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Общая характеристика работы
Актуальность темы.Современная наука характеризуется стремительным

увеличением объемов публикуемой информации, что создает значительные
трудности для исследователей в поиске и анализе релевантных данных. Эта
тенденция подтверждается динамикой наполнения крупнейших библиометри-
ческих баз данных. Так, согласно анализу базы данных Scopus, количество
ежегодно индексируемых научных статей выросло с приблизительно 921 тыся-
чи в 2000 году до более чем 2,57 миллиона в 2020 году, что свидетельствует
о почти трехкратном увеличении за два десятилетия (Thelwall, 2022). Общий
объем публикаций в Scopus к 2020 году превысил 56 миллионов единиц. Анало-
гичные тенденции наблюдаются и в других международных наукометрических
системах, таких как Web of Science. Российская научная электронная библиоте-
ка eLibrary.ru, которая представляет материалы как на русском, так и на других
языках, также демонстрирует значительный рост: количество публикаций в год
увеличилось с 45,7 тысяч в 2000 году до более чем 4,76 миллиона в 2020 году
(ООО Научная электронная библиотека, 2025). Количество публикаций увели-
чивается не только на английском языке. Этот информационный поток делает
задачу поиска релевантной информации для исследователей всё более трудной, а
также ставит новые вызовы по эффективной обработке и анализу постоянно рас-
тущих текстовых массивов, что требует применения высокопроизводительных
подходов, в том числе методов параллельной обработки данных (Бажанов, 2021).

Статистические методы (VSM, BM25) уступают трансформерным мо-
делям в семантическом поиске по научным текстам (Salton, 1975; Robertson,
2009; Vaswani, 2017). Современные нейросетевые модели, особенно архитек-
туры трансформер (Vaswani, 2017), демонстрируют преимущество над тра-
диционными подходами, поскольку способны учитывать контекст, улавливать
семантические связи между терминами, работать с синонимией и осуществлять
эффективный многоязычный и кросс-язычный поиск. Внедрение таких моделей
в научно-информационные системы позволяет существенно повысить качество
и релевантность поиска, а также открывает новые возможности для анализа
содержания научных текстов (Jin, 2023) (Wang, 2022). В данной диссертации
представлены нейросетевые модели SciRus [1], которые позволяют упростить
работу с научными публикациями. Одна из разработанных моделей, SciRus-tiny,
была внедрена на сервисе eLibrary.ru.

Для объективной оценки и совершенствования моделей обработки есте-
ственного языка используют бенчмарки— специализированные наборы данных
и задач. В последние годы для русского языка появились такие универсальные
инструменты оценки, как RuSentEval (Mikhailov, 2021) и encodechka (Dale, 2022).
Несмотря на это, наблюдается дефицит инструментов для русскоязычного науч-
ного домена. Научные тексты обладают рядом специфических характеристик,
таких как информационная плотность и сложность текста, узкоспециализиро-
ванная терминология, особая структура и стиль изложения. Из-за этого оценка
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на универсальных наборах для оценки не дает понимания о качестве работы мо-
дели на научных данных.

Отсутствие специализированных русскоязычных научных наборов дан-
ных для оценки затрудняет сравнительный анализ как существующих, так и
разрабатываемых моделей векторного представления текстов в данной предмет-
ной области. Как следствие, это сдерживает дальнейшее развитие алгоритмов
для анализа русскоязычного научного контента. Еще одна задача таких наборов
— помочь исследователям подобрать подходящую модель для своей задачи, свя-
занной с научными текстами.

Разработка и предоставление научному сообществу открытых моделей и
инструментариев для оценки, таких как SciRus и RuSciBench, отвечает целям
и задачам развития искусственного интеллекта в Российской Федерации, пере-
численным в «Национальной стратегии развития искусственного интеллекта на
период до 2030 года» (с изменениями от 15 февраля 2024 г.) (Президент Россий-
ской Федерации, 2024). Это направление деятельности полностью соответствует
концепции открытой науки, предполагающей свободный доступ к исследова-
тельским данным, инструментам и результатам, что способствует ускорению
научного прогресса и повышению прозрачности исследовательской деятельно-
сти.

Целью данной работы является разработка, исследование и апробация
инструментов и моделей, предназначенных для решения задач эффективной об-
работки, анализа и оценки качества представления научных текстов на русском
языке.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Разработать методику обучения двуязычной модели для векторного
представления научных текстов на русском и английском языках. Ис-
следовать подходы к обучению, основанные на доступных данных из
мультиязычных корпусов, без дополнительной разметки. При этом мо-
дель должна обеспечивать высокую скорость работы на центральном
процессоре.

2. Разработать методологию и на ее основе создать инструментарий для
оценки качества векторных представлений научных текстов на рус-
ском и английском языках. Данный инструментарий должен учитывать
специфику научного дискурса и охватывать разнообразные задачи, ис-
пользуя данные из российской научной среды.

3. Исследовать проблему верификации научных фактов на русском язы-
ке. Разработать и апробировать методологию полуавтоматизированного
формирования русскоязычного набора данных, включающую генера-
цию научных утверждений на основе аннотаций с использованием
больших языковыхмоделей и их последующую экспертную валидацию.
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Разработать тестовый набор на основе данного набора для оценки спо-
собности моделей определять соответствие или противоречие утвер-
ждений.

Основные положения, выносимые на защиту:
1. Предложены компактные двуязычные модели SciRus-tiny (23 млн пара-

метров) и SciRus-small (61 млн параметров) для представления научных
текстов в векторном пространстве. Обучение проводится в два этапа:
сначала модель обучается с помощью маскированного языкового мо-
делирования, затем с помощью контрастивного дообучения на парах
«заголовок-аннотация». Дополнительно, при обучении используются
пары «цитирующая статья — цитируемая статья», основанные на од-
нонаправленной связи из графа цитирований. На бенчмарке SciDocs
модели достигают качества, сравнимого с лучшими англоязычными
моделями при вдвое меньшем числе параметров. На RuSciBench по рей-
тингу Борда занимают 1–2 места на русском языке и входят в топ-10
среди моделей на английском.

2. Разработан мультизадачный двуязычный бенчмарк RuSciBench, вклю-
чающий задачи классификации, регрессии, моно- и кросс-языкового
поиска на научных данных. Этот тестовый набор обеспечивает воспро-
изводимую процедуру тестирования, интегрированную в международ-
ный бенчмарк MTEB.

