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Введение

Актуальность темы. Диабетическая ретинопатия (ДР) и диабетический

макулярный отёк (ДМО) входят в число наиболее значимых осложнений сахар-

ного диабета, оказывающих выраженное влияние на качество жизни пациентов

и ведущих к прогрессирующему снижению зрения. Оба состояния требуют

регулярного контроля и своевременного выявления структурных изменений сет-

чатки, особенно в ранних стадиях, когда возможна терапевтическая коррекция.

При этом распространённость сахарного диабета и его офтальмологических

осложнений продолжает увеличиваться: по данным регистра Минздрава РФ,

в 2023 году общее число больных СД превысило 5,5 млн человек, из которых

более 30% имеют признаки диабетической ретинопатии, а около 10 % – клини-

чески значимый макулярный отёк [1].

В практике скрининга и мониторинга состояния сетчатки применяют-

ся фундус-фотография и оптическая когерентная томография (ОКТ). Первая

является удобным, неинвазивным методом массового обследования, вторая –

стандартом верификации и оценки тяжести ДМО. ОКТ позволяет выявлять

интраретинальные кисты, утолщение макулы, субретинальную жидкость и дру-

гие маркеры отёка, а также отслеживать динамику состояния при проведении

терапии. Однако эффективность этих методов на практике ограничивается до-

ступностью квалифицированных специалистов, неоднородностью протоколов и

значительными затратами времени на интерпретацию каждого снимка.

Технологии искусственного интеллекта (ИИ), в том числе методы глу-

бокого обучения и объяснительного ИИ, демонстрируют высокий потенциал

в задачах анализа фундус-снимков и ОКТ-снимков. С их помощью можно

автоматизировать как распознавание признаков ДР (микроаневризмы, кровоиз-

лияния, неоваскуляризация), так и детектирование структур, характерных для

ДМО (интраретинальные кисты, экссудаты, отёчные зоны). При этом приме-

нение методов объяснительного ИИ позволяет дополнительно визуализировать

зоны, на основе которых модель приняла решение, что критически важно для

увеличесния доверия к технологии.

Актуальность разработки таких решений особенно высока в услови-

ях территориальной протяжённости России, неравномерного распределения

медицинской инфраструктуры, а также в свете тенденций цифровизации здра-
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воохранения. Внедрение автоматизированных систем интерпретации фундус- и

ОКТ-изображений способствует повышению доступности офтальмологической

помощи, стандартизации заключений и снижению времени анализа. Кроме то-

го, эти подходы позволяют расширить применение скрининговых программ за

пределами специализированных центров.

Разработка и внедрение алгоритмов анализа медицинских изображе-

ний напрямую поддерживается стратегическими инициативами государства. В

частности, Национальная стратегия развития искусственного интеллекта в Рос-

сийской Федерации на период до 2030 года, утверждённая Указом Президента

РФ от 10 октября 2019 года № 490, подчёркивает необходимость создания и

внедрения интеллектуальных технологий, повышающих качество и доступность

медицинской помощи, с обязательной ориентацией на прозрачность и воспроиз-

водимость результатов [2].

Целью работы является разработка и исследование новых методов авто-

матического анализа ретинальных изображений (снимков фундус-камеры и

оптических когерентных томограмм) на основе нейронных сетей глубокого обу-

чения для повышения точности диагностики заболеваний сетчатки глаза на

основе интеллектуальной идентификации и оценки биомаркеров. В качестве ре-

зультата диссертационного исследования предлагаются разработанные методы

автоматического анализа ретинальных изображений двух модальностей, реали-

зованные в специализированном программном обеспечении.

Для достижения поставленной цели были решены задачи:

1. Разработать методику автоматизированного формирования специа-

лизированных коллекций данных для задач анализа ретинальных

изображений, использующую нейросетевую оценку качества, визуаль-

ные промпты и перекрёстные экспертные аннотации.

2. Создать специализированную коллекцию данных для сегментации

экземпляров биомаркеров диабетического макулярного отёка на опти-

ческих когерентных томограммах.

3. Разработать метод автоматического анализа ретинальных изобра-

жений, основанный на сегментации экземпляров и применении

формализованных экспертных знаний и методов объяснительного

искусственного интеллекта.
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4. Создать метод поиска и сегментации анатомических зон сетчатки глаза

на ретинальных изображениях, устойчивый к артефактам и не требу-

ющий предварительного обучения.

5. Формализовать и решить задачу анализа биомаркеров диабетическо-

го макулярного отёка на оптических когерентных томограммах как

задачу сегментации экземпляров с целью последующего применения

логических правил для прогнозирования состояния пациентов.

Научная новизна диссертационного исследования заключается в следую-

щем:

1. Предложена новая методика формирования проблемно-ориентирован-

ных коллекций данных, отличающиеся от существующих нейросетевой

оценкой качества изображений с применением метода объяснительно-

го ИИ, интеграцией базовой модели на основе визуальных промптов,

а также применением перекрестных экспертных аннотаций. Впервые

получена специализированная коллекция данных для задачи сегмен-

тации экземпляров биомаркеров диабетического макулярного отёка на

ОКТ-снимках, содержащая все основные классы биомаркеров.

2. Предложен новый метод анализа специальных видов изображений на

основе сегментации экземпляров и применения формализованных в

виде логических правил экспертных знаний, а также методов объ-

яснительного ИИ. Преимущества нового метода показаны на основе

решения задач анализа ретинальных изображений.

3. Предложен новый метод поиска и сегментации анатомических зон глаз-

ного дна на основе анализа бинаризированных гистограмм цветового

канала, отличающийся нечувствительностью к артефактам и отсут-

ствием необходимости обучения.

4. Впервые формализована и решена задача анализа биомаркеров диабе-

тического макулярного отёка на ОКТ-снимках как задача сегментации

экземпляров, что позволило применить логические правила для оценки

прогноза пациентов.

Теоретическая и практическая значимость работы заключается в

разработке эффективных методов автоматического анализа ретинальных изоб-

ражений с применением нейронных сетей глубокого обучения, направленных на
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решение актуальных задач ранней диагностики офтальмологических заболева-

ний. Результаты работы внедрены в реальную практику при создании специ-

ализированного программного обеспечения для системы поддержки принятия

врачебных решений, используемой в бизнес-продукте компании-резидента фон-

да «Сколково» ООО «МАКАО ИТ».

Разработанные методы и программные решения обладают высокой сте-

пенью адаптивности и могут быть использованы в других направлениях

медицинской визуализации. Помимо клинического применения, полученные

результаты могут использоваться в образовательных программах, научных ис-

следованиях и при формировании высококачественных специализированных

коллекций данных.

Положения, выносимые на защиту:

1. Методика формирования специализированных коллекций данных для

автоматического анализа ретинальных изображений, основанная на

нейросетевой оценке качества изображений, применении метода объяс-

нительного искусственного интеллекта, интеграции моделей на основе

визуальных промптов и перекрёстных экспертных аннотациях.

2. Метод автоматического анализа ретинальных изображений, сочетаю-

щий сегментацию экземпляров, формализованные логические правила

экспертных знаний и методы объяснительного искусственного интел-

лекта, повышающий точность диагностики заболеваний сетчатки глаза.

3. Метод поиска и сегментации анатомических зон сетчатки глаза на ре-

тинальных изображениях, основанный на анализе бинаризированных

гистограмм цветового канала, отличающийся нечувствительностью к

артефактам и отсутствием необходимости обучения.

Апробация работы. Основные результаты работы докладывались на 19

международных и всероссийских конференциях: XXVI, XXVII и XXVIII

International Conference on Soft Computing and Measurement "SCM (Санкт-

Петербург, 2023, 2024, 2025); IV, V и VI International Conference on Neural

Networks and Neurotechnologies "Neuro NT (Санкт-Петербург, 2023, 2024, 2025);

XXI Национальная конференция по искусственному интеллекту с междуна-

родным участием "КИИ (Смоленск, 2023); XVI Международная конференция

"Безопасность АЭС и подготовка кадров (Обнинск, 2023); XXXI и XXXII
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Международная конференция "Математика. Компьютер. Образование. (Дуб-

на, 2024; Пущино, 2025); International Conference on Information Processes and

System Development and Quality Assurance "IPSQDA (Санкт-Петербург, 2024);

XIII Конгресс молодых учёных ИТМО, (Санкт-Петербург, 2024); International

and Telecommunication Technologies and Mathematical Modeling of High-Tech

Systems "ITTMM (Москва, 2024); XXIX Всероссийская научно-практическая

конференция студентов, аспирантов и молодых специалистов государственного

университета "Дубна (Дубна, 2024); XII Международная научно-практическая

конференция "Интегрированные модели и мягкие вычисления в искусственном

интеллекте (Коломна, 2024); VIII International Conference on Deep Learning in

Computational Physics "DLCP 2024 (Москва, 2024); XV Международная кон-

ференция "Интеллектуализация обработки информации (Гродно, 2024); XXVII

Российская научная конференция "Инжиниринг предприятий и управление зна-

ниями (Москва, 2024); XXVII International Conference «Digital Signal Processing

and Its Applications – DSPA-2025», (Москва, 2025).

Достоверность научных достижений подтверждается корректным ис-

пользованием методов, обоснованием постановки задач, а также эксперимен-

тальными исследованиями на открытых данных и данных индустриальных

партнёров, демонстрирующими эффективность предложенных методов и ал-

горитмов, корректность работы разработанных программных решений.

Публикации. Всего по результатам диссертационного исследования опубли-

ковано 18 работ. В журналах из перечня ВАК РФ по специальности 1.2.1 –

«Искусственный интеллект и машинное обучение» — 2, в журналах из перечня

ВАК по иным специальностям — 3, в изданиях, индексируемых в международ-

ных базах Scopus и Web of Science – 13. Результаты отражены в 3 отчётах НИР.

Личный вклад. Все результаты, представленные в работах, включённых в

диссертационное исследование, получены лично соискателем под непосредствен-

ным научным руководством кандидата физико-математических наук, доцента

Аверкина Алексея Николаевича.

В рамках исследования были разработаны оригинальные методики ана-

лиза ОКТ-изображений с применением объяснительного ИИ [3—7], модифици-

рованы архитектуры нейронных сетей [6; 8], предложены гибридные подходы
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с использованием нечётких множеств [9—11], а также реализованы алгоритмы

автоматизированной оценки качества изображений [12]. Отдельное внимание

уделено задачам анализа фундус-снимков и классификации стадий диабети-

ческой ретинопатии [13; 14], включая формализацию правил и интеграцию

объяснительного ИИ в системы поддержки принятия решений [15—22].

Структура и объем диссертации. Диссертация состоит из введения,

3 глав, заключения. Полный объём диссертации составляет 143 страницы, вклю-

чая 18 рисунков и 18 таблиц. Список литературы содержит 228 наименований.
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Глава 1. Методика полуавтоматического формирования

проблемно-ориентированных коллекций данных

1.1 Теоретические основы создания медицинских коллекций

данных

1.1.1 Требования к формированию коллекций медицинских

данных

В задачах разработки алгоритмов глубокого обучения для автоматиче-

ского анализа медицинских изображений ключевое значение имеет качество,

воспроизводимость и корректность исходных данных. Для этого требуется

формировать специальные коллекции медицинских данных, соответствующие

установленным в Российской Федерации стандартам и регламентам, с учётом

технических, юридических и этико-информационных ограничений.

Под коллекцией медицинских данных в данной работе понимается органи-

зованное множество взаимосвязанных изображений, метаданных и аннотаций,

формируемое по единым протоколам сбора, предобработки, хранения и досту-

па. Такая коллекция отличается от произвольного набора тем, что включает

формализованную структуру, описание источников, протоколы экспертной раз-

метки, документированную историю обработки, фиксированные обучающие и

тестовые подмножества.

Обработка медицинских изображений в целях обучения нейросетевых мо-

делей осуществляется в рамках требований Федерального закона от 27.07.2006

№ 152-ФЗ «О персональных данных» [23]. Закон устанавливает принципы

законности, минимизации, ограниченности цели обработки и необходимости за-

щиты данных. В медицинской сфере дополнительные регламенты определены

приказами Минздрава России [24], а также методическими документами по

реализации Единой государственной информационной системы в сфере здра-

воохранения (ЕГИСЗ).

Порядок обезличивания медицинских изображений, содержащих персо-

нальные данные, регламентирован ГОСТ Р 55036–2012 [25], устанавливающим
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архитектуру процедур псевдонимизации. Дополнительно применяется Приказ

Роскомнадзора № 996 [26], определяющий допустимые методы обезличивания

и контроль остаточного риска реидентификации.

Однако при использовании заранее обезличенных открытых датасетов,

изначально опубликованных без привязки к личности пациента, требование

локальной реализации процедур обезличивания может быть существенно смяг-

чено. Такие данные могут быть использованы в качестве визуальной базы для

повторной экспертной аннотации и формирования новой, клинически значи-

мой коллекции.

Сформированная коллекция медицинских изображений, предназначенная

для обучения, валидации и тестирования нейросетевых моделей, должна удо-

влетворять следующим критериям:

– Репрезентативность. Коллекция должна охватывать реальные вариа-

ции клинических сценариев, источников, оборудования и патологий,

обеспечивая устойчивость модели к смещению данных [27].

– Полнота и целостность. Необходимо сохранять метаданные: идентифи-

катор исследования, параметры съёмки, модель прибора, номер серии.

Целостность обеспечивается контрольными суммами, управление вер-

сиями – через ведение журналов изменений.

– Контроль качества изображений. Применяется отбор изображений по

техническим критериям (резкость, контрастность, отсутствие артефак-

тов), включая автоматизированную предфильтрацию [28].

– Аннотирование. Аннотации выполняются врачами-экспертами по со-

гласованной методологии. Требуется стадия перекрёстной валидации с

консенсусной корректировкой.

– Разделение на подмножества. Деление на обучающую, валидационную

и тестовую выборки должно производиться по пациентам, не по изоб-

ражениям. Структура фиксируется и документируется.

– Формат хранения. Используется формат DICOM согласно ГОСТ Р

12052–2009 [29], допускается параллельное хранение изображений в

PNG/TIFF с метаданными в JSON.

– Справочники и онтологии. Используемая терминология должна быть

согласована с НСИ в составе ЕГИСЗ [27].

Методически корректное формирование коллекций медицинских изобра-

жений требует соблюдения действующих нормативов РФ, ГОСТ по форматам,



16

а также практик обеспечения качества, безопасности и воспроизводимости, что

создаёт надёжную основу для обучения, валидации и последующего внедрения

моделей искусственного интеллекта в клиническую практику.

1.1.2 Обзор литературы и источников

Развитие компьютерного анализа медицинских изображений сопровожда-

лось переходом от локальных, узко специализированных наборов к масштабным

мультицентровым коллекциям и многоступенчатым конвейерам формирования

данных. Ранние систематические обзоры фиксируют, что качество коллекций

определяет верхнюю границу достижимой точности алгоритмов и устойчивость

к доменным сдвигам [30].

Наиболее традиционный подход опирается на ручную экспертную ан-

нотацию по заранее регламентированным протоколам с двойным чтением и

консенсусом «золотого стандарта»; межэкспертное согласие оценивают стати-

стическими мерами и (или) алгоритмами объединения разметок, что проде-

монстрировано в бенчмарке BRATS [31]. Этот метод обеспечивает наивысшее

клиническое доверие к меткам, но характеризуется высокой трудоёмкостью,

ограниченной масштабируемостью и чувствительностью к скрытым смещени-

ям выборки.

Для снижения издержек сформировался класс полуавтоматизированных

конвейеров: первичная разметка создаётся вспомогательными моделями, после

чего уточняется экспертом; активное обучение приоритизирует наиболее инфор-

мативные случаи для разметки, что даёт выигрыш по стоимости и времени [32].

Одновременно широкое распространение получили weakly-supervised подходы,

где метки извлекаются из текстовых отчётов и кодов нозологий: крупные рент-

генологические наборы MIMIC-CXR, CheXpert и ChestX-ray8 построены на

правилах обработки радиологических описаний и допускают нестандартизи-

рованные ярлыки, позволяя обучать модели на сотнях тысяч снимков при

минимальном участии экспертов [33—35].

Недостаток таких меток – их неточность; потому всё чаще применяют-

ся процедуры очистки и калибровки неопределённости, например на основе

confident learning [36] или инструментов обработки отрицаний и модальностей в
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медицинских текстах [37]. Параллельно активно развиваются подходы самообу-

чения и обучения с частично размеченными данными, при которых большая

часть обучающего корпуса остаётся неразмеченной, а разметка применяется

лишь к ограниченному подмножеству. Такой подход позволяет существенно

снизить трудозатраты при формировании датасетов и одновременно повысить

переносимость моделей между различными учреждениями и типами оборудо-

вания [30].

Важным подходом стало использование синтетических данных: генера-

тивные модели применяют для балансировки редких классов и более лёгкого

расширения обучающих выборок, что в ряде задач улучшает распознавание и

сегментацию [38; 39]. Вместе с тем синтетика несёт риск переноса артефактов

генератора и деградации обобщающей способности, если её доля чрезмерна.

На инфраструктурном уровне важную роль играют открытые репозитории

и бенчмарки, такие как TCIA, BRATS, MSD, MIMIC-CXR и CheXpert. Они

формируют стандарты документирования, аннотирования и оценки моделей, а

также позволяют выявлять типовые проблемы и ограничения в дизайне сорев-

нований по медицинскому анализу изображений [40—42].

Сопоставление методик позволяет выделить устойчивые закономерности.

Ручная аннотация остаётся эталоном по клинической достоверности, но про-

игрывает по масштабируемости; полуавтоматизированные циклы с активным

обучением дают компромисс между стоимостью и качеством; weakly-supervised

подходы и самообучающиеся схемы обеспечивают наилучший масштаб ценой

процедур контроля шума и неопределённости; синтетические данные полезны

для балансировки, но требуют внешней проверки.

Сквозным ограничением большинства публикаций является то, что кон-

тур формирования датасетов практически не включает методы объяснитель-

ного искусственного интеллекта и базовые модели общего назначения. Хотя

методы ОИИ (атрибуции, визуализации, локальные аппроксимации) активно

исследуются в контексте интерпретации моделей [43], они редко применяют-

ся как инструмент валидации аннотаций, диагностики ошибок. Аналогично,

несмотря на наличие крупных предобученных моделей, в большинстве пуб-

ликаций отсутствует их систематическое использование для предварительной

разметки и отбора.

Таким образом, надёжные датасеты формируются как гибридные, мульти-

центровые и документированные коллекции с внешней валидацией, тогда как
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вопросы интеграция ОИИ и базовых моделей в контур качества остаётся от-

крытой задачей [42; 44—46].

1.2 Описание предложенной методики

1. Загрузка изображения. На вход конвейера поступает исходный ОКТ

B-срез. На этом шаге выполняется проверка формата и целостности файла, а

также регистрация версии данных.

2. Нейросетевая оценка качества изображения. Классификатор на осно-

ве искусственной нейронной сети определяет пригодность снимка. В качестве

сопроводительной информации формируются карты значимости, визуализи-

рующие зоны, повлиявшие на решение. Изображения, признанные некаче-

ственными, автоматически исключаются или отправляются на повторную

верификацию.

3. Предварительная обработка изображений. Выполняются масштабиро-

вание с сохранением пропорций, нормализация интенсивностей и фильтрация

шума. Цель – приведение всех данных к единому стандарту для дальнейшей

обработки и сегментации.

4. Предварительная аннотация на основе базовой модели с визуальными

промптами. Базовая модель получает изображение и начальные подсказки (точ-

ки или рамки) и формирует черновые маски предполагаемых объектов. Это

позволяет автоматически сгенерировать первичную структуру аннотации, ми-

нимизируя объём ручной работы.

5. Экспертная аннотация офтальмологом. Специалист вручную проверя-

ет и корректирует автоматически сгенерированные маски: уточняет границы,

удаляет ложные участки, разъединяет пересекающиеся объекты. Аннотация

осуществляется в формате сегментации экземпляров.

6. Перекрёстная валидация аннотаций. Второй эксперт (офтальмолог,

имеющий научную степень) независимо проверяет разметку. При наличии рас-

хождений проводится обсуждение и достигается согласованное решение.

7. Сохранение в коллекцию данных. Для каждого изображения сохраня-

ется полный набор: оригинал, финальные маски. Таким образом формируется



19

стандартизированная коллекция, ориентированная на задачу сегментации эк-

земпляров биомаркеров диабетического макулярного отёка.

Рисунок 1.1 — Блок-схема предлагаемой методики полуавтоматического фор-

мирования коллекции данных

Предложенная методика отличается комплексностью и новизной: объ-

единены автоматическая оценка качества с использованием объяснимой ИИ-

модели, модуль предварительной аннотации на основе визуальных промптов и

перекрёстная экспертная валидация. Методика легко масштабируется и может

быть адаптирован к другим задачам анализа медицинских изображений.
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1.3 Существующие коллекции данных ОК-томограмм

Одним из первых и принципиально важных этапов методики полуавто-

матического формирования проблемно-ориентированных коллекций данных,

изложенной в данной главе, является отбор исходных изображений, облада-

ющих клинической значимостью и пригодных для последующей разметки. В

контексте настоящей работы эта задача решается за счёт выборки изображе-

ний из уже существующих открытых коллекций, предназначенных для задачи

классификации.

Несмотря на широкий охват патологий макулярной зоны и высокое тех-

ническое качество, большинство таких коллекций не содержит необходимых

классов аннотаций, требуемых для сегментации биомаркеров диабетического

макулярного отёка (ДМО). В частности, в них отсутствуют маски и локали-

зованные метки для структур типа DRIL, EZD, IRC и других, что делает

невозможным прямое использование этих данных в задачах пространственного

анализа и количественной оценки патологий.

В связи с этим ключевым подходом стало использование классифика-

ционных коллекций в качестве источника изображений, удовлетворяющих

требованиям по анатомической области (макула), техническому качеству и

типу патологии, с целью их дальнейшей экспертной реаннотации в формате

сегментации экземпляров. Для этого был проведён анализ доступных класси-

фикационных коллекций, на основе которого определены подходящие наборы

для отбора изображений.

Коллекция Kermany (OCT2017) является одной из наиболее известных

и широко используемых в задачах классификации. Данные собраны в кли-

никах США и Китая, в том числе в Shiley Eye Institute (UCSD) и Beijing

Tongren Eye Center, с использованием устройства Heidelberg Spectralis OCT.

