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Введение

Актуальность данной работы обусловлена кратным увеличением объема
публикуемой научной информации. Исследование динамики наполнения круп-
ных библиометрических баз данных подтверждает эту тенденцию. Так, согласно
анализу базы данных Scopus, количество ежегодно индексируемых научных ста-
тей выросло с приблизительно 921 тысячи в 2000 году до более чем 2,57 миллиона
в 2020 году, что свидетельствует о почти трехкратном увеличении за два десяти-
летия [1]. Общий объем публикаций в Scopus к 2020 году превысил 56 миллионов
единиц. Аналогичные тенденции наблюдаются и в других международных науко-
метрических системах, таких какWeb of Science. Российская научная электронная
библиотека eLibrary.ru, которая представляет материалы как на русском, так и на
других языках, также демонстрирует значительный рост: количество публикаций
в год увеличилось с 45,7 тысяч в 2000 году до более чем 4,76 миллиона в 2020
году [2]. Количество публикаций увеличивается не только на английском языке.
Этот информационный поток делает задачу поиска релевантной информации для
исследователей всё более трудной, а также ставит новые вызовы по эффективной
обработке и анализу постоянно растущих текстовых массивов, что требует при-
менения высокопроизводительных подходов, в том числе методов параллельной
обработки данных [3].

Методы анализа и поиска информации постоянно совершенствуются. Тра-
диционные подходы, основанные на статистическом анализе текстовых данных,
такие как VSM [4], BM25 [5] и др., уступают место более сложным моделям, в
частности, основанным на нейронных сетях. Современные нейросетевые моде-
ли, особенно архитектуры трансформер [6], демонстрируют преимущество над
традиционными подходами, поскольку способны учитывать контекст, улавливать
семантические связи между терминами, работать с синонимией и осуществлять
эффективный многоязычный и кросс-язычный поиск. Внедрение таких моделей
в научно-информационные системы позволяет существенно повысить качество и
релевантность поиска, а также открывает новые возможности для анализа содер-
жания научных текстов [7] [8]. В данной диссертации представлены нейросетевые
модели SciRus [9], которые позволяют упростить работу с научными публика-
циями. Одна из разработанных моделей, SciRus-tiny, была внедрена на сервисе
elibrary.ru.



6

Для объективной оценки и совершенствования моделей обработки есте-
ственного языка используют бенчмарки — специализированные наборы данных
и задач. В последние годы для русского языка появились такие универсальные
инструменты оценки, как RuSentEval [10] и encodechka [11]. Несмотря на это, на-
блюдается дефицит инструментов для русскоязычного научного домена. Научные
тексты обладают рядом специфических характеристик, таких как информаци-
онная плотность и сложность текста, узкоспециализированная терминология,
особая структура и стиль изложения. Из-за этого оценка на универсальных набо-
рах для оценки не дает понимания о качестве работы модели на научных данных.

Отсутствие специализированных русскоязычных научных наборов данных
для оценки затрудняет объективную оценку и сравнительный анализ как суще-
ствующих, так и разрабатываемых моделей векторного представления текстов в
данной предметной области. Как следствие, это сдерживает дальнейшее развитие
алгоритмов для анализа русскоязычного научного контента. Еще одна задача та-
ких наборов — помочь исследователям подобрать подходящую модель для своей
задачи, связанной с научными текстами.

Разработка и предоставление научному сообществу открытых моделей и
инструментариев для оценки, таких как SciRus и RuSciBench, отвечает целям
и задачам развития искусственного интеллекта в Российской Федерации, пе-
речисленным в «Национальной стратегии развития искусственного интеллекта
на период до 2030 года» (с изменениями от 15 февраля 2024 г.) [12]. Это на-
правление деятельности полностью соответствует концепции открытой науки,
предполагающей свободный доступ к исследовательским данным, инструментам
и результатам, что способствует ускорению научного прогресса и повышению
прозрачности исследовательской деятельности.

Целью данной работы является разработка, исследование и апробация
инструментов и моделей, предназначенных для решения задач эффективной об-
работки, анализа и оценки качества представления научных текстов на русском
языке.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Разработать методику обучения легковесной двуязычной модели для эф-
фективного векторного представления научных текстов на русском и
английском языках. Исследовать подходы к обучению, основанные на
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доступных данных из мультиязычных корпусов, без дополнительной раз-
метки.

2. Разработать методологию и на ее основе создать инструментарий для
оценки качества векторных представлений научных текстов на русском
и английском языках. Данный инструментарий должен учитывать специ-
фику научного дискурса и охватывать разнообразные задачи, используя
данные из российской научной среды.

3. Исследовать проблему верификации научных фактов на русском язы-
ке. Разработать и апробировать методологию полуавтоматизированного
формирования русскоязычного набора данных, включающую генерацию
научных утверждений на основе аннотаций с использованием больших
языковых моделей и их последующую экспертную валидацию. Разрабо-
тать тестовый набор на основе данного набора для оценки способности
моделей определять соответствие или противоречие утверждений.

Основные положения, выносимые на защиту:
1. Предложены компактные двуязычные модели SciRus-tiny (23 млн пара-

метров) и SciRus-small (61 млн параметров) для представления научных
текстов в векторном пространстве. Обучение проводится в два эта-
па: сначала модель обучается с помощью маскированного языкового
моделирования, затем с помощью контрастивного дообучения на па-
рах «заголовок-аннотация» . Дополнительно, для формирования более
сильного обучающего сигнала, при обучении используются пары «цити-
рующая статья—цитируемая статья», основанные на однонаправленной
связи из графа цитирований. Эксперименты на русскоязычных и англо-
язычных научных наборах для оценки показали, что при числе парамет-
ров, в 24 и 9 раз меньшем по сравнению с multilingual-e5-large-instruct
(560 млн параметров), предлагаемые модели демонстрируют сопостави-
мый, а на русскоязычных задачах — превосходящий уровень качества.

2. Разработан мультизадачный двуязычный бенчмарк RuSciBench, вклю-
чающий задачи классификации, регрессии, моно- и кросс-языкового
поиска на научных данных. Этот тестовый набор обеспечивает воспроиз-
водимую процедуру тестирования, интегрированную в международный
лидерборд MTEB.

3. Предложена полуавтоматическая методика формирования наборов дан-
ных для проверки научных фактов на русском языке, сочетающая ге-
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нерацию утверждений с помощью LLM, многоступенчатую самооценку
модели и экспертную верификацию. На её основе создан первый русско-
язычный набор данных для проверки научных фактов RuSciFact.

Методы исследования. В диссертационном исследовании использованы
известные, достоверные и хорошо зарекомендовавшие себя на практике методы.
В модели используется архитектура трансформер, она обучается с помощью мас-
кированного языкового моделирования и с помощью контрастивного дообучения
с применением функции потерь InfoNCE. В наборах для оценки используют-
ся распространенные критерии оценки качества, такие как Accuracy, F1-мера,
NDCG@k, MRR@k, коэффициент корреляции Кенделла.

Научная новизна:
1. Показана эффективность контрастивного дообучения модели вектори-

зации текста на парах «заголовок-аннотация» и на парах цитирующая-
цитируемая статья.

2. Разработаны легковесные модели векторизации научных текстов.
3. Разработан первый набор для оценки качества работы моделей с науч-

ными данными, состоящий из различных типов задач.
4. Впервые предложена полуавтоматизированная многоступенчатая мето-

дика формирования наборов данных для проверки научных фактов на
русском языке, совмещающая генерацию утверждений с помощью LLM,
самокритичную оценку модели-генератора и экспертную валидацию.

5. Разработан и опубликован первый набор данных для проверки научных
фактов на русском языке RuSciFact.

Практическая значимость обусловлена разработкой открытых научных
наборов для оценки, которые были внедрены в авторитетный международный
бенчмарк MTEB (Massive Text Embedding Benchmark), что подтверждает их
актуальность, а также существенно упрощает их использование для разработ-
чиков моделей. Кроме того, данные, на основе которых был создан бенчмарк
RuSciBench, послужили основой для одной из задач в мультиязычном наборе для
оценки AIRBench[13], а также для одной из задач в русскоязычном тестовом на-
боре LIBRA[14], что подтверждает интерес научного сообщества к результатам
работы.

Еще одним подтверждением практической значимости является внедрение
модели векторизации научных текстов SciRus-tiny на российском научном пор-
тале elibrary.ru. Был разработан новый режим «нейропоиск», который позволяет
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находить тематически близкие научные публикации, используя в качестве запро-
са аннотацию статьи. Это внедрение способствует упрощению анализа научной
информации для широкого круга исследователей и специалистов, работающих с
научной библиотекой elibrary.

Достоверность полученных результатов подтверждается следующим:
1. докладами и обсуждениями результатов на международных конференци-

ях
2. публикациями результатов в рецензируемых научных изданиях, реко-

мендованных ВАК
3. открытым исходным кодом и воспроизводимостью результатов.
Апробация работы. Основные результаты работы докладывались на:
1. А. С. Ватолин. Сравнительный анализ современных мультиязычных

моделей для векторизации текста на русском языке. Международная
научно-практическая конференция «Информационные технологии, ис-
кусственный интеллект, большие данные: актуальные тенденции, пер-
спективные исследования», 2024

2. А. С. Ватолин. ruSciFact: Open Benchmark for Verifying Scientific Facts in
Russian. Международная конференция по компьютерной лингвистике и
интеллектуальным технологиям «Диалог», 2025

3. А. С. Ватолин. Structured Sentiment Analysis with Large Language Models:
AWinning Solution for RuOpinionNE-2024.Международная конференция
по компьютерной лингвистике и интеллектуальным технологиям «Диа-
лог», 2025

Личный вклад соискателя в работах с соавторами заключается в следу-
ющем: [9] - предобучение маленькой версии модели (SciRus-tiny) с помощью
маскированного языкового моделирования, дообучение обеих версий модели
(SciRus-tiny и SciRus-small) на парах заголовок-аннотация, валидация моделей на
наборе данных SciDocs. [15] - сбор датасетов для классификации по ГРНТИ, по
типу публикации, для поиска цитирований, для регрессии по количеству цитат,
для поиска английского перевода по тексту на русском языке. Также реализа-
ция исходного кода инструментария для оценки, валидация моделей, интеграция
бенчмарка в международный бенчмарк MTEB. [16] - вклад соискателя является
определяющим. [17] — в рамках работы над созданием и расширением между-
народного многоязычного бенчмарка MMTEB соискателем проведена работа по
добавлению новых задач на различных языках, включая задачи, разработанные
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им самостоятельно. Также выполнен значительный вклад в обеспечение качества
и корректности данных во всех задачах, вошедших в итоговый набор бенчмарка.
В публикации [18] соискатель является единственным автором.

Содержание диссертации и положения, выносимые на защиту, отражают
персональный вклад автора в опубликованных работах. Все представленные ре-
зультаты получены лично автором.

Публикации. Основные результаты по теме диссертации изложены в 5 пе-
чатных изданиях, 4 — в периодических научных журналах, индексируемых Web
of Science и Scopus, 1 — в тезисах докладов.

Объем и структура работы. Диссертация состоит из введения, 4 глав, за-
ключения и 1 приложения. Полный объём диссертации составляет 136 страниц,
включая 10 рисунков и 25 таблиц. Список литературы содержит 70 наименований.
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Глава 1. Семантическое векторное представление текстов

Настоящая глава посвящена систематическому обзору методов постро-
ения семантических векторных представлений текстов, являющихся основой
для решения широкого спектга задач обработки естественного языка. Вначале
формулируется сама задача векторизации, определяется ее цель — построе-
ние отображения из пространства текстов в векторное пространство, в котором
геометрическая близость векторов отражает семантическую близость исходных
текстов, и дается краткий исторический экскурс в развитие подходов к ее реше-
нию (раздел 1). Далее детально рассматривается технологический стек, лежащий
в основе современных моделей. Описывается неотъемлемый этап предобработки
— субсловная токенизация данных (раздел 1.2), после чего подробно излагается
архитектура трансформер-кодировщика (раздел 1.3), ставшая стандартом в дан-
ной области.

Особое внимание уделяется современным парадигмам обучения. Рас-
сматривается этап предобучения на больших неразмеченных корпусах текста
с использованием таких задач, как маскированное языковое моделирование, на
примере моделей BERT и RoBERTa (раздел 1.4). Затем анализируется ключевая
проблема неприспособленности предобученных моделей к задачам семантиче-
ского поиска и показывается необходимость дополнительного этапа дообучения
(fine-tuning). Описываются архитектуры на основе сиамских сетей и контра-
стивные функции потерь, такие как Triplet Loss и InfoNCE, которые позволяют
сформировать семантически структурированное векторное пространство (раз-
дел 1.5).

После рассмотрения общих методов, фокус смещается на их применение
и адаптацию для узкоспециализированной области научных текстов. Обсуж-
даются особенности научного дискурса, вызывающие доменный сдвиг, и рас-
сматриваются передовые модели, разработанные для его преодоления, включая
SPECTER, SPECTER2 и SciNCL (раздел 1.6). Наконец, приводится обзор ключе-
вых бенчмарков и мер качества, используемых для всесторонней оценки моделей
векторизации научных документов, таких как SciDocs, SciRepEval, SciFact и уни-
версального набора MTEB (раздел 1.7).
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1.1 Задача семантического векторного представления текстов

Одной из фундаментальных задач в области обработки естественного языка
является векторизация, или получение семантических векторных представлений
(эмбеддингов), текстовых данных. Суть этой задачи заключается в построе-
нии отображения текстовых единиц, будь то слова, предложения или целые
документы, в многомерное векторное пространство R

d фиксированной размер-
ности. Такое отображение переводит исходные текстовые данные, являющиеся
по своей природе дискретными и неструктурированными, в формат непрерывных
векторов. Это позволяет формировать метрическое пространство, в котором гео-
метрическая близость векторов соответствует семантической близости текстов.
Появляется возможность количественно оценивать семантические отношения
через вычисление расстояний и углов между векторами, что является матема-
тической основой для решения широкого спектра прикладных задач, включая
информационный поиск, машинный перевод, классификацию документов, кла-
стеризацию, ответы на вопросы и многие другие [19].

Формально, задачу векторизации можно поставить следующим образом.
Пусть дана коллекция текстовых документов D = {xi}

N
i=1, где каждый доку-

мент xi представляет собой последовательность токенов (слов или их частей)
xi = (wi,1, wi,2, . . . , wi,ni

). Необходимо найти такое параметризованное отображе-
ние f(x,α), которое ставит в соответствие каждому документу xi вещественный
вектор vi ∈ R

d:

vi = f(xi,α)

где α - вектор обучаемых параметров модели. Основная цель обучения состоит в
подборе таких параметровα, при которых векторыvi наилучшим образом кодиру-
ют семантическую информацию, содержащуюся в исходных текстах xi. Качество
этого кодирования оценивается через успешность решения целевых прикладных
задач.

Исторически первыми подходами к решению этой задачи были методы,
основанные на дистрибутивной гипотезе, утверждающей, что слова, встреча-
ющиеся в схожих контекстах, имеют близкие значения [20]. Это привело к
появлению статистических моделей, основанных на взвешивании термов, та-
ких как TF-IDF (Term Frequency-Inverse Document Frequency) [21], и методов,
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использующих матричные разложения для выявления скрытых тем, например,
латентно-семантического анализа (LSA) [22]. Однако эти подходы не всегда эф-
фективно улавливали тонкие семантические связи.

Прорыв в этой области был связан с появлением плотных векторных пред-
ставлений (dense embeddings), обучаемых с помощью нейронных сетей [23].
Модели семейства word2vec [24] и GloVe [25] позволили получать векторные
представления для отдельных слов. Однако они присваивали каждому слову
единственный вектор, не учитывая многозначность и контекст его употребления.
Развитием этой идеи стали модели, способные генерировать контекстуализи-
рованные векторные представления. Модель ELMo (Embeddings from Language
Models) [26] использовала для этой цели двунаправленную рекуррентную нейрон-
ную сеть (LSTM), выходы которой на разных слоях объединялись для получения
итогового вектора токена, зависящего от контекста. Несмотря на успех, ре-
куррентные архитектуры обрабатывают текст последовательно, что затрудняет
распараллеливание вычислений и улавливание дальних зависимостей в тексте.

Современный этап развития методов векторизации неразрывно связан с
архитектурой трансформер (Transformer) [6], которая полностью отказалась от
рекуррентных связей в пользу механизма внимания (attention mechanism). Этот
подход продемонстрировал выдающуюся эффективность и масштабируемость,
лег в основу большинства передовых моделей обработки естественного языка.

1.2 Токенизация текстовых данных

Первым и обязательным шагом при обработке текста нейросетевыми
моделями является токенизация — процесс разбиения сплошного текста на
последовательность элементарных единиц, называемых токенами. Эти токе-
ны затем отображаются в числовые идентификаторы в соответствии с заранее
определенным словарем V , что позволяет представить исходную текстовую по-
следовательность в виде вектора целых чисел, пригодного для подачи на вход
нейронной сети.

Простейшим подходом является токенизация по словам, где словарь со-
стоит из всех уникальных слов, встретившихся в обучающем корпусе. Однако
этот метод сталкивается с серьезной проблемой «неизвестных слов» (out-of-
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vocabulary, OOV), когда в обрабатываемом тексте появляются слова, отсутство-
вавшие в обучающих данных. Эта проблема особенно остра для морфологически
богатых языков, таких как русский, где одно и то же слово может иметь множе-
ство форм.

Для решения этой проблемы были разработаны алгоритмы субсловной то-
кенизации (subword tokenization), которые разбивают слова на более мелкие, но
семантически значимые части. Такой подход позволяет, с одной стороны, сохра-
нить в словаре наиболее частотные слова целиком, а с другой — представить
редкие и неизвестные слова как последовательность известных субсловесных
единиц. Это не только решает проблему OOV, но и позволяет модели улавливать
морфологические связи между словами (например, «обучение» и «обучать» будут
иметь общие токены). К наиболее известным алгоритмам субсловной токениза-
ции относятся Byte-Pair Encoding (BPE) [27], WordPiece [28] и Unigram Language
Model [29].

Алгоритм Byte-Pair Encoding (BPE) , изначально разработанный для сжатия
данных, был успешно адаптирован для задач обработки естественного языка в
работе [27]. Процесс его применения состоит из двух этапов: обучения словаря
и токенизации нового текста.

Процесс формирования словаря является итеративным.
1. Инициализация.Исходный словарь состоит из всех уникальных симво-

лов (символьный алфавит), встречающихся в обучающем корпусе. Весь
текст корпуса разбивается на последовательности этих символов.

2. Итеративное слияние. На каждой итерации в корпусе находится наи-
более часто встречающаяся пара соседних токенов (например, пара
символов ’т’ и ’о’).

3. Обновление. Эта пара объединяется в новый, единый токен (’то’), ко-
торый добавляется в словарь. Все вхождения исходной пары в корпусе
заменяются на новый токен.

4. Повторение. Шаги 2 и 3 повторяются заданное число раз. Это число
(количество слияний) является гиперпараметром, который определяет
итоговый размер словаря.

В результате получается словарь, состоящий из исходных символов и наиболее
частотных субсловных единиц различной длины.
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Для токенизации нового текста выполняются те же операции слияния в том
порядке, в котором они были выучены на этапе обучения. Текст сначала разбива-
ется на символы, а затем к нему последовательно применяются правила слияния
до тех пор, пока не останется пар, подлежащих объединению.

Токенизация на уровне байтов (Byte-level BPE) Стандартный алгоритм BPE,
работающий на уровне символов, все еще может столкнуться с проблемой OOV,
если во входном тексте встретится символ, отсутствовавший в обучающих дан-
ных (например, редкий иероглиф или эмодзи). Чтобы полностью устранить эту
проблему, была предложена модификация byte-level BPE, которая используется
в таких моделях, как RoBERTa [30] и GPT-2 [31].

Ключевая идея этого подхода состоит в том, чтобы работать не с символами
Unicode, а с их байтовым представлением в кодировке UTF-8. Это гарантирует,
что любой текст может быть представлен без потерь и без использования специ-
ального токена неизвестного слова.

Принцип работы:
1. Инициализация. Начальный словарь состоит из всех 256 возможных

значений байтов (от 0x00 до 0xFF). Таким образом, любой текст, пред-
ставленный в виде последовательности байтов, может быть изначально
токенизирован без потерь.

2. Обучение.Процесс обучения полностью аналогичен стандартному BPE.
Алгоритм итеративно находит наиболее частую пару соседних байтов
или уже объединенных субсловных токенов и сливает их, добавляя но-
вый токен в словарь. Например, если в тексте часто встречается слово
«текст», которое в UTF-8 представляется последовательностью байтов,
то алгоритм сначала объединит байты, соответствующие паре символов
‘т‘ и ‘е‘, затем, возможно, байты для ‘к‘ и ‘с‘, а потом и более крупные
фрагменты.

3. Обработка Unicode.Многобайтовые символы UTF-8 просто рассматри-
ваются как последовательности их составляющих байтов. Алгоритм BPE
автоматически обучается объединять эти последовательности байтов об-
ратно в осмысленные единицы, если они достаточно часто встречаются
в корпусе.

Таким образом, byte-level BPE создает универсальную систему токенизации, спо-
собную обрабатывать любой текст на любом языке, включая код, специальные
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символы и эмодзи, не требуя специальной предобработки или токена ‘<unk>‘. Это
делает его особенно мощным инструментом для современных многоязычных и
многозадачных моделей.

1.3 Архитектура трансформер-кодировщик

Архитектура трансформер, предложенная в работе [6], изначально состо-
яла из кодировщика (encoder) и декодировщика (decoder) для задач машинного
перевода. Для задач векторизации, где требуется получить семантические пред-
ставления для последовательности токенов, используется только кодирующая
часть, называемая трансформер-кодировщиком.

Результатом работы трансформер-кодировщика fb(xi,α) является по-
следовательность контекстуализированных векторных представлений H

(L) =

(h
(L)
1 , . . . ,h

(L)
ni

), по одному вектору для каждого входного токена. Модель можно
представить как композицию двух основных компонентов: слоя векторизации
токенов fe и последовательности из L идентичных трансформер-блоков f (l)

TB:

H
(L) = fb(xi,α) = f

(L)
TB

(

. . . f
(1)
TB

(

fe(xi,αe),α
(1)
TB

)

. . . ,α
(L)
TB

)

.

Рассмотрим каждый компонент подробнее.

Слой векторизации (Embedding Layer). На вход модели подается последова-
тельность токенов xi = (wi,1, . . . , wi,ni

). Сначала каждый токен отображается в
вектор с помощью обучаемой матрицы эмбеддингов E. Процесс получения век-
торов начинается с токенизации, где входная текстовая последовательность пре-
образуется в последовательность целочисленных идентификаторов (id1, . . . , idni

)

в соответствии с предопределенным словарем V размером |V|. Каждый уникаль-
ный токен в словаре имеет свой уникальный числовой идентификатор.

Сама матрица эмбеддингов E ∈ R
|V|×d по своей сути является таблицей

поиска (lookup table), где каждой k-й строке, k ∈ {1, . . . , |V|}, соответствует плот-
ный вектор vk ∈ R

d для токена с идентификатором k. Таким образом, операция
получения эмбеддинга для одного токена сводится к извлечению соответствую-
щей строки из этой матрицы.
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Формально эту операцию можно выразить через умножение матрицы E на
one-hot-вектор. Для токена с идентификатором k создается вектор ek ∈ {0, 1}|V|,
у которого k-я компонента равна 1, а все остальные — 0. Тогда векторное пред-
ставление токена vk вычисляется как:

vk = e
⊤
k E.

Элементы матрицы E являются обучаемыми параметрами модели, которые на-
страиваются в процессе обучения методом обратного распространения ошибки.
Применение этой операции ко всем токенам последовательности xi порождает
матрицу токеновых эмбеддингов E(xi) ∈ R

ni×d, которая и служит входом для
дальнейших преобразований.

Поскольку модель не содержит рекуррентных или сверточных слоев, для
внесения информации о порядке токенов используется матрица позиционных
эмбеддингов P . Итоговое представление для входной последовательности, обо-
значаемое как H

(0), получается путем суммирования токеновых и позиционных
эмбеддингов. В работе [6] предлагается также масштабировать токеновые эмбед-
динги:

H
(0) = E(xi)

√
d+ P,

где
E ∈ R

|V|×d — матрица эмбеддингов токенов, |V|— размер словаря.
d — размерность векторного представления.
P ∈ R

nmax×d — матрица позиционных эмбеддингов, nmax — максимальная
длина последовательности.

Компоненты матрицы позиционных эмбеддингов P вычисляются с использова-
нием синусоидальных функций разной частоты:

Ppos,2k = sin(pos/100002k/d), Ppos,2k+1 = cos(pos/100002k/d),

где
pos — позиция токена в последовательности (0, 1, . . . , ni − 1).
k — индекс размерности вектора (0, 1, . . . , d/2− 1).

Такой выбор позволяет модели легко обучаться на относительных позициях, по-
скольку для любого фиксированного смещения j позиционный эмбеддинг Ppos+j

может быть выражен как линейная функция от Ppos.
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трансформер-блок. Ядром архитектуры является трансформер-блок, который
состоит из двух основных подслоев: механизма многоголового внимания (Multi-
Head Attention) и полносвязной нейронной сети прямого распространения (Feed-
Forward Network). Вокруг каждого из этих подслоев применяется остаточное
соединение (residual connection) с последующей послойной нормализацией (Layer
Normalization). Для l-го блока (l = 1, . . . , L) преобразование матрицы представ-
лений H

(l−1) в H
(l) выглядит следующим образом:

Z
(l) = LayerNorm

(

H
(l−1) +MHAtt(l)(H(l−1))

)

,

H
(l) = LayerNorm

(

Z
(l) + FF(l)(Z(l))

)

.

Механизм внимания (Scaled Dot-Product Attention). Это ключевой ком-
понент, который позволяет модели взвешивать важность различных токенов в
последовательности при формировании представления для каждого конкретного
токена. Входными данными для него служат три матрицы: запросов (Query, Q),
ключей (Key, K) и значений (Value, V ). В режиме самовнимания (self-attention),
который используется в кодировщике, все три матрицы получаются путем ли-
нейного проецирования матрицы выходов предыдущего слоя H

(l−1) с помощью
индивидуальных обучаемых весовых матриц для каждого типа проекции.

Формально, для l-го трансформер-блока эти преобразования записываются
следующим образом:

Q = H
(l−1)WQ,(l),

K = H
(l−1)WK,(l),

V = H
(l−1)W V,(l),

(1.1)

где
H

(l−1) ∈ R
ni×d —матрица векторных представлений всех ni токенов, полу-

ченная на выходе (l−1)-го блока. Каждая строка этой матрицы— это вектор
h
(l−1)
j для j-го токена.