3. Предложена полуавтоматическая методика формирования наборов дан-
ных для проверки научных фактов на русском языке, сочетающая гене-
рацию утверждений с помощью LLM, многоступенчатую самооценку
модели и экспертную верификацию.На её основе создан первый русско-
язычный бенчмарк RuSciFact, который позволяет оценить способность
моделей векторизации решать задачу проверки научных фактов.

Методы исследования. В диссертационном исследовании использованы
известные, достоверные и хорошо зарекомендовавшие себя на практике мето-
ды. В модели используется архитектура трансформер, она обучается с помощью
маскированного языкового моделирования и с помощью контрастивного до-
обучения с применением функции потерь InfoNCE. В наборах для оценки
используются распространенные критерии качества, такие как Accuracy, F1-
мера, NDCG@k, MRR@k, коэффициент корреляции Кендалла.

Научная новизна:
1. Показана эффективность контрастивного дообучения модели вектори-

зации текста на парах «заголовок-аннотация», без использования графа
цитирований.

2. Разработаны модели векторизации научных текстов с поддержкой рус-
ского и английского языков и высокой скоростью работы на централь-
ном процессоре.

3. Разработан первый набор для оценки качества работы моделей с на-
учными данными на русском и английском языках, состоящий из
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различных типов задач. На его основе проведено сравнительное ис-
следование широкого спектра современных моделей векторизации в
задачах на научных данных. Благодаря симметричной двуязычной
структуре бенчмарка впервые количественно установлена зависимость
производительности моделей от языка задачи и выявлена степень язы-
ковой специализации каждой модели.

4. Предложена полуавтоматизированная многоступенчатая методика фор-
мирования наборов данных для проверки научных фактов на русском
языке, совмещающая генерацию утверждений с помощью LLM, само-
критичную оценку модели-генератора и экспертную валидацию.

5. Разработан и опубликован первый набор данных для проверки научных
фактов на русском языке RuSciFact.

Практическая значимость в первую очередь подтверждается внедрени-
ем модели векторизации научных текстов SciRus-tiny на российском научном
портале elibrary.ru. Был разработан новый режим «нейропоиск», который позво-
ляет находить тематически близкие научные публикации, используя в качестве
запроса аннотацию статьи. Это внедрение упрощает анализ научной информа-
ции для широкого круга исследователей и специалистов, работающих с научной
библиотекой elibrary.

Кроме того, практическая значимость обусловлена разработкой открытых
научных наборов для оценки, которые были внедрены в авторитетный междуна-
родный бенчмаркMTEB (Massive Text Embedding Benchmark), что подтверждает
их актуальность, а также существенно упрощает их использование для разработ-
чиков моделей. Данные, на основе которых был создан бенчмарк RuSciBench,
послужили основой для одной из задач в мультиязычном наборе для оценки
AIRBench (Yang, 2024), а также для одной из задач в русскоязычном тестовом
наборе LIBRA (Churin, 2024), что подтверждает интерес научного сообщества к
результатам работы.

Достоверность полученных результатов подтверждается следующим:
1. докладами и обсуждениями результатов на международных конферен-

циях
2. публикациями результатов в рецензируемых научных изданиях, реко-

мендованных ВАК
3. открытым исходным кодом и воспроизводимостью результатов.
Апробация работы. Основные результаты работы докладывались на:
1. А. С. Ватолин. Сравнительный анализ современных мультиязычных

моделей для векторизации текста на русском языке. Международ-
ная научно-практическая конференция «Информационные технологии,
искусственный интеллект, большие данные: актуальные тенденции,
перспективные исследования», 2024

2. А. С. Ватолин. ruSciFact: Open Benchmark for Verifying Scientific Facts in
Russian.Международная конференция по компьютерной лингвистике и
интеллектуальным технологиям «Диалог», 2025
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3. А. С. Ватолин. Structured Sentiment Analysis with Large LanguageModels:
A Winning Solution for RuOpinionNE-2024. Международная конферен-
ция по компьютерной лингвистике и интеллектуальным технологиям
«Диалог», 2025

Личный вклад соискателя в работах с соавторами заключается в следу-
ющем: [1] - предобучение маленькой версии модели (SciRus-tiny) с помощью
маскированного языкового моделирования, дообучение обеих версий модели
(SciRus-tiny и SciRus-small) на парах заголовок-аннотация, а также на парах «ци-
тирующая статья — цитируемая статья», валидация моделей на наборе данных
SciDocs. [2] - сбор датасетов для классификации по ГРНТИ, по типу публикации,
для поиска цитирований, для регрессии по количеству цитат, для поиска англий-
ского перевода по тексту на русском языке. Также реализация исходного кода
инструментария для оценки, валидация моделей, интеграция бенчмарка в меж-
дународный бенчмаркMTEB. [3] - вклад соискателя является определяющим. [5]
— в рамках работы над созданием и расширением международного многоязыч-
ного бенчмарка MMTEB соискателем проведена работа по добавлению новых
задач на различных языках, включая задачи, разработанные им самостоятель-
но. Также выполнен значительный вклад в обеспечение качества и корректности
данных во всех задачах, вошедших в итоговый набор бенчмарка. В публикации
[4] соискатель является единственным автором.

Содержание диссертации и положения, выносимые на защиту, отражают
персональный вклад автора в опубликованных работах. Все представленные ре-
зультаты получены лично автором.

Публикации.Основные результаты по теме диссертации изложены в 5 пе-
чатных изданиях, 2 — в периодических научных журналах, индексируемыхWeb
of Science и Scopus, 3 — в периодических научных журналах, индексируемых
Scopus.

Содержание работы
Во введении обосновывается актуальность исследований, проводимых в

рамках данной диссертационной работы, формулируется цель, ставятся задачи
работы, формулируются научная новизна и практическая значимость представ-
ляемой работы.

В первой главе диссертации представлен анализ теоретических основ
и современных методов построения семантических векторных представлений
текстов, служащих фундаментом для последующих глав работы. В главе форма-
лизуется задача векторизации, рассматривается эволюция подходов и детально
излагается технологический стек, использованный при разработке моделей в
данной диссертации.

В разделах 1.1 и 1.2 дается формальная постановка задачи семантиче-
ской векторизации как построения отображения f(x,α) из пространства текстов
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в многомерное векторное пространство R
d. Подчеркивается ключевое требова-

ние к такому отображению: геометрическая близость векторов должна отражать
семантическую близость исходных текстов. Приводится краткий исторический
экскурс в развитие методов, от статистических подходов (TF-IDF) и матричных
разложений (LSA) до нейросетевых моделей, способных генерировать контек-
стуализированные представления. Далее рассматривается этап предобработки
текста — токенизация. Обосновывается переход от токенизации по словам,
имеющей проблему «неизвестных слов», к методам токенизации на уровне фраг-
ментов слов. В качестве основного подхода описывается алгоритм Byte-Pair
Encoding (BPE) (Sennrich, 2015), который позволяет эффективно обрабатывать
тексты с богатой морфологией, формируя словарь из наиболее частотных сим-
вольных последовательностей.

