота с высокой относительной точностью (порядка
0.5%). На траекториях небольшой длины (например, в пределах коридора
здания) такие ошибки будут незначительны, однако на расстоянии в несколь­
ко километров ошибка может уже достигать десятков метров, что приведет
к невозможности локализации и планирования маршрутов. Таким образом,
возникает необходимость в корректировании ошибки путем периодической
глобальной привязки к внешним ориентирам, положение которых на карте из­
вестно. На улице накопившуюся ошибку можно корректировать до нескольких
метров путем позиционирования по ГНСС, однако во многих задачах (напри­
мер, движение беспилотного автомобиля по городу) такой точности бывает
недостаточно. Необходимость привязки к ориентирам возникает внутри зданий
и в подземных средах, где точное позиционирование по ГНСС недоступно и тре­
буется высокая точность определения местоположения. Так возникает задача
глобальной локализации.

Современные методы локализации по карте делятся на три большие
группы. Первая группа методов сопоставляет текущее наблюдение с робота

31

(представляемое в виде изображения или облака точек) сразу со всей кар­
той. Такие методы могут использоваться для локализации в метрической карте
или в некоторой подкарте топологической карты. Вторая группа методов, на­
зываемая методами распознавания места (в англоязычной литературе – Place
Recognition), использует для локализации базу изображений и/или облаков
точек. Локализация выполняется путем поиска в базе элемента, наиболее по­
хожего по некоторым признакам на текущее наблюдение с робота. В качестве
меры похожести может выступать евклидово или косинусное расстояние меж­
ду дескрипторами (векторами признаков, кодирующими наблюдения). Такой
подход может применяться для локализации в топологической карте, представ­
ленной в виде графа локаций – по графу создается база, в которую добавляются
наблюдения с каждой локации, и текущая локация определяется путем поиска
наиболее похожего наблюдения из базы. Третья группа методов сочетает в себе
преимущества первых двух групп. Представленные в ней методы сначала ищут
примерное положение (локацию) в глобальной карте с помощью технологий рас­
познавания места, а затем сопоставляют текущее наблюдение с робота с картой
окрестности найденного примерного положения, находя таким образом точное
положение в карте. Так достигается точное определение местоположения робо­
та в топологических картах и в метрических картах большого размера. Все три
группы методов подробно рассмотрены ниже.

Методы сопоставления текущего наблюдения с глобальной картой
Методы автоматической глобальной локализации в карте начали развиваться
в 1990-х годах. Преимущественно это были метрические методы, в которых
карта представлялась в виде облака точек. Прорывным методом глобальной
локализации на карте по лидарным данным стал метод локализации Монте­
Карло [53], разработанный в 1999 году исследователями из Питтсбурга. В этом
методе глобальная локализация проводится путем сопоставления облака точек
с лидара и глобального облака точек, задающего карту. Для сопоставления
вместо теоретических вероятностных подходов используется семплирование ме­
тодом Монте-Карло. С помощью такого подхода робот успешно локализовался
внутри музея на траектории длиной 2 км без накопления ошибки.

Одним из наиболее распространенных современных методов глобальной
локализации по карте является IRIS [54]. Метод использует геометрическое
сопоставление особых точек на данных с камеры робота и точек глобальной

32

карты. Сопоставление производится вероятностными методами и методами оп­
тимизации. В среде масштаба порядка сотен метров с точной картой такой
подход позволяет достичь точности локализации порядка 0.5 м при использо­
вании только данных с камеры.

В работе [55] облака точек с лидара проецируются на плоскость в двуслой­
ную локальную карту. Ячейки первого слоя кодируют бордюры, детектируемые
авторским алгоритмом. Ячейки второго слоя кодируют все точки облака,
находящиеся над плоскостью дороги. На этапе локализации локальная карта со­
поставляется с глобальной двуслойной картой с помощью метода Монте-Карло
с байесовской фильтрацией. Такой подход позволил получить точность лока­
лизации порядка 8 см на расстоянии в 1.3 км при локализации движущегося
по дороге автомобиля. В работе [56] представлен алгоритм глобальной локали­
зации автомобиля на карте с помощью метода Монте-Карло и картирования
вертикальных структур, таких как фонарные столбы и деревья. Эксперимен­
ты, проведенные на маршруте длиной в 10 км, подтвердили высокую точность
локализации с помощью представленного алгоритма – средняя ошибка соста­
вила 10 см и 0.18∘.

Методы распознавания места Помимо методов локализации при помощи
сопоставления текущего наблюдения с глобальной метрической картой, в 2000-х
годах появились методы локализации с помощью поиска в базе изображений
и/или облаков точек элемента, наиболее похожего на текущее наблюдение с
робота. Такие методы в академической литературе называются методами рас­
познавания места (англ. Place Recognition). Первые методы распознавания мест
представляют изображение в виде «мешка слов» (англ. Bag of Words) – каждое
изображение с камеры или облако точек представляется в виде набора де­
скрипторов. Результатом локализации является позиция изображения из базы,
наиболее похожего на текущее изображение с робота с точки зрения близости
дескрипторов. Одним из первых методов, использующих эту концепцию, стал
FAB-MAP [57]. В нем из изображения извлекаются особые точки, по каждой
из которых вычисляется дескриптор алгоритмом SURF [58]. По полученному
набору дескрипторов ищется наиболее похожее изображение в базе для поиска
уже посещенных роботом мест и коррекции карты (замыкания циклов). Од­
ним из наиболее известных методов, использующих концепцию «мешка слов»,
стал метод DBoW2 [38], в котором изображения представляются в виде набора

33

бинарных дескрипторов. Метод был разработан в 2012 году исследователями
из Сарагосы и используется для замыкания циклов в современных алгоритмах
ОКЛ, таких как ORB-SLAM3 [10].

Помимо методов, основанных на дескрипторах, извлекаемых классически­
ми методами, в последнее время было разработано множество нейросетевых
методов распознавания места. Одним из первых таких методов является
NetVLAD [59]. По каждому изображению с камеры генерируется векторное
представление (дескриптор) с помощью сверточной нейронной сети с особым
слоем – вектором локально агрегированных дескрипторов. Локализация про­
исходит путем сопоставления дескриптора текущего изображения с робота и
дескрипторов изображений из базы. Такой подход позволил достичь точности
распознавания места порядка 70% и полноты порядка 80-85% на наборе дан­
ных Pitts250k-test [60]. При этом использование слоя VLAD и тройной функции
потерь (англ. triplet loss) позволило достичь успешного распознавания мест, ко­
торые в базе изображений были сняты с другого ракурса и/или в другое время
суток, чем текущее наблюдение с робота.

После NetVLAD появилось множество других методов распознавания ме­
ста по изображению. Так, в 2022 году вышел метод CosPlace [61], в котором
задача распознавания места представляется как задача классификации, и клас­
сы изображений разделены географически. Такой подход позволил значительно
уменьшить размерность дескриптора при сохранении точности распознавания
места, что привело к значительной экономии памяти при использовании на
больших базах изображений. В 2023 году вышел метод распознавания места
MixVPR [62], основанный на трансформерной архитектуре нейронной сети. Ис­
пользование трансформера позволило достичь большей устойчивости к смене
ракурса, времени суток и погодных условий, чем у методов, основанных на свер­
точных нейронных сетях (см. рисунок 1.11). Полнота распознавания места на
наборе данных Pitts250k-test составила 88%.

Изображения содержат двумерную информацию об изображенной местно­
сти. Снимки одного и того же места значительно различаются в разное время
суток, при съемке с разных ракурсов и при разных погодных условиях. Все
это создает дополнительные сложности при разработке методов распознавания
места. Альтернативным способом представления участка местности является
облако точек, которое может быть снято с лидара робота – оно содержит более
полную трехмерную информацию о сцене и менее подвержено изменениям при

34

Рисунок 1.11 — Примеры успешного и неудачного распознавания места различ­
ными нейросетевыми методами. Источник [62].

смене времени суток и погодных условий. В настоящее время разработано мно­
жество методов нейросетевого распознавания места по облакам точек. Одним
из первых таких методов является PointNetVLAD [63], основанный на нейрон­
ной сети PointNet [64] и векторе локально агрегированных дескрипторов VLAD.
На вход нейросети подается облако точек в исходном виде, на выходе из обла­
ка извлекается дескриптор размерности от 128 до 512. Такой подход позволил
достичь полноты распознавания места 80-90% на различных наборах данных.

В методе MinkLoc3d [65] представлен другой подход к распознаванию
места по облакам точек, основанный на пространственной дискретизации об­
лака и сверточной нейросетевой архитектуре. Облако точек представляется в
виде трехмерной сетки определенной размерности, в каждой ячейке которой
содержится информация о присутствии или отсутствии точек облака. Полу­

35

ченная сетка подается на вход трехмерной сверточной нейросети, которая
генерирует дескриптор размерности 256. Такой подход позволил достичь пол­
ноты распознавания места 88-98% при сохранении скорости, достаточной для
работы в реальном времени (десятки миллисекунд на обычном графическом
процессоре). Метод SVT-Net [66] позволил достичь еще более высокой полноты
распознавания места (90-98%) при сохранении высокой скорости работы за счет
использования трансформерной архитектуры и механизма внимания.

Методы распознавания места по облакам точек в среднем позволяют до­
биться более высокого качества распознавания, однако в некоторых ситуациях
могут работать хуже, чем визуальные методы. Так, облака точек имеют ограни­
ченный размер (как правило, десятки метров), в то время как на изображения
попадают ориентиры, расположенные за сотни метров или за километры от точ­
ки съемки. Качество распознавания места по лидарным облакам точек может
понижаться во время дождя или снега из-за физических особенностей лида­
ров. Так, по данным из работы [65], точность распознавания места на наборе
данных RobotCar Seasons [67] составила 66% на сценах, записанных во время
дождя, и 87% на сценах, записанных в солнечную погоду. Для решения по­
добных проблем могут применяться мультимодальные методы распознавания
места, которые принимают на вход как облако точек с лидара, так и изобра­
жения с камер.

В работе [68] представлен мультимодальный метод, в котором облако
точек обрабатывается нейросетевой архитектурой из метода PointNetVLAD,
а изображение – общеизвестной сверточной нейронной сетью ResNet-50 [69].
Векторы признаков, предсказанные по облаку точек и по изображению, об­
рабатываются еще одним полносвязным слоем для генерации совместного
дескриптора места. Такой подход позволил достичь полноты в 88-98% на на­
боре данных KITTI [70], содержащем облака точек и изображения, записанные
при проезде автомобиля по городу. Такое качество было достигнуто за счет вза­
имного дополнения признаков, извлекаемых из облаков точек и изображений
(см. рисунок 1.12).

В работе [71] представлено мультимодальное расширение метода
MinkLoc3D, названное MinkLoc++. Архитектура нейросети для распознава­
ния места состоит из двух веток – одна генерирует дескриптор облака точек,
вторая генерирует дескриптор изображения. Схема архитектуры представле­
на на рисунке 1.13. Итоговый дескриптор места получается конкатенацией

36

Рисунок 1.12 — Взаимное дополнение информации, содержащейся в облаках
точек и в изображениях. Источник [68].

Рисунок 1.13 — Взаимное дополнение информации, содержащейся в облаках
точек и в изображениях. Источник [71].

дескрипторов облака точек и изображения. Для обучения нейросети использо­
валась тройная функция потерь – комбинация функции потерь на дескрипторах
облака точек и изображения по отдельности, а также функции потерь на сов­
местном дескрипторе. Такой подход позволил достичь полноты распознавания
места 97% на наборе данных KITTI по сравнению с 94% при использова­
нии только облака точек. В работе [72] представлено расширение метода
MinkLoc++, позволяющее использовать вместо одного изображения пару изоб­
ражений, снятых камерами робота в противоположных направлениях, а также
дополнительно использовать текстовую информацию и данные семантической
сегментации. С помощью такого подхода удалось достичь еще более высокой
полноты распознавания места, равной 98%.

Именно методы, основанные на распознавании мест, наиболее примени­
мы для локализации в топологической карте, представленной в виде графа
локаций, поскольку они позволяют быстро определить локацию, в которой на­

37

ходится робот. Однако ложноположительные результаты распознавания могут
привести к соединению внешне похожих, но удаленных друг от друга лока­
ций при построении графа, что может привести к сбоям навигации. В качестве
примера можно привести некорректную работу метода топологического кар­
тирования TSGM [46], описанную в работе [2]. За счет ложноположительных
результатов нейросетевого распознавания мест соединялись ребрами локации,
расположенные в двух различных, но внешне похожих друг на друга коридорах
здания, как показано на рисунке 1.10. Таким образом, для корректной лока­
лизации в графе необходима дополнительная фильтрация распознанных мест,
которая может быть выполнена с помощью сопоставления сканов в комбиниро­
ванных методах глобальной локализации.

Комбинированные методы глобальной локализации определяют ме­
стоположение робота в глобальной карте в два этапа. Вначале ищется прибли­
зительное положение робота в карте с помощью методов распознавания места,
далее в его окрестности ищется точное положение робота в карте путем сопо­
ставления текущего наблюдения с робота с соответствующим участком карты
или сканом. Таким образом, за счет сужения зоны для сопоставления текуще­
го наблюдения с робота можно найти точное положение робота даже в картах
большой размерности с низкими вычислительными затратами. К примеру, если
карта хранится в виде набора локаций, и каждая локация описывается сканом
с лидара робота, то задача сопоставления наблюдения с картой сводится к за­
даче сопоставления двух сканов — текущего скана робота и скана найденной
локации.

Одним из наиболее известных и применимых методов сопоставления ли­
дарных сканов является итеративный метод ближайшей точки (англ. ICP) [73].
Метод сопоставляет два облака точек последовательно, начиная с некоторого
начального приближения. На каждом шаге к каждой точке первого облака ста­
вится в соответствие ближайшая к ней точка второго облака. Далее методом
наименьших квадратов ищется преобразование координат, минимизирующее
суммарное квадратичное отклонение между парами сопоставленных точек.
Найденное преобразование применяется к первому облаку, и процесс повторя­
ется. Для ускорения метода вместо всех точек облака могут браться только
особые точки, вычисленные, например, методами из работ [74], [75].

38

Для достижения хорошего качества работы метода ICP необходимо задать
начальное приближение преобразования координат, сопоставляющего два ска­
на. Для поиска такого приближения может использоваться метод RANSAC [39]
(англ. RANdom SAmple Consensus). Это итеративный метод для поиска наилуч­
ших параметров модели. В случае с поиском начального сопоставления для двух
облаков точек, сначала по каждому облаку вычисляются особые точки, затем
между особыми точками строятся соответствия. На каждой итерации выбира­
ется случайная подвыборка соответствий, и по ней вычисляется оптимальное
преобразование координат и оценивается его качество. Соответствия, не подхо­
дящие под найденное преобразование, помечаются как выбросы и удаляются. В
качестве ответа выбирается преобразование с наилучшим качеством сопостав­
ления среди всех итераций. Так можно решать задачу сопоставления сканов,
однако для успешного поиска сопоставлений облака точек должны иметь зна­
чительную долю перекрытия, как показано в работе [4]. При локализации в
топологической карте значение перекрытия облаков точек при попытке сопо­
ставления часто бывает в диапазоне от 25 до 50%, а при таком перекрытии
значение полноты сопоставления сканов составило всего 53%. Среднее время
работы методов RANSAC + ICP, измеренное в работе [4], составило 360 мс.

Для повышения быстродействия сопоставления сканов, а также для
стабильной работы в условиях низкой доли перекрытия сканов применяют
алгоритмы, основанные на двумерных проекциях облаков точек. Так, в алго­
ритме BVMatch [76] используется проекция облака точек на горизонтальную
плоскость в виде карты плотностей участков плоскости. По карте плотно­
стей с помощью нейронной сети вычисляется локальный дескриптор, далее
по локальным дескрипторам вычисляется преобразование координат между
двумя облаками точек с помощью метода RANSAC. Алгоритм BVMatch был
объединен с методом распознавания места в состав комбинированного метода
глобальной локализации BEVPlace++ [77]. С помощью комбинированного под­
хода авторы метода BEVPlace++ достигли точности локализации порядка 40 см
на наборах данных KITTI [70] и NCLT [78]. Однако результат был измерен авто­
рами только на точках траектории с корректно распознанным местом – в случае
некорректного распознавания места метрическая ошибка не вычислялась.

В методе BoxGraph [79] для распознавания места применяется семанти­
ческий граф сцены, а локальное уточнение позиции проводится с помощью
сингулярного разложения и метода RANSAC. Такой комбинированный подход

39

Таблица 2 — Свойства рассмотренных методов локализации

Методы Скорость Точность
Компактность

карты

Работа на
большой
площади

Открытая
реализация

Сопоставление
наблюдения

с картой

IRIS [54] ✓ ✓ ✗ ✓ ✓

Wang et al. [55] ✗ ✓ ✗ ✓ ✗

Li et al. [56] ✗ ✓ ✗ ✓ ✗

Распознавание
места

DBoW2 [38] ✓ ✗ ✓ ✓ ✓

NetVLAD [59] ✓ ✗ ✓ ✓ ✓

CosPlace [61] ✓ ✗ ✓ ✓ ✓

MixVPR [62] ✓ ✗ ✓ ✓ ✓

PointNetVLAD [63] ✗ ✗ ✓ ✓ ✓

MinkLoc3D [65] ✓ ✗ ✓ ✓ ✓

SVT-Net [66] ✓ ✗ ✓ ✓ ✓

MinkLoc++ [71] ✓ ✗ ✓ ✓ ✓

Комбинированные

Расп. места + ICP [73] ✗ ✗ ✓ ✓ ✓

Расп. места +
RANSAC [74] + ICP

✗ ✓ ✓ ✓ ✓

BEVPlace++ [77] ✗ ✓ ✓ ✓ ✓

BoxGraph [79] ✗ ✓ ✓ ✓ ✓

GLFP [80] ✓ ✓ ✓ ✗ ✗

позволил достичь практически 100% полноты и точности 88% на наборе данных
KITTI, наряду с ошибкой локализации порядка 8 см. При этом максимальная
ошибка локализации не превысила 50 см. Однако метод BoxGraph требует ре­
шения задачи семантической сегментации облака точек, что, в свою очередь,
требует высоких затрат вычислительных ресурсов. Данные о быстродействии
метода авторами не приведены.

Для устранения ошибок локализации, возникающих вследствие лож­
ноположительных результатов распознавания места, может использоваться
фильтрация результатов на основе информации о локальном перемещении робо­
та (одометрии). Например, в методе GLFP [80] данные одометрии используются
для определения позиции робота в помещении между выполнениями итераций
глобальной локализации. Данный метод принимает на вход вместо плотной гло­
бальной карты план помещения и при этом показывает точность локализации,
сопоставимую с методами локализации по глобальной лидарной карте. Однако
метод не предназначен для работы в открытых пространствах и помещениях
большой площади, а также не имеет открытой реализации в виде комплекса
программных средств.

40

Характеристика рассмотренных методов, алгоритмов и моделей локали­
зации представлена в таблице 2. Приведены четыре свойства, важные для
эффективного использования методов локализации при навигации роботов:

1. Скорость, достаточная для работы метода в реальном времени (100-200
мс на обработку одного наблюдения с робота);

2. Точность локализации, достаточная для корректного позиционирова­
ния робота и корректного планирования пути (порядка 10 см внутри
помещений и 0.5 м в открытых средах);

3. Малый объем памяти, занимаемой картой, по которой проводится ло­
кализация (компактность карты);

4. Применимость метода для локализации в средах большой площади;
5. Наличие открытой реализации метода в виде комплекса программ.
Методы сопоставления наблюдения с робота с глобальной метрической

картой (в частности, IRIS [54]) могут обладать высокой скоростью и точно­
стью работы, однако требуют наличия плотной метрической карты, которая
при работе в средах большой площади занимает значительные объемы памяти.
Методы распознавания места используют для локализации базу дескрипторов
небольшой размерности, извлеченных из наблюдений с робота, однако не дают
требуемой точности, поскольку выдают в качестве результата позицию бли­
жайшего дескриптора и подвержены ошибкам распознавания. Для решения
проблемы низкой точности применяется комбинация методов распознавания
места и сопоставления наблюдений (сканов). Однако большинство комбиниро­
ванных методов не обладает скоростью, достаточной для эффективной работы
в реальном времени. В данной работе разрабатывается вычислительно эф­
фективный комбинированный метод локализации, обладающий достаточной
скоростью для работы в реальном времени и приемлемой точностью локали­
зации.

1.4 Выводы по главе

Построение карты местности и автономная локализация в построенной
карте являются одними из ключевых задач для обеспечения автономной на­
вигации робототехнической системы в неизвестной среде. Для восприятия и

41

картирования окружающего пространства существуют различные типы борто­
вых датчиков, наиболее распространёнными из которых являются лазерные
сканеры (лидары) и камеры. Помимо наблюдений с лидаров и камер, для кар­
тирования и локализации используется одометрия – оценка перемещения робота
в пространстве по инерциальным или колесным датчикам, либо по датчикам
восприятия. Задача картирования заключается в создании модели местности
(карты) по наблюдениям с датчиков и данным одометрии. Задача локализа­
ции заключается в определении положения робота по наблюдениям с датчиков,
данным одометрии и построенной карте.

Алгоритмы картирования подразделяются на метрические (карта пред­
ставляется в виде геометрических структур, например, сеток) и топологические
(карта представляется в виде графа локаций). Также распространены то­
пометрические алгоритмы, строящие метрическую и топологическую карту
совместно. Основными недостатками метрических и топометрических алгорит­
мов являются высокие затраты вычислительных ресурсов и памяти, а также
накопление ошибки позиционирования и долгое планирование пути по постро­
енной карте. Топологические алгоритмы позволяют устранить эти недостатки,
однако на настоящий момент универсального и надежного алгоритма топо­
логического картирования, работающего на лидарных данных на больших
расстояниях, в литературе не представлено.

Алгоритмы локализации в карте подразделяются на три группы: сопо­
ставление текущего наблюдения с единой глобальной картой, поиск подходящей
локации в карте с помощью методов распознавания места, а также комбинацию
первых двух подходов – нахождение точного положения робота в карте путем
последовательного распознавания места и сопоставления текущего наблюдения
с найденной локацией. Использование первого подхода на картах большого раз­
мера приводит к значительным временным затратам. Методы распознавания
места позволяют быстро находить текущую локацию в графах большого раз­
мера, однако выдают ложноположительные результаты, приводящие к сбоям
локализации. Комбинированные методы позволяют решить данную проблему,
однако для точной локализации необходима комплексная фильтрация ошибок,
основанная на сопоставлении сканов и оценке перемещения робота.

На основании вышеизложенного можно сделать вывод о том, что на на­
стоящий момент не разработаны универсальные алгоритмы картирования и
алгоритма локализации, подходящие для работы в открытых и закрытых сре­

42

дах большой площади, вычислительно эффективные и имеющие открытую
реализацию. При этом наиболее перспективными для создания таких алго­
ритмов является топологический подход к картированию с использованием
локальных метрических координат, а также комбинированный подход к ло­
кализации, сочетающий в себе распознавание места и сопоставление текущего
наблюдения с окрестностью распознанного места. Проблемы существующих ме­
тодов и алгоритмов и отсутствие универсального алгоритма ОКЛ определяют
задачи диссертационной работы:

1. Провести анализ существующих методов топологического картирова­
ния и локализации.

2. Построить математическую модель задачи топологического картирова­
ния и локализации и оценки качества ее решения.

3. Разработать вычислительно эффективный алгоритм топологического
картирования и локализации, обладающий высоким качеством локали­
зации и построенной карты.