WQ,(l),WK,(l) ∈ R
d×dk —обучаемые матрицы весов для линейного проеци-

рования в пространства запросов и ключей соответственно.
W V,(l) ∈ R

d×dv — обучаемая матрица весов для линейного проецирования
в пространство значений.
d, dk, dv — размерности пространств исходных представлений, ключей/за-
просов и значений. В архитектуре трансформер принято, что dk = dv.
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Таким образом, каждая из матриц Q,K, V содержит проекции всех токенов
последовательности в соответствующее семантическое подпространство. После
вычисления этих матриц применяется функция внимания:

Attn(Q,K, V ) = softmax

(

QK⊤
√
dk

)

V

Результатом операции Attn(Q,K, V ) является матрица R
ni×dv , содержащая об-

новленные представления для каждого токена, где каждый вектор является взве-
шенной суммой всех векторов из матрицы значений V . Веса в этой сумме
определяются степенью «совместимости» (измеряемой скалярным произведени-
ем) вектора запроса каждого токена с векторами ключей всех остальных токенов
в последовательности. Масштабирующий множитель 1/

√
dk вводится для стаби-

лизации градиентов, предотвращая их затухание при больших значениях dk.
Многоголовое внимание (Multi-Head Attention). Вместо одного меха-

низма внимания, трансформер использует H «голов» внимания параллельно.
Входные векторыH

(l−1) линейно проецируютсяH раз с помощью разных матриц
весов. Затем для каждой головы вычисляется функция внимания. Полученные вы-
ходы конкатенируются и снова подвергаются линейному преобразованию:

headh = Attn(H(l−1)W
Q,(l)
h ,H(l−1)W

K,(l)
h ,H(l−1)W

V,(l)
h ),

MHAtt(l)(H(l−1)) = Concat(head1, . . . , headH)W
O,(l),

где h = 1, . . . , H — номер головы. Это позволяет модели одновременно фоку-
сироваться на различных аспектах информации из различных подпространств
представлений.

Полносвязная сеть (Feed-Forward Network). Этот подслой применяется к
каждому векторному представлению токена независимо и состоит из двух линей-
ных преобразований с нелинейной функцией активации между ними. В качестве
функции активации используется ReLU (Rectified Linear Unit)[32], которая опре-
деляется как ReLU(z) = max(0, z) и применяется поэлементно. Преобразование
для матрицы Z имеет вид:

FF(l)(Z) = ReLU(ZW
(l)
1 + b

(l)
1 )W

(l)
2 + b

(l)
2 .

Послойная нормализация (Layer Normalization) [33]. Используется для
стабилизации обучения. Нормализация происходит по размерности эмбеддинга
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для каждого токена отдельно:

LayerNorm(x) = γ
x− µ(x)

√

σ2(x) + ε
+ β,

где µ(x) и σ2(x) — среднее и дисперсия по компонентам вектора x, а γ и β —
обучаемые параметры масштаба и сдвига.

1.4 Предобучение моделей на основе архитектуры трансформер

Модель BERT (Bidirectional Encoder Representations from Transformers) [34]
стала революционным шагом в обработке естественного языка. Ее архитектура
представляет собой описанный в разделе 1.3 трансформер-кодировщик. Клю-
чевое нововведение BERT заключается в методологии его предобучения на
огромных объемах неразмеченных текстовых данных, включающей две зада-
чи: маскированное языковое моделирование (MLM) и предсказание следующего
предложения (NSP). В качестве обучающих данных использовались большие объ-
емы англоязычных текстов, а именно, корпус BooksCorpus [34] (около 800 млн
слов) и англоязычная Википедия (2.5 млрд слов). Совокупный объем данных
(около 16 ГБ текста) и их тематическое разнообразие (художественная литера-
тура, научные и энциклопедические статьи) позволили модели изучить широкий
спектр языковых явлений и закономерностей, создав универсальные представле-
ния.

В отличие от предыдущих моделей, таких как GPT, которые были одно-
направленными, BERT является глубоко двунаправленной моделью, то есть при
построении представления каждого токена он одновременно учитывает как ле-
вый, так и правый контекст на всех слоях.

Маскированное языковое моделирование (Masked Language Modeling,
MLM). Эта задача позволяет обучать двунаправленные представления. Во
входной последовательности токенов xi случайным образом выбирается подмно-
жество позиций Mi (15%) для маскирования. Для каждой позиции j из этого
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подмножества токен wi,j заменяется по следующему правилу:

w′
i,j =



















[MASK], с вероятностью 80%;

u ∼ U(V), с вероятностью 10%;

wi,j, с вероятностью 10%.

Формально, схема маскирования описывается как

mi,j ∼ Bernoulli(0.15), r ∼ U(0,1),

w′
i,j =



















[MASK], mi,j = 1 и r < 0.8;

u ∼ U(V), mi,j = 1 и 0.8 ⩽ r < 0.9;

wi,j, иначе,

где mi,j — индикатор маскирования, r — равномерно распределенная случайная
величина, U(V) — равномерное распределение по словарю V . В оригинальной
реализации BERT [34] используется статическое маскирование: для каждо-
го обучающего примера маска создается однократно и остается неизменной на
протяжении всех эпох обучения. Задача модели — на основе маскированной по-
следовательности x′i = (w′

i,1, . . . , w
′
i,ni

) предсказать исходные токены в позициях
j ∈ Mi = {j | mi,j = 1}. Для этого выходы кодировщика h(L)

j подаются на клас-
сификационный слой:

pij = softmax(h
(L)
j W

⊤
MLM + bMLM),

где WMLM ∈ R
|V|×d и bMLM ∈ R

|V| — обучаемые параметры. Функция потерь
MLM минимизирует перекрестную энтропию по маскированным токенам:

LMLM = − 1
∑B

i=1 |Mi|

B
∑

i=1

∑

j∈Mi

log pij[yij] −→ min,

где B — размер мини-выборки, yij — индекс истинного токена в позиции j по-
следовательности xi.

Предсказание следующего предложения (Next Sentence Prediction, NSP). Эта
задача была введена для того, чтобы модель могла улавливать связи между пред-
ложениями, что важно для таких задач, как ответы на вопросы и определение
логического следования. Для формирования обучающей выборки создаются пары
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предложений (A,B). В 50% случаев предложение B является фактическим сле-
дующим предложением за A в исходном корпусе (метка ‘IsNext‘), а в остальных
50% случаев B является случайным предложением из корпуса (метка ‘NotNext‘).

На вход модели подается конкатенированная последовательность: ‘[CLS]‘
A ‘[SEP]‘B ‘[SEP]‘. Для решения этой задачи бинарной классификации использу-
ется векторное представление специального токена [CLS], а именно вектор h(L)

CLS,
который подается на простой классификатор:

pNSP = softmax(h
(L)
CLSW

⊤
NSP + bNSP).

Функция потерь LNSP вычисляется как стандартная перекрестная энтропия для
бинарной классификации.

Совместное обучение. Процесс предобучения BERT заключается в одновре-
менной минимизации суммарной функции потерь по обеим задачам. Обучение ве-
дется на мини-выборках (mini-batches) — небольших случайных подмножествах
данных. Итоговая функция потерь, градиент которой вычисляется на каждом ша-
ге, представляет собой сумму функций потерь MLM и NSP:

Ltotal(α, θMLM, θNSP) = LMLM + LNSP −→ min
α,θMLM,θNSP

,

гдеα обозначает параметры трансформер-кодировщика, аθMLM = {WMLM,bMLM}

и θNSP = {WNSP,bNSP} — параметры классификационных слоев для каждой
из задач.

Модель RoBERTa. Развивая идеи BERT, модель RoBERTa (A Robustly
Optimized BERT Approach) [30] не вводит новой архитектуры, а представляет
собой тщательное исследование и оптимизацию процесса обучения BERT. Авто-
ры показали, что производительность BERT сильно зависит от гиперпараметров
и стратегии обучения. Ключевые отличия RoBERTa от BERT:

– Динамическое маскирование. В RoBERTa маска генерируется заново
для каждой последовательности при каждой ее подаче в модель, что су-
щественно увеличивает разнообразие обучающих данных.

– Отказ от задачи NSP. Авторы показали, что исключение этой задачи
улучшает качество итоговых представлений на многих задачах.

– Обучение на больших батчах и данных. RoBERTa обучалась на зна-
чительно больших мини-выборках (размером до 8000 примеров) и на
большем объеме текстовых данных (160 ГБ текста против 16 ГБ у BERT).
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– Токенизация. Вместо токенизатораWordPiece [35], RoBERTa использует
алгоритм byte-level Byte-Pair Encoding (BPE) [27] с большим размером
словаря (50 тыс. токенов против 30 тыс. токенов у модели BERT), что
позволяет избежать токенов неизвестных слов.

Эти изменения позволили моделям RoBERTa существенно превзойти по качеству
оригинальные модели BERT на широком спектре задач и установили новый стан-
дарт для предобученных трансформер-кодировщиков.

1.5 Контрастивное дообучение для векторных представлений текста

Предобученные трансформер-кодировщики, такие как BERT [34], проде-
монстрировали высокую эффективность в задачах классификации для отдельный
текстов или пар текстов, задаче ответа на вопрос и тегирования слов. Однако прак-
тические задачи, такие как семантический поиск, кластеризация или обнаружение
дубликатов, требуют решения другой, хотя и связанной, проблемы: для данного
текста-запроса xq найти наиболее семантически близкий текст в большой коллек-
ции D = {xi}

N
i=1.

Прямолинейный подход, следующий из оригинальной архитектуры BERT,
заключается в использовании так называемой архитектуры перекрестного коди-
ровщика (cross-encoder). В этой схеме пара текстов, запрос xq и документ xi,
конкатенируется в одну общую последовательность xq,i, разделенную специаль-
ным токеном [SEP]:

xq,i = ([CLS], xq, [SEP], xi, [SEP]).

Эта последовательность подается на вход трансформер-кодировщика fb(x,α).
Выходной векторh(L)

CLS, соответствующий специальному токену [CLS], агрегирует
информацию обо всей паре и используется для предсказания оценки их близости
sq,i с помощью простого регрессионного слоя с параметрами θreg = {w, b}:

ŝq,i = w
⊤
h
(L)
CLS + b,

где
h
(L)
CLS ∈ R

d — выходной вектор кодировщика для токена [CLS] при подаче
на вход последовательности xq,i.
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w ∈ R
d, b ∈ R — обучаемые параметры регрессионного слоя.

Процесс дообучения такой модели заключается в совместном подборе парамет-
ров кодировщика α и регрессионного слоя θreg путем минимизации функции
потерь на специализированном наборе данных, на корпусе семантической близо-
сти текстов (Semantic Textual Similarity, STS) [36]. Для каждой обучающей пары
(xq, xi) с известной экспертной оценкой близости sq,i минимизируется средне-
квадратичная ошибка:

L(α, θreg) =
∑

(xq,xi,s)∈STS
(ŝq,i − sq,i)

2 −→ min
α,θreg

.

Несмотря на то, что такой подход позволяет достичь высокой точности, его
вычислительная сложность делает его неприменимым для большинства реальных
сценариев. Поиск наиболее похожего текста для одного запроса xq в коллекции из
N документов потребует выполнения N прямых проходов через модель транс-
формера.

Фундаментальное ограничение перекрестного кодировщика состоит в том,
что он не порождает независимого векторного представления для каждого от-
дельного текста. Оценка близости вычисляется «с нуля» для каждой новой пары.
Подход, лишённый этого вычислительного недостатка, заключается в построении
архитектуры, которая позволяет заранее отобразить каждый текст xi из коллекции
D в его собственный вектор vi = f(xi,α). В этом случае вся коллекция тек-
стов может быть векторизована однократно. Процесс поиска для нового запроса
xq сведется к вычислению его вектора vq и последующему поиску ближайшего
соседа в уже готовом векторном пространстве с помощью мер близости, напри-
мер косинусной. Этот подход, известный как архитектура с двумя кодировщиками
(bi-encoder) или сиамская сеть (siamese network), кардинально снижает сложность
поиска. Он требует лишь одного применения модели для векторизации запроса,
в отличие от N применений у перекрестного кодировщика.

Следовательно, для создания практичных и масштабируемых систем семан-
тического поиска необходимо отказаться от схемы перекрестного кодировщика в
пользу архитектуры, способной генерировать высококачественные независимые
векторные представления текстов. Далее рассмотрим, как можно дообучить мо-
дели типа BERT для решения именно этой задачи.

Несмотря на то, что предобученные на задаче маскированного языково-
го моделирования (MLM) трансформер-кодировщики, такие как BERT [34] и
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RoBERTa [30], способны генерировать контекстуализированные векторные пред-
ставления для каждого токена, они изначально не оптимизированы для задачи
получения единого, семантически осмысленного вектора для целого предложения
или документа. Как было показано в разделе 1.3, результатом работы кодировщи-
ка является матрица векторовH(L) ∈ R

ni×d. Для решения прикладных задач, таких
как семантический поиск, кластеризация или верификация фактов, необходимо
агрегировать эту последовательность векторов в единственный вектор vi ∈ R

d.
Этот шаг, однако, не является тривиальным и вскрывает фундаментальное несо-
ответствие между целями предобучения и целями векторизации.

Простейшие стратегии агрегации, или пулинга, включают усреднение век-
торов всех токенов (Mean Pooling) или использование выходного вектора спе-
циального токена [CLS] (CLS Pooling), который добавляется в начало каждой
последовательности. В первом случае вектор документа вычисляется как:

vi =
1

ni

ni
∑

j=1

h
(L)
j ,

где h
(L)
j — векторное представление j-го токена на выходе последнего слоя ко-

дировщика. Во втором случае в качестве вектора документа используется вектор,
соответствующий позиции токена [CLS]:

vi = h
(L)
CLS.

Ключевая проблема этих подходов заключается в том, что ни один из
этапов предобучения BERT-подобных моделей не ставит своей явной целью фор-
мирование семантически структурированного пространства векторов на уровне
предложений. Функция потерь MLM, как было описано в разделе 1.4, опти-
мизирует параметры модели для предсказания маскированных токенов, но не
содержит компоненты, которая бы сближала векторы семантически похожих
предложений и отдаляла векторы разных по смыслу. Задача предсказания сле-
дующего предложения (NSP) в оригинальном BERT формально обучала вектор
h
(L)
CLS для бинарной классификации, однако, как показали авторы RoBERTa [30],

эта задача является слишком грубой и её исключение из процесса предобуче-
ния зачастую приводит к улучшению качества итоговых представлений. Таким
образом, в современных моделях, отказавшихся от NSP, вектор [CLS] не несет
специальной семантической нагрузки на уровне предложения.
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Эмпирические исследования подтверждают теоретические недостатки на-
ивных стратегий агрегации. В работе по модели Sentence-BERT [37] было экспе-
риментально показано, что векторные представления, полученные напрямую из
BERT без специального дообучения, непригодны для задач семантического по-
иска. Качество таких векторов оказывается крайне низким, уступая даже более
простым неконтекстуализированным моделям, таким как усредненные векторы
GloVe[25].

Для преодоления этих ограничений необходим дополнительный этап обуче-
ния— дообучение (fine-tuning), направленный на формирование такой структуры
векторного пространства, в которой геометрическая близость векторов напря-
мую соответствует семантической близости текстов. Идея состоит в том, чтобы
оптимизировать параметры модели α с помощью новой функции потерь, ко-
торая явно поощряет нужное расположение векторов. Для этого используются
обучающие наборы данных, состоящие из пар или троек текстов с известными
семантическими отношениями. Архитектурно эта задача решается с помощью
сиамских (siamese) сетей, в которых два или более экземпляра одной и той же
модели-кодировщика f(x,α) с общими параметрами α параллельно обрабаты-
вают входные тексты. Использование общих весов гарантирует, что все тексты
отображаются в единое векторное пространство, где их можно сравнивать.

Существует множество подходов к реализации контрастивного дообучения,
которые можно разделить на две основные группы в зависимости от структуры
используемых обучающих примеров: методы, основанные на тройках текстов, и
методы, работающие с парами и формирующие отрицательные примеры дина-
мически.

Первая группа методов оперирует тройками (xa, xp, xn), где xa — опорный
текст («якорь», anchor), xp —семантически схожий с ним текст («положительный
пример», positive), а xn — семантически непохожий текст («отрицательный при-
мер», negative). Цель обучения — минимизировать расстояние между векторами
якоря и положительного примера, одновременно максимизируя расстояние между
векторами якоря и отрицательного примера. Классическим представителем это-
го семейства является триплетная функция потерь (Triplet Loss), представленная
в работе [38] и успешно адаптированная для текстов в работе [37]. Она форма-
лизует требование, чтобы расстояние до отрицательного примера было больше
расстояния до положительного как минимум на некоторую величину ε > 0.
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Ltriplet =
B
∑

i=1

max
(

0, d(va,i,vp,i)− d(va,i,vn,i) + ε
)

−→ min
α

, (1.2)

где
B — размер мини-выборки (mini-batch).
va,i,vp,i,vn,i — векторные представления якоря, положительного и отри-
цательного примеров из i-й тройки, полученные с помощью кодировщика
f(x,α).
d(·, ·) — функция расстояния, например, евклидово расстояние.
ε > 0 — гиперпараметр, задающий минимально допустимый зазор
(margin).

Основная сложность этого подхода заключается в необходимости формирования
качественных троек, в частности, в подборе «трудных» отрицательных примеров
(hard negatives), которые не слишком далеки от якоря и заставляют модель изучать
тонкие семантические различия.

Вторая, более современная группа методов использует для обучения только
положительные пары (xa, xp) и формирует отрицательные примеры «на ле-
ту» из других примеров в той же мини-выборке. Такой подход, известный как
обучение с отрицательными примерами из выборки (in-batch negatives), значи-
тельно эффективнее, так как не требует явного конструирования троек. Одним
из наиболее распространенных вариантов является функция потерь InfoNCE
(Noise-Contrastive Estimation) [39]. Идея состоит в том, чтобы научиться отличать
«настоящий» положительный пример от «шумовых» отрицательных примеров.
В контексте векторизации текстов это сводится к различению истинной по-
ложительной пары от пар, составленных с отрицательными примерами. Для
мини-выборки из B положительных пар {(xa,i, xp,i)}

B
i=1 функция потерь имеет

вид:

LInfoNCE = − 1

B

B
∑

i=1

log
es(va,i,vp,i)/τ

es(va,i,vp,i)/τ +
∑B

j=1,j ̸=i e
s(va,i,vp,j)/τ

→ min
α

, (1.3)

где
va,i,vp,i — векторы для i-й положительной пары.
vp,j —вектор для j-го примера из мини-выборки, используемого в качестве
отрицательного для i-й пары.
s(·, ·) — функция оценки близости, как правило, косинусная близость.
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τ > 0 — температурный коэффициент, который масштабирует распреде-
ление оценок. Малые значения τ делают распределение более резким,
заставляя модель сильнее различать примеры.

Ключевым теоретическим свойством функции InfoNCE является то, что ее ми-
нимизация эквивалентна максимизации нижней оценки взаимной информации
между представлениями якоря и положительного примера [39]. Это придает под-
ходу прочное теоретическое основание.

1.6 Применение и оценка моделей в научной области

После того как модель векторного представления f(x,α) прошла этапы пре-
добучения и дообучения, ее основной целью становится применение для решения
прикладных задач. Ценность современных моделей, основанных на архитектуре
трансформер, заключается в том, что масштабное предобучение на гигантских
текстовых корпусах позволяет им накопить фундаментальные знания о языке,
синтаксисе и семантике. Это знание, закодированное в параметрах α, может быть
эффективно перенесено на новые, в том числе узкоспециализированные, зада-
чи, даже при наличии очень малого количества размеченных данных или вовсе
без них. Парадигмы применения в режиме «нулевого выстрела» или с обучением
легковесной «головы», описанные в следующем разделе, являются ключевыми
инструментами для такого переноса знаний и оценки его успешности.

Существует множество мощных моделей общего назначения, обученных
на гетерогенных корпусах огромного объема, таких как веб-страницы (напри-
мер, Common Crawl) и Wikipedia. Такие модели демонстрируют способность к
обобщению и служат надежной отправной точкой для широкого круга задач. Од-
нако их эффективность может снижаться при переносе в предметные области,
лексические, стилистические и структурные особенности которых существенно
отличаются от усредненного «общего» языка обучающих данных.

Одним из наиболее ярких примеров такой узкоспециализированной обла-
сти является научный дискурс [40]. Научные тексты обладают рядом уникальных
характеристик, отличающих их от новостных статей, художественной литерату-
ры или веб-контента.
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– Лексика:Научные тексты насыщены узкоспециализированной термино-
логией, обилием акронимов и устойчивых словосочетаний (коллокаций),
которые редко встречаются в общеупотребительной лексике.

– Структура: Структура научной публикации строго регламентирована
(Аннотация, Введение, Методы, Результаты, Заключение). Эта структу-
ра сама по себе несет важную семантическую нагрузку, определяя роль и
взаимосвязь различных частей текста.

– Синтаксис и стиль: Синтаксис зачастую усложнен, с преобладанием
длинных предложений, страдательного залога и безличных конструкций.
Стиль изложения стремится к максимальной точности, объективности и
однозначности формулировок, избегая метафор и многозначности, при-
сущих другим стилям речи.

– Семантические связи: Тексты характеризуются высокой плотностью
информации и сложными логическими связями между утверждениями.
Особую роль играют цитирования, которые формируют неявную се-
мантическую сеть, связывая работы между собой и определяя научный
контекст [41].

Это лексическое, структурное и семантическое расхождение создает так называе-
мый доменный сдвиг (domain shift) [42], из-за которого модели общего назначения
могут неверно интерпретировать контекст, вес терминов или семантические свя-
зи в научной статье.

Таким образом, несмотря на фундаментальную пользу универсальных мо-
делей, для достижения максимального качества в задачах обработки научных
текстов предпочтительной является доменная адаптация. Это привело к созданию
специализированных моделей, которые либо изначально предобучаются на боль-
ших корпусах научных статей, либо проходят дополнительный этап дообучения
на них. Такой подход приводит к формированию более качественных векторных
представлений. Далее мы рассмотрим конкретные модели, разработанные для на-
учного домена, и способы их оценки.
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Модель SPECTER

Одной из первых моделей, реализующих доменный подход к векторизации
научных текстов, стала SPECTER (Scientific Paper Embeddings using Citation-
informed Transformers) [41]. Ключевая идея авторов заключается в использовании
естественного и семантически богатого сигнала, присущего научной среде - ци-
тирований. В отличие от общих задач семантической близости, где пары похожих
текстов часто подбираются эвристически или с помощью разметки методами
краудсорсинга, граф цитирований предоставляет масштабный и объективный ис-
точник информации о смысловой связи между документами.

Модель SPECTER использует в качестве основы трансформер-кодировщик
SciBERT [43], предобученный на научных текстах, и дообучает его с помощью
триплетной функции потерь. В качестве входных данных для каждой научной ста-
тьи xi используется конкатенация ее заголовка и аннотации. Обучающие тройки
(xq, xp, xn) формируются непосредственно из графа цитирований:

– Опорный текст (якорь) xq: произвольная научная статья.
– Положительный пример xp: статья, которую цитирует якорь xq.
– Отрицательный пример xn: статья, которую якорь xq не цитирует.
Процесс дообучения заключается в минимизации триплетной функции

потерь, аналогичной выражению (1.2), где в качестве меры расстояния d(·, ·)

используется евклидово расстояние (L2-норма) между векторными представле-
ниями статей.

LSPECTER = max
(

0, ||vq − vp||2 − ||vq − vn||2 +m
)

−→ min
α

,

где vq,vp,vn — векторные представления, полученные из модели f(x,α), аm—
гиперпараметр зазора.

Особое внимание в работе уделено стратегии выбора отрицательных при-
меров. Помимо случайного выбора из корпуса, авторы вводят понятие «трудных
отрицательных примеров» (hard negatives). Такими примерами для якоря xq яв-
ляются статьи, которые цитируются его положительными примерами xp, но не
самим якорем. Формально, если существует цепочка цитирования xq → xp → xn′,
но при этом отсутствует прямое цитирование xq ̸→ xn′, то статья xn′ считается
трудным отрицательным примером. Такие примеры семантически близки к яко-
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рю, что заставляет модель изучать более тонкие различия между документами,
повышая ее разрешающую способность.

SPECTER2 и мультиформатное обучение

Дальнейшим развитием идей доменной адаптации стала модель
SPECTER2 [44]. Работа над этой моделью была мотивирована важным наблю-
дением: универсальное векторное представление, даже полученное на основе
семантически богатого сигнала цитирований, не может быть одинаково эф-
фективным для решения разнородных прикладных задач. Например, задачи
классификации, поиска и регрессии требуют от векторного пространства раз-
личной структуры. Для классификации важно, чтобы документы одного класса
образовывали линейно разделимые кластеры, тогда как для поиска (ранжирова-
ния) первостепенное значение имеет точное сохранение локальной структуры и
относительных расстояний между документами.

Модель SPECTER2 отходит от парадигмы «один документ — один вектор»
и предлагает концепцию мультиформатного обучения. Идея заключается в том,
чтобы для одного и того же документа генерировать несколько различных век-
торных представлений, каждое из которых специализировано для своего формата
задач: классификации (Classification, CLF), регрессии (Regression, RGN), поиска
по близости (Proximity, PRX) и поиска по произвольному запросу (Ad-hoc Search,
SRCH).

Для реализации этого подхода авторы исследовали два основных механиз-
ма.

– Управляющие коды (Control Codes). Этот метод заключается в до-
бавлении в начало входной последовательности специального токена,
соответствующего целевому формату задачи. Например, для получения
вектора, оптимизированного для классификации, на вход модели пода-
ется последовательность x′i = ([CLF], xi), где xi — конкатенированные
заголовок и аннотация. В качестве итогового представления документа
для данного формата используется выходной вектор трансформера, соот-
ветствующий позиции этого управляющего токена. Этот подход является
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вычислительно эффективным, так как требует лишь добавления несколь-
ких новых токенов в словарь без изменения архитектуры самой модели.

– Адаптеры (Adapters). Этот механизм относится к техникам параметро-
эффективного дообучения (Parameter-Efficient Fine-Tuning, PEFT) [45]. В
каждый слой замороженной базовой модели-кодировщика встраиваются
небольшие, легковесные нейросетевые модули— адаптеры. Для каждого
формата задач создается свой, независимый набор адаптеров. В процессе
обучения настраиваются только параметры этих адаптеров, в то время как
основная часть модели остается неизменной. Этот подход позволяет бо-
лее гибко специализировать модель под каждый формат, хотя и является
более сложным в реализации.

Процесс обучения SPECTER2 представляет собой многозадачное обуче-
ние с гетерогенной функцией потерь. Обучение происходит на мини-выборках,
каждая из которых относится к одному из четырех форматов. В зависимости от
формата выборки для вычисления градиента используется своя функция потерь:

– для задач классификации — перекрестная энтропия (Cross-Entropy
Loss):

LCE = − 1

B

B
∑

i=1

K
∑

k=1

yik log(pik) −→ min,

где B — размер мини-выборки, K — число классов, yik — индикатор
истинного класса (1, если i-й пример принадлежит классу k, и 0 иначе), а
pik —предсказанная моделью вероятность принадлежности i-го примера
к классу k.

– для задач регрессии — среднеквадратичная ошибка (Mean Squared Error,
MSE):

LMSE =
1

B

B
∑

i=1

(ŷi − yi)
2 −→ min,

где ŷi — предсказанное моделью значение для i-го примера, а yi — ис-
тинное значение.

– для задач поиска (proximity и ad-hoc) — триплетная функция потерь,
определенная в выражении (1.2).
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SciNCL: Контрастивное обучение на соседях в графе цитирований

Несмотря на успех модели SPECTER, ее подход к формированию обуча-
ющих троек имеет фундаментальное ограничение: он основан на дискретном
сигнале — факте наличия или отсутствия прямой цитаты. Такой бинарный под-
ход является упрощением, поскольку семантическая близость— это непрерывная
величина. Две статьи могут быть очень близки по теме, но не цитировать друг дру-
га, в то время как некоторые цитаты могут быть сделаны из вежливости или для
указания на контраргументы, не подразумевая сильной семантической связи [46].
Кроме того, однонаправленность сигнала (рассматриваются только исходящие
цитаты) может приводить к «коллизиям», когда одна и та же пара статей в разных
тройках может быть интерпретирована и как положительная, и как отрицатель-
ная, что вносит шум в процесс обучения.