Раздел 1.3 посвящен архитектуре трансформер-кодировщика (Vaswani,
2017), лежащей в основе всех современных моделей. В рамках данной рабо-
ты используется архитектура, основанная на модели BERT. Процесс получения
контекстуализированных векторных представлений для последовательности то-
кенов xi начинается со слоя векторизации fe, где формируются начальные
представления токенов:

h(0) = fe(xi,αe) = E(xi) + Pi.

На этом этапе каждому токену из входной последовательности сопоставля-
ется его векторное представление из обучаемой матрицы E ∈ R

|V|×d, где
|V| — размер словаря, а d — размерность векторного пространства. К полу-
ченным векторам прибавляются соответствующие позиционные эмбеддинги из
матрицы P , кодирующие информацию о порядке токенов. Полученная матри-
ца скрытых состояний h(0) последовательно обрабатывается L идентичными
трансформер-блоками. Работа l-го блока (l = 1, . . . , L) описывается следующи-
ми преобразованиями:

z(l) = LayerNorm
(

h(l−1) +MHAtt(l)(h(l−1))
)

,

h(l) = LayerNorm
(

z(l) + FF(l)(z(l))
)

.

Каждый блок состоит из двух ключевых подслоев: механизма многоголово-
го внимания (MHAtt(l)) и двухслойной полносвязной нейронной сети (FF(l)).
Механизм внимания, состоящий из H параллельных «голов», позволяет моде-
ли улавливать сложные контекстуальные зависимости, вычисляя взвешенную
сумму векторов всех токенов в последовательности. После каждого из двух под-
слоев применяются остаточное соединение (skip connection) и нормализация по
слою (LayerNorm) для стабилизации процесса обучения. В результате, на выходе
последнего трансформер-блока формируется матрица контекстуализированных
векторов токенов h(L).

В разделе 1.4 излагается методология предобучения трансформер-
кодировщика, исходно предложенная в работе BERT (Devlin, 2019). Однако
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в обзоре основной акцент делается на конфигурацию RoBERTa (Liu, 2019) как
более современную, где ключевой задачей при обучении служит маскированное
языковое моделирование (MLM). Для каждой входной последовательности
токенов xi = (wi,1, . . . , wi,ni

) случайным образом выбирается подмноже-
ство позиций для маскирования. Индикатор маскирования для j-й позиции
определяется как случайная величина mi,j ∼ Bernoulli(pm), где вероятность
маскирования pm = 0.15. На основе этих индикаторов формируется модифи-
цированная последовательность x′

i = (w′

i,1, . . . , w
′

i,ni
), где токен в маскируемой

позиции заменяется согласно следующему правилу:

w′

i,j =











[MASK], еслиmi,j = 1 и r < 0.8,

u, еслиmi,j = 1 и 0.8 ≤ r < 0.9,

wi,j , в остальных случаях,

где r ∼ U(0,1) — случайная величина, равномерно распределенная на отрезке
[0,1), а u ∼ U(V) — случайный токен, выбранный из словаря V . На этапе пре-
добучения к выходам модели-кодировщика f(·,α) добавляется дополнительный
полносвязный слой, предназначенный для предсказания распределения веро-
ятностей по всему словарю V для каждой токенизированной позиции. Таким
образом, полная модель для решения задачиMLM, обозначим ее gMLM, преобра-
зует выходное представление j-го токена hi,j = f(x′

i,α)j в вектор вероятностей
pi,j :

pi,j = gMLM(x′

i;α,β)j = softmax(Wf(x′

i,α)j + b), (1)

где параметры β = {W,b} соответствуют матрице весовW ∈ R
|V|×d и вектору

смещений b ∈ R
|V| данного классификационного слоя. Оптимизация сово-

купности параметров (α,β) производится путём минимизации функции потерь
перекрестной энтропии, которая вычисляется только по маскированным пози-
циям:

LMLM(α,β) = −

B
∑

i=1

∑

j∈Mi

logpi,j [wi,j ] → min
α,β

,

где B — размер мини-выборки, Mi = {j | mi,j = 1} — множество индексов
маскированных токенов для i-й последовательности, а pi,j [wi,j ] — предсказан-
ная моделью вероятность истинного токена wi,j .

В исходной работе BERT (Devlin, 2019) дополнительно предлагалась за-
дача предсказания следующего предложения (NSP), однако последующие ис-
следования показали отсутствие устойчивого выигрыша от её использования, в
RoBERTa от этой задачи отказались.

В конфигурации RoBERTa были тщательно пересмотрены ключевые ас-
пекты процесса обучения: от статического маскирования перешли к динамиче-
скому (маска генерируется заново в каждой эпохе), исключили задачу NSP и
использовали значительно большие мини‐выборки и объёмы данных. Именно на
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этой усовершенствованной методологии основываются модели, представленные
в данной работе.

В разделе 1.5 рассматриваются методы дообучения (fine-tuning) предобу-
ченных трансформер-кодировщиков для задач оценки семантической близости
текстов. Показано, что без специальной адаптации стандартные выходы моде-
лей типа BERT не позволяют эффективно решать задачи семантического поиска.
В разделе противопоставляются два подхода. Первый— архитектура перекрест-
ного кодировщика (cross-encoder), которая обрабатывает пару текстов совместно
и выдает оценку их близости. Несмотря на высокую точность этого метода, его
вычислительная сложность препятствует применению на больших коллекциях.

Второй, практически применимый подход, основан на сиамской архи-
тектуре (bi-encoder), которая генерирует независимое семантическое векторное
представление v = f(x,α) для каждого текста, что позволяет реализовать эф-
фективный поиск. Описаны ключевые функции потерь, включая Triplet Loss
(Schroff, 2015), использующую тройки примеров (якорь, положительный, отри-
цательный):

Ltriplet(α) =

B
∑

i=1

max
(

0, d(va,i,vp,i)− d(va,i,vn,i) + ε
)

→ min
α

,

ифункциюпотерь InfoNCE (van denOord, 2018), которая использует только поло-
жительные пары «якорь - положительный пример» и формирует отрицательные
примеры динамически из других элементов мини-выборки (in-batch negatives):

LInfoNCE(α) = −

B
∑

i=1

log
exp(s(va,i,vp,i)/τ)

∑B

j=1 exp(s(va,i,vp,j)/τ)
→ min

α
,

где s(·, ·) — косинусная близость, а τ — гиперпараметр температуры.
В разделе 1.6 рассматривается применение описанных методов в научной

области. Обосновывается необходимость доменной адаптации: научные тексты
характеризуются специализированной терминологией, строго регламентирован-
ной структурой и сложными семантическими связями через цитирования, что
создает доменный сдвиг для моделей общего назначения. Рассматриваются спе-
циализированные модели:

– SPECTER (Cohan, 2020), использующая граф цитирований для форми-
рования обучающих троек

– SPECTER2, предлагающая мультиформатное обучение для генерации
специализированных векторов под различные типы задач

– SciNCL (Ostendorff, 2022), применяющая непрерывную меру близости
из специально обученной графовой модели вместо дискретного сигнала
цитирования.