Изображения сгруппированы по четырём категориям: CNV (хороидальная

неоваскуляризация), DME (диабетический макулярный отёк), DRUSEN (воз-

растные изменения) и NORMAL. Объём данных составляет от 84 000 до более

100 000 B-срезов [47; 48]. Разметка представлена на уровне классов изображе-

ний, без локализованных масок.

Коллекция OCTID была сформирована в Sankara Nethralaya (Индия) с

использованием устройства Cirrus HD-OCT (Zeiss). Она включает более 500
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изображений, классифицированных по категориям: NORMAL, AMD, DR, CSR,

MH. Все изображения имеют высокое аксиальное разрешение (до 5 мкм), ши-

рину скан-линии 2 мм и размер 512×1024 пикселя. Некоторые изображения

сопровождаются ручной аннотацией анатомических слоёв сетчатки. Несмот-

ря на относительно небольшой объём, OCTID содержит высококачественные

фовеа-центрированные B-срезы, представляющие интерес для последующей

ручной сегментации биомаркеров [49].

Коллекция OCTDL включает более 2000 B-срезов, полученных с помо-

щью устройства Optovue Avanti RTVue XR. Набор охватывает широкий спектр

макулярных и сосудистых патологий, включая AMD, DME, ERM, RAO, VID

и другие. Аннотация проводилась поэтапно: предварительная классификация,

двойная разметка офтальмологами и финальная верификация экспертом. Раз-

метка предоставлена только на уровне диагноза, без экземплярных масок.

Благодаря разнообразию состояний и стандартизированным протоколам съём-

ки, коллекция подходит в качестве источника изображений для последующей

реаннотации [50].

Анализ открытых классификационных коллекций показал, что они об-

ладают клинически разнообразным содержанием и высоким техническим

качеством изображений, но не содержат аннотаций, достаточных для задач

сегментации экземпляров биомаркеров ДМО. Это исключает их прямое исполь-

зование в задачах количественного анализа. В связи с этим был реализован

отбор изображений по критериям качества, анатомической релевантности и

типу патологии, за которым следовала экспертная аннотация. Такой подход поз-

волил сформировать специализированную коллекцию, пригодную для обучения

и объективной валидации современных моделей сегментации в офтальмологии.

1.4 Предподготовка изображений

Современные методы автоматизированной и полуавтоматизированной об-

работки медицинских изображений требуют формально однородного входного

датасета как на уровне геометрических характеристик, так и с точки зре-

ния распределения интенсивностей. Это особенно критично при работе с

изображениями оптической когерентной томографии (ОКТ), где структура дан-
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ных может варьироваться в зависимости от условий сканирования, моделей

устройств и индивидуальных анатомических особенностей пациента. Предпод-

готовка изображений перед аннотированием направлена на устранение этой

вариабельности, обеспечивая условия для точной и воспроизводимой разметки,

которая в дальнейшем используется при обучении и валидации сегментацион-

ных моделей [51; 52].

В условиях различной яркости и контраста изображений, полученных с

различных ОКТ-сканеров, нормализация позволяет привести значения интен-

сивностей к единому масштабу, что критически важно для обеспечения согла-

сованности аннотаций и улучшения сходимости моделей. Наиболее простой и

часто применяемой формой нормализации является min–max-нормировка, опре-

деляемая как:

Inorm(x, y) =
I(x, y)− Imin

Imax − Imin
, (1.1)

где I(x, y) – исходное значение интенсивности пикселя, Imin и Imax — ми-

нимальные и максимальные значения яркости в изображении. В результате

интенсивности преобразуются в диапазон [0, 1], что делает данные совмести-

мыми с типичными требованиями большинства нейросетевых фреймворков и

облегчает визуальное восприятие при ручной аннотации [52].

Изображения, получаемые с различных ОКТ-устройств, могут иметь про-

извольные размеры, что осложняет пакетную обработку и построение общих

масок. Приведение изображений к фиксированному размеру (M,N) дости-

гается посредством масштабирования с сохранением пропорций. Формально

преобразование координат можно описать как:

Iresized(x
′, y′) = I (αx′,βy′) , α =

m

M
, β =

n

N
, (1.2)

где (m,n) – исходные размеры изображения, а (x′, y′) – координаты в ре-

зультирующем пространстве. Данная процедура обеспечивает сопоставимость

аннотаций по различным пациентам и устройствам без искажения анатомиче-

ских структур [51].

ОКТ-снимки содержат выраженный спекл-шум, обусловленный интерфе-

ренционной природой метода визуализации [53]. Для его подавления применяют

медианный фильтр, который эффективно устраняет точечные шумы без размы-

тия границ анатомических структур. Пусть Nk×k(x, y) – окно размером k × k,
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центрированное в точке (x, y). Тогда медианная фильтрация задаётся выра-

жением:

Imed(x, y) = median {I(u, v) | (u, v) ∈ Nk×k(x, y)} . (1.3)

В отличие от линейных фильтров, медианный сохраняет резкие границы, что

критично при ручной разметке границ слоёв сетчатки, патологических вклю-

чений или отслоений [54].

Процесс предподготовки ОКТ-снимков перед аннотированием должен

быть максимально стандартизированным и в то же время щадящим для

изображений. Применение min–max-нормировки, унификация размеров изоб-

ражений и медианная фильтрация шума позволяют создать однородный и

качественный набор данных, пригодный для точной ручной аннотации и после-

дующего использования в обучении нейросетевых моделей сегментации. Выбор

этих операций основан на балансе между сохранением анатомически значимой

информации и устранением мешающих факторов, что подтверждается совре-

менными исследованиями в области медицинского компьютерного зрения [55—

57].

1.5 Определение качества изображения

Задача фильтрации изображений по техническому качеству является обя-

зательным этапом формирования обучающих выборок в медицинских задачах

компьютерного зрения. Для автоматизации этого этапа классификации ОКТ-

снимков на качественные и некачественные предлагается формализация в виде

задачи бинарной классификации. Под "качественными"понимаются изобра-

жения, обладающие достаточной контрастностью, отсутствием артефактов и

чёткой стратификацией слоёв сетчатки, а к "некачественным"отнесены срезы

с расфокусировкой, шумами, артефактами движения и низким сигналом.

Пусть задана выборка изображений D = {(Ii, yi)}
N
i=1, где Ii ∈ R

H×W –

входное изображение, yi ∈ {0, 1} – бинарная метка (1 – качественное изобра-

жение, 0 – некачественное). Модель fθ(I) ∈ [0,1] аппроксимирует вероятность

принадлежности изображению к классу "качественные". Обучение модели осу-

ществляется посредством минимизации функции бинарной кросс-энтропии:
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L(θ) = −
1

N

N
∑

i=1

[yi log fθ(Ii) + (1− yi) log(1− fθ(Ii))] . (1.4)

В качестве базовой архитектуры используется свёрточная нейронная сеть

с интеграцией модуля пространственного внимания, предложенная в работе [5].

Данный модуль позволяет выделить релевантные фрагменты изображения за

счёт пространственной фокусировки, усиливая сигналы от анатомически зна-

чимых областей и подавляя шумы. Архитектура включает 8 свёрточных слоёв,

слои нормализации, пулинг и полносвязную классификационную голову. Мо-

дуль внимания встроен перед выходным слоем классификатора.

По результатам валидации на тестовом подмножестве получены следую-

щие показатели точности: accuracy составила 96,2 % на классе "качественные

изображения"и 95,4 % на классе "некачественные изображения". Такие значе-

ния подтверждают надёжность модели в задаче предфильтрации изображений.

Предложенная модуль системы используется как входной фильтр пай-

плайна: изображения, классифицированные как некачественные, автомати-

чески исключаются из процесса аннотирования и обучению, что позволяет

существенно сократить долю шумных и малополезных примеров в обучающей

выборке и повысить итоговую стабильность сегментационных моделей.

1.6 Объяснительный искусственный интеллект

1.6.1 Объяснительный искусственный интеллект: общая

характеристика

Объяснительный искусственный интеллект (ОИИ, англ. Explainable

Artificial Intelligence, XAI) – это направление в области ИИ, которое объеди-

няет подходы, обеспечивающие интерпретируемость и прозрачность моделей,

обычно рассматриваемых как «чёрные ящики». Его основная цель – сде-

лать процессы принятия решений алгоритмами ИИ понятными для человека,

формализуемыми и воспроизводимыми. В условиях, когда глубокие модели
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достигают выдающихся результатов за счёт увеличения сложности, ОИИ ста-

новится необходимым связующим звеном между машинной эффективностью

и человеческой интерпретацией [17].

В литературе принято различать несколько ключевых понятий. Тер-

мин «прозрачность» (англ. transparency) характеризует степень понимания

структуры и параметров модели. «Интерпретируемость» (англ. interpretability)

означает возможность объяснить внутренние процессы модели, тогда как

«объяснимость» (англ. explainability) относится к результатам методов, обес-

печивающих понимание того, почему была принята определённая моделью

гипотеза [58; 59]. ОИИ-методы подразделяются на встроенные (model-specific)

и внешние (model-agnostic), а также по времени применения — на предвари-

тельные, встроенные в обучение и постфактум-объяснения, применяемые после

получения вывода [60].

Согласно обзору [61], на практике преобладают постфактум-объяснения,

обеспечивающие визуальную интерпретацию решений готовых моделей, особен-

но в случае сверточных нейросетей. Это обусловлено тем, что архитектуры

современных глубоких моделей часто не проектируются с учётом интерпрети-

руемости, и внесение изменений в их структуру может негативно сказаться на

точности. Вместо этого используется визуализация активаций (например, Grad-

CAM), анализ значений градиентов, построение суррогатных моделей и другие

методы, позволяющие получить представление о работе модели без необходи-

мости вмешательства в её архитектуру.

Работа [17] подчёркивает, что ОИИ не является изолированной техно-

логией, а интегрируется в состав гибридных интеллектуальных систем как

модуль, обеспечивающий визуальную расшифровку предсказаний нейросетей.

В частности, визуальное объяснение формируется в виде тепловой карты, где

цветовая интенсивность отражает степень вклада отдельных областей изобра-

жения в итоговый результат модели. Такая форма объяснения используется как

интерфейс между пространственными признаками и восприятием пользовате-

ля. Применение методов ОИИ в контексте анализа медицинских изображений

рассматривается как ключевое направление развития клинических систем под-

держки принятия решений.

Особое значение объяснительный ИИ приобретает в медицине, где послед-

ствия ошибок критичны, а доверие специалистов к результатам предсказаний

модели напрямую зависит от наличия обоснованных и понятных объяснений.
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Современные регуляторные требования (в том числе этические и юридические)

требуют обоснованности и прозрачности алгоритмов, используемых в диагно-

стике и оценке риска [59; 61]. Включение ОИИ в медицинские ИИ-системы

позволяет не только повысить доверие со стороны врачей, но и выявлять случаи

систематического смещения или переобучения модели, а также строить понят-

ные пользователю отчёты о принятых решениях.

Таким образом, ОИИ выступает не только как инструмент валидации

моделей, но и как методологическая основа для построения этически обосно-

ванных, регламентируемых и доверенных систем искусственного интеллекта

в медицине.

1.6.2 Метод объяснительного ИИ CAM

Метод CAM (англ. Class Activation Mapping) предназначен для построе-

ния пространственных карт, отражающих вклад признаков в решение модели

по каждому классу, позволяющих выявлять области входного изображения,

наиболее существенно повлиявшие на предсказание нейросети. Его основная

идея заключается в том, что веса линейного классификатора, обученного

на признаках последнего сверточного слоя, можно спроецировать обратно

на пространственные карты активаций этого слоя, что делает возможным

восстановление пространственного распределения вклада признаков в оценку

выбранного класса [62].

CAM применяется в архитектурах, где после последнего сверточного слоя

используется операция глобального усреднения по пространству (Global Average

Pooling, GAP), за которой следует линейный классификатор. Пусть последний

сверточный слой формирует набор карт признаков {Ak ∈ R
h×w}Kk=1. Для каж-

дого канала вычисляются усредненные по пространству значения:

Fk =
1

Z

h
∑

i=1

w
∑

j=1

Ak
ij, Z = h · w. (1.5)
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Значение выходного сигнала (логита) для класса c вычисляется как линейная

комбинация усреднённых признаков:

yc =
K
∑

k=1

w c
k Fk + bc, (1.6)

где w c
k – вес связи канала k с классом c, а bc – смещение. Подставив (1.1) в

(1.2), получаем выражение:

yc − bc =
1

Z

h
∑

i=1

w
∑

j=1

(

K
∑

k=1

w c
k A

k
ij

)

, (1.7)

где выражение в скобках интерпретируется как карта активаций класса c:

L c
CAM(i,j) =

K
∑

k=1

w c
k A

k
ij. (1.8)

Таким образом, выход модели можно представить в виде суммы локальных

вкладов по пространству карты признаков. На практике карту L c
CAM били-

нейно масштабируют до размеров исходного изображения и накладывают в

виде тепловой маски, что позволяет визуализировать вклад различных обла-

стей изображения в предсказание модели [62].

Тепловая карта CAM является классо-специфической и подчеркивает те

участки изображения, признаки которых, взвешенные коэффициентами w c
k ,

наиболее усиливают значение логита. Использование последних сверточных

карт делает метод устойчивым к локальному шуму и позволяет акцентировать

внимание на высокоуровневых семантических признаках. Простота вычислений

и отсутствие необходимости в градиентной информации объясняют широкое

распространение метода в задачах с частичной разметкой данных (weakly

supervised localization) и в экспресс-аудите моделей [62; 63].

Однако метод имеет ряд ограничений. Во-первых, он зависит от архитек-

турных предпосылок: требуется наличие глобального усреднения и линейного

классификатора непосредственно над сверточными картами. Во-вторых, разре-

шение карт ограничено размерностью пространственных признаков последнего

сверточного слоя, что снижает точность локализации мелких объектов [64].

Наконец, CAM усиливает доминирующие каналы и может подавлять альтер-

нативные признаки, что приводит к неполному объяснению. В отличие от

градиентных подходов, например Grad-CAM, метод CAM не учитывает ло-

кальную производную целевой функции и потому менее универсален, но при
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соблюдении архитектурных условий он дает объяснения, непосредственно со-

гласованные с линейной моделью над признаками [65].

Значимость CAM для задач интерпретируемого машинного обучения за-

ключается в том, что он демонстрирует прозрачную связь между признаками

и решением модели: веса w c
k отражают важность каналов, а карты активаций

Ak задают их пространственное распределение. Такая факторизация позволяет

выявлять неявные зависимости, например использование фоновых артефак-

тов вместо целевых объектов, и способствует улучшению качества данных

и архитектур. CAM является базовым методом, который часто применяется

в комбинации с другими подходами (saliency-карты, LRP, интегрированные

градиенты) для перекрестной валидации объяснений и повышения доверия к

результатам глубоких моделей [66—69].

1.7 Предварительная разметка с помощью базовой модели

Предварительная разметка предназначена для ускорения формирования

обучающих выборок за счёт автоматического получения черновых масок с

последующей минимальной правкой экспертом. В контексте ОКТ-снимков эф-

фективной основой для такого шага выступает базовая модель сегментации

SAM (Segment Anything Model), способная по визуальному промпту (точка

или рамка) выделять объекты произвольной формы. На практике это умень-

шает объём ручной обводки и повышает воспроизводимость аннотаций при

подготовке клинических датасетов [70—73]. Полуавтоматические конвейеры, в

которых модель выполняет предварительную сегментацию, а эксперт – верифи-

кацию и коррекцию, уже показали существенное сокращение трудозатрат при

сохранении качества разметки [72; 73]. Результаты предварительной разметки

ОКТ-снимка представлены на рис. 1.2.

Пусть I ∈ R
H×W – ОКТ-изображение, P = {pk}

K
k=1 – множество визу-

альных промптов (точки pk = (xk,yk) или прямоугольные рамки), а fSAM(·) —

отображение модели SAM из пространства изображений и промптов в множе-

ство бинарных масок M = {m`}
L
`=1, m` ∈ {0,1}

H×W . Базовая формализация

шага предварительной разметки:

M = fSAM(I, P ). (1.9)
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Рисунок 1.2 — Результат предварительной разметки с помощью базовой модели

При использовании SAM возвращает вероятностные карты S = {s`}
L
`=1,

s` ∈ [0,1]H×W , которые сортируются по порогу:

m`(x,y) = {s`(x,y) ⩾ τ} , τ ∈ (0,1). (1.10)

В сценарии интерактивной предразметки промпт можно подбирать как

решение задачи поиска, максимизирующей качество выходной маски по вы-

бранному критерию Q:

P ∗ = argmax
P∈A

Q (fSAM(I,P ), g) , (1.11)

где A – допустимое множество промптов, а g – эталонная маска.

Интеграция SAM как базовой модели в предразметку для ОКТ обеспе-

чивает быстрый выпуск черновых масок слоёв и патологических структур,

которые затем проходят верификацию и согласование специалистами. На со-

бранном материале с восемью биомаркерами (DRIL, ERM, EZD, HE, HF, IRC,

SRF, VMT) предварительная сегментация SAM показала практическую по-

лезность: экспертная правка сводилась к локальной корректировке границ и

устранению ложноположительных областей, после чего маски принимались в

датасет. Общая трудоёмкость аннотации снизилась, а воспроизводимость по-

высилась.
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1.8 Экспертная разметка

Экспертная разметка представляет собой завершающий этап формиро-

вания клинически валидной коллекции изображений. После предварительной

автоматической сегментации черновые маски поступают на доработку двум вра-

чам-офтальмологам экспертам в данной области, один из которых кандидат

медицинских наук, обладающим опытом интерпретации анатомо-морфологи-

ческих структур глазного дна. На этом этапе выполняется детализированная

проверка, исправление ошибок предварительной разметки и формирование

окончательного варианта аннотаций, пригодного для последующего использо-

вания в обучении и валидации моделей анализа медицинских изображений.

Экспертная разметка включает следующие операции:

– проверка технического качества изображений и соответствия аннотиро-

ванных объектов целевым клиническим категориям;

– уточнение границ патологических структур, устранение ложноположи-

тельных и добавление пропущенных объектов;

– нормализация структуры масок, разделение слипшихся экземпляров и

унификация классов;

– финальная верификация, включающая повторный просмотр и контроль

согласованности принятых решений.

Ключевая задача данного этапа – обеспечение соответствия аннотаций

клиническим критериям и морфологическим стандартам, принятым в офталь-

мологии. Разметка выполняется на уровне экземпляров: каждый отдельный

очаг патологии выделяется как отдельный объект с присвоением класса и

атрибутов. Это обеспечивает возможность количественной оценки признаков

заболевания и формирует основу для обучения сегментационных моделей, ори-

ентированных на интерпретируемые и стандартизированные результаты.

Экспертная разметка является связующим звеном между предваритель-

ными нейросетевыми предсказаниями базовой модели SAM и конечным форми-

рованием клинически достоверной коллекции данных. Именно она обеспечивает

объективность, воспроизводимость и доверие к данным, что критически важно

для задач построения и оценки интеллектуальных систем в офтальмологиче-

ской практике.



31

1.9 Характеристики полученной коллекции данных

Разработанный набор данных предназначен для обучения и объектив-

ной валидации моделей сегментации в задаче автоматизированной диагностики

диабетического макулярного отёка по изображениям оптической когерентной

томографии. В коллекцию включено 900 полноразмерных B-срезов глазного

дна с разрешением 512×1024 пикселя, полученных из открытых источников и

прошедших полную ручную аннотацию в формате сегментации экземпляров.

Разметка выполнена двумя независимыми врачами-офтальмологами с последу-

ющей верификацией по протоколу «золотого стандарта».

Всего в датасете содержится 6752 экземпляра биомаркеров, относящихся

к восьми ключевым классам патологических изменений, связанных с ДМО. Рас-

пределение по классам: HE – 1140, HF – 882, IRC – 2310, EZD – 516, SRF – 502,

VMT – 403, DRIL – 375, ERM – 624. Наличие широкого диапазона представлен-

ных структур от очагов отёка и экссудатов до дезорганизации внутренних слоёв,

что обеспечивает как клиническую репрезентативность, так и полноту охвата

возможных проявлений заболевания.На рис. 2.6 представлен пример изображе-

ний из описываемой коллекции данных.

Рисунок 1.3 — Пример изображений коллекции данных биомаркеров ДМО

Каждая маска отражает точные границы отдельного очага, включая слу-

чаи перекрытия и сложной геометрии. Это позволяет использовать набор для

обучения и тестирования современных архитектур сегментации, включая мо-

дели, ориентированные на мелкие и трудноразличимые структуры. Данная

коллекция данных является первой, в котором представлены все восемь классов

биомаркеров, связанных с диабетическим макулярным отёком, размеченных

для решения задачи сегментации экземпляров. Cоздаёт основу для построения

высокоточных систем поддержки принятия решений в офтальмологии.
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1.10 Выводы к первой главе

1. Обоснована необходимость создания специализированных коллекций,

ориентированных на сегментацию экземпляров биомаркеров, с учётом

недостатков существующих наборов.

2. Разработана структура методики, включающая:

– предварительную фильтрацию изображений на основе нейросе-

тевой оценки качества;

– автоматизированную предразметку с использованием визуаль-

ных промптов;

– перекрёстную экспертную аннотацию.

3. Методика опирается на формализованный пайплайн, обеспечивающий

воспроизводимость, снижение трудозатрат и повышение клинической

достоверности данных.

4. Практическая реализация методики позволила сформировать первую

в своём роде коллекцию ОКТ-снимков для сегментации экземпляров

восьми биомаркеров ДМО.

5. Предложенная методика может быть адаптирована для других мо-

дальностей и задач анализа биомедицинских изображений, обеспечивая

масштабируемый подход к формированию валидационных наборов.
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Глава 2. Методы анализа ОК-томограмм

2.1 Теоретические основы анализа ОК-томограмм

2.1.1 Оптическая когерентная томография

Оптическая когерентная томография (англ. Optical Coherence

Tomography, ОКТ) – неинвазивный метод послойной визуализации биоло-

гических тканей с микронным аксиальным разрешением, основанный на

низкокогерентной интерферометрии ближнего инфракрасного излучения.

Метод был впервые описан в 1991 году [74].