Для решения этих проблем была предложена модель SciNCL (Neighborhood
Contrastive Learning for Scientific Document Representations with Citation
Embeddings) [47]. Ключевое нововведение SciNCL — переход от дискретного
сигнала цитирования к мере близости, полученной из структуры всего графа
цитирований. Это позволяет реализовать более гибкую и теоретически обосно-
ванную стратегию сэмплирования обучающих примеров.

Подход SciNCL состоит из двух этапов. Сначала на всем графе цитирований
научных статей обучается отдельная графовая модель векторного представления,
с помощью алгоритма PyTorch BigGraph [48]. Результатом этого этапа является
построение вспомогательного пространства векторов {ci}Ni=1, где каждый вектор
ci кодирует исключительно структурную позицию статьи xi в графе цитиро-
ваний, а расстояние между векторами является мерой их близости. На втором
этапе происходит дообучение основной модели-кодировщика f(x,α) с помощью
триплетной функции потерь. В отличие от SPECTER, выбор положительных и от-
рицательных примеров для опорной статьи xq производится на основе ее соседей
во вспомогательном пространстве векторов {ci}.

Такая двухэтапная схема позволяет реализовать гибкую стратегию выбора
примеров, контролируя их сложность. Положительные примеры xp сэмплируются
из «ближнего» окружения якоря xq во вспомогательном пространстве. Это позво-
ляет выбирать не только ближайших и тривиальных соседей, но и так называемые
«трудные положительные примеры» (hard positives) — статьи, которые доста-
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точно близки, чтобы быть релевантными, но не идентичными. В свою очередь,
отрицательные примеры xn также могут быть как «легкими» (случайные статьи,
далекие от якоря), так и «трудными» (статьи, находящиеся близко к границе, от-
деляющей положительные примеры).

Ключевым элементом является введение «отступа, определяемого приме-
ром» (sample-induced margin) — гиперпараметра, который определяет «мертвую
зону» во вспомогательном пространстве между областями сэмплирования поло-
жительных и отрицательных примеров. Это гарантирует отсутствие коллизий и
чистоту обучающего сигнала.

Итоговая функция потерь идентична той, что используется в SPECTER, —
это триплетная функция потерь (1.2). Однако ее эффективность кардинально по-
вышается за счет более совершенного метода формирования троек. Этот метод
позволяет модели обучаться на более гладком и непрерывном семантическом сиг-
нале, что приводит к формированию более качественных и робастных векторных
представлений научных текстов.

1.7 Оценка качества моделей векторного представления текстов

Создание эффективных моделей векторного представления текстов требу-
ет не только разработки новых архитектур и методов обучения, но и наличия
надежных инструментов для их объективной оценки и сопоставления. Стандар-
тизированные наборы данных и согласованные меры качества, объединенные в
так называемые бенчмарки, играют в этом процессе ключевую роль. Они позво-
ляют воспроизводимо и непредвзято сравнивать различные подходы, выявлять
их сильные и слабые стороны и направлять дальнейшие исследования. В данной
главе рассматриваются основные бенчмарки и меры качества, используемые для
оценки моделей в области обработки научных текстов, начиная с основополага-
ющих работ и заканчивая современными комплексными наборами задач.
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1.7.1 Бенчмарк SciDocs

Одним из первых комплексных инструментов, разработанных специально
для оценки качества векторных представлений научных документов, стал бенч-
марк SciDocs [41]. Его создание было мотивировано тем, что существующие
на тот момент наборы данных для оценки семантической близости были либо
слишком малы, либо задачи на них были практически решены (меры качества
достигали 99%), что не позволяло адекватно сравнивать новые, более мощные мо-
дели. SciDocs был предложен как более сложный и разносторонний набор задач,
призванный оценить способность моделей к обобщению.

Ключевой принцип, заложенный в SciDocs,— это оценка моделей в режиме
«как есть» (as features), то есть без дополнительного дообучения параметров са-
мого кодировщика на задачах бенчмарка. Полученные векторные представления
подаются на вход простым, легковесным моделям (например, линейному клас-
сификатору), и оценивается именно качество этих представлений как признаков
для решения целевых задач. Бенчмарк включает семь задач, сгруппированных в
четыре категории.

Классификация документов. Эта категория содержит две задачи, проверяю-
щие, насколько хорошо векторное представление кодирует тематическую принад-
лежность документа. Качество решения в обеих задачах оценивается с помощью
макро-усредненной F1-меры (Macro F1-score), которая является стандартнойме-
рой для многоклассовой классификации, устойчивой к дисбалансу классов.

– MeSH Classification. Задача классификации медицинских статей по
11 высокоуровневым классам заболеваний (например, «сердечно-
сосудистые заболевания», «диабет») из тезауруса Medical Subject
Headings (MeSH) [49].

– Paper Topic Classification. Задача классификации статей по 19 пред-
метным областям первого уровня (например, «Физика», «Математика»,
«Информатика») из иерархии Microsoft Academic Graph (MAG) [50].

Предсказание цитирований. Эти задачи напрямую оценивают способность
модели воспроизводить семантический сигнал, заложенный в цитированиях. Обе
задачи сформулированы как задачи ранжирования, и их качество оценивается
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с помощью стандартных для информационного поиска мер: средней точности
(Mean Average Precision, MAP) и нормализованного дисконтированного со-
вокупного выигрыша (Normalized Discounted Cumulative Gain, nDCG).

– Direct Citations. Для данной статьи-запроса необходимо ранжировать
предложенный набор статей-кандидатов таким образом, чтобы цитиру-
емые ею статьи оказались выше в списке, чем случайно выбранные
нецитируемые.

– Co-Citations. Задача аналогична предыдущей, но вместо прямых цитиро-
ваний требуется предсказать статьи, которые часто цитируются совмест-
но с запросной статьей, что является сильным индикатором тематической
близости.

Анализ пользовательской активности. В этой категории в качестве косвенно-
го индикатора семантической близости используется поведение пользователей на
крупном научном поисковом портале. Поскольку эти задачи также являются за-
дачами ранжирования, для их оценки применяются те же меры качества: MAP
и nDCG.

– Co-Views.Модель должна ранжировать статьи, которые пользователи ча-
сто просматривали в рамках одной и той же поисковой сессии, выше, чем
случайные статьи.

– Co-Reads. Более сильный сигнал, основанный на кликах по PDF-файлам.
Предполагается, что если пользователи скачивают несколько статей в од-
ной сессии, эти статьи с высокой вероятностью тесно связаны по теме.

Рекомендация статей. Наиболее прикладная задача, в которой векторное пред-
ставление используется не изолированно, а как один из признаков (feature) в су-
ществующей промышленной рекомендательной системе. В качестве мер качества
используются нормализованный дисконтированный совокупный выигрыш
(nDCG) и точность на первой позиции (Precision@1), скорректированные с уче-
том смещения. Для корректной оценки используется механизм корректировки на
основе оценок склонности (propensity scores), чтобы нивелировать смещение, воз-
никающее из-за того, что пользователи чаще кликают на элементы вверху списка.

Таким образом, SciDocs предоставляет разносторонний набор тестов,
проверяющих различные аспекты качества векторных представлений, от те-
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матической классификации до воспроизведения сложных семантических связей,
отраженных в поведении научного сообщества.

1.7.2 Бенчмарк SciRepEval

В бенчмарке SciDocs был выявлен ряд ограничений, послуживших предпо-
сылкой для создания более совершенных инструментов оценки. Было показано,
что задачи в SciDocs недостаточно разнообразны, а некоторые из них, в частности,
задачи поиска со случайно выбранными отрицательными примерами, оказались
слишком простыми для современных моделей. Важным недостатком также явля-
лось то, что все задачи в SciDocs были предназначены исключительно для оценки,
что не позволяло исследовать эффекты многозадачного обучения на разнообраз-
ных данных.

Для устранения этих недостатков был предложен бенчмарк SciRepEval [44].
Он включает 24 разноформатные задачи, отражающие практические сценарии ис-
пользования векторных представлений.

Центральной идеей бенчмарка является разделение задач на четыре концеп-
туальных формата, основанное на гипотезе, что единое векторное представление
не может быть оптимальным для всех типов задач одновременно:

– Классификация (Classification, CLF): задачи, требующие отнесения до-
кумента к одной или нескольким категориям.

– Регрессия (Regression, RGN): задачи, где необходимо предсказать
непрерывную величину, связанную с документом (например, число
цитирований).

– Поиск по близости (Proximity, PRX): задачи, где запросом является
один документ, и требуется найти другие, семантически близкие к нему
документы.

– Поиск по произвольному запросу (Ad-hoc Search, SRCH): классиче-
ские задачи информационного поиска, где запрос представляет собой
короткую текстовую строку.

Другим важным нововведением является разделение наборов данных на
две группы: In-Train и Out-of-Train. Это разделение напрямую связано с подхо-
дом, предложенным в модели SPECTER2, где для одного документа предлагается
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генерировать несколько векторных представлений, каждое из которых специа-
лизировано под свой формат задач. Для обучения таких формат-специфичных
представлений необходимы соответствующие обучающие данные. Именно для
этой цели в SciRepEval были собраны и выделены крупные наборы данных ‘In-
Train‘, которые авторы предоставили в открытом доступе как часть бенчмарка.
Задачи из группы ‘Out-of-Train‘ являются полностью отложенными и использу-
ются исключительно для оценки способности моделей, обученных на ‘In-Train‘
задачах, обобщаться на новые данные и домены.

Для оценки качества в рамках SciRepEval используется широкий спектр
мер, соответствующих каждому формату задач. Для классификации применяют-
ся бинарная и макро-усредненная F1-мера. Для задач регрессии используется
ранговая корреляция Кендалла (τ), устойчивая к выбросам и нелинейным зави-
симостям. Качество решения задач поиска оценивается с помощью стандартных
мер ранжирования, таких как MAP и nDCG.

1.7.3 Бенчмарк SciFact

В то время как бенчмарки SciDocs и SciRepEval сосредоточены на оцен-
ке семантической близости и решении задач классификации или ранжирования,
существует качественно иной тип задач, требующий от моделей не простого со-
поставления текстов, а логического вывода и верификации фактов. Для оценки
моделей в этом, более сложном, сценарии был разработан бенчмарк SciFact [51].

Задача, которую ставит SciFact, — это верификация научного утвержде-
ния. Модели необходимо для заданного утверждения (claim), представляющего
собой атомарное, проверяемое высказывание, найти в корпусе научных статей
релевантные аннотации и определить, подтверждает (SUPPORTS) или опровер-
гает (REFUTES) текст аннотации данное утверждение.

Таким образом, задача верификации в SciFact является двухэтапной и вклю-
чает в себя:

1. Поиск доказательств (Evidence Retrieval). На первом этапе для задан-
ного утверждения c модель должна произвести поиск по всему корпусу
аннотаций A и найти небольшое подмножество E(c) ⊂ A, содержащее
релевантные доказательства.
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2. Предсказание отношения (Stance Prediction).На втором этапе для каж-
дой найденной пары (утверждение c, аннотация a ∈ E(c)) модель должна
вынести вердикт, классифицировав их отношение как ‘SUPPORTS‘ или
‘REFUTES‘.

Формальная постановка задачи. В обобщенном виде задачу можно сформу-
лировать следующим образом.

Дано: Утверждение c и корпус аннотаций A = {ai}
N
i=1.

Найти: Множество предсказаний Spred = {(aj, lj, Rj)},
где для каждого предсказания j:

– aj ∈ A— аннотация, найденная как содержащая доказательство.
– lj ∈ {SUPPORTS, REFUTES}— предсказанное отношение между c и aj .
– Rj ⊆ sentences(aj)—предсказанный рациональ, т.е. подмножество пред-
ложений из aj , обосновывающее метку lj .

Ключевой особенностью и усложняющим фактором бенчмарка SciFact яв-
ляется введение понятия рационаля (rationale). Для каждой пары (утверждение,
аннотация) с меткой ‘SUPPORTS‘ или ‘REFUTES‘ в наборе данных также раз-
мечен «рациональ» — минимальный набор предложений из аннотации, который
является достаточным для эксперта, чтобы обосновать вынесенный вердикт. Это
требование подталкивает к созданию интерпретируемых моделей, способных не
просто классифицировать, но и указывать на конкретные фрагменты текста, по-
служившие основанием для вывода.

Оценка качества моделей на бенчмарке SciFact производится на двух уров-
нях детализации, и в качестве основной меры качества на обоих уровнях исполь-
зуется F1-мера.

– Уровень аннотаций (Abstract Level).Оценивается способность системы
в целом правильно находить аннотации с доказательствами и коррект-
но их классифицировать. Предсказание считается верным, если модель
нашла релевантную аннотацию и правильно определила ее отношение к
утверждению (‘SUPPORTS‘ или ‘REFUTES‘).

– Уровень предложений (Sentence Level). Более строгая оценка, которая
дополнительно проверяет, смогла ли модель правильно выделить раци-
ональ. Предсказание засчитывается, только если помимо правильного
поиска и классификации аннотации модель также корректно определи-
ла набор предложений, составляющих рациональ.
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SciFact представляет собой важныйшаг в развитии методов оценки, смещая
фокус с задач семантического сопоставления на задачи, требующие от моделей
логического анализа, поиска доказательств и интерпретируемости результатов.

1.7.4 Универсальные бенчмарки: MTEB

Проблему фрагментированной оценки, когда модели тестируются лишь
на нескольких специфичных задачах (например, только на поиске или только
на определении семантической близости), решают универсальные наборы для
оценки. Ключевым из них на сегодняшний день является MTEB (Massive Text
Embedding Benchmark) [52].

MTEB не вводит принципиально новых задач, а объединяет и стандар-
тизирует большое число уже известных и проверенных научным сообществом
наборов данных, включая многие из рассмотренных ранее. Он охватывает широ-
кий спектр из 8 типов задач.

Основной вклад MTEB заключается в предоставлении единого про-
граммного интерфейса (API) и открытой библиотеки, которая позволяет с
минимальными усилиями оценить любую модель векторного представления
на всем многообразии задач. Результаты всех моделей собираются в публичную
таблицу лидеров, которая служит общепринятым стандартом для сравнения и
выбора оптимальной модели для конкретного прикладного сценария.

1.8 Основные выводы

Проведенный анализ литературы показал, что современные методы по-
строения семантических векторных представлений основаны на архитектуре
Трансформер и двухэтапной парадигме обучения. Она включает масштабное
самоконтролируемое предобучение и последующее контрастивное дообучение
на сиамских сетях, которое формирует семантически структурированное про-
странство векторов. Для узкоспециализированных областей, таких как научный
дискурс, ключевую роль играет доменная адаптация с использованием специ-
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фических сигналов, например графа цитирований, как в моделях SPECTER и
SciNCL.

Вместе с тем, обзор выявил ряд фундаментальных ограничений. Во-первых,
все рассмотренные передовые модели и бенчмарки (SciDocs, SciRepEval) явля-
ются англоязычными, что препятствует их применению к научным корпусам на
других языках, включая русский. Во-вторых, отсутствуют подходы к построению
двуязычных семантических пространств для научных текстов, которые позволи-
ли бы реализовать кросс-языковой поиск.

Эти нерешенные проблемы — англоязычность существующих решений,
отсутствие разработанных двуязычных моделей — формируют научную задачу
настоящей диссертационной работы. Ее целью является разработка и исследо-
вание методов построения эффективных двуязычных семантических векторных
представлений для научных документов.
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Глава 2. Разработка и обучение двуязычных моделей векторизации научных
текстов SciRus

В настоящей главе описывается процесс разработки семейства легковесных
двуязычных моделей SciRus, предназначенных для построения семантических
векторных представлений научных текстов. Описывается общая постановка за-
дачи, излагается и обосновывается выбранная архитектура моделей. Детально
рассматривается двухэтапная методология обучения, включающая предобучение
на большом корпусе неразмеченных научных статей и последующее контрастив-
ное дообучение для формирования семантически и кросс-язычного векторного
пространства. Приводятся сведения об использованных наборах данных и пара-
метрах обучения.

2.1 Постановка задачи и существующие ограничения

Задачей, решаемой в данной работе, является построение семантических
векторных представлений для коллекции научных документов. Формально, дана
коллекция документов D = {xi}

N
i=1, где каждый документ xi представляет собой

последовательность токенов. Необходимо найти параметризованное отображение
f(·,α), которое сопоставляет каждому документу xi вектор vi в пространстве Rd:

vi = f(xi,α) ∈ R
d.

Ключевое требование к этому отображению заключается в том, чтобы геометри-
ческая близость векторов vi и vj в пространстве Rd соответствовала семантиче-
ской близости исходных документов xi и xj .

Современная парадигма решения этой задачи, как следует из обзора ли-
тературы (Глава 1), опирается на архитектуру трансформер-кодировщика и
предполагает двухэтапный процесс обучения, в ходе которого параметры α

оптимизируются с помощью градиентного спуска. На первом этапе модель про-
ходит предобучение без учителя на больших неразмеченных текстовых корпусах.
Цель этого этапа — выучивание моделью общих языковых закономерностей,
синтаксиса и семантики. В качестве критерия используется, как правило, задача
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маскированного языкового моделирования (MLM):

N
∑

i=1

LMLM,i(α) → min
α

.

Однако, как было показано в разделе 1.5, векторные представления, полу-
ченные непосредственно после этапа предобучения, показывают низкое качество
на задачах семантического поиска. Для формирования векторного пространства
требуется второй этап— контрастивное дообучение. На этом этапе модель обуча-
ется на парах или тройках текстов с известными семантическими отношениями с
целью сблизить векторы семантически схожих документов и отдалить векторы
различных:

N
∑

i=1

LContr,i(α) → min
α

.

Основная ценность полученной модели заключается в возможности после-
дующего использования обученного кодировщика f(·,α) в качестве универсаль-
ной модели. Параметры кодировщика α фиксируются, и для решения конкретной
прикладной задачи (например, классификации или регрессии) на новом, как пра-
вило, небольшом наборе данных D′ = {x′i}

M
i=1, где M , N , обучается лишь

легковесная модель g′(·,β′):

M
∑

i=1

L′
i(g

′(f(x′i,α),β
′)) → min

β′

, (2.1)

при этом размерность вектора параметров новой модели значительно меньше ис-
ходной: dim(β′) , dim(α). Такой подход обеспечивает высокую эффективность
переноса знаний и минимизирует вычислительные затраты при адаптации к но-
вым задачам.

Несмотря на значительные успехи в этой области, анализ существующих
решений (разделы 1.6, 1.7) выявил два ключевых ограничения. Первое — домен-
ная и языковая ограниченность. Подавляющее большинство передовых моделей
(SPECTER [41], SciNCL [47]) разработано и ориентировано исключительно на ан-
глоязычный научный корпус. Это создает существенный дефицит эффективных
инструментов для анализа и поиска в массивах русскоязычных научных публи-
каций. Второе ограничение — отсутствие эффективных кросс-языковых моделей
для научной области. Не существует моделей, способных строить единое семан-
тическое пространство для русских и английских научных текстов, что является
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необходимым условием для реализации кросс-языкового поиска и сопоставления
исследований, опубликованных на разных языках.

Для преодоления указанных ограничений в рамках данной работы были раз-
работаны модели SciRus. Основными целями при их создании являлись:

– Вычислительная эффективность и легковесность. Создание моделей с
малым числом параметров, допускающих обучение и применение при
ограниченных вычислительных ресурсах.

– Двуязычность. Обеспечение высокого качества векторных представлений
как для русского, так и для английского языков, и формирование единого
векторного пространства для эффективного кросс-языкового поиска.

– Высокое качество представлений при малом числе параметров. Разра-
ботанные модели должны демонстрировать более высокие показатели
качества на целевых задачах по сравнению с аналогами сопоставимого
размера. Вместе с тем, их качество должно быть конкурентоспособным
на фоне значительно более крупных и ресурсоемких моделей.

Полный спектр целевых задач, используемых для всесторонней оценки
качества разработанных моделей, будет подробно представлен в последующих
главах, посвященных бенчмаркам RuSciBench (Глава 3) и RuSciFact (Глава 4).

Далее в главе подробно описывается процесс разработки, обучения и оцен-
ки моделей SciRus, направленный на достижение поставленных целей.

2.2 Наборы данных для обучения

Для обучения моделей SciRus были использованы два крупных мультиязыч-
ных корпуса научных текстов: Semantic Scholar Open Research Corpus (S2ORC) и
данные российской научной электронной библиотеки eLibrary.ru.

Semantic Scholar Open Research Corpus (S2ORC) [53] представляет со-
бой обширный гетерогенный граф знаний, агрегирующий информацию о науч-
ных публикациях, авторах и цитированиях из различных источников, включая
Crossref, PubMed, Unpaywall и др. Исходно датасет содержит метаданные более
чем 200 миллионов публикаций. Для обучения моделей SciRus из S2ORC бы-
ла сформирована выборка, содержащая заголовки и аннотации научных статей.
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Общий объем этой выборки составил около 30,5 миллионов пар ”заголовок-
аннотация”.

В дополнение к текстовым метаданным, ключевым ресурсом для обуче-
ния является граф цитирований, предоставляемый S2ORC. Полный граф является
чрезвычайно разреженным и содержит более 2.5 миллиардов ребер. Ввиду его
масштаба, для обучения была использована подвыборка. Для ее формирования
была произведена случайная выборка вершин (статей), после чего в итоговый
граф были включены только те ребра, которые соединяют вершины из этой
выборки. Полученный таким образом подграф содержит 51 970 696 ребер (ци-
тирований). Этот сигнал о цитировании, как было показано в работах [41; 47],
является семантически богатым источником для формирования положительных
пар в задачах контрастивного обучения.

Важной характеристикой выборки из S2ORC является ее мультиязычность.
Хотя подавляющее большинство текстов представлено на английском языке
(приблизительно 83.3%), датасет также включает значительное количество пуб-
ликаций на других языках, таких как китайский (2.8%), французский (2.6%),
испанский (2.4%), немецкий (1.1%) и другие. Русский язык также присутствует,
составляя около 0.4% от выборки. Наличие текстов на разных языках, а также пар,
где язык заголовка и аннотации различается, создает предпосылки для обучения
многоязычных и кросс-языковых способностей моделей.

Статистический анализ длин текстов в англоязычной части выборки пока-
зывает, что медианная длина заголовка составляет 81 символ (11 слов), а 95-й
перцентиль - 154 символа (21 слово). Для аннотаций медианная длина равна 972
символам (144 слова), а 95-й перцентиль - 2388 символам (354 слова). Эти дан-
ные важны для определения максимальной длины входной последовательности
моделей.

Тематическое распределение статей в выборке S2ORC охватывает широкий
спектр научных областей, включая медицину (14.5%), биологию (9.3%), физику
(5.3%), инженерные науки (4.7%), компьютерные науки (4.4%), химию (4.2

Данные научной электронной библиотеки eLibrary.ru. Для усиле-
ния способностей моделей работать с русскоязычным научным контентом и
улучшения кросс-языковых возможностей между русским и английским языка-
ми, в обучающий корпус были добавлены данные из крупнейшей российской
информационно-аналитической системы eLibrary.ru. Из этого источника было
извлечено около 17,7 миллионов пар ”заголовок-аннотация”.
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Особенностью данных из eLibrary.ru является их сбалансированность по
русскому и английскому языкам: примерно 8.6 миллионов документов представ-
лено на русском языке и около 8.8 миллионов - на английском. Существенная
часть русскоязычных статей (около 5.2 миллионов, согласно оценкам в [9]) имеет
также англоязычные версии заголовка и аннотации, что фактически формирует
параллельный корпус и является ценным ресурсом для обучения кросс-языковых
моделей. Другие языки также присутствуют, но в значительно меньшем объеме
(например, украинский - 0.75%, китайский - 0.56%).

Анализ длин текстов показывает, что русскоязычные заголовки имеют ме-
дианную длину 80 символов (9 слов), а англоязычные - 91 символ (12 слов).
Русскоязычные аннотации в медиане содержат 441 символ (50 слов), англоязыч-
ные - 946 символов (138 слов).

Аналогично S2ORC, данные из eLibrary.ru также включают информацию
о цитированиях. Сформированный на основе этих данных граф цитирований
содержит 39,988,291 ребро. Этот граф, отражающий связи преимущественно в
русскоязычном и смешанном научном пространстве, является вторым важней-
шим источником структурных данных для формирования обучающих примеров.

Тематический охват статей из eLibrary.ru также широк, включая физические
науки (12.1%), клиническую медицину (10.0%), экономику и бизнес (9.7%), хими-
ческие науки (8.6%), биологические науки (8.5%) и другие области.

Итоговый обучающий корпус был сформирован путем объединения выбо-
рок из S2ORC и eLibrary.ru. Суммарный объем составил около 48.2 миллионов
пар ”заголовок-аннотация”, что соответствует примерно 15 миллиардам токенов.
Этот объединенный мультиязычный корпус, сочетающий широкий международ-
ный охват S2ORC и значительный объем русскоязычных и русско-английских
параллельных текстов из eLibrary.ru, послужил основой для двухэтапного про-
цесса обучения моделей SciRus.

2.3 Архитектура моделей SciRus

В качестве базовой архитектуры для моделей SciRus была выбрана мо-
дель типа RoBERTa [30], являющаяся усовершенствованной версией архитектуры
BERT [34]. RoBERTa использует только энкодерную часть трансформера [6]. Для
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обеспечения вычислительной легковесности были выбраны конфигурации с от-
носительно небольшим числом параметров.

Конфигурация моделей:
– SciRus-tiny: размер векторного представления - 312, общее количество
параметров - приблизительно 23 миллиона.

– SciRus-small: размер векторного представления - 768, общее количество
параметров - приблизительно 61 миллион.

Также модели состоят из 3 слоев, имеют 12 голов внимания. Обе модели могут
обрабатывать входные последовательности длиной до 1024 токена. Для токениза-
ции текста используется алгоритм Byte-Pair Encoding (BPE) [27] на уровне байтов
(byte-level BPE). Размер словаря для обеих моделей составляет 50265 токенов.

Анализ распределения параметров в моделях SciRus выявляет, что суще-
ственная их доля сконцентрирована в слоях векторных представлений токенов
(эмбеддингов). Так, для модели SciRus-tiny на слои эмбеддингов приходится око-
ло 69.5% всех параметров (16.0 млн из 23.0 млн), а для SciRus-small это значение
составляет примерно 64.3% (39.4 млн из 61.2 млн). Данная особенность харак-
терна и для других компактных моделей: например, в ‘cointegrated/rubert-tiny‘
[54] доля параметров эмбеддингов достигает 79.6% (9.4 млн из 11.8 млн), а в
‘cointegrated/rubert-tiny2‘ [11] — даже 91.8% (26.8 млн из 29.2 млн). В то же вре-
мя, у более крупных моделей, таких как ‘allenai/specter‘ [41], это соотношение
иное: на слои эмбеддингов приходится лишь около 22.1% параметров (24.3 млн
из 109.9 млн).