В разделе 1.7 представлен обзор инструментов оценки. Бенчмарк SciDocs
включает семь задач в четырех категориях (классификация, предсказание ци-
тирований, анализ пользовательской активности, рекомендации). Бенчмарк
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SciRepEval расширяет подход до 24 задач в четырех форматах с разделением на
группы In-Train и Out-of-Train для оценки обобщающей способности. Бенчмарк
SciFact фокусируется на верификации научных фактов, требующей логического
вывода для определения поддержки или опровержения утверждений. Универ-
сальный бенчмарк MTEB объединяет и стандартизирует множество наборов
данных, предоставляя единый интерфейс и таблицу лидеров для сравнения
моделей.

В заключительном разделе 1.8 делается вывод, что все передовые ре-
шения и инструменты оценки ориентированы исключительно на английский
язык. Это формирует научную задачу диссертации — разработку эффективных
двуязычных семантических представлений для научных документов и инстру-
ментария для их оценки.

Во второй главе диссертации описывается процесс разработки, обучения
и оценки семейства двуязычных моделей SciRus, предназначенных для построе-
ния семантических векторных представлений научных текстов. Основной целью
работы является преодоление двух ключевых ограничений существующих ре-
шений: англоязычности передовых специализированных моделей (SPECTER,
SciNCL) и высокой вычислительной ресурсоемкости универсальных моделей.

В разделе 2.1 формализуется постановка задачи векторизации научных
текстов.

Дано: коллекция документов D = {xi}
N
i=1.

Найти: параметризованное отображение f(·,α), которое сопоставляет
каждому документу xi вектор в евклидовом пространстве:

vi = f(xi,α) ∈ R
d, i = 1, . . . , N.

Ключевое требование к этому отображению заключается в том, чтобы гео-
метрическая близость векторов отражала семантическую близость исходных
документов.

Качество и универсальность искомого отображения определяются тремя
основными критериями, соответствующими этапам его построения и приме-
нения. Первый критерий связан с этапом предобучения, на котором модель
обучается на задаче маскированного языкового моделирования, что позволяет
ей выучить контекстные векторные представления токенов:

N
∑

i=1

LMLM(xi,α) → min
α

.

Второй критерий относится к этапу контрастивного дообучения, целью которого
является формирование семантического векторного пространства. Это достига-
ется за счет минимизации контрастивной функции потерь LContr на обучающих
парах семантически близких документов (xa,i, xp,i).

N
∑

i=1

LContr(f(xa,i,α), f(xp,i,α)) → min
α

.
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Третий критерий относится к этапу применения модели для решения приклад-
ных задач. Для этого используется новый малый набор данных D′ = {x′

i}
M
i=1,

где M & N . Параметры α кодировщика f фиксируются, а обучается только
модель g′(·,β′):

M
∑

i=1

L′

i(g
′(f(x′

i,α),β
′)) → min

β′

, где dim(β′) & dim(α).

В разделе 2.2 описываются наборы данных для обучения. Для обучения
моделей использовались два крупных источника научных текстов.

Первый источник — международный архив Semantic Scholar Academic
Graph Dataset (S2AG) (Kyle, 2020), исходно содержащий метаданные более 200
миллионов публикаций. Из него была сформирована выборка объемом 30.5 млн
пар «заголовок–аннотация»; такой объем был выбран для уменьшения итоговой
доли английского языка в объединенном корпусе, поскольку S2AG является пре-
имущественно англоязычным (83.3%). Помимо текстовых метаданных, набор
данных включает граф цитирований S2ORC, содержащий более 51.9 миллионов
ребер, что используется для формирования дополнительных обучающих пар на
этапе контрастивного дообучения.

Второй источник — данные российской научной библиотеки eLibrary.ru.
Эта часть состоит из 17.4 млн пар «заголовок–аннотация» и включает 8.6 млн
русскоязычных и 8.8 млн англоязычных документов. Ключевой особенностью
этого набора данных является наличие около 5.2 миллионов русскоязычных ста-
тей, имеющих параллельные англоязычные версии аннотаций, что представляет
собой ценный параллельный корпус для формирования единого семантического
пространства для русского и английского языков. Граф цитирований на основе
данных eLibrary.ru содержит около 40 миллионов ребер.

Таким образом, итоговый текстовый корпус для обучения модели содержит
около 48.2 миллионов заголовков и аннотаций научных статей, что соответствует
примерно 15 миллиардам токенов.

Раздел 2.3 посвящен архитектуре разработанных моделей. За основу взя-
та архитектура RoBERTa, детально описанная в предыдущей главе. В рамках
работы были созданы две конфигурации: SciRus-tiny (23 млн параметров, раз-
мерность вектора d = 312) и SciRus-small (61 млн параметров, d = 768). Обе
модели используют L = 3 трансформер-блока,H = 12 голов внимания и общий
токенизатор BPE со словарем на 50265 токенов.

В разделе 2.4 описывается процесс обучения моделей SciRus, состоявший
из двух последовательных этапов: предобучение с использованием задачи мас-
кированного языкового моделирования (MLM) и последующее контрастивное
дообучение для формирования семантического векторного пространства.

Первый этап, подробно изложенный в подразделе 2.4.1, заключался в
предобучении моделей с нуля. Такой подход был выбран ввиду отсутствия го-
товых моделей сопоставимого размера с поддержкой русского и английского
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языков, а также поскольку токенизаторы существующих моделей были обуче-
ны на неспециализированных данных и не были оптимальными для научных
текстов. Модели инициализировались случайными весами, а в качестве обуча-
ющих данных использовался объединенный текстовый корпус, состоящий из
заголовков и аннотаций из наборов данных S2AG и eLibrary.ru. Обучение про-
водилось с использованием задачи маскированного языкового моделирования
(MLM) (Devlin, 2019). Процесс предобучения продолжался в течение двух эпох,
и контроль сходимости осуществлялся на валидационной выборке. По заверше-
нии этого этапа линейный слой с параметрами β отбрасывается.