Благодаря прозрачности оптических сред глаза и выраженной слоистой

структуре сетчатки оптическая когерентная томография (ОКТ) быстро ста-

ла стандартом визуализации в офтальмологии, поскольку сочетает микронное

аксиальное разрешение (порядка 5–6 µm у клинических SD-OCT-систем) с пол-

ной неинвазивностью и возможностью многократного повторения исследования

без лучевой нагрузки [75; 76]. Уникальное соотношение высокой детализации,

безопасности и оперативности получения данных позволяют в одном скане

визуализировать все десять гистологических слоёв сетчатки и количественно

оценивать патологические изменения. Ряд клинических руководств, включая

рекомендации NICE по активной форме возрастной макулярной дегенерации,

прямо предписывают использовать ОКТ в качестве метода первичного выбо-

ра [77].

OКT-ангиография (OCT-A) дополнительно визуализирует микрососуди-

стую сеть без контрастного агента за счёт анализа движущихся эритроцитов.

В совокупности это делает ОКТ незаменимой при макулярной дегенерации,

диабетической ретинопатии, глаукоме и других патологиях глаза.

Оптическая когерентная томография основана на низкокогерентной ин-

терферометрии в интерферометре Майкельсона, где излучение делится на

объектный и эталонный пучки. Интерференционный сигнал регистрируется,

когда оптическая разность хода ∆l не превышает длину когерентности источ-

ника. Интенсивность описывается:
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I(∆l) = Is + Ir + 2
√

IsIr Re[γ(∆l)] cos

(

2π∆l

λ0

)

, (2.1)

где γ(∆l) — степень когерентности, λ0 — центральная длина волны.

Аксиальное разрешение для источника с гауссовым спектром [78]:

∆z ≈
2 ln 2

π
·
λ20
∆λ

, (2.2)

что при λ0 = 840 нм и спектральной ширине источника ∆λ = 50 нм даёт

теоретически ≈ 6.2 µm (практически 6–7 µm с учётом дисперсии).

Латеральное разрешение ограничивается дифракцией фокусирующей оп-

тики:

∆x ≈
1.22 λ0

2NA
, (2.3)

при числовой апертуре объектива NA = 0.04 и λ0 = 840 нм, ∆x ≈ 12.8 µm.

Таким образом, аксиальное разрешение определяется спектром источника

и отвечает за разделение слоёв сетчатки, в то время как латеральное зависит

от оптики и задаёт поперечную детализацию структур внутри слоёв.

Выделяют следующие типы данных, основанные на способе визуального

отборажения результатов сканирования:

– A–скан — одномерный профиль отражения по глубине;

– B–скан — поперечное сечение (последовательность A–сканов при скани-

ровании вдоль поверхности);

– en face — аксиальное сечение;

– 3D–кубы (объёмная реконструкция исследуемой области) формируются

из серий B–сканов.

Согласно [79] современные ОКТ-системы подразделяются на 3 поколения:

– TD–OCT (Time–Domain). Светоделитель расщепляет падающий свет на

эталонную длину волны, которая настраивается для различных глубин,

в то время как свет образца отражается от наблюдаемой ткани и реком-

бинируется на датчике для получения единого профиля ткани.

– SD–OCT (Spectral–Domain). Принцип действия аналогичен TD–OCT,

но датчик преобразован в спектрометр для разделения отражённого

света на длины волн (λ) с помощью дифрактора. Комбинация отдель-

ных изображений, полученных с помощью λ, создаёт преобразование

Фурье для получения информации о глубине (A–сканирование).
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– SS–OCT (Swept–Source). Также основан на БПФ, как и SD–OCT. В

качестве источника света используется широкоугольный перестраивае-

мый лазер. Фотоприемник преобразует передаваемые сигналы в шум

(изображения).

Таблица 1 — Классификация ОКТ—систем

Тип λ0 (нм) Скорость, тыс

A–сканов/с

Аксиальное

разрешение, мкм

TD–OCT 810 0.4 k 8–10

SD–OCT 840 20–52 5–7

SS–OCT ∼1050 100–400 5.3

Оптическая когерентная томография остаётся единственным полностью

неинвазивным методом, способным отображать все десять гистологических сло-

ёв сетчатки с микронной точностью и при этом давать числовые метрики

толщины, объёма и кровообращения. Именно поэтому ОКТ фигурирует как

обследование «первой линии» в международных руководствах, например, в

«Preferred Practice Pattern» Американской академии офтальмологии по гла-

укоме [80]. Тем не менее для полной клинической картины офтальмологи

используют и другие технологии, каждая из которых восполняет ограничения

ОКT (табл. 2). Ниже кратко перечислены их сильные и слабые стороны чтобы

показать, почему именно ОКТ остаётся «опорной» методикой, а не взаимоза-

меняемой с альтернативами.

Альтернативные технологии дополняют, но не вытесняют ОКТ:

– УБМ спасает, когда роговица или хрусталик непрозрачны, но её про-

странственное разрешение в 3–4 раза хуже.

– FA остаётся эталоном для оценки утечки, однако инвазивность и систем-

ные риски ограничивают частоту её применения.

– SLO и автофлуоресценция дают метаболическую информацию, но без

третьего измерения.

– 7T МРТ открывает окно к метаболизму сетчатки, однако по детализа-

ции проигрывает ОКТ на два порядка.

Таким образом, в большинстве клинических сценариев именно ОКТ обес-

печивает критически важную комбинацию микронного разрешения, полной

неинвазивности, высокой воспроизводимости и количественного анализа, что



36

делает её краеугольным камнем как диагностики, так и всех современных ис-

следований, включая настоящий проект.

Несмотря на микронное разрешение и неинвазивность, ОКТ чувствитель-

на к ряду физических явлений, способных искажать изображение или занижать

достоверность количественных измерений. Знание этих ограничений критично:

неправильная трактовка артефакта может привести к ложноположительной

(или ложноотрицательной) диагностике, в то время как своевременное распо-

знавание проблемы позволяет выбрать альтернативный метод (УБМ, FA) либо

повторить сканирование после коррекции настроек. Примеры таких ограниче-

ний и артефактов:

– Оптические помутнения медиальных сред. Катаракта, корнеальные руб-

цы и гемофтальм рассеивают и поглощают ИК-излучение, снижая

отношение сигнал/шум (SNR) и делая глубокие слои неразличимыми.

Для корректировки переходят на более длинную волну (1050–1310 нм),

расширяют зрачок, усредняют несколько B–сканов.

– Артефакты движения глаза. Мигание вызывают смещение строчек

B–скана, ступенчатую геометрию 3D–кубов и ложные разрывы. Для

устранения используют eye–tracking, пост–обработку с выравниванием

слоёв и увеличение частоты сканирования.

– Спекл–шум. Когерентная интерференция создаёт зернистую струк-

туру (speckle), маскирующую тонкие детали и ухудшающую работу

ИИ–алгоритмов. Для подавления используют частотное усреднение и

шумоподавители на основе глубокого обучения.

Комплексное понимание физики артефактов и протоколов их миними-

зации делает ОКТ не просто высокоразрешающей камерой, но надёжным

количественным инструментом.

2.1.2 Диабетический макулярный отёк

Диабетический макулярный отёк (ДМО) определяется как осложнение

сахарного диабета, проявляющееся накоплением жидкости в центральной зоне

сетчатки, утолщением макулы и нарушением её послойной архитектуры, что

приводит к снижению центрального зрения [85]. В контексте визуализации
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основным инструментом оценки ДМО является оптическая когерентная томо-

графия (ОКТ), позволяющая послойно отображать морфологию макулярной

области и количественно оценивать отёк (толщину, объём) и сопутствующие

структуры.

К числу характерных ОКТ-биомаркеров ДМО относятся:

– DRIL (disorganization of retinal inner layers) – дезорганизация внутренних

слоёв сетчатки; на ОКТ визуализируется как участок с отсутствием чёткой

стратификации, без различимых границ между слоями [86].

– ERM (epiretinal membrane) – эпиретинальная мембрана; определяется как

гиперрефлективная линия на внутренней поверхности сетчатки, сопровож-

дается деформацией фовеального контура [87].

– EZD (ellipsoid zone disruption) – нарушение зоны эллипсоидов; проявляется

как прерывание или исчезновение гиперрефлективной полосы зоны фоторе-

цепторов [88].

– HE (hard exudates) – твёрдые экссудаты; визуализируются как локальные

гиперрефлективные включения в наружных слоях сетчатки, часто с эффек-

том затенения [89].

– HF (hyperreflective foci) – гиперрефлективные фокусы; представлены мно-

жественными мелкими точечными гиперрефлективными элементами без

заднего затенения, отличающиеся от HE меньшим размером [90].

– IRC (intraretinal cysts) – интраретинальные кисты; определяются как гипо-

рефлективные полости с тонкой стенкой, могут сливаться и деформировать

фовеальный контур [91].

– MH (macular hole) – макулярное отверстие; щелевидный или округлый

дефект в центральной зоне сетчатки, может быть ламеллярным или пол-

нослойным [87].

– SRF (subretinal fluid) – субретинальная жидкость; гипорефлективное про-

странство между нейросенсорной сетчаткой и пигментным эпителием,

контуры как правило чёткие [92].

– VMT (vitreomacular traction) – витреомакулярная тракция; частичное от-

слоение стекловидного тела с точечной фиксацией в фовеа, тянущее

внутреннюю поверхность сетчатки [87].

Совокупный анализ вышеуказанных ОКТ-биомаркеров позволяет коли-

чественно и качественно оценить выраженность ДМО, дифференцировать

морфологические подтипы и проводить мониторинг эффективности терапии.
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Их типизация лежит в основе алгоритмов компьютерного зрения и стандарти-

зации офтальмологической оценки в клинической практике [85].

2.1.3 Обзор литературы и источников

Для формирования настоящего обзора литературы применены реко-

мендации PRISMA 2020: поиск проводился в профильных научных базах

(PubMed/MEDLINE, Scopus, IEEE Xplore) с использованием ключевых слов

(optical coherence tomography/OCT, retina, segmentation, instance segmentation,

DRIL, ERM, EZD, HE, HF, IRC, IRF, SRF, VMT). Выполнялись автоматиче-

ская дедупликация записей, двухэтапный скрининг (по заголовку и аннотации,

затем полнотекстовый анализ). Критерии включения: оригинальные исследо-

вания, использующие ОКТ-B-scan для задач сегментации (семантической или

экземпляров), опубликованные в рецензируемых журналах и конференционных

сборниках; языки публикаций – русский и английский. Исключались работы,

посвящённые только классификации без сегментации, использующие иные мо-

дальности визуализации, а также статьи без доступа к полному тексту или без

указания метрик качества.

Систематизированные публикации по анализу ОКТ-изображений демон-

стрируют преобладание семейства U-Net и его модификаций в задачах семан-

тической сегментации: Residual U-Net для гиперрефлективных фокусов [93],

базовый U-Net для биомаркеров ДМО и сопутствующих патологий [94—96],

Attention U-Net для совместной сегментации слоёв и жидкостей [97], U-Net++

для повышения точности локализации [98], а также применение U-Net в специ-

фических когортах [99]. К альтернативам относятся SegNet для эпиретинальной

мембраны [100], Mask R-CNN для областей утраты эллипсоидной зоны [101],

ансамбли U-Net для сегментации жидкостей [102], архитектуры семейства

FCN [103], а также адаптация универсальных сегментаторов SAM [104; 105]

и SAM2/MedSAM2 [50]. При этом подавляющее большинство работ ограничи-

вается семантической постановкой без разделения пересекающихся объектов;

полноценное применение сегментации экземпляров к ОКТ-биомаркерам ранее

не описано, за редкими частными попытками [101]. Сводное сравнение пред-

ставлено в таблице 3.
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Корпус данных охватывает как открытые, так и приватные наборы:

RETOUCH [106], AROI [107], OIMHS [108], широко используемые коллекции

Kermany и Lu [47; 109], а также современные OCTDL и OCT5k [110; 111]. В

ряде работ использованы закрытые клинические наборы различного объёма

[94; 101]. Комбинирование крупных открытых баз с клиническими примерами

повышает обобщаемость и устойчивость метрик.

По охвату биомаркеров чаще всего сегментируются интраретинальная

жидкость и кисты (IRF/IRC) [95; 96; 112], нарушения эллипсоидной зоны (EZD)

[100; 101], субретинальная жидкость (SRF) [97; 104], отслойка пигментного эпи-

телия (PED) [102; 103], гиперрефлективные фокусы (HF) [93]. Реже отмечаются

ERM и DRIL. Детальный охват классов приведён в таблице 4.

Компоненты объяснимого ИИ в анализируемых работах внедрены огра-

ниченно: за исключением механизмов внимания в Attention U-Net [97], боль-

шинство моделей остаются "чёрными ящиками что снижает клиническую

интерпретируемость и подчёркивает перспективность интеграции XAI-модулей.

В итоге, рассмотрения данных таблиц 3 и 4 : доминирование

U-Net-подобных семантических схем, ограниченная интеграция ОИИ и от-

сутствие публикаций, формулирующих сегментацию ОКТ-биомаркеров как

задачу сегментации экземпляров.

2.2 Описание предлагаемого метода

Предложенный метод представляет собой интерпретируемый конвейер

анализа ОКТ-снимков для диагностики диабетического макулярного отёка. Он

основан на последовательной интеграции нейросетевых моделей классификации

и сегментации с логическим выводом. Структура метода включает следующие

этапы:

1. Предобработка изображения. Выполняется нормализация размеров и

контрастности изображения, подавление артефактов и автоматическая

фильтрация по техническому качеству. Это обеспечивает однородность

входных данных и стабильность работы последующих модулей.

2. Бинарная классификация. С использованием нейросетевой модели

определяется наличие или отсутствие признаков диабетического маку-



40

лярного отёка. В случае отсутствия патологии обработка завершается

с информированием пользователя.

3. Формирование визуального объяснения. При положительном результа-

те классификации формируется тепловая карта внимания (Grad-CAM),

отображающая значимые для модели участки изображения. Это позво-

ляет проводить аудит решений и повышает доверие к системе.

4. Сегментация экземпляров. Активируется сегментационный модуль, вы-

полняющий разметку отдельных объектов по классам биомаркеров.

Разметка осуществляется в формате экземпляров, с сохранением ин-

дивидуальных масок для каждого проявления патологии.

5. Анализ сегментированных масок. Для каждого класса биомаркеров

подсчитывается количество объектов и их суммарная площадь. Полу-

ченные численные характеристики формируют основу для последую-

щего анализа.

6. Сравнение с историей наблюдений. Извлечённые характеристики сопо-

ставляются с ранее сохранёнными результатами обследований конкрет-

ного пациента, что позволяет оценить динамику состояния и выявить

признаки прогрессирования или регресса.

7. Логический вывод. На основании текущих и исторических данных при-

меняется логический классификатор, использующий базу правил. Это

обеспечивает интерпретируемое заключение о наличии, типе и выра-

женности патологии.

8. Формирование результатов. Пользователю предоставляются диагности-

ческие метрики, визуализации (включая маски и тепловые карты) и

текстовое заключение, пригодное для медицинской документации и по-

следующего мониторинга.

Метод сочетает точность нейросетевых алгоритмов с интерпретируемо-

стью логического анализа и может быть адаптирован для интеграции в

клинические информационные системы.
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Рисунок 2.1 — Блок-схема предлагаемого метода анализа ОКТ-снимков

2.3 Коллекции данных

В работе использована коллекция OCTDL, содержащая более 2000 B-сре-

зов, полученных на системе Optovue Avanti RTVue XR. Набор охватывает
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широкий спектр макулярных и сосудистых патологий, включая AMD, DME,

ERM, RAO, VID. Аннотация выполнена поэтапно: первичная классификация,

двойная разметка офтальмологами и финальная верификация экспертом. Раз-

метка предоставлена только на уровне диагноза, для задач классификации.

Также сформирован специализированный датасет для сегментации эк-

земпляров биомаркеров ДМО, включающий 900 полноразмерных B-срезов с

разрешением 512×1024 пикселя, отобранных из открытых источников и полно-

стью размеченных в формате сегментации экземпляров. Разметку выполняли

два независимых офтальмолога с последующей верификацией. Всего отмечено

6752 экземпляра по восьми классам: HE – 1140, HF – 882, IRC – 2310, EZD –

516, SRF – 502, VMT – 403, DRIL – 375, ERM – 624. Коллекция позициониру-

ется как первая, где представлены все восемь указанных классов для решения

задачи сегментации экземпляров; пример изображений показан на рис. 1.2. Для

обучения моделей применялось разбиение 70 % / 15 % / 15 % (train/val/test).

Оба набора данных использованы в диссертации взаимодополняющим об-

разом: OCTDL – для обучения и объективной валидации этапа классификации,

собственная коллекция – для обучения и оценки моделей сегментации экзем-

пляров биомаркеров ДМО.

2.4 Предподготовка изображений

В контексте методов анализа ОК-томограм предподготовка изображе-

ний выполняет важную функцию стандартизации данных, обеспечивая их

совместимость с алгоритмами машинного обучения и снижая влияние тех-

нических артефактов. Как подробно описано в пункте 1.4, данный этап

включает масштабирование томограмм до фиксированного разрешения с со-

хранением пропорций, нормализацию яркости и сглаживание шума. Однако с

учётом специфики входных требований большинства нейросетевых архитектур,

в дальнейшем используется только операция нормализации, обеспечивающая

приведение значений пикселей к допустимому диапазону без искажения струк-

турной информации. Такой подход позволяет минимизировать вмешательство

в исходные данные, сохраняя при этом необходимую совместимость с моделями

глубокого обучения.
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2.5 Предварительная классификация

2.5.1 Модель EfficientNetB0

EfficientNet — это семейство моделей СНС, предложенное Мингсином

Таном и Куоком Ле в 2019 году для более эффективного использования па-

раметров и вычислительных ресурсов при высокой точности классификации

изображений [113]. Архитектура этих моделей была оптимизирована с исполь-

зованием автоматического поиска архитектур (англ. Neural Architecture Search,

NAS) в сочетании с принципом комбинированного масштабирования.

В отличие от большинства ранее предложенных архитектур СНС,

EfficientNet объединяет в себе три ключевых конструктивных решения:

во-первых, компактную и автоматически найденную базовую архитектуру

(EfficientNet-B0); во-вторых, систематическое масштабирование всех трёх ос-

новных параметров модели — глубины, ширины и разрешения входнящих

изображений; в-третьих, использование высокоэффективных архитектурных

блоков – MBConv-блоков, дополненных механизмом Squeeze-and-Excitation.

Архитектура EfficientNet организована как последовательность стадий,

каждая из которых включает несколько однотипных сверточных блоков. При

этом, пространственное разрешение входящихтензоров последовательно умень-

шается от стадии к стадии, в то время как глубина увеличивается. Формально

архитектуру модели можно описать как композицию функций, соответствую-

щих каждой стадии:

N = F1 ◦ F2 ◦ · · · ◦ FK(X), (2.4)

где X — входной тензор, Fi — i-й сверточный блок или стадия, K — общее

число стадий в архитектуре. Такое представление подчёркивает модульную при-

роду архитектуры EfficientNet, позволяющую реализовать последовательную

трансформацию признаков через каскад компактных и эффективно спроекти-

рованных сверточных блоков.

Каждая стадия в архитектуре характеризуется следующими параметра-

ми:
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– Hi,Wi — высота и ширина входной карты признаков (т.е. пространствен-

ное разрешение);

– Ci — число выходных каналов после стадии;

– Li — количество повторений блока (глубина стадии);

– k × k — размер ядра свёртки;

– t — коэффициент расширения (expansion factor), который определяет,

во сколько раз увеличивается число каналов внутри блока;

– s — шаг (stride), определяющий, происходит ли понижение разрешения

(обычно s = 2 означает downsampling, s = 1 — сохранение размера).

Стадии отличаются друг от друга по следующим признакам:

– Разрешение входа уменьшается от стадии к стадии;

– Число каналов растет, обеспечивая более абстрактное представление

признаков;

– Размер ядра может быть 3× 3 или 5× 5;

– На более поздних стадиях число повторов блоков увеличивается.

Таблица 5. Характеристики архитектуры EfficientNet-B0

Стадия Операция Разрешение Каналы Повторы Stride Ядро

1 Conv2D 224× 224 32 1 2 3

2 MBConv1, SE 112× 112 16 1 1 3

3 MBConv6, SE 112× 112 24 2 2 3

4 MBConv6, SE 56× 56 40 2 2 5

5 MBConv6, SE 28× 28 80 3 2 3

6 MBConv6, SE 14× 14 112 3 1 5

7 MBConv6, SE 14× 14 192 4 2 5

8 MBConv6, SE 7× 7 320 1 1 3

9 Conv1×1 + Pool + FC 7× 7 1280 1 —

Основной элемент архитектуры EfficientNet — это MBConv-блок, впервые

предложенный в MobileNetV2 [114], а затем усовершенствованный в EfficientNet

за счёт добавления механизма Squeeze-and-Excitation [115]. MBConv-блок реа-

лизует инвертированную бутылочную структуру, направленную на сохранение

информативных признаков при снижении количества операций и параметров.
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Структура блока включает последовательные компоненты:

Во-первых, выполняется расширение (англ. expansion) – операция 1 ×

1-свёртки, увеличивающая число каналов входного тензора Cin до Cexp = t ·Cin,

где t — коэффициент расширения. Входной тензор X ∈ R
H×W×C преобразуется

следующим образом:

Xexp = Conv1×1(X), dim(Xexp) = H ×W × tC. (2.5)

Затем применяется глубинная свёртка (англ. depthwise convolution), осу-

ществляемая отдельно для каждого канала:

Xdw = DWConvk×k(Xexp). (2.6)

Следующим этапом является механизм Squeeze-and-Excitation, реализу-

ющий адаптивную перекалибровку каналов. Сначала выполняется глобальное

усреднение по пространству:

zc =
1

H ·W

H
∑

i=1

W
∑

j=1

X
(i,j,c)
dw , (2.7)

где zc — усреднённая активация по c-му каналу. Далее через двухслойную пол-

носвязную сеть формируется вектор:

s = σ(W2 · ReLU(W1z)), (2.8)

и выполняется масштабирование каналов:

Xse = Xdw · s. (2.9)

Затем применяется проекция (англ. projection) с использованием 1 ×

1-свёртки, возвращающей тензор к исходному числу каналов C:

Xproj = Conv1×1(Xse), dim(Xproj) = H ′ ×W ′ × C. (2.10)

Наконец, если s = 1 и размерности совпадают, используется остаточная

связь:

Y = Xproj +X. (2.11)

Таким образом, MBConv-блок реализует эффективную глубинную свёрт-

ку, усиливающую выраженность признаков, с одновременным сохранением

компактности архитектуры.