Уменьшение доли параметров, отводимых на эмбеддинги, в компактных
моделях сопряжено со значительными трудностями. Основной способ сокра-
щения размера слоев эмбеддингов заключается в уменьшении размера словаря,
поскольку число параметров слоя эмбеддингов напрямую зависит от произведе-
ния размера словаря на размерность вектора эмбеддинга (V ×H , где V — размер
словаря,H—размерность эмбеддинга). Однако существенное сокращение разме-
ра словаря негативно сказывается на качестве токенизации. Слишком маленький
словарь приводит к тому, что многие слова, особенно в языках с богатой морфоло-
гией, таких как русский, будут разбиваться на большое количество более мелких
субсловных единиц или даже отдельных символов. Это, в свою очередь, ведет к
увеличению средней длины токенизированной последовательности для одного и
того же текста, что не только повышает вычислительную нагрузку, но и может
затруднить модели улавливание семантических связей из-за чрезмерной грану-
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лярности представления. Таким образом, для обеспечения адекватного качества
токенизации необходимо поддерживать достаточно большой размер словаря, да-
же если это приводит к увеличению относительной доли параметров, занимаемых
слоями эмбеддингов в малопараметрических моделях.

Выбор таких конфигураций позволил создать модели, которые значительно
меньше по сравнению со стандартными базовыми моделями (например, BERT-
base имеет 110 млн параметров, RoBERTa-base - 125 млн), что напрямую приводит
к меньшему потреблению памяти и более высокой скорости применения моде-
ли. SciRus-tiny представляет собой наиболее легковесный вариант, в то время как
SciRus-small предлагает компромисс между эффективностью и потенциально бо-
лее высоким качеством представлений за счет увеличенного числа параметров.
Увеличенная до 1024 токенов максимальная длина контекста (по сравнению с ти-
пичными 512 токенами для многих моделей BERT-типа) позволяет обрабатывать
более длинные фрагменты текста, что может быть важно для аннотаций или дру-
гих научных текстов.

2.4 Методология обучения

Процесс обучения моделей SciRus состоял из двух последовательных эта-
пов: предобучение с использованием задачи маскированного языкового модели-
рования (MLM) и последующее контрастивное дообучение.

2.4.1 Предобучение с использованием Masked Language Modeling (MLM)

На первом этапе модели SciRus проходили предобучение с нуля, иници-
ализируясь случайными весами. В качестве обучающих данных на этом этапе
использовался исключительно объединенный текстовый корпус, состоящий из
заголовков и аннотаций из наборов данных S2ORC и eLibrary.ru. Структурная ин-
формация из графов цитирований на данном этапе не применялась.

Обучение проводилось с использованием маскированного языкового мо-
делирования (MLM), унаследованной от архитектуры RoBERTa, с применением
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динамического маскирования. Формальное описание данного метода и пара-
метры маскирования были подробно изложены в разделе 1.4. Оптимизация
параметров моделей осуществлялась путем минимизации функции потерь пере-
крестной энтропии, формальное определение которой было также дано в обзоре
литературы (раздел 1.4).

Процесс предобучения продолжался в течение двух эпох. Для контроля
сходимости и предотвращения переобучения была сформирована валидационная
подвыборка размером 1% от общего объема данных. График сходимости функции
потерь (Рисунок 2.1) демонстрирует синхронное снижение ошибки как на обу-
чающей, так и на валидационной выборках, с выходом на плато к концу второй
эпохи. Анализ промежуточных результатов на бенчмарках SciDocs и RuSciBench
(Рисунки 2.2 и 2.3) также подтвердил, что дальнейшее обучение не приводило к
значимому улучшению качества представлений.

Рисунок 2.1 –– Значение функции ошибки моделей SciRus

После завершения этапа MLM-предобучения модели приобретают спо-
собность генерировать контекстуализированные векторные представления для
отдельных токенов, а не для текстов как целостных единиц. Эти представления,
полученные на уровне токенов, еще не оптимизированы для задач семантического
поиска или сравнения текстов на уровне документа. Для этой цели предназначен
второй этап обучения.
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Рисунок 2.2 –– Прогресс обучения моделей SciRus на англоязычном бенчмарке
SciDocs.

Рисунок 2.3 –– Прогресс обучения моделей SciRus на русскоязычном бенчмарке
RuSciBench.
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2.4.2 Контрастивное дообучение

На втором этапе модели, предобученные с помощью MLM, проходили
дообучение с использованием контрастивного подхода. Цель этого этапа —
преобразовать векторные представления, полученные на уровне токенов, в се-
мантически согласованные векторы на уровне документов, пригодные для задач
поиска и сравнения. Для агрегации векторов токенов в единый вектор докумен-
та применялся метод усреднения (Mean Pooling), как и в ряде других успешных
моделей [8; 37].

В качестве основного метода обучения использовалась функция потерь
InfoNCE, формальное описание которой приведено в разделе 1.5 (см. форму-
лу 1.3). В качестве меры близости s(·, ·) применялась косинусная близость, а
температурный коэффициент τ был установлен равным 0.01. Во всех случаях
отрицательные примеры для каждой опорной статьи формировались из других
примеров в той же мини-выборке (стратегия ”in-batch negatives”).

В рамках исследования были реализованы и обучены две версии моделей,
различающиеся наборами данных и, соответственно, типами семантических сиг-
налов, использованных для контрастивного обучения.

Обучение на парах «заголовок–аннотация». Первая версия моделей обуча-
лась исключительно на парах, сформированных из текстовых метаданных. В этом
подходе для формирования i-й положительной пары (xa,i, xp,i) в качестве опор-
ного примера (anchor) xa,i использовался заголовок научной статьи, а в качестве
положительного примера (positive) xp,i — аннотация той же статьи. Этот метод
основан на предположении о высокой семантической близости между заголовком
и аннотацией одного документа.

Ключевой особенностью этого подхода является обучение кросс-языковых
представлений. Для статей из набора данных eLibrary.ru, имеющих аннотации на
русском и английском языках, пары формировались случайным образом. Напри-
мер, в качестве опорного примера мог быть выбран заголовок на русском языке, а
в качестве положительного — аннотация на английском. Такая стратегия застав-
ляет модель выравнивать векторные пространства для разных языков, обучаясь
сопоставлять семантически эквивалентные тексты независимо от языка их напи-
сания.
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Обучение с использованием комбинированных данных. Для обучения
второй версии моделей был сформирован объединенный набор данных, пред-
ставляющий собой конкатенацию двух типов положительных пар: (1) пар
«заголовок–аннотация», описанных в предыдущем пункте, и (2) пар, сформиро-
ванных на основе графов цитирований S2ORC и eLibrary.ru. При формировании
пар на основе цитирований в качестве опорного примера xa,i использовалась
конкатенация заголовка и аннотации цитирующей статьи, а в качестве поло-
жительного примера xp,i — конкатенация заголовка и аннотации цитируемой
статьи. Кросс-языковая стратегия сэмплирования применялась для всего объ-
единенного набора данных: опорный и положительный примеры могли быть
представлены на разных языках, что дополнительно усиливало выравнивание
семантических пространств.

В результате были получены две линейки моделей. Модели, обученные ис-
ключительно на парах «заголовок–аннотация», в дальнейшем будут именоваться
SciRus-tiny и SciRus-small. Модели, при обучении которых дополнительно
использовались данные о цитированиях, получат суффикс -cite: SciRus-tiny-
cite и SciRus-small-cite.

Динамика улучшения качества на бенчмарках SciDocs и RuSciBench в ходе
контрастивного дообучения представлена на Рисунках 2.4 и 2.5 соответствен-
но. Обучение также проводилось в течение 2 эпох. Этот этап позволил моделям
SciRus достичь высоких результатов, в том числе на задачах кросс-языкового по-
иска, что подтверждает эффективность выбранных стратегий обучения.

2.5 Оценка качества моделей SciRus

Для всесторонней оценки качества разработанных моделей SciRus был про-
веден их сравнительный анализ с другими известными моделями. Отбор моделей
для сравнения производился по двум ключевым принципам. Во-первых, в состав
сопоставляемых решений были включены ведущие общецелевые англоязычные и
многоязычные модели, занимающие лидирующие позиции в авторитетном меж-
дународном лидерборде MTEB (Massive Text Embedding Benchmark) [52]. Такой
выбор позволяет сопоставить модели SciRus с наиболее сильными современ-
ными решениями, не имеющими узкой доменной специализации. Во-вторых,
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Рисунок 2.4 –– Прогресс дообучения моделей SciRus на англоязычном бенчмарке
SciDocs.

Рисунок 2.5 –– Прогресс дообучения моделей SciRus на русскоязычном бенчмарке
RuSciBench.
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для корректной оценки в рамках целевой области, в сравнение были добавлены
специализированные модели, разработанные для векторизации именно научных
текстов, такие как SPECTER [41] и SciNCL [47]. Такой двухкомпонентный подход
к формированию выборки для сравнения обеспечивает возможность объектив-
но оценить как конкурентоспособность моделей SciRus на фоне универсальных
лидеров, так и их преимущества в решении задач научной области. Полный пере-
чень использованных моделей, упорядоченный по дате публикации, представлен
в таблице 1.

Таблица 1 –– Список моделей для сравнения

Модель
Количество
параметров

Дата
публикации

Ссылка

SPECTER 110 млн 01-2021 allenai/specter
SciNCL 110 млн 02-2022 malteos/scincl
sn-xlm-roberta-
base-snli-mnli-
anli-xnli

278 млн 03-2022 symanto/sn-xlm-roberta-base-
snli-mnli-anli-xnli

paraphrase-
multilingual-
mpnet-base-v2

278 млн 03-2022 sentence-
transformers/paraphrase-
multilingual-mpnet-base-v2

LaBSE-en-ru 129 млн 03-2022 cointegrated/LaBSE-en-ru
multilingual-e5-
base

278 млн 05-2023 intfloat/multilingual-e5-base

multilingual-e5-
large

560 млн 06-2023 intfloat/multilingual-e5-large

multilingual-e5-
small

118 млн 06-2023 intfloat/multilingual-e5-small

SFR-
Embedding-
Mistral

7 млрд 01-2024 Salesforce/SFR-Embedding-
Mistral

GritLM-7B 7.24 млрд 02-2024 GritLM/GritLM-7B
multilingual-e5-
large-instruct

560 млн 02-2024 intfloat/multilingual-e5-large-
instruct

https://huggingface.co/allenai/specter
https://huggingface.co/malteos/scincl
https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/cointegrated/LaBSE-en-ru
https://huggingface.co/intfloat/multilingual-e5-base
https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/intfloat/multilingual-e5-small
https://huggingface.co/Salesforce/SFR-Embedding-Mistral
https://huggingface.co/Salesforce/SFR-Embedding-Mistral
https://huggingface.co/GritLM/GritLM-7B
https://huggingface.co/intfloat/multilingual-e5-large-instruct
https://huggingface.co/intfloat/multilingual-e5-large-instruct
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Продолжение таблицы 1

Модель
Количество
параметров

Дата
публикации

Ссылка

GIST-large-
Embedding-v0

335 млн 02-2024 avsolatorio/GIST-large-
Embedding-v0

Linq-Embed-
Mistral

7 млрд 05-2024 Linq-AI-Research/Linq-
Embed-Mistral

SciRus-small-
cite

61 млн 05-2024 mlsa-iai-msu-lab/sci-rus-
small-cite

SciRus-tiny-cite 23 млн 05-2024 mlsa-iai-msu-lab/sci-rus-
tiny3-cite

SciRus-small 61 млн 05-2024 mlsa-iai-msu-lab/sci-rus-
small

SciRus-tiny 23 млн 05-2024 mlsa-iai-msu-lab/sci-rus-tiny

Для оценки и сопоставления с существующими решениями было про-
ведено сравнительное тестирование разработанных моделей на общепринятом
англоязычном бенчмарке SciDocs [41]. На момент проведения исследования
устоявшиеся и публично доступные наборы данных для оценки качества семанти-
ческих представлений в русскоязычной научной области отсутствовали. Именно
для устранения этого пробела в рамках настоящей диссертационной работы были
разработаны специализированные бенчмарки RuSciBench и RuSciFact. Детальное
описание этих наборов данных, а также исчерпывающие результаты сравнитель-
ного тестирования всех моделей на них, будут представлены в последующих
главах 3 и 4 соответственно. Результаты на англоязычном бенчмарке SciDocs при-
ведены в таблице 2.

Анализ результатов, представленных в таблице 2, позволяет сделать
следующие выводы. На англоязычном наборе данных SciDocs наилучшие
средние показатели качества демонстрируют модели GIST-large-Embedding-v0,
paraphrase-multilingual-mpnet-base-v2 и SciNCL.

Вместе с тем, разработанные модели семейства SciRus, обученные с исполь-
зованием данных о цитированиях, показывают высокий и конкурентоспособный
уровень. Так, модель SciRus-small-cite со средним значением 90.02 достигает
качества, сопоставимого с результатами специализированной модели SciNCL,

https://huggingface.co/avsolatorio/GIST-large-Embedding-v0
https://huggingface.co/avsolatorio/GIST-large-Embedding-v0
https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral
https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-small-cite
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-small-cite
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-tiny3-cite
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-tiny3-cite
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-small
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-small
https://huggingface.co/mlsa-iai-msu-lab/sci-rus-tiny
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Model MAG MeSH Cite CoView CoCite CoRead Среднее
map nDCG map nDCG map nDCG map nDCG

SciRus-tiny 82.01 85.98 84.17 93.03 81.37 90.46 83.31 92.59 81.45 90.88 86.53
SciRus-small 81.88 88.28 83.66 92.90 81.29 90.53 84.07 92.96 82.13 91.15 86.89

SciRus-tiny-cite 82.01 89.48 90.30 95.83 84.19 91.76 88.85 95.18 85.21 92.64 89.55
SciRus-small-cite 83.13 90.25 89.80 95.50 84.64 91.99 89.91 95.65 86.15 93.20 90.02

sn-xlm-roberta-base-snli-mnli-anli-xnli 75.05 72.97 68.41 84.33 70.06 84.22 67.71 83.60 68.94 83.66 75.89
LaBSE-en-ru 78.87 73.46 70.77 85.89 74.61 87.03 74.85 88.07 73.24 86.47 79.33

multilingual-e5-small 82.14 88.06 81.23 91.71 81.26 90.37 83.38 92.73 80.78 90.60 86.23
multilingual-e5-base 82.11 88.86 82.79 92.43 81.37 90.38 84.67 93.29 82.05 91.27 86.92
multilingual-e5-large 83.40 89.97 83.35 92.74 81.76 90.50 85.74 93.86 82.48 91.46 87.53
Linq-Embed-Mistral 79.63 88.43 86.94 94.42 84.08 91.87 88.12 94.97 85.97 93.27 88.77

SFR-Embedding-Mistral 79.05 87.70 86.67 94.35 84.92 92.26 88.44 95.07 86.64 93.60 88.87
SPECTER 79.40 87.70 92.00 96.60 83.40 91.40 88.00 94.70 85.10 92.70 89.10

multilingual-e5-large-instruct 83.49 89.67 86.87 94.49 84.20 91.88 88.17 94.94 85.22 92.88 89.18
GritLM-7B 84.63 90.38 88.19 95.04 84.12 91.72 88.92 95.22 85.68 93.12 89.70
SciNCL 81.11 89.00 93.55 97.35 85.28 92.23 91.66 96.44 87.69 94.00 90.84

paraphrase-multilingual-mpnet-base-v2 82.61 89.52 92.97 97.04 85.67 92.44 92.37 96.79 87.18 93.74 91.03
GIST-large-Embedding-v0 82.81 90.79 93.30 97.27 85.72 92.50 91.95 96.63 87.61 93.99 91.26

Таблица 2 –– Сравнение моделей на бенчмарке SciDocs

уступая ей менее одного процентного пункта, но при этом имея почти вдвое
меньшее число параметров (61 млн против 110 млн). Более того, данная модель
превосходит не только SPECTER, но и значительно более крупные модели об-
щего назначения, такие как multilingual-e5-large-instruct и GritLM-7B. Наиболее
легковесный вариант, SciRus-tiny-cite (23 млн параметров), также демонстриру-
ет высокий результат.

Следует отметить, что распределение лидеров по отдельным задачам неод-
нородно. В задачах тематической классификации (MAG, MeSH) преимущество
остается за крупными англоязычными кодировщиками, такими как GritLM и
GIST-large-Embedding-v0. В задачах, основанных на анализе структуры цитиро-
ваний, наилучшие результаты показывают SciNCL (прямое цитирование, Cite)
и paraphrase-multilingual-mpnet-base-v2 (совместная цитируемость, Co-cite). На-
конец, в задачах, связанных с пользовательской активностью, лидируют GIST
(совместные просмотры, Co-view) и SciNCL (совместные прочтения, Co-read).

Таким образом, полученные результаты подтверждают, что разработанные
легковесные модели SciRus, обученные с использованием информации о цитиро-
ваниях, не только сокращают разрыв в качестве с передовыми и значительно более
ресурсоемкими англоязычными аналогами, но и превосходят многие из них. Это
утверждение справедливо в том числе и при сравнении со специализированными
научными моделями.



57

Следует особо подчеркнуть, что ведущие модели для научной области,
SPECTER и SciNCL, ограничены поддержкой исключительно английского язы-
ка. На их фоне модели SciRus не только демонстрируют сопоставимое, а в ряде
случаев и более высокое качество при меньшем числе параметров, но и являют-
ся полностью двуязычными, что является их принципиальным преимуществом.
Это подтверждает высокую эффективность выбранной стратегии обучения для
формирования компактных, но при этом высококачественных и кросс-языковых
семантических представлений научных текстов.

2.6 Оценка производительности

В дополнение к качественным характеристикам, одной из ключевых целей
при разработке моделей SciRus являлось обеспечение их высокой вычислитель-
ной эффективности и легковесности. Для экспериментального подтверждения
достижения этой цели были проведены замеры скорости векторизации текстов на
центральном процессоре (CPU). Для применения моделей и проведения тестов
использовался фреймворк Text Embeddings Inference [55]. Данное решение было
выбрано, поскольку оно предназначено для промышленного применения моделей
векторизации. Тестирование всех моделей проводилось в одинаковых условиях
на CPU Intel(R) Xeon(R) CPU @ 2.20GHz с использованием 2 ядер. В качестве
инструмента для нагрузочного тестирования использовалась библиотека k6 [56],
представляющая собой современное средство для оценки производительности
систем. В ходе эксперимента каждая сравниваемая модель обрабатывала запро-
сы в течение 60 секунд. В качестве входных данных для моделей использовались
случайно выбранные тексты, представляющие собой конкатенацию заголовка и
аннотации научной статьи из набора данных, сформированного на основе пуб-
ликаций научной электронной библиотеки eLibrary.ru. Полученные данные о
времени инференса на CPU для различных моделей, сведены в таблицу 3.

Результаты, приведенные в таблице 3, демонстрируют существенное пре-
восходство моделей семейства SciRus по скорости инференса на CPU. Модель
SciRus-tiny показывает наилучшее среднее время отклика. Модель SciRus-small,
имея большее число параметров, также демонстрирует высокую производитель-
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Таблица 3 –– Сравнение среднего времени инференса различных моделей на CPU.

Модель Количество пара-
метров (млн.)

Среднее время ин-
ференса (с)

Время инференса
p95 (с)

SciRus-tiny 23 0.23 0.49
SciRus-small 61 0.44 0.95
paraphrase-multilingual-
mpnet-base-v2

278 1.61 3.26

multilingual-e5-large-instruct 560 5.19 9.27
SciNCL 110 6.77 14.71
SPECTER 110 9.14 16.13

ность, оказываясь примерно в 3.7 раза быстрее ближайшей по этому показателю
модели paraphrase-multilingual-mpnet-base-v2.

2.7 Практическая апробация и внедрение модели SciRus-tiny

Одним из ключевых результатов диссертационной работы является не
только разработка и оценка моделей, но и подтверждение их практической зна-
чимости путем внедрения в реальные информационно-поисковые системы. Для
этой цели, в сотрудничестве с крупнейшей российской научной электронной
библиотекой eLibrary.ru, был разработан и внедрен новый функционал семан-
тического поиска, получивший название «нейропоиск». В качестве основы для
данного функционала была выбрана легковесная модель SciRus-tiny, поскольку
она продемонстрировала оптимальное сочетание высокого качества векторных
представлений и вычислительной эффективности, что является критически важ-
ным для применения в высоконагруженных промышленных системах.

Процесс работы системы «нейропоиск» можно формально разделить на
два основных этапа: предварительное индексирование и обработка поискового
запроса в режиме реального времени. На первом этапе была проведена вектори-
зация всего корпуса аннотаций, доступных на портале eLibrary.ru. Для каждой
аннотации xi из коллекцииDEL было получено её семантическое векторное пред-
ставление vi с помощью разработанной модели:

vi = f(xi,αtiny)
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где f — функция модели-кодировщика, а αtiny — параметры обученной модели
SciRus-tiny. Полученный массив векторов {vi} был помещен в специализирован-
ную векторную базу данных, обеспечивающую возможность быстрого поиска
ближайших соседей. На втором этапе, при обращении пользователя к системе, его
текстовый запрос xq (аннотация, фрагмент или полный текст документа) также
преобразуется в векторное представление vq = f(xq,αtiny). Затем, после приме-
нения стандартных категориальных фильтров (год публикации, тип документа и
др.), система производит поиск в векторной базе данных. Итоговый список пуб-
ликаций ранжируется по убыванию значения косинусной меры близости между
вектором запроса vq и векторами документов vi из отфильтрованной выборки. Ин-
терфейс данного режима представлен на Рисунке 2.6.

Рисунок 2.6 –– Интерфейс режима «нейропоиск» на портале eLibrary.ru, исполь-
зующего модель SciRus-tiny.

Внедрение семантического поиска на основе модели SciRus-tiny открывает
новые аналитические возможности для исследователей, существенно расширяя
функционал традиционного поиска по ключевым словам. Основное применение
данный инструмент находит при написании обзоров литературы, позволяя быстро
находить релевантные публикации, даже если они не содержат точных терми-
нов из запроса, но близки к нему по смыслу. Кроме того, «нейропоиск» является
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эффективным инструментом для решения ряда смежных задач: подбора экспер-
тов для рецензирования рукописей или оценки грантовых заявок путем поиска
авторов наиболее близких по тематике работ; выявления ведущих научных ор-
ганизаций и коллективов, работающих в заданной предметной области; а также
для предварительного анализа в рамках патентного поиска. Таким образом, дан-
ный инструмент трансформирует процесс взаимодействия с научными данными,
смещая акцент с лексического совпадения на семантическую близость, что спо-
собствует более глубокому и всестороннему анализу научной информации.

2.8 Основные выводы

В настоящей главе был детально описан процесс разработки семейства
легковесных двуязычных моделей SciRus, предназначенных для построения
семантических векторных представлений научных текстов. Была обоснована
выбранная архитектура на основе трансформера-кодировщика с уменьшенным
числом параметров для обеспечения вычислительной эффективности и представ-
лена двухэтапная методология обучения. На первом этапе, посредством задачи
маскированного языкового моделирования на объединенном корпусе русско- и
англоязычных статей, модели освоили общие языковые закономерности. На вто-
ром этапе, с помощью контрастивного дообучения, было сформировано единое
семантическое пространство. Для этого использовались два типа обучающих сиг-
налов: семантическая связь между заголовком и аннотацией, а также структурная
информация из графов цитирований.

Проведенная предварительная оценка на англоязычном бенчмарке SciDocs
продемонстрировала высокую конкурентоспособность разработанных моделей.
В частности, было показано, что легковесные двуязычные модели SciRus до-
стигают качества, сопоставимого и даже превосходящего качество значительно
более крупных и исключительно англоязычных специализированных аналогов.
Эксперименты по оценке производительности подтвердили их вычислительную
эффективность, что было одной из ключевых целей разработки. Практическая
значимость работы подтверждена успешным внедрением модели SciRus-tiny в
промышленную эксплуатацию в составе информационно-поисковой системы на-
учной электронной библиотеки eLIBRARY.RU. Таким образом, в настоящей
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главе были созданы и верифицированы эффективные инструменты для семан-
тического анализа научных текстов. Их всесторонняя и углубленная оценка
на задачах русскоязычной и кросс-языковой научной области будет предметом
рассмотрения в последующих главах, посвященных бенчмаркам RuSciBench и
RuSciFact.
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Глава 3. Мультизадачный бенчмарк для оценки моделей векторного
представления русско- и англоязычных научных текстов

Объективная оценка и направленное совершенствование моделей вектори-
зации текста невозможны без стандартизированных инструментов—бенчмарков.
Такие инструменты, включающие разнообразные наборы данных и задачи, поз-
воляют проводить воспроизводимые эксперименты и получать сопоставимые
результаты, что является фундаментом для развития технологий обработки есте-
ственного языка. В последние годы для русского языка был разработан ряд
общеязыковых бенчмарков, таких как RuSentEval [10] и encodechka [11]. Одна-
ко, несмотря на их ценность, существует значительный пробел в области оценки
моделей, работающих с научными текстами.

Научный дискурс имеет выраженную специфику: он характеризуется ис-
пользованием узкоспециализированной терминологии, высокой информацион-
ной плотностью, сложной синтаксической структурой и формальным стилем
изложения. Эти особенности приводят к тому, что качество работы модели, из-
меренное на общелитературных или новостных текстах, не является надежным
показателем ее эффективности в научном домене. В то время как для английского
языка существуют специализированные научные бенчмарки, например SciDocs
[41], для русского языка до недавнего времени подобные инструменты прак-
тически отсутствовали. Единственным известным примером является бенчмарк
RuMedBench [57], но его применимость ограничена исключительно медицинской
областью, что оставляет без внимания множество других научных дисциплин.

Этот дефицит инструментов для оценки моделей на русскоязычном на-
учном материале является серьезным препятствием для исследователей. Он
затрудняет не только сравнительный анализ существующих и вновь создавае-
мых моделей, но и обоснованный выбор наиболее подходящего инструмента для
решения конкретных прикладных задач, таких как семантический поиск, класси-
фикация научных статей.

Для устранения этого пробела был разработан RuSciBench — мультиза-
дачный и двуязычный бенчмарк, целенаправленно созданный для всесторонней
оценки качества векторных представлений научных текстов на русском языке. Он
охватывает широкий спектр задач, и предоставляет исследователям стандарти-
зированную и воспроизводимую методологию тестирования. В настоящей главе
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будет подробно рассмотрена архитектура бенчмарка RuSciBench, описан состав
входящих в него наборов данных и задач, представлена методология проведения
оценки и приведены результаты, полученные для набора базовых моделей.

3.1 Источники данных и подготовка корпуса

В качестве основного источника данных для создания бенчмарка
RuSciBench был выбран крупнейший российский ресурс научных публика-
ций – электронная библиотека eLibrary.ru1. Эта платформа содержит обширный
архив статей, диссертаций, монографий и материалов конференций, преиму-
щественно на русском языке, с аннотациями на английском. Выбор eLibrary.ru
обусловлен её представительностью для русскоязычной научной среды, а также
наличием структурированных метаданных, включая рубрикацию, информацию
о цитированиях и типах публикаций, что позволяет формировать разнообраз-
ные задачи оценки.

Для обеспечения двуязычности корпуса и возможности включения задач
кросс-языкового поиска были отобраны только те статьи, для которых доступны
аннотации как на русском, так и на английском языке. Это гарантирует сопоста-
вимость представлений текстов на разных языках и позволяет оценивать модели
в условиях, приближенных к реальным сценариям многоязычного анализа науч-
ных документов.