4. Создать программный комплекс топологического картирования и ло­
кализации, провести экспериментальные исследования разработанных
алгоритмов с использованием предложенной математической модели в
симуляционных средах и на реальных робототехнических системах.

43

Глава 2. Постановка задачи топологического картирования и
локализации

Оценка качества алгоритмов ОКЛ является важной задачей, решение
которой необходимо для сравнения алгоритмов между собой и выбора наибо­
лее применимого алгоритма для решения задачи ОКЛ в той или иной среде.
Для оценки качества метрических методов ОКЛ, как правило, используется
абсолютная и относительная ошибка траектории, вычисляемая по расхожде­
нию между истинной траекторией робота и результатами локализации. Оценка
качества топологических методов ОКЛ путем сравнения их результатов с
эталонными данными затруднительна, т.к. топологические карты часто не со­
держат глобальных метрических координат.

В данной главе представлен подход к оценке качества картирования и
локализации, учитывающий особенности топологических карт. Описана мате­
матическая модель топологического картирования (построения графа локаций)
и локализации в топологической карте по облакам точек и одометрии, полу­
ченным с наблюдений с бортовых датчиков робота. Предложена адаптация
стандартных критериев качества локализации (абсолютная и относительная
ошибка траектории) для топологических карт, учитывающая особенности ло­
кализации в графе локаций.

Для оценки качества графов локаций предложен способ, основанный на
вычислении эффективности путей, проложенных с помощью оцениваемого гра­
фа между различными парами точек. Предложенный способ подходит для
оценки качества как топологических, так и метрических карт (в случае мет­
рической карты графом может являться сетка занятости, в которой соседние
свободные ячейки соединены ребрами). Предложенный критерий отражает эф­
фективность применения графа локацй для планирования путей при навигации
мобильного робота. Помимо путевой эффективности, предложен ряд других
параметров графа локаций, влияющих напрямую на его применимость для на­
вигации мобильного робота: количество компонент связности, доля покрытия
среды локациями графа, корректность ребер и полнота графа.

44

2.1 Математическая модель окружающей среды и наблюдений

Предполагается, что робот оснащен программно-аппаратным источником
одометрии (инерциальной, колесной, визуальной, лидарной или комплексиро­
ванной) и трехмерным панорамным датчиком восприятия (панорамная камера
глубины или лидар). Таким образом, наблюдения с датчиков робота преобра­
зуются в облако точек и одометрию, являющиеся входными данными в задаче
картирования и локализации. В процессе картирования робот движется по неко­
торой предварительно заданной дискретной траектории и получает наблюдения
в каждой ее точке.

В рамках данной модели робот движется в трехмерном евклидовом про­
странстве. Используются две системы координат: глобальная, связанная с
окружающей средой, и связанная с роботом. В качестве начала координат во
второй системе на роботе выбирается некоторая точка, например, точка фокуса
его камеры. В качестве базиса системы координат робота на нем выбирают­
ся три взаимно перпендикулярных направления (как правило, одним из таких
направлений является главная оптическая ось камеры робота или ось его веду­
щих колес). Положение и ориентация робота в глобальной системе координат
определяются по выбранной точке на роботе и выбранному на нем базису. По
положению и ориентации задается преобразование координат из глобальной си­
стемы в систему координат робота. Формальные определения даны ниже.

Определение 2.1. Окружающая среда 𝑊 ⊂ R3 представляется в виде
ограниченной замкнутой области трехмерного евклидова пространства с вы­
бранной на нем правой прямоугольной декартовой системой координат. Она
делится на замкнутое связное множество объектов 𝑊𝑜𝑏𝑗 и свободное про­
странство 𝑊𝑓𝑟𝑒𝑒:

𝑊 = 𝑊𝑓𝑟𝑒𝑒 ∪𝑊𝑜𝑏𝑗(𝑊𝑓𝑟𝑒𝑒 ∩𝑊𝑜𝑏𝑗 = ∅). (2.1)

Для навигации наземных роботов в среде с горизонтальной поверхно­
стью пола вместо трехмерной окружающей среды может рассматриваться срез
окружающей среды 𝑊𝑧1:𝑧2, охватывающий высоты от 𝑧1 (максимальная высота
барьера, преодолимого роботом, всё, что находится выше, является для робота

45

препятствием) до 𝑧2 (высота верхней части робота). Тогда окружающая сре­
да будет плоской:

𝑊𝑧1:𝑧2 = 𝑊 𝑧1:𝑧2
𝑓𝑟𝑒𝑒 ∩𝑊 𝑧1:𝑧2

𝑜𝑏𝑗 ;

𝑊 𝑧1:𝑧2
𝑜𝑏𝑗 = (𝑥, 𝑦) ∈ R2 : ∃𝑧 ∈ [𝑧1; 𝑧2] 𝑠.𝑡. (𝑥, 𝑦, 𝑧) ∈ 𝑊𝑜𝑏𝑗;

𝑊 𝑧1:𝑧2
𝑓𝑟𝑒𝑒 = (𝑥, 𝑦) ∈ R2 : ∀𝑧 ∈ [𝑧1; 𝑧2] (𝑥, 𝑦, 𝑧) ∈ 𝑊𝑓𝑟𝑒𝑒.

(2.2)

Определение 2.2. Позицией робота p = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) ∈ R3 назовем коорди­
наты выбранной на нем точки.

Определение 2.3. Ориентацией робота 𝑄 ∈ 𝑆𝑂(3) назовем вращение,
переводящее базис глобальной системы координат в базис системы координат
робота. Здесь и далее 𝑆𝑂(3) обозначает матричную группу вращений вокруг
начала координат в пространстве R3.

Определение 2.4. Позой робота 𝑠 = (p, 𝑄) назовем кортеж, состоящий из
его позиции и ориентации.

Траекторию движения робота обозначим как 𝑃 = (𝑠0, 𝑠1, . . . , 𝑠𝑡𝑚𝑎𝑥
). Тра­

ектория состоит из поз робота 𝑠𝑡 = (pt, 𝑄𝑡) в каждый момент 𝑡:

𝑠𝑡 = (pt, 𝑄𝑡); pt = (𝑝𝑥𝑡 , 𝑝
𝑦
𝑡 , 𝑝

𝑧
𝑡) ∈ R3; 𝑄𝑡 ∈ 𝑆𝑂(3). (2.3)

Каждой позе 𝑠𝑡 соответствует аффинное преобразование 𝑆𝑡, переводящее
из системы координат робота в глобальную систему координат:

𝑆𝑡 =

⎛⎜⎜⎜⎜⎝
𝑝𝑥𝑡

𝑄𝑡 𝑝𝑦𝑡
𝑝𝑧𝑡

0 0 0 1

⎞⎟⎟⎟⎟⎠ ∈ 𝑆𝐸(3), (2.4)

здесь и далее 𝑆𝐸(3) обозначает матричную группу однородных преобразований
в трёхмерном пространстве, состоящих из перевода и вращения для правой
декартовой системы координат.

Применение такого преобразования к трехмерной точке p = (𝑥, 𝑦, 𝑧)𝑇 ∈
R3 выглядит следующим образом:

𝑆𝑡 · p =

⎛⎜⎜⎜⎜⎝
𝑝𝑥𝑡

𝑄𝑡 𝑝𝑦𝑡
𝑝𝑧𝑡

0 0 0 1

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
𝑥

𝑦

𝑧

1

⎞⎟⎟⎟⎟⎠ . (2.5)

46

Рисунок 2.1 — Пример получения входных данных для задачи ОКЛ с робота: (а)
траектория и наблюдение с датчика восприятия; (б) облако точек и одометрия.

Последовательное применение (композиция) преобразований и обратная ком­
позиция (разность) преобразований обозначаются символами ⊕ и ⊖ соответ­
ственно.

Наблюдение окружающей среды из позы 𝑠𝑡 состоит из показаний датчика
восприятия 𝐷𝑡 и показаний датчиков, используемых для оценки перемещения
робота (такими датчиками могут быть энкодеры колес, инерциальные датчики,
камеры и лидары). По наблюдениям вычисляются облако точек и одометрия,
используемые в качестве входа для задачи ОКЛ. Пример получения такого
облака точек показан на рисунке 2.1. 𝐷𝑡 представляет собой список расстоя­
ний до объектов среды, измеренных лидаром или RGB-D камерой с некоторой
погрешностью:

𝐷𝑡 = (𝐷1
𝑡 , . . . , 𝐷

𝑛
𝑡);

𝐴 = {α : 𝑆𝑡 · αri ∈ 𝑊𝑜𝑏𝑗;α < α𝑚𝑎𝑥};

𝐷𝑖
𝑡 =

⎧⎨⎩min𝐴+ ε𝑖𝑡, 𝐴 ̸= ∅

0, 𝐴 = ∅
;

ε𝑖𝑡 ∼ 𝒩 (0,σ2).

(2.6)

Вектор ri представляет собой вектор направления 𝑖-го луча лидара или 𝑖-го пик­
селя RGB-D камеры в системе координат робота, имеющий единичную длину.
Значение α𝑚𝑎𝑥 является предельным расстоянием измерения датчика восприя­
тия. Множество 𝐴 включает в себя расстояния, на которых луч, направленный

47

вдоль вектора ri, пересек точки объектов среды – измерением датчика является
минимальное такое расстояние. Слагаемое ε𝑖𝑡 представляет собой погрешность
измерения датчика, распределенную нормально с нулевым средним.

Определение 2.5. Облако точек с робота 𝐶𝑡 ⊂ R3 – множество точек
объектов окружающей среды в системе координат робота, полученное по пока­
заниям датчика восприятия 𝐷𝑡:

𝐶𝑡 = {𝐷𝑖
𝑡ri, 𝐷

𝑖
𝑡 > 0}𝑛𝑖=1. (2.7)

Определение 2.6. Одометрия представляет собой оценку перемещения ро­
бота от шага 𝑡 − 1 к шагу 𝑡, вычисленную алгоритмически по наблюдениям
робота на шагах 𝑡 − 1 и 𝑡 с некоторой ошибкой:

̂︂∆𝑆𝑡 = 𝑆𝑡 ⊖ 𝑆𝑡−1 ⊕ Σ𝑡 ∈ 𝑆𝐸(3), (2.8)

где Σ𝑡 – ошибка одометрии на шаге 𝑡, представленная в виде комбинации сдви­
га на нормально распределенный случайный вектор и поворота на нормально
распределенный случайный угол вокруг оси 𝑂𝑧:

Σ𝑡 =

⎛⎜⎜⎜⎜⎝
cos ε𝑟𝑡 sin ε𝑟𝑡 0 ε𝑥𝑡

− sin ε𝑟𝑡 cos ε𝑟𝑡 0 ε𝑦𝑡

0 0 1 ε𝑧𝑡

0 0 0 1

⎞⎟⎟⎟⎟⎠ ;

ε𝑟𝑡 ∼ 𝒩 (0, (σ𝑟
𝑡)

2); ε𝑥𝑡 ∼ 𝒩 (0, (σ𝑥
𝑡)

2); ε𝑦𝑡 ∼ 𝒩 (0, (σ𝑦
𝑡)

2); ε𝑧𝑡 ∼ 𝒩 (0, (σ𝑧
𝑡)

2).

(2.9)

2.2 Метрическая модель задачи ОКЛ

Как правило, в работах, посвященных решению задачи ОКЛ, исполь­
зуется метрическое представление окружающей среды. В качестве такого
представления может выступать облако точек, приближающее конечное под­
множество точек объектов окружающей среды 𝑊𝑜𝑏𝑗:

ℳ𝑡 = {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}𝑀𝑡

𝑖=1 ∈ R𝑀𝑡×3. (2.10)

48

Метрическая задача картирования состоит в создании функции 𝐹 , которая
принимает на вход карту с предыдущего шага, облако точек и одометрию, по­
лученные по текущему наблюдению с робота, и выдает карту на текущем шаге:

𝐹 : R*×3 × R*×3 × 𝑆𝐸(3) → R*×3;

𝐹 (ℳ𝑡−1, 𝐶𝑡, ̂︂∆𝑆𝑡) = ℳ𝑡;

R*×3 =
∞⋃︁
𝑛=0

R𝑛×3.

(2.11)

Такое облако точек может быть получено путем объединения облаков то­
чек 𝐶𝑡 с робота, если известны точные позы робота 𝑠𝑡:

𝑀𝑡 =
𝑡⋃︁

τ=1

𝑛𝑡⋃︁
𝑖=1

𝑆τ · 𝐶 𝑖
τ. (2.12)

В реальном мире точные позы робота неизвестны, их можно восстановить
приближенно, используя данные одометрии:̂︀𝑆𝑡 = 𝑆0 ⊕ ̂︂∆𝑆1 ⊕ · · · ⊕ ̂︂∆𝑆𝑡 =

= 𝑆𝑡 ⊕ Σ1 ⊕ · · · ⊕ Σ𝑡.
(2.13)

Такое приближение подвержено накоплению ошибки: дисперсия ошибки
Σ1 ⊕ · · · ⊕ Σ𝑡 увеличивается с ростом 𝑡. Пример такого накопления ошибки
показан на рисунке 2.2. Для устранения накопления ошибки и коррекции кар­
ты в процессе картирования, как правило, применяются методы глобальной
оптимизации.

Одним из наиболее используемых критериев качества полученного облака
точек является его средняя близость к объектам окружающей среды (англ.
Average Mapping Error, AME):

𝐴𝑀𝐸 =
1

𝑀𝑡

𝑀𝑡∑︁
𝑖=1

ρ(mi
t,𝑊𝑜𝑏𝑗);

ρ(m,𝑊𝑜𝑏𝑗) = min
w∈𝑊𝑜𝑏𝑗

||w −m||.
(2.14)

Такой критерий может быть вычислен, например, с помощью программного па­
кета CloudCompare1. Пакет позволяет сравнить между собой два облака точек
– карту и некоторое подмножество точек объектов окружающей среды. Каж­
дой точке из первого облака ставится в соответствие ближайшая точка второго

1https://www.cloudcompare.org/

49

Рисунок 2.2 — Накопление ошибки позиционирования при восстановлении позы
по данным одометрии.

облака. Результатом сравнения является среднее расстояние между поставлен­
ными в соответствие точками. Такой способ вычисления ошибки картирования
используется в работах [42; 81]. Его основным недостатком является возмож­
ность некорректного сопоставления точек в облаках (например, точке стены в
облаке, построенном алгоритмом, может быть поставлена в соответствие точка
пола в истинной карте).

В работе [82] предложен метод оценки качества метрических карт, устра­
няющий указанный недостаток с помощью учета предсказанного локализацией
ракурса камеры. В предложенном методе в соответствие точке x ставится та
точка среды, которая была видна с ракурса pt под тем же углом к главной оп­
тической оси камеры, что и точка x с ракурса p̃t. Такой способ оценки качества
картирования более информативен, однако он так же не подходит для оценки
качества графов локаций, поскольку элементы локаций не имеют метрических
координат. В данной работе предлагается использовать комплекс показателей,
определяющих пригодность построенного графа локаций для навигации.

Результатом локализации в метрической карте в момент времени 𝑡, как
правило, является оценка позы робота ̃︀𝑠𝑡, состоящая из оценки позиции робота̃︀pt и оценки матрицы поворота робота ̃︁𝑄𝑡. Оценке позы ̃︀𝑠𝑡 соответствует аф­
финное преобразование ̃︀𝑆𝑡:

̃︀𝑠𝑡 = (̃︀pt,̃︁𝑄𝑡); ̃︀pt = (̃︀𝑝𝑥𝑡 , ̃︀𝑝𝑦𝑡 , ̃︀𝑝𝑧𝑡) ∈ R3; ̃︁𝑄𝑡 ∈ 𝑆𝑂(3). (2.15)

50

Рисунок 2.3 — Пример вычисления метрик ATE и RPE. Сниим показана ис­
тинная траектория робота, оранжевым – траектория, вычисленная методом

локализации.

Качество такой метрической локализации можно оценить путем срав­
нения траектории, вычисленной процедурой локализации (𝑝1, . . . , ˜𝑝𝑡𝑚𝑎𝑥

) и
истинной траекторией робота (𝑝1, . . . , 𝑝𝑡𝑚𝑎𝑥

). Как правило, для сравнения
применяются два критерия качества: абсолютная ошибка траектории (англ.
Absolute Trajectory Error, ATE) и относительная ошибка позиции (англ. Relative
Pose Error, RPE). Вычисление значений ATE и RPE проиллюстрировано на
рисунке 2.3. Критерий ATE вычисляется как усредненная ошибка между точ­
ками истинной и вычисленной процедурой локализации траектории. В качестве
усредненной ошибки может выбираться среднеквадратичная (𝐴𝑇𝐸𝑅𝑀𝑆𝐸, от
англ. Root Mean Squared Error), средняя абсолютная (𝐴𝑇𝐸𝑚𝑒𝑎𝑛), и медиан­
ная (𝐴𝑇𝐸𝑚𝑒𝑑𝑖𝑎𝑛):

𝐴𝑇𝐸𝑅𝑀𝑆𝐸(̃︁p1, . . . , ˜︁ptmax
;p1, . . . ,ptmax

) =

⎯⎸⎸⎷ 1

𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥∑︁
𝑡=1

||p̃t − pt||2;

𝐴𝑇𝐸𝑚𝑒𝑎𝑛(̃︁p1, . . . , ˜︁ptmax
;p1, . . . ,ptmax

) =
1

𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥∑︁
𝑡=1

||p̃t − pt||;

𝐴𝑇𝐸𝑚𝑒𝑑𝑖𝑎𝑛(̃︁p1, . . . , ˜︁ptmax
;p1, . . . ,ptmax

) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑡𝑚𝑎𝑥
𝑡=1 ||p̃t − pt||,

(2.16)

где ||p̃t − pt|| – евклидово расстояние между позициями p̃t и pt:

||p̃t − pt|| =
√︁
(𝑝𝑥𝑡 − ̃︀𝑝𝑥𝑡)2 + (𝑝𝑦𝑡 − ̃︀𝑝𝑦𝑡)2 + (𝑝𝑧𝑡 − ̃︀𝑝𝑧𝑡)2. (2.17)

51

Относительная ошибка позиции RPE вычисляется как среднеквадра­
тичная относительная ошибка между истинными перемещениями робота и
перемещениями, вычисленными процедурой локализации:

𝑅𝑃𝐸 =

⎯⎸⎸⎷ 1

𝑡𝑚𝑎𝑥 − 1

𝑡𝑚𝑎𝑥∑︁
𝑡=2

||(𝑆𝑡 ⊖ 𝑆𝑡−1)𝑡𝑟𝑎𝑛𝑠 − (̃︀𝑆𝑡 ⊖ ̃︂𝑆𝑡−1)𝑡𝑟𝑎𝑛𝑠||2

||pt − pt−1||2
, (2.18)

где 𝑆𝑡𝑟𝑎𝑛𝑠 – вектор переноса преобразования координат 𝑆.

2.3 Топологическая модель задачи ОКЛ

В данной работе предлагается топологический подход к представлению
окружающей среды – в памяти робота хранится граф локаций, каждая из кото­
рых описывает участок окружающей среды (например, комнату или лифтовый
холл), охватываемый наблюдением с некоторой точки. Ребрами в графе соеди­
няются локации, имеющие общий участок свободного пространства 𝑊𝑓𝑟𝑒𝑒 (этот
участок будет являться переходом между локациями). Пример разбиения про­
странства на локации и соединения локаций ребрами показан на рисунке 2.4.

Определение 2.7. Локацией, наблюдаемой из точки p ∈ 𝑊 , назовем
подмножество среды 𝑊 , которое включает в себя все точки объектов, находя­
щиеся в прямой видимости из точки p на расстоянии не более 𝑑𝑚𝑎𝑥 (дальность
видимости датчиком восприятия робота), и все свободное пространство среды
между точкой p и этими объектами:

𝑑𝑜𝑏𝑗(p, r) = min{δ : p+ δr ∈ 𝑊𝑜𝑏𝑗};
𝑟𝑎𝑦(p, r, 𝑑𝑚𝑎𝑥) = {p+ αr : 0 ⩽ α ⩽ 𝑑𝑚𝑎𝑥,α ⩽ 𝑑𝑜𝑏𝑗(p, r)};

𝑙𝑜𝑐 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(p, 𝑑𝑚𝑎𝑥) =
⋃︁

r∈𝐵1(0)

𝑟𝑎𝑦(p, r, 𝑑𝑚𝑎𝑥) ⊂ 𝑊 ;

𝑙𝑜𝑐𝑜𝑏𝑠 = p ∈ 𝑙𝑜𝑐.

(2.19)

Точка 𝑝 называется точкой наблюдения локации.

52

Рисунок 2.4 — Пример разбиения пространства на локации (красным показаны
точки наблюдения локаций, смежные локации соединены синими ребрами).

Определение 2.8. Две локации 𝑙𝑜𝑐 и 𝑙𝑜𝑐′ называются смежными, если их
пересечение содержит точки свободного пространства среды:

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑙𝑜𝑐, 𝑙𝑜𝑐′) ⇐⇒ 𝑙𝑜𝑐 ∩ 𝑙𝑜𝑐′ ∩𝑊𝑓𝑟𝑒𝑒 ̸= ∅. (2.20)

Задача топологического картирования заключается в построении графа
локаций 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) по облакам точек и данным одометрии с робота в реаль­
ном времени. Алгоритм решения задачи на каждом шаге 𝑡 принимает облако
точек и одометрию, полученные с робота, а также граф локаций с предыдущего
шага 𝐺𝑡−1 = (𝑉𝑡−1, 𝐸𝑡−1), и выдает обновленный граф локаций 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡):

𝐴(𝐶𝑡, ̂︂∆𝑆𝑡, 𝐺𝑡−1) = 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡);

𝑉𝑡 = (𝑙𝑜𝑐1 ⊂ 𝑊, . . . , 𝑙𝑜𝑐𝑛 ⊂ 𝑊);

𝐸𝑡 = (𝑒1 ∈ 𝑉𝑡 × 𝑉𝑡 × R+, . . . , 𝑒𝑚 ∈ 𝑉𝑡 × 𝑉𝑡 × R+),

(2.21)

где 𝑉𝑡 – локации, добавленные в граф, а 𝐸𝑡 – ребра графа. Каждое ребро 𝑒 =

(𝑢 ∈ 𝑉𝑡, 𝑣 ∈ 𝑉𝑡, 𝑙) помимо локаций 𝑢 и 𝑣, которые оно соединяет, содержит
оценку расстояния 𝑙 между точками наблюдения локаций 𝑢𝑜𝑏𝑠 и 𝑣𝑜𝑏𝑠. Каждая
локация в графе 𝑙𝑜𝑐 ∈ 𝑉𝑡 наблюдается с некоторой пройденной роботом точки:

∀𝑙𝑜𝑐 ∈ 𝑉𝑡 ∃τ ⩽ 𝑡 : 𝑙𝑜𝑐 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(pτ, 𝑜𝑏𝑠τ). (2.22)

Для успешной и эффективной навигации с использованием построенного
графа локаций необходимы успешная локализация робота в графе, успешное
построение пути от точки старта робота до целевой точки и движение вдоль
этого пути. В данной работе качество топологического картирования предлага­
ется оценивать с точки зрения путевой эффективности, которая зависит от
оптимальности и допустимости путей, построенных по графу.