После всех MBConv-стадий выходной тензор имеет форму 7 × 7 × 320.

Далее выполняются следующие операции:
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– 1× 1 свёртка до 1280 каналов;

– Global average pooling: 7× 7→ 1× 1;

– Полносвязный слой (FC) для классификации.

Если входное изображение имеет Cin = 3 канала и размер 224 × 224, то

выход EfficientNet-B0 – это вектор длины 1000 (для задачи ImageNet), который

вычисляется по формуле:

ŷ = softmax (WFC ·GAP(Xfinal) + b) (2.12)

где GAP – операция глобального усреднения, WFC ∈ R
1000×1280 – матрица весов

полносвязного слоя.

В качестве функции активации в EfficientNet используется SiLU – Sigmoid

Linear Unit, определяемая следующим образом:

SiLU(x) = x · σ(x) (2.13)

где σ(x) – сигмоида. Эта функция показала лучшие результаты по сравнению с

ReLU в глубоких архитектурах [116]. Для нормализации после каждой свёртки

в EfficientNet применяется Batch Normalization [117].

2.5.2 Обучение и валидация, результаты

Обучение модели EfficientNetB0 на датасете OCTDL выполнено с ис-

пользованием отложенной выборки. Для оценки качества применены мет-

рики F1-score и Recall. Модель достигла устойчиво высоких результатов

(выше 95%), что подтверждает её применимость для автоматического анализа

ОКТ-снимков. Результаты классификации по классам представлены в табл. 6.

2.6 Метод объяснительного ИИ

В данной работе для получения визуального объяснения этапа предва-

рительной классификации ОКТ-снимков на основе нейросетевой архитектуры

EfficientNetB0 применяется метод Class Activation Mapping (CAM). Выбор CAM
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обусловлен тем, что архитектура EfficientNet содержит слой глобального усред-

нения по каналам (Global Average Pooling, GAP), за которым следует линейный

классификатор, что соответствует необходимым условиям применения дан-

ного метода. CAM позволяет восстановить пространственное распределение

признаков, задействованных в процессе классификации, и выделить области

изображения, наиболее существенно влияющие на итоговое решение модели.

Рисунок 2.2 — Пример получения визуального объяснения методом САМ

2.7 Сегментация экземпляров биомаркеров ДМО

2.7.1 Модель YOLOv8

Модель YOLOv8 представляет собой современное развитие семейства

одноэтапных нейросетевых архитектур для анализа изображений. Модель объ-

единяет задачи детекции, сегментации и позовой оценки в единую модульную

структуру с поддержкой масштабирования, anchor-free подхода и разделённого

head-а, обеспечивая высокую точность при работе в реальном времени. Эволю-

ция YOLO началась с YOLOv1 [118], продолжилась через YOLOv2/YOLO9000

[119], YOLOv3 [120], YOLOv4 [121] и YOLOv5 [122], и достигла современной

реализации в YOLOv8 [123].
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YOLOv8-seg состоит из трёх основных компонентов: блока извлечения

признаков (backbone), блока агрегации признаков (neck) и блока выходных

предсказаний (head). В качестве backbone используется архитектура C2f (Cross-

Stage-Partial with fuse), пришедшая на смену CSP-блокам. Она обеспечивает

улучшенный поток градиента и компактность модели за счёт конкатенации про-

межуточных выходов нескольких bottleneck-блоков. Верхняя часть backbone

включает модуль быстрого пирамидального пула SPPF, позволяющий учиты-

вать многошкальный контекст без потери производительности.

Блок агрегации признаков представлен PAN (Path Aggregation Network)

[124], реализующим двунаправленную агрегацию: восходящий поток усиливает

локальные признаки, а нисходящий — распространяет семантическую инфор-

мацию, что особенно важно для точной сегментации мелких объектов.

Блок выходных предсказаний построен по принципу разделения задач

(decoupled head): регрессия и классификация обрабатываются независимо,

что повышает точность и устойчивость обучения. Для детекции использует-

ся anchor-free подход [125], избавляющий от необходимости подбора якорей и

повышающий переносимость модели. Сегментация реализуется с помощью про-

тотипной масочной ветви: на основе карты признаков генерируются прототипы,

а маска восстанавливается линейной комбинацией с учётом коэффициентов для

каждого сегмента [126]. Общая схема архитектуры модели YOLOv8 представ-

лена на рис. 2.3.

Модель масштабируется в пяти вариантах (n, s, m, l, x), позволяя выбрать

баланс между точностью и скоростью в зависимости от вычислительных ресур-

сов [123]. Характеристики модельного ряда приведены в таблице 7.

В процессе обучения используется оптимизатор AdamW, косинусное

или одноцикловое планирование скорости обучения, EMA (экспоненциальное

сглаживание весов) и набор аугментаций (Mosaic, MixUp и др.). Инференс оп-

тимизирован за счёт поддержки FP16, ONNX/TensorRT и class-agnostic NMS.

Функция потерь представляет собой сумму трёх компонент:

L = λclsLcls + λboxLbox + λmaskLmask. (2.14)

где Lcls – кросс-энтропия по классам:

Lcls = −
1

N

N
∑

i=1

C
∑

c=1

[yi,c log p̂i,c + (1− yi,c) log(1− p̂i,c)] . (2.15)
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Рисунок 2.3 — Архитектура модели YOLOv8

Компонент локализации рассчитывается через IoU или его обобщения:

Lbox =
1

N

N
∑

i=1

(

1− IoU(Bi, B̂i)
)

. (2.16)

Компонент маски формулируется как бинарная кросс-энтропия:

Lmask = −
1

M

M
∑

j=1

[mj log m̂j + (1−mj) log(1− m̂j)] . (2.17)

Таким образом, YOLOv8-seg представляет собой компактную, точную и

масштабируемую архитектуру, пригодную для задач анализа изображений в

реальном времени.
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2.7.2 Модель BiFPN

Модель BiFPN (англ. Bidirectional Feature Pyramid Network) предназна-

чена для эффективной агрегации признаков из различных уровней иерархии

пространства признаков в СНС. В отличие от классических FPN [127] и PAN

[128], где направление передачи информации строго определено (вверх или

вниз), архитектура BiFPN обеспечивает двунаправленную агрегацию признаков

с использованием взвешенного объединения, в котором веса являются обучае-

мыми параметрами (см. рис. 2.4). Это позволяет адаптивно определять вклад

каждого уровня в итоговое представление и повышает точность при ограничен-

ных вычислительных ресурсах [129].

Рисунок 2.4 — Архитектура BiFPN

Пусть {Xi}
m
i=1 – входные карты признаков, приведённые к одному масшта-

бу. BiFPN вычисляет нормализованные веса по формуле:

w̃i =
max(0, wi)

ε+
∑m

j=1max(0, wj)
, (2.18)

и формирует результат объединения:

Y = ϕ

(

m
∑

i=1

w̃i ·Xi

)

, (2.19)
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где ϕ – последовательность операций свёртки, нормализации и активации.

Такая схема обеспечивает устойчивую комбинацию признаков, а веса автома-

тически подстраиваются под каждый уровень.

BiFPN упрощает структуру графа пирамиды, удаляя узлы с единствен-

ным входом и добавляя перекрёстные соединения между соседними уровнями.

Каждый блок BiFPN повторяется несколько раз, реализуя итеративную обра-

ботку. Благодаря разделимым по каналам свёрткам, вычислительная нагрузка

значительно снижается, что особенно важно для мобильных применений.

Архитектура легко масштабируется: количество каналов и повторов

блоков увеличивается согласованно с масштабом модели [130], обеспечивая оп-

тимальный баланс между точностью и вычислительными затратами.

BiFPN обладает рядом архитектурных преимуществ, обеспечивающих её

эффективность и универсальность: обучаемое взвешенное объединение при-

знаков позволяет заменить фиксированную сумму адаптивной, регулируемой

на основе данных; двунаправленная агрегация информации между уровня-

ми повышает согласованность семантических и пространственных признаков;

повторяющиеся блоки агрегации упрощают реализацию и масштабирование;

архитектура легко интегрируется в модели различной сложности без необходи-

мости её модификации; ограничение весов обеспечивает устойчивое поведение

во время обучения.

2.7.3 Механизм внимания Coordinate Attention

Механизм Coordinate Attention (CA) предназначен для повышения каче-

ства извлечения признаков в сверточных нейросетях путём одновременного

моделирования важности каналов и пространственного положения объектов.

В отличие от SE-блока, где глобальное усреднение по пространству полностью

теряет координатную информацию [131], CA сохраняет её, разлагая агрегацию

на две ортогональные оси, что особенно важно для обнаружения мелких или

вытянутых объектов, где ключевую роль играют ориентация и локализация

[132]. Графическое представление механизма CA представлена на рис. 2.5.

Пусть входная тензорная карта признаков обозначена как X ∈ R
C×H×W ,

где C — число каналов, H и W – высота и ширина карты.
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Рисунок 2.5 — Структура механизма внимания Coordinate Attention

Сначала выполняется раздельное усреднение по ширине и высоте:

ph(c, y) =
1

W

W
∑

x=1

X(c, y, x), pw(c, x) =
1

H

H
∑

y=1

X(c, y, x), (2.20)

где ph ∈ R
C×H×1, а pw ∈ R

C×1×W – эти признаки объединяются, проходят

через еденичную свёртку с уменьшением размерности в r = 16 раз, затем че-

рез нормализацию и нелинейность. После этого применяются две независимые

еденичные свёртки и сигмоида:

ah = σ(Conv(h)1×1(fh)), aw = σ(Conv(w)1×1(fw)). (2.21)

Затем исходные признаки масштабируются с помощью полученных весов:

Y (c, y, x) = X(c, y, x) · ah(c, y) · aw(c, x). (2.22)

Такой подход позволяет учитывать пространственную ориентацию и гло-

бальный контекст без существенного увеличения числа параметров. Coordinate

Attention превосходит SE и CBAM [133] в задачах, где важно учитывать рас-

положение и форму объектов. Он обеспечивает высокую точность при низкой

вычислительной стоимости и легко интегрируется в существующие архитекту-

ры, включая мобильные.

2.7.4 Модификация базовой модели

Модель-модификация YOLOv8-BiFPN-Coordinate Attention направлена

на повышение точности сегментации мелких деталей за счёт усовершенствова-
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ния путей агрегации признаков и внедрения пространственно-чувствительного

внимания в архитектуру YOLOv8-seg.

В рамках модификации стандартный блок агрегации признаков заменяет-

ся на BiFPN, позволяющую объединять признаки с разных уровней разрешения

более гибко. В отличие от обычного суммирования, в BiFPN используется

обучаемое взвешивание признаковых карт, что позволяет модели самостоятель-

но определять, какие уровни более информативны для конкретного объекта.

Благодаря двунаправленному распространению информации улучшается согла-

сование признаков, особенно важных при обработке мелких или вытянутых

объектов. Это положительно сказывается на точности локализации и сегмента-

ции тонких контуров, которые часто теряются при использовании стандартных

иерархических структур.

Дополнительное улучшение достигается за счёт внедрения механизма

Coordinate Attention, встроенного как в блоки извлечения признаков, так и

между уровнями агрегации. В отличие от традиционных модулей внимания,

Coordinate Attention сохраняет пространственную структуру признаков, позво-

ляя модели акцентировать внимание не только на важнейших каналах, но и на

их положении в изображении. Это особенно важно при работе с мелкими или

вытянутыми структурами, такими как сосуды, трещины, контуры объектов и

другие элементы, представленные малым числом пикселей.

Интеграция BiFPN и Coordinate Attention даёт комплексное улучше-

ние: BiFPN усиливает многоуровневое представление признаков, а Coordinate

Attention позволяет направленно фильтровать и усиливать пространственно

важные регионы. Такая комбинация даёт прирост точности масочной сегмента-

ции без существенного увеличения вычислительной нагрузки. Особенно заметен

эффект при работе с изображениями, насыщенными мелкими деталями – в за-

дачах медицинской диагностики.

Таким образом, предложенная модификация архитектуры YOLOv8, до-

полненная BiFPN и Coordinate Attention, демонстрирует устойчивое улучшение

сегментации за счёт усиления пространственного и многоуровневого внимания,

что делает её особенно перспективной для задач, требующих точного выделе-

ния мелких объектов и структур.
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2.7.5 Метрики оценки качества

Для оценки качества моделей в задачах сегментации применяются специ-

альные метрики, позволяющие количественно определить степень совпадения

предсказанной и истинной масок классов. В данной работе рассматриваются

две метрики: Intersection over Union (IoU) и коэффициент сходства Dice (DSC).

Обе метрики применимы как в бинарной, так и в многоклассовой сегментации.

Метрика Intersection over Union, также известная как индекс Жаккара,

определяется как отношение площади пересечения предсказанной и истинной

областей к площади их объединения:

IoU =
areaintersection

areaunion

, (2.23)

где areaintersection – площадь пересечения областей, а areaunion – площадь

их объединения.

В многоклассовой сегментации IoU рассчитывается отдельно для каждого

класса k:

IoUk =
TPk

TPk + FPk + FNk
, (2.24)

где:

– TPk – число пикселей, правильно отнесённых к классу k;

– FPk – число пикселей, ошибочно предсказанных как класс k;

– FNk – число пикселей класса k, не распознанных моделью.

Отмечается, что метрика IoU может быть чувствительна к ошибкам на

границах объектов, особенно при сегментации крупных структур [134].

Коэффициент Dice используется для измерения степени схожести между

двумя множествами пикселей и определяется следующим образом:

DSC =
2TP

2TP + FP + FN
. (2.25)

В многоклассовой сегментации коэффициент Dice также вычисляется от-

дельно для каждого класса k:

DSCk =
2TPk

2TPk + FPk + FNk
, (2.26)

где TPk, FPk, FNk имеют то же значение, что и в формуле для IoUk.
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Коэффициент Dice близок к единице при хорошем совпадении предска-

занной и истинной масок. Однако при перекрытии экземпляров одного класса

возможны переоценки точности сегментации [135].

Для более детальной оценки качества модели сегментации, особенно в за-

дачах с несколькими классами, целесообразно рассчитывать метрики отдельно

для каждого класса. Такой подход позволяет выявить, насколько эффектив-

но модель обнаруживает объекты конкретного класса, а также отличает их

от остальных.

В задачах сегментации оценка ведётся на уровне пикселей – каждый пик-

сель изображения рассматривается как отдельный пример, принадлежащий

одному из C классов. Для класса c определяются следующие значения:

– TPc – количество пикселей, правильно предсказанных как класс c;

– FPc – количество пикселей, ошибочно предсказанных как класс c;

– FNc – количество пикселей истинного класса c, нераспознанных моде-

лью;

– TNc – количество пикселей, правильно предсказанных как не принад-

лежащие классу c.

На основе этих величин определяются метрики чувствительности и спе-

цифичности для каждого класса:

Sensitivityc =
TPc

TPc + FNc
, (2.27)

Specificityc =
TNc

TNc + FPc
. (2.28)

Чувствительность (англ. sensitivity) отражает долю пикселей класса c,

правильно распознанных моделью. Она показывает, насколько эффективно

модель обнаруживает все области заданного класса. Высокое значение чувстви-

тельности особенно важно в медицинских задачах, где пропуск патологических

областей может привести к клинически значимым ошибкам.

Специфичность (англ. specificity) характеризует способность модели пра-

вильно исключать пиксели, не принадлежащие классу c, и минимизировать

количество ложноположительных предсказаний. Это важно для снижения чис-

ла ложных срабатываний и повышения доверия к модели при практическом

применении.
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Таким образом, использование чувствительности и специфичности, рас-

считанных по каждому классу, позволяет получить более полную картину

производительности модели сегментации, особенно в условиях несбалансиро-

ванных классов и медицински значимых объектов.

2.7.6 Обучение, валидация, результаты

Для решения задачи сегментации экземпляров биомаркеров ДМО на ОКТ-

снимках использовались базовая модель YOLOv8-seg и её модифицированная

версия YOLOv8l-BiFPN-Coordinate Attention. Обе модели дообучались на спе-

циализированном датасете, включающем вручную размеченные экземпляры

восьми классов биомаркеров: DRIL, ERM, EZD, HE, HF, IRC, IRF, SRF, VMT.

Разбиение коллекции данных (900 изображений): 70 % – обучение, 15 % – ва-

лидация, 15 % – тест.

Модифицированная модель обеспечила устойчивое улучшение качества

сегментации, особенно на мелких биомаркерах. В табл. 8 приведены значения

метрик IoU, Sensitivity и Specificity для каждой категории. На рис. 2.6 представ-

лен примеры сегментации экземпляров биомаркеров ДМО на ОКТ-снимках.

Рисунок 2.6 — Пример сегментации изображений с помощью

YOLOv8-BiFPN-CA

Наибольший прирост наблюдается у классов с наименьшими объектами

(HF, HE, DRIL, EZD), что подчёркивает эффективность модифицированной

архитектуры при сегментации мелких деталей. Несмотря на небольшое увели-

чение времени инференса по сравнению с базовой моделью, вычислительные

затраты остаются приемлемыми для большинства клинических сценариев.
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Модель сохраняет высокую скорость и пригодна для интеграции в рабочие

процессы анализа ОКТ-снимков.

2.8 Определение количественных характеристик экземпляров

биомаркеров ДМО

Рассматривается задача количественной оценки площади экземпляров

биомаркеров ДМО на основе бинарных масок, полученных после сегментации

экземпляров нейросетевой моделью. Площадь каждого экземпляра может быть

измерена либо в пикселях, либо в микрометрах в квадрате – в зависимости от

того, известен ли масштаб изображения. При известном масштабе площадь рас-

считывается как произведение количества пикселей в маске на площадь одного

пикселя:

A = sxsy
∑

Mij,

где sx, sy – физические размеры пикселя по горизонтали и вертикали в

микрометрах, Mij – бинарная маска экземпляра. Если изображение было мас-

штабировано, масштаб пересчитывается с учётом коэффициентов изменения

размеров. В случае, когда физический масштаб недоступен, площадь выража-

ется в пикселях:

Apx =
∑

Mij.

При необходимости точности для мелких объектов возможна постобра-

ботка с использованием субпиксельной аппроксимации границ. Полученные

значения могут агрегироваться по классам и использоваться для дальнейше-

го анализа в абсолютных или относительных единицах.
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2.9 Классификация на основе нечётких правил

2.9.1 Нечёткий классификатор и лингвистические правила

Целью является разработка методов классификации патологий на основе

диагностических критериев, формализованных в виде нечётких лингвистиче-

ских правил. Эффективность нечёткой классификации в задачах медицинской

диагностики определяется как качеством описания объектов (например, изоб-

ражений или клинических данных), так и степенью формализации экспертных

знаний. В настоящем разделе, опираясь на подход, представленный в [136],

рассматривается постановка задачи нечёткой классификации, ориентированной

на диагностику заболеваний с применением анализа визуальной информации,

основанной на экспертных знаниях, представленных в виде лингвистических

правил. Такой подход позволяет учитывать неопределённость и вариативность

признаков, характерных для клинической практики.

Пусть объект, подлежащий классификации (изображение), обозначается

как A и представляет собой конечный набор признаков A = {A1, . . . , An}, из-

влечённых с его помощью с использованием искусственной нейронной сети.

Каждый признак Ai ассоциирован с множеством Ui описательных характери-

стик (в данном случае – количественных значений), а также с множеством

{ai1, . . . , aini
} (1 ⩽ ni) лингвистических значений. Каждое лингвистическое

значение aij связано с функцией принадлежности µaij(ui), определённой на

универсальном множестве Ui.

Нечёткий классификатор – это алгоритм, предназначенный для отнесения

объекта O, описываемого совокупностью признаков u = {u1, . . . , un}, к одному

или нескольким классам Ck ∈ {C1, . . . , CK} на основе степени принадлежно-

сти, а не жёсткого распределения. Пусть каждому признаку ui соответствует

множество лингвистических значений {ai1, . . . , aini
}, функция принадлежности

µaij(ui) : Ui → [0,1] отображает степень принадлежности признака значению

aij. Нечёткие правила rj имеют вид:

если A1 = a1j, . . . , An = anj, то µrj(O) = πj,
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где πj ∈ [0, 1] – степень выполнения правила rj для объекта O. Классификация

объекта O осуществляется путём агрегирования выводов всех нечётких правил

r = 1, . . . , R, имеющих степени срабатывания πr ∈ [0,1], с использованием ве-

сов уверенности принадлежности к каждому классу Ck из (2.29). Для каждого

класса k ∈ {1, . . . , K} вычисляется агрегированная степень принадлежност:

Sk(O) =
R
∑

r=1

πr ηr,k, (2.29)

где ηr,k ∈ [0,1] – степень принадлежности, задаваемая выводом r-го правила

для класса Ck. Нормированная степень принадлежности объекта O классу Ck

определяется следующим образом:

M ∗
k (O) =

Sk(O)
∑K

q=1 Sq(O)
, k = 1, . . . , K, (2.30)

в результате чего формируется выходной вектор принадлежностей:

M ∗(O) = (M ∗
1 (O),M ∗

2 (O), . . . ,M ∗
K(O)) ,

K
∑

k=1

M ∗
k (O) = 1.

При необходимости получения жёсткой классификации выбирается класс

с максимальной нормированной степенью принадлежности:

k̂ = arg max
k∈{1,...,K}

M ∗
k (O). (2.31)

Если некоторое правило r не формирует вывод по классу Ck, соответству-

ющее значение ηr,k полагается равным нулю. [137; 138].

Кроме того, существует K классов Ck, k ∈ {1, . . . , K}, которые в рам-

ках данного исследования соответствуют стадиям диабетической ретинопатии.

Информация о классах рассматривается как множество правил r, полученных

на основе формализованных критериев диагностики заболевания (клинические

рекомендации, публикации и т. д.).

Согласно постановке задачи, множество r лингвистических правил пред-

ставлено в следующем виде:
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









































если A1 = a1i1, A2 = a1i2, . . . , An = a1in,

то µC1
(O) = η1

1, . . . , µCk
(O) = η1

k,
...