В процессе анализа данных были выявлены наиболее частотные проблемы
с качеством данных, для устранения которых был разработан многоэтапный про-
цесс очистки, включающий удаление всехHTML-тегов и специальных символов с
использованием регулярных выражений, дедупликацию, фильтрацию аннотаций
по минимальной длине для обеспечения достаточной информативности (более 50
символов), а также автоматическое определение языка текста. Определение язы-
ка проводилось с помощью библиотеки Lingua [58], выбранной из-за её высокой
точности на коротких текстах (средняя точность для русского языка составляет
97.57%, для английского - 98.7% на наборе данных, состоящем из предложений)
и превосходству над альтернативами (такими как langdetect[59] или fastText[60])
в сценариях с смешанными языками и шумными данными. Эта процедура была

1https://www.elibrary.ru
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необходима, поскольку исходные метки языка в данных eLibrary.ru не всегда со-
ответствовали реальности, что могло привести к искажениям в оценке моделей.

В результате применения процесса очистки было отфильтровано около
7,6% исходных записей. Финальный корпус содержит 182 264 статьи, каждая из
которых включает заголовок и аннотацию на русском и английском языках, а так-
же метаданные. Статистические характеристики корпуса приведены в таблице 5,
где указано распределение длин текстов.

Таблица 5 –– Распределение числа символов в заголовках и аннотациях
Язык Тип Среднее 25% 50% 75%
Русский Заголовок 89 65 85 108
Английский Заголовок 90 65 85 109
Русский Аннотация 769 340 564 1044
Английский Аннотация 807 347 586 1110

Подготовленный корпус обеспечивает высокое качество данных и позволя-
ет проводить объективную оценку моделей векторных представлений в научной
домене, учитывая специфику русскоязычных текстов.

3.2 Состав и методология оценки в бенчмарке RuSciBench

Бенчмарк RuSciBench, разработанный в соавторстве [15], представляет со-
бой комплексный инструментарий, предназначенный для разносторонней оценки
моделей семантического векторного представления научных текстов. Он включа-
ет задачи трех типов, отражающих ключевые сценарии использования векторных
представлений в научной среде: классификация документов, регрессионный ана-
лиз и информационный поиск. Каждая из 9 уникальных задач представлена в
двуязычном формате (на русском и английском языках), что в совокупности со-
ставляет 18 наборов данных. Такое разнообразие позволяет выявлять сильные и
слабые стороны моделей, оценивая их способность кодировать как тематическую
принадлежность, так и более тонкие семантические и структурные характеристи-
ки текста.

В рамках данной совместной работы вклад соискателя заключался в раз-
работке и реализации задач, относящихся к каждому из этих трех типов. Со-
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ответственно, в последующих разделах будет представлено детальное описание
именно этих составных частей бенчмарка.

Для проведения всесторонней и объективной оценки на задачах бенчмарка
RuSciBench был сформирован широкий и репрезентативный набор моделей-
конкурентов. Чтобы составить полную картину качества современных решений,
отбор моделей производился на основе их позиций в двух авторитетных ли-
дербордах, входящих в состав Massive Text Embedding Benchmark (MTEB) [52]:
основного англоязычного (MTEB leaderboard) и его русскоязычной версии.

Важным аспектом является поддержание бенчмарка в актуальном состо-
янии, поскольку ценность такого инструмента определяется не только перво-
начальной публикацией, но и его способностью отражать текущее состояние
области. В связи с этим, первоначальный список моделей, оцененных на мо-
мент публикации бенчмарка, был существенно расширен. В него были добавлены
новые передовые модели, появившиеся после публикации. Таким образом, ито-
говый набор для оценки включает в себя все модели, представленные в таблице
1 из предыдущей главы, а также ряд актуальных на текущий момент решений.
Перечень использованных для оценки моделей в дополнение к таблице 1, упоря-
доченный по дате их публикации, представлен в таблице 6.

Таблица 6 –– Список моделей, оцененных на бенчмарке RuSciBench

Модель
Количество
параметров

Дата
публикации

Ссылка

rubert-tiny2 29 млн 03-2022 cointegrated/rubert-tiny2
rubert-tiny 12 млн 03-2022 cointegrated/rubert-tiny
SFR-
Embedding-2_R

7.11 млрд 06-2024 Salesforce/SFR-Embedding-
2_R

gte-Qwen2-7B-
instruct

7 млрд 06-2024 Alibaba-NLP/gte-Qwen2-7B-
instruct

gte-Qwen2-
1.5B-instruct

1 млрд 06-2024 Alibaba-NLP/gte-Qwen2-
1.5B-instruct

USER-base 124 млн 06-2024 deepvk/USER-base
rubert-tiny-turbo 29 млн 06-2024 sergeyzh/rubert-tiny-turbo
USER-bge-m3 359 млн 07-2024 deepvk/USER-bge-m3
NV-Embed-v2 7 млрд 08-2024 nvidia/NV-Embed-v2

https://huggingface.co/cointegrated/rubert-tiny2
https://huggingface.co/cointegrated/rubert-tiny
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://huggingface.co/deepvk/USER-base
https://huggingface.co/sergeyzh/rubert-tiny-turbo
https://huggingface.co/deepvk/USER-bge-m3
https://huggingface.co/nvidia/NV-Embed-v2
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Продолжение таблицы 6

Модель
Количество
параметров

Дата
публикации

Ссылка

jina-
embeddings-v3

572 млн 09-2024 jinaai/jina-embeddings-v3

Giga-
Embeddings-
instruct

2 млрд 12-2024 ai-sage/Giga-Embeddings-
instruct

FRIDA 823 млн 12-2024 ai-forever/FRIDA
BERTA 128 млн 03-2025 sergeyzh/BERTA
rubert-mini-frida 32 млн 03-2025 sergeyzh/rubert-mini-frida

3.2.1 Задачи классификации документов

Задачи классификации направлены на оценку способности векторно-
го представления агрегировать и сохранять информацию о принадлежности
документа к определенному семантическому классу. Формально, пусть дана кол-
лекция документов D = {xi}

N
i=1 и конечное множество меток C = {c1, . . . , cK},

где K — число классов. Задача состоит в построении модели, способной сопо-
ставить каждому документу xi соответствующую метку yi ∈ C.

Исходные данные для задач классификации характеризуются значительным
дисбалансом классов. Чтобы обеспечить объективность оценки и избежать сме-
щения в сторону мажоритарных классов, была применена процедура балансиров-
ки. И обучающая, и тестовая выборки была применена процедура балансировки
путем сокращения выборки (undersampling) примеров из преобладающих клас-
сов. Итоговый корпус данных для каждой задачи был разделен на обучающую и
тестовую части в соотношении 90% к 10%.

В рамках бенчмарка используется подход «векторы как признаки»
(embeddings as features). Это означает, что параметры модели-кодировщика
f(x,α) заморожены, и для каждого документа xi вычисляется его векторное
представление vi = f(xi,α). Затем на этих векторах обучается модель класси-
фикации - логистическая регрессия g(v, θ).

https://huggingface.co/jinaai/jina-embeddings-v3
https://huggingface.co/ai-sage/Giga-Embeddings-instruct
https://huggingface.co/ai-sage/Giga-Embeddings-instruct
https://huggingface.co/ai-forever/FRIDA
https://huggingface.co/sergeyzh/BERTA
https://huggingface.co/sergeyzh/rubert-mini-frida
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Вероятность принадлежности документа xi к классу ck моделируется как:

pik = P (yi = ck|vi, θ) =
exp(vT

i θk)
∑K

j=1 exp(v
T
i θj)

,

где θk — вектор весов для класса ck, а θ = {θ1, . . . , θK} — полный набор пара-
метров модели g(v, θ)

Процесс обучения сводится к минимизации функции потерь только по па-
раметрам классификатора θ:

L(θ) = − 1

N

N
∑

i=1

K
∑

k=1

[yi = ck] log pik + λ||θ||22 −→ min
θ

, (3.1)

где pik — вероятность принадлежности документа xi к классу ck, предсказанная
моделью g(vi, θ), а второй член соответствует L2-регуляризации с коэффициен-
том λ. Для решения данной задачи оптимизации в экспериментах использовалась
реализация логистической регрессии из библиотеки scikit-learn [61] со следу-
ющими параметрами: решатель lbfgs, L2-регуляризация с параметром C=1.0
(обратным коэффициенту регуляризации λ), мультиномиальная стратегия для
многоклассовых задач и максимальное число итераций max_iter=100.

Поскольку тестовые выборки для задач классификации являются сба-
лансированными, в качестве основной меры качества используется точность
(Accuracy). Она вычисляется как доля правильно классифицированных объектов
и формально определяется следующим образом:

Accuracy =
1

Ntest

Ntest
∑

i=1

[yi = ŷi]

где Ntest — число примеров в тестовой выборке, yi — истинная метка, ŷi =

argmaxk pik — предсказанная метка.

Классификация по рубрикатору ГРНТИ . Государственный рубрикатор
научно-технической информации (ГРНТИ) является стандартной иерархической
системой классификации, используемой в России для систематизации потока
научной информации. Данная задача позволяет оценить, насколько хорошо век-
торное представление улавливает тематическую направленность научной работы
в соответствии с принятой в российской научной среде таксономией.

Рубрикатор ГРНТИ имеет три уровня иерархии. Однако анализ данных из
eLibrary.ru показал, что второй и третий уровни заполнены крайне редко (для
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15.37% и 0.11% статей соответственно), что делает их использование для обу-
чения и оценки моделей ненадежным. По этой причине в задаче используется
только первый, самый общий уровень классификатора. Всего на первом уровне
рубрикатора ГРНТИ представлено 90 классов, однако для формирования задачи
были отобраны только те, доля которых в корпусе превышает 0.5%. Это привело
к выбору 29 классов, исходное распределение которых представлено в таблице 7.

Классификация по типу публикации . Данная задача проверяет способность
модели различать не тематическое содержание, а структурно-жанровые особен-
ности научного документа. В качестве классов выступают типы публикаций,
принятые в eLibrary.ru, такие как «научная статья», «материалы конференции»,
«обзорная статья», «краткое сообщение» и др. Умение различать эти типы важ-
но для систем, которые могут по-разному обрабатывать, например, оригинальное
исследование и обзор литературы. Исходное распределение типов публикаций
в корпусе, представленное в таблице 8, является крайне несбалансированным.
Для обеспечения робастности оценки, для итоговой задачи были отобраны че-
тыре наиболее крупных и семантически различимых класса: «Научная статья»,
«Материалы конференции», «Обзорная статья» и «Краткое сообщение». Класс
«Разное», не несущий смысловой нагрузки, был исключен.

Итоговые размеры сбалансированных выборок для каждой задачи класси-
фикации представлены в таблице 9.

Сводные результаты задач классификации приведены в таблицах 10 (рус-
ский язык) и 11 (английский язык). Сопоставление двух подзадач — принадлеж-
ности к теме (ГРНТИ) и жанрово-структурной классификации (тип публикации)
— показывает различную чувствительность моделей к тематическим и стилевым
признакам текста. Для подавляющего большинства моделей точность на ГРН-
ТИ заметно выше, чем на типах публикаций; это указывает на то, что векторные
представления лучше кодируют тематическое содержание, чем стиль и структу-
ру документа. Доменно адаптированные модели на основе сигнала цитирования
демонстрируют устойчивое преимущество над своими версиями без дообучения:
прирост для SciRus-tiny-cite относительно SciRus-tiny составляет около 4.3 п.п.
на русском (50.94 против 46.63) и 3.35 п.п. на английском (49.64 против 46.29),
а для SciRus-small-cite относительно SciRus-small — 2.92 п.п. на русском (51.36
против 48.44) и 1.78 п.п. на английском (49.73 против 47.95). Наименьший разрыв
между русской и английской версиями наблюдается у моделей, ориентированных
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Таблица 7 –– Процентная доля тем на первом уровне в рубрикаторе ГРНТИ.
ГРНТИ Процент
Полиграфия. Репрография. Фотооборудование 13.84
Медицина и здравоохранение 10.61
Образование. Педагогика 8.46
Государство и право. Юридические науки 7.68
Механика 5.19
Лингвистика 4.31
Сельское и лесное хозяйство 3.89
Биология 2.85
Клиническая медицина 2.8
Информатика 2.25
Машиностроение 2.12
Психология 2.07
Физика 1.73
Литературоведение 1.68
Строительство. Архитектура 1.6
Математика 1.55
Химия 1.52
Политика и политические науки 1.47
Автоматизация. Вычислительная техника 1.37
Физическое воспитание и спорт 1.31
Геология 1.11
Высшее профессиональное образование. Педагогика высшей школы 0.75
Искусствоведение 0.72
Транспорт 0.7
Горное дело 0.69
Энергетика 0.68
Растениеводство 0.62
Пищевая промышленность 0.61
Культурология 0.6

на многоязычное применение, тогда как выраженная асимметрия качества (резкое
падение на русском при сопоставимых значениях на английском) свидетельствует
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Таблица 8 –– Процентная доля типов публикаций

Тип публикации Процент
Научная статья 93.98
Материалы конференции 2.15
Обзорная статья 1.98
Разное 0.67
Краткое сообщение 0.62
Рецензия 0.22
Персоналия 0.19

Таблица 9 –– Размеры выборок для задач классификации
Название задачи Язык Выборка Количество строк

ГРНТИ
русский

обучающая 28399
тестовая 2764

английский
обучающая 24338
тестовая 2517

Тип публикации
русский

обучающая 4150
тестовая 462

английский
обучающая 4150
тестовая 462

о англоцентричном характере предобучения и недостаточном охвате русскоязыч-
ной научной лексики и стиля.

Таблица 10 –– Результаты для задач классификации на русском языке
Модель ГРНТИ Тип публикации Среднее
gte-Qwen2-7B-instruct 0.6767 0.3823 0.5295
GritLM-7B 0.6521 0.4063 0.5292
Giga-Embeddings-instruct 0.6638 0.3831 0.5235
Linq-Embed-Mistral 0.6406 0.397 0.5188
SciRus-small-cite 0.6641 0.363 0.5136
FRIDA 0.6611 0.3639 0.5125
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Продолжение таблицы 10
Модель ГРНТИ Тип публикации Среднее
SFR-Embedding-Mistral 0.6625 0.3621 0.5123
SFR-Embedding-2_R 0.6611 0.3604 0.5107
SciRus-tiny-cite 0.655 0.3639 0.5094
gte-Qwen2-1.5B-instruct 0.6511 0.3565 0.5038
BERTA 0.6486 0.3539 0.5012
NV-Embed-v2 0.589 0.4017 0.4953
multilingual-e5-large-instruct 0.622 0.368 0.495
SciRus-small 0.6037 0.3652 0.4844
jina-embeddings-v3 0.598 0.3604 0.4792
rubert-mini-frida 0.6066 0.3411 0.4739
SciRus-tiny 0.5804 0.3522 0.4663
USER-bge-m3 0.5766 0.3489 0.4627
USER-base 0.5594 0.3567 0.458
multilingual-e5-large 0.5544 0.3615 0.458
multilingual-e5-base 0.5413 0.3645 0.4529
rubert-tiny-turbo 0.533 0.3615 0.4472
multilingual-e5-small 0.5318 0.3615 0.4466
LaBSE-en-ru 0.528 0.3634 0.4457
paraphrase-multilingual-mpnet-
base-v2

0.5549 0.3281 0.4415

rubert-tiny2 0.4636 0.3565 0.41
sn-xlm-roberta-base-snli-mnli-
anli-xnli

0.4441 0.3108 0.3775

rubert-tiny 0.36 0.3221 0.341
GIST-large-Embedding-v0 0.2256 0.2814 0.2535

Таблица 11 –– Результаты для задач классификации на английском языке
Модель ГРНТИ Тип публикации Среднее
GritLM-7B 0.6558 0.4297 0.5427
gte-Qwen2-7B-instruct 0.6888 0.3894 0.5391
NV-Embed-v2 0.6526 0.4119 0.5323
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Продолжение таблицы 11
Модель ГРНТИ Тип публикации Среднее
Linq-Embed-Mistral 0.6471 0.4004 0.5238
SFR-Embedding-Mistral 0.6535 0.381 0.5172
gte-Qwen2-1.5B-instruct 0.6535 0.3712 0.5124
SFR-Embedding-2_R 0.6386 0.3654 0.502
SciRus-small-cite 0.6334 0.3613 0.4973
SciRus-tiny-cite 0.64 0.3528 0.4964
GIST-large-Embedding-v0 0.6302 0.3485 0.4894
multilingual-e5-large-instruct 0.5999 0.3686 0.4842
SciRus-small 0.5946 0.3645 0.4795
FRIDA 0.6117 0.3461 0.4789
BERTA 0.5957 0.3489 0.4723
jina-embeddings-v3 0.5961 0.3444 0.4703
SciRus-tiny 0.5808 0.345 0.4629
Giga-Embeddings-instruct 0.546 0.3723 0.4592
USER-bge-m3 0.5596 0.3558 0.4577
multilingual-e5-base 0.5381 0.3604 0.4492
multilingual-e5-large 0.5428 0.3539 0.4483
rubert-mini-frida 0.5645 0.3297 0.4471
paraphrase-multilingual-mpnet-
base-v2

0.5493 0.329 0.4392

multilingual-e5-small 0.5296 0.3457 0.4377
LaBSE-en-ru 0.5124 0.355 0.4337
USER-base 0.4407 0.342 0.3913
rubert-tiny-turbo 0.4137 0.3671 0.3904
sn-xlm-roberta-base-snli-mnli-
anli-xnli

0.4461 0.3214 0.3838

rubert-tiny 0.4083 0.3398 0.374
rubert-tiny2 0.3886 0.3433 0.3659
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3.2.2 Задачи регрессии

Задачи регрессии в RuSciBench направлены на оценку способности вектор-
ных представлений кодировать информацию, позволяющую предсказывать ко-
личественные характеристики научных текстов. Оценка проводится аналогично
задачам классификации: модель векторизации f(x,α) используется в предобучен-
ном виде для генерации векторных представлений vi для каждого документа xi.
Затем на этих векторах обучается легковесная регрессионная модель g(v, θ). В
качестве модели g(vi, θ) используется линейная регрессия:

g(vi, θ) = v
T
i w + b,

где θ = {w, b}— обучаемые параметры: вектор весов w и свободный член b.
Процесс ее обучения заключается в минимизации среднеквадратичной

ошибки по параметрам θ:

L(θ) =
1

N

N
∑

i=1

(yi − g(vi, θ))
2 −→ min

θ
, (3.2)

где yi — истинное количественное значение для документа xi, а g(vi, θ) —
предсказанное моделью значение. В экспериментах используется реализация из
библиотеки ‘scikit-learn‘ (sklearn.linear_model.LinearRegression [61]) со
стандартными параметрами.

Исходный набор данных для каждой задачи регрессии разделяется на
обучающую и тестовую выборки в пропорции 90% к 10% соответственно. По-
скольку целевая переменная является количественной, для обеспечения схожести
ее распределений в обучающей и тестовой выборках была применена процедура
стратификации по бинам: диапазон значений целевой переменной был разбит на
дискретные интервалы, и разделение производилось со стратификацией по этим
созданным категориям.

Для оценки качества решения регрессионной задачи используется коэф-
фициент ранговой корреляции Кендалла (вариант τb). Его выбор обусловлен
несколькими причинами. Во-первых, в отличие от коэффициентов, измеряющих
линейную связь (например, корреляции Пирсона), он оценивает степень моно-
тонной взаимосвязи между рангами истинных и предсказанных значений. Это
делает его устойчивым к выбросам и нелинейным зависимостям, что крайне
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важно при работе с такими зашумленными данными, как число цитирований.
Во-вторых, важным свойством данной меры качества, обусловившим ее выбор,
является наличие универсальной шкалы (после отсечения отрицательных значе-
ний), где большее значение всегда соответствует лучшему качеству. Это свойство
аналогично мерам, используемым в задачах классификации (Accuracy) и ранжи-
рования (nDCG), что делает возможным корректное усреднение мер качества по
разнородным задачам для получения единой обобщенной оценки модели в рам-
ках бенчмарка.

Коэффициент вычисляется по формуле:

τb =
P −Q

√

(P +Q+ Tŷ)(P +Q+ Ty)
, (3.3)

где
P =

∑

i<j

[

(yi − yj)(ŷi − ŷj) > 0
]

— число согласованных пар, для которых

ранги истинных и предсказанных значений совпадают.
Q =

∑

i<j

[

(yi − yj)(ŷi − ŷj) < 0
]

— число несогласованных пар.

Ty =
∑

i<j

[

yi = yj, ŷi ̸= ŷj
]

— число пар с совпадающими истинными значе-

ниями, но разными предсказанными.
Tŷ =

∑

i<j

[

ŷi = ŷj, yi ̸= yj
]

— число пар с совпадающими предсказанными

значениями, но разными истинными.
Коэффициент Кендалла имеет масштаб от -1 до 1. Значения меньше нуля указыва-
ют на обратную корреляцию, что является маловероятным исходом для адекватно
обученной модели. В случае получения отрицательного значения, итоговая мера
качества принимается равной нулю, так как обратная корреляция свидетельствует
о неспособности модели извлечь полезный сигнал.

τfinal = max(0, τb)

Предсказание числа цитирований Задача заключается в прогнозировании
количества цитирований статьи другими научными работами. Это позволяет
оценить, насколько хорошо векторное представление документа отражает его
научную значимость и влиятельность. Следует отметить, что количество ци-
тирований зависит от множества внешних факторов: не только от содержания
аннотации и текста публикации, но и от авторитета автора, престижа журна-
ла, текущих тенденций в научной области и случайных факторов. Поэтому не
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следует ожидать, что модели, основанные исключительно на текстовых данных,
достигнут высоких значений меры качества в этой задаче. Тем не менее, экспери-
менты, представленные далее в работе, показывают, что качество предсказаний
значительно превосходит случайный уровень, что указывает на наличие в тексте
полезного сигнала. Практика включения подобной задачи в оценочные набо-
ры подтверждается наличием аналогичной задачи в авторитетном англоязычном
бенчмарке SciDocs [41].

Размеры обучающих и тестовых выборок для задачи регрессии представ-
лены в таблице 12.

Таблица 12 –– Размеры выборок для задачи предсказания числа цитирований
Язык Выборка Количество строк

русский
обучающая 164037
тестовая 18227

английский
обучающая 164037
тестовая 18227

Таблица 13 –– Результаты для задач регрессии
Модель Количество цитат (ру.) Количество цитат (англ.)
SciRus-small-cite 0.0838 0.0908
SciRus-small 0.0584 0.0756
rubert-mini-frida 0.0691 0.0625
multilingual-e5-small 0.0651 0.0605
rubert-tiny-turbo 0.0657 0.0535
multilingual-e5-large-
instruct

0.0596 0.054

SciRus-tiny-cite 0.0592 0.0499
BERTA 0.0544 0.0516
multilingual-e5-large 0.0513 0.0546
multilingual-e5-base 0.043 0.053
rubert-tiny 0.0421 0.0521
jina-embeddings-v3 0.052 0.0421
NV-Embed-v2 0.0438 0.048



76

Продолжение таблицы 13
Модель Количество цитат (ру.) Количество цитат (англ.)
Linq-Embed-Mistral 0.0364 0.0486
USER-base 0.0463 0.0384
rubert-tiny2 0.0379 0.045
SciRus-tiny 0.0312 0.0515
gte-Qwen2-7B-instruct 0.0405 0.0419
paraphrase-multilingual-
mpnet-base-v2

0.0412 0.0401

USER-bge-m3 0.0385 0.0419
sn-xlm-roberta-base-snli-
mnli-anli-xnli

0.0336 0.0444

LaBSE-en-ru 0.0349 0.039
SFR-Embedding-Mistral 0.0347 0.034
SFR-Embedding-2_R 0.0318 0.0339
GritLM-7B 0.0148 0.0463
gte-Qwen2-1.5B-instruct 0.0157 0.0331
FRIDA 0.0249 0.0226
GIST-large-Embedding-
v0

0.011 0.0255

Giga-Embeddings-
instruct

0.009 0.0

Итоги задач регрессии суммированы в таблице 13, где для каждой модели
представлены значения меры качества для русской и английской версий зада-
чи. Лидирующее качество показывает SciRus-small-cite, превосходя собственную
версию без сигнала цитирования: на русском прирост составляет 2.54 п.п. (0.0838
против 0.0584), на английском — 1.52 п.п. (0.0908 против 0.0756). Отмечается
языковая асимметрия: для ряда крупных универсальных моделей значения на ан-
глийском стабильно выше, чем на русском, тогда как доменно адаптированные
русско-английские модели удерживают паритет или превосходят на русском, что
указывает на важность доменной адаптации для улавливания слабого сигнала,
связанного с числом цитирований. Для SciRus-tiny добавление сигнала цитирова-
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ния дает значительный выигрыш на русском (рост с 0.0312 до 0.0592) при почти
нейтральном эффекте на английском (0.0515 против 0.0499).

3.2.3 Задачи информационного поиска

Задачи информационного поиска в рамках RuSciBench предназначены для
оценки способности моделей эффективно извлекать релевантные научные доку-
менты из большого корпуса на основе текстового запроса. Постановка задачи
следует стандартной парадигме информационного поиска и включает три ключе-
вых компонента: коллекцию запросовQ = {qj}

M
j=1, обширный корпус документов

D = {di}
N
i=1, среди которых ведется поиск, и эталонные данные о релевантно-

сти, которые определяют, какие документы из корпуса являются релевантными
для каждого запроса. Структура этих компонентов соответствует общепринятым
форматам в таких авторитетных бенчмарках, как BEIR [62] и MTEB [52].

Процедура оценки начинается с этапа векторизации, на котором с использо-
ванием оцениваемой модели f(x,α) генерируются векторные представления для
всех запросов из Q и всех документов из D. Для каждого вектора запроса vq вы-
числяется мера сходства с каждым вектором документа vd в корпусе. В качестве
основной меры используется косинусная близость:

similarity(vq,vd) =
vq · vd

||vq|| · ||vd||
=

∑n
k=1 vq,kvd,k

√

∑n
k=1 v

2
q,k

√

∑n
k=1 v

2
d,k

,

где n — размерность векторного пространства, а vq,k и vd,k — компоненты
векторов запроса и документа соответственно. Некоторые модели могут быть оп-
тимизированы для использования скалярного произведения (vq · vd), и в таких
случаях применяется мера, рекомендованная разработчиками модели. На основе
вычисленных мер сходства документы корпуса ранжируются для каждого запро-
са.

Для оценки качества ранжирования используется нормализованный дис-
контированный совокупный выигрыш (Normalized Discounted Cumulative Gain,
NDCG) на первых 10 позициях, обозначаемый как NDCG@10. NDCG@k опре-
деляется как отношение дисконтированного совокупного выигрыша (DCG) к его
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идеальному значению (IDCG):

NDCG@k =
DCG@k

IDCG@k
. (3.4)

Дисконтированный совокупный выигрыш DCG@k рассчитывается как сумма ре-
левантностей документов, взвешенных с учетом их позиций:

DCG@k =
k

∑

i=1

2reli − 1

log2(i+ 1)
,

где reli — это оценка релевантности документа на i-й позиции. В задаче поиска
цитирований релевантность бинарная: reli = 1, если документ на позиции i явля-
ется релевантным (процитированным), и reli = 0 в противном случае. С учетом
этого, формула DCG@k упрощается до:

DCG@k =
k

∑

i=1

[reli = 1]

log2(i+ 1)
.