53

Определение 2.9. Путь по графу 𝐺 = (𝑉,𝐸) между точками среды ps ∈
𝑊,pf ∈ 𝑊 определим следующим образом: найдем локации 𝑙𝑜𝑐𝑠, 𝑙𝑜𝑐𝑓 , такие,
что ps ∈ 𝑙𝑜𝑐𝑠, pf ∈ 𝑙𝑜𝑐𝑓 , имеющие ближайшие точки наблюдения к точкам ps и
pf соответственно. Построим кратчайший путь между локациями 𝑙𝑜𝑐𝑠 и 𝑙𝑜𝑐𝑓 по
рёбрам графа 𝐸, используя расстояния, записанные на ребрах. Если локации
𝑙𝑜𝑐𝑠 и 𝑙𝑜𝑐𝑓 совпадают, путь по графу 𝐺 состоит только из точек ps и pf . Если не
совпадают – путь по графу 𝐺 включает в себя точки наблюдения всех локаций
найденного кратчайшего пути между точками ps и pf .

𝑙𝑜𝑐𝑠 = arg min
𝑙𝑜𝑐∈𝑉 ; ps∈𝑙𝑜𝑐

||locobs − ps||;

𝑙𝑜𝑐𝑓 = arg min
𝑙𝑜𝑐∈𝑉 ; pf∈𝑙𝑜𝑐

||locobs − pf ||;

𝑤(𝑢, 𝑣) = min
(𝑢,𝑣,𝑙)∈𝐸

𝑙;

π = arg min
π = (π0, . . . ,π𝑘) ⊂ 𝑉 ;

π0 = 𝑙𝑜𝑐𝑠,π𝑘 = 𝑙𝑜𝑐𝑓 ;

∀𝑖 = 1, . . . , 𝑘 →˓ (π𝑖−1,π𝑖) ∈ 𝐸

𝑘∑︁
𝑖=1

𝑤(π𝑖−1,π𝑖);

𝑃𝑎𝑡ℎ(ps,pf , 𝐺𝑡) =

⎧⎨⎩(ps,pf) 𝑙𝑜𝑐𝑠 = 𝑙𝑜𝑐𝑓

(ps, (π0)𝑜𝑏𝑠, . . . , (π𝑘)𝑜𝑏𝑠,pf) 𝑙𝑜𝑐𝑠 ̸= 𝑙𝑜𝑐𝑓
.

(2.23)

Определение 2.10 Путь по графу π назовем допустимым, если каждое
его звено соединяет смежные локации. Множество всех допустимых путей обо­
значим как 𝑃+:

𝑃+ = {π = (π0, . . . ,π𝑘) ∈ 2𝑊 :

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(π𝑖−1) ∩ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(π𝑖) ∩𝑊𝑓𝑟𝑒𝑒 ̸= ∅ ∀𝑖 = 1, . . . , 𝑘}.
(2.24)

Определение 2.11 Длиной пути по графу π = (π0, . . . ,π𝑘) назовем сумму
длин кратчайших путей в среде, соединяющих его промежуточные точки:

𝑙𝑒𝑛𝑊𝑓𝑟𝑒𝑒
(s ∈ 𝑊𝑓𝑟𝑒𝑒,g ∈ 𝑊𝑓𝑟𝑒𝑒) =

= inf
π=(π0=𝑠,...,π𝑘=𝑔)⊂𝑊𝑓𝑟𝑒𝑒; ∀𝑖=1,...,𝑘→˓[π𝑖−1,π𝑖]⊂𝑊𝑓𝑟𝑒𝑒

𝑘∑︁
𝑖=1

||π𝑖 − π𝑖−1||;

𝑙𝑒𝑛(π) =
𝑘∑︁

𝑖=1

𝑙𝑒𝑛𝑊𝑓𝑟𝑒𝑒
(π𝑖−1,π𝑖).

(2.25)

54

Определение 2.12 Определенное выше значение 𝑙𝑒𝑛𝑊𝑓𝑟𝑒𝑒
назовем расстоя­

нием по среде 𝑊𝑓𝑟𝑒𝑒 между точками 𝑠 и 𝑔. Пример построения пути по графу
и расчета его длины показан на рисунке 2.5.

Рисунок 2.5 — Пример построения пути по графу между двумя точками среды
и вычисления его длины. Препятствия среды показаны черным, свободные об­

ласти – светло-серым.

Определение 2.13 Эффективностью допустимого пути по графу π =

(𝑥0, . . . , 𝑥𝑛) назовем отношение расстояния по среде между точками 𝑥0 и 𝑥𝑛

к длине пути π. Эффективность недопустимого или ненайденного пути поло­
жим равной нулю. Обозначим значение эффективности пути π как 𝑆𝑃𝐿(π) (от
англ. Success weighted by Path Length):

𝑆𝑃𝐿(π) =
𝑙𝑒𝑛𝑊𝑓𝑟𝑒𝑒

(𝑥0, 𝑥𝑛)

𝑙𝑒𝑛(π)
· 𝐼(π ∈ 𝑃+). (2.26)

Здесь и далее 𝐼(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) обозначает оператор, который возвращает 1, если
условие 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 выполняется, и возвращает 0 в противном случае. Целевым
критерием качества является средняя эффективность путей по графу между

55

всеми парами точек на траектории робота:

𝑆𝑃𝐿(𝑊,𝐺𝑡𝑚𝑎𝑥
) =

1

(𝑡𝑚𝑎𝑥 + 1)2

𝑡𝑚𝑎𝑥∑︁
𝑡1=0

𝑡𝑚𝑎𝑥∑︁
𝑡2=0

𝑆𝑃𝐿(𝑝𝑎𝑡ℎ(pt1,pt2, 𝐺𝑡𝑚𝑎𝑥
)) (2.27)

Так как значение 𝑡𝑚𝑎𝑥 может быть велико (порядка нескольких тысяч), вы­
числение значения 𝑆𝑃𝐿(𝑊,𝐺) может занять много времени и вычислительных
ресурсов (например, в случае 𝑡𝑚𝑎𝑥 = 1000 потребуется более 1 млн вычисле­
ний пути по графу и расстояния по среде, что может занять до нескольких
недель вычислений на стандартном компьютере). Для ускорения расчетов пу­
тевую эффективность можно вычислить приблизительно, выбрав случайным
образом 𝑁 пар точек (𝑠𝑖 ∈ 𝑊𝑓𝑟𝑒𝑒, 𝑔𝑖 ∈ 𝑊𝑓𝑟𝑒𝑒). Обозначим вычисленный таким
образом результат как 𝑆𝑃𝐿𝑁 :

𝑆𝑃𝐿𝑁(𝑊,𝐺) =
1

𝑁

𝑁∑︁
𝑖=1

𝑆𝑃𝐿(𝑝𝑎𝑡ℎ(𝑠𝑖, 𝑔𝑖, 𝐺)). (2.28)

Вычисление значения 𝑆𝑃𝐿𝑁 для больших 𝑁 все еще достаточно затратно
по вычислениям (например, для 𝑁 = 1000 вычисления на стандартном компью­
тере займут от нескольких минут до нескольких часов), поэтому для оценки
качества картирования в данной работе рассматривается ряд других показате­
лей, влияющих напрямую на эффективность путей:

1. Количество компонент связности 𝑁𝑐𝑜𝑚𝑝. Между точками, оказавшими­
ся в локациях, относящихся к разным компонентам связности, путь не
будет найден, что сделает успешную навигацию между ними невозмож­
ной.

2. Доля покрытия свободного пространства среды локациями графа. До
точек, не принадлежащих ни к одной локации, путь не будет найден,
что сделает невозможной успешную навигацию до них. Для оценки на­
вигационных возможностей покрытие вычисляется по всем локациям,
входящим в наибольшую компоненту связности графа:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =

|
⋃︀

𝑙𝑜𝑐∈𝑉𝑚𝑎𝑖𝑛

𝑙𝑜𝑐|

|
𝑡𝑚𝑎𝑥⋃︀
𝑡=0

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(pt)|,
(2.29)

где 𝑉𝑚𝑎𝑖𝑛 обозначает наибольшую компоненту связности графа лока­
ций, а |𝑊 | обозначает объем области пространства 𝑊 .

56

3. Корректность ребер, добавленных в граф. Прокладка пути через реб­
ро, соединяющее несмежные локации, приведет к сбою навигации при
попытке перейти по этому ребру. Корректность оценивается как доля
ребер, соединяющих смежные локации, среди всех ребер графа:

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =

∑︀
(𝑙𝑜𝑐,𝑙𝑜𝑐′)∈𝐸𝑡𝑚𝑎𝑥

𝐼(𝑙𝑜𝑐 ∩ 𝑙𝑜𝑐′ ∩𝑊𝑓𝑟𝑒𝑒 ̸= ∅)

|𝐸𝑡𝑚𝑎𝑥
|

. (2.30)

4. Полнота графа. Отсутствие ребра между смежными локациями 𝑙𝑜𝑐 и
𝑙𝑜𝑐′ снижает эффективность путей между точками, находящимися в
этих локациях. Полнота графа вычисляется как доля ребер, соединяю­
щих смежные локации, среди всех пар смежных локаций:

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑︀
(𝑙𝑜𝑐,𝑙𝑜𝑐′)∈𝐸𝑡𝑚𝑎𝑥

𝐼(𝑙𝑜𝑐 ∩ 𝑙𝑜𝑐′ ∩𝑊𝑓𝑟𝑒𝑒 ̸= ∅)

|(𝑙𝑜𝑐 ∈ 𝑉, 𝑙𝑜𝑐′ ∈ 𝑉) : 𝑙𝑜𝑐 ∩ 𝑙𝑜𝑐′ ∩𝑊𝑓𝑟𝑒𝑒 = ∅|
. (2.31)

Рисунок 2.6 — Пример вычисления значения 𝑆𝑃𝐿𝑁 по графу локаций по двум
парам точек (A-B, C-D).

Пример вычисления значения критериев 𝑁𝑐𝑜𝑚𝑝, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒, 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠,
𝑅𝑒𝑐𝑎𝑙𝑙, а также значения 𝑆𝑃𝐿𝑁 для 𝑁 = 2 представлен на рисунке 2.6.

Задача локализации

57

Задача локализации в топологической карте, представляемой в виде гра­
фа 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡), состоит в следующем: на каждом шаге 𝑡 по облаку точек и
одометрии с робота определить локацию 𝑣𝑡𝑐𝑢𝑟 ∈ 𝑉𝑡, в которой находится робот
в данный момент, и определить положение робота относительно точки наблю­
дения этой локации 𝑇 𝑡

𝑐𝑢𝑟 ∈ 𝑆𝐸(3).

𝐴𝑙𝑔(𝐶𝑡, ̂︂∆𝑆𝑡, 𝐺𝑡) = (𝑣𝑡𝑐𝑢𝑟, 𝑇
𝑡
𝑐𝑢𝑟);

𝑣𝑡𝑐𝑢𝑟 ∈ 𝑉𝑡; 𝑇 𝑡
𝑐𝑢𝑟 ∈ 𝑆𝐸(3).

(2.32)

В данной работе задача ОКЛ рассматривается в топологической поста­
новке, в которой метрические координаты в явном виде не используются.
Для вычисления значений 𝐴𝑇𝐸 по результатам локализации, представленным
в виде локации и положения относительно ее точки наблюдения (𝑣𝑡𝑐𝑢𝑟, 𝑇

𝑡
𝑐𝑢𝑟),

предлагается вычислять метрический результат локализации с использованием
информации о положении точки наблюдения локации 𝑣𝑐𝑢𝑟, и далее для метри­
ческой оценки качества локализации вычислять среднюю абсолютную ошибку
𝐴𝑇𝐸𝑚𝑒𝑎𝑛:

𝑆𝑝 =

⎛⎜⎜⎜⎜⎝
1 0 0 𝑝𝑥

0 1 0 𝑝𝑦

0 0 1 𝑝𝑧

0 0 0 1

⎞⎟⎟⎟⎟⎠ ;

̃︀𝑆𝑡 = 𝑆(𝑣𝑡𝑐𝑢𝑟)𝑜𝑏𝑠
⊕ 𝑇 𝑡

𝑐𝑢𝑟;

𝐴𝑇𝐸 = 𝐴𝑇𝐸𝑚𝑒𝑎𝑛(̃︀𝑆1 · 0, . . . ,̃︁𝑆𝑇 · 0;p1, . . . ,pt).

(2.33)

Во многих алгоритмах локализации в топологической карте поиск ло­
кации 𝑣𝑐𝑢𝑟 и положения относительно ее точки наблюдения 𝑇𝑐𝑢𝑟 выполняется
последовательно, и при неверном определении локации 𝑣𝑐𝑢𝑟 метрическая ошиб­
ка локализации оказывается сравнимой с размером окружающей среды 𝑊 .
Таким образом, ключевым показателем является точность определения лока­
ции 𝑣𝑐𝑢𝑟. Обозначим этот показатель как успешность локализации 𝑆𝑅𝑙𝑜𝑐 (от
англ. Success Rate):

𝑆𝑅𝑙𝑜𝑐 =

𝑡𝑚𝑎𝑥∑︀
𝑡=1

𝐼(pt ∈ 𝑣𝑡𝑐𝑢𝑟)

𝑡𝑚𝑎𝑥
, (2.34)

Пример вычисления значения 𝑆𝑅𝑙𝑜𝑐 в сравнении с метрической ошибкой
𝐴𝑇𝐸𝑚𝑒𝑎𝑛 показан на рисунке 2.7.

58

Рисунок 2.7 — Пример вычисления значений критериев качества локализации
𝐴𝑇𝐸𝑚𝑒𝑎𝑛 и 𝑆𝑅𝑙𝑜𝑐. Истинная траектория робота показана черной пунктирной
линией; траектория, вычисленная алгоритмом локализации BEVPlace++ [77] –

синей сплошной линией.

2.4 Выводы по главе

В данной главе для решения проблемы оценки качества топологических
методов ОКЛ предложена математическая модель задачи топологического
картирования и локализации. Входными данными в предложенной модели
являются облако точек и одометрия, полученные по наблюдениям с робота.
Результатом топологического картирования является граф локаций (участков
среды, охватываемых одним наблюдением). Результатом локализации является
состояние робота в графе – текущая локация и положение в ней.

В главе определена методика построения пути по графу локаций между
двумя точками окружающей среды и даны определения допустимости и эф­
фективности пути по графу. Предложен критерий качества графа локаций,
вычисляемый как средняя эффективность всех построенных по нему путей
и обозначаемый как 𝑆𝑃𝐿. Значение предложенного критерия зависит как от
оптимальности, так и от допустимости путей. Предложенный способ оценки
качества карты может быть применен как для метрических методов ОКЛ,

59

использующих графовые структуры (например, граф позиций), так и для то­
пологических методов ОКЛ.

Помимо путевой эффективности, в главе предлагается ряд других, легко
вычислимых критериев:

1. Количество компонент связности графа локаций;
2. Доля покрытия среды локациями, входящими в наибольшую компонен­

ту связности;
3. Корректность ребер (доля ребер графа, соединяющих смежные лока­

ции);
4. Полнота ребер (отношение количества ребер графа, соединяющих

смежные локации, к общему количеству пар смежных локаций).
Вычисление значения 𝑆𝑃𝐿𝑁 и других предложенных критериев позволяет
оценить, насколько построенный граф локаций пригоден для планирования
маршрутов и навигации робота.

В главе предложен критерий оценки качества локализации в графе
локаций – средняя успешность локализации. Она вычисляется как доля лока­
ций, выданных алгоритмом ОКЛ в качестве результата локализации, которые
действительно включают в себя текущую позицию робота. Такой критерий
позволяет учитывать специфику задачи топологического ОКЛ и оценивать ка­
чество локализации даже в том случае, если точное метрическое положение
робота внутри локации алгоритмом не вычисляется.

60

Глава 3. Разработка алгоритма топологического картирования и
локализации

В рамках данной работы для решения поставленной в разделе 2.3 зада­
чи был разработан оригинальный алгоритм топологического картирования и
локализации, названный PRISM-TopoMap. Алгоритм строит топологическую
карту в виде графа локаций и на каждом шаге определяет состояние робота в
графе – локацию, в которой он находится, и его положение внутри локации. В
работе был предложен двухуровневый подход к планированию пути до целевой
точки с использованием построенной топологической карты. В главе приводит­
ся подробное описание составных частей алгоритма PRISM-TopoMap, а также
описание предложенного двухуровневого подхода к планированию пути.

3.1 Общая схема алгоритма

Алгоритм PRISM-TopoMap строит топологическую карту в виде графа
локаций по облакам точек с лидара робота (дополнительно к облаку точек
могут быть добавлены изображения с передней и задней камер робота) и одомет­
рии с любого источника. Алгоритм состоит из двух выполняемых параллельно
процедур: процедура построения и поддержания графа локаций и процедура
локализации. Его общая схема показана на рисунке 3.1.

Алгоритм решает задачу, поставленную в разделе 2.3. На вход алгоритму
на каждом шаге 𝑡 подается лидарное облако точек 𝐶𝑡 и оценка перемещения
робота ̂︂∆𝑆𝑡 (одометрия), а также граф локаций 𝐺𝑡−1. Выходом алгоритма яв­
ляется обновленный граф локаций 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) и текущее состояние робота в
графе: 𝑣𝑡𝑐𝑢𝑟 – вершина, в которой находится робот в момент 𝑡, и 𝑇 𝑡

𝑐𝑢𝑟 – положение
робота относительно точки наблюдения локации 𝑣𝑐𝑢𝑟:

𝐴𝑙𝑔(𝐶𝑡, ̂︂∆𝑆𝑡, 𝐺𝑡−1) = (𝐺𝑡, 𝑣
𝑡
𝑐𝑢𝑟, 𝑇

𝑡
𝑐𝑢𝑟);

𝑣𝑡𝑐𝑢𝑟 ∈ 𝑉𝑡;𝑇
𝑡
𝑐𝑢𝑟 ∈ 𝑆𝐸(3).

(3.1)

Для каждой локации предложенный алгоритм сохраняет дескриптор,
предсказанный нейросетью для распознавания места, а также двумерную про­

61

Рисунок 3.1 — Общая схема разработанного алгоритма топологического карти­
рования и локализации.

екцию облака точек для поиска относительного положения 𝑇 𝑡
𝑐𝑢𝑟:

𝐹 (𝑙𝑜𝑐) = (𝑑𝑒𝑠𝑐𝑙𝑜𝑐; 𝑠𝑐𝑎𝑛𝑙𝑜𝑐 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝐶𝑙𝑜𝑐)). (3.2)

Для каждого ребра графа сохраняются приблизительные положения
конца ребра относительно его начала. Эта информация используется для по­
строения путей по графу:

𝐹 (𝑒 = (𝑢,𝑣)) ≈ 𝑣𝑜𝑏𝑠 − 𝑢𝑜𝑏𝑠. (3.3)

Для навигации в графе локаций, построенном с помощью разработанно­
го алгоритма, предлагается использовать двухуровневое планирование пути.
На верхнем уровне в графе локаций строится глобальный путь от текущей
локации 𝑣𝑐𝑢𝑟 до локации, содержащей целевую точку. Для поиска такого пу­
ти применяется алгоритм Дейкстры [83], в качестве весов ребер используются
их длины, полученные по приписанным к ним относительным позициям. На
нижнем уровне строится локальный путь с учетом препятствий до точки на­
блюдения следующей локации в глобальном пути (либо, если робот находится
в одной локации с целевой точкой – до целевой точки). Схема предложенно­
го подхода к планированию пути изображена на рисунке 3.2. Движение вдоль
построенного пути с избеганием статических и динамических препятствий мо­
жет осуществляться, например, с помощью методов модельно-предиктивного
управления [84; 7], в которых построенный путь будет использоваться в каче­
стве начального приближения.

62

Рисунок 3.2 — Схема предложенного двухуровневый подход к планированию
пути: глобальный топологический путь на верхнем уровне (слева) и локальный

метрический путь на нижнем уровне (справа, показан зеленым).

Граф и текущее состояние робота в нем обновляются в зависимости от
одометрии, перекрытия текущего облака точек с робота с локацией 𝑣𝑐𝑢𝑟 и ре­
зультатов локализации. Процедура обновления графа и состояния (𝑣𝑐𝑢𝑟, 𝑇𝑐𝑢𝑟) и
процедура локализации в графе подробно описаны ниже.

3.2 Процедура локализации в топологической карте

Процедура локализации в графе 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) принимает на вход текущее
наблюдение с робота 𝐶𝑡 (облако точек, к которому дополнительно могут быть
добавлены изображения с камер робота), а также граф локаций с предыдущего
шага 𝐺𝑡−1 и выдает список локаций в графе, в которых может находиться робот
в момент 𝑡, с оценкой положения робота относительно их точек наблюдения.
Псевдокод процедуры локализации представлен в алгоритме 1.

Локализация проводится в два этапа: сначала с помощью методов рас­
познавания места находится список локаций-кандидатов, чьи сканы близки
к текущему скану робота в пространстве дескрипторов. Далее с помощью
оригинального алгоритма сопоставления сканов отбрасываются ложноположи­
тельные результаты распознавания места (т.е. близкие к текущему наблюдению
с робота по дескрипторам, но не содержащие позицию робота pt локации), а для
всех оставшихся локаций вычисляется положение робота относительно их точек
наблюдения. Общая схема процедуры локализации представлена на рисунке 3.3.
Ниже приведено подробное описание двух этапов локализации.

63

Алгоритм 1: Процедура локализации
1 Вход: Облако точек 𝐶𝑡; граф локаций 𝐺𝑡−1 = (𝑉𝑡−1;𝐸𝑡−1)

2 Выход: Список локаций в графе, в которых может находиться робот, с оценками
положения робота относительно их точек наблюдения:
𝑉 𝑡
𝑙𝑜𝑐 = {𝑣𝑡,𝑖𝑙𝑜𝑐, 𝑖 = 1, . . . , 𝑘}; 𝒯 𝑡

𝑙𝑜𝑐 = {𝑇 𝑡,𝑖
𝑙𝑜𝑐, 𝑖 = 1, . . . ,𝑘}.

3 Параметры: количество локаций 𝑘; порог успешного сопоставления 𝑡ℎ

4 𝑑𝑒𝑠𝑐𝑡 = 𝐹𝑃𝑅(𝐶𝑡)/* Вычисляем дескриптор текущего наблюдения с робота */
5 D = {𝑑𝑒𝑠𝑐𝑙𝑜𝑐 : 𝑙𝑜𝑐 ∈ 𝑉𝑡−1}/* Дескрипторы всех локаций графа */
6 𝑉 𝑡

𝑓𝑜𝑢𝑛𝑑 = GetKNearestTo(𝑉𝑡−1, 𝐷, 𝑑𝑒𝑠𝑐𝑡, k)/* Выбираем k локаций из графа, чьи
дескрипторы наиболее близки к декскриптору 𝑑𝑒𝑠𝑐𝑡 */

7 𝑠𝑐𝑎𝑛𝑡 = Projection(𝐶𝑡)/* Проекция текущего облака точек с робота */
8 𝑉 𝑡

𝑙𝑜𝑐 = ∅; 𝒯 𝑡
𝑙𝑜𝑐 = ∅

9 for 𝑣 ∈ 𝑉 𝑡
𝑓𝑜𝑢𝑛𝑑 do

10 𝑇𝑙𝑜𝑐, matchScore = ScanMatching(𝑠𝑐𝑎𝑛𝑣, 𝑠𝑐𝑎𝑛𝑡)/* Сопоставляем проекцию
текущего облака точек с робота с проекцией локации 𝑣 */

11 if matchScore > 𝑡ℎ then
12 𝑉 𝑡

𝑙𝑜𝑐 = 𝑉 𝑡
𝑙𝑜𝑐 ∪ {𝑣}

13 𝒯 𝑡
𝑙𝑜𝑐 = 𝒯 𝑡

𝑙𝑜𝑐 ∪ {𝑇𝑙𝑜𝑐}

Рисунок 3.3 — Схема процедуры локализации.