если A1 = ari1, A2 = ari2, . . . , An = arin,

то µC1
(O) = ηr

1, . . . , µCk
(O) = ηr

k,

(2.32)

где объект O имеет значения признаков, указанных в левой части правил, η –

степень уверенности в том, что объект O принадлежит определённому классу

в соответствии с r-м правилом, а µ – функция принадлежности, определяющая

степень принадлежности объекта O к соответствующему классу.

Таким образом, результирующая система является нечётким классифи-

катором, основанным на множестве r правил, сформированных на основе

формализованных критериев диагностики заболевания.

2.9.2 Формирование корпуса лингвистических правил

В данном разделе представлены нечёткие лингвистические правила для

оценки биомаркеров поражения сетчатки на основании оптической когерентной

томографии (ОКТ), сформированные на основе диагностических и прогности-

ческих критериев, изложенных в Клнических рекомендациях Минестерства

здравоохранения РФ [139], Национальном руководстве по офтальмологии [140],

а также иных руководствах по диагностике данного заболевания. Каждое пра-

вило связывает значения биомаркеров с клинически значимыми выводами,

используя лингвистические переменные и термы.

1. Дезорганизация внутренних слоёв сетчатки (DRIL). Переменная: про-

тяжённость DRIL; лингвистические термы: малая (trap), умеренная (tri),

большая (trap); область определения: [0 мм, 2 мм]. Переменная: прогноз; линг-

вистические термы: хороший (trap), умеренный (tri), плохой (trap); область

определения: [0, 1]. Правило: ЕСЛИ протяжённость DRIL большая, ТО про-

гноз остроты зрения плохой.

2. Нарушение целостности эллипсоидной зоны (EZD). Переменная: целост-

ность EZ; лингвистические термы: разрушена (trap), частично (tri), интактна
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(trap); область определения: [0, 1]. Переменная: прогноз; лингвистические

термы: умеренное (tri), необратимое (trap), сохранённое (trap); область опре-

деления: [0, 1]. Правило: ЕСЛИ эллипсоидная зона разрушена, ТО снижение

зрения необратимо.

3. Твёрдые экссудаты (HE). Переменная: диаметр включений; лингви-

стические термы: малый (trap), пограничный (tri), большой (trap); область

определения: [0, 60 мкм]. Переменная: тень; лингвистические термы: отсут-

ствует (trap), умеренная (tri), выраженная (trap); область определения: [0, 1].

Переменная: прогноз; лингвистические термы: стабильный (trap), ухудшение

(trap); область определения: [0, 1]. Правило: ЕСЛИ диаметр большой И тень

выраженная, ТО прогноз – ухудшение.

4. Гиперрефлективные фокусы (HF). Переменная: количество ГРФ; линг-

вистические термы: мало (trap), умеренно (tri), много (trap); область опреде-

ления: [0, 50]. Переменная: воспаление; лингвистические термы: слабое (trap),

выраженное (trap); область определения: [0, 1]. Правило: ЕСЛИ количество

ГРФ много, ТО воспаление выраженное, отклик на стероиды хороший.

5. Интраретинальные кисты / интраретинальная жидкость (IRC / IRF).

Переменная: размер кисты; лингвистические термы: мелкая (trap), средняя

(tri), гигантская (trap); область определения: [0, 300 мкм]. Переменная: нали-

чие перемычек; лингвистические термы: нет (trap), частично (tri), есть (trap);

область определения: [0, 1]. Переменная: прогноз; лингвистические термы: хоро-

ший (trap), умеренный (tri), плохой (trap); область определения: [0, 1]. Правила:

ЕСЛИ размер гигантская, ТО прогноз плохой. ЕСЛИ перемычки есть, ТО от-

вет на anti-VEGF хороший.

6. Субретинальная жидкость (SRF). Переменная: длительность SRF; линг-

вистические термы: острая (trap), подострая (tri), хроническая (trap); область

определения: [0, 12 мес]. Переменная: прогноз; лингвистические термы: положи-

тельный (trap), ухудшение (trap); область определения: [0, 1]. Правила: ЕСЛИ

SRF острая, ТО отклик на терапию положительный. ЕСЛИ SRF хроническая,

ТО прогноз – ухудшение.

7. Витреомакулярное натяжение (VMT). Переменная: сила тракции; линг-

вистические термы: нет (trap), умеренная (tri), выраженная (trap); область

определения: [0, 100]. Переменная: прогноз; лингвистические термы: стабилен

(trap), ДМО (trap), улучшение (trap); область определения: [0, 1]. Правила: ЕС-
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ЛИ тракция выраженная, ТО формируется ДМО. ЕСЛИ тракция устранена,

ТО прогноз – улучшение.

Таким образом, сформированы лингвистические переменные и правила,

отражающие экспертные знания в области диагностики диабетической ретино

патии и макулярного отёка на основе данных ОКТ. Эти правила могут быть

использованы в системах нечёткого вывода и принятия решений в клиниче-

ской практике.

2.10 Выводы ко второй главе

1. Проведён систематический обзор литературы, который показал пре-

обладание архитектур семейства U-Net в задачах семантической сег-

ментации. Выявлено отсутствие работ, рассматривающих сегментацию

биомаркеров диабетического макулярного отёка (ДМО) в формате

instance segmentation. Ограниченное внедрение методов объяснимого

искусственного интеллекта подчёркивает актуальность разработки ин-

терпретируемых решений в медицинских нейросетевых системах.

2. Сформирована специализированная коллекция ОКТ-снимков с полной

ручной аннотацией восьми биомаркеров (DRIL, ERM, EZD, HE, HF,

IRC, SRF, VMT) в формате сегментации экземпляров, что обеспечило

возможность обучения и объективной оценки моделей, ориентирован-

ных на точное выделение отдельных патологических структур.

3. Разработана архитектура интеллектуального анализа ОКТ-изображе-

ний, включающая:

– классификационную модель EfficientNetB0 с визуализацией ре-

шений методом Class Activation Mapping;

– модифицированную модель YOLOv8, дополненную модуля-

ми BiFPN и Coordinate Attention, что позволило повысить

точность сегментации, особенно для мелких объектов, при со-

хранении вычислительной эффективности.

4. На основе результатов сегментации разработан интерпретируемый

нечёткий классификатор, основанный на формализованных лингвисти-

ческих правилах. Это обеспечило переход от количественного описания
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экземпляров к диагностически значимой интерпретации, соответствую-

щей экспертной клинической логике.

5. Впервые формализована и решена задача анализа биомаркеров диабе-

тического макулярного отёка на ОКТ-снимках как задача сегментации

экземпляров, что позволило применить логические правила для оценки

прогноза пациентов и интегрировать результаты в систему поддержки

принятия врачебных решений.
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Таблица 2 — Ключевые методы визуализации глаза и их диагностические ниши

Метод

Разрешение

(акси­

ал./лат.,

мкм)

Глубина, мм Расширенные особенности

ОКТ (SD/SS) 3ҫ6 / 10ҫ15
2ҫ3 (840 нм)

4ҫ5 (1310 нм)
Золотой стандарт послойной

томографии; количественные карты

толщины RNFL и макулы; объёмное

3D-сканирование до 400 тыс

Aҫсканов/с (SSҫOCT) [81]

ОКТҫангиография 3ҫ5 / 10ҫ15 2ҫ3 Капиллярная перфузия без

красителя; выявляет

неоваскуляризацию и зоны

неперфузии; сопоставима по

чувствительности с FA при AMD и

DR [82]

Ультразвуковая

биомикроскопия

(25ҫ50 МГц)

20 / 40ҫ50 4ҫ5 Проходит мутные среды; незаменима

для цилиарного тела и угла передней

камеры; контактная методика

Флуоресцеиновая

ангиография (FA)
ҫ / 10ҫ20

сосудистое

русло
«Золотой стандарт» оценки утечки и

неперфузии, но требует

внутривенного красителя; риск

анафилаксии

Конфокальная

SLO / автофлуо­

ресценция

ҫ / 10ҫ15 0.5ҫ1 Метаболическое картирование

пигментного эпителия;

микропериметрия; нет глубины,

только 2D [83]

МРҫтомография

(7T)
ҫ / 300ҫ500 >10 Функциональные и метаболические

карты; высокая стоимость и низкая

детализация для микроструктур [84]
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Таблица 3 — Обзор исследований по теме сегментации биомаркеров ДМО

Исследование Год Тип задачи Набор данных Модель

Schlegl [93] 2018 Сем. сег. Приватный (AMD/DME/RVO) Residual U-Net

Ganjee [112] 2020 Сем. сег. OPTIMA, UMN, Kermany (откр.) Markov Random

De Silva [101] 2021 Сем. сег. Приватный (168 глаз) Mask R-CNN

Hsu [94] 2022 Сем. сег. Приватный (3084 B-среза) U-Net

Tang [100] 2023 Сем. сег. Приватный (468 глаз) SegNet

Rahil [102] 2023 Сем. сег. RETOUCH (откр.) U-Net Ensem

Ganjee [95] 2023 Сем. сег. OPTIMA, UMN, Kermany (откр.) U-Net

Melinščak [97] 2023 Сем. сег. AROI (откр.) Attention U-Net

Wang [103] 2023 Сем. сег. AROI (откр.) D3T-FCN

Daanouni [98] 2024 Сем. сег. AROI (откр.) U-Net++

George [96] 2024 Сем. сег. Kermany, Lu (откр.) U-Net

Qiu [104] 2023 Сем. сег. AROI (откр.) SAM

Fazekas [105] 2023 Сем. сег. RETOUCH (откр.) SAM, SAMed

Kulyabin [50] 2024 Сем. сег. OIMHS, AROI (откр.) SAM2, MedSAM2

Hensman [99] 2025 Сем. сег. Приватный (XLRS, 37 сканов) U-Net
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Таблица 4 — Охват биомаркеров в исследованиях

Исследование DRIL ERM EZD HE HF IRC IRF MH PED SRF VMT

Schlegl [93] – – – – ✓ – – – – –

Ganjee [112] – – – – – ✓ – – – –

De Silva [101] – – ✓ – – – – – – –

Hsu [94] – – ✓ – – ✓ – – – ✓

Tang [100] – ✓ – – – – – – – –

Rahil [102] – – – – – – ✓ – ✓ –

Ganjee [95] – – – – – ✓ – – – –

Melinščak [97] – – – – – – ✓ – ✓ –

Wang [103] – – – – – ✓ – ✓ – –

Daanouni [98] – – – – – – ✓ – ✓ –

George [96] – – – – – – ✓ – – –

Qiu [104] – – – – – – ✓ – – –

Fazekas [105] – – – – – – ✓ – ✓ –

Kulyabin [50] – – – – – ✓ ✓ ✓ ✓ –

Hensman [99] – – – – – ✓ – – – –

Наше исследование ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – ✓

Таблица 6 — Результаты классификации на датасете OCTDL

Класс F1-score (%) Recall (%)

AMD 97.2 98.1

DME 96.3 95.9

ERM 95.6 95.1

RAO 96.9 96.0

VID 95.4 95.2

Среднее 96.3 96.1
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Таблица 7 — Сравнение версий YOLOv8-seg по количеству параметров и време-

ни инференса

Модель Параметры, M GFLOPs Инференс, ms FPS

YOLOv8n-seg 3.2 8.7 6.2 ∼161

YOLOv8s-seg 11.2 28.8 8.9 ∼112

YOLOv8m-seg 25.9 78.9 12.7 ∼79

YOLOv8l-seg 43.7 165.2 19.5 ∼51

YOLOv8x-seg 68.2 257.8 28.2 ∼35

Таблица 8 — Метрики сегментации на YOLOv8 и YOLOv8-BiFPN-CA

Класс IoU (base) IoU (mod) Sens. (base) Sens. (mod) Spec. (base)

DRIL 0.86 ± 0.021 0.91 ± 0.017 0.87 ± 0.020 0.92 ± 0.015 0.985 ± 0.014

ERM 0.88 ± 0.018 0.90 ± 0.015 0.89 ± 0.017 0.91 ± 0.014 0.987 ± 0.012

EZD 0.85 ± 0.024 0.91 ± 0.018 0.86 ± 0.023 0.92 ± 0.015 0.984 ± 0.015

HE 0.85 ± 0.026 0.90 ± 0.020 0.87 ± 0.024 0.91 ± 0.017 0.985 ± 0.014

HF 0.85 ± 0.025 0.91 ± 0.019 0.86 ± 0.023 0.92 ± 0.016 0.984 ± 0.016

IRC 0.89 ± 0.017 0.91 ± 0.014 0.90 ± 0.016 0.92 ± 0.013 0.988 ± 0.012

IRF 0.88 ± 0.018 0.90 ± 0.015 0.89 ± 0.017 0.91 ± 0.014 0.987 ± 0.012

SRF 0.90 ± 0.015 0.92 ± 0.013 0.91 ± 0.014 0.93 ± 0.011 0.989 ± 0.011

VMT 0.87 ± 0.019 0.89 ± 0.017 0.88 ± 0.018 0.90 ± 0.015 0.986 ± 0.013
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Глава 3. Метод анализа фундус-снимков

3.1 Теоретические основы анализа фундус-снимков

3.1.1 Офтальмоскопия

Офтальмоскопия – это метод визуализации глазного дна, основанный на

регистрации отражённого и рассеянного света от внутренних структур глаза:

сетчатки, сосудистой оболочки и пигментного эпителия. В офтальмологической

практике применяются прямая и непрямая офтальмоскопия, цифровые фун-

дус-камеры и сканирующие лазерные офтальмоскопы. Независимо от метода,

получение изображения включает: освещение сетчатки, оптическое формирова-

ние изображения в системе «глаз–камера», проекцию на сенсор и последующее

преобразование сигнала в цифровую форму [141; 142].

Рисунок 3.1 — а) Схема процесса офтальмоскопии; б) Фундус-снимок

Фундус-снимки используются для диагностики широкого круга офталь-

мологических заболеваний, включая диабетическую ретинопатию [143; 144],

возрастную макулярную дегенерацию [145], глаукому [146], гипертоническую

ретинопатию [147], сосудистые окклюзии, увеиты, новообразования хориоидеи

[148] и другие патологии заднего отрезка глаза. Визуализируемыми на сним-

ке структурами глаза являются: сосуды и капиляры, диск зрительного нерва,

макула, пигментные и очаги дегенеративных процессов.
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С физической точки зрения изображение на сенсоре формируется как ре-

зультат отражательной способности тканей и оптической передачи системы.

Геометрически фундус-снимок – центральная проекция сферической поверхно-

сти глазного дна, что вызывает дисторсии и виньетирование. Яркость пикселя

аппроксимируется как

I(x, y) ≈ L(x, y) ·R(x, y) + η(x, y), (3.1)

где L — освещённость, R – отражательные свойства тканей, η – шумы и ар-

тефакты регистрации [142].

Фундус-снимок представляет собой цифровое изображение размерности

I ∈ R
H×W×3, содержащее информацию о внутренней поверхности глаза. Перед

его использованием в диагностических системах проводится коррекция освещён-

ности, устранение дисторсий, цветовая нормализация и усиление контраста.

3.1.2 Диабетическая ретинопатия

Диабетическая ретинопатия (ДР) – это хроническое, прогрессирующее

нейроваскулярное заболевание глазного дна, развивающееся как осложнение

сахарного диабета (СД). Оно характеризуется нарушением проницаемости

сосудистой стенки, окклюзией капилляров, ишемией и патологической неовас-

куляризацией сетчатки. ДР является одной из ведущих причин слепоты в

трудоспособном возрасте и требует системного наблюдения и диагностики [85].

По данным эпидемиологических исследований, частота ретинопатии у

больных СД 1-го типа достигает 27,2 %, при СД 2-го типа – около 13 % [149].

Основные модифицируемые факторы риска – хроническая гипергликемия и

артериальная гипертензия, способствующие микрососудистому повреждению

[150]. В связи с ростом распространённости СД, потребность в скрининге ДР

и автоматизированном анализе фундус-изображений возрастает. Современные

алгоритмы анализа медицинских изображений требуют формализованного опи-

сания биомаркеров, отражающих стадию и активность заболевания [151].

Клиническая классификация ДР включает следующие стадии: непроли-

феративная (NPDR), пролиферативная (PDR), а также выделяется диабети-

ческий макулярный отёк (DME) как отдельная клинически значимая форма.
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NPDR подразделяется на лёгкую, умеренную и тяжёлую. Переход от NPDR

к PDR обусловлен прогрессирующей ишемией, появлением интраретинальных

микрососудистых аномалий (IRMA), венозных изменений и неоваскуляризации

[85; 152].

К числу основных биомаркеров ДР, визуализируемых при офтальмоско-

пии и на фундус-снимках, относятся:

– Микроаневризмы (MA) – первые морфологически наблюдаемые призна-

ки ДР, представляют собой мелкие точечные расширения капилляров.

Выглядят как округлые тёмно-красные точки, преимущественно в па-

рамакулярной зоне [153].

– Внутрисетчаточные кровоизлияния (HEM) – различаются по форме: то-

чечные/пятнистые (внутренние слои сетчатки) и пламеневидные (вдоль

нервных волокон). Увеличение их числа отражает нарастание тяжести

NPDR и риск перехода к более тяжёлой стадии [85].

– Твёрдые экссудаты (EX) – представляют собой липидные отложения

жёлтого цвета с чёткими границами, формируются в результате хрони-

ческой экссудации. Связаны с наличием макулярного отёка [153].

– Мягкие экссудаты (SE, «ватные очаги») – белёсые пятна в слое нервных

волокон, соответствуют микроинфарктам сетчатки, свидетельствуют о

выраженной ишемии [150].

– Интраретинальные микрососудистые аномалии (IRMA) и венозные

изменения – извитость, «бисеринчатость» – указывают на тяжёлую

непроолиферативную стадию и риск развития PDR [152].

– Неоваскуляризация (NV) – рост новых сосудов на поверхности сет-

чатки и диске зрительного нерва, основной диагностический критерий

перехода в PDR. Эти сосуды хрупкие и склонны к кровоизлияниям,

приводящим к ухудшению зрения [85].

– Макулярный отёк (DME) – утолщение центральной зоны сетчатки с

отложениями экссудатов. Является основной причиной снижения цен-

трального зрения при любом уровне ДР [154].

На рисунке ниже представлена типовая визуализация ключевых био-

маркеров диабетической ретинопатии на цветном фундус-снимке. Обозначены

наиболее характерные морфологические элементы, используемые в офтальмо-

скопии и автоматизированной интерпретации изображений.
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Рисунок 3.2 — Визуализация биомаркеров диабетической ретинопатии на фун-

дус-снимке: микроаневризмы, кровоизлияния, экссудаты

Выявление и количественная оценка указанных биомаркеров лежит в ос-

нове классификации и выбора тактики ведения пациента. Например, наличие

только микроаневризм свидетельствует о лёгкой NPDR и требует наблюде-

ния, тогда как сочетание IRMA, венозной бисеринчатости и множественных

кровоизлияний – о тяжёлой форме, требующей активного вмешательства.

Неоваскуляризация – абсолютное показание для начала панретинальной лазер-

ной коагуляции или терапии ингибиторами VEGF. DME, как самостоятельный

фенотип, лечится преимущественно интравитреальными инъекциями анти-

VEGF препаратов [85].

Таким образом, систематизированное описание биомаркеров диабети-

ческой ретинопатии на фундус-снимках является ключевым условием для

разработки и внедрения автоматизированных методов скрининга. Учитывая

клиническую значимость каждого из признаков и доступность цифровой

визуализации, фундус-фотография остаётся стандартом скрининга, а алгорит-

мический анализ изображений на её основе – перспективным направлением для

раннего выявления и профилактики слепоты при диабете.

3.1.3 Обзор литературы и источников

Сегментация биомаркеров ДР на фундус-снимках является ключевым

компонентом автоматизированных СППВР. Основными объектами сегментации
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служат микроаневризмы (MA), кровоизлияния (HE), твёрдые (EX) и мягкие

(SE) экссудаты, а также неоваскуляризация (NV) и преретинальные кровоиз-

лияния (PRH). В данной области активно применяются нейросетевые методы,

в первую очередь архитектуры на основе U-Net. Задачи классифицируются как

семантическая сегментация или сегментация экземпляров в зависимости от спо-

соба представления итоговой маски.

Для формирования аналитической базы был проведён систематический

поиск и отбор публикаций по протоколу PRISMA-2020. Поисковый запрос охва-

тывал ключевые термины: diabetic retinopathy, segmentation, U-Net, instance

segmentation, Mask R-CNN, IDRiD, FGADR. Источники: PubMed, Scopus, IEEE

Xplore, ScienceDirect, SpringerLink (2019–2025). Включались только рецензируе-

мые журнальные статьи и материалы конференций с описанием нейросетевых

моделей, доступных датасетов и метрик. Исключались препринты, обзоры, ра-

боты рассматривающие задачи классфикации или детекции. В результате было

отобрано 31 исследование, удовлетворяющее критериям включения.

Ниже представлена итоговая таблица (табл. 9), содержащая система-

тизированные сведения о годе публикации, типе задачи, сегментируемых

биомаркерах, используемых архитектурах, датасетах и применении методов

объяснительного искусственного интеллекта.

Анализ отобранных 31 работы позволяет выделить ряд устойчивых тех-

нических и методологических тенденций. Во-первых, тип решаемой задачи в

подавляющем большинстве случаев (28 из 31 работ) представлен в виде задачи

семантической сегментации. Исключение составляет работа [155], где реализо-

вана сегментация экземпляров с использованием Mask R-CNN для подсчёта

микроаневризм.

Во-вторых, среди сегментируемых биомаркеров наибольшее внимание уде-

ляется стандартной четвёрке: MA, HE, EX, SE. Полный набор этих маркеров

используется более чем в 75% работ. Узкоспециализированные модели предло-

жены для отдельных поражений – MA [156—158], HE [159; 160], EX [161; 162],

NV и PRH [163].

По частоте используемости лидирует колекция данных IDRiD, применён-

ная в 26 работах. Она часто комбинируется с DDR и FGADR. Отдельные

исследования используют собственные приватные наборы изображений [163].