Второй этап, описанный в подразделе 2.4.2, состоял в дообучении моде-
лей с использованием контрастивного подхода. Для формирования обучающих
примеров использовались данные двух типов. Первый тип основан на парах
«заголовок–аннотация» и исходит из предположения, что заголовок научной ста-
тьи семантически близок к ее собственной аннотации, но не близок к аннотации
случайно выбранной статьи. Второй тип данных основан на графах цитирования
S2ORC и eLibrary.ru, при этом цитирующая статья считается близкой по содер-
жанию к цитируемой, но далекой от случайной статьи из корпуса. На основе
этих двух предположений формировались положительные пары (xa,i, xp,i). Так-
же применялась кросс-языковая стратегия формирования пар: опорный пример
xa,i и положительный пример xp,i могли быть представлены на разных язы-
ках (например, русскоязычный заголовок и англоязычная аннотация), если такие
данные доступны, что способствовало формированию единого семантического
пространства для русского и английского языков.

Для получения единого векторного представления документа из матрицы
контекстуализированных векторов токенов h(L) ∈ R

n×d, полученной на выходе
трансформер-кодировщика, был добавлен слой усреднения (Mean Pooling). Этот
слой вычисляет итоговый вектор документа v как среднее арифметическое век-
торов всех токенов в последовательности:

v =
1

n

n
∑

j=1

hj , (2)

где n — длина последовательности токенов, а hj — векторное представление
j-го токена на выходе последнего слоя кодировщика.

Обучение на данном этапе производилось путём минимизации функции
потерь InfoNCE (van den Oord, 2018), параметр τ был установлен равным 0.01.

В результате были получены две линейки моделей. Модели, обучен-
ные исключительно на парах «заголовок–аннотация», именуются SciRus-tiny
и SciRus-small. Модели, при обучении которых дополнительно использова-
лись данные о цитированиях, получили суффикс -cite: SciRus-tiny-cite и
SciRus-small-cite.

В разделе 2.5 представлены результаты оценки качества разработанных
моделей на общепринятом англоязычном бенчмарке SciDocs (Cohan, 2020) в
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сравнении с ведущими мировыми аналогами. В таблице 1 приведена выдерж-
ка из результатов. Модели сравниваются по среднему значению меры качества
по 6 задачам бенчмарка, как было предложено в оригинальной публикации.

Таблица 1 –– Сравнение моделей на бенчмарке SciDocs (среднее значение мер
качества по всем задачам)
Модель Количество

параметров
Языки Среднее

SciRus-tiny 23 млн русско-английский 86.53
SciRus-small 61 млн русско-английский 86.89
SciRus-tiny-cite 23 млн русско-английский 89.55
SciRus-small-cite 61 млн русско-английский 90.02
multilingual-e5-small 118 млн мультиязычная 86.23
SPECTER 110 млн английский 89.10
multilingual-e5-large-instruct 560 млн мультиязычная 89.18
GritLM-7B 7.24 млрд мультиязычная 89.70
SciNCL 110 млн английский 90.84
GIST-large-Embedding-v0 335 млн английский 91.26

Анализ результатов показывает, что модели SciRus, обученные с
использованием данных о цитированиях, демонстрируют высокую конкурен-
тоспособность. Модель SciRus-small-cite (61 млн параметров) достигает
качества, сопоставимого со специализированной англоязычной моделью SciNCL
(110 млн), и превосходит как более раннюю модель SPECTER, так и значительно
более крупную модель общего назначения GritLM-7B.

Модели, обученные только на парах «заголовок-аннотация» без использо-
вания графа цитирований (SciRus-tiny и SciRus-small), показывают более
низкое качество, однако разница составляет около 3 процентных пунктов, что
свидетельствует о высокой эффективности обучения на текстовых метаданных.
Этот результат имеет важное практическое значение: пары заголовков и аннота-
ций значительно более доступны, чем данные о цитированиях, которые требуют
наличия полного графа научных публикаций. Таким образом, даже при отсут-
ствии информации о цитированиях возможно обучение моделей векторизации с
приемлемым качеством.

Важно подчеркнуть, что в отличие от англоязычных моделей SPECTER и
SciNCL, модели SciRus являются двуязычными.

Раздел 2.6 посвящен оценке вычислительной эффективности. Были про-
ведены замеры скорости векторизации текстов на центральном процессоре.
Результаты показывают, что модель SciRus-small обрабатывает запросы при-
мерно в 15 раз быстрее, чем SciNCL, и в 20 раз быстрее, чем SPECTER, что
является критически важным для применения в промышленных системах.

Практическая значимость работы подтверждается в разделе 2.7, где опи-
сывается внедрение модели SciRus-tiny в информационно-поисковую систему
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Рисунок 1 –– Интерфейс режима «нейропоиск» на портале eLibrary.ru, использу-
ющего модель SciRus-tiny.

научной электронной библиотеки eLibrary.ru. На основе разработанной модели
был запущен сервис семантического поиска «нейропоиск», позволяющий поль-
зователям находить релевантные публикации (см. рис. 1).

В третьей главе диссертации решается задача создания стандартизиро-
ванного инструментария для оценки качества моделей векторизации научных
текстов. Обосновывается необходимость такого инструмента, поскольку суще-
ствующие бенчмарки общего назначения не учитывают специфику научного
дискурса, а специализированные научные бенчмарки для русского языка отсут-
ствуют. Для устранения этого пробела был разработан RuSciBench [2] — муль-
тизадачный двуязычный бенчмарк, основанный на корпусе из 182 264 научных
статей из электронной библиотеки eLibrary.ru, прошедших предварительную
фильтрацию и предобработку. Примеры отобраны таким образом, чтобы для
всех заголовков и аннотаций имелся перевод.

Каждая задача в бенчмарке представлена на русском и английском язы-
ках, что позволяет проводить всестороннюю оценку моделей. В диссертации
подробно описываются 9 наборов данных, разработанных лично соискателем:
две задачи классификации, одна задача регрессии и одна задача информационно-
го поиска, каждая из которых представлена на обоих языках, а также одна задача
кросс-языкового поиска. Всего бенчмарк состоит из 18 задач. При оценке модели
на каждой из задач ее параметры f(x,α) остаются неизменными, а на получен-
ных векторах vi = f(xi,α) обучается модель g′(·,β′) (dim(β′) & dim(α)).