Глобальный поиск локации Для поиска локаций, содержащих текущее
положение робота, используются методы распознавания места. По текущему
наблюдению с робота с помощью нейронной сети вычисляется дескриптор –
вектор признаков небольшой (по сравнению с размерностью облака точек) раз­
мерности:

𝐹𝑃𝑅(𝐶𝑡) = 𝑑𝑒𝑠𝑐𝑡 ∈ R𝑁 , (3.4)

где 𝐹𝑃𝑅 – нейросетевая модель для вычисления дескриптора облака точек. Де­
скрипторы предварительно вычисляются для каждой локации при добавлении
локации в граф. Далее в графе вычисляются 𝑘 локаций, чьи дескрипторы наи­
более близки к дескриптору текущего наблюдения по евклидову расстоянию.

64

Рисунок 3.4 — Схема нейросетевой модели MinkLoc3D. Источник [65].

В случае, когда на роботе в качестве наблюдения доступно только облако
точек с лидара, в качестве нейросети 𝐹𝑃𝑅 применяется модель MinkLoc3D [65].
Она представляет собой сверточную нейронную сеть, принимающую на вход
предварительно дискретизованное облако точек. Дискретизация заключается
в округлении координат точек облака до узлов сетки с фиксированным ша­
гом (значение каждой координаты делится на шаг сетки, затем округляется
по правилам математики до целого, затем умножается на шаг сетки) и удале­
нии точек с одинаковыми координатами. Выходом нейросети является вектор
размерности 256, представляющий собой дескриптор облака точек. Схема ней­
росети MinkLoc3D представлена на рисунке 3.4.

Если на роботе помимо облака точек с лидара доступны изображения с
передней и задней камер, то в качестве нейросети 𝐹𝑃𝑅 применяется модель
MSSPlace [72]. MSSPlace представляет собой мультимодальное расширение мо­
дели MinkLoc3D. На вход модели подается облако точек и пара изображений
с робота. Модель состоит из двух последовательностей сверточных слоев –
вычисление дескриптора по облаку точек и по изображениям соответствен­
но. Вычисление дескриптора по облаку точек производится нейронной сетью
с архитектурой, взятой из модели MinkLoc3D. Вычисление дескриптора по
облаку точек производится сверточной нейронной сетью, состоящей из коди­
ровщика изображений на основе сети ResNet-18, а также слоев усреднения и
понижения дискретизации GeM Pooling [85]. Итоговый дескриптор наблюдения
получается путем конкатенации дескриптора облака точек и дескриптора пары

65

Рисунок 3.5 — Схема нейросетевой модели MinkLoc3D. Источник [72].

изображений и имеет размерность 512. Схема архитектуры нейросети MSSPlace
представлена на рисунке 3.5.

Результатом первого этапа локализации является список локаций-кан­
дидатов, состоящий из 𝑘 локаций, чьи дескрипторы наиболее близки по
евклидовой метрике к дескриптору текущего наблюдения:

𝑑𝑖𝑠𝑡𝑙𝑜𝑐 = ||𝑑𝑒𝑠𝑐𝑙𝑜𝑐 − 𝑑𝑒𝑠𝑐𝑡||2;
𝑉 𝑡
𝑓𝑜𝑢𝑛𝑑 = {𝑣 ∈ 𝑉𝑡−1 : |{𝑑𝑖𝑠𝑡𝑙𝑜𝑐 : 𝑙𝑜𝑐 ∈ 𝑉𝑡−1} ∩ [0, 𝑑𝑖𝑠𝑡𝑣]| < 𝑘}.

(3.5)

Фильтрация результатов глобального поиска и вычисление отно­
сительной позиции Из-за внешней схожести облаков точек и специфики
обучающего набора данных для нейросети 𝐹𝑃𝑅, окружающей среды и датчиков
робота, методы глобальной локализации, основанные на нейросетевом распозна­
вании места, могут выдавать ложноположительные результаты:

𝑙𝑜𝑐 ∈ 𝑉 𝑡
𝑓𝑜𝑢𝑛𝑑; 𝐼𝑜𝑈(𝐶𝑡, 𝐶𝑙𝑜𝑐) = 0. (3.6)

В таком случае положение робототехнической системы в пространстве мо­
жет определяться некорректно, что может привести к добавлению в граф ребер
между удаленными друг от друга локациями и, как следствие, к сбоям нави­
гации. Для устранения таких ситуаций в рамках диссертационной работы был
разработан оригинальный алгоритм сопоставления сканов, который выявляет и
отсеивает ложноположительные результаты глобальной локализации и вычис­
ляет относительную позицию для каждой корректно найденной локации.

Для сопоставления используются двумерные проекции лидарных обла­
ков точек на горизонтальную плоскость. Двумерная проекция берется по всем
точкам облака, удаленным на расстояние не более 𝑟 от точки наблюдения и
представляется в виде целочисленной матрицы, в которой каждая ячейка имеет

66

значение 0, 1 или 2 и содержит информацию о точках облака в соответствую­
щем столбике размера 𝑑 × 𝑑:

𝑠𝑐𝑎𝑛𝑡 = 𝑝𝑟𝑜𝑗𝑑,𝑟(𝐶𝑡) ∈ {0,1,2}
2𝑟
𝑑 × 2𝑟

𝑑 ;

𝑐𝑜𝑙𝑖,𝑗 = {(𝑥, 𝑦, 𝑧) ∈ 𝐶𝑡;

𝑥 ∈ [(𝑖− 𝑟

𝑑
) · 𝑑; (𝑖+ 1− 𝑟

𝑑
) · 𝑑];

𝑦 ∈ [(𝑗 − 𝑟

𝑑
) · 𝑑; (𝑗 + 1− 𝑟

𝑑
) · 𝑑]}

(3.7)

𝑧𝑚𝑎𝑥(𝑖,𝑗) = max
(𝑥,𝑦,𝑧)∈𝑐𝑜𝑙𝑖,𝑗

𝑧;

𝑠𝑐𝑎𝑛𝑡;𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑐𝑜𝑙𝑖,𝑗 = ∅

1, 𝑧𝑚𝑎𝑥(𝑖,𝑗) ∈ (−∞, 𝑧𝑓𝑙𝑜𝑜𝑟) ∪ (𝑧𝑐𝑒𝑖𝑙,∞)

2, 𝑧𝑓𝑙𝑜𝑜𝑟 <= 𝑧𝑚𝑎𝑥(𝑖,𝑗) <= 𝑧𝑐𝑒𝑖𝑙,

(3.8)

где 𝑧𝑓𝑙𝑜𝑜𝑟 – максимальная высота точек поверхности, 𝑧𝑐𝑒𝑖𝑙 – минимальная вы­
сота точек потолка.

Так достигается значительная экономия памяти, потребляемой картой,
поскольку с использованием двумерных проекций для сопоставления исчезает
необходимость хранить в карте исходные облака точек. Облако точек в опе­
ративной и постоянной памяти занимает от 1 до 15 МБ, в зависимости от
разрешения лидара, в то время как его двумерная проекция размером 360х360
занимает 130 кБ в оперативной памяти и порядка 10 кБ в постоянной (при
сохранении в виде изображения в формате .png).

Для сопоставления по обоим облакам точек берется двумерная проек­
ция в соответствии с формулой 3.8 и преобразуется в формат черно-белого
изображения. Далее из этих изображений извлекаются особые точки и их
дескрипторы алгоритмом ORB [86]. Извлеченные особые точки сопоставля­
ются по дескрипторам с помощью алгоритма FLANN [87]. Затем проводится
итеративная процедура удаления выбросов среди сопоставленных дескрипто­
ров и вычисления итогового преобразования координат согласно алгоритму 2.
Пример сопоставления облаков точек с помощью представленного алгоритма
показан на рисунке 3.6.

На каждой итерации по текущему набору сопоставленных пар особых то­
чек методом наименьших квадратов вычисляется преобразование координат,
сопоставляющее сканы. Далее из набора удаляются те пары особых точек, на

67

Рисунок 3.6 — Пример сопоставления проекций облаков точек с помощью раз­
работанного алгоритма. Слева изображены пары сопоставленных особых точек,
справа – применение преобразования координат, полученного после каждой ите­
рации. Зеленым показаны оставшиеся после текущей итерации пары, красным

– удаляемые на текущей итерации.

68

Алгоритм 2: Вычисление преобразования координат, сопоставляюще­
го облака точек, и удаление выбросов среди сопоставленных особых
точек.
1 Вход: Координаты попарно сопоставленных особых точек на изображениях

𝑀 = {(𝑝𝑖 ∈ R2, 𝑞𝑖 ∈ R2)}𝑁𝑖=1

2 Выход: Преобразование координат 𝑇𝑙𝑜𝑐 между облаками точек
3 Параметры: Максимальное число итераций 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟; пороги сопоставления

δ𝑖𝑡𝑒𝑟, 𝑖𝑡𝑒𝑟 = 1, . . . ,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟; минимальное число сопоставлений 𝐾

4 for 𝑖𝑡𝑒𝑟 = 1...𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
5 if |𝑀 | < 𝐾 then
6 return NULL

7 𝑇 = 𝐿𝑒𝑎𝑠𝑡𝑆𝑞𝑢𝑎𝑟𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑀)

8 for 𝑖 = 1...𝑁 do
9 if ||𝑇𝑝𝑖 − 𝑞𝑖|| > δ𝑖𝑡𝑒𝑟 then

10 𝑀.𝑟𝑒𝑚𝑜𝑣𝑒((𝑝𝑖, 𝑞𝑖))

11 𝑇𝑙𝑜𝑐 = 𝐿𝑒𝑎𝑠𝑡𝑆𝑞𝑢𝑎𝑟𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑀)

которых расхождение после применения преобразования превышает порог. Зна­
чения порогов на итерациях задаются невозрастающей последовательностью,
таким образом, с каждой итерацией повышается точность найденного сопостав­
ления в случае его нахождения.

Для оценки корректности найденного преобразования координат 𝑇𝑙𝑜𝑐

вычисляется оценка качества сопоставления 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒. Она вычисляется сле­
дующим образом: преобразование 𝑇𝑙𝑜𝑐 применяется к первому облаку точек,
затем по обоим облакам вычисляется дискретизованная проекция по форму­
ле 3.8. Итоговая оценка рассчитывается как отношение количества совпавших
ячеек препятствий к количеству несовпадений (ячеек, в которые на одном
из облаков попали точки препятствий, а на втором – точки пола или потол­
ка). Оценка учитывает долю перекрытия двух облаков – итоговое значение
𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 умножается на корень четвертой степени из значения 𝐼𝑜𝑈 :

𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 =
𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ

𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ+ 𝑏𝑎𝑑𝑀𝑎𝑡𝑐ℎ
· 𝐼𝑜𝑈1/4. (3.9)

Процедура вычисления 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 представлена в алгоритме 3.

69

Алгоритм 3: Вычисление оценки качества сопоставления двух обла­
ков точек.
1 Вход: Облака точек 𝐶𝑡 и 𝐶𝑣; преобразование координат 𝑇𝑙𝑜𝑐 от облака точек 𝐶𝑡 к

облаку 𝐶𝑣

2 Выход: 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 – оценка качества сопоставления
3 𝐶𝑡 = 𝑇𝑙𝑜𝑐 · 𝐶𝑡/* Применение преобразования 𝑇𝑙𝑜𝑐 к облаку точек 𝐶𝑡 */
4 𝑠𝑐𝑎𝑛𝑡 = 𝑝𝑟𝑜𝑗𝑑,𝑟(𝐶𝑡)

5 𝑠𝑐𝑎𝑛𝑣 = 𝑝𝑟𝑜𝑗𝑑,𝑟(𝐶𝑣)

6 𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ = 0; 𝑏𝑎𝑑𝑀𝑎𝑡𝑐ℎ = 0

7 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 0;𝑢𝑛𝑖𝑜𝑛 = 0

8 for 𝑖 = 1, . . . ,2𝑟
𝑑

do
9 if 𝑠𝑐𝑎𝑛𝑡;𝑖,𝑗 == 𝑠𝑐𝑎𝑛𝑣;𝑖,𝑗 == 2 then

10 𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ = 𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ+ 1

11 if 𝑠𝑐𝑎𝑛𝑡;𝑖,𝑗 · 𝑠𝑐𝑎𝑛𝑡;𝑖,𝑗 == 2 then
12 𝑏𝑎𝑑𝑀𝑎𝑡𝑐ℎ = 𝑏𝑎𝑑𝑀𝑎𝑡𝑐ℎ+ 1

13 if 𝑠𝑐𝑎𝑛𝑡;𝑖,𝑗 · 𝑠𝑐𝑎𝑛𝑣;𝑖,𝑗 > 0 then
14 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛+ 1

15 if 𝑠𝑐𝑎𝑛𝑡;𝑖,𝑗 > 0 or 𝑠𝑐𝑎𝑛𝑣;𝑖,𝑗 > 0 then
16 𝑢𝑛𝑖𝑜𝑛 = 𝑢𝑛𝑖𝑜𝑛+ 1

17 𝐼𝑜𝑈 = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛/𝑢𝑛𝑖𝑜𝑛

18 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 = 𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ
𝑔𝑜𝑜𝑑𝑀𝑎𝑡𝑐ℎ+𝑏𝑎𝑑𝑀𝑎𝑡𝑐ℎ

· 𝐼𝑜𝑈1/4

3.3 Процедура построения и обновления топологической карты

Процедура поддержания графа строит и обновляет топологическую кар­
ту (граф локаций) исходя из наблюдений с бортовых датчиков робота, данных
одометрии и результатов модуля локализации. Каждой локации 𝑙𝑜𝑐 ∈ 𝑉𝑡

приписывается двумерная проекция ее облака точек, а также ее дескриптор,
извлеченный нейросетевой моделью распознавнаия места по наблюдению лока­
ции 𝑙𝑜𝑐𝑜𝑏𝑠. Смежные локации соединяются ребрами, и ребрам приписываются
относительные позиции между точками наблюдения локаций, которые они со­
единяют.

Результатом работы процедуры на шаге 𝑡 является граф локаций 𝐺𝑡, по­
крывающий все пространство, посещенное роботом, и текущее состояние робота
в графе: локация 𝑣𝑡𝑐𝑢𝑟, в которой находится робот на шаге 𝑡, и положение робо­
та относительно ее точки наблюдения 𝑇 𝑡

𝑐𝑢𝑟. На вход процедуре подаются граф

70

локаций 𝐺𝑡−1, состояние на шаге 𝑡− 1, результаты локализации, измерение одо­
метрии (оценка перемещения робота от шага 𝑡− 1 к шагу 𝑡) и облако точек 𝐶𝑡,
снятое лидаром робота на шаге 𝑡. Схема процесса обновления графа локаций
изображена на рисунке 3.7.

Рисунок 3.7 — Схема модуля поддержания графа: проверка принадлежности
робота к локации 𝑣𝑡−1

𝑐𝑢𝑟 , смена 𝑣𝑐𝑢𝑟 по ребру и по результатам локализации, до­
бавление новой локации в граф.

Процедура обновления графа описана в алгоритме 4. В начале проводится
проверка нахождения робота внутри локации 𝑣𝑡−1

𝑐𝑢𝑟 и перекрытия текущего скана
робота и скана локации 𝑣𝑡−1

𝑐𝑢𝑟 . Если значение 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 больше порога 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝 и
робот находится внутри локации 𝑣𝑡−1

𝑐𝑢𝑟 , то текущее состояние в графе обновляется
исходя из одометрии.

71

Алгоритм 4: Процедура обновления графа на шаге 𝑡

1 Вход: Граф локаций 𝐺𝑡−1 = (𝑉𝑡−1, 𝐸𝑡−1); состояние робота в графе
(𝑣𝑡−1

𝑐𝑢𝑟 ∈ 𝑉𝑡−1, 𝑇
𝑡−1
𝑐𝑢𝑟 ∈ 𝑆𝐸(3)); облако точек 𝐶𝑡 ∈ R𝑁×3; данные одометрии ̂︂∆𝑆𝑡;

результаты локализации: {(𝑣𝑖𝑙𝑜𝑐 ∈ 𝑉𝑡−1, 𝑇
𝑖
𝑙𝑜𝑐 ∈ 𝑆𝐸(3),𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒𝑖 ∈ [0, 1])}𝑖=1,...,𝑘,

упорядоченные по убыванию 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒𝑖

2 Выход: Обновленный граф 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡); обновленное состояние робота в графе
(𝑣𝑡𝑐𝑢𝑟, 𝑇

𝑡
𝑐𝑢𝑟)

3 Параметры: Порог доли перекрытия с текущей локацией 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝; порог качества
сопоставления 𝑡𝑚𝑎𝑡𝑐ℎ

/* 1. Проверка нахождения робота внутри локации 𝑣𝑡−1
𝑐𝑢𝑟 и перекрытия сканов

*/
4 if 𝐼𝑜𝑈(𝑇 𝑡−1

𝑐𝑢𝑟 𝐶𝑣𝑡−1
𝑐𝑢𝑟

, 𝐶𝑡) ⩾ 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑖𝑠𝐼𝑛𝑠𝑖𝑑𝑒(𝑇 𝑡−1
𝑐𝑢𝑟 , 𝐶𝑣𝑡−1

𝑐𝑢𝑟
) then

5 𝑣𝑡𝑐𝑢𝑟 = 𝑣𝑡−1
𝑐𝑢𝑟 ; 𝑇 𝑡

𝑐𝑢𝑟 = 𝑇 𝑡−1
𝑐𝑢𝑟 ⊕ ̂︂∆𝑆𝑡; 𝑉𝑡 = 𝑉𝑡−1; 𝐸𝑡 = 𝐸𝑡−1

/* 2. Попытка смены 𝑣𝑐𝑢𝑟 на одну из соседних локаций */
6 else
7 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒

8 𝑉𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = {𝑢 ∈ 𝑉𝑡−1 : (𝑣𝑡−1
𝑐𝑢𝑟 , 𝑢) ∈ 𝐸𝑡−1}

9 for 𝑣 ∈ 𝑣𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 do
10 𝑒 = (𝑣𝑡−1

𝑐𝑢𝑟 , 𝑣)

11 if ||𝐹 (𝑒)|| < ||𝑇 𝑡−1
𝑐𝑢𝑟 || then

12 𝑠𝑐𝑎𝑛𝑡 = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝐶𝑡)

13 𝑇𝑒𝑑𝑔𝑒,𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑎𝑛𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑠𝑐𝑎𝑛𝑣, 𝑠𝑐𝑎𝑛𝑡)

14 if 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 > 𝑡𝑚𝑎𝑡𝑐ℎ then
15 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝑇𝑟𝑢𝑒

16 𝑣𝑡𝑐𝑢𝑟 = 𝑣; 𝑇 𝑡
𝑐𝑢𝑟 = 𝑇𝑒𝑑𝑔𝑒; 𝑉𝑡 = 𝑉𝑡−1; 𝐸𝑡 = 𝐸𝑡−1

17 break

/* 3. Попытка смены 𝑣𝑐𝑢𝑟 по результатам локализации */
18 if not 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
19 for 𝑖 = 1, . . . , 𝑘 do
20 if 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒𝑖 > 𝑡𝑚𝑎𝑡𝑐ℎ and 𝐼𝑜𝑈(𝐶𝑣𝑖𝑙𝑜𝑐

, 𝑇 𝑖
𝑙𝑜𝑐𝐶𝑡) ⩾ 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝 then

21 𝑣𝑡𝑐𝑢𝑟 = 𝑣𝑖𝑙𝑜𝑐; 𝑇 𝑡
𝑐𝑢𝑟 = 𝑇 𝑖

𝑙𝑜𝑐; 𝑉𝑡 = 𝑉𝑡−1; 𝐸𝑡 = 𝐸𝑡−1 ∪ (𝑣𝑡−1
𝑐𝑢𝑟 , 𝑣

𝑡
𝑐𝑢𝑟)

22 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝑇𝑟𝑢𝑒

23 break

/* 4. Добавление новой локации в граф и смена 𝑣𝑐𝑢𝑟 на нее */
24 if not 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
25 𝑣𝑡𝑐𝑢𝑟 = 𝑛𝑒𝑤𝑁𝑜𝑑𝑒(𝐶𝑡); 𝑇 𝑡

𝑐𝑢𝑟 = 𝐼

26 𝑉𝑡 = 𝑉𝑡−1 ∪ {𝑣𝑡𝑐𝑢𝑟}; 𝐸𝑡 = 𝐸𝑡−1 ∪ (𝑣𝑡−1
𝑐𝑢𝑟 , 𝑣

𝑡
𝑐𝑢𝑟)

72

Если робот находится вне локации 𝑣𝑡−1
𝑐𝑢𝑟 или значение 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ниже поро­

га, то проводится попытка перейти по ребру графа (сменить локацию 𝑣𝑐𝑢𝑟 на
одну из соседних с локацией 𝑣𝑡−1

𝑐𝑢𝑟). Для этого текущий скан с робота сопостав­
ляется со сканами локаций – соседей 𝑣𝑡−1

𝑐𝑢𝑟 с использованием детектора углов
Харриса [88]. В качестве начального предположения для сопоставления исполь­
зуется относительная позиция, вычисленная исходя из 𝑇 𝑡−1

𝑐𝑢𝑟 и относительных
позиций, записанных на ребрах графа. Если сканы некоторых соседних лока­
ций успешно сопоставились с текущим сканом с робота, то в качестве локации
для перехода берется локация 𝑣𝑛𝑒𝑥𝑡, имеющая ближайшую к текущей позиции
робота точку наблюдения.

Если не удалось сопоставить текущее наблюдение с робота с соседними с
𝑣𝑡−1
𝑐𝑢𝑟 локациями, то проводится попытка обновить 𝑣𝑐𝑢𝑟 по результатам локализа­

ции. Для этого для каждой локации 𝑣𝑙𝑜𝑐 ∈ 𝑉𝑙𝑜𝑐 проверяется ее доля перекрытия с
текущим сканом с робота. Среди всех локаций, у которых значение перекрытия
превышает порог 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝, для перехода выбирается локация 𝑣𝑙𝑜𝑐 с наибольшим
значением 𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒. Далее обновляется текущее состояние в графе, и в граф
добавляется новое ребро из 𝑣𝑡−1

𝑐𝑢𝑟 в 𝑣𝑙𝑜𝑐.
Если подходящая локация для смены 𝑣𝑐𝑢𝑟 не найдена, то в граф добав­

ляется новая локация 𝑣𝑛𝑒𝑤, соответствующая текущему наблюдению с робота.
Добавленная локация соединяется ребром с локацией 𝑣𝑡−1

𝑐𝑢𝑟 .
Таким образом, при каждом добавлении новой локации в граф она со­

единяется с предыдущими локациями, что гарантирует связность графа. При
смене 𝑣𝑐𝑢𝑟 по результатам локализации (пункт (3) процедуры) автоматически
происходит замыкание цикла в графе локаций. При этом замыкание цикла не
требует проведения ресурсоемкой глобальной оптимизации, так как в предло­
женном алгоритме не требуется метрическая согласованность циклов.

3.4 Выводы по главе

В данной главе описан разработанный в ходе диссертационного иссле­
дования алгоритм PRISM-TopoMap, решающий поставленную в разделе 2.3
задачу топологического картирования и локализации. Разработанный алгоритм
состоит из выполняемых параллельно процедур поддержания и обновления то­

73

пологической карты (графа локаций) и локализации в построенной карте. В
каждый момент времени PRISM-TopoMap поддерживает текущее состояние в
графе, состоящее из локации, в которой находится робот в данный момент, и
относительного положения робота в этой локации.