В части архитектур нейросетей преобладают модели на базе U-Net и

его модификаций, включая Attention U-Net, Dual-Branch U-Net, CBAM U-Net,



73

Таблица 9 — Обзор исследований по теме сегментации биомаркеров ДР

№ Автор(ы) Год Тип задачи Биомаркеры Датасет Архитектура

1 Guo et al. 2019 Сем. сег. MA, HE,

EX, SE

IDRiD L-Seg

2 Xu et al. 2021 Сем. сег. MA, HE,

EX, SE

IDRiD FFU-Net

3 Wan et al. 2021 Сем. сег. MA, HE,

EX, SE

IDRiD EAD-Net

4 Garifullin et

al.

2021 Сем. сег. MA, HE,

EX, SE

IDRiD Байесовская

CNN

5 He et al. 2022 Сем. сег. MA, HE,

EX, SE

IDRiD, DDR PMCNet

6 Huang et al. 2022 Сем. сег. MA, HE,

EX, SE

IDRiD, DDR RTNet

7 Guo & Peng 2022 Сем. сег. MA, HE,

EX, SE

IDRiD, DDR CARNet

8 Yan et al. 2022 Сем. сег. MA, HE,

EX, SE

IDRiD,

FGADR

MSLF-Net

9 Skouta et al. 2022 Сем. сег. HE IDRiD,

DIARETDB1

Модифицированный

U-Net

10 Yin et al. 2023 Сем. сег. MA, HE,

EX, SE

IDRiD Dual-Branch

U-Net

11 Liu et al. 2023 Сем. сег. MA, HE,

EX, SE

IDRiD,

FGADR

Many-to-many

reassembly

12 Ullah et al. 2023 Сем. сег. MA, HE,

EX, SE

FGADR,

IDRiD

SSMD-UNet

13 Zhao et al. 2023 Сем. сег. MA, HE,

EX, SE

Публичные NAU-Net

14 Manan M. A.

et al.

2023 Сем. сег. EX IDRiD Residual

encoder–decoder

15 Wang et al. 2023 Сем. сег. MA, HE,

EX, SE

IDRiD, DDR ViT-Adapter +

гиперб. эмбед-

динги

16 Raudonis et 2023 Сем. сег. MA IDRiD и др. Ансамбль
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UNet++. С 2022 года наметилась тенденция к интеграции модулей визуальных

трансформеров (RTNet [164], ViT-Adapter [165], Prior-Guided Transformer [166]),

а также к внедрению каскадных решений (CARNet). Активно развиваются об-

легчённые модели, ориентированные на мобильные приложения и массовый

скрининг (BiSeNetV2 [167], MLNet [168], SegDRoWS [169]).

Важным аспектом анализа стало использование методов объяснительного

искусственного интеллекта. Только в 4 работах (12%) указано явное примене-

ние методов ОИИ:

– [170] – байесовская неопределённость;

– [163; 164; 166] – карты внимания как механизм интерпретации.

Во всех остальных публикациях ОИИ не используется, что подчёркивает дефи-

цит интерпретируемости в исследованиях по сегментации биомаркеров ДР.

Таким образом, на сегодняшний день основное внимание в литературе

уделяется расширению архитектур, комбинированию датасетов, улучшению по-

казателей метрик. Однако объяснимость, сегментация экземпляров остаются

недостаточно охваченными направлениями. Отдельно следует отметить, что

представленные исследования не реализуют полноценных диагностических пай-

плайнов и не позволяют проводить постановку диагноза в соответствии с

клиническими рекомендациями и консенсусами. Это существенно ограничивает

возможность их применения в клинической практике и подчёркивает необхо-

димость разработки комплексных интеллектуальных систем, интегрирующих

сегментацию с процессами грейдинга и принятия решений.

3.2 Описание предлагаемого метода

Предложен новый метод анализа специальных видов изображений, осно-

ванный на сочетании нейросетевой обработки и формализованных логических

правил, отражающих экспертные знания. Метод направлен на извлечение ин-

терпретируемых и воспроизводимых признаков из медицинских изображений

и их последующую оценку с использованием объяснимых решений. Основной

акцент сделан на переход от пиксельной семантической сегментации к анализу

экземпляров объектов, что позволяет количественно оценивать выраженность
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патологических признаков и привязывать их к анатомическим зонам. Метод

продемонстрирован на задаче анализа фундус-снимков глаза.

Пошаговое описание метода:

1. Загрузка и предобработка изображений. На вход подаются цветные

фундус-снимки. Предобработка включает выравнивание освещённости,

нормализацию цветового пространства, масштабирование до стандар-

тизированного разрешения. Эти операции создают унифицированное

представление изображения, минимизируя влияние внешних факторов

на качество последующей обработки.

2. Бинарная классификация. Нейросетевая модель определяет наличие

или отсутствие признаков диабетической ретинопатии (ДР). При отри-

цательном результате пользователю выдаётся информационное сообще-

ние. В случае положительного класса активируются шаги локализации

и сегментации признаков.

3. Поиск зоны фовеа и сегментация макулы. Определяется координата

фовеа и выделяется макулярная область как ключевая анатомическая

зона. Это необходимо для локализации изменений, напрямую влияю-

щих на центральное зрение, и позволяет пространственно нормировать

признаки.

4. Разделение изображения на квадранты. Фундус-снимок разделяется

на четыре анатомически значимых сектора (квадранта), что позволяет

учитывать пространственное распределение биомаркеров, важное для

клинической классификации стадий заболевания.

5. Семантическая сегментация и получение масок биомаркеров. С по-

мощью нейросетевой модели выполняется многоклассовая сегмента-

ция фундус-снимка. В результате формируются пиксельные маски

микроаневризм, кровоизлияний, твёрдых и мягких экссудатов, неовас-

куляризации и других признаков. Эти маски служат основой для

дальнейшего извлечения экземпляров объектов. Одновременно фор-

мируется визуальное объяснение работы модели (например, тепловые

карты внимания), что обеспечивает проверяемость и интерпретируе-

мость локализации выявленных признаков.

6. Сегментация экземпляров и подсчёт. Маски преобразуются в отдельные

экземпляры патологических объектов с применением морфологических

операций и метода водораздела. Для каждого экземпляра определяется
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принадлежность конкретному квадранту. Выполняется подсчёт экзем-

пляров каждого класса и агрегирование их характеристик.

7. Классификация стадии ДР по экспертным правилам. На основе коли-

чественных признаков и их пространственного распределения выполня-

ется логическая классификация стадии заболевания. Классификатор

использует набор формализованных экспертных правил: от жёстких

условий (например, наличие неоваскуляризации) до пороговых сочета-

ний биомаркеров по числу и локализации.

На рис. 3.3 представлена схема предложенного метода анализа фундус-

снимков.

Метод объединяет три ключевых компонента: сегментацию экземпля-

ров для количественного анализа биомаркеров, логический вывод на основе

формализованных экспертных правил и объяснимость, обеспечивающую ин-

терпретируемость принятого решения. Такое сочетание делает предложенный

подход не только технологически обоснованным, но и практически примени-

мым в контексте клинической офтальмологии, где важны воспроизводимость,

прозрачность и соответствие экспертной практике.

3.3 Коллекции данных

Разработка интеллектуальных систем анализа фундус-снимков требует

опоры на верифицированные коллекции изображений, снабжённые экспертной

аннотацией. Эти коллекции позволяют реализовывать обучение нейросетей,

обеспечивать воспроизводимость экспериментов и объективную оценку ре-

зультатов. В настоящем исследовании были использованы четыре наиболее

репрезентативные публичные коллекции фундус-снимков: APTOS 2019 – для

задач классификации, а MAPLES-DR, FGADR и IDRiD – для задач семанти-

ческой сегментации.

Коллекция APTOS 2019 Blindness Detection была создана в рамках меж-

дународного соревнования на платформе Kaggle и включает 3662 цветных

изображения глазного дна [171]. Каждому изображению присвоен класс в соот-

ветствии с пятиуровневой шкалой тяжести диабетической ретинопатии (DR): от

0 (No DR) до 4 (Proliferative DR). Изображения были получены с различным
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Рисунок 3.3 — Блок-схема предлагаемого метода анализа фундус-изображений
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качеством, степенью освещённости и разрешением, что требует обязательной

предобработки (усреднение, нормализация, выравнивание гистограммы и др.).

Изначальное распределение классов демонстрирует выраженный дисбаланс: по-

чти половина изображений не содержит признаков DR, в то время как тяжёлые

формы представлены значительно реже. В рамках настоящей работы была

выполнена бинаризация классов (No DR против DR) и балансировка через

геометрические аугментации, включая повороты от 45° до 270°, что позволило

добиться равномерного распределения классов для обучения моделей класси-

фикации.

Коллекция MAPLES-DR (MESSIDOR Anatomical and Pathological Labels

for Explainable Screening of Diabetic Retinopathy) разработана исследователь-

ской группой Cheriet et al. на базе изображений Messidor [172]. В отличие от

оригинальной коллекции, MAPLES-DR включает аннотации на уровне пик-

селей для десяти структур: диск зрительного нерва (optic disc), сосудистая

сеть, макула, мягкие и твёрдые экссудаты, кровоизлияния, микроаневризмы,

неоваскуляризация, ватные пятна и друзы. Маски создавались вручную офталь-

мологами и валидировались независимыми экспертами. Помимо сегментации,

каждому изображению сопоставлены уровни DR и макулярного отёка (DME),

что позволяет использовать коллекцию в задачах совместной классификации и

объяснимой сегментации. Разрешения варьируются от 1440×960 до 2304×1536

пикселей. Коллекция обладает высоким качеством аннотаций, однако классы

представлены неравномерно: такие категории, как друзы, мягкие эксудаты и

неоваскуляризация, встречаются реже других, что снижает сбалансированность

для этих классов.

Коллекция FGADR (Fine-Grained Annotated Diabetic Retinopathy), опуб-

ликованная Zhou et al. [173], представляет собой наиболее масштабную на

сегодняшний день подборку фундус-снимков с детальной аннотацией. Она

включает 2842 изображения с разрешением 1280×1280 пикселей, полученные

с различных камер (Canon CR-2, Topcon TRC-NW8, Kowa VX-10). Коллек-

ция разделена на два поднабора: 1842 изображения снабжены пиксельными

масками (seg-set), ещё 1000 размечены по стадии DR (grade-set). Сегментиру-

емые классы включают микроаневризмы, кровоизлияния, твёрдые и мягкие

экссудаты, интраретинальные микрососудистые аномалии (IRMA) и неоваску-

ляризацию. Аннотации выполнены двумя лицензированными офтальмологами

с последующей верификацией. Авторы акцентируют внимание на том, что
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FGADR ориентирован на тонкую диагностику, включая смешанные и погранич-

ные проявления DR. Распределение по классам варьируется: наиболее полно

представлены MA, HEM, EX и SE, в то время как IRMA и NV встречаются

значительно реже.

Коллекция IDRiD (Indian Diabetic Retinopathy Image Dataset), представ-

ленная Porwal et al. [174], предназначена для оценки методов диагностики и

локализации при DR. Она содержит 516 цветных изображений высокого раз-

решения (4288×2848 пикселей), снятых камерой Kowa VX-10 (FOV 50°). Из

них 81 изображение размечено по пиксельным маскам для следующих классов:

микроаневризмы, кровоизлияния, мягкие и твёрдые экссудаты, а также диск

зрительного нерва. Кроме того, аннотации включают координаты центра фо-

веа и диска, что позволяет использовать коллекцию для задач локализации и

топографического анализа. Распределение масок между изображениями явля-

ется умеренно сбалансированным: микроаневризмы и экссудаты представлены

шире, чем кровоизлияния. Коллекция подходит для задач валидации на изоб-

ражениях высокого разрешения и для сравнения с другими источниками.

На основе трёх указанных коллекций (MAPLES-DR, FGADR, IDRiD) бы-

ла сформирована объединённая обучающая выборка. В неё включены только

те изображения, для которых доступны аннотации по пяти ключевым патоло-

гическим признакам: микроаневризмы (MA), кровоизлияния (HEM), твёрдые

экссудаты (EX), мягкие экссудаты (SE) и неоваскуляризация (NV). Все изоб-

ражения были приведены к унифицированному пространственному размеру,

маски – к согласованной структуре. Избыточные и неполные данные были уда-

лены. Объединённая коллекция использовалась для обучения и оценки моделей

семантической сегментации.

3.4 Предподготовка изображений

Шаг 1 – Исходные параметры изображений и приведение масштаба. Кол-

лекции данных, рассматриваемые в данной работе, включают изображения с

различными исходными разрешениями. В частности, в наборе IDRiD исполь-
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Таблица 10 — Количественные характеристики и сбалансированность коллек-

ций данных

Коллекция Назначение Кол-во

изобра­

жений

Пиксельные

маски

Разрешение Сбалансированность

APTOS 2019 Классификация 3662 нет варьируется нет

MAPLES-DR Сегментация 198 10 классов 1440ҫ2304 нет

FGADR Сегм., града­

ция

2842

(1842+1000)

6 классов 1280×1280 да

IDRiD Сегментация 516 (81

размече­

но)

5 классов 4288×2848 да

Таблица 11 — Источники классов в объединённой коллекции

Класс патоло­

гий

MAPLES-DR FGADR IDRiD Использован

MA ҫ микроане­

вризмы

да да да да

HEM ҫ кровоизли­

яния

да да да да

EX ҫ твёрдые экс­

судаты

да да да да

SE ҫ мягкие экссу­

даты

да да да да

NV ҫ неоваскуля­

ризация

да да нет да
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зуются макулоцентрированные фундус-снимки с полем зрения около 50° и

разрешением 4288 × 2848 пикселей (формат JPEG, 8 бит на канал, RGB). В

наборе FGADR представлены аннотированные изображения высокого качества

с типичным разрешением 3072 × 2048 пикселей. Изображения из MAPLES-

DR (на базе MESSIDOR) охватывают диапазон разрешений от 1440 × 960 до

2304 × 1536 пикселей и на этапе аннотирования были приведены к квадратно-

му формату 1500 × 1500 пикселей.

Для унификации пространственного разрешения и обеспечения совмести-

мости между наборами все изображения масштабируются до фиксированного

квадратного размера:

S × S = 1536× 1536 пикселей.

Масштабирование изображений выполняется с коэффициентом s =

S/min(H,W ), при этом каждая точка x исходного изображения I(x) сопо-

ставляется точке x′ = s x в масштабированном изображении IS(x
′). Процедура

сохраняет пропорции сторон, а при необходимости добавляется симметричный

паддинг по меньшей стороне для получения квадратного изображения. Такой

подход стандартизирует входные данные, упрощает выбор параметров CLAHE

и нейросетевых архитектур, а также исключает влияние различий в размере и

геометрии снимков на последующую обработку.

Таблица 12 — Размеры изображений до и после приведения к единому масштабу

Характеристика IDRiD FGADR MAPLES-DR

Исходное разрешение 4288 × 2848 3072 × 2048 1500 × 1500

Приведённый размер 1536× 1536

Шаг 2 – Нормализация яркости. Для приведения интенсивностей каждого

цветового канала c ∈ {R,G,B} к стандартному числовому диапазону исполь-

зуется линейная нормализация методом Min–Max. Преобразование основано на

приведении значений пикселей к интервалу [0, 1] по следующей формуле:

I(n)c (x) =
Ic(x)−minΩ Ic

maxΩ Ic −minΩ Ic
, x ∈ Ω, (3.2)

где:

– Ic(x) – значение пикселя в канале c исходного изображения;
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– minΩ Ic, maxΩ Ic – минимальное и максимальное значение интенсивно-

сти в канале c по всем пикселям изображения;

– Ω – множество всех пикселей изображения.

Данная процедура обеспечивает равномерное растяжение динамического

диапазона каждого канала в пределах [0,1], что необходимо для стандартиза-

ции входных данных перед дальнейшими преобразованиями (в частности, перед

применением CLAHE).

Шаг 3 – Выделение зелёного канала. Поглощение гемоглобина макси-

мально в зелёной области спектра (∼520–560 нм), поэтому сосудистое русло

и ряд биомаркеров диабетической ретинопатии (микроаневризмы, геморрагии)

контрастнее именно в зелёной проекции; красный канал склонен к пересвету,

синий – к повышенному шуму [175—177]. Запишем Формально:

Ig(x) = I
(n)
G (x), x ∈ Ω. (3.3)

Шаг 4 – билатеральный фильтр. Для подавления мелкого шума без раз-

мывания границ сосудов применяется билатеральная фильтрация к Ig:

J(x) =
1

W (x)

∑

ξ∈N (x)

exp

(

−
‖x− ξ‖2

2σ2
s

−
(Ig(ξ)− Ig(x))

2

2σ2
r

)

Ig(ξ), (3.4)

где W (x) – нормирующий множитель; σs ≈ 1.5–2.5 пикс., σr ≈ 0.05–0.10 в

нормированном диапазоне [178].

Шаг 5 – Усиление контраста методом CLAHE. CLAHE (англ. Contrast

Limited Adaptive Histogram Equalization) выполняет локальную гистограммную

эквализацию с ограничением контраста. Изображение разбивается на равномер-

ную сетку тайлов; в каждом тайле строится гистограмма, которая обрезается по

заданному порогу, после чего её избыточные значения равномерно распределя-

ются между всеми бинами. Затем значения интенсивностей преобразуются по

нормированной интегральной гистограмме. На границах тайлов применяется

билинейная интерполяция локальных отображений для обеспечения непрерыв-

ности результирующего изображения [179; 180].

Шаг 6 – Постнормировка. После применения CLAHE результирующее

изображение Ic может иметь значения интенсивностей, выходящие за пределы

диапазона [0, 1]. Для обеспечения корректной передачи контраста и согласо-

ванности с последующими этапами обработки (например, морфологической
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Algorithm 1: CLAHE
Input: Original image I

Output: CLAHE-processed image Ic

1 1. Resize I to M ×M (if needed); decompose into n tiles of size m×m.;

2 2. For each tile tn, compute histogram: Hn ← histogram(tn).;

3 3. Compute clip limit: CL ← Ncl ×Navg, where Navg ←
NxNy

Ngray
.;

4 Ngray is the number of gray levels; Nx, Ny are tile dimensions;

Ncl ← 0.002.;

5 4. Clip Hn using CL: for all k such that Hn(k) > CL, compute Necl and

distribute clipped pixels evenly: Ncp ← Necl/Ngray.;

6 5. Apply histogram equalization using the normalized cumulative

distribution function (CDF).;

7 6. Perform bilinear interpolation of transformed values across neighboring

tiles to construct Ic.;

фильтрацией или пороговой сегментацией) проводится дополнительная линей-

ная нормализация на весь диапазон значений. Итоговое изображение обозначим

как I?:

I?(x) =
Ic(x)−minΩ Ic

maxΩ Ic −minΩ Ic
, x ∈ Ω, (3.5)

где Ω – множество всех пикселей изображения.

Данная операция позволяет гарантировать, что все значения пикселей на-

ходятся в пределах [0, 1], и нормализует локально усиленные области контраста,

полученные в результате CLAHE.

3.5 Предварительная классификация

Цель данного этапа – отфильтровать изображения, не содержащие при-

знаков искомого заболевания. На этом этапе решается задача бинарной клас-

сификации.

Пусть задана выборка

D = {(~xi, yi)}
N
i=1,
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где ~xi ∈ X = R
m – множество объектов (изображений), представленных в

векторной форме, а yi ∈ Y = {−1,+1} – метки классов, соответствующие двум

состояниям: наличие заболевания и отсутствие заболевания. Таким образом,

рассматривается случай бинарной классификации. Здесь C = 2 – количество

классов в выборке, N – объём выборки.

Необходимо построить модель функции принятия решения

a : X → Y,

которая аппроксимирует истинные метки y на всём множестве объектов X . В

данном случае в роли функции принятия решений используется ИНС.

После получения классификационных метрик для изображения, поданно-

го на вход сети (Iprep), принимается решение о дальнейшем его прохождении

по конвейеру обработки. Если изображение классифицировано как диабетиче-

ская ретинопатия с вероятностью более 90% или как отсутствие заболевания

с вероятностью менее 90%, оно передаётся на следующий этап. Если же изоб-

ражение классифицировано как отсутствие заболевания с вероятностью более

90 %, дальнейший анализ прерывается, и пользователю отображается соответ-

ствующее информационное сообщение.

3.5.1 Модель VGG16

Модель VGG16 была предложена группой Visual Geometry Group (Окс-

форд) в 2014 году в контексте соревнования ILSVRC и стала одной из ключевых

вех развития глубоких сверточных сетей. Концептуальная новизна заключа-

лась в использовании только малых свёрток размером 3 × 3 с еденичными

шагом и паддингом при последовательном увеличении глубины до 16 слоёв.

Такая однородная архитектура с регулярным понижением разрешения посред-

ством операции максимального объединения оказалась простой для реализации

и масштабирования, дала существенный прирост качества и оказала влияние

на конструкцию последующих моделей семейства глубинных CNN [181—183].

Архитектура VGG16 принимает на вход изображение 224 × 224 × 3.

Последовательность преобразований организована в пять сверточных блоков,

каждый из которых заканчивается операцией максимального объединения 2×2
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с шагом 2. Канальная размерность по блокам составляет от 64, до 512 каналов.

В первых двух блоках по два сверточных слоя 3 × 3, в последующих трёх –

по три. Таким образом, пространственное разрешение уменьшается в 2 раза

на каждом объединении: 224 → 112 → 56 → 28 → 14 → 7. После сверточ-

ной части следуют три полносвязных слоя с понижающейся размерностью за

которыми расположен классификатор на 1000 классов, реализованный в ви-

де финального слоя с функцией softmax. Во всех скрытых слоях применяется

нелинейная функция активации ReLU. В ряде реализаций также используются

dropout и L2-регуляризация [181]. Размерности слоёв и количество параметров

VGG16 представлены в таблице 13.