В разделе 3.1 описываются задачи классификации. Для коллекции доку-
ментов D = {xi}

N
i=1 и множества меток C = {c1, . . . , cK} строится модель,

сопоставляющая каждому документу xi его класс yi ∈ C. Векторные представ-
ления vi = f(xi,α), полученные от замороженного кодировщика, используются
в качестве признаков для обучения модели логистической регрессии g′(v,β′).
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Вероятность принадлежности документа xi к классу ck моделируется с помо-
щью функции softmax:

pik = P (yi = ck|vi,β
′) =

exp(vT
i Wk + bk)

∑K

j=1 exp(v
T
i Wj + bj)

,

где Wk — вектор весов, а bk — свободный член (смещение) для класса ck.
Полный набор обучаемых параметров классификатора — β′ = {(Wk, bk)}

K
k=1.

Процесс обучения сводится к минимизации кросс-энтропийной функции потерь
с L2-регуляризацией весовых векторов:

L(β′) = −
1

N

N
∑

i=1

K
∑

k=1

[yi = ck] log pik + λ

K
∑

k=1

||Wk||
2
2 −→ min

β′

.

В связи с дисбалансом классов была применена процедура балансировки выбо-
рок, что позволило использовать точность (Accuracy) в качестве основной меры
качества. Бенчмарк включает две задачи этого типа:

– Классификация по рубрикатору ГРНТИ - 29 классов.
– Классификация по типу публикации - 4 класса.
Раздел 3.2 посвящен задаче регрессии в бенчмарке RuSciBench. В рам-

ках данной постановки для каждого документа xi необходимо предсказать
соответствующее ему действительное число yi ∈ R. Аналогично задачам
классификации, параметры кодировщика f(x,α) остаются неизменными, а на
полученных векторах vi обучается регрессионная модель g′(v,β′). В качестве
такой модели используется линейная регрессия:

g′(vi,β
′) = vT

i W + b,

где β′ = {W, b} — обучаемые параметры: вектор весов W и свободный член b.
Обучение заключается в минимизации среднеквадратичной ошибки (MSE) по
параметрам β′:

L(β′) =
1

N

N
∑

i=1

(yi − g′(vi,β
′))2 −→ min

β′

.

Для оценки качества используется коэффициент ранговой корреляции Кендалла
(вариант τb), который вычисляется по формуле:

τb =
P −Q

√

(P +Q+ Tŷ)(P +Q+ Ty)
, (3)

где P — число согласованных пар объектов (ранги истинных и предсказанных
значений совпадают),Q— число несогласованных пар, а Ty и Tŷ — число пар с
совпадающими значениями (связками) в истинных и предсказанных рангах соот-
ветственно. Выбор этой меры качества обусловлен ее устойчивостью к выбросам

16



и нелинейным зависимостям, что особенно важно для таких сильно скошен-
ных распределений, как число цитирований. Итоговое значение меры качества
принимается равным max(0, τb) для обеспечения единой шкалы с другими за-
дачами бенчмарка. Бенчмарк включает одну задачу этого типа - предсказание
числа цитирований. В данной задаче оценивается способность модели улавли-
вать в тексте аннотации сигналы, коррелирующие с научной значимостью и
влиятельностью публикации, а также возрастом публикации, так как наблюда-
ется корреляция между годом публикации и количеством цитат.

В разделе 3.3 описывается задача информационного поиска в бенчмар-
ке RuSciBench, а именно задача поиска прямых цитирований, в рамках которой
для заданной статьи-запроса, представленной ее заголовком и аннотацией, необ-
ходимо найти в общем корпусе научных публикаций те работы, которые она
цитирует.

Процедура оценки следует стандартной парадигме информационного по-
иска. На первом этапе все запросы и документы корпуса векторизуются с
помощью оцениваемой модели f(x,α). Затем для каждого вектора запроса vq

документы корпуса ранжируются по убыванию косинусной близости:

similarity(vq,vd) =
vq · vd

||vq|| · ||vd||
.

Качество полученного списка оценивается с помощью нормализованного дис-
контированного совокупного выигрыша на первых 10 позициях (NDCG@10).
Данная мера качества определяется как отношение дисконтированного совокуп-
ного выигрыша (DCG) к его идеальному значению (IDCG), которое достигается
при наилучшем возможном ранжировании:

NDCG@k =
DCG@k

IDCG@k
. (4)

Поскольку релевантность в данной задаче бинарна, дисконтированный совокуп-
ный выигрыш DCG@k вычисляется как сумма, где каждая релевантная работа
вносит вклад, обратно пропорциональный логарифму ее позиции в списке:

DCG@k =

k
∑

i=1

[reli = 1]

log2(i+ 1)
,

где reli = 1, если документ на i-й позиции является процитированным (то есть
релевантным), и 0 в противном случае.

Раздел 3.4 посвящен задаче кросс-языкового поиска, предназначенной для
оценки качества выравнивания семантических пространств разных языков. Зада-
ча состоит в том, чтобы для каждой аннотации на русском языке найти ее точный
перевод в параллельном корпусе аннотаций на английском языке.
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Поиск выполняется путём нахождения ближайшего соседа в векторном
пространстве по косинусной близости. Предсказанным переводом d̂j для запро-
са qj считается документ:

d̂j = arg max
di∈Den

vq,j · vd,i

||vq,j || · ||vd,i||
.

В качестве меры качества используется точность (Accuracy) — доля правильно
найденных переводов:

Accuracy =
1

|Dru|

∑

qj∈Dru

[d̂j = dj,true],

где dj,true — истинный перевод для запроса qj .
В разделе 3.5 представлены итоговые результаты оценки 29 моделей,

включая ряд передовых решений, опубликованных уже после выхода бенчмар-
ка. Для агрегирования результатов по 18 задачам бенчмарка используется метод
Борда, который вычисляет итоговый балл Bi для каждой модели на основе сум-
мы ее рангов по всем задачам:

Bi =

m
∑

j=1

(n− rij),

где m — число задач, n — число моделей, rij — ранг i-й модели в j-й задаче.
В таблице 2 представлен сокращенный итоговый рейтинг, включающий первые
восемь моделей, а также все модели семейства SciRus для наглядного сопостав-
ления.