Идеальный дисконтированный совокупный выигрыш IDCG@k представляет со-
бой максимально возможное значение DCG@k, которое достигается при идеаль-
ном ранжировании, когда все релевантные документы находятся в начале списка.
Он рассчитывается как:

IDCG@k =

min(k,|Rq|)
∑

i=1

1

log2(i+ 1)
,

где |Rq| — общее число релевантных документов для запроса q.

Предсказание прямых цитирований В рамках RuSciBench представлена за-
дача предсказания прямых цитирований. В терминах информационного поиска,
для заданной статьи-запроса, представленной конкатенацией ее заголовка и ан-
нотации, необходимо найти среди всех статей корпуса те, которые она цитирует.
Релевантность в данном случае является бинарной: документ считается реле-
вантным, если он процитирован статьей-запросом, и нерелевантным в противном
случае.

Статистика по наборам данных для задачи поиска цитирований представ-
лена в таблице 14.
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Таблица 14 –– Размеры выборок для задачи поиска цитирований
Язык Тип данных Количество

русский
Запросы 3000
Документы 90000
Релевантные пары 15000

английский
Запросы 3000
Документы 90000
Релевантные пары 15000

Таблица 15 –– Результаты для задач поиска
Модель Цитирование (ру.) Цитирование (англ.)
SFR-Embedding-2_R 0.4065 0.4119
GritLM-7B 0.3987 0.4119
SFR-Embedding-Mistral 0.3846 0.3782
Linq-Embed-Mistral 0.3764 0.3814
gte-Qwen2-1.5B-instruct 0.372 0.3713
gte-Qwen2-7B-instruct 0.379 0.3554
jina-embeddings-v3 0.3694 0.3582
SciRus-small-cite 0.3598 0.3351
SciRus-tiny-cite 0.3508 0.3353
Giga-Embeddings-instruct 0.3693 0.3147
multilingual-e5-large-instruct 0.3467 0.3366
multilingual-e5-large 0.3459 0.3348
USER-bge-m3 0.3517 0.3228
BERTA 0.3465 0.3165
SciRus-small 0.3328 0.328
NV-Embed-v2 0.307 0.3433
SciRus-tiny 0.3231 0.3205
rubert-mini-frida 0.3201 0.2818
multilingual-e5-base 0.3039 0.2977
FRIDA 0.3016 0.2752
multilingual-e5-small 0.2892 0.2584
GIST-large-Embedding-v0 0.103 0.3894
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Продолжение таблицы 15
Модель Цитирование (ру.) Цитирование (англ.)
USER-base 0.2861 0.1589
paraphrase-multilingual-mpnet-
base-v2

0.186 0.2507

rubert-tiny-turbo 0.2301 0.1318
LaBSE-en-ru 0.1948 0.166
sn-xlm-roberta-base-snli-mnli-
anli-xnli

0.1183 0.1358

rubert-tiny2 0.1218 0.1033
rubert-tiny 0.0601 0.0732

Сопоставление результатов задач поиска представлено в таблице 15. До-
менно адаптированные модели с использованием данных о цитировании демон-
стрируют устойчивый выигрыш относительно версий без такого дообучения: для
SciRus-small прирост на русском составляет около 2.7 п.п. (33.28 → 35.98), для
SciRus-tiny — порядка 2.8 п.п. (32.31 → 35.08), при этом на английском выиг-
рыш менее выражен. Наблюдается также выраженная языковая асимметрия для
отдельных моделей общего назначения: некоторые из них показывают высокие
значения меры качества на английском при заметном падении на русском, тогда
как модели с русской доменной адаптацией сохраняют более стабильный про-
филь качества. Разница между верхней группой крупных универсальных моделей
и компактными доменно адаптированнымимоделями сокращается именно на рус-
ской версии задачи.

3.2.4 Задачи кросс-языкового поиска

Задачи кросс-языкового поиска предназначены для оценки способности
моделей сопоставлять семантически эквивалентные тексты на разных языках.
Данный тип задач, известный как поиск параллельных текстов (Bitext Mining),
является стандартным подходом для оценки качества двуязычных векторных
представлений. Его цель — оценить, насколько хорошо модель способна форми-



81

ровать общее семантическое пространство, в котором векторы текстов-переводов
близки друг к другу.

В рамках RuSciBench представлена задача поиска перевода аннотации с
русского языка на английский. Для ее решения используются два параллельных
корпуса: исходный корпус Dru, содержащий 10 000 аннотаций на русском язы-
ке, и целевой корпус Den, содержащий их точные переводы на английский язык.
Для каждой аннотации-запроса qj ∈ Dru существует ровно один верный пере-
вод dj,true ∈ Den.

Процедура оценки включает следующие шаги. Сначала с помощью оцени-
ваемой модели f(x,α) генерируются векторные представления для всех текстов
в исходном корпусе {vq,j} и в целевом корпусе {vd,i}. Затем для каждого вектора
запроса vq,j в целевом корпусе находится вектор документа с наибольшим зна-
чением косинусной близости. Предсказанным переводом d̂j считается документ,
соответствующий этому вектору (ближайший сосед):

d̂j = arg max
di∈Den

similarity(vq,j,vd,i).

Качество модели оценивается путем сравнения предсказанного перевода d̂j с эта-
лонным dj,true для каждого запроса из Dru.

В качестве меры качества используется точность (Accuracy), которая вы-
числяется как доля правильно идентифицированных переводов. Формально, она
определяется следующим образом:

Accuracy =
1

|Dru|

∑

qj∈Dru

[d̂j = dj,true]

где |Dru| — общее число запросов, d̂j — предсказанный перевод для запроса
qj , dj,true — истинный перевод. Эта задача является важным тестом способности
модели улавливать семантическую эквивалентность текстов вне зависимости от
языка, что критично для построения эффективных многоязычных систем в на-
учной сфере.

Таблица 16 –– Результаты для задачи поиска перевода
Модель русский-английский
SFR-Embedding-2_R 0.9992
GritLM-7B 0.9989
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Продолжение таблицы 16
Модель русский-английский
SFR-Embedding-Mistral 0.9987
gte-Qwen2-1.5B-instruct 0.9984
Linq-Embed-Mistral 0.9981
jina-embeddings-v3 0.9979
multilingual-e5-large-instruct 0.9979
multilingual-e5-large 0.9971
USER-bge-m3 0.9964
BERTA 0.9951
Giga-Embeddings-instruct 0.9947
gte-Qwen2-7B-instruct 0.9932
multilingual-e5-base 0.9914
NV-Embed-v2 0.9907
LaBSE-en-ru 0.9887
FRIDA 0.9873
SciRus-small 0.9866
SciRus-tiny 0.9852
rubert-mini-frida 0.9805
multilingual-e5-small 0.9748
SciRus-small-cite 0.96
SciRus-tiny-cite 0.953
paraphrase-multilingual-mpnet-base-v2 0.9321
rubert-tiny-turbo 0.8644
USER-base 0.8509
sn-xlm-roberta-base-snli-mnli-anli-xnli 0.7041
rubert-tiny2 0.675
rubert-tiny 0.436
GIST-large-Embedding-v0 0.0456

Результаты для задачи кросс-языкового поиска перевода приведены в таб-
лице 16. Верхняя группа моделей демонстрирует насыщение меры качества
вплотную к 100%, что указывает на низкую сложность идентификации точ-
ных переводов аннотаций при использовании современных кодировщиков и на
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то, что задача ближе к проверке корректности выравнивания базового семанти-
ческого пространства, чем к тонкой дифференциации качества представлений.
Различия между моделями общего назначения и доменно адаптированными ко-
дировщиками здесь существенно меньше, чем в задачах поиска и регрессии, что
дополнительно подтверждает близость задачи насыщению качества на рассмат-
риваемом корпусе.

3.3 Оценка моделей на RuSciBench

Итоговая таблица 17 представляет собой сводный рейтинг моделей, оце-
ненных на бенчмарке RuSciBench. Для агрегирования результатов используется
метод Борда, заимствованный из теории социального выбора и хорошо зарекомен-
довавший себя как робастный способ сравнения систем обработки естественного
языка [63]. Суть метода заключается в том, что каждая задача бенчмарка рассмат-
ривается как «голосующий», который ранжирует все модели в соответствии с их
производительностью. Модель получает баллы в зависимости от занятого места:
чем выше ранг, тем больше баллов. Итоговый балл модели Bi формируется как
сумма баллов, полученных по всем задачам. Формально, он вычисляется следу-
ющим образом:

Bi =
m
∑

j=1

(n− rij), (3.5)

гдеm— общее число задач, n— количество сравниваемых моделей, а rij — ранг
i-й модели в j-й задаче (где ранг 1 является наилучшим). Итоговый рейтинг мо-
делей строится на основе убывания их суммарных баллов Bi. Важно отметить,
что итоговый ранг по методу Борда, а также представленные в таблице средние
значения мер качества, вычислены по всему набору из 18 задач бенчмарка.
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Таблица 17 –– Сводный рейтинг моделей на RuSciBench
Модель Ранг по методу

Борда
Среднее по рус-
скоязычным за-
дачам

Среднее по ан-
глоязычным за-
дачам

GritLM-7B 1 0.3873 0.4176
Linq-Embed-Mistral 2 0.3795 0.4001
SFR-Embedding-Mistral 3 0.3811 0.3946
SFR-Embedding-2_R 4 0.3878 0.3983
gte-Qwen2-7B-instruct 5 0.3851 0.4
SciRus-small-cite 6 0.3938 0.3903
multilingual-e5-large-
instruct

7 0.3693 0.3702

SciRus-tiny-cite 8 0.3861 0.3837
NV-Embed-v2 9 0.3554 0.3978
gte-Qwen2-1.5B-instruct 10 0.3655 0.3868
BERTA 11 0.3771 0.3641
SciRus-small 12 0.3583 0.3699
jina-embeddings-v3 13 0.3621 0.3609
Giga-Embeddings-
instruct

14 0.3608 0.3144

multilingual-e5-large 15 0.3497 0.3515
rubert-mini-frida 16 0.3675 0.347
SciRus-tiny 17 0.3542 0.3667
FRIDA 18 0.3566 0.339
multilingual-e5-base 19 0.3422 0.3475
USER-bge-m3 20 0.3502 0.3468
multilingual-e5-small 21 0.3437 0.3377
rubert-tiny-turbo 22 0.3333 0.2885
LaBSE-en-ru 23 0.3083 0.306
USER-base 24 0.3404 0.2858
rubert-tiny2 25 0.2881 0.2703
GIST-large-Embedding-
v0

26 0.194 0.3762
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Продолжение таблицы 17
Модель Ранг по методу

Борда
Среднее по рус-
скоязычным за-
дачам

Среднее по ан-
глоязычным за-
дачам

rubert-tiny 27 0.245 0.2745
paraphrase-multilingual-
mpnet-base-v2

28 0.3045 0.321

sn-xlm-roberta-base-snli-
mnli-anli-xnli

29 0.2543 0.2698

После представления общего рейтинга моделей, целесообразно проанали-
зировать факторы, влияющие на их производительность. Одним из ключевых
факторов является размер модели, или количество ее параметров. На рисунке 3.1
визуализирована зависимость среднего результата модели на всех задачах бенч-
марка RuSciBench от ее размера.

Рисунок 3.1 –– Зависимость среднего результата на всех задачах от размера моде-
ли.

На рисунке 3.1 представлена зависимость усредненного по всем задачам
RuSciBench показателя качества модели от ее размера, измеряемого количе-



86

ством параметров. Ось абсцисс, представляющая размер модели, использует
логарифмическуюшкалу для охвата широкого диапазона значений— от десятков
миллионов до нескольких миллиардов параметров. Ось ординат отражает среднее
значение меры качества по всем русскоязычным и англоязычным задачам бенч-
марка.

Анализ графика позволяет выявить общую тенденцию к увеличению про-
изводительности моделей с ростом их размера. Большинство моделей общего
назначения (обозначены синими точками) демонстрируют положительную кор-
реляцию между количеством параметров и средним результатом. Эта тенденция
аппроксимирована пунктирной линией регрессии, которая показывает монотон-
ный рост среднего качества с увеличением масштаба модели. Наиболее крупные
модели общего назначения, такие как GritLM-7B (7.24 млрд параметров), рас-
полагаются в верхней правой части графика, достигая одних из самых высоких
средних показателей качества среди всех оцененных моделей.

Однако график также выявляет существенные отклонения от этой общей
тенденции. Наблюдается значительная дисперсия в производительности моделей
со схожим числом параметров, особенно в диапазоне от 108 до 109 параметров.
Это указывает на влияние других факторов, помимо размера, таких как архитек-
турные особенности, качество и специфика обучающих данных, а также методы
оптимизации и дообучения. Таким образом, результаты подтверждают общую
гипотезу о положительном влиянии масштабирования моделей, однако подчер-
кивают важность доменной адаптации и других характеристик для достижения
оптимального качества в задачах обработки русскоязычных научных текстов.

3.3.1 Оценка степени языковой специализации моделей

Бенчмарк RuSciBench обладает ключевой особенностью: его структура яв-
ляется полностью парной. Это означает, что каждая задача и каждый текстовый
пример в наборе данных на русском языке имеют точный семантический ана-
лог на английском. В таких условиях многоязычная модель, обладающая высокой
степенью языковой универсальности, теоретически должна демонстрировать эк-
вивалентное качество на обеих языковых версиях задач. Любое систематическое
отклонение от этого паритета свидетельствует о наличии языковой специализа-
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ции— лучшей адаптации модели к особенностям одного из языков, что приводит
к асимметрии в производительности.

Для количественной оценки этого явления в таблице 18 представлен деталь-
ный анализ, позволяющий сопоставить производительность каждой модели на
русском и английском языках. Вместо единого общего ранга, здесь вычисляются
два независимых рейтинга: «Ранг Борда (рус.)» и «Ранг Борда (англ.)». Каждый из
них строится на основе результатов модели исключительно на русскоязычном или
англоязычном подмножестве задач соответственно. Такое разделение позволяет
выявить, как меняется относительная позиция модели в рейтинге в зависимости
от языка.

Ключевым показателем является столбец «Прирост на рус. по отношению
к англ. (%)», который напрямую измеряет разницу в средней производительно-
сти. Он вычисляется как процентное изменение средней меры качества модели
по всем задачам при переходе от английского языка к русскому. Этот показатель
напрямую количественно определяет степень и направление языковой специали-
зации модели.

Интерпретация значений в этом столбце является следующей:
– Положительное значение указывает на то, что модель демонстрирует
более высокую эффективность на задачах на русском языке, что свиде-
тельствует о ее специализации на русскоязычном научном контенте.

– Отрицательное значение говорит о специализации модели на англий-
ском языке, поскольку на нем достигаются более высокие результаты.

– Значение, близкое к нулю, характеризует модель с низкой степенью
языковой специализации, то есть с хорошим балансом и высокой кросс-
языковой стабильностью.

– Абсолютная величина значения отражает степень этой специализации.
Большие по модулю значения указывают на значительный перекос в про-
изводительности, что может быть критичным при выборе модели для
конкретных задач.

В таблице модели упорядочены в соответствии с их общим рейтингом, представ-
ленным в таблице 10, что позволяет сопоставить их общую производительность
со степенью языковой специализации.
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Таблица 18 –– Оценка степени языковой специализации моделей
Модель Количество

параметров
Ранг
Борда
(англ.)

Ранг
Борда
(рус.)

Прирост на рус.
по отношению к
англ. (%)

GritLM-7B 7.24 млрд 1 3 -7.26
Linq-Embed-Mistral 7.0 млрд 2 7 -5.15
SFR-Embedding-Mistral 7.0 млрд 5 5 -3.42
SFR-Embedding-2_R 7.11 млрд 6 6 -2.65
gte-Qwen2-7B-instruct 7.0 млрд 4 4 -3.74
SciRus-small-cite 61 млн 7 1 0.89
multilingual-e5-large-
instruct

560 млн 11 8 -0.23

SciRus-tiny-cite 23 млн 10 2 0.61
NV-Embed-v2 7.0 млрд 3 14 -10.65
gte-Qwen2-1.5B-instruct 1.0 млрд 9 17 -5.5
BERTA 128 млн 12 9 3.58
SciRus-small 61 млн 11 13 -3.12
jina-embeddings-v3 572 млн 16 13 0.32
rubert-mini-frida 32 млн 15 12 5.92
SciRus-tiny 23 млн 13 19 -3.42
multilingual-e5-large 560 млн 14 18 -0.51
Giga-Embeddings-
instruct

2.0 млрд 22 10 14.73

multilingual-e5-base 278 млн 16 19 -1.54
FRIDA 823 млн 21 15 5.19
USER-bge-m3 359 млн 20 22 1.0
multilingual-e5-small 118 млн 18 19 1.76
rubert-tiny-turbo 29 млн 18 16 15.56
LaBSE-en-ru 129 млн 24 24 0.76
USER-base 124 млн 28 21 19.1
rubert-tiny2 29 млн 26 23 6.55
rubert-tiny 12 млн 23 26 -10.75
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Продолжение таблицы 18
Модель Количество

параметров
Ранг
Борда
(англ.)

Ранг
Борда
(рус.)

Прирост на рус.
по отношению к
англ. (%)

paraphrase-multilingual-
mpnet-base-v2

278 млн 27 25 -5.15

GIST-large-Embedding-
v0

335 млн 13 29 -48.43

sn-xlm-roberta-base-snli-
mnli-anli-xnli

278 млн 29 28 -5.77

Анализ результатов выявляет глубокую неоднородность в языковой специа-
лизации моделей и ставит под сомнение идею об их универсальной многоязычной
применимости. Наблюдается четкая тенденция: модели, занимающие верхние
строчки в общем рейтинге (например, GritLM-7B,NV-Embed-v2), достигают этого
положения преимущественно за счет своей исключительной производительности
на английском языке, при этом демонстрируя существенную деградацию каче-
ства на русскоязычных задачах (падение до -7.26% и -10.65% соответственно).
Это указывает на то, что их предобучение было в значительной степени англо-
центричным, и их способность к обобщению на русскую научную лексику и
синтаксис остается неполной. В противовес этому, специально разработанные
модели семейства SciRus, несмотря на на порядки меньшее число параметров,
занимают первые два места в рейтинге именно для русского языка, демонстри-
руя при этом почти идеальный языковой баланс (прирост +0.89% и +0.61%). Этот
факт подчеркивает критическое преимущество целенаправленной доменной и
языковой адаптации над чистым масштабированием модели. Данные также выяв-
ляют крайние случаи специализации, такие как модель GIST-large-Embedding-v0,
чья производительность на русском языке катастрофически падает (-48.43%), что
делает ее практически моноязычной для данного домена, и, с другой стороны,
модели, подобные multilingual-e5-large-instruct, которые показывают образцо-
вый паритет (-0.23%). Следовательно, выбор оптимальной модели для работы с
русскоязычными научными текстами не может основываться только на общем
рейтинге производительности; необходимо учитывать степень ее языковой спе-
циализации, поскольку компактная, но правильно адаптированная модель может
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оказаться значительно эффективнее более крупной, но лингвистически несбалан-
сированной.

3.4 Интеграция в международный бенчмарк MTEB

Для обеспечения воспроизводимости и сопоставимости результатов, по-
лученных на бенчмарке RuSciBench, с результатами других исследователей,
была проведена его интеграция в ведущий международный бенчмарк Massive
Multilingual Text Embedding Benchmark (MTEB) [17]. MTEB представляет со-
бой общепринятый стандарт и открытую программную библиотеку для оценки
качества моделей векторного представления текстов. Он агрегирует большое ко-
личество разнородных задач на множестве языков, что позволяет унифицировать
процедуру тестирования и проводить комплексное сравнение моделей. Вклю-
чение RuSciBench в MTEB позволяет не только валидировать разработанный
инструментарий силами международного научного сообщества, но и включить
русскоязычный научный домен в глобальный контекст оценки нейросетевых мо-
делей.

Интеграция RuSciBench в экосистему MTEB предоставляет ряд ключе-
вых преимуществ. Во-первых, она существенно упрощает процесс оценки для
сторонних исследователей, которым достаточно использовать стандартный про-
граммный интерфейс MTEB, чтобы протестировать свои модели на всём наборе
задач RuSciBench. Во-вторых, это позволяет проводить прямое и объективное
сопоставление как специализированных моделей, ориентированных на научный
домен, так и мощных многоязычных моделей общего назначения, на единой и
стандартизированной платформе. Бенчмарк RuSciBench, включающий 18 задач,
составляет существенную долю от общего числа задач в MMTEB, насчитывавше-
го на момент интеграции 73 задачи, что подчёркивает значимость данного вклада
в развитие инструментов оценки.

Практическая реализация оценки с использованием данной интеграции
демонстрирует её простоту и доступность. Процесс запуска полного цикла тести-
рования произвольной модели, доступной на платформе Hugging Face, на всех
задачах бенчмарка RuSciBench может быть выполнен с помощью следующего
короткого программного кода 3.1.
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Листинг 3.1 Пример использования бенчмарка RuSciBench в MTEB

import mteb

model_name = "mlsa-iai-msu-lab/sci-rus-tiny"

benchmark = mteb.get_benchmark("RuSciBench")

model = mteb.get_model(model_name)

evaluation = mteb.MTEB(tasks=benchmark.tasks)

results = evaluation.run(

model,

output_folder=f"results/{model_name.replace('/', '__')}"

)

Данный фрагмент кода автоматически загружает указанную модель, полу-
чает полный набор задач из бенчмарка RuSciBench, выполняет оценку по всем
предопределенным мерам качества и сохраняет результаты в структурированном
виде. Такая автоматизация и стандартизация являются необходимым условием
для построения воспроизводимой и прозрачной системы оценки качества моде-
лей, что, в свою очередь, способствует ускорению научного прогресса в данной
области.

3.5 Основные выводы

Разработка и апробация бенчмарка RuSciBench позволили создать стан-
дартизированный инструмент для оценки качества моделей векторного пред-
ставления текстов в специфическом домене русскоязычной научной литературы.
Отвечая на потребность в специализированных ресурсах для неанглоязычных
научных данных, RuSciBench предоставляет набор из 18 задач, охватывающих
классификацию, регрессию и информационный поиск, а также кросс-языковые
возможности. Структура бенчмарка, основанная на реальных метаданных науч-
ных публикаций из eLibrary.ru, и его двуязычный характер (русский и английский)
обеспечивают реалистичность оценочных сценариев и возможность глубокого
анализа многоязычных моделей.



92

Проведенная оценка широкого спектра моделей, от компактных до
многомиллиардных архитектур, выявила картину их производительности. Под-
тверждена общая тенденция к улучшению качества с ростом размера модели,
однако результаты также подчеркнули исключительную важность доменной
специализации: модели, дообученные на научном корпусе (sci-rus-*), проде-
монстрировали выдающуюся эффективность даже при малом числе параметров,
конкурируя с крупнейшими моделями общего назначения.

Итоговый рейтинг, построенный с использованием робастного метода агре-
гации рангов Борда, представляет собой ценный ориентир для выбора оптималь-
ной модели в зависимости от конкретных требований к производительности и
ресурсам. Таким образом, RuSciBench не только заполняет существующий пробел
в инструментах оценки для русскоязычного научного домена, но и предоставляет
детализированные данные для дальнейших исследований в области разработки и
адаптации моделей векторизации текстов, стимулируя создание более эффектив-
ных и универсальных решений для работы с научной информацией.
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Глава 4. Бенчмарк для оценки качества верификации научных фактов на
русском языке

В предыдущих главах проводилась оценка моделей на задачах, использу-
ющих существующие метаданные научных публикаций, такие как рубрикация
или число цитирований. Однако такие данные отражают лишь общие характе-
ристики документа и не позволяют оценить способность моделей к глубокому
семантическому анализу и логическому выводу на уровне его содержания. Стре-
мительный рост объема научной информации, особенно в периоды глобальных
вызовов, таких как пандемии, остро ставит задачу автоматизированной оцен-
ки истинности конкретных научных утверждений [51]. Эта задача, известная
как верификация научных фактов, требует от моделей не просто тематической
классификации, а способности находить релевантные доказательства в тексте
и рассуждать о сложных взаимосвязях, что представляет собой значительный вы-
зов для современных систем обработки естественного языка.

Для русскоязычного научного домена инструменты, позволяющие прово-
дить такую детальную оценку, до сих пор отсутствовали. Данная глава посвящена
восполнению этого пробела путем разработки нового инструментария для оцен-
ки качества моделей — бенчмарка RuSciFact. В главе детально описывается
методология его полуавтоматического формирования, основанная на генерации
утверждений с помощью больших языковых моделей и их последующей экс-
пертной валидации. На основе созданного бенчмарка проводится комплексное
экспериментальное исследование, в рамках которого оценивается и сравнивается
производительность современных моделей векторизации, включая разработан-
ные в диссертации модели семейства SciRus.

4.1 Постановка задачи верификации научных фактов

Задача верификации научных фактов состоит в поиске релевантного для
утверждения документа и определения на его основе, подтверждается ли или
опровергается данное утверждение информацией, содержащейся в документе.
Формально, дано:
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– Утверждение c— атомарный, проверяемый научный факт.
– Корпус документовD = {ei}

ND

i=1—множество аннотаций научных статей.
– Множество меток L = {ПОДТВЕРЖДАЕТ, ОПРОВЕРГАЕТ}, отражающих от-
ношение между утверждением и аннотацией.

Итоговая цель состоит в построении модели M , которая для заданного утвер-
ждения c и корпуса D находит релевантный документ e∗ ∈ D и определяет его
отношение l∗ ∈ L к утверждению:

(e∗, l∗) = M(c,D).

Для решения данной задачи с помощью моделей семантического вектор-
ного представления текста, ее целесообразно декомпозировать на два последова-
тельных этапа: информационный поиск и классификация.

Этап 1: Информационный поиск релевантной аннотации. На первом этапе
для заданного утверждения c, выступающего в роли запроса, необходимо най-
ти наиболее релевантную аннотацию e∗ в корпусе D. Эта задача решается путем
отображения всех текстов в единое векторное пространство с помощью модели-
кодировщика f(x,α) и последующего ранжирования аннотаций по мере близости
к вектору утверждения.

e∗ = argmax
ei∈D

s(f(c,α), f(ei,α)), (4.1)

где f(x,α)—параметризованная модель семантического векторного представле-
ния текста с параметрами α, а s(·, ·)— функция близости векторов, как правило,
косинусная.

Качество решения этой задачи оценивается с помощью меры Mean
Reciprocal Rank (MRR@k), которая вычисляется как среднее обратных рангов
первой релевантной аннотации:

MRR@k =
1

|Q|

|Q|
∑

i=1

1

ranki
,

гдеQ—множество запросов (утверждений), а ranki —ранг первого правильного
документа для i-го запроса (если ранг> k, то слагаемое считается равным нулю).

Этап 2: Классификация пары «утверждение–аннотация». На втором этапе
для найденной или предоставленной пары (c, e) решается задача бинарной клас-
сификации. Для этой подзадачи в работе рассматриваются два подхода. Основной
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подход, основанный на векторных моделях, предполагает обучение легковесно-
го классификатора g(·, θ) поверх замороженных представлений f(c,α) и f(e,α).
Процесс обучения сводится к минимизации функции потерь, в качестве которой
используется бинарная перекрестная энтропия:

L(θ) = − 1

N

N
∑

i=1

[yi log pi + (1− yi) log(1− pi)] → min
θ

, (4.2)

где N — число пар в обучающей выборке, yi ∈ {0, 1} — истинная метка для i-й
пары (1 для ПОДТВЕРЖДАЕТ и 0 для ОПРОВЕРГАЕТ), а pi —вероятность принадлеж-
ности к классу ПОДТВЕРЖДАЕТ, предсказанная моделью g.