С точки зрения обработки изображений, каскад малых свёрток реа-

лизует поэтапное пространственное агрегирование локальных признаков при

сбалансированном соотношении между числом параметров и извлекаемой про-

странственной информацией. Две последовательные свёртки 3 × 3 обладают

эффективным приёмным полем, эквивалентным свёртке 5× 5, однако требуют

меньше параметров и позволяют ввести дополнительную нелинейность между

слоями. Формально, выход k-го канала сверточного слоя в позиции (i,j) зада-

ётся следующим образом:

yi,j,k =
2
∑

m=0

2
∑

n=0

Cin
∑

c=1

xi+m−1, j+n−1, cwm,n,c,k + bk, (3.6)

где x – входной тензор, w – веса свёртки, bk – смещение. Функция активации

имеет вид:

f(t) = max(0, t), (3.7)

а операция максимального объединения 2 × 2 со шагом 2 записывается:

zi,j,k = max
(m,n)∈{0,1}2

yi+m, j+n, k. (3.8)

Однородная структура и регулярное понижение размерностей упростили

перенос архитектурных принципов VGG в более сложные модели. Последующие

архитектуры, такие как ResNet [184] и DenseNet [185], развивали эту идею за

счёт введения остаточных и плотных связей. Обзор применения и развития

свёрточных сетей представлен в работах [182; 183].

Модель VGG16 демонстрирует согласованный набор проектных принци-

пов: локальность обработки за счёт малых фильтров, устойчивость к смещению
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Таблица 13 — Размерности слоёв и количество параметров VGG16

Слой Размер выходного тензора Ядро / шаг Кол-во параметров

Conv1_1 224× 224× 64 3× 3× 3× 64 1 792

Conv1_2 224× 224× 64 3× 3× 64× 64 36 928

MaxPool1 112× 112× 64 2× 2/2 0

Conv2_1 112× 112× 128 3× 3× 64× 128 73 856

Conv2_2 112× 112× 128 3× 3× 128× 128 147 584

MaxPool2 56× 56× 128 2× 2/2 0

Conv3_1 56× 56× 256 3× 3× 128× 256 295 168

Conv3_2 56× 56× 256 3× 3× 256× 256 590 080

Conv3_3 56× 56× 256 3× 3× 256× 256 590 080

MaxPool3 28× 28× 256 2× 2/2 0

Conv4_1 28× 28× 512 3× 3× 256× 512 1 180 160

Conv4_2 28× 28× 512 3× 3× 512× 512 2 359 808

Conv4_3 28× 28× 512 3× 3× 512× 512 2 359 808

MaxPool4 14× 14× 512 2× 2/2 0

Conv5_1 14× 14× 512 3× 3× 512× 512 2 359 808

Conv5_2 14× 14× 512 3× 3× 512× 512 2 359 808

Conv5_3 14× 14× 512 3× 3× 512× 512 2 359 808

MaxPool5 7× 7× 512 2× 2/2 0

FC6 4096 7× 7× 512→ 4096 102 764 544

FC7 4096 4096→ 4096 16 781 312

FC8 1000 4096→ 1000 4 097 000

Итого 138 357 544

объектов на изображении благодаря свёрточной структуре, а также последо-

вательное объединение локальных признаков в более глобальные структуры.

Такая архитектура обеспечивает устойчивое извлечение признаков при кон-

тролируемой сложности модели и остаётся эталонной во многих задачах

компьютерного зрения.
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3.5.2 Метрики оценки качества

Выбор метрик качества для оценки бинарной классификации изображе-

ний глазного дна обусловлен спецификой задачи предварительного скрининга,

где приоритет отдается высокой чувствительности модели к патологическим

случаям. Метрика recall позволяет контролировать долю правильно выявлен-

ных положительных классов (диабетическая ретинопатия) и минимизировать

риск ложноотрицательных решений, критичных для последующего этапа ди-

агностики. F1-score, как гармоническое среднее между recall и precision,

отражает сбалансированность модели при ошибках разного рода и обеспечивает

надёжную оценку в условиях возможного дисбаланса классов. Все указанные

метрики формализованы ранее.

3.5.3 Обучение, валидация, результаты

Для предварительной бинарной классификации фундус-снимков исполь-

зован модифицированная коллекция данных APTOS 2019, в которой изоб-

ражения всех стадий диабетической ретинопатии (Mild, Moderate, Severe,

Proliferative) были объединены в один класс – «диабетическая ретинопатия»,

а класс Normal сохранён как «норма». После процедур аугментации и баланси-

ровки итоговый корпус составил 4800 изображений, по 2400 в каждом классе.

Разбиение выполнено в соотношении: 70% (3360 изображений) использованы

для обучающей выборки, 15% (720 изображений) – для валидационной, остав-

шиеся 15% (720 изображений) – для тестовой. Во всех выборках сохранён баланс

между классами [186; 187].

На этапе предварительной обработки изображения были масштабирова-

ны до 224 × 224 пикселей и нормированы по требованиям ImageNet. Для

повышения обобщающей способности модели применялись стандартные мето-

ды аугментации не нарушающие пространственную структуру изображения:

случайные повороты до ±15◦, горизонтальные и вертикальные отражения. Все

аугментации применялись исключительно к обучающей выборке [188]. Для учё-
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та возможного дисбаланса классов использовались стратифицированные батчи

и веса классов в функции потерь [187].

В качестве базовой модели использована сверточная нейросеть VGG16 с

предобученными на ImageNet весами. Исходный классификатор модели был

заменён на последовательность: Global Average Pooling → Dense(256, ReLU)

→ Dropout(0.5) → Dense(2, softmax). Обучение проводилось в два этапа: на

первом этапе замороженные сверточные блоки не обновлялись, обучение велось

только для новой головы в течение 5 эпох при скорости обучения lr = 10−3

с оптимизатором Adam. На втором этапе размораживались блоки conv4_ и

conv5_, которые дообучались вместе с головой до 40 эпох при lr = 10−4 и weight

decay 10−4 [189; 190]. Использовались следующие приёмы: снижение скорости

обучения при отсутствии улучшения (ReduceLROnPlateau), ранняя остановка

по метрике macro-F1 с patience = 8 и сохранение лучших весов модели.

В качестве Функции потерь была выбрана взвешенная перекрёстная эн-

тропия:

L = −
1

N

N
∑

i=1

∑

c∈{norm,dr}

wc yi,c log pi,c, (3.9)

где wc – вес класса, yi,c – истинная метка, pi,c – вероятность, предсказанная

моделью, N – общее число примеров. При балансировке wc = 1.

Подбор гиперпараметров производился с использованием стратифициро-

ванной 5-кратной кросс-валидации на обучающей выборке (70

На тестовой выборке из 720 изображений (360 «норма», 360 «диабетиче-

ская ретинопатия») модель достигла следующих результатов при пороговом

значении 0.8:

Таблица 14 — Результаты VGG16 на тестовой выборке

Класс Recall (%) F1-score (%)

Норма 98.1 97.1

Диабетическая ретинопатия 97.8 97.9

Графическая интерпретация результатов представлена на рисунке 3.4, где

показана матрица ошибок.

Таким образом, правильно классифицировано 705 из 720 изображений.

Высокая чувствительность по патологическому классу подтверждает надёж-

ность предложенного подхода как инструмента для предварительного фильтра
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Рисунок 3.4 — Матрица ошибок VGG16

изображений. Данный этап позволяет отсечь очевидно нормальные случаи и

направить подозрительные изображения на последующую детальную обработ-

ку. Высокая F1-оценка указывает на сбалансированную производительность

модели, достигнутую за счёт использования трансферного обучения, а также

применения современных приёмов регуляризации.

3.6 Морфологические преобразования

3.6.1 Метод поиска анатомических зон глазного дна

Автоматизированное определение анатомических ориентиров глазного

дна, таких как центр оптического диска и зона фовеа, является ключевым

этапом для последующей локализации патологий и топографического анализа

распределения биомаркеров. Существующие подходы к решению этой задачи

можно условно разделить на три группы. Первая включает морфологические

методы, основанные на морфологических преобразованиях, геометрических

характеристиках (площадь, круглость, компактность) и простых эвристиках.

Вторая группа опирается на анатомо-геометрические соотношения между

структурами глазного дна, включая относительное расположение сосудистого
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русла, центра диска и фовеа. Третья представлена обучаемыми моделями глу-

бокого обучения, использующими предварительную аннотацию и обучающиеся

по изображению целиком. Основным недостатком обучаемых методов является

зависимость от размеченных выборок и чувствительность к смещению распре-

деления, тогда как классические подходы требуют ручной настройки и слабо

устойчивы к шуму и артефактам. В данной работе предлагается новый метод

локализации анатомических зон на основе анализа распределения яркости и

морфологических операций, не требующий обучения и демонстрирующий устой-

чивость к условиям реальной съёмки.

Для анализа изображения каждый цветовой канал c ∈ {R,G,B} представ-

ляется в виде гистограммы яркости Hc(k), отражающей количество пикселей с

интенсивностью k, где k = 0, . . . , 255 [191]. Для компенсации неравномерного

освещения и фона изображения предварительно выполняется морфологическая

коррекция, а именно: из исходного изображения вычитается его сглаженная

версия, полученная с помощью операции открытия, что позволяет усилить ло-

кальные яркие структуры на фоне медленно меняющегося фона:

I∗c = Ic − (Ic ◦ br), (3.10)

где ◦ обозначает морфологическое открытие с круглым структурирующим эле-

ментом радиуса r [192].

Для дальнейшего поиска оптического диска и зоны фовеа из трёх кана-

лов выбираются наиболее информативные: канал с наибольшим содержанием

ярких пикселей и канал с наибольшей концентрацией тёмных значений. В пер-

вом случае анализируется правый хвост гистограммы:

cOD = argmax
c

255
∑

k=dµc+ασce

Hc(k), (3.11)

а во втором – левый:

cF = argmax
c

bµc−ασcc
∑

k=0

Hc(k), (3.12)

где µc и σc – среднее и стандартное отклонение яркости канала c, α ∈

[1.0, 2.5] – масштабный коэффициент. Под хвостом гистограммы в данном кон-

тексте понимается часть распределения, выходящая за границы интервала
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[µc − ασc, µc + ασc]; левый хвост соответствует тёмным значениям, правый

– ярким значениям пикселей.

После выбора каналов выполняется пороговая бинаризация с использова-

нием адаптивных порогов TOD и TF, полученных, например, методом Отсу:

BOD(x,y) =







1, I∗cOD
(x,y) ⩾ TOD,

0, иначе,
BF(x,y) =







1, I∗cF(x,y) ⩽ TF,

0, иначе.
(3.13)

Пороговые значения уточняются после отсечения выбросов по крайним

квантилям от общей гистограммы интенсивности.

После бинаризации и морфологической фильтрации в маске BOD остаются

связные компоненты {Ωi}, каждая из которых может потенциально соответ-

ствовать оптическому диску. Для выбора наилучшей области применяется

интегральная оценка, учитывающая как геометрические, так и позиционные

признаки компонент. Для каждой области Ωi вычисляется агрегированная

оценка, отражающая её соответствие предполагаемой геометрии и положению

оптического диска:

Si = λ1 ·
|Ωi|

maxj |Ωj|
+ λ2 ·

4π|Ωi|

P 2
i

− λ3 · ei − λ4 · ρi, (3.14)

где:

– |Ωi| – площадь области (в пикселях);

– Pi — периметр области;

– 4π|Ωi|
P 2
i

– показатель округлости, достигающий максимума при идеально

круглой форме;

– ei – эксцентриситет, измеряющий вытянутость формы (ei = 0 соответ-

ствует кругу);

– ρi – нормализованное евклидово расстояние от центра масс области до

центра изображения;

– λk ⩾ 0,
∑4

k=1 λk = 1 – веса, определяющие значимость каждого крите-

рия.

Компонента с максимальным значением оценки Si выбирается как наибо-

лее вероятный кандидат на оптический диск:

Ω? = argmax
i

Si. (3.15)
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Её центр вычисляется как центр масс:

cOD =
1

|Ω?|

∑

(x,y)∈Ω?

(x,y)>, (3.16)

а диаметр — как диаметр окружности той же площади:

DOD = 2

√

|Ω?|

π
. (3.17)

Для последующего поиска центра фовеа формируется область интереса с

радиусами [κ1, κ2]DOD, центрированная в точке cOD и смещённая в височную

сторону (анатомически противоположную расположению диска) [193]. На прак-

тике параметры выбираются из диапазонов κ1 ∈ [2.0, 2.5], κ2 ∈ [3.0, 3.5].

Для определения центра фовеа I∗cF используется свёртка с гауссовым яд-

ром:

J = Gσ ∗ I
∗
cF
, (3.18)

где Gσ – гауссов фильтр с параметром сглаживания σ, а ∗ – операция двумерной

свёртки. Центр фовеа cF определяется как точка минимума полученного поля

яркости внутри заданной области поиска:

cF = arg min
p∈ROI

J(p). (3.19)

Ниже приведён пример результата автоматического поиска центра зоны

фове и оптического диска на фундус-снимке (рис. ??).

Рисунок 3.5 — Пример результата автоматического поиска центра зоны фове и

оптического диска: центр ОД – красный, зоны фовеа – синий

Предложенный метод не содержит обучаемых параметров, базируется

на морфологических преобразованиях и статистических характеристиках ги-

стограммцветовых каналов , что обеспечивает её устойчивость к артефактам
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съёмки (таким как блики, шум, неравномерная освещённость) и вариативности

сосудистого рисунка. С точки зрения вычислительной сложности все этапы ме-

тода имеют линейную асимптотику по числу пикселей. Параметры r,α, κ1, κ2,σ

выбираются из фиксированных диапазонов и не требуют настройки на разме-

ченных данных.

3.6.2 Сегментация зоны фовеа

Зона фовеа играет ключевую роль в диагностике и количественном анали-

зе патологических изменений при диабетической ретинопатии. Её корректная

локализация необходима для оценки симметрии изменений и выделения цен-

тральной макулярной области. Учитывая, что ранее были определены коорди-

наты центра фовеа (cx, cy) и центра диска зрительного нерва (xd, yd), возможно

построить простую модель сегментации на основе круговой аппроксимации.

В рамках упрощённого подхода предполагается, что граница зоны фо-

веа может быть аппроксимирована окружностью фиксированного радиуса rf ,

определяемого относительно размера диска или расстояния между центрами.

Радиус зоны фовеа задаётся на основе анатомо-геометрического соотношения

между фовеа и диском.

Если известна маска диска, радиус фовеа может быть выражен как доля

от его эффективного радиуса:

rf = β · rdisc, β ∈ [0,45; 0,60], (3.20)

где rdisc =
√

Adisc/π, а Adisc — площадь маски диска (в пикселях) [194; 195].

Если маска диска отсутствует, используется расстояние между центром

фовеа и центром диска:

d =
√

(cx − xd)2 + (cy − yd)2, rf = α · d, α ∈ [0,10; 0,18], (3.21)

что также согласуется с анатомо-геометрическими соотношениями между по-

ложением фовеа и диска на фундус-снимках [195].

Полученная маска фовеа F ⊂ D формируется по определению:

F =

{

(x, y) ∈ D |
√

(x− cx)2 + (y − cy)2 ⩽ rf

}

. (3.22)
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На практике результат может быть дополнительно сглажен или отфиль-

трован. При наличии калибровки по пикселям на миллиметр, площадь и радиус

зоны могут быть приведены к физическим единицам.

Данный метод отличается высокой воспроизводимостью, вычислительной

простотой и не требует обучения. Его точность зависит от качества предвари-

тельного определения центра фовеа и может быть подтверждена метриками

Dice и IoU при наличии эталонной разметки.

Такой подход может быть использован в практических системах анализа

глазного дна для построения анатомических зон интереса, пространственной

агрегации признаков, а также для извлечения количественных биомаркеров

центральной макулярной области, в частности — плотности микрогеморрагий,

твёрдых экссудатов и микрососудистых аномалий в пределах фовеального коль-

ца [196].

3.6.3 Разделение на квадранты

Пусть (cx, cy) ∈ Z
2 – координаты центра фовеа, найденные на предыдущем

этапе обработки. Тогда изображение делится на четыре квадранта, определяе-

мых по следующей схеме:

Q1 = {(x, y) ∈ D | cx ⩽ x < w, 0 ⩽ y < cy} ,

Q2 = {(x, y) ∈ D | cx ⩽ x < w, cy ⩽ y < h} ,

Q3 = {(x, y) ∈ D | 0 ⩽ x < cx, cy ⩽ y < h} ,

Q4 = {(x, y) ∈ D | 0 ⩽ x < cx, 0 ⩽ y < cy} .

(3.23)

Каждый квадрант представляет собой прямоугольную область, соответ-

ствующую одной из четырёх сторон изображения относительно центра фовеа.

Объединение всех квадрантов даёт полную область изображения:

D = Q1 ∪Q2 ∪Q3 ∪Q4, Qi ∩Qj = ∅, при i 6= j. (3.24)

Ниже представлен пример разбиения изображения на квадранты

(рис. 3.6).
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Рисунок 3.6 — Пример разделения изображения на квадранты относительно

центра фовеа

Такое разбиение используется при локализованном анализе фундус-сним-

ка, например, при вычислении распределения биомаркеров по анатомическим

регионам сетчатки. Для каждого квадранта можно определить локальные мас-

ки классов биомаркеров и подсчитать как их суммарную площадь (в пикселях),

так и количество отдельных экземпляров с помощью алгоритма связных ком-

понент.

Разбиение на квадранты позволяет формализовать топографическую

оценку распределения патологических изменений и использовать эту инфор-

мацию в правилах логического вывода или принятия решений.

3.7 Семантическая сегментация биомаркеров ДР

Целью является выделение контуров и классификация областей, со-

держащих патологии (микроаневризмы, кровоизлияния, твёрдые и мягкие

экссудаты). На данном этапе рассматривается задача семантической сегмен-

тации.

Пусть каждый пиксель изображения I , представленного в виде матрицы

размерности W ×H, соответствует некоторой дискретной функции:

u : {1, . . . ,M} × {1, . . . , N} → {0, . . . , 255}C ,

отражающей информацию об интенсивности пикселей с координатами i, j, где

количество каналов C = 3 для цветного изображения. Каждый пиксель иден-

тифицируется соответствующим вектором xj. Тогда сегментация изображения
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представляет собой разбиение множества

X = {xj}
d
j=1, где d = WH,

на кластеры Xj, j = 1, l, при этом каждому кластеру Xj сопоставляется

определённое цветовое значение, соответствующее анатомической области изоб-

ражения или фону, который он выделяет.

Задача требует выполнения семантической сегментации, то есть всё мно-

жество пикселей изображения Pt должно быть разделено на n кластеров

пикселей, каждый из которых отнесён к определённому классу, в соответствии

со следующим выражением:

C
⋃

i=1

Xj = Pt, Xi ∩Xj 6= ∅, i 6= j, i, j = 1, C. (1.1)

В данном случае ИНС выступает в роли функции принятия решений.

После получения результатов сегментации (обнаруженные классы и соответ-

ствующие им вероятности при превышении порога в 80%) они передаются на

следующий этап.

3.7.1 Модель U-Net

Модель U-Net была предложена в 2015 году в Университете Фрайбур-

га для задач биомедицинской семантической сегментации и быстро стала

стандартом в данной области благодаря сочетанию точности локализации и

устойчивости на малых выборках [197]. Архитектура имеет U-образную форму

и состоит из нисходящего пути кодировщика, уровня бутылочного горлышка

и восходящего пути декодировщика. Кодировщик понижает пространственное

разрешение и расширяет число каналов, извлекая контекст, а декодировщик

восстанавливает разрешение и уточняет границы объектов [198; 199].

В классической реализации на вход подаётся изображение размером 572×

572× C. Каждый блок кодировщика содержит две свёртки 3× 3 с активацией

ReLU и операцию максимального объединения 2× 2 со шагом 2; число каналов

удваивается при каждом понижении (64, 128, 256, 512), на уровне бутылочного

горлышка – 1024 [197]. Восходящий путь симметричен: сначала транспонирован-

ная свёртка 2×2 (апсемплинг), затем конкатенация с признаками кодировщика
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(англ. skip connection), после чего выполняются две свёртки 3× 3 с ReLU. Фи-

нальный слой представляет собой свёртку 1 × 1, проецирующую признаки в

пространство классов, и поканальную softmax-нормализацию. В современных

реализациях часто применяется same-padding, упрощающий выравнивание тен-

зоров [200].

Размерности слоёв и количество параметров модели U-Net представлены

в таблице 15. Схематичное изображение архитектуры представлено на рисун-

ке 3.7.

Таблица 15 — Размерности слоёв и количество параметров модели U-Net

Слой Размер выходного тензора Описание операций Параметры

Input 572× 572× 1 Входное изображение —

Conv1_1 570× 570× 64 Conv 3× 3, ReLU 0.064 млн

Conv1_2 568× 568× 64 Conv 3× 3, ReLU 0.037 млн

MaxPool1 284× 284× 64 MaxPool 2× 2 —

Conv2_1 282× 282× 128 Conv 3× 3, ReLU 0.074 млн

Conv2_2 280× 280× 128 Conv 3× 3, ReLU 0.148 млн

MaxPool2 140× 140× 128 MaxPool 2× 2 —

Conv3_1 138× 138× 256 Conv 3× 3, ReLU 0.295 млн

Conv3_2 136× 136× 256 Conv 3× 3, ReLU 0.590 млн

MaxPool3 68× 68× 256 MaxPool 2× 2 —

Conv4_1 66× 66× 512 Conv 3× 3, ReLU 1.180 млн

Conv4_2 64× 64× 512 Conv 3× 3, ReLU 2.359 млн

MaxPool4 32× 32× 512 MaxPool 2× 2 —

Conv5_1 30× 30× 1024 Conv 3× 3, ReLU 4.719 млн

Conv5_2 28× 28× 1024 Conv 3× 3, ReLU 9.438 млн

UpConv1 56× 56× 512 Transposed Conv 2× 2 2.097 млн

Concat1 + Conv6_1 54× 54× 1024 Conv 3× 3, ReLU 2.359 млн

Conv6_2 52× 52× 512 Conv 3× 3, ReLU 1.180 млн

... ... ... ...