Для локализации в топологической карте используется двухэтапный
подход, состоящий из глобального поиска локации нейросетевыми методами
распознавания места и фильтрации ложных распознаваний и уточнения поло­
жения робота с помощью оригинального алгоритма сопоставления двумерных
проекций облаков точек. Так обеспечивается надежная локализация в топологи­
ческой карте и исчезает необходимость хранить в карте облака точек локаций.
При обновлении карты не используются глобальные метрические координаты
и глобальная метрическая оптимизация, тем самым исключается накопление
ошибки позиционирования и снижаются вычислительные затраты при картиро­
вании. Замыкание циклов происходит без использования ресурсоемких методов
оптимизации при переходе в локацию из результатов процедуры локализации.

74

Глава 4. Программный комплекс топологического картирования и
локализации

Разработанный в ходе диссертационного исследования алгоритм постро­
ения и поддержания графа локаций и локализации в построенном графе
PRISM-TopoMap реализован в виде комплекса программных средств. Код
программного комплекса написан на языке программирования Python и ин­
тегрирован с операционной системой роботов ROS 1, являющейся основным
стандартом программирования в робототехническом сообществе. Реализация
алгоритма PRISM-TopoMap доступна по ссылке 2. Реализация составных ча­
стей процедуры локализации (распознавания места и сопоставления сканов)
доступна по ссылке 3 в составе программной библиотеки OpenPlaceRecognition.

Программный комплекс позволяет изменять параметры алгоритма
PRISM-TopoMap с помощью конфигурационного файла, сохранять построен­
ный граф локаций на диск, загружать с диска и использовать при локализации
сохраненный ранее граф. Разработанный программный комплекс позволяет
оценивать качество сохраненного графа по формулам 2.28-2.31. Интеграция
с системой ROS позволяет получать данные с бортовых датчиков различ­
ных робототехнических систем или из робототехнического симулятора без
доработки исходного кода программного комплекса, а также обмениваться
данными PRISM-TopoMap с другими программами, используемыми на роботе
(постановка целей для навигации, управление роботом и др.).

4.1 Структура программного комплекса

Программный комплекс топологического картирования и локализации со­
стоит из четырех основных классов:

1https://www.ros.org
2https://github.com/KirillMouraviev/PRISM-TopoMap
3https://github.com/OPR-Project/OpenPlaceRecognition/tree/feat/toposlam

75

Рисунок 4.1 — Схема взаимодействия классов программного комплекса.

– TopologicalGraph – класс, реализующий граф локаций. Он осуществ­
ляет инициализацию графа с заданными параметрами, добавление в
граф вершин и ребер, загузку графа с диска и его сохранение на диск.

– Feature2DGlobalRegistrationPipeline – класс, реализующий проце­
дуру сопоставления сканов. Он осуществляет поиск преобразования
координат между двумя сканами, представленными в виде проекций
облаков точек, и вычисление качества найденного преобразования со­
гласно алгоритму 3.

– Localizer – класс, реализующий процедуру локализации в графе лока­
ций. Он принимает на вход экземпляры классов TopologicalGraph и
Feature2dGlobalRegistrationPipeline, и по данным с бортовых дат­
чиков робота выдает список локаций и положений робота относительно
их точек наблюдения согласно алгоритму 1.

– TopoSLAMModel – класс, реализующий процедуру поддержания и
обновления графа локаций. Он принимает на вход экземпляры классов
TopologicalGraph и Localizer, и по данным одометрии, наблюдениям
бортовых датчиков робота и результатам локализации обновляет граф
и текущее состояние в нем согласно алгоритму 4.

Помимо вышеописанных классов, программный комплекс включает в себя
класс PRISMTopoMapNode, реализующий взаимодействие классов алгорит­

76

ма PRISM-TopoMap с системой ROS, а также набор вспомогательных функций,
реализующих геометрические операции, и класс LocalGrid, реализующий дву­
мерную проекцию облака точек. Класс PRISMTopoMapNode осуществляет подачу
на вход классам TopoSLAMModel и Localizer данных с робота (облака точек,
изображения, одометрия) и отправку их выходных данных (граф локаций,
текущее состояние в нем, результаты локализации) в ROS. Взаимодействие
класса PRISMTopoMapNode с системой ROS осуществляется с помощью топи­
ков 4 – очередей сообщений определенного типа, в которые могут публиковать
и из которых могут читать сообщения различные программы, интегрирован­
ные в ROS. К примеру, топик points может являться очередью сообщений
типа sensor_msgs/PointCloud2 (облако точек), в которую публикует сообще­
ния драйвер лидара и из которой читает сообщения класс PRISMTopoMapNode.

Для оценки качества топологического картирования по форму­
лам 2.28-2.31 в составе программного комплекса реализован класс
MetricCounter. Класс принимает на вход точную карту среды в виде сет­
ки занятости. Его методы для подсчета путевой эффективности, количества
компонент связности, корректности и полноты графа принимают на вход
граф локаций в виде списка ребер. Описание атрибутов и методов клас­
сов TopologicalGraph, Localizer, Feature2dGlobalRegistrationPipeline,
TopoSLAMModel и MetricCounter представлены ниже. Схема взаимодействия
классов представлена на рисунке 4.1.

TopologicalGraph Атрибуты класса TopologicalGraph представлены в табли­
це 3. Методы класса TopologicalGraph описаны в таблице 4.

Таблица 3 — Атрибуты класса TopologicalGraph
vertices List[Dict] Список локаций – вершин графа
adj_lists List[List] Список смежности, в котором хранятся ребра графа
index Faiss.Index Экземпляр структуры для быстрого поиска ближайших де­

скрипторов с помощью библиотеки Faiss 5

4https://wiki.ros.org/Topics
5https://github.com/facebookresearch/faiss

77

Таблица 4 — Методы класса TopologicalGraph

Метод
Входные

параметры
Выходные
параметры

Описание

__init__ Экземпляр
класса, индекс
для поиска
ближайших
дескрипторов,
порог сопостав­
ления сканов
𝑡𝑚𝑎𝑡𝑐ℎ

– Инициализирует граф лока­
ций с заданным индексом и
порогом сопоставления

load_from_json Экземпляр
класса, путь к
директории с
сохраненным
графом локаций

– Загружает граф локаций из
указанной директории

save_to_json Экземпляр
класса, путь
к директории
для сохранения
графа локаций

– Сохраняет построенный
граф локаций в указанную
директорию

add_vertex Экземпляр клас­
са, дескриптор
для поиска, про­
екция облака
точек (экзем­
пляр класса
LocalGrid), гло­
бальная позиция
для визуализа­
ции

Номер добавлен­
ной локации

Добавляет локацию в граф
и возвращает ее порядковый
номер в графе

get_vertex Экземпляр клас­
са, номер лока­
ции

Дескриптор,
проекция и гло­
бальная позиция
для визуали­
зации локации
с заданным
номером

Возвращает все атрибуты ло­
кации с заданным номером

Продолжение на следующей странице

78

Продолжение таблицы 4

Метод
Входные

параметры
Выходные
параметры

Описание

add_edge Экземпляр
класса, номера
локаций, соеди­
няемых ребром,
позиция второй
локации относи­
тельно первой

– Добавляет в граф двусто­
роннее ребро между парой
локаций с заданной относи­
тельной позицией

has_edge Экземпляр клас­
са, номера двух
локаций

Наличие ребра
между двумя
заданными лока­
циями

Возвращает True, если в
графе есть ребро между
локациями, и False в против­
ном случае

get_edge Экземпляр клас­
са, номера двух
локаций

Позиция второй
локации относи­
тельно первой,
записанная на
ребре

Возвращает относительную
позицию в случае наличия
ребра, и None в противном
случае

get_transform_
to_vertex

Экземпляр
класса, номер
локации, проек­
ция облака точек
с робота (эк­
земпляр класса
LocalGrid)

Преобразование
координат от
позиции робота
до точки наблю­
дения указанной
локации

Сопоставляет поданную на
вход проекцию облака то­
чек с робота с проекцией
облака точек заданной лока­
ции. Возвращает найденное
преобразование координат в
случае его нахождения, в
противном случае возвраща­
ет None

get_path_
with_length

Экземпляр клас­
са, номера двух
локаций

Путь между дву­
мя указанными
локациями в гра­
фе, длина пути в
метрах

Ищет путь между двумя ука­
занными локациями в графе
с помощью алгоритма Дейкс­
тры. Возвращает путь в виде
последовательности номеров
локаций и примерную дли­
ну пути, вычисленную по
записанным на ребрах отно­
сительным позициям

79

Feature2dGlobalRegistrationPipeline Атрибуты класса Feature2dGlobal-
RegistrationPipeline представлены в таблице 5. Методы класса Feature2dGlobal-
RegistrationPipeline описаны в таблице 6.

Таблица 5 — Атрибуты класса Feature2dGlobalRegistrationPipeline
Атрибут Тип Описание
detector cv2.ORB |

cv2.SIFT
Детектор особых точек, используемых для
сопоставления

outlier_thresholds List[Int] Список пороговых значений для удаления
выбросов (δ1, . . . , δ𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 из алгоритма 2)

min_matches Int Минимальное число сопоставлений особых
точек (параметр 𝐾 из алгоритма 2)

Таблица 6 — Методы класса Feature2dGlobalRegistrationPipeline

Метод
Входные

параметры
Выходные
параметры

Описание

__init__ Экземпляр класса,
тип детектора осо­
бых точек (SIFT или
ORB), количество
особых точек, пороги
сопоставления δ𝑖𝑡𝑒𝑟,
минимальное количе­
ство сопоставлений
𝐾

– Инициализирует класс
сопоставления облаков
точек с заданными пара­
метрами

get_fitness Экземпляр клас­
са, проекции двух
облаков точек в
виде сеток занято­
сти, преобразование
координат

Значение
𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 –
качество сопо­
ставления двух
проекций облаков
точек с помо­
щью заданного
преобразования

Вычисляет значение
𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 по заданным
проекциям облаков точек
и преобразованию коорди­
нат согласно алгоритму 3

80

Продолжение таблицы 6

Метод
Входные

параметры
Выходные
параметры

Описание

infer Экземпляр класса,
проекции двух об­
лаков точек в виде
сеток занятости

Найденное пре­
образование
координат между
двумя облаками
точек, а так­
же значение
𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒

Выполняет процеду­
ру сопоставления двух
сканов (проекций обла­
ков точек) с удалением
выбросов согласно ал­
горитму 2. Возвращает
найденное преобразование
координат и его значение
𝑚𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒, в случае нена­
хождения преобразования
возвращает None

Localizer Атрибуты класса Localizer представлены в таблице 7. Методы клас­
са Localizer описаны в таблице 8.

Таблица 7 — Атрибуты класса Localizer
Атрибут Тип Описание
graph TopologicalGraph Граф локаций, в котором проводится

локализация
top_k Int Количество наиболее близких по

дескрипторам локаций 𝑘, возвращае­
мое на первом этапе локализации

registration_score_
threshold

Float Значение порога 𝑡𝑚𝑎𝑡𝑐ℎ, используемое
на шаге 3 алгоритма 4

place_recognition_
model

torch.nn.Model Нейросетевая модель распознавания
места, используемая на первом этапе
локализации

scan_matching_
pipeline

Feature2DGlobal-
RegistrationPipeline

Экземпляр класса сопоставления ска­
нов, используемый на втором этапе
локализации

Таблица 8 — Методы класса Localizer

Метод
Входные

параметры
Выходные
параметры

Описание

Продолжение на следующей странице

81

Продолжение таблицы 8

Метод
Входные

параметры
Выходные
параметры

Описание

__init__ Экземпляр класса,
граф локаций, ней­
росетевая модель
распознавания места и
алгоритм сопоставле­
ния сканов, значение
top_k

– Инициализирует
класс локализа­
ции с заданными
параметрами

localize Экземпляр класса,
облако точек с ро­
бота, изображения
(опционально)

Номера локаций
графа, в которых
находится робот, и
позиция робота от­
носительно их точек
наблюдения

Выполняет проце­
дуру локализации в
графе по поданному
на вход наблюдению
точек с робота

TopoSLAMModel Атрибуты класса TopoSLAMModel представлены в табли­
це 9. Методы класса TopoSLAMModel описаны в таблице 10.

Таблица 9 — Атрибуты класса TopoSLAMModel
Атрибут Тип Описание
graph TopologicalGraph Используемый экземпляр графа ло­

каций
localizer Localizer Используемый экземпляр класса ло­

кализации
path_to_load_graph Str Путь для загрузки графа локаций с

диска
path_to_save_graph Str Путь для сохранения построенного

графа локаций на диск
last_vertex (Array, LocalGrid,

Array)
Текущая локация 𝑣𝑐𝑢𝑟, хранимая
как кортеж из дескриптора ло­
кации, проекции ее облака точек
и, опционально, позиции ее точки
наблюдения в глобальной системе ко­
ординат

last_vertex_id Int Номер текущей локации 𝑣𝑐𝑢𝑟

rel_pose_of_vcur Array 𝑇𝑐𝑢𝑟 – положение робота относитель­
но точки наблюдения локации 𝑣𝑐𝑢𝑟

Продолжение на следующей странице

82

Продолжение таблицы 9
Атрибут Тип Описание
iou_threshold Float Значение порога 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝 в алгоритме 4
max_edge_length Float Максимальная длина ребра, добавля­

емого в граф (при выезде за пределы
этого расстояния от точки наблюде­
ния локации 𝑣𝑐𝑢𝑟 происходит переход
к шагу 2 алгоритма 4)

floor_height Float Максимальная высота точек поверх­
ности 𝑧𝑓𝑙𝑜𝑜𝑟, используемая при проек­
ции облака точек

ceil_height Float Минимальная высота точек потолка
𝑧𝑐𝑒𝑖𝑙, используемая при проекции об­
лака точек

inline_registration_
model

Feature2DGlobal-
RegistrationPipeline

Экземпляр класса сопоставления ска­
нов, используемый на шаге 2 алгорит­
ма 4

inline_registration_
score_threshold

Float Значение порога 𝑡𝑚𝑎𝑡𝑐ℎ, используемое
на шаге 2 алгоритма 4

Таблица 10 — Методы класса TopoSLAMModel

Метод
Входные

параметры
Выходные
параметры

Описание

__init__ Экземпляр класса,
конфигурационный
файл с параметрами,
пути для загрузки
и сохранения графа
локаций

– Инициализирует все
составляющие алгорит­
ма PRISM-TopoMap с
параметрами из конфи­
гурационного файла и
заданными путями для
загрузки и сохранения
графа локаций

update Экземпляр класса,
облако точек с ро­
бота, одометрия,
изображения с робо­
та (опционально)

– Выполняет процедуру об­
новления графа в соответ­
ствии с алгоритмом 4

Продолжение на следующей странице

83

Продолжение таблицы 10

Метод
Входные

параметры
Выходные
параметры

Описание

reattach_by_
edge

Экземпляр класса,
проекция облака
точек с робота

Успешность пе­
рехода по ребру

Выполняет шаг 2 проце­
дуры обновления графа и
возвращает True в случае
успешной смены 𝑣𝑐𝑢𝑟, и
False в противном случае

reattach_by_
localization

Экземпляр класса Успешность
смены 𝑣𝑐𝑢𝑟

Выполняет шаг 3 проце­
дуры обновления графа и
возвращает True в случае
успешной смены 𝑣𝑐𝑢𝑟, и
False в противном случае

add_new_
vertex

Экземпляр класса,
дескриптор и проек­
ция облака точек с
робота

– Выполняет шаг 4 процеду­
ры обновления графа

MetricCounter Атрибуты класса MetricCounter представлены в таблице 11.
Методы класса TopologicalGraph описаны в таблице 12.

Таблица 11 — Атрибуты класса MetricCounter
Атрибут Тип Описание
gt_map Array Точная карта среды в виде сетки занятости

Таблица 12 — Методы класса MetricCounter

Метод
Входные

параметры
Выходные
параметры

Описание

__init__ Экземпляр класса,
путь к точной карте
среды

– Загружает точную карту
среды

n_components Экземпляр класса,
список ребер графа
локаций в коорди­
натах загруженной
точной карты среды

Количество
компонент
связности

Вычисляет количество
компонент связности
графа

Продолжение на следующей странице

84

Продолжение таблицы 12

Метод
Входные

параметры
Выходные
параметры

Описание

area_covered_by_
main_component

Экземпляр класса,
список ребер графа
локаций в коорди­
натах загруженной
точной карты среды

Доля покрытия
сцены

Вычисляет долю покры­
тия сцены локациями гра­
фа 2.29

edge_correctness Экземпляр класса,
список ребер графа
локаций в коорди­
натах загруженной
точной карты среды

Значение кор­
ректности
ребер графа

Вычисляет корректность
ребер графа по форму­
ле 2.30

edge_recall Экземпляр класса,
список ребер графа
локаций в коорди­
натах загруженной
точной карты среды

Значение полно­
ты ребер графа

Вычисляет полноту ребер
графа по формуле 2.31

path_efficiency Экземпляр класса,
список ребер графа
локаций в коорди­
натах загруженной
точной карты среды

Значение путе­
вой эффектив­
ности

Вычисляет путевую эф­
фективность (𝑆𝑃𝐿𝑁) по
формуле 2.28

4.2 Параметры

Параметры алгоритма PRISM-TopoMap, а также класса PRISMTopoMap­
Node, реализующего взаимодействие алгоритма PRISM-TopoMap с системой
ROS, задаются в конфигурационном файле формата yaml. Путь к конфи­
гурационному файлу, пути для загрузки и/или сохранения графа локаций
прописываются в файле запуска ROS формата launch. Описание параметров и
их значения, использованные в экспериментальном исследовании в симуляци­
онных помещениях, представлены в таблице 13.

85

Таблица 13 — Значения параметров алгоритма PRISM-TopoMap, используемых
для симуляционных помещений

Класс Параметр Описание Значение

TopoSLAM-
Model

floor_height Максимальная высота то­
чек поверхности 𝑧𝑓𝑙𝑜𝑜𝑟 в
формуле 3.8

-0.9

ceil_height Минимальная высота то­
чек потолка 𝑧𝑐𝑒𝑖𝑙 в форму­
ле 3.8

1.5

iou_threshold Значение порога 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝 на
шаге 1 алгоритма 4

0.3

max_edge_length Максимальная длина реб­
ра, добавляемого в граф

5.0

inline_registration_
score_threshold

Значение порога 𝑡𝑚𝑎𝑡𝑐ℎ, ис­
пользуемое на шаге 2 алго­
ритма 4

0.5

Localizer
place_recognition_
model

Тип нейросетевой модели
распознавания места

MSSPlace

registration_score_
threshold

Значение порога 𝑡𝑚𝑎𝑡𝑐ℎ, ис­
пользуемое на шаге 3 алго­
ритма 4

0.6

top_k Количество наиболее близ­
ких по дескрипторам ло­
каций 𝑘, возвращаемое на
первом этапе локализации

5

Feature2D-
Global-
Registration-
Pipeline

detector_type Тип детектора особых то­
чек, используемого при
сопоставлении сканов

ORB

outlier_thresholds Список пороговых зна­
чений для удаления
выбросов (δ1, . . . , δ𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

из алгоритма 2) в метрах

(2.5, 1, 0.5,
0.25, 0.25)

min_matches Минимальное число сопо­
ставлений особых точек
(параметр 𝐾 из алгорит­
ма 2)

5

LocalGrid
resolution Размер ячейки двумерной

проекции облака точек
(параметр 𝑑 в форму­
ле 3.8) в метрах

0.1

Продолжение на следующей странице

86

Продолжение таблицы 13
Класс Параметр Описание Значение

max_range Максимальное расстояние
от точки наблюдения при
проекции (параметр 𝑟 в
формуле 3.8) в метрах

8.0

Значения параметров floor_height и ceil_height подбираются исходя
из высоты лидара робота над полом, а также высоты потолка (в случае работы
в помещениях). К примеру, указанные в таблице значения подходят для высо­
ты лидара робота над полом 1 м и для высоты потолка 3 м. В таком случае
пол имеет z-координату, равную -1.0, а потолок – равную 2.0, и в проекцию
попадают все точки, которые выше пола более чем на 0.1 м и ниже потолка бо­
лее чем на 0.5 м. Для использования PRISM-TopoMap на улице целесообразно
немного повысить значение параметра floor_height для компенсации неров­
ностей поверхности. Значение ceil_height при использовании на улице можно
выставить большим, например, 5.0.

Значение параметра iou_threshold определяет частоту перехода к шагам
2-4 алгоритма 4 и, соответственно, плотность графа локаций. Чем выше это зна­
чение, тем чаще будет выполняться переход и/или добавление новой локации, и
тем плотнее будет граф. Оптимальными являются значения в диапазоне от 0.2
до 0.4. Значение параметра max_edge_length тоже влияет на плотность графа
– чем меньше максимальная длина добавляемого в граф ребра, тем плотнее
получится граф.

Выбор значений параметров registration_score_threshold и
inline_registration_score_threshold определяется плотностью облака
точек с робота и объектов в среде, а также интенсивностью динамических изме­
нений среды. При разреженном облаке точек или низкой плотности объектов
в среде (в частности, при работе на улице), или при значительных изменениях
среды следует выбирать меньшие значения параметров, чтобы сопоставления
успешно находились. При высокой плотности облака точек и/или объектов и
незначительных изменениях среды (работа в помещениях без людей) следует
выбирать более высокие значения параметров для более точного сопоставления.

Значение параметра min_matches менее 4 может привести к некоррект­
ному сопоставлению, более 7 – к отбрасыванию корректных сопоставлений.

87

Таким образом, рекомендуется выбирать min_matches = 5. Значения парамет­
ра outlier_thresholds подобрано эмпирическим путем в ходе экспериментов в
симуляционных помещениях. Оптимальный результат достигается при значени­
ях последнего элемента из списка outlier_thresholds в пределах 2-3 размеров
ячейки двумерной проекции (2 · 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 < δ𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 < 3 · 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛).

Значение размера ячейки проекции resolution определяется желаемой
точностью локализации (оно должно быть меньше, чем желаемое значение
ошибки), а также требованиями к компактности топологической карты (ее
размер в памяти обратно пропорционален квадрату значения resolution). В по­
мещениях оптимальное значение порядка 0.1, на улице – порядка 0.25. Значение
радиуса проекции max_range определяется типичным расстоянием от робота до
объектов, попадающих в его наблюдение (как правило, в помещениях оно рав­
но 5-15 м, на улице – 20-50 м).

Описание входных и выходных топиков ROS представлено в таблице 14.
На вход классу PRISMTopoMapNode в соответствующих топиках подаются все
входные данные алгоритма PRISM-TopoMap: одометрия, облако точек, изобра­
жения с передней и задней камер. Все основные выходные данные публикуются
в соответствующие топики ROS: граф локаций, текущая локация 𝑣𝑐𝑢𝑟, положе­
ние в ней 𝑇𝑐𝑢𝑟, проекция текущего скана с робота и локации 𝑣𝑐𝑢𝑟, сопоставленные
и не сопоставленные процедурой локализации локации.