Анализ существующих наборов данных показывает отсутствие инструмен-
тов для оценки моделей в рамках такой постановки для русскоязычных научных
текстов. Это определяет научную задачу данной главы — разработку и апроба-
цию такого инструментария.

4.2 Методология формирования набора данных RuSciFact

В качестве исходного материала для формирования набора данных был ис-
пользован корпус аннотаций из бенчмарка RuSciBench [15], детально описанного
в Главе 3. Данный выбор обусловлен тем, что RuSciBench содержит обширный
и репрезентативный срез русскоязычных научных публикаций из различных дис-
циплин, а сами тексты уже прошли этап предварительной очистки. Это позволило
сфокусироваться непосредственно на основной задаче — генерации и вери-
фикации научных фактов, опираясь на подготовленную и верифицированную
текстовую базу.

Ключевым методологическим решением стало использование большой
языковой модели для автоматической генерации научных утверждений. Эффек-
тивность такого подхода для ускорения и масштабирования процесса создания
наборов данных продемонстрирована в ряде недавних исследований [64; 65].
Выбор конкретной генеративной модели, однако, является нетривиальной зада-
чей, требующей объективных критериев оценки. Обоснование выбора модели
было сделано на основе результатов комплексного русскоязычного бенчмарка
MERA (Multitask Evaluation of Russian-language Abilities) [66]. Данный бенчмарк
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представляет собой многозадачный оценочный набор, предназначенный для все-
стороннего анализа способностей языковых моделей в обработке русского языка.
Он включает в себя широкий спектр задач, таких как ответы на вопросы, клас-
сификация текстов, семантическая близость, суммаризация и логический вывод.
Задача генерации научного утверждения на основе аннотации требует от модели
комплекса способностей: глубокого понимания текста, способности к логиче-
скому умозаключению и навыков синтеза нового текста. Поскольку бенчмарк
MERA оценивает именно эти фундаментальные способности, высокий совокуп-
ный результат модели на нем является надежным индикатором ее пригодности
для решения данной, более узкой и специфической, задачи.

Таблица 19 –– Результаты оценки языковых моделей на бенчмарке MERA (аг-
регированная мера качества). Данные приведены по состоянию на 2 ноября
2024 года [66].

Модель Открытые веса Результат
Human Benchmark - 0.852
GPT-4o нет 0.642
Meta-Llama-3.1-405B-Instruct да 0.590
GigaChat Max нет 0.588
Mistral-Large-Instruct-2407 да 0.574
GPT-4o-mini нет 0.570
Qwen2-72B-Instruct да 0.570
Meta-Llama-3.1-70B-Instruct да 0.554

Результаты, представленные в Таблице 19, показывают, что на момент
проведения работы модель Meta-Llama-3.1-405B-Instruct1 демонстрировала
наилучшие результаты среди всех моделей с открытыми весами, что является
ключевым фактором для обеспечения воспроизводимости данного исследования.
Исходя из этого, именно данная модель была выбрана в качестве основного ин-
струмента для генерации утверждений в рамках конвейера RuSciFact.

Для применения модели использовался вычислительный кластер, состоя-
щий из восьми графических ускорителей NVIDIA A100 с объемом видеопамяти
80 ГБ каждый. Развертывание и эффективное исполнение запросов к модели
обеспечивалось с помощью специализированной библиотеки vLLM [67]. Полная

1https://huggingface.co/meta-llama/Llama-3.1-405B-FP8
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версия модели, использующая 16-битное представление весов, требует для раз-
мещения в памяти около 810 ГБ (405 × 109 параметров × 2 байта/параметр),
что превышает суммарный объем памяти доступного кластера (640 ГБ). В связи
с этим, для проведения экспериментов была задействована версия модели, кванто-
ванная до 8 бит. Такое преобразование позволяет сократить требования к памяти
вдвое, до приблизительно 405 ГБ, делая возможным ее размещение на использу-
емом оборудовании без существенной потери качества генерации[68].

Для того чтобы генерируемые данные были релевантны поставленной зада-
че и позволяли проводить содержательную оценку моделей, был сформулирован
ряд требований, которые легли в основу инструкций (промптов) для LLM. Каждая
итоговая пара «утверждение–аннотация» (c, e) должна была удовлетворять сле-
дующему своду правил.

Сначала определялись требования к аннотации-источнику e.Информатив-
ность являлась необходимым условием, то есть текст должен был содержать
достаточный объем фактической информации для формулирования проверяемо-
го научного вывода. Аннотации, описывающие исключительно структуру работы
или общие рассуждения без конкретных результатов, отбраковывались. Приме-
ром такой неинформативной аннотации, не содержащей конкретных выводов,
может служить следующий текст:

Статья посвящена традиционному объекту социально-экономической
географии – районному центру. В статье описан новый подход
к оценке центральных функций районных центров Ивановской обла-
сти. Основу данной методики составила информация о некоторых
государственных учреждениях, размещенных в райцентре. В резуль-
тате анализа системы иерархии государственных учреждений были
выделены несколько типов райцентров.

Далее, для информативных аннотаций, были сформулированы жесткие тре-
бования к генерируемому утверждению c:

– Логическая выводимость: Утверждение должно являться строгим ло-
гическим следствием текста аннотации. Это центральное требование,
гарантирующее, что отношение между c и e является именно логическим,
а не ассоциативным или тематическим.

– Обоснованность: Утверждение не должно содержать никакой инфор-
мации, отсутствующей в аннотации. Каждая его часть должна быть
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полностью основана на исходном тексте, исключая любые внешние зна-
ния, интерпретации или допущения.

– Неявность: Утверждение не должно быть результатом прямого копи-
рования фрагмента текста. Оно должно представлять собой результат
умозаключения, обобщения или переформулирования, т.е. следовать
из аннотации, но не быть в ней эксплицитно указанным в той же форме.
Это требование направлено на то, чтобы модели-оценщики демонстри-
ровали способность к пониманию, а не просто к поиску подстроки.

– Конкретность и атомарность: Утверждение должно быть сформу-
лировано точно, выражать одну законченную мысль и не содержать
неопределенных выражений (например, «с определенными свойствами»,
«в некоторых состояниях») или модальных конструкций.

– Автономность:Утверждение должно быть полностью самодостаточным
и не содержать прямых ссылок на исходный текст (например, «в данной
работе», «предложенный метод», «авторы показали»). Это обеспечивает
возможность его оценки в отрыве от контекста аннотации.

Соблюдение этого свода правил при генерации и последующей фильтрации
данных позволило создать набор пар (c, e), проверка которых требует от моделей
не простого лексического сопоставления, а развитой способности к семантическо-
му анализу и логическому выводу. На основе этих формализованных требований
был разработан многоэтапный конвейер генерации и фильтрации данных.

4.3 Конвейер генерации и фильтрации данных

Для формирования набора данных RuSciFact был разработан и приме-
нен многоэтапный конвейер, который схематично представлен на Рисунке 4.1.
Процесс был разделен на две независимые ветви: создание подтверждающих
(«положительных») и противоречащих («отрицательных») утверждений. Такой
подход позволил тонко настроить инструкции и критерии фильтрации для каж-
дого типа данных, учитывая их специфику.
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Рисунок 4.1 –– Обзор конвейера генерации и валидации данных для RuSciFact.

4.3.1 Генерация подтверждающих утверждений

Создание качественных подтверждающих утверждений потребовало после-
довательного применения нескольких этапов фильтрации, каждый из которых
был направлен на повышение валидности и сложности итогового набора данных.

Этап 1: Отбор информативных аннотаций и первичная генерация. Началь-
ный этап был посвящен решению фундаментальной проблемы: значительная
доля аннотаций в научных корпусах, включая RuSciBench, носит описатель-
ный, а не фактологический характер. Они могут описывать цели, методы или
структуру исследования, не содержа при этом конкретных, проверяемых выво-
дов. Использование таких текстов в качестве источника привело бы к генерации
либо нерелевантных, либо ложных утверждений.

Для решения этой проблемы была применена стратегия предварительной
фильтрации с помощью самой языковой модели. Был разработан специальный
промпт, который инструктировал модель Meta-Llama-3.1-405B-Instruct вы-
полнить одну из двух задач: либо сгенерировать научное утверждение, строго
следующее из текста, либо, если это невозможно, вернуть специальный маркер
«Аннотация не содержит факт». Такая постановка задачи позволила эффективно
отсеять неинформативные аннотации на ранней стадии, что существенно повыси-
ло качество и релевантностью первичного набора сгенерированных утверждений.
По оценке модели, лишь около 42% исходных аннотаций содержали достаточный
объем информации для формулирования факта. Полный текст инструкции при-
ведён в Приложении А.1.
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Этап 2: Фильтрация по лексическому сходству. Следующей задачей было
исключение утверждений, которые, хотя и являлись формально корректными,
по сути представляли собой прямое или незначительно измененное цитирова-
ние фрагментов исходной аннотации. Наличие таких примеров в наборе данных
сместило бы фокус оценки с семантического понимания на поверхностное сопо-
ставление строк.

Чтобы гарантировать, что задача требует именно логического вывода,
а не поиска подстроки, был внедрен этап фильтрации на основе лексического
сходства. Для каждой пары «утверждение–аннотация» вычислялась мера сход-
ства с использованием функции partial_ratio, которая оценивает степень
совпадения наилучшим образом выровненных подстрок. Утверждения, для ко-
торых значение этой меры превышало эмпирически подобранный порог 0.7,
отбраковывались. Этот шаг позволил целенаправленно удалить «тривиальные»
примеры, оставив те, что требуют от модели анализа связей между несколькими
частями текста или умозаключения.

Этап 3: Фильтрация по уровню сложности. Предварительный ручной анализ
показал, что даже после предыдущих этапов фильтрации некоторые сгенериро-
ванные утверждения могли быть общеизвестными фактами, для верификации
которых не требуется научный контекст (например, «Россия является самой
большой страной по территории»). Присутствие таких утверждений снизило бы
сложность бенчмарка и его способность различать модели с разным уровнем «на-
учных знаний».

Для повышения сложности и специфичности набора данных был добав-
лен этап классификации утверждений по уровню их нетривиальности. Языковая
модель, выступая в роли эксперта, классифицировала каждое утверждение как
«простое», «среднее» или «сложное» на основе промпта с четкими определе-
ниями и примерами для каждой категории. Для дальнейшей работы отбирались
только утверждения средней и высокой сложности. Этот этап обеспечил фоку-
сировку бенчмарка на проверке фактов, требующих анализа именно научного
контекста, представленного в аннотации. Текст инструкции для этой классифи-
кации приведён в Приложении А.2.
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4.3.2 Генерация противоречащих утверждений

Генерация осмысленных и нетривиальных противоречий является значи-
тельно более сложной задачей, чем подтверждение, поскольку требует не только
понимания исходного текста, но и способности формулировать альтернативные,
но при этом релевантные гипотезы.

В качестве исходного материала для этого этапа использовались исклю-
чительно те аннотации, для которых на предыдущем шаге удалось успешно
сгенерировать подтверждающее утверждение. Такой подход был выбран из сооб-
ражений эффективности и качества. Аннотации, из которых удалось извлечь
подтверждаемый вывод, по определению являются информационно насы-
щенными и содержат четко сформулированную основную мысль. Это делает
их хорошими кандидатами для формулирования осмысленного семантиче-
ского противоречия, поскольку существует конкретный тезис, который можно
опровергнуть. Использование этого отфильтрованного подмножества позволило
сфокусировать генерацию на заведомо качественных источниках и повысить
вероятность получения валидных отрицательных примеров.

Этап 1: Формулирование семантического противоречия. Простейший спо-
соб создать противоречие — добавить частицу «не» или иное прямое отрицание.
Однако такие примеры проверяют лишь способность модели распознавать син-
таксическое отрицание, а не глубокое семантическое противоречие.

Чтобы создать действительно сложные «отрицательные» примеры, был
разработан промпт, который явно запрещал модели использовать прямое отри-
цание. Вместо этого модель должна была сгенерировать утверждение, которое
по смыслу является антонимичным исходному выводу аннотации. Например, ес-
ли в аннотации утверждается, что «метод А эффективнее метода Б», то требуемое
противоречие не должно было звучать как «метод А не эффективнее метода Б».
Этот подход позволил создать примеры, для распознавания которых требуется
семантический, а не синтаксический анализ. Полная формулировка инструкции
приведена в Приложении А.3.

Этап 2: Фильтрация с использованием модели-оценщика. Свободная гене-
рация противоречий часто приводит к появлению утверждений, которые либо
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уходят от темы исходной аннотации, либо не создают прямого логического кон-
фликта. Ручная фильтрация таких артефактов была бы крайне трудоемкой.

Для автоматизированного контроля качества была применена парадиг-
ма «LLM как судья» (LLM-as-a-judge)[69]. Для каждой сгенерированной пары
«утверждение–аннотация» модель просили оценить по 10-балльной шкале два
параметра: релевантность утверждения теме аннотации и степень поддержки
утверждения текстом (где 0 — полное противоречие, а 10 — полная поддержка).
Формулировка задания для модели приведена в Приложении А.4.

Рисунок 4.2 –– Распределение оценок релевантности (слева) и поддержки (справа),
полученных от языковой модели при генерации противоречащих утверждений.

Распределения полученных оценок представлены на Рисунке 4.2. Как вид-
но из гистограмм, модель часто генерировала либо высокорелевантные (оценка
8–10), либо совершенно нерелевантные (оценка 0) утверждения. Распределение
оценок поддержки более равномерно, однако также имеет выраженные пики
на крайних значениях, что указывает на способность модели генерировать как
явные противоречия (оценка 0), так и ошибочные подтверждения.

Для дальнейшей обработки отбирались только те пары, где релевантность
была не ниже 7, а степень поддержки — не выше 4. Эти пороговые значе-
ния были подобраны эмпирически на основе экспертной разметки контрольной
подвыборки сгенерированных данных, что позволило откалибровать критерии
автоматического отбора для максимального соответствия человеческой оценке.
Использование количественных оценок позволило формализовать и автомати-
зировать процесс отбраковки некачественных примеров, обеспечив высокую
валидность отрицательной части набора данных.
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4.4 Экспертная валидация и характеристики набора данных

Несмотря на многоэтапную автоматизированную фильтрацию, сгенериро-
ванные данные могут содержать артефакты, смысловые неточности или неод-
нозначности, которые языковая модель не способна выявить. Для обеспечения
высокой объективности и валидности итогового бенчмарка был проведен заклю-
чительный этап ручной верификации всего сгенерированного корпуса.

К работе были привлечены два асессора-терминолога, обладающие опытом
анализа научных текстов в различных предметных областях. Задача асессоров
заключалась в независимой разметке каждой пары «утверждение–аннотация».
Каждой паре (c, e) необходимо было присвоить одну из трех меток: подтвержда-
ет, опровергает или проблемный. Данная метка предназначалась для случаев,
когда утверждение было сформулировано неоднозначно, содержало несуществу-
ющие термины, его истинность нельзя было установить на основе аннотации или
оно имело другие дефекты, делающие его непригодным для оценки.

Ключевым принципом формирования итогового набора данных стало тре-
бование полного консенсуса между экспертами. Пары, получившие различные
оценки от двух асессоров, из итоговой выборки исключались. Такой строгий под-
ход позволил включить в бенчмарк только наиболее однозначные и качественные
примеры, что критически важно для надежности оценки моделей. Примеры по-
ложительных и отрицательных утверждений доступны в Приложении А.5.

В результате описанной процедуры был сформирован итоговый набор дан-
ных RuSciFact, включающий 1128 пар «утверждение–аннотация». Детальный
анализ его характеристик позволяет оценить его сложность и репрезентативность.

В Таблице 20 представлена статистика по длине текстов. Данные показыва-
ют существенную разницу в длине между короткими, атомарными утверждения-
ми (медианная длина 14 слов) и развернутыми аннотациями (медиана 144 слова).
Это отражает специфику задачи, где для проверки лаконичного факта требуется
проанализировать значительно больший по объему контекст.

Распределение по классам, приведенное в Таблице 21, демонстрирует пре-
обладание подтверждающих примеров над опровергающими. Наблюдается дис-
баланс классов (примерно 2:1).

Тематический охват бенчмарка, представленный в Таблице 22, был опреде-
лен на основе рубрикатора ГРНТИ исходных публикаций. Бенчмарк охватывает
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Таблица 20 –– Статистические характеристики длин текстов в наборе данных
RuSciFact

Тип текста Среднее 25% квантиль 50% квантиль 75% квантиль
Утверждение 15 12 14 18
Аннотация 165 86 144 234

Таблица 21 –– Распределение классов в итоговом наборе данных RuSciFact
Метка Количество
подтверждает 758
опровергает 369
Всего 1128

широкий спектр научных дисциплин, что позволяет оценивать модели на раз-
нообразном материале. Отмечается значительное преобладание тематики «Ме-
дицина и здравоохранение» (30.85%), что отражает общие тенденции в объеме
публикаций в исходном корпусе RuSciBench. Тем не менее, такие области, как
физика, биология, химия и инженерные науки, также представлены в достаточ-
ном объеме, обеспечивая тематическое разнообразие набора данных.

4.5 Экспериментальная оценка и анализ результатов

Созданный набор данных RuSciFact был использован для проведения
комплексной оценки широкого спектра современных моделей семантическо-
го представления текстов. Эксперименты проводились в соответствии с двумя
подзадачами, определенными в Разделе 4.1: информационный поиск и клас-
сификация. Цель исследования состояла в том, чтобы определить, насколько
эффективно существующие векторные представления справляются с задачами
тонкого семантического анализа научных текстов, требующими логического вы-
вода, а также позиционировать разработанные в рамках диссертации модели
семейства SciRus в контексте современных решений.
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Таблица 22 –– Тематическое распределение данных RuSciFact по областям науки
(рубрикатор ГРНТИ, 1-й уровень, представлены категории с долей >1%)

Научная область (ГРНТИ) Доля (%)
Медицина и здравоохранение 30.85
Физика 7.09
Биология 6.83
Химия 6.12
Сельское и лесное хозяйство 5.85
Машиностроение 3.99
Механика 3.46
Геология 3.28
Полиграфия. Репрография. Фотокинотехника 3.10
Математика 2.75
Народное образование. Педагогика 2.04
Строительство. Архитектура 1.95
Горное дело 1.68
Автоматика. Вычислительная техника 1.68
Языкознание 1.51
Психология 1.51
Государство и право. Юридические науки 1.33
Электроника. Радиотехника 1.24
Электротехника 1.15
Информатика 1.15
Металлургия 1.06
Остальные 8.43

4.5.1 Оценка в задаче информационного поиска

Первая подзадача состояла в поиске единственно верной аннотации-
источника для каждого утверждения из набора данных. В качестве основной
меры качества использовалась метрика MRR@1 (Mean Reciprocal Rank at 1), ко-
торая показывает долю случаев, когда релевантная аннотация была ранжирована
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на первое место. Высокое значение этой меры свидетельствует о способности мо-
дели точно сопоставлять семантически близкие, но лексически различные тексты.

Результаты эксперимента представлены в Таблице 23. Анализ полученных
данных позволяет сделать ряд ключевых выводов.

– Доминирование крупномасштабных моделей. Верхние строчки рей-
тинга с большим отрывом занимают современные модели с миллиардами
параметров, такие как GritLM-7B, SFR-Embedding-2_R и multilingual-
e5-large-instruct. Их результаты, достигающие 0.93–0.95 по мере
MRR@1, показывают, что для задачи точного поиска релевантного до-
кумента по сложному запросу-утверждению масштаб модели является
определяющим фактором. Эти модели, обученные на огромных и раз-
нообразных текстовых корпусах, формируют векторное пространство,
достаточно богатое для улавливания тонких семантических связей.

– Эффективность компактных моделей. Примечательно, что некоторые
значительно более компактные модели, в частности BERTA (128 млн) и
rubert-mini-frida (32 млн), демонстрируют весьма высокие показате-
ли (0.92 и 0.88 соответственно), опережая многие более крупные аналоги.
Это говорит о том, что качественная архитектура и целевое обучение мо-
гут частично компенсировать меньший размер модели.

– Позиционирование моделей SciRus. Разработанные модели семейства
SciRus показывают конкурентоспособные результаты в своем классе.
С показателямиMRR@1 в диапазоне 0.70–0.75, они существенно превос-
ходят ряд общецелевых многоязычных моделей сопоставимого или даже
большего размера (rubert-tiny-turbo, LaBSE-en-ru). Однако они за-
метно уступают лидирующим крупным моделям. Это указывает на то,
что специализация на научных текстах дает преимущество над базовыми
моделями, но для задачи точного поиска его оказывается недостаточ-
но, чтобы конкурировать с моделями, превосходящими их по масштабу
на порядки.

– Непригодность устаревших подходов. Ряд моделей, особенно более
старых архитектур, показывают результаты, близкие к случайным (на-
пример, rubert-tiny с результатом 0.09). Это подчеркивает сложность
задачи и высокие требования к структуре векторного пространства, кото-
рым удовлетворяют далеко не все подходы.
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Таблица 23 –– Результаты оценки моделей-кодировщиков в задаче информацион-
ного поиска на RuSciFact
Название модели Количество параметров MRR@1
GritLM-7B 7.24 млрд 0.95
SFR-Embedding-2_R 7.11 млрд 0.94
gte-Qwen2-1.5B-instruct 1 млрд 0.93
Linq-Embed-Mistral 7 млрд 0.93
SFR-Embedding-Mistral 7 млрд 0.93
multilingual-e5-large-instruct 560 млн 0.93
FRIDA 823 млн 0.92
BERTA 128 млн 0.92
jina-embeddings-v3 572 млн 0.92
gte-Qwen2-7B-instruct 7 млрд 0.88
multilingual-e5-base 278 млн 0.88
rubert-mini-frida 32 млн 0.88
multilingual-e5-large 560 млн 0.86
USER-bge-m3 359 млн 0.85
multilingual-e5-small 118 млн 0.80
SciRus-small-cite 61 млн 0.75
USER-base 124 млн 0.73
SciRus-tiny-cite 23 млн 0.70
SciRus-small 61 млн 0.70
SciRus-tiny 23 млн 0.71
rubert-tiny-turbo 29 млн 0.66
LaBSE-en-ru 129 млн 0.53
paraphrase-multilingual-mpnet-
base-v2

278 млн 0.49

GIST-large-Embedding-v0 335 млн 0.24
rubert-tiny2 29 млн 0.22
sn-xlm-roberta-base-snli-mnli-
anli-xnli

278 млн 0.17

rubert-tiny 12 млн 0.09
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4.5.2 Оценка в задаче классификации

Вторая подзадача заключалась в классификации предоставленной пары
«утверждение–аннотация» на два класса: подтверждает или опровергает. В от-
личие от поиска, эта задача требует не только установления тематической близо-
сти, но и проведения логического вывода для определения характера взаимосвязи.
В качестве меры качества использовалась F1-мера.

Результаты, представленные в Таблице 24, показывают иную картину.
– Более высокая сложность задачи. Лидирующие позиции вновь зани-
мают крупные модели, однако максимальное значение F1-меры (0.87 у
gte-Qwen2-7B-instruct) заметно ниже, чем значения MRR@1 в задаче
поиска. Это прямо указывает на то, что задача классификации, требующая
логического вывода, является существенно более сложной для совре-
менных векторных представлений, чем задача поиска по семантической
близости.

– Уплотнение результатов. Ключевой особенностью является сильное
уплотнение результатов в середине таблицы. Широкий спектр моделей
с разным числом параметров и архитектурой (от 23 млн до 823 млн) по-
казывает очень близкие F1-оценки в диапазоне 0.67–0.70. В эту группу
попадают и модели семейства SciRus, и многоязычные модели, и общие
модели для русского языка. Это явление можно интерпретировать как на-
личие «плато производительности»: многие современные кодировщики
способны уловить общую тематическую связь между утверждением и ан-
нотацией, но им не хватает разрешающей способности для надежного
различения подтверждения и тонкого семантического противоречия.

– Отсутствие явной корреляции с размером. В отличие от задачи по-
иска, в задаче классификации преимущество крупных моделей не столь
выражено. Например, GritLM-7B (7.24 млрд параметров), лидер задачи
поиска, здесь показывает результат 0.73, уступая гораздо более компакт-
ным моделям. Это подтверждает, что для задач, требующих логического
вывода, простое увеличение масштаба модели не всегда приводит к про-
порциональному росту качества.

В целом, проведенный анализ показывает, что созданный бенчмарк
RuSciFact является эффективным инструментом для дифференцированной
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оценки языковых моделей. Он выявляет, что если задача поиска релевантно-
го научного контекста для современных крупных моделей близка к решению,
то задача логической верификации этого контекста остается открытым вызовом,
указывая на необходимость разработки новых архитектур и методов обучения,
нацеленных на улучшение способностей моделей к логическому выводу.

Таблица 24 –– Результаты оценки моделей-эмбеддеров в задаче классификации на
RuSciFact
Название модели Количество параметров F1
gte-Qwen2-7B-instruct 7 млрд 0.87
SFR-Embedding-2_R 7.11 млрд 0.82
Linq-Embed-Mistral 7 млрд 0.81
SFR-Embedding-Mistral 7 млрд 0.80
multilingual-e5-large-instruct 560 млн 0.77
gte-Qwen2-1.5B-instruct 1 млрд 0.74
GritLM-7B 7.24 млрд 0.73
USER-base 124 млн 0.70
BERTA 128 млн 0.68
USER-bge-m3 359 млн 0.68
rubert-tiny-turbo 29 млн 0.68
SciRus-small-cite 61 млн 0.68
SciRus-small 61 млн 0.68
multilingual-e5-large 560 млн 0.68
LaBSE-en-ru 129 млн 0.68
FRIDA 823 млн 0.67
rubert-tiny 12 млн 0.67
paraphrase-multilingual-mpnet-
base-v2

278 млн 0.67

jina-embeddings-v3 572 млн 0.67
rubert-tiny2 29 млн 0.67
SciRus-tiny-cite 23 млн 0.67
multilingual-e5-base 278 млн 0.67
rubert-mini-frida 32 млн 0.67
SciRus-tiny 23 млн 0.67
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Продолжение таблицы 24
Название модели Количество параметров F1
multilingual-e5-small 118 млн 0.66
sn-xlm-roberta-base-snli-mnli-
anli-xnli

278 млн 0.63

GIST-large-Embedding-v0 335 млн 0.58

4.5.3 Анализ сложности задачи в разрезе научных дисциплин

Для выявления научных дисциплин, представляющих наибольшую слож-
ность для задачи классификации, был проведен анализ ошибок в разрезе пред-
метных областей. Основная задача состояла в построении меры сложности, не
зависящей от выбора конкретной архитектуры модели, что позволило бы ранжи-
ровать области по их внутренним, текстовым свойствам. Такой подход позволяет
отделить специфику данных от артефактов, вносимых отдельнымимоделями. Для
этого была предложена процедура, основанная на усреднении показателей каче-
ства по множеству разнородных моделей-кодировщиков и оценке статистической
устойчивости полученных результатов с помощью метода бутстреп [70].