Таблица 2 –– Сокращенный сводный рейтинг моделей на RuSciBench
Модель Количество параметров Ранг Борда Среднее
GritLM-7B 7.24 млрд 1 0.4687
Linq-Embed-Mistral 7.00 млрд 2 0.4574
SFR-Embedding-Mistral 7.00 млрд 3 0.4557
SFR-Embedding-2_R 7.11 млрд 4 0.4604
gte-Qwen2-7B-instruct 7.00 млрд 5 0.4593
SciRus-small-cite 61 млн 6 0.4545
multilingual-e5-large-instruct 560 млн 7 0.4395
SciRus-tiny-cite 23 млн 8 0.4490

… … … …
SciRus-small 61 млн 12 0.4334

… … … …
SciRus-tiny 23 млн 17 0.4299
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Анализ результатов показывает, что, несмотря на общую тенденцию роста
качества с увеличением числа параметров, доменная адаптация играет реша-
ющую роль. Компактные модели SciRus-small-cite и SciRus-tiny-cite демон-
стрируют высокую производительность, опережая многие значительно более
крупные модели общего назначения, особенно на русскоязычных задачах.

Раздел 3.6 посвящен анализу языковой специализации моделей. Благодаря
полностью симметричной структуре бенчмарка, где каждой русскоязычной за-
даче соответствует англоязычный аналог, становится возможным количественно
оценить смещение производительности моделей в сторону одного из языков. Для
этого отдельно вычислялся ранг Борда на подмножестве задач на русском языке
и на подмножестве задач на английском языке, что позволяет выявить языковую
направленность каждой модели. Кроме того, рассчитывался прирост среднего
значения мер качества на всех задачах на русском языке по отношению к зада-
чам на английском. В таблице 3 представлены результаты этого анализа.

Таблица 3 –– Оценка степени языковой специализации моделей
Модель Ранг (англ.) Ранг (рус.) Прирост (рус.), %
GritLM-7B (7.24 млрд) 1 3 -7.26
SciRus-small-cite (61 млн) 6 1 +0.89
multilingual-e5-large-instruct (560 млн) 10 8 -0.23
SciRus-tiny-cite (23 млн) 9 2 +0.61
NV-Embed-v2 (7 млрд) 3 13 -10.65
Giga-Embeddings-instruct (2 млрд) 22 10 14.73
GIST-large-Embedding-v0 (335 млн) 13 29 -48.43

Данные показывают, что многие ведущие модели общего назначения,
такие как GritLM-7B и NV-Embed-v2, являются сильно англоцентричными, де-
монстрируя значительное падение качества на русском языке. В то же время
модели семейства SciRus, специально адаптированные для русскоязычного на-
учного домена, не только занимают первые места в рейтинге по русскому языку,
но и показывают практически идеальный языковой баланс. Интересно отме-
тить, что наблюдается и обратная ситуация: модель от русскоязычных авторов
Giga-Embeddings-instruct демонстрирует существенное падение качества при пе-
реходе на английский язык (прирост на русском +14.73%), что свидетельствует
о ее преимущественной ориентации на русский язык.

В разделе 3.7 отмечается, что для обеспечения воспроизводимости и
стандартизации оценки бенчмарк RuSciBench был интегрирован в ведущий
международный фреймворк Massive Multilingual Text Embedding Benchmark
(MMTEB). Бенчмарк RuSciBench, включающий 9 русскоязычных задач, состав-
ляет существенную долю от общего числа задач в MMTEB на русском языке,
насчитывавшего на момент интеграции 73 задачи, что подчёркивает значимость
данного вклада в развитие инструментов оценки. Это позволяет любому иссле-
дователю легко воспроизвести полученные результаты и оценить новые модели
в рамках единой экосистемы.
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Если в предыдущих главах оценка моделей проводилась на задачах, свя-
занных со структурой и метаданными научных публикаций, то четвертая глава
переходит к существенно более сложной задаче — оценке способности моделей
к логическому выводу на основе содержания текста. Для этого была форма-
лизована задача верификации научных фактов и создан специализированный
русскоязычный бенчмарк RuSciFact. В главе детально описывается методоло-
гия его полуавтоматического создания, основанная на генерации утверждений
с помощью больших языковых моделей и последующей экспертной валидации,
а также приводятся результаты комплексного тестирования моделей, выявляю-
щие их сильные и слабые стороны.

В разделе 4.1формализуется задача верификации научных фактов, которая
декомпозируется на два последовательных этапа.

– Информационный поиск. Для заданного утверждения c в корпусе
аннотаций D необходимо найти наиболее релевантный документ-
источник e∗. Задача решается путём ранжирования документов по мере
близости их векторных представлений:

e∗ = argmax
ei∈D

s(f(c,α), f(ei,α)), (5)

где f(·,α) — модель-кодировщик, а s(·, ·) — косинусная близость. Ка-
чество решения оценивается мерой MRR@1, вычисляемой как доля
запросов, для которых релевантный документ оказался на первой пози-
ции:

MRR@1 =
1

|Q|

|Q|
∑

i=1

[ranki = 1], (6)

где Q— множество запросов (утверждений), ranki — ранг правильного
документа для i-го запроса.

– Классификация. Для найденной пары (c, e) определяется метка отно-
шения l ∈ {подтверждает, опровергает}. Задача решается обучением
классификатора g′(·,β′) поверх замороженных векторов, минимизируя
функцию потерь бинарной перекрестной энтропии:

pi = g′([f(c,α), f(ei,α)],β
′)

L(β′) = −
1

N

N
∑

i=1

[yi log pi + (1− yi) log(1− pi)] → min
β′

. (7)

Качество оценивается F1-мерой, которая является гармоническим сред-
ним точности и полноты:

F1 =
2 · TP

2 · TP+ FP+ FN
, (8)

где TP, FP и FN — число истинно-положительных, ложно-
положительных и ложно-отрицательных решений соответственно.
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Разделы 4.2 и 4.3 посвящены методологии и многоэтапному конвейе-
ру формирования набора данных RuSciFact. Ключевым элементом подхода
стало использование большой языковой модели Meta-Llama-3.1-405B-
Instruct, выбор которой был обоснован ее лидирующими позициями среди
моделей с открытыми весами на многозадачном русскоязычном бенчмарке
MERA (Fenogenova, 2024). Это обеспечило как высокое качество генерации,
так и воспроизводимость исследования. Весь процесс был построен с целью
создания примеров, проверка которых требует от моделей именно логического
вывода, а не поверхностного лексического сопоставления.

Процесс генерации был разделен на две независимые ветви для создания
подтверждающих и противоречащих утверждений.

Генерация подтверждающих утверждений включала несколько этапов
фильтрации для повышения сложности и валидности данных:

– Отбор информативных аннотаций. Языковой модели посредством
промпта была поставлена задача либо сгенерировать научный факт,
строго следующий из аннотации, либо сообщить о невозможности сде-
лать это. На этом этапе в качестве информативных аннотаций было
выбрано 42% аннотаций из начального набора.