Таблица 14 — Топики для получения и отправки данных в систему ROS классом
PRISMTopoMapNode

Топик Тип Описание

Вход

odom nav_msgs/ Odometry Данные одометрии
points sensor_msgs/

PointCloud2
Облако точек с робота

image_front sensor_msgs/ Image Изображение с передней камеры
робота

image_back sensor_msgs/ Image Изображение с задней камеры ро­
бота

Выход local_grid nav_msgs/
OccupancyGrid

Проекция скана локации 𝑣𝑐𝑢𝑟

last_vertex visualization_msgs/
Marker

Точка наблюдения локации 𝑣𝑐𝑢𝑟

Продолжение на следующей странице

88

Продолжение таблицы 14
Топик Тип Описание
topological_
map

visualization_msgs/
MarkerArray

Граф локаций (визуализируются
точки наблюдения локаций и реб­
ра)

matched_
points

visualization_msgs/
Marker

Точки наблюдения локаций,
успешно сопоставленных процеду­
рой локализации

unmatched_
points

visualization_msgs/
Marker

Точки наблюдения локаций, вхо­
дящих в 𝑘 ближайших в про­
странстве дескрипторов, но не
сопоставленных процедурой сопо­
ставления сканов

current_grid nav_msgs/
OccupancyGrid

Проекция текущего облака точек
с робота

tf tf2_msgs/ TFMessage Преобразования координат
(𝑚𝑎𝑝 → 𝑣𝑐𝑢𝑟 – от глобаль­
ной системы координат до
системы координат, связан­
ной с точкой наблюдения 𝑣𝑐𝑢𝑟,
если задана глобальная метри­
ческая система координат, и
𝑣𝑐𝑢𝑟 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 – преобра­
зование 𝑇𝑐𝑢𝑟)

4.3 Пример использования

В данном разделе показан пример запуска разработанного программно­
го комплекса картирования и локализации на симуляционном помещении в
симуляторе Habitat. Пример повторяет эксперимент, проведенный на первой
из пяти сцен в разделе 5.2. Для запуска симулятора Habitat и подачи симу­
лированных наблюдений с робота в систему ROS используется программный
пакет habitat_ros6. Посредством команды roslaunch пакет запускает симу­
лятор Habitat на заданной сцене с моделированием указанных в эксперименте
датчиков и подает наблюдения с робота (облако точек и четыре RGB-D изоб­

6https://github.com/CnnDepth/habitat_ros/tree/toposlam_experiments

89

ражения: вперед, назад, влево и вправо) в систему ROS. Команда для запуска
пакета habitat_ros выглядит так:

roslaunch habitat_ros toposlam_experiment_mp3d_4x90_large_noise.launch

Рисунок 4.2 — Пример вывода программного комплекса в консоль.

Далее пользователю нужно создать конфигурационный файл, в котором
будут прописаны значения параметров алгоритма PRISM-TopoMap, а также
названия входных топиков ROS. Конфигурационный файл для экспериментов
в помещениях в симуляторе Habitat доступен по ссылке 7. Далее путь к кон­
фигурационному файлу и пути для загрузки и/или сохранения графа локаций
прописываются в файл для запуска программного комплекса в системе ROS.
Пример такого файла представлен по ссылке 8. Запускается программный ком­
плекс следующей командой:

roslaunch prism_topomap build_map_by_iou_habitat.launch

После запуска программный комплекс выводит информацию о процессе
картирования и локализации в командную консоль. Пример вывода представ­
лен на рисунке 4.2. Наблюдения с робота, граф локаций и текущее состояние

7https://github.com/KirillMouraviev/PRISM-TopoMap/blob/main/config/habitat_mp3d_noised_odom.yaml
8https://github.com/KirillMouraviev/PRISM-TopoMap/blob/main/launch/build_map_by_iou_habitat.launch

90

Рисунок 4.3 — Пример визуализации работы программного комплекса в RViz:
граф локаций и текущее состояние в нем в сравнении с двумерной сеткой заня­

тости, построенной по всей сцене.

робота в нем можно наблюдать с помощью RViz – стандартного инструмен­
та визуализации для системы ROS. Конфигурационный файл формата rviz
доступен по ссылке 9. Пример визуализации графа локаций с помощью RViz
представлен на рисунке 4.3. Граф локаций показан красными квадратами и
синими линиями, точка наблюдения 𝑣𝑐𝑢𝑟 – зеленым кругом. Локации, найден­
ные моделью распознавания места, которые не удалось сопоставить с текущим
наблюдением с робота, показаны желтыми квадратами. Черно-белым показана
проекция текущего облака точек с робота.

4.4 Выводы по главе

На основе разработанного алгоритма топологического картирования и
локализации PRISM-TopoMap, описанного в предыдущей главе, был создан ком­
плекс программных средств. Комплекс реализован на языке программирования
Python и интегрирован с операционной системой роботов ROS, что позволяет

9https://github.com/CnnDepth/habitat_ros/blob/toposlam_experiments/rviz/toposlam_experiment_habitat.rviz

91

использовать его на различных робототехнических системах и в симуляторах
без изменения исходного кода. С помощью данного программного комплекса
пользователь может задавать подходящие под задачу параметры алгоритма
PRISM-TopoMap в конфигурационном файле, сохранять и загружать постро­
енные графы локаций.

Программный комплекс топологического картирования и локализации
состоит из четырех основных классов, реализующих основные составляющие
алгоритма PRISM-TopoMap (граф локаций, процедура сопоставления сканов,
процедура локализации, процедура обновления графа), а также из несколь­
ких вспомогательных (взаимодействие с системой ROS, проекция облака точек,
геометрические преобразования, вычисление критериев качества по форму­
лам 2.28-2.31). В главе приведены атрибуты и методы основных классов и
значения параметров, используемых в симуляционных экспериментах в раз­
деле 5.2. Приведен пример запуска программного комплекса для проведения
симуляционного эксперимента. Исходный код всех классов комплекса выложен
в открытый доступ 10 и зарегистрирован в виде программы для ЭВМ (см. при­
ложение A).

10https://github.com/kirillMouraviev/PRISM-TopoMap

92

Глава 5. Экспериментальное исследование

Для оценки качества картирования и локализации с помощью пред­
ложенного набора критериев качества необходимо проведение численного
эксперимента с построением карты некоторой среды, локализацией в карте и
вычислением значений метрик. Для этой цели подходят робототехнические си­
муляторы, в которых строится точная модель среды и робота и моделируются
наблюдения с бортовых датчиков робота. В данной главе описана постановка
численного эксперимента в фотореалистичном симуляторе Habitat [89] с мо­
делированием ошибки одометрии, встречающейся на реальном роботе. В ходе
численного эксперимента проводится проезд робота по маршруту, наблюдения
с которого охватывают всю среду, выполнение ОКЛ в реальном времени и
оценка качества картирования и локализации с использованием всех предло­
женных в главе 2 показателей качества. Выполняется сравнение разработанного
алгоритма PRISM-TopoMap с другими современными алгоритмами ОКЛ по
показателям 2.28-2.31, а также по затратам времени и памяти в процессе кар­
тирования.

Помимо численных экспериментов в симуляторе, проводятся натурные
эксперименты на данных с реальных робототехнических систем. Эксперимен­
ты состоят из картирования помещений большой площади на двух проездах
мобильного робота в помещениях большой площади и локализации мобильно­
го робота в предварительно построенной карте. Для локализации используется
проезд робота по открытой среде длиной 3 км. Выполняется сравнение качества
локализации по показателям 2.16, 2.34 с другими современными алгоритмами.

5.1 Постановка численного эксперимента в симуляционной среде

Рассматриваемые в данном исследовании алгоритмы топологического
картирования и локализации предназначены для работы на реальных робото­
технических системах в ходе их автономной навигации. Однако оценка качества
в ходе тестирования на реальной робототехнической системе затруднительна
по следующим причинам:

93

1. Значительные затраты времени на подготовку и проведение экспери­
мента;

2. Проблемы воспроизводимости эксперимента – повторить несколько раз
эксперимент на реальной робототехнической системе с соблюдением од­
них и тех же условий затруднительно;

3. Трудности с получением истинных данных о положении робота и окру­
жающих его объектов – отслеживание положения реальных объектов
с высокой точностью требует наличия дорогостоящего оборудования и
тщательной пост-обработки результатов.

Проблема воспроизводимости решается наличием открытых коллекций
данных, содержащих проезды реальных робототехнических систем в поме­
щениях и на улице (например, EuRoC [90], TUM RGB-D [91], KITTI [70],
ITLP-Campus [8]). Помимо наблюдений с бортовых датчиков роботов (лидары,
стереокамеры, RGB-D камеры, ИНС) эти коллекции содержат траектории ро­
ботов, измеренные с высокой точностью. Однако такие коллекции не содержат
точную модель среды с положением всех объектов, попавших в наблюдения
роботов, что сокращает возможности оценки качества картирования.

Для получения данных об истинном положении окружающих робототех­
ническую систему объектов, а также для прогона робота по произвольной
траектории используются различные робототехнические симуляторы. В симу­
ляторах создается подробная геометрическая модель окружающей среды, в
которой моделируется движение робота и наблюдения с его бортовых датчиков.
Таким образом, в симуляционной среде можно оценивать качество алгоритма
ОКЛ по показателям 2.16,2.18,2.28 на большом количестве проездов робота.

Одним из наиболее известных и применяемых в робототехническом со­
обществе является симулятор Gazebo [92]. Его основными преимуществами
являются простота использования и низкие требования к вычислительным
ресурсам – симулятор работает даже на маломощных вычислителях. Суще­
ственным недостатком симулятора Gazebo является однообразность текстур в
помещениях, затрудняющая работу визуальных методов ОКЛ. Более того, в
Gazebo некорректно моделируются некоторые физические процессы – напри­
мер, свет может проходить сквозь непрозрачные объекты (см. рисунок 5.1).

Еще одним широко используемым робототехническим симулятором явля­
ется ISAAC Sim 1. В этом симуляторе более точно смоделированы физические

1https://developer.nvidia.com/isaac/sim

94

Рисунок 5.1 — Прохождение света сквозь стену в симуляторе Gazebo. Источ­
ник [82].

процессы (движение робота, распространение света и т.д.), а также имеются
высокотекстурированные модели сред. ISAAC позволяет обучать различные
нейросетевые методы взаимодействия с окружающей средой с помощью рас­
ширения ISAAC Gym [93]. Однако для запуска симулятора требуется наличие
мощного графического ускорителя и не менее 8 ГБ видеопамяти, что доступно
не на всех современных компьютерах.

Для проведения численных экспериментов в данной работе был выбран
симулятор Habitat [89]. Он обладает высокой фотореалистичностью и имеет
значительно более низкие требования к вычислительным ресурсам, чем ISAAC
Sim, за счет отсутствия моделирования кинематики робота (время в симулято­
ре дискретное, и на каждом шаге робот перемещается телепортацией между
точками свободного пространства среды). Таким образом, симулятор Habitat
не требует наличия таких мощных графических ускорителей, как симулятор
ISAAC, и при этом в нем можно вычислять все описанные выше метрики каче­
ства картирования и локализации. Примеры визуализации сред в симуляторах
Gazebo, ISAAC и Habitat показаны на рисунке 5.2.

Окружающая среда в симуляторе Habitat моделируется с помощью трех­
мерной полигональной сетки, грани которой задают поверхности, описывающие
границы области объектов 𝑊𝑜𝑏𝑗 (2.1). Каждая грань имеет лицевую сторону
(обращенную в свободную область 𝑊𝑓𝑟𝑒𝑒) и тыльную сторону (обращенную
в область объектов 𝑊𝑜𝑏𝑗). Лицевая сторона каждой грани имеет цвет, отоб­
ражающийся на наблюдениях с моделей камер робота. Сетка имеет высокое

95

Рисунок 5.2 — Пример визуализации среды и модели робота в различных ро­
бототехнических симуляторах: (а) – Gazebo, (б) – ISAAC Sim, (в) – Habitat

(модели робота в симуляторе Habitat не предполатается).

разрешение (диаметр ячейки порядка 1 см) для обеспечения фотореалистич­
ности.

Симулятор Habitat поддерживает моделирование монокулярных и RGB-D
камер, а также предоставляет точную позицию робота pt (2.3). Изображения с
камер робота моделируются следующим образом: полигональная сетка, описы­
вающая границу 𝑊𝑜𝑏𝑠𝑡, проецируется на матрицу камеры. Цвет каждого пикселя
изображения определяется как цвет грани полигональной сетки, чья проекция
попала на этот пиксель. Путем проекции полигональной сетки на матрицу ка­
меры строится точная карта глубин изображения.

Робот представляется в виде цилиндра радиусом 𝑟 и высотой ℎ с задан­
ной ориентацией (в экспериментах использовалась высота ℎ = 0.88 м и радиус
𝑟 = 0.18 м). Положение камеры задается в центре верхней грани этого ци­
линдра. Положение робота в позиции 𝑝𝑡 задается по центру нижней грани
цилиндра. Движение робота моделируется дискретно – на каждом шаге симу­
ляции робот может повернуться влево или вправо на угол α, проехать вперед
на расстояние 𝑑, либо остаться на месте. При этом перемещение робота впе­
ред из положения 𝑝𝑡 возможно, если и только если его цилиндр в положении
𝑆𝑡 · (𝑑, 0, 0)𝑇 не пересекается с поверхностью области препятствий, заданной
полигональной сеткой.

Для получения наблюдений с робота в симуляторе Habitat в соответствии
с форматом 2.7 облако точек строится путем обратной проекции глубин изоб­
ражений с камер. Для создания панорамного облака точек моделируются 4
камеры с горизонтальным полем зрения 90∘ каждая, направленные вперед, вле­

96

Рисунок 5.3 — Пример построения панорамного облака точек по изображениям
с четырех RGB-D камер. Слева – изображения и глубины с камер, справа -

облако точек, полученное с помощью обратной проекции.

во, вправо и назад. Пример создания облака точек по четырем RGB-D камерам
прдедставлен на рисунке 5.3.

Для проверки алгоритмов ОКЛ на устойчивость к ошибке одометрии, ко­
торая неизбежно присутствует на реальных робототехнических системах, по
точной позе робота 𝑆𝑡 строится зашумленная позиция ̂︀𝑆𝑡 путем добавления гаус­
совского шума в соответствии с формулами 2.9, 2.13.

Симулятор Habitat не предоставляет функционал для получения трех­
мерной или двумерной модели помещения напрямую, поэтому для вычисления
длин путей в формуле (2.26) строится срез модели помещения 𝑊𝑧1:𝑧2 (2.2) и пре­
образуется в сетку занятости 𝑔𝑟𝑖𝑑𝑧1,𝑧2 с разрешением 0.05 м. Для вычисления
среза по модели помещения строится трехмерное облако точек путем объезда
помещения роботом и объединения локальных облаков точек, полученных с
помощью обратных проекций глубин, в единое глобальное облако точек. Для
объединения облаков точек используются истинные позиции робота 𝑝𝑡, получен­
ные из симулятора. Для экономии памяти проводится дискретизация облака
точек – все координаты округляются до 0.05 м, и после округления удаляются
дубликаты точек. Далее берется срез построенного глобального облака точек по
высотам от 𝑧1 до 𝑧2 и проецируется на плоскость. В экспериментах используют­
ся значения 𝑧1 = 0; 𝑧2 = 1.0, что соответствует высотам объектов, являющихся
препятствиями для робота.

97

Рисунок 5.4 — Пример вычисления оптимального пути по сетке занятости с
помощью графов видимости.

Для вычисления оптимальных путей по построенной сетке занятости
проводится т.н. «раздутие препятствий» на радиус 𝑟: каждая ячейка сетки
помечается занятой, если на расстоянии не более 𝑟 от нее находятся заня­
тые ячейки. После «раздутия препятствий» по сетке занятости строится граф
видимости [94], в котором вершинами являются угловые точки препятствий,
а ребрами соединяются угловые точки, отрезок между которыми лежит в
свободной области среды 𝑊𝑓𝑟𝑒𝑒. Для построения графа видимости по сетке за­
нятости используется реализация, описанная в работе [95]. При вычислении
значения метрики 𝑆𝑃𝐿(𝑝𝑎𝑡ℎ(si,gi, 𝐺)) (2.28) в граф добавляются вершины,
соответствующие точкам si,gi. Построенные по таким графам пути являются
оптимальными в сетке занятости 𝑔𝑟𝑖𝑑𝑧1:𝑧2 и, как следствие, являются близкими
к оптимальному в срезе окружающей среды 𝑊𝑧1:𝑧2. Пример вычисления пути
по графам видимости показан на рисунке 5.4.

5.2 Численные эксперименты в симуляционной среде

Разработанный алгоритм топологического картирования и локализации
в топологической карте был апробирован на симуляционных данных внут­
ри помещений и на данных с реальных роботов внутри и вне помещений.
Экспериментальное исследование включало в себя численный эксперимент в
симуляционной среде в соответствии с постановкой, описанной в главе 2 с
вычислением показателей качества 2.28-2.31, а также измерение количества
памяти, потребляемой на хранение и поддержание карты, и времени, затра­

98

ченного на одну итерацию обновления карты. Было проведено сравнение с
другими современными метрическими и топологическими методами картирова­
ния и локализации. Было проведено отдельное экспериментальное исследование
алгоритмов сопоставления сканов для локализации в графе локаций на наборе
симуляционных данных внутри помещений.

Исследование алгоритмов сопоставления сканов для локализации
Экспериментальное исследование алгоритмов сопоставления сканов проводи­
лось на наборе симуляционных данных внутри помещений. Набор содержал
5 сцен из коллекции данных Matterport3D [96]. По каждой сцене был построен
маршрут, наблюдения с которого охватывали всю сцену, затем была построена
топологическая карта этого маршрута и осуществлен проезд по маршруту с по­
мощью симулятора Habitat [89]. На каждой точке маршрута бралось текущее
наблюдение с робота, а также 5 локаций из топологической карты, чьи де­
скрипторы были наиболее близки к дескриптору текущего наблюдения. Таким
образом, было получено 1605 поднаборов данных, каждый из которых содер­
жал одно наблюдение с робота и 5 локаций-кандидатов, т.е. всего набор данных
содержал 8025 пар сканов. Из них значение перекрытия (IoU) более 0.5 имело
1377 пар сканов, значение IoU более 0.25 – 2369 пар сканов.

Для сравнения были выбраны наиболее распространенные классические
и нейросетевые методы сопоставления сканов: итеративный метод ближай­
шей точки (ICP) [73] с начальным приближением, получаемым с помощью
алгоритма RANSAC [39], метод ICP с 6 разными случайно выбранными
начальными приближениями и нейросетевая модель сопоставления сканов
GeoTransformer [97]. Качество сопоставления оценивалось измерением точности
и полноты сопоставления сканов. Точность измерялась как отношение числа
корректно сопоставленных сканов к числу всех сканов, которые были сопо­
ставлены алгоритмом. Полнота измерялась как отношение числа корректно
сопоставленных сканов к числу всех сканов, которые имеют определенную до­
лю перекрытия. Было проведено два измерения полноты – для всех пар сканов
со значением IoU > 0.5 и для всех пар сканов со значением IoU > 0.25. Для
каждого алгоритма было измерено среднее время, затраченное на сопоставле­
ние одной пары сканов. Результаты экспериментов приведены в таблице 15.
Пример сопоставления сканов с помощью всех рассмотренных алгоритмов при­
веден на рисунке 5.5.

99

Таблица 15 — Результаты экспериментального исследования сопоставления
сканов. Предложенный в данной работе алгоритм обозначен как Feature2D и
опробован с двумя детекторами особых точек: SIFT и ORB

Алгоритм Точность↑ Полнота > 0.5↑ Полнота > 0.25 ↑ Время, мс↓
RANSAC + ICP 0.84 0.75 0.53 360
6x ICP 0.78 0.09 0.05 580
Geotransformer 0.22 0.85 0.67 280
Feature2D-SIFT 1.00 0.85 0.56 75
Feature2D-ORB 1.00 0.97 0.69 12

Рисунок 5.5 — Результаты сопоставления сканов для всех рассмотренных алго­
ритмов, в сравнении с истинным сопоставлением (Ground truth). Значение IoU

у представленной пары сканов равно 0.65.

Исследование картирования и локализации в симуляционных поме­
щениях Для экспериментального исследования картирования и локализации
были выбраны 5 сцен из набора данных Matterport3D, использованных для ис­
следования сопоставления сканов. По каждой из сцен был построен маршрут,
наблюдения с точек которого охватывали всю сцену. Площадь сцен составляла
от 100 до 700 м2, длины маршрутов – от 100 до 300 м. По маршрутам был осу­
ществлен проезд виртуального робота с помощью симулятора Habitat, в ходе
которого с помощью алгоритма строилась карта с нуля.

На каждом шаге на вход алгоритму подавалось облако точек и изображе­
ния с камер робота, а также текущее положение робота из симулятора. Текущее

100

положение робота зашумлялось в соответствии с формулами 2.9, 2.13. Были ис­
пользованы три уровня шума: нулевой, средний и большой. На среднем уровне
шума были выбраны значения σ𝑥

𝑡 = 0.003;σ𝑦
𝑡 = 0;σ𝑧

𝑡 = 0;σ𝑟
𝑡 = 0.0075. На боль­

шом уровне шума – σ𝑥
𝑡 = 0.0075;σ𝑦

𝑡 = 0;σ𝑧
𝑡 = 0;σ𝑟

𝑡 = 0.025. Такие значения
уровня шума соответствуют современным методам одометрии, относительная
ошибка которых составляет, как правило, от 0.005 до 0.01. Для оценки каче­
ства алгоритма использовалась карта, построенная алгоритмом по завершении
проезда по маршруту.

Для сравнения был выбран современный топологический алгоритм
TSGM [46], два современных топометрических алгоритма Hydra [34] и
IncrementalTopo [98], и три широко применимых метрических алгоритма:
RTAB-Map [16], GLIM [13] и ORB-SLAM3 [10]. В качестве источника одомет­
рии, корректирующего зашумленную одометрию из симулятора, для алгоритма
RTAB-Map был выбран Cartographer [20]. На вход всем остальным алгоритмам,
кроме TSGM, подавалась зашумленная одометрия из симулятора и облако то­
чек. При этом алгоритмы ORB-SLAM3, GLIM и TSGM данные одометрии
не использовали. На вход алгоритму TSGM подавалось панорамное RGB-D
изображение из симулятора, разбитое на 12 секторов. Дополнительно на вход
алгоритму Hydra подавались на вход данные семантической сегментации,
вычисленные с помощью нейросетевой модели SegFormer [99].

Для оценки качества работы разработанного алгоритма и базовых алго­
ритмов использовались показатели 2.28-2.31: количество компонент связности
(𝑁𝑐𝑜𝑚𝑝), доля покрытия сцены (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒), корректность и полнота ребер графа
(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠;𝑅𝑒𝑐𝑎𝑙𝑙) и путевая эффективность (𝑆𝑃𝐿𝑁 для 𝑁 = 1000). Значе­
ния всех используемых показателей для всех рассмотренных алгоритмов при
всех значениях шума позиции приведены в таблице 16. Построенные алгорит­
мами карты показаны на рисунке 5.6.