Conv10 388× 388× 2 Conv 1× 1 (2 класса) 0.002 млн

Итого (приблизительно) ≈ 31 млн
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Рисунок 3.7 — Схема архитектуры модели U-Net [197]

Математическая формализация. Свёртка с ядром K ×K и паддингом p:

yi,j,k =
K−1
∑

m=0

K−1
∑

n=0

Cin
∑

c=1

xi+m−p, j+n−p, c · wm,n,c,k + bk, (3.25)

Функция активации ReLU:

ReLU(t) = max(0, t), (3.26)

Максимальное объединение 2 × 2 со шагом 2:

zi,j,k = max
(m,n)∈{0,1}2

yi+m, j+n, k. (3.27)

Транспонированная свёртка:

TConvw,s(x) = Convw(upss(x)), (3.28)

Прямые связи (skip connections):

Gl = Concatc

(

F̃ dec
l , Align(F enc

l )
)

, (3.29)

Финальная классификация пикселя с помощью softmax:

ŷi,j = arg max
k∈{1,...,K}

ezi,j,k
∑K

m=1 e
zi,j,m

, (3.30)
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U-Net обеспечивает компромисс между извлечением контекста и точной

локализацией благодаря симметричной архитектуре, прямым связям и простоте

операций. Модель стала основой для множества модификаций: UNet++ [199],

Attention U-Net [201], 3D U-Net [202], nnU-Net [200].

3.7.2 Фильтры Габора

Фильтры Габора представляют собой линейные пространственно-частот-

ные операторы, обеспечивающие одновременную локализацию в пространствен-

ной и частотной областях. Фильтр Габора представляет собой синусоиду,

умноженную на двумерную гауссовую функцию. Такое сочетание позволяет

минимизировать соотношение неопределённости между пространством и часто-

той, что делает габоровские фильтры эффективным инструментом в задачах

обработки изображений [203; 204]. Они находят широкое применение при ана-

лизе ориентированных и полосовых структур, например, в задачах выделения

текстур, линий и сосудистых образований. Особенно актуально использование

таких фильтров в медицинских изображениях, где требуется надёжное распо-

знавание вытянутых и направленных объектов, таких как кровеносные сосуды

и биомаркеры диабетической ретинопатии (например, микроаневризмы и кро-

воизлияния) на фундус-снимках.

Математически двумерный фильтр Габора описывается функцией, пред-

ставляющей собой произведение гауссовой и гармонической составляющих. В

наиболее распространённой форме его импульсная характеристика выражает-

ся как:

GR(x, y; λ, θ,ϕ,σ,γ) = exp

(

−
x′2 + γ2y′2

2σ2

)

cos

(

2π
x′

λ
+ϕ

)

, (3.31)

где x′ и y′ — координаты в системе, повернутой на угол θ, определяются сле-

дующим образом:

x′ = x cos θ+ y sin θ,

y′ = −x sin θ+ y cos θ.
(3.32)

Здесь λ – длина волны синусоидальной составляющей (обратнопропорци-

ональна частоте), θ – ориентация фильтра, ϕ – фазовый сдвиг, σ – ширина
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гауссовой огибающей, γ – коэффициент формы, определяющий степень вы-

тянутости фильтра. Такая реализация соответствует действительной части

комплексной габоровской функции и широко применяется в задачах анализа

изображений.

В задаче извлечения признаков из изображения с использованием банка

габоровских фильтров, отличающихся по ориентации, удобно определить зна-

чение признака как индекс фильтра, дающего наименьший отклик в данной

точке. Пусть I(x, y) – изображение, а GR – фильтр с ориентацией θj =
jπ
J , где

j = 0, . . . , J − 1. Тогда значение признака можно определить как:

F (x, y) = argmin
j
{(I ∗GR)(x, y; λ, θj,ϕ,σ,γ)} , (3.33)

где ∗ обозначает операцию свёртки.

Если применить банк фильтров с различными ориентациями, то в каждой

точке изображения можно выбрать ту ориентацию, при которой отклик филь-

тра минимален, что позволяет оценить локальное направление структуры.

Для устойчивого покрытия пространственно-частотной плоскости при-

меняется банк фильтров с параметрами, равномерно распределёнными по

ориентации и логарифмически по частоте. Частота ωn и угол θm могут быть

заданы формулами:

ωn =
π

2
· 2−(n−1)/2, θm =

π

8
(m− 1), (3.34)

где n = 1, . . . , 5, m = 1, . . . , 8. Ширина гауссовой огибающей обычно выбирается

как σ ≈ π/ω, а фазовый сдвиг ϕ – из равномерного распределения U(0,π) [205].

Таким образом, фильтры Габора являются универсальным и строго фор-

мализованным инструментом выделения ориентированных признаков, примени-

мым в различных областях технического и медицинского анализа изображений.

3.7.3 Модификация базовой модели

В настоящей работе реализована модификация архитектуры U-Net, в ко-

торой первый свёрточный блок энкодера заменён на обучаемый слой с ядрами,

параметризуемыми габоровской функцией. Цель такого подхода – повысить
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способность модели извлекать ориентированные полосовые признаки на ран-

них этапах обработки, что особенно важно для сегментации тонких сосудов,

направленных контуров и биомаркеров диабетической ретинопатии на фундус-

снимках и OCT-изображениях [206].

Каждое ядро обучаемого слоя представляется в виде габоровской функ-

ции, которая включает гармоническую составляющую с заданной частотой и

ориентацией, с амплитудой, уменьшающейся по пространству в соответствии

с двумерной гауссовой функцией. Параметры фильтра управляют длиной вол-

ны, направлением, фазовым сдвигом, масштабом и формой фильтра. Чтобы

гарантировать положительные значения масштаба, длины волны и формы, па-

раметры репараметризуются с помощью экспоненциальных преобразований.

Для устойчивости в обучении ядро предварительно масштабируется до фик-

сированной нормы и вычитается среднее значение, чтобы сделать его отклик

сбалансированным по амплитуде и не смещённым по яркости.

На этапе инициализации параметры фильтров выбираются из регулярного

банка, охватывающего различные частоты и ориентации. Частоты дискретизи-

руются по логарифмической сетке, а ориентации — равномерно:

ωn =
π

2
· 2−

(n−1)
2 , θm =

π

8
(m− 1), n = 1..5, m = 1..8. (3.35)

Соответствующий масштаб определяется как

σ ≈
π

ωn
, ϕ ∼ U(0,π). (3.36)

Модифицированный блок встраивается в U-Net на месте стандартного пер-

вого свёрточного блока энкодера. Его структура имеет вид:

GaborConv(k × k)→ BatchNorm→ ReLU→ Conv(3× 3). (3.37)

Такой модуль сохраняет размерность признаковых карт и совместим со струк-

турой skip-соединений. Вместо двух обычных свёрток 3× 3, применяется одна

обучаемая параметрическая свёртка с габоровскими ядрами и одна обычная.

Размер ядра выбирается в диапазоне k ∈ [7, 11], число выходных каналов под-

бирается так, чтобы не увеличивать размерность тензора признаков.

Несмотря на некоторое увеличение вычислительных затрат из-за нали-

чия экспоненциальных и тригонометрических операций, такая модификация

слоя обеспечивает более быструю и устойчивую сходимость модели. Обучае-

мые параметры ядра обновляются градиентным методом наравне с остальными
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параметрами модели, с возможным уменьшением шага обучения для стабиль-

ности на ранних этапах.

Для повышения эффективности обучения в данной работе были использо-

ваны аналитические выражения градиентов по основным параметрам фильтра,

что позволяет избежать неточностей численного дифференцирования. Ниже

приведены выражения для производных по длине волны λ, фазе ϕ, масштабу

σ, коэффициенту формы γ и ориентации θ:

∂G

∂λ
= A ·

2πx′

λ2
sinη,

∂G

∂ϕ
= −A sinη, (3.38)

∂G

∂σ
=

x′2 + γ2y′2

σ3
·G,

∂G

∂γ
= −

γy′2

σ2
·G, (3.39)

∂G

∂θ
= −A cosη ·

x′ · ∂θx
′ + γ2y′ · ∂θy

′

σ2
− A sinη ·

2π

λ
· ∂θx

′, (3.40)

где

A = exp

(

−
x′2 + γ2y′2

2σ2

)

, η =
2πx′

λ
+ϕ, (3.41)

∂θx
′ = −x sin θ+ y cos θ, ∂θy

′ = −x cos θ− y sin θ. (3.42)

Градиенты по логарифмическим параметрам `, s, g (введённым для обес-

печения положительности λ,σ,γ) вычисляются по правилу цепочки. Например:

∂G

∂s
=

∂G

∂σ
·
∂σ

∂s
= σ ·

∂G

∂σ
. (3.43)

Это обеспечивает точную и стабильную передачу градиентов к парамет-

рам формы ядра и позволяет эффективно обучать слой методом обратного

распространения ошибки.

Полученные результаты показали, что внедрение GaborConv на первом

уровне U-Net позволяет существенно повысить чувствительность модели к

тонким и направленным структурам. Это особенно важно при работе с меди-

цинскими изображениями, где ключевые признаки могут быть выражены через

локальные, слабо контрастные и вытянутые формы. В рамках данной работы

отмечено улучшение полноты сегментации сосудов и снижение количества про-

пусков микроаневризм и кровоизлияний на фундус-снимках.



103

3.7.4 Метрики оценки качества

В данной задаче в качестве метрик оценки качества сегментации исполь-

зуются коэффициент пересечения с объединением (Intersection over Union, IoU)

и коэффициент сходства Dice (Dice Similarity Coefficient, DSC), математиче-

ская формализация которых приведена ранее. Эти метрики являются наиболее

широко применяемыми в задачах семантической медицинской сегментации, по-

скольку позволяют количественно оценить степень совпадения предсказанных и

истинных масок на уровне пикселей. Метрика IoU демонстрирует устойчивость

к ложноположительным и ложноотрицательным предсказаниям за счёт учёта

области объединения, в то время как коэффициент Dice обладает повышенной

чувствительностью к совпадению форм и границ объектов, что особенно важ-

но при анализе мелких или протяжённых структур. Совместное использование

обеих метрик позволяет объективно оценить как точность локализации, так и

полноту выявления сегментируемых объектов.

3.7.5 Обучение, валидация, результаты

Проведено сравнение двух архитектур: базовой U-Net и модифицирован-

ной Gabor-U-Net, в которой первый свёрточный блок энкодера заменён на

обучаемый слой с ядрами, параметризуемыми функцией Габора. Такая модифи-

кация позволяет ввести в модель направленную чувствительность к структурам

определённой ориентации и пространственной частоты, что особенно актуально

при анализе изображений глазного дна с вытянутыми, линейными и текстур-

ными образованиями.

Для обучения использовался объединённый корпус изображений, со-

ставленный из трёх открытых медицинских датасетов: IDRiD, FGADR и

MAPLES-DR. Эти наборы содержат фундус-снимки с пиксельной разметкой

биомаркеров диабетической ретинопатии. Объединённый датасет приведён к

единому формату с выделением пяти целевых классов: микроаневризмы (MA),

кровоизлияния (HEM), твёрдые экссудаты (EX), мягкие экссудаты (SE) и

неоваскуляризация (NV). Изображения были нормализованы по размеру и осве-
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щённости, маски унифицированы по таксономии. При обучении использовалось

взвешивание потерь с учётом дисбаланса классов.

В качестве исходной модели использовалась предобученная U-Net. Такая

инициализация позволила повысить стабильность обучения и ускорить сходи-

мость.

Функция потерь, использованная при дообучении обеих моделей, пред-

ставляет собой сумму функции потерь Дайса и кросс-энтропии:

L = αLCE + βLDice, (3.44)

где LCE – многоклассовая кросс-энтропия, LDice – усреднённая функции по-

терь Дайса по всем классам. В данной работе использовались равные веса:

α = β = 1.

Кросс-энтропия вычисляется как:

LCE = −
C
∑

c=1

N
∑

i=1

yic log pic, (3.45)

где C – количество классов, N – число пикселей, yic – истинная метка принад-

лежности пикселя i классу c, pic – вероятность, предсказанная моделью для

этого класса.

Функция потерь Дайса для отдельного класса имеет вид:

L
(c)
Dice = 1−

2
∑N

i=1 picyic + ε
∑N

i=1 p
2
ic +

∑N
i=1 y

2
ic + ε

, (3.46)

а итоговая рассчитывается как:

LDice =
1

C

C
∑

c=1

L
(c)
Dice, (3.47)

где ε – малое положительное число для обеспечения численной устойчивости.

Модели дообучались с использованием оптимизатора Adam, пакетной нор-

мализации (BatchNorm), размера входных патчей 512 пикселей и контроля

сходимости по валидационным метрикам. Для оценки качества применялась

5-кратная стратифицированная кросс-валидация.

В таблицах 16 и 17 приведены результаты оценки качества сегментации.

Результаты показывают, что модифицированная архитектура превосходит

базовую U-Net по всем целевым метрикам на всех классах биомаркеров. При-

рост составляет от 1.3 до 3.0 процентных пунктов, что указывает на повышение
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Таблица 16 — Результаты по метрике IoU (%), ± стандартное отклонение

Класс U-Net Gabor-U-Net Прирост

MA 85.6±1.6 88.1±1.5 +2.5

HEM 87.0±1.4 90.0±1.3 +3.0

EX 89.1±1.2 91.6±1.1 +2.5

SE 86.2±1.8 88.8±1.6 +2.6

NV 85.9±1.9 88.3±1.8 +2.4

Таблица 17 — Результаты по метрике Dice (%), ± стандартное отклонение

Класс U-Net Gabor-U-Net Прирост

MA 89.0±1.3 91.4±1.0 +2.4

HEM 90.2±1.1 92.0±0.9 +1.8

EX 90.7±1.0 92.0±0.8 +1.3

SE 89.3±1.4 91.0±1.1 +1.7

NV 89.0±1.6 90.9±1.3 +1.9

как точности модели. На рис. 3.8 представлен пример сегментации биомаркеров

на фундус-снимке с помощью модифицированной архитектуры.

Рисунок 3.8 — Пример сегментации фундус-снимка
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Наибольшее улучшение достигнуто для классов кровоизлияний и неовас-

куляризации. Эти структуры обладают направленной или ветвящейся морфо-

логией, которая хорошо соответствует чувствительности габоровских фильтров

к ориентации и ширине текстур. Для классов микроаневризм и экссудатов

улучшения оказались умеренными, что объясняется их изотропной, пятнистой

формой. Тем не менее, даже в этих случаях направленная фильтрация улучша-

ет контрастирование границ и снижает влияние фоновых искажений. Таким

образом, внедрение обучаемого габоровского блока в структуру U-Net даёт

количественные и качественные преимущества при сегментации биомаркеров

диабетической ретинопатии на фундус-снимках.

3.8 Метод объяснительного ИИ

3.8.1 Объяснительный ИИ в анализе фундус-снимков

На фоне активного внедрения методов ОИИ в задачах анализа изображе-

ний лучевой диагностики (КТ, МРТ, рентген), применение подобных подходов

в офтальмологических задачах на основе фундус-снимков остаётся фраг-

ментарным. Несмотря на широкое использование СНС для автоматической

классификации ДР, интерпретируемость таких моделей редко рассматрива-

ется как обязательное требование. Это затрудняет клиническое применение,

особенно в условиях, где необходимо обоснование решений, принимаемых ИИ-

моделью. В систематическом обзоре [151], охватывающем 46 оригинальных

публикаций, лишь 18 посвящены задачам, связанным с ДР, и все они ограни-

чиваются исключительно задачами классификации изображений, без перехода

к детекции или сегментации микропатологических признаков.

Наиболее часто используемыми инструментами ОИИ в работах по клас-

сификации ДР являются методы визуализации важности признаков на основе

активационных карт: CAM (Class Activation Mapping) [207], Grad-CAM [208],

а также attention-механизмы и модели с множественным представлением

экземпляров (multiple-instance learning, MIL). CAM-подобные методы отобра-

жают дисриминативные области изображения, ассоциированные с конкретным
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классом, через активации свёрточных слоёв. Их популярность объясняется про-

стотой реализации и совместимостью с типичными СНС-архитектурами. В ряде

работ, таких как [209; 210], Grad-CAM использовался для верификации фоку-

сировки модели на характерных для ДР поражениях. Более сложные подходы,

использующие MIL и attention-механизмы, позволяют повысить разрешаю-

щую способность карт важности и дают более интерпретируемую локализацию

[211; 212]. Модель-агностичные методы, такие как LIME [213], SHAP [214] и

Integrated Gradients [215], применяются реже, но демонстрируют потенциал для

локального анализа вклада отдельных сегментов изображения [216].

Как показывают опубликованные исследования, ОИИ в задачах классифи-

кации ДР служит, главным образом, для качественной верификации решений

модели. Основной упор делается на визуальную интерпретацию тепловых карт

и проверку их клинической обоснованности. При этом количественные метри-

ки объяснимости (fidelity, robustness, completeness, sensitivity) в большинстве

работ либо отсутствуют, либо оцениваются эпизодически. Так, в работе [211]

приведена метрика AUPRC для соответствия карт внимания аннотирован-

ным поражениям, а в [217] проанализирована вариабельность объяснений при

изменении условий визуализации. Однако во многих публикациях карты важно-

сти демонстрируют ограниченное пространственное разрешение, тенденцию к

активации неспецифичных областей (например, диск зрительного нерва) и чув-

ствительность к параметрам съёмки. В случае использования LIME и SHAP

возникают дополнительные сложности, связанные с генерацией суперпикселей

и стабильностью локальных объяснений [216].

Таким образом, современные публикации по применению ОИИ в ди-

агностике ДР на фундус-снимках демонстрируют значительный прогресс в

визуализации значимых признаков, но при этом ограничиваются только зада-

чами классификации. Перспективные направления дальнейших исследований

включают: разработку формализованных метрик объяснимости; интеграцию

объяснимости в архитектуру модели на этапе обучения; перенос фокуса с post-

hoc интерпретаций на объяснимые архитектуры; переход к задачам сегментации

и количественной локализации очагов поражения. В условиях клинического

применения требуется формализация протоколов валидации объяснений, вери-

фикация с участием офтальмологов и оценка влияния объяснений на принятие

врачебных решений.
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3.8.2 Метод ОИИ Grad-CAM

Принцип работы метода CAM (Class Activation Mapping), основанного

на линейной комбинации карт признаков последнего сверточного слоя с фик-

сированными весами, уже был изложен ранее (см. п. X.X). В настоящем

разделе рассматривается его развитие – метод Grad-CAM (Gradient-weighted

Class Activation Mapping), обеспечивающий более универсальный и гибкий спо-

соб объяснения решений сверточных нейросетей.

Grad-CAM предназначен для генерации визуально интерпретируемых теп-

ловых карт, указывающих участки входного изображения, внёсшие наибольший

вклад в предсказание модели. Метод основан на использовании градиентов ло-

гитов по активациям сверточного слоя, что позволяет количественно оценить

значимость пространственных признаков, формируемых на промежуточных

уровнях нейросетевой архитектуры. В отличие от CAM, Grad-CAM не требу-

ет наличия архитектурных ограничений (например, глобального усреднения по

каналам) и может быть применён к широкому классу моделей СНС [208].

Математически метод формализуется следующим образом. Пусть Ak ∈

R
h×w – карта активаций k-го канала выбранного сверточного слоя, а yc – логит

для целевого класса c. Тогда веса каналов определяются как средние значения

градиентов логита по пространственным координатам:

αc
k =

1

Z

h
∑

i=1

w
∑

j=1

∂yc

∂Ak
ij

, Z = h · w. (3.48)

На их основе строится тепловая карта:

Lc
Grad-CAM = ReLU

(

∑

k

αc
kA

k

)

, (3.49)

которая интерпретируется как карта важности пространственных признаков,

масштабируется до размеров исходного изображения и визуализируется как на-

ложение на вход. Применение функции ReLU позволяет исключить признаки,

оказывающие отрицательное влияние на логит, и сфокусироваться на положи-

тельных вкладчиках в решение модели.

Так как метод работает с уже обученной моделью и не требует допол-

нительного обучения, он является подходом пост-фактум объяснения (англ.
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post-hoc explainability) и может быть использован для анализа решений моделей

в реальных приложениях. Его архитектурная независимость, вычислительная

эффективность и возможность выбора уровня представления (через выбор

сверточного слоя) обеспечивают гибкость интерпретации. Тепловые карты Grad-

CAM позволяют визуально локализовать наиболее значимые для предсказания

признаки, проводить аудит ошибок модели, интерпретировать некорректные

или нестабильные решения, а также выявлять потенциальные источники арте-

фактов и смещений [208; 218].

3.8.3 Особенности практического применения Grad-CAM

Практическое применение метода Grad-CAM для интерпретации резуль-

татов работы СНС в данной работе рассматривается в контексте объяснения

результатов семантической сегментации, выполняемой модифицированной мо-

делью U-Net. При сегментации реализуется отображение входного изображения

I ∈ R
H×W×3 в тензор логитов Y ∈ R

H×W×C , где каждый пиксель p = (x, y) по-

лучает вектор значений {yc(p)} по классам c = 1, . . . ,C. В рамках настоящей

работы используется попиксельное объяснение, то есть объяснение принадлеж-

ности конкретного пикселя p? заданному классу c. В этом случае целевая

функция формулируется как:

T = yc(p?), (3.50)

а градиенты вычисляются по активациям выбранного сверточного слоя. Такой

подход позволяет локализовать признаки, оказывающие наибольшее влияние на

классификацию данного пикселя, и сопоставлять их с клинически значимыми

областями. Попиксельная интерпретация особенно актуальна в медицинских

задачах, где необходимо анализировать поведение модели на границах классов

и в областях с потенциальными артефактами, а также обеспечивать локальную

интерпретируемость и выявление ошибок.

Качество тепловых карт Grad-CAM определяется выбором слоя, по ак-

тивациям которого формируются объяснения. В данной работе в качестве

целевого слоя выбран последний блок энкодера U-Net. Такой выбор обуслов-

лен тем, что он обеспечивает широкое приёмное поле и учитывает глобальный
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контекст изображения, формируемые признаки обладают высоким уровнем се-

мантической абстракции, позволяя выявлять закономерности, действительно

важные для классификации, а получаемые карты отличаются устойчивостью и

интерпретируемостью, что критически важно для анализа медицинских изобра-

жений. Таким образом, использование последнего блока энкодера обеспечивает

баланс между локализацией областей интереса и стабильностью объяснений,

что делает его оптимальным для анализа решений модели U-Net в задачах

диагностики [219].

Для практической реализации метода Grad-CAM применяются спе-

циализированные фреймворки. В данной работе используется библиотека

pytorch-grad-cam, предоставляющая полнофункциональную реализацию базо-

вого метода и его модификаций (Grad-CAM++, Score-CAM и др.), включая

поддержку сегментационных моделей. Она позволяет задавать целевые слои

и функции, использовать режимы сглаживания (например, aug_smooth,

eigen_