Методология анализа опирается на предсказания, полученные от M = 27

независимых моделей-кодировщиков, описанных в 4.5. Пусть G — множество
предметных областей, соответствующих рубрикам ГРНТИ первого уровня, а Dg

— подмножество пар «утверждение–аннотация», относящихся к области g ∈ G,
и Ng = |Dg|— его объем. Для каждой модели m ∈ {1, . . . ,M} и каждой области
g ∈ G доля ошибочных классификаций em,g определяется как:

em,g =
1

Ng

∑

i∈Dg

[ŷm,i ̸= yi]

где yi ∈ {0, 1} — истинная метка для i-й пары, ŷm,i — метка, предсказанная мо-
делью m.

В качестве итоговой меры сложности предметной области g вводится ин-
декс H(g), вычисляемый как доля ошибок, усредненная по всему множеству
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рассматриваемых моделей:

H(g) =
1

M

M
∑

m=1

em,g. (4.3)

Величину H(g) можно интерпретировать как ожидаемую долю ошибок, усред-
ненную по всем моделям, что позволяет использовать ее для ранжирования
дисциплин по их объективной сложности.

Статистическая значимость полученных оценок H(g) и их устойчивость
к выбору конкретного подмножества моделей оценивались путем построения
95%-го доверительного интервала с использованием непараметрического бут-
стрепа [70] по исходному множеству моделей. Процедура состояла в многократ-
ном (B = 200) формировании бутстреп-выборок изM моделей с возвращением и
пересчете индекса сложности H(b)(g) для каждой b-й репликации. Границы дове-
рительного интервала определялись как 2.5-й и 97.5-й процентили эмпирического
распределения значений {H(b)(g)}Bb=1. В анализ включались только те области,
для которых число примеров Ng ⩾ 35, что обеспечивало достаточную статисти-
ческую мощность для оценки.

Детальные результаты ранжирования предметных областей по индексу
сложности H(g) сведены в Таблицу 25. Визуализация этих данных представлена
на Рисунке 4.3, где для каждой дисциплины показан 95%-й доверительный интер-
вал. Анализ полученных данных позволяет выделить несколько групп дисциплин.

Таблица 25 –– Ранжирование научных областей по индексу сложности H(g)

Научная область (ГРНТИ) Индекс
сложности
H(g)

95% доверительный ин-
тервал

Информатика 0.4923 [0.4708; 0.5138]
Языкознание 0.4329 [0.3953; 0.4683]
Сельское и лесное хозяйство 0.3000 [0.2818; 0.3182]
Машиностроение 0.2978 [0.2773; 0.3147]
Геология 0.2832 [0.2454; 0.3297]
Энергетика 0.2800 [0.2440; 0.3160]
Математика 0.2748 [0.2439; 0.3085]
Электротехника 0.2523 [0.2154; 0.2985]
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Продолжение таблицы 25
Научная область (ГРНТИ) Индекс

сложности
H(g)

95% доверительный ин-
тервал

Автоматика. Вычислительная техни-
ка

0.2505 [0.2020; 0.3012]

Биология 0.2270 [0.2104; 0.2473]
Медицина и здравоохранение 0.2136 [0.2024; 0.2261]
Металлургия 0.2133 [0.1900; 0.2468]
Электроника. Радиотехника 0.1857 [0.1543; 0.2143]
Физика 0.1850 [0.1630; 0.2125]
Горное дело 0.1747 [0.1453; 0.2106]
Химия 0.1588 [0.1403; 0.1774]
Химическая технология. Химиче-
ская промышленность

0.1480 [0.1160; 0.1721]

Народное образование. Педагогика 0.1374 [0.1147; 0.1583]
Механика 0.1231 [0.0984; 0.1539]
Строительство. Архитектура 0.1145 [0.0909; 0.1400]
Полиграфия. Репрография. Фотоки-
нотехника

0.1131 [0.0811; 0.1543]

Наивысшую сложность демонстрируют «Информатика» (H = 0.492, Ng =

13, доверительный интервал [0.474; 0.517]) и «Языкознание» (H = 0.433, Ng =

17, [0.398; 0.466]). Для этих областей вероятность ошибки классификации стати-
стически значимо выше, чем для большинства других дисциплин, поскольку их
доверительные интервалы не пересекаются с интервалами для областей из ниж-
ней части ранжирования. Это указывает на устойчивую внутреннюю сложность
данных, не зависящую от выбора конкретной модели.

В противоположной части спектра сложности находятся дисциплины с
наименьшей вероятностью ошибки. Наиболее «простыми» для классификации
оказались «Государство и право» (H = 0.024, Ng = 15), «Психология» (H =

0.106, Ng = 17), «Строительство. Архитектура» (H = 0.115, Ng = 22) и «Меха-
ника» (H = 0.123, Ng = 39).



113

Рисунок 4.3 –– График с 95%-ми доверительными интервалами для индекса слож-
ностиH(g) по классам первого уровня ГРНТИ. Оценка получена усреднением по

множеству из 27 моделей.
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Наиболее представленные в наборе данных дисциплины, такие как «Хи-
мия» (H = 0.159, Ng = 69), «Физика» (H = 0.185, Ng = 80) и «Медицина и
здравоохранение» (H = 0.214, Ng = 348), занимают промежуточное положение.
Благодаря большому объему данных, доверительные интервалы для них являются
наиболее узкими, что делает оценки их сложности особенно надежными и указы-
вает на стабильность работы моделей в этих областях.

Наблюдаемые различия в сложности можно объяснить спецификой на-
учного дискурса в различных областях. Наибольшую трудность представляют
дисциплины, для которых характерен высокий уровень абстракции, терминоло-
гическая вариативность и использование сложных синтаксических конструкций,
где логическая связь между утверждением и текстом-источником выражена неяв-
но. В то же время в текстах естественнонаучного и инженерного профиля, таких
как физика, химия или механика, выводы часто формулируются более строго и
однозначно, что упрощает задачу бинарной классификации.

Таким образом, предложенный подход позволил получить статистически
обоснованное ранжирование предметных областей по сложности задачи вери-
фикации научных фактов. Полученные результаты позволяют целенаправленно
подходить к разработке доменно-специфичных моделей, уделяя первоочередное
внимание областям с наивысшим индексом сложности, таким как «Информати-
ка» и «Языкознание», где существующие подходы демонстрируют недостаточную
эффективность.

4.6 Основные выводы

В главе предложен новый бенчмарк RuSciFact для верификации научных
фактов на русском языке. Задача формализована как декомпозиция на информа-
ционный поиск релевантной аннотации (4.1) и последующую бинарную клас-
сификацию пары «утверждение–аннотация» (4.2). Такая постановка позволяет
раздельно оценивать способность моделей к семантическому сопоставлению и
логическому выводу.

Основой бенчмарка стал набор данных из 1128 пар, созданный с помо-
щью многоэтапного конвейера. Утверждения генерировались большой языковой
моделью на основе строгих семантических и логических критериев: логическая
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выводимость, неявность и обоснованность для подтверждающих примеров; се-
мантическая антонимия без прямого отрицания для противоречащих. Качество
данных обеспечивалось автоматизированной фильтрацией, включающей отсев
тривиальных перефразирований по лексическому сходству и отбор сложных
примеров, а также применением парадигмы «LLM как судья» для оценки реле-
вантности и степени противоречия. Итоговая чистота корпуса была достигнута
за счет ручной валидации с требованием полного консенсуса двух независимых
асессоров.

Экспериментальная оценка выявила принципиальное различие в сложности
подзадач. В задаче поиска (MRR@1) современные крупномасштабные модели де-
монстрируют результаты, близкие к насыщению, что говорит о ее практической
решенности. В то же время в задаче классификации (F1-мера) наблюдается «пла-
то производительности»: широкий спектр моделей показывает близкие и заметно
более низкие результаты, что указывает на логический вывод как на ключевое
узкое место существующих векторных представлений.

Для анализа предметной сложности был введен индекс H(g) (4.3), усред-
няющий долю ошибок по множеству моделей и снабженный доверительными
интервалами. Анализ показал, что наибольшую сложность представляют дисци-
плины с высоким уровнем абстракции («Информатика», «Языкознание»), тогда
как области с более формализованным языком («Механика», «Строительство. Ар-
хитектура») оказались значительно проще для классификации.

Таким образом, RuSciFact является эффективным инструментом, раз-
деляющим способности моделей к поиску и логическому анализу. Он задает
эталон для разработки доменно-устойчивых кодировщиков и указывает на необ-
ходимость создания моделей, целенаправленно улучшающих способности к
логическому выводу, особенно в предметных областях с доказанной высокой
сложностью.
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Заключение

Основные результаты работы заключаются в следующем.
1. Разработана двухэтапная методология обучения компактных двуязыч-

ных моделей SciRus-tiny (23 млн параметров) и SciRus-small (61 млн
параметров) для векторного представления научных текстов на рус-
ском и английском языках. Методология включает этап маскированного
языкового моделирования (MLM) на большом мультиязычном корпусе
научных текстов и последующее контрастивное дообучение на парах
«заголовок-аннотация» и на парах «цитирующая статья — цитируемая
статья». Эксперименты на бенчмарках RuSciBench и SciDocs показа-
ли, что предложенные модели, несмотря на значительно меньшее число
параметров, демонстрируют качество, сопоставимое с гораздо более
крупными моделями, и обладают высокой вычислительной эффективно-
стью.

2. Разработан и апробирован мультизадачный русско-английский бенчмарк
RuSciBench, предназначенный для оценки качества моделей векторного
представления научных текстов. Бенчмарк суммарно включает 18 задач,
9 из которых были разработаны лично, а именно классификацию, регрес-
сию, моно- и кросс-языковой поиск, и основан на данных российской
научной электронной библиотеки eLibrary.ru. RuSciBench обеспечива-
ет стандартизированную и воспроизводимую процедуру тестирования
и интегрирован в международный лидерборд MTEB. Оценка широко-
го спектра моделей на данном бенчмарке позволила выявить как общие
тенденции влияния размера моделей на их производительность, так и
преимущества доменной специализации.

3. Предложена и экспериментально проверена полуавтоматическая мето-
дика формирования наборов данных для задачи верификации научных
фактов на русском языке. Данная методика сочетает генерацию научных
утверждений на основе аннотаций с использованием больших языковых
моделей (LLM), многоэтапную фильтрацию и оценку сгенерированных
утверждений самой моделью, а также последующую экспертную ва-
лидацию. На основе этой методики создан и опубликован RuSciFact
- первый русскоязычный бенчмарк для оценки способности моделей



117

определять, подтверждается ли научное утверждение текстом аннотации
или противоречит ему. Проведена оценка современных генеративных и
эмбеддинг-моделей на данном бенчмарке.

Таким образом, в рамках данной работы были разработаны, исследованы
и апробированы инструменты и модели, направленные на решение актуальных
задач эффективной обработки, анализа и оценки качества представления науч-
ных текстов на русском и английском языках. Полученные результаты вносят
вклад в развитие методов анализа научной информации, предоставляя научному
сообществу открытые ресурсы для оценки и создания новых моделей, а также
эффективные легковесные решения для практического применения в научно-
информационных системах.
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Приложение А

Промпты для формирования выборки в бенчмарке RuSciFact и примеры
данных

А.1 Промпты для генерации подтверждающего утверждения в бенчмарке
RuSciFact

Этот промпт генерирует один строгий факт, который следует из аннотации,
без прямого цитирования. Плейсхолдер {text} заменяется текстом аннотации.

Вы ученый, который хорошо разбирается во всех областях науки. Ваша
задача - записать один факт, который следует из аннотации к статье. Вы не
можете скопировать текст из аннотации, вам нужно написать факт, который
следует из аннотации, но прямо в ней не указан. Примечание: Убедитесь,
что извлеченный факт точно выведен из содержания аннотации, без добав-
ления какой-либо дополнительной информации или интерпретации. При
написании факта избегай ссылок на аннотацию (в приведенном текст, в
данной работе, предложенный метод). Также при написании факта избегай
неопределенности, например ”с определенным свойствами”, ”в некоторых
состояниях”, ”определенной длины”. Если по аннотации невозможно
написать точный факт, то напиши ”Аннотация не содержит факт”

Ниже приведены 2 примера фактов и аннотаций, на основе которых
они были написаны.

Аннотация к статье: Ожидается, что снижение уровня гомоцистеина в
сыворотке крови с помощью фолиевой кислоты снизит смертность от ише-
мической болезни сердца. Известно, что максимальное снижение уровня
гомоцистеина достигается при приеме фолиевой кислоты в дозе 1 мг/сут,
но эффект более низких доз (имеющих отношение к обогащению пищевых
продуктов) неясен. МЕТОДЫ Мы рандомизировали 151 пациента с ишеми-
ческой болезнью сердца на 1 из 5 доз фолиевой кислоты (0,2, 0,4, 0,6, 0,8
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и 1,0 мг/сут) или плацебо. Первоначально, через 3 месяца приема добавок
и через 3 месяца после прекращения приема фолиевой кислоты, были
взяты образцы крови натощак для анализа на содержание гомоцистеина
и фолиевой кислоты в сыворотке крови. РЕЗУЛЬТАТЫ: Средний уровень
гомоцистеина в сыворотке крови снижался при увеличении дозы фолиевой
кислоты до максимума при приеме 0,8 мг фолиевой кислоты в день, когда
снижение уровня гомоцистеина (с поправкой на плацебо) составляло 2,7
мкмоль/л (23%), что аналогично известному эффекту приема фолиевой
кислоты в дозах 1 мг/сут и выше. Чем выше был исходный уровень гомоци-
стеина в сыворотке крови человека, тем сильнее была реакция на фолиевую
кислоту, но статистически значимое снижение наблюдалось независи-
мо от исходного уровня. Уровень фолиевой кислоты в сыворотке крови
повышался примерно линейно (5,5 нмоль/л на каждые 0,1 мг фолиевой
кислоты). Индивидуальные колебания уровня гомоцистеина в сыворотке
крови, измеренные в группе плацебо, были значительными по сравнению с
эффектом приема фолиевой кислоты, что указывает на то, что мониторинг
снижения уровня гомоцистеина у конкретного человека нецелесообразен.
ВЫВОДЫ Для достижения максимального снижения уровня гомоцистеина
в сыворотке крови во всем диапазоне уровней гомоцистеина в популяции,
по-видимому, необходима доза фолиевой кислоты в размере 0,8 мг/сут. Ны-
нешние уровни обогащения пищевых продуктов в США позволят достичь
лишь небольшой доли достижимого снижения уровня гомоцистеина.

Факт из статьи: Дефицит витамина В9 снижает уровень гомоцистеина
в крови.

Аннотация к статье: Для реакции выделения кислорода (OER) были раз-
работаны известные на Земле катализаторы первого ряда (3d) на основе
переходных металлов; однако они работают при потенциалах, значительно
превышающих термодинамические требования. Теория функционала плот-
ности предполагает, что не трехмерные металлы с высокой валентностью,
такие как вольфрам, могут модулировать трехмерные оксиды металлов,
обеспечивая почти оптимальную энергию адсорбции для предлагаемых



128

промежуточных продуктов. Мы разработали метод синтеза при комнатной
температуре для получения гелеобразных оксигидроксидных материалов
с атомарно однородным распределением металлов. Эти гелеобразные
оксигидроксиды FeCoW обладают самым низким перенапряжением (191
милливольт), зарегистрированным при 10 миллиамперах на квадратный
сантиметр в щелочном электролите. Катализатор не проявляет признаков
разложения после более чем 500 часов работы. Рентгеновское поглощение и
компьютерные исследования показывают синергетическое взаимодействие
между вольфрамом, железом и кобальтом в создании благоприятной локаль-
ной координационной среды и электронной структуры, которые повышают
энергетику предложения.

Факт из статьи: Усовершенствованные катализаторы OER демонстри-
руют стабильную активность в течение нескольких сотен часов.
Если в аннотации не содержится фактов, например: В статье рассмот-
рено становление британо-японских отношений в период биполярности,
отражена история формирования двусторонних отношений, а также со-
трудничество в экономической, политической, научно-технической и
социально-культурной сферах в указанный период. Главный акцент был
сделан на рассмотрении зарождения отношений между Великобританией
и Японией и анализа динамики их развития. то напиши ”Аннотация не
содержит факт”.
Теперь ваша задача - записать этот факт в следующую аннотацию, точно
следуя инструкциям
{text}
Не пиши никаких вводных слов (например ”из аннотации следует, что”),
только факт. Напишите свой факт из этой аннотации:
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А.2 Промпт для классификации сложности факта

Этот промпт определяет уровень сложности уже сформулированного факта.
На вход подставляется сам факт вместо {text}; на выходе требуется одно слово:
простой, средний, сложный или неопределенный.

Инструкция по классификации фактов по научным статьям

Вы являетесь учёным, обладающим глубокими знаниями во всех областях
науки. Ваша задача - определить сложность факта, изложенного в аннотации
к научной статье. Факты могут быть классифицированы по трём уровням
сложности: простой, средний и сложный. В отдельных случаях факт может
быть неопределённым.

Категории фактов:

1. Простой факт:

Факт очевиден большинству образованных людей и не требует дополнитель-
ных исследований или чтений для его подтверждения или опровержения.
Такие факты известны из общих знаний.
Примеры простых фактов:
– Экономическая эффективность потребления может варьироваться в зави-
симости от личностных свойств потребителей.

– В России существует закон, регулирующий проведение медицинских на-
учных исследований с участием человека и/или лабораторных животных.

– Нитраты могут вызывать токсические эффекты у животных.
– Российские вузы сокращают количество бюджетных мест.
– В Республике Алтай представлены многочисленные виды туризма и от-
дыха.

– У студентов вузов ценность внутреннего успеха выше, чем внешнего.
– Изменение жесткости элементов конструкции здания может быть вызвано
разными факторами.

– Преступления, связанные с фальшивомонетничеством, совершались на
территории Российской Федерации и Белгородской области.
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2. Средний факт:

Факт достаточно сложен, большинству людей понадобится читать специ-
ализированные статьи или проводить запросы в интернете, чтобы понять,
подтвердить или опровергнуть этот факт.
Примеры средних фактов:
– Поражение молочной железы эхинококком может быть излечено хирурги-
ческим путем.

– Татарстан стал более засушливым регионом за последние десятилетия.

3. Сложный факт:

Факт требует специфических знаний или экспертизы в данной научной об-
ласти для его понимания.
Примеры сложных фактов:
– Прокатка СВС-продуктов в валках прокатного стана перед измельчением
в шаровой мельнице увеличивает эффективность измельчения.

– У больных диабетическим макулярным отеком наблюдается повышенный
уровень брадикинина в крови.

– Стентирование коронарных артерий не вызывает значимых изменений
показателей глобальной и сегментарной продольной систолической де-
формации миокарда левого желудочка в первые 3 сут после процедуры.

4. Неопределённый факт:

Факт недостаточно ясен, неполон или содержит ссылки, требующие допол-
нительных разработок или исследований.
Примеры неопределённых фактов:
– Российские компании могут использовать разработаннуюшкалу для опре-
деления уровня развития ориентации на бренд.

– Предыдущие модели теплоусвоения вермикулита были неточными.

Ваша задача:

Внимательно изучите предоставленный факт и напишите одно из сле-
дующих определений сложности факта: ”простой ”средний ”сложный”или
”неопределенный”. Напиши только одно слово, не объясняй причины такой
классификации
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Вот факт, для которого это нужно написать: {text}

А.3 Промпт для генерации опровергающего факта

Этот промпт формирует релевантное аннотации утверждение, которое не
вытекает из текста и не подтверждается им.Нельзя использовать явное отрицание,
требуется конкретный, проверяемый факт. На вход подается аннотация вместо
{text}.

Вы ученый, который хорошо разбирается во всех областях науки. Ваша за-
дача - написать один факт, который был бы релевантен аннотации, но не
следует из нее. Не используй отрициание, вместо этого напишите факт,
который не подтверждается аннотацией, но релевантен ей! Вы не можете
скопировать текст из аннотации, вам нужно написать факт, который не сле-
дует из аннотации. Примечание: Убедитесь, что извлеченный факт точно
выведен из содержания аннотации, без добавления какой-либо дополнитель-
ной информации или интерпретации. При написании факта избегай ссылок
на аннотацию (в приведенном текст, в данной работе, предложенный метод).
Также при написании факта избегай неопределенности, например ”с опреде-
ленным свойствами ”в некоторых состояниях ”определенной длины”. Если
по аннотации невозможно написать точный факт, то напиши ”Аннотация не
содержит факт”.
Ниже приведены 2 примера фактов и аннотаций, на основе которых они были
написаны.

Пример 1

Аннотация к статье:
Статья посвящена актуальным проблемам установления уголовного запрета
в сфере профессиональной медицинской деятельности. Проанализированы
предложения Следственного комитета РФ о внесении изменений в дей-
ствующий Уголовный Кодекс РФ, на основании социологического опроса
и изучения уголовных дел, сделаны выводы о необходимости реформы
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уголовного закона. Основным является вывод о невозможности реше-
ния актуальных проблем в российском здравоохранении исключительно
уголовно-правовыми средствами.
Факт из статьи: Актуальные проблемы в российском здравоохранении

могут быть решены исключительно уголовно-правовыми средствами

Пример 2

Аннотация к статье:
Рассмотрены вопросы создания системы охраны территорий и объектов
стратегического назначения. Предложены структура и способ построения
такой системы, использующие методы теории решеток. Для обработки и ана-
лиза информации с датчиков физических величин и последующего принятия
решений применяются решетки, построенные с помощью оператора замы-
кания.
Факт из статьи: Решетки могут быть построены без использования

оператора замыкания

Пример аннотации без фактов

Если в аннотации не содержится фактов, например:
В статье рассмотрено становление британо-японских отношений в период
биполярности, отражена история формирования двусторонних отношений, а
также сотрудничество в экономической, политической, научно-технической
и социально-культурной сферах в указанный период. Главный акцент был
сделан на рассмотрении зарождения отношений между Великобританией и
Японией и анализа динамики их развития.
то напиши ”Аннотация не содержит факт”.

Пример неподходящего факта

Аннотация к статье: В статье обсуждаются вопросы взаимосвязи токсич-
ности сточных вод и их химического состава. Для ряда гидрохимических
показателей установлена достоверная связь между показателем токсич-
ности, определявшимся с использованием методики, где в качестве
тест-организма выступает P. Caudatum.
Факт из статьи: Для ряда гидрохимических показателей не су-

ществует достоверной связи между показателем токсичности,
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определявшимся с использованием методики, где в качестве тест-

организма выступает P. Caudatum.

Факт не подходит, потому что можно удалить ”не”и факт будет верным.

Не добавяй ничего к ответу, напиши только факт. Не пиши свои рассуж-
дения, только факт! Теперь ваша задача - записать этот факт в следующую
аннотацию, точно следуя инструкциям:

Аннотация к статье: {text}
Факт из статьи:

А.4 Промпт для оценки релевантности и степени подтверждения

Этот промпт оценивает по шкале от 0 до 10 два аспекта: релевантность фак-
та аннотации и степень подтверждения факта текстом. На вход подставляется
текст, содержащий аннотацию и соответствующий факт, через {text}; на выход
требуется JSON с полями relevance и support.

Описание Задачи

Вы ученый, который хорошо разбирается во всех областях науки.

Задача

Задача - оценить релевантность факта аннотации и насколько аннотация под-
тверждает факт.

Формат Вывода

На выходе нужно написать JSON.
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Пример ответа:

{

"relevance": "Релевантность факта аннотации",

"support": "Насколько аннотация подтверждает факт"

}

Описание Полей

Поля relevance и support могут принимать значения от 0 до 10, где 0 —
не релевантно (не подтверждает факт), 10 — максимально релевантно (под-
тверждает факт).

Входные Данные

Текст для анализа:
{text}

А.5 Примеры положительных и отрицательных утверждений из ruSciFact

В этом разделе приведён один положительный и один отрицательный при-
мер из датасета ruSciFact.

Пример 1
Утверждение: Пациенты с ишемической болезнью сердца, перенесшие чре-
скожные коронарные вмешательства, демонстрируют улучшение толерантности
к физической нагрузке при использовании компьютеризированных систем под-
держки врачебных решений.

Анноатция:Цель. Изучить эффективность амбулаторных реабилитационно-
профилактических программ у пациентов после чрескожных коронарных
вмешательств (ЧКВ) с использованием компьютеризированной системы под-
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держки врачебных решений (СПКР), предназначенной для выбора режима
контролируемых физических тренировок (КФТ) и предоставления полноценных
рекомендаций по физической активности (ФА). Материал и методы. Исследова-
ние выполняли в течение 12 мес. с включением 194 пациентов (124 мужчины и
70 женщин, средний возраст 53,5) со стабильной формой ишемической болезни
сердца (ИБС), перенесших ЧКВ (коронарную ангиопластику, коронарное стен-
тирование). При выборе режима КФТ использовалась компьютеризированная
СПКР. Традиционные врачебные решения анализировали по специально раз-
работанной анкете. Результаты. Пациенты группы КФТ, продемонстрировали
достоверное увеличение толерантности к физической нагрузке (ТФН) и сред-
ней продолжительности ФН, положительную динамику качества жизни (КЖ),
высокий уровень приверженности лекарственной терапии на протяжении всего
периода реабилитации. При формировании врачебных решений использовали,
в среднем, 3 клинических признака. Наиболее типичные врачебные ошибки
носили методологический характер. Заключение. Интегрирование реабилитаци-
онных программ с использованием СПВР в амбулаторных условиях у пациентов,
перенесших ЧКВ, обеспечивает высокую эффективность реабилитационно-
профилактических мероприятий и безопасность ФТ.

Метка класса: подтверждает
Пример 2

Утверждение: Порода карпа не влияет на содержание сухого вещества, жира,
протеина у сеголетков карпа

Аннотация: В статье приведены результаты сравнения биохимического
состава тела сеголетков и годовиков некоторых коллекционных пород карпа, раз-
водимых в спу «Изобелино»: немецкого, сарбоянского, отводок изобелинского
карпа (столин XVIII, три прим, смесь чешуйчатая), выращенных одновременно, в
одинаковых условиях и зимовавших совместно в одном пруду. Установлены по-
роды, характеризующиеся повышенными уровнями содержания сухого вещества,
жира, протеина у сеголетков карпа. В результате исследования биохимического
состава тела сеголетков карпа разной породной принадлежности, выращенных в
одинаковых условиях, проявляется тенденция к увеличению содержания сухого
вещества, жира и протеина у коллекционных линий карпа белорусской селек-
ции (изобелинский) по сравнению с породами зарубежной селекции (немецкий и
сарбоянский), выращенными одновременно в одинаковых условиях. У годовиков
коллекционных линий белорусской селекции отмечается тенденция к увеличе-



136

нию содержания сухого вещества, жира и протеина, снижению содержания влаги
по сравнению с зимовавшими совместно коллекционными породами зарубежной
селекции. В результате исследования изменения показателей, характеризующих
биохимический состав тела, произошедших за зимний период, установлено, что
отклонения биохимических показателей, особенно содержания сухого вещества и
жира у пород зарубежной селекции значительно выше, чем у линий изобелинско-
го карпа (белорусская селекция). Полученные данные свидетельствуют о большей
приспособленности карпа коллекционных линий белорусской селекции к усло-
виям зимовки в Беларуси, по сравнению с импортными породами (немецким и
сарбоянским).

Метка класса: опровергает
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