Как видно из таблицы, предложенный алгоритм PRISM-TopoMap при
всех уровнях шума позиции построил связные графы с высоким покрытием
сцены, по покрытию лишь незначительно уступая алгоритмам ORB-SLAM3
и TSGM. По значению 𝑆𝑃𝐿𝑁 на нулевом и среднем шуме позиции PRISM­
TopoMap незначительно уступил алгоритму RTAB-Map, при этом значительно
обойдя RTAB-Map на высоком уровне шума (при высоком уровне шума позиции
RTAB-Map построил несвязную карту на одной сцене). При этом у алгоритма
PRISM-TopoMap значения метрик покрытия и SPL с ростом уровня шума уве­

101

Таблица 16 — Значение показателей качества 2.28-2.31 по результатам симуля­
ционных экспериментов

Шум Алгоритм 𝑁𝑐𝑜𝑚𝑝↓ Coverage↑ Correctness↑ Recall↑ 𝑆𝑃𝐿𝑁↑

Нулевой

RTAB-Map 1.0 0.79 – – 0.86
ORB-SLAM3 2.2 0.95 1.00 0.00 0.74
GLIM 1.0 0.80 0.94 0.27 0.72
Hydra 10.0 0.77 0.98 0.02 0.38
IncrementalTopo 7.6 0.89 0.99 0.08 0.66
TSGM 1.0 0.95 0.93 0.08 0.60
PRISM-TopoMap 1.0 0.90 0.99 0.13 0.85

Средний

RTAB-Map 1.0 0.81 – – 0.89
ORB-SLAM3 2.2 0.95 1.00 0.00 0.74
GLIM 1.0 0.80 0.94 0.27 0.72
Hydra 9.6 0.80 0.97 0.01 0.34
IncrementalTopo 11.4 0.74 0.99 0.08 0.38
TSGM 1.0 0.95 0.93 0.08 0.60
PRISM-TopoMap 1.0 0.92 0.99 0.14 0.87

Большой

RTAB-Map 1.6 0.68 – – 0.61
ORB-SLAM3 2.2 0.95 1.00 0.00 0.74
GLIM 1.0 0.80 0.94 0.27 0.72
Hydra 11.8 0.83 0.97 0.01 0.41
IncrementalTopo 17.2 0.43 0.98 0.07 0.20
TSGM 1.0 0.95 0.93 0.08 0.60
PRISM-TopoMap 1.0 0.93 0.99 0.11 0.92

личивались, в то время как у базовых алгоритмов – уменьшались. Это связано
с тем, что с ростом уровня шума добавлялось больше локаций в граф, что
привело к лучшему покрытию сцены и появлению более коротких путей.

Топометрические алгоритмы IncrementalTopo и Hydra построили несвяз­
ные графы даже при нулевом уровне шума. Метрический алгоритм ORB­
SLAM3 не использовал данную на вход зашумленную позицию, поэтому при
всех уровнях шума показал одинаковые результаты, построив несвязные кар­
ты на трех сценах из-за сбоя локализации. Метрический алгоритм GLIM тоже
не использовал данную на вход зашумленную позицию, поэтому показал оди­
наковые результаты при всех уровнях шума. Он построил связные карты на
всех сценах, но на одной из сцен покрыл только 25% ее площади из-за сбоя
картирования, что привело к низким значениям метрик покрытия и SPL. Чи­
сто топологический алгоритм TSGM построил связные графы локаций на всех

102

Рисунок 5.6 — Карты, построенные базовыми алгоритмами и алгоритмом
PRISM-TopoMap, в сравнении с двумерной сеткой занятости.

сценах с высоким покрытием сцены, но соединил ребрами несмежные локации,
что привело к низкому значению SPL (0.60).

На всех уровнях шума алгоритм PRISM-TopoMap показал высокий уро­
вень корректности ребер графа (99%), благодаря использованию оригинального
алгоритма сопоставления сканов. Алгоритм ORB-SLAM3 показал значение кор­
ректности ребер в 100%, при этом полнота ребер составила менее 1% (граф
локаций на нескольких сценах представлял собой цепочку, в которой каждая
локация соединялась лишь с предыдущей и следующей локациями в порядке
обхода). По полноте ребер графа алгоритм PRISM-TopoMap уступил только
алгоритму GLIM, однако алгоритм GLIM показал низкую корректность ребер
(94%), что привело к низкому значению путевой эффективности.

Для каждого из рассмотренных алгоритмов было измерено количество
оперативной памяти, потребляемой на хранение карты, и постоянной памяти,
которую занимает на диске карта, сохраненная после прохождения всего марш­
рута. Помимо памяти, было измерено среднее время, затраченное на обновление
карты по входным данным, и среднее время замыкания цикла (если замыкание
циклов было предусмотрено алгоритмом). Все замеры проводились на первой
сцене из набора (площадь сцены 345 м2, длина маршрута 221 м). Для замеров
был использован компьютер со следующими характеристиками:

– Процессор: Intel Core i5-9500F, 6 ядер;
– Оперативная память: 32 ГБ, тип DDR4, 2400 МГц;

103

– Постоянная память: 500 ГБ, твердотельный накопитель (SSD);
– Графический ускоритель: NVidia GeForce GTX 2060, 6 ГБ видеопамяти.

Для определения количества оперативной памяти, занимаемой картой, ис­
пользовалась разность между количеством оперативной памяти, потребляемой
алгоритмом на старте и в конце проезда. При измерении времени работы
использовалось реальное время в миллисекундах, прошедшее от получения ал­
горитмом входных данных до обновления карты.

Результаты измерений представлены в таблице 17. Из таблицы видно, что
топологические карты наиболее эффективны по памяти и по времени обновле­
ния. Предложенный алгоритм PRISM-TopoMap показал наименьшие затраты
памяти на хранение карты среди всех рассмотренных алгоритмов. Граф лока­
ций для помещения площадью более 300 м2 занял всего 400 кБ. Потребление
оперативной памяти на построение карты у PRISM-TopoMap оказалось также
невысоким – 150 МБ. При этом граф локаций обновлялся с частотой 9 Гц, что
достаточно для работы в реальном времени (при стандартной частоте работы
лидара в 10 Гц в обновлении карты участвует почти каждый лидарный скан).
Таким образом, PRISM-TopoMap позволяет картировать в реальном времени
большие пространства (вплоть до нескольких квадратных километров) и хра­
нить построенные карты на борту робота.

Таблица 17 — Результаты измерений потребления времени и памяти у рассмот­
ренных алгоритмов

Алгоритм ОЗУ, МБ
Размер

карты, МБ
Время

обновления, мс
Время замыкания

цикла, мс
RTAB-Map 400 7.0 150 300
ORB-SLAM3 600 237 130 250
GLIM 300 3.4 40 40
Hydra 2200 195 900 2000
IncrementalTopo 40 32 300 -
TSGM 30 15 80 80
PRISM-TopoMap 150 0.4 110 110

Топометрический алгоритм IncrementalTopo показал низкие затраты па­
мяти на картирование за счет представления карты в виде сетки занятости
и диаграммы Вороного, однако время обновления такой карты составило 300
мс. Иерархический топометрический алгоритм Hydra показал наихудшие ре­
зультаты как по потреблению оперативной памяти, так и по времени, за счет

104

картирования полной информации о сцене и построения плотной трехмерной
модели сцены. Алгоритмы RTAB-Map и GLIM построили компактные мет­
рические карты, однако потребляли в процессе построения этих карт 400 и
300 МБ оперативной памяти соответственно за счет использования большого
количества особых точек для оптимизации. Метрическая карта, построенная
алгоритмом ORB-SLAM3, заняла более 200 МБ в хранилище за счет сохране­
ния всех дескрипторов особых точек на каждом ключевом кадре.

Таким образом, по результатам экспериментов в симуляционных средах,
разработанный алгоритм PRISM-TopoMap оказался способен строить связные
топологические карты с высокой долей покрытия сцены и высокой путевой
эффективностью, пригодные для планирования путей в реальном времени. Ка­
чество работы алгоритма PRISM-TopoMap по всем показателям не ухудшалось
с ростом шума позиционирования, в отличие от метрических и топометрических
алгоритмов. PRISM-TopoMap оказался наиболее эффективным с точки зрения
занимаемого картой объема памяти, что дает возможность применять его для
картирования и локализации в средах большой площади.

Эксперименты с навигацией по топологической карте Для оценки
эффективности навигации и планирования пути с использованием топологиче­
ской карты было проведено экспериментальное исследование в симуляционной
сцене, представляющей собой модель пятого этажа корпуса Цифра Московского
физико-технического института. Сцена состояла из нескольких длинных кори­
доров и холлов общей площадью около 1600 м2. В начале осуществлялся проезд
по предварительно заданному маршруту длиной 1 км для построения карты в
реальном времени. Затем было проведено 20 попыток навигации между случай­
но заданными точками сцены. Среднее расстояние между начальной и конечной
точкой при навигации составляло 78 м. Были проведены измерения потребления
оперативной памяти на построение карты. Были измерены среднее время пла­
нирования пути от начальной до конечной точки и эффективность навигации,
измеренная как SPL [50] (англ. Success weighted by Path Length) – отношение
длины оптимального пути между стартовой и целевой точками к длине факти­
чески пройденного агентом пути, умноженное на успешность навигации.

Для сравнения с предложенным топологическим подходом использовался
метрический алгоритм картирования и локализации RTAB-Map. Планирование

105

Таблица 18 — Результаты экспериментов с навигацией в построенной карте

Алгоритм
Потребление
памяти, МБ

Время
планирования, мс

SPL

RTAB-Map 350 830 0.95
PRISM-TopoMap 60 6 0.89

пути в топологической карте, построенной алгоритмом PRISM-TopoMap, осу­
ществлялось в соответствии с подходом, описанным в разделе 3.1. На нижнем
уровне для планирования локального пути использовался алгоритм Theta* [100]
на объединенных проекциях сканов текущей локации и соседних с ней локаций.
Планирование пути по сетке занятости, построенной алгоритмом RTAB-Map,
осуществлялось с помощью алгоритма Theta*. Результаты навигационных экс­
периментов представлены в таблице 18. Как видно из таблицы, планирование
пути в топологической карте происходит более чем в 100 раз быстрее, чем в
глобальной метрической карте. При построении топологической карты исполь­
зуется в 6 раз меньше оперативной памяти, чем при построении метрической
карты алгоритмом RTAB-Map. При этом по навигационной эффективности ал­
горитм PRISM-TopoMap слегка уступает метрическому алгоритму RTAB-Map
за счет разреженности графа локаций. Навигационная эффективность может
быть повышена за счет повышения порога 𝑡𝑜𝑣𝑒𝑟𝑙𝑎𝑝 и, как следствие, большей
плотности графа локаций.

5.3 Эксперименты на данных с реальных роботов

Эксперименты на данных с реальных роботов внутри помещений
Помимо симуляционных сцен, алгоритм PRISM-TopoMap был апробирован на
данных с двух проездов реальных роботов внутри помещений. Первый проезд
был осуществлен на роботе Clearpath Husky по пятому этажу корпуса Цифра
Московского физико-технического института. Длина траектории составила 212
м. Робот был оснащен 16-лучевым лидаром Velodyne VLP-16, а также каме­
рой Zed 2i, направленной вперед, и камерой Intel Realsense d435, направленной
назад. Второй проезд был осуществлен на роботе AgileX Scout Mini в робототех­
ническом центре ФИЦ ИУ РАН. Длина траектории составила 202 м. Робот был

106

Рисунок 5.7 — Робот Clearpath Husky (слева сверху) и граф локаций, постро­
енный по проезду на нем (красные вершины, синие ребра), в сравнении с
метрической картой пройденного помещения (показана белым). Зеленым по­

казана пройденная роботом траектория.

Рисунок 5.8 — Робот AgileX Scout Mini (слева) и граф локаций, построенный
по проезду на нем (красные вершины, синие ребра), в сравнении с метрической
картой помещения в виде сетки занятости (белым показано свободное простран­

ство, черным – занятое, серым – неизвестное).

оснащен 16-лучевым лидаром Robosense и камерой Intel Realsense d435i, направ­
ленной вперед. Управление роботом в обоих проездах осуществлялось вручную.

Данные с обоих проездов подавались на вход алгоритму PRISM-TopoMap
в режиме реального времени. В обоих случаях на вход алгоритму подавалась
одометрия, рассчитанная по данным о вращении колес. С робота Clearpath
Husky на вход подавались облака точек с лидара и изображения с передней
и задней камер. С робота AgileX Scout Mini помимо данных одометрии на вход
подавались только облака точек с лидара. Карты, построенные по данным с ро­
ботов Clearpath Husky и AgileX Scout Mini, представлены на рисунках 5.7 и 5.8
соответственно. В обоих случаях алгоритм PRISM-TopoMap успешно постро­
ил граф локаций и замкнул циклы, несмотря на значительную погрешность
колесной одометрии и присутствие динамических объектов (движущихся лю­
дей) рядом с роботом.

107

Эксперименты на данных с реального робота в открытых про­
странствах Для оценки работоспособности алгоритма PRISM-TopoMap при
долговременной навигации в средах большой площади были проведены экспери­
менты на наборе данных ITLP-Campus Outdoor [8]. Набор состоял из 9 проездов
описанного выше робота Clearpath Husky по территории кампуса МФТИ в раз­
ные времена суток и времена года. Длина каждого из проездов превышала 3 км.
Все проезды были сделаны по одному и тому же маршруту с незначительны­
ми отклонениями (в пределах 10 м). По первым четырем проездам с помощью
алгоритмической пост-обработки были вычислены координаты опорных точек,
расположенных по маршруту с интервалом в 5 м, в общей глобальной систе­
ме координат.

В ходе экспериментов решалась задача метрической локализации (опре­
деления метрических координат робота в каждый момент времени) по пред­
варительно построенной карте. Карта строилась по проезду с индексом 03
(весна, день), вершинами являлись опорные точки маршрута с известными ко­
ординатами. Для локализации использовались проезды с индексами 00 (зима,
сумерки), 01 (зима, день) и 02 (весна, ночь). В качестве источника одомет­
рии использовался алгоритм GLIM [13] без построения карты. Для повышения
устойчивости локализации к смене сезона и динамическим объектам в проце­
дуру сопоставления сканов, описанную в разделе 3.2, были добавлены точки
бордюров. Алгоритм обнаружения бордюров и процедура сопоставления ска­
нов с учетом бордюров описаны в работе [9].

Для работы в режиме локализации по предварительно построенной карте
из описанной в разделе 3.2 процедуры обновления графа алгоритма PRISM­
TopoMap был убран пункт 4 (добавление новой локации в граф). Если не
удалось сменить локацию 𝑣𝑐𝑢𝑟 по ребру или по результатам локализации, то
значение 𝑣𝑐𝑢𝑟 не менялось, а относительное положение 𝑇𝑐𝑢𝑟 менялось по дан­
ным одометрии. Для избегания ложных локализаций применялось следующее
правило: если последняя успешная смена значения 𝑣𝑐𝑢𝑟 по ребру или по резуль­
татам локализации была δ𝑡 секунд назад, и расстояние от текущего положения
робота (вычисленного по одометрии) до локализованной вершины графа пре­
восходит 𝑐 · δ𝑡, то локализация в этой вершине считается ложной, и вершина
удаляется из списка локализованных. Таким образом, текущее состояние робо­
та в графе обновлялось по данным одометрии до момента перехода по ребру
или до появления локализации, не противоречащей текущему состоянию.

108

Рисунок 5.9 — (а) Изображение, снятое с робота при проезде 00 (по которому
выполняется локализация); (б) Изображение, снятое с робота при проезде 03
(по которому составлена карта); (в) траектория робота на проезде 00, восста­

новленная с помощью алгоритма PRISM-TopoMap

В ходе эксперимента оценивалась ресурсная эффективность локализации:
потребление оперативной памяти при локализации, размер карты в хранили­
ще, среднее время одной локализации. Качество локализации оценивалось по
двум критериям: средняя абсолютная ошибка траектории (англ. Mean ATE) и
доля успешности локализации 𝑆𝑅𝑙𝑜𝑐. Локализация считалась успешной, если
ошибка не превышала 10 м. Было проведено сравнение качества и ресурсной
эффективности локализации с метрическим подходом (локализация с помощью
алгоритма HDL [101] в карте, построенной алгоритмом GLIM [13]) и алгорит­
мом распознавания места BEVPlace++ [77].

Результаты сравнения приведены в таблице 19. Алгоритм HDL, показав­
ший наилучшее потребление оперативной памяти, выдал сбой локализации по
проезде 1 км от точки старта – таким образом, успешность его локализации
составила всего 30%. Алгоритм BEVPlace++ показал высокую ошибку локали­
зации за счет отсутствия проверки согласованности результатов локализации
с текущим состоянием робота. Алгоритм PRISM-TopoMap показал лучшие
результаты по всем показателям, кроме потребления оперативной памяти, до­
стигнув средней ошибки локализации 2 м с использованием карты размером

109

Таблица 19 — Результаты экспериментального исследования локализации в от­
крытых пространствах

Алгоритм Mean ATE, м 𝑆𝑅𝑙𝑜𝑐

Потребление
ОЗУ, МБ

Размер
карты, МБ

Время, с

GLIM + HDL loc. 3.6* 0.3 1200** 400 3.0
BEVPlace++ 14.4 0.84 15500 15300 1.0
PRISM-TopoMap 2.0 0.98 4100 20 0.5
* ATE посчитано на отрезке траектории до момента потери локализации
** Потребление оперативной памяти алгоритмом GLIM при построении

карты составило 11 ГБ

всего в 20 МБ на маршрутах длиной 3 км. Восстановленная с помощью PRISM­
TopoMap траектория на проезде с индексом 00 показана на рисунке 5.9.

5.4 Выводы по главе

Для оценки качества и эффективности предложенного алгоритма PRISM­
TopoMap было проведено обширное экспериментальное исследование в симуля­
ционных помещениях с зашумлением данных одометрии, а также на данных
с реальных робототехнических систем внутри и вне помещений. В ходе экс­
периментов было проведено сравнение алгоритма PRISM-TopoMap с другими
метрическими и топологическими алгоритмами. Для проведения численных
экспериментов была создана экспериментальная среда в симуляторе Habitat
с моделированием ошибки реальной одометрии путем добавления гауссовского
шума в соответствии с формулами 2.9, 2.13. Такая модель позволяет оценить
устойчивость алгоритмов ОКЛ к накоплению ошибки одометрии, которое при­
сутствует на всех робототехнических системах.

Эксперименты в симуляционных помещениях показали, что PRISM­
TopoMap устойчив к шуму одометрии и строит связные графы с высокой долей
покрытия сцены в реальном времени. Успешность планирования пути состави­
ла 85% при отсутствии шума одометрии и 92% с высокой степенью шума, что
оказалось наилучшим результатом среди всех рассмотренных алгоритмов. При
этом топологическая карта помещения площадью более 300 м2, построенная
алгоритмом, заняла в хранилище объем в 0.4 МБ – меньше, чем объем одного

110

исходного облака точек, подаваемого на вход. В ходе экспериментов с нави­
гацией по топологической карте, построенной алгоритмом PRISM-TopoMap,
была достигнута навигационная эффективность в 89% по метрике SPL. При
этом среднее время планирования пути по карте помещения площадью 1600
м2 составило всего 6 мс, более чем в 100 раз превзойдя время планирования
пути по глобальной метрической карте.

По результатам экспериментов на данных с реальных робототехнических
систем, алгоритм PRISM-TopoMap успешно построил топологические карты
помещений большой площади в реальном времени, а также выполнил локализа­
цию робота по топологической карте на маршруте длиной 3 км по территории
кампуса размером 500х500 м. Успешность локализации составила 98%, среднее
значение ошибки локализации – 2.0 м, что значительно превосходит результаты
других современных алгоритмов локализации, использованных для сравнения.
При этом размер карты, по которой проводилась локализация, составил все­
го 20 МБ.

Таким образом, разработанный алгоритм PRISM-TopoMap оказался при­
годным для построения компактных топологических карт сред большой пло­
щади внутри и вне помещений, локализации и навигации по построенным
картам. Отсутствие накопления ошибки позиционирования, низкое потреб­
ление памяти и вычислительных ресурсов дают возможность использовать
PRISM-TopoMap для локализации и навигации робототехнических систем и
автономных транспортных средств без использования внешних данных и ис­
точников позиционирования.

111

Заключение

Работа посвящена задаче топологического картирования и локализации в
контексте навигации мобильных робототехнических систем. Основные резуль­
таты работы заключаются в следующем:

1. Предложена математическая модель задачи топологического картиро­
вания и локализации и оценки качества ее решения. В предложенной
модели карта представляется в виде графа локаций, а состояние робо­
та в графе – в виде локации и положения робота внутри нее. Качество
решения задачи оценивается с помощью путевой эффективности по­
строенного графа, а качество локализации – как точность определения
локации, в которой находится робот. Предложенные критерии качества
позволяют оценить эффективность применения алгоритма ОКЛ для
навигации робота.

2. Разработан алгоритм топологического картирования и локализации.
Алгоритм гарантирует связность построенного графа локаций и обес­
печивает вычислительно эффективное замыкание циклов за счет про­
цедуры локализации. Отличительной особенностью разработанного
алгоритма является фильтрация ложных результатов нейросетевой
локализации с помощью оригинальной процедуры сопоставления про­
екций облаков точек. Разработанный алгоритм обеспечивает низкие
затраты памяти, надежную локализацию и высокую путевую эффек­
тивность построенной карты.

3. На основе разработанного алгоритма был создан программный ком­
плекс, позволяющий запускать алгоритм на различных робототехниче­
ских платформах и симуляторах и оценивать его качество с помощью
предложенной математической модели.

4. Выполнено исследование созданного программного комплекса, вклю­
чающее численные эксперименты в симуляторе и натурные испытания
на данных с реальных роботов. В ходе исследования выполнено срав­
нение с другими современными алгоритмами ОКЛ по предложенным
критериям качества и оценка вычислительной эффективности алгорит­
мов. Путевая эффективность предложенного алгоритма при высокой
степени зашумленности одометрии составила 92%, а успешность ло­

112

кализации на данных с реального робота на траектории длиной 3
км составила 98%, что значительно превосходит результаты других
алгоритмов ОКЛ. Высокая вычислительная эффективность разра­
ботанного алгоритма подтверждается низким временем обновления
карты (110 мс) и низким объемом памяти, занимаемом построенной
картой (400 КБ при картировании симуляционных помещений и 20 МБ
при картировании открытой среды размером 500х500 м).

113

Список публикаций автора

1. Muravyev K., Yakovlev K. Evaluation of RGB-D SLAM in large
indoor environments [Текст] // International Conference on Interactive
Collaborative Robotics. — Springer. 2022. — С. 93—104. Scopus.

2. Muravyev K., Yakovlev K. Evaluation of topological mapping methods in
indoor environments [Текст] // IEEE Access. — 2023. — Т. 11. — С.
132683—132698. Scopus (Q1).

3. Muravyev K., Yakovlev K. Maintaining topological maps for mobile robots
[Текст] // Sixteenth International Conference on Machine Vision (ICMV
2023). Т. 13072. — SPIE. 2024. — С. 265—272. Scopus.

4. Muravyev K., Melekhin A., Yudin D., Yakovlev K. PRISM-TopoMap: online
topological mapping with place recognition and scan matching [Текст] //
IEEE Robotics and Automation Letters. — 2025. — С. 3126—3133. Scopus
(Q1).

5. Муравьев К. Ф. Топологическое картирование помещений с использо­
ванием нейросетевой локализации и сопоставления сканов [Текст] //
Информационные технологии и вычислительные системы. — 2024. —
№ 3. — С. 28—38. ВАК (К1).

6. Muravyev K., Yakovlev K. NavTopo: Leveraging Topological Maps for
Autonomous Navigation of a Mobile Robot [Текст] // International
Conference on Interactive Collaborative Robotics. — Springer. 2024. —
С. 144—157. Scopus.

7. Муравьев К., Алхаддад М., Панов А., Миронов К. Иерархическая
навигация с избеганием препятствий и прохождением проёмов на четы­
рёхколёсном мобильном роботе [Текст] // XIV Всероссийское совещание
по проблемам управления. — 2024. — С. 1640—1644.