– Фильтрация по лексическому сходству. Чтобы исключить тривиаль-
ные примеры, представляющие собой прямое цитирование, все сге-
нерированные пары «утверждение–аннотация» проходили фильтрацию
на основе меры лексического сходства, исключающую примеры, где
утверждение содержит большую долю слов, совпадающих с текстом ан-
нотации.

– Отбор по уровню сложности. На заключительном этапе автомати-
ческой фильтрации LLM классифицировала каждое утверждение как
«простое», «среднее» или «сложное». Для итогового набора данных
отбирались только утверждения средней и высокой сложности, что поз-
волило сфокусировать бенчмарк на нетривиальных научных фактах,
которые не являются общеизвестными.

Генерация противоречащих утверждений представляла собой более
сложную задачу и требовала особого подхода:

– Создание семантических противоречий. Ключевым требованием
к модели был запрет на использование прямого синтаксического от-
рицания (например, добавления частицы «не»). Вместо этого модель
должна была сформулировать утверждение, которое является антони-
мичным по смыслу аннотации.

– Автоматизированный контроль качества. Для фильтрации артефак-
тов, возникающих при генерации, была применена парадигма «LLM
как судья» (LLM-as-a-judge) (Zheng, 2023). Языковая модель оцени-
вала каждую сгенерированную пару по двум шкалам: релевантность
утверждения теме аннотации и степень поддержки утверждения текстом
(от полного противоречия до полной поддержки). Для итогового набора
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отбирались только те пары, которые получили высокие оценки за реле-
вантность и низкие — за поддержку.

В разделе 4.4 описывается этап экспертной валидации. Весь сгенериро-
ванный корпус был независимо размечен двумя асессорами, которые имеют
большой опыт работы с научными текстами. Итоговый корпус содержит 1128
пар «утверждение–аннотация» с дисбалансом классов примерно 2:1 в пользу
подтверждающих примеров и охватывает широкий спектр научных дисциплин.

Раздел 4.5 представляет результаты экспериментальной оценки широкого
спектра моделей на бенчмарке RuSciFact. В задаче информационного поиска
(Таблица 4) наблюдается доминирование крупномасштабных моделей, кото-
рые достигают значений MRR@1, близких к идеальным. Это свидетельствует
о том, что задача поиска релевантного контекста для современных моделей
практически решена. Разработанные модели семейства SciRus демонстрируют
конкурентоспособные результаты в своем классе, значительно опережая базо-
вые многоязычные модели сопоставимого размера.

Таблица 4 –– Результаты оценки моделей в задаче информационного поиска
на RuSciFact (MRR@1)

Название модели Количество параметров MRR@1
GritLM-7B 7.24 млрд 0.95
SFR-Embedding-2_R 7.11 млрд 0.94
multilingual-e5-large-instruct 560 млн 0.93
BERTA 128 млн 0.92
SciRus-small-cite 61 млн 0.75
SciRus-tiny-cite 23 млн 0.70
LaBSE-en-ru 129 млн 0.53
rubert-tiny 12 млн 0.09

В задаче классификации (Таблица 5) картина принципиально иная. Ре-
зультаты большинства моделей оказываются хуже, чем в задаче поиска, и сильно
уплотнены в узком диапазоне значений. Это явление указывает на то, что логи-
ческий вывод для различения подтверждения и семантического противоречия
является существенно более сложной задачей для существующих векторных
представлений. Модели семейства SciRus показывают результаты на уровне
многих более крупных аналогов, что подтверждает их эффективность.

В разделе 4.6 проведен анализ сложности задачи классификации в разрезе
научных дисциплин путём вычисления усреднённой по моделям частоты оши-
бок для каждой области. Результаты показывают значительную вариативность
сложности: некоторые области демонстрируют существенно более высокую ча-
стоту ошибок, что указывает на необходимость доменно-специфичных подходов
для различных научных дисциплин.

В заключении приведены основные результаты работы, которые состоят
в следующем:
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Таблица 5 –– Результаты оценки моделей в задаче классификации на RuSciFact
(F1-мера)

Название модели Количество параметров F1
gte-Qwen2-7B-instruct 7 млрд 0.87
SFR-Embedding-2_R 7.11 млрд 0.82
multilingual-e5-large-instruct 560 млн 0.77
GritLM-7B 7.24 млрд 0.73
SciRus-small-cite 61 млн 0.68
LaBSE-en-ru 129 млн 0.68
FRIDA 823 млн 0.67
SciRus-tiny-cite 23 млн 0.67
GIST-large-Embedding-v0 335 млн 0.58

1. С помощью двухэтапной методологии обучения разработаны дву-
язычные модели для векторного представления научных текстов на
русском и английском языках. Показана применимость использова-
ния пар «заголовок-аннотация» на этапе контрастивного обучения.
Эксперименты на бенчмарках RuSciBench и SciDocs показали, что
предложенные модели, несмотря на значительно меньшее число па-
раметров, демонстрируют качество, сопоставимое с гораздо более
крупными моделями, и обладают высокой вычислительной эффектив-
ностью.

2. Разработан и апробирован мультизадачный русско-английский бенч-
марк RuSciBench, предназначенный для оценки качества моделей
векторного представления научных текстов. Бенчмарк суммарно вклю-
чает 18 задач, 9 из которых были разработаны лично, и основан на
данных российской научной электронной библиотеки eLibrary.ru.
RuSciBench обеспечивает стандартизированную и воспроизводимую
процедуру тестирования и интегрирован в международный лидерборд
MTEB. На основе данного бенчмарка впервые проведено масштабное
сравнительное исследование широкого спектра современных моделей
векторизации на задачах, связанных с научными текстами. Симметрич-
ная двуязычная структура бенчмарка позволила количественно оценить
влияние языка задачи на производительность моделей и выявить сте-
пень языковой специализации каждой из них.

3. Предложена и экспериментально проверена полуавтоматическая мето-
дика формирования наборов данных для задачи верификации научных
фактов на русском языке. Данная методика сочетает генерацию научных
утверждений на основе аннотаций с использованием больших языковых
моделей (LLM), многоэтапную фильтрацию и оценку сгенерированных
утверждений самой моделью, а также последующую экспертную ва-
лидацию. На основе этой методики создан и опубликован RuSciFact
- первый русскоязычный бенчмарк для оценки способности моделей
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определять, подтверждается ли научное утверждение текстом аннота-
ции или противоречит ему. Проведена оценка современных моделей
векторизации на данном бенчмарке.
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