8. Melekhin A., Bezuglyj V., Petryashin I., Muravyev K., Linok S., Yudin D.,
Panov A. ITLP-Campus: A Dataset for Multimodal Semantic Place
Recognition [Текст] // International Conference on Intelligent Information
Technologies for Industry. — Springer. 2024. — С. 185—195. Scopus.

114

9. Muravyev K., Yuryev V., Bulichev O., Yudin D., Yakovlev K. PRISM-Loc:
a Lightweight Long-range LiDAR Localization in Urban Environments with
Topological Maps [Текст]. — 2025. — arXiv: 2506.15849 [cs.RO]. — URL:
https://arxiv.org/abs/2506.15849.

https://arxiv.org/abs/2506.15849
https://arxiv.org/abs/2506.15849

115

Список литературы

10. Campos C., Elvira R., Rodŕıguez J. J. G., Montiel J. M., Tardós J. D.
Orb-slam3: An accurate open-source library for visual, visual–inertial, and
multimap slam [Текст] // IEEE Transactions on Robotics. — 2021. — Т. 37,
№ 6. — С. 1874—1890.

11. Zhang J., Singh S. [и др.]. LOAM: Lidar odometry and mapping in real-time.
[Текст] // Robotics: Science and systems. Т. 2. — Berkeley, CA. 2014. —
С. 1—9.

12. Qin T., Shen S. Online temporal calibration for monocular visual-inertial
systems [Текст] // 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). — IEEE. 2018. — С. 3662—3669.

13. Koide K., Yokozuka M., Oishi S., Banno A. Glim: 3d range-inertial
localization and mapping with gpu-accelerated scan matching factors
[Текст] // Robotics and Autonomous Systems. — 2024. — Т. 179. — С. 104750.

14. Thrun S. [и др.]. Robotic mapping: A survey [Текст]. — 2002.

15. Elfes A. Sonar-based real-world mapping and navigation [Текст] // IEEE
Journal on Robotics and Automation. — 1987. — Т. 3, № 3. — С. 249—265.

16. Labbé M., Michaud F. RTAB-Map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term
online operation [Текст] // Journal of Field Robotics. — 2019. — Т. 36, № 2. —
С. 416—446.

17. Hart P. E., Nilsson N. J., Raphael B. A formal basis for the heuristic
determination of minimum cost paths [Текст] // IEEE transactions on
Systems Science and Cybernetics. — 1968. — Т. 4, № 2. — С. 100—107.

18. Roth-Tabak Y., Jain R. Building an environment model using depth
information [Текст] // Computer. — 1989. — Т. 22, № 6. — С. 85—90.

19. Reich C., Ritter R., Thesing J. 3-D shape measurement of complex objects
by combining photogrammetry and fringe projection [Текст] // Optical
Engineering. — 2000. — Т. 39, № 1. — С. 224—231.

116

20. Hess W., Kohler D., Rapp H., Andor D. Real-time loop closure in 2D
LIDAR SLAM [Текст] // 2016 IEEE international conference on robotics
and automation (ICRA). — IEEE. 2016. — С. 1271—1278.

21. Oleynikova H., Taylor Z., Fehr M., Siegwart R., Nieto J. Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav planning
[Текст] // 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). — IEEE. 2017. — С. 1366—1373.

22. Kuipers B., Byun Y.-T. A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations [Текст] // Robotics and
autonomous systems. — 1991. — Т. 8, № 1/2. — С. 47—63.

23. Mataric M. J. A distributed model for mobile robot environment-learning
and navigation [Текст]. — 1990.

24. Shatkay H., Kaelbling L. P. Learning topological maps with weak local
odometric information [Текст] // IJCAI (2). — Citeseer. 1997. — С. 920—929.

25. Blochliger F., Fehr M., Dymczyk M., Schneider T., Siegwart R. Topomap:
Topological mapping and navigation based on visual slam maps [Текст] //
2018 IEEE International Conference on Robotics and Automation (ICRA). —
IEEE. 2018. — С. 3818—3825.

26. Niijima S., Umeyama R., Sasaki Y., Mizoguchi H. City-scale grid-topological
hybrid maps for autonomous mobile robot navigation in urban area [Текст] //
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). — IEEE. 2020. — С. 2065—2071.

27. He Z., Sun H., Hou J., Ha Y., Schwertfeger S. Hierarchical topometric
representation of 3D robotic maps [Текст] // Autonomous Robots. — 2021. —
Т. 45, № 5. — С. 755—771.

28. Mielle M., Magnusson M., Lilienthal A. J. A method to segment maps
from different modalities using free space layout maoris: map of ripples
segmentation [Текст] // 2018 IEEE International Conference on Robotics
and Automation (ICRA). — IEEE. 2018. — С. 4993—4999.

29. Liao Z., Zhang Y., Luo J., Yuan W. TSM: Topological scene map
for representation in indoor environment understanding [Текст] // IEEE
Access. — 2020. — Т. 8. — С. 185870—185884.

117

30. Chen X., Zhou B., Lin J., Zhang Y., Zhang F., Shen S. Fast 3D sparse
topological skeleton graph generation for mobile robot global planning
[Текст] // 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). — IEEE. 2022. — С. 10283—10289.

31. Wiyatno R. R., Xu A., Paull L. Lifelong topological visual navigation
[Текст] // IEEE Robotics and Automation Letters. — 2022. — Т. 7, № 4. —
С. 9271—9278.

32. Schmid L., Reijgwart V., Ott L., Nieto J., Siegwart R., Cadena C. A unified
approach for autonomous volumetric exploration of large scale environments
under severe odometry drift [Текст] // IEEE Robotics and Automation
Letters. — 2021. — Т. 6, № 3. — С. 4504—4511.

33. Reijgwart V., Millane A., Oleynikova H., Siegwart R., Cadena C., Nieto J.
Voxgraph: Globally consistent, volumetric mapping using signed distance
function submaps [Текст] // IEEE Robotics and Automation Letters. —
2019. — Т. 5, № 1. — С. 227—234.

34. Hughes N., Chang Y., Carlone L. Hydra: a real-time spatial perception system
for 3d scene graph construction and optimization [Текст]. — 2022.

35. Rosinol A., Gupta A., Abate M., Shi J., Carlone L. 3D dynamic scene graphs:
Actionable spatial perception with places, objects, and humans [Текст] //
arXiv preprint arXiv:2002.06289. — 2020.

36. Rosinol A., Violette A., Abate M., Hughes N., Chang Y., Shi J., Gupta A.,
Carlone L. Kimera: From SLAM to spatial perception with 3D dynamic scene
graphs [Текст] // The International Journal of Robotics Research. — 2021. —
Т. 40, № 12—14. — С. 1510—1546.

37. Oleynikova H., Taylor Z., Siegwart R., Nieto J. Sparse 3d topological graphs
for micro-aerial vehicle planning. In 2018 IEEE [Текст] // RSJ International
Conference on Intelligent Robots and Systems (IROS). — С. 1—9.

38. Gálvez-López D., Tardos J. D. Bags of binary words for fast place recognition
in image sequences [Текст] // IEEE Transactions on robotics. — 2012. — Т. 28,
№ 5. — С. 1188—1197.

39. Fischler M. A., Bolles R. C. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography
[Текст] // Communications of the ACM. — 1981. — Т. 24, № 6. — С. 381—395.

118

40. Yang H., Shi J., Carlone L. Teaser: Fast and certifiable point cloud
registration [Текст] // IEEE Transactions on Robotics. — 2020. — Т. 37,
№ 2. — С. 314—333.

41. Schmid L., Abate M., Chang Y., Carlone L. Khronos: A unified approach for
spatio-temporal metric-semantic slam in dynamic environments [Текст] //
arXiv preprint arXiv:2402.13817. — 2024.

42. Bavle H., Sanchez-Lopez J. L., Shaheer M., Civera J., Voos H. S-graphs+:
Real-time localization and mapping leveraging hierarchical representations
[Текст] // IEEE Robotics and Automation Letters. — 2023. — Т. 8, № 8. —
С. 4927—4934.

43. Chaplot D. S., Salakhutdinov R., Gupta A., Gupta S. Neural topological slam
for visual navigation [Текст] // Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. — 2020. — С. 12875—12884.

44. Savinov N., Dosovitskiy A., Koltun V. Semi-parametric topological memory
for navigation [Текст] // arXiv preprint arXiv:1803.00653. — 2018.

45. Kwon O., Kim N., Choi Y., Yoo H., Park J., Oh S. Visual graph memory
with unsupervised representation for visual navigation [Текст] // Proceedings
of the IEEE/CVF international conference on computer vision. — 2021. —
С. 15890—15899.

46. Kim N., Kwon O., Yoo H., Choi Y., Park J., Oh S. Topological semantic
graph memory for image-goal navigation [Текст] // Conference on Robot
Learning. — PMLR. 2023. — С. 393—402.

47. Chen K., Chen J. K., Chuang J., Vázquez M., Savarese S. Topological
planning with transformers for vision-and-language navigation [Текст] //
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. — 2021. — С. 11276—11286.

48. An D., Wang H., Wang W., Wang Z., Huang Y., He K., Wang L. Etpnav:
Evolving topological planning for vision-language navigation in continuous
environments [Текст] // IEEE Transactions on Pattern Analysis and Machine
Intelligence. — 2024.

119

49. Xia F., Zamir A. R., He Z., Sax A., Malik J., Savarese S. Gibson env:
Real-world perception for embodied agents [Текст] // Proceedings of the
IEEE conference on computer vision and pattern recognition. — 2018. —
С. 9068—9079.

50. Anderson P., Chang A., Chaplot D. S., Dosovitskiy A., Gupta S., Koltun V.,
Kosecka J., Malik J., Mottaghi R., Savva M. [и др.]. On evaluation of
embodied navigation agents [Текст] // arXiv preprint arXiv:1807.06757. —
2018.

51. Gomez C., Fehr M., Millane A., Hernandez A. C., Nieto J., Barber R.,
Siegwart R. Hybrid topological and 3d dense mapping through autonomous
exploration for large indoor environments [Текст] // 2020 IEEE International
Conference on Robotics and Automation (ICRA). — IEEE. 2020. —
С. 9673—9679.

52. Tang L., Wang Y., Ding X., Yin H., Xiong R., Huang S. Topological
local-metric framework for mobile robots navigation: a long term perspective
[Текст] // Autonomous Robots. — 2019. — Т. 43. — С. 197—211.

53. Fox D., Burgard W., Dellaert F., Thrun S. Monte carlo localization: Efficient
position estimation for mobile robots [Текст] // Aaai/iaai. — 1999. — Т. 1999,
№ 343—349. — С. 2—2.

54. Caselitz T., Steder B., Ruhnke M., Burgard W. Monocular camera
localization in 3d lidar maps [Текст] // 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). — IEEE. 2016. —
С. 1926—1931.

55. Wang Z., Fang J., Dai X., Zhang H., Vlacic L. Intelligent vehicle self­
localization based on double-layer features and multilayer LIDAR [Текст] //
IEEE Transactions on Intelligent Vehicles. — 2020. — Т. 5, № 4. — С. 616—625.

56. Li L., Yang M., Weng L., Wang C. Robust localization for intelligent
vehicles based on pole-like features using the point cloud [Текст] // IEEE
Transactions on Automation Science and Engineering. — 2021. — Т. 19, № 2. —
С. 1095—1108.

57. Cummins M., Newman P. FAB-MAP: Probabilistic localization and mapping
in the space of appearance [Текст] // The International journal of robotics
research. — 2008. — Т. 27, № 6. — С. 647—665.

120

58. Bay H., Tuytelaars T., Van Gool L. Surf: Speeded up robust features
[Текст] // Computer Vision–ECCV 2006: 9th European Conference on
Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. —
Springer. 2006. — С. 404—417.

59. Arandjelovic R., Gronat P., Torii A., Pajdla T., Sivic J. NetVLAD: CNN
architecture for weakly supervised place recognition [Текст] // Proceedings of
the IEEE conference on computer vision and pattern recognition. — 2016. —
С. 5297—5307.

60. Torii A., Sivic J., Pajdla T., Okutomi M. Visual place recognition with
repetitive structures [Текст] // Proceedings of the IEEE conference on
computer vision and pattern recognition. — 2013. — С. 883—890.

61. Berton G., Masone C., Caputo B. Rethinking visual geo-localization for large­
scale applications [Текст] // Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. — 2022. — С. 4878—4888.

62. Ali-Bey A., Chaib-Draa B., Giguere P. Mixvpr: Feature mixing for visual
place recognition [Текст] // Proceedings of the IEEE/CVF winter conference
on applications of computer vision. — 2023. — С. 2998—3007.

63. Uy M. A., Lee G. H. PointNetVLAD: Deep Point Cloud Based Retrieval for
Large-Scale Place Recognition [Текст] // CVPR. — 2018. — С. 4470—4479. —
(Дата обр. 25.04.2022).

64. Qi C. R., Su H., Mo K., Guibas L. J. Pointnet: Deep learning on point
sets for 3d classification and segmentation [Текст] // Proceedings of the
IEEE conference on computer vision and pattern recognition. — 2017. —
С. 652—660.

65. Komorowski J. MinkLoc3D: Point Cloud Based Large-Scale Place Recog­
nition [Текст] // Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. — 2021. — P. 1790—1799. — (Visited on
04/06/2023).

66. Fan Z., Song Z., Liu H., Lu Z., He J., Du X. SVT-Net: Super Light-Weight
Sparse Voxel Transformer for Large Scale Place Recognition [Текст] //
AAAI. — 2022. — June. — Vol. 36, no. 1. — P. 551—560. — (Visited
on 04/03/2023).

121

67. Sattler T., Maddern W., Toft C., Torii A., Hammarstrand L., Stenborg E.,
Safari D., Okutomi M., Pollefeys M., Sivic J. [и др.]. Benchmarking 6dof
outdoor visual localization in changing conditions [Текст] // Proceedings of
the IEEE conference on computer vision and pattern recognition. — 2018. —
С. 8601—8610.

68. Xie S., Pan C., Peng Y., Liu K., Ying S. Large-Scale Place Recognition
Based on Camera-LiDAR Fused Descriptor [Текст] // Sensors. — 2020. —
Jan. — Vol. 20, no. 10. — P. 2870. — (Visited on 05/04/2022).

69. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition
[Текст] // Proceedings of the IEEE conference on computer vision and pattern
recognition. — 2016. — С. 770—778.

70. Geiger A., Lenz P., Stiller C., Urtasun R. Vision meets robotics: The kitti
dataset [Текст] // The international journal of robotics research. — 2013. —
Т. 32, № 11. — С. 1231—1237.

71. Komorowski J., Wysoczańska M., Trzcinski T. MinkLoc++: Lidar and
Monocular Image Fusion for Place Recognition [Текст] // 2021 International
Joint Conference on Neural Networks (IJCNN). — 07.2021. — С. 1—8.

72. Melekhin A., Yudin D., Petryashin I., Bezuglyj V. Mssplace: multi-sensor
place recognition with visual and text semantics [Текст] // arXiv preprint
arXiv:2407.15663. — 2024.

73. Besl P. J., McKay N. D. Method for registration of 3-D shapes [Текст] //
Sensor fusion IV: control paradigms and data structures. Т. 1611. — Spie.
1992. — С. 586—606.

74. Rusu R. B., Blodow N., Beetz M. Fast point feature histograms (FPFH) for
3D registration [Текст] // 2009 IEEE international conference on robotics
and automation. — IEEE. 2009. — С. 3212—3217.

75. Choy C., Park J., Koltun V. Fully convolutional geometric features [Текст] //
Proceedings of the IEEE/CVF international conference on computer vision. —
2019. — С. 8958—8966.

76. Luo L., Cao S.-Y., Han B., Shen H.-L., Li J. Bvmatch: Lidar-based place
recognition using bird’s-eye view images [Текст] // IEEE Robotics and
Automation Letters. — 2021. — Т. 6, № 3. — С. 6076—6083.

122

77. Luo L., Cao S.-Y., Li X., Xu J., Ai R., Yu Z., Chen X. BEVPlace++: Fast,
Robust, and Lightweight LiDAR Global Localization for Unmanned Ground
Vehicles [Текст] // arXiv preprint arXiv:2408.01841. — 2024.

78. Carlevaris-Bianco N., Ushani A. K., Eustice R. M. University of Michigan
North Campus long-term vision and lidar dataset [Текст] // The International
Journal of Robotics Research. — 2016. — Т. 35, № 9. — С. 1023—1035.

79. Pramatarov G., De Martini D., Gadd M., Newman P. BoxGraph: Semantic
place recognition and pose estimation from 3D LiDAR [Текст] // 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). — IEEE. 2022. — С. 7004—7011.

80. Wang X., Marcotte R. J., Olson E. GLFP: Global localization from a
floor plan [Текст] // 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). — IEEE. 2019. — С. 1627—1632.

81. Schmid L., Delmerico J., Schönberger J. L., Nieto J., Pollefeys M.,
Siegwart R., Cadena C. Panoptic multi-tsdfs: a flexible representation for
online multi-resolution volumetric mapping and long-term dynamic scene
consistency [Текст] // 2022 International Conference on Robotics and
Automation (ICRA). — IEEE. 2022. — С. 8018—8024.

82. Боковой А. Исследование методов и разработка алгоритмов одновремен­
ного картирования и локализации по видеопотоку единственной камеры
[Текст]. — 2022.

83. Dijkstra E. W. [и др.]. A note on two problems in connexion with graphs
[Текст] // Numerische mathematik. — 1959. — Т. 1, № 1. — С. 269—271.

84. Holkar K., Waghmare L. M. An overview of model predictive control
[Текст] // International Journal of control and automation. — 2010. — Т. 3,
№ 4. — С. 47—63.

85. Radenović F., Tolias G., Chum O. Fine-tuning CNN image retrieval with
no human annotation [Текст] // IEEE transactions on pattern analysis and
machine intelligence. — 2018. — Т. 41, № 7. — С. 1655—1668.

86. Rublee E., Rabaud V., Konolige K., Bradski G. ORB: An efficient alternative
to SIFT or SURF [Текст] // 2011 International conference on computer
vision. — Ieee. 2011. — С. 2564—2571.

123

87. Muja M., Lowe D. Flann-fast library for approximate nearest neighbors
user manual [Текст] // Computer Science Department, University of British
Columbia, Vancouver, BC, Canada. — 2009. — Т. 5. — С. 6.

88. Harris C., Stephens M. [и др.]. A combined corner and edge detector
[Текст] // Alvey vision conference. Т. 15. — Citeseer. 1988. — С. 10—5244.

89. Savva M., Kadian A., Maksymets O., Zhao Y., Wijmans E., Jain B.,
Straub J., Liu J., Koltun V., Malik J. [и др.]. Habitat: A platform for
embodied ai research [Текст] // Proceedings of the IEEE/CVF international
conference on computer vision. — 2019. — С. 9339—9347.

90. Burri M., Nikolic J., Gohl P., Schneider T., Rehder J., Omari S.,
Achtelik M. W., Siegwart R. The EuRoC micro aerial vehicle datasets
[Текст] // The International Journal of Robotics Research. — 2016. — Т. 35,
№ 10. — С. 1157—1163.

91. Sturm J., Burgard W., Cremers D. Evaluating egomotion and structure-from­
motion approaches using the TUM RGB-D benchmark [Текст] // Proc. of
the Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RJS
International Conference on Intelligent Robot Systems (IROS). Т. 13. —
2012. — С. 6.

92. Koenig N., Howard A. Design and use paradigms for gazebo, an open-source
multi-robot simulator [Текст] // 2004 IEEE/RSJ international conference on
intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566). Т. 3. —
Ieee. 2004. — С. 2149—2154.

93. Makoviychuk V., Wawrzyniak L., Guo Y., Lu M., Storey K., Macklin M.,
Hoeller D., Rudin N., Allshire A., Handa A. [и др.]. Isaac gym: High
performance gpu-based physics simulation for robot learning [Текст] // arXiv
preprint arXiv:2108.10470. — 2021.

94. Lozano-Pérez T., Wesley M. A. An algorithm for planning collision-free
paths among polyhedral obstacles [Текст] // Communications of the ACM. —
1979. — Т. 22, № 10. — С. 560—570.

95. Kasmynin K., Mironov K. Vectorized Visibility Graph Planning with
Neural Polygon Extraction [Текст] // International Conference on Interactive
Collaborative Robotics. — Springer. 2024. — С. 265—280.

124

96. Chang A., Dai A., Funkhouser T., Halber M., Niessner M., Savva M.,
Song S., Zeng A., Zhang Y. Matterport3d: Learning from rgb-d data in indoor
environments [Текст] // arXiv preprint arXiv:1709.06158. — 2017.

97. Qin Z., Yu H., Wang C., Guo Y., Peng Y., Ilic S., Hu D., Xu K.
Geotransformer: Fast and robust point cloud registration with geometric
transformer [Текст] // IEEE Transactions on Pattern Analysis and Machine
Intelligence. — 2023.

98. Yuan Y., Schwertfeger S. Incrementally building topology graphs via distance
maps [Текст] // 2019 IEEE International Conference on Real-time Computing
and Robotics (RCAR). — IEEE. 2019. — С. 468—474.

99. Xie E., Wang W., Yu Z., Anandkumar A., Alvarez J. M., Luo P. SegFormer:
Simple and efficient design for semantic segmentation with transformers
[Текст] // NeurIPS. — 2021. — Т. 34. — С. 12077—12090.

100. Daniel K., Nash A., Koenig S., Felner A. Theta*: Any-angle path planning
on grids [Текст] // Journal of Artificial Intelligence Research. — 2010. —
Т. 39. — С. 533—579.

101. Koide K., Miura J., Menegatti E. A portable three-dimensional LIDAR-based
system for long-term and wide-area people behavior measurement [Текст] //
International Journal of Advanced Robotic Systems. — 2019. — Т. 16, № 2. —
С. 1729881419841532.

125

Приложение A. Свидетельство о госурадственной регистрации
программы для ЭВМ № 2025662382

№ 2025662382

PRISM-TopoMap: программная библиотека
топологического картирования с помощью

распознавания мест и сопоставления сканов

Правообладатель: Федеральное государственное учреждение
«Федеральный исследовательский центр «Информатика
и управление» Российской академии наук» (RU)

Автор(ы): Муравьев Кирилл Федорович (RU)

Заявка № 2025660983
Дата поступления 05 мая 2025 г.
Дата государственной регистрации
в Реестре программ для ЭВМ 20 мая 2025 г.

Руководитель Федеральной службы
по интеллектуальной собственности

Ю.С. Зубов

Рисунок A.1 — Свидетельство о регистрации программы для ЭВМ

	Введение
	Обзор и анализ методов и алгоритмов топологического картирования и локализации
	Восприятие окружающей среды роботами
	Методы и алгоритмы картирования
	Методы и алгоритмы локализации
	Выводы по главе

	Постановка задачи топологического картирования и локализации
	Математическая модель окружающей среды и наблюдений
	Метрическая модель задачи ОКЛ
	Топологическая модель задачи ОКЛ
	Выводы по главе

	Разработка алгоритма топологического картирования и локализации
	Общая схема алгоритма
	Процедура локализации в топологической карте
	Процедура построения и обновления топологической карты
	Выводы по главе

	Программный комплекс топологического картирования и локализации
	Структура программного комплекса
	Параметры
	Пример использования
	Выводы по главе

	Экспериментальное исследование
	Постановка численного эксперимента в симуляционной среде
	Численные эксперименты в симуляционной среде
	Эксперименты на данных с реальных роботов
	Выводы по главе

	Заключение
	Список публикаций автора
	Список литературы
	Свидетельство о госурадственной регистрации программы для ЭВМ № 2025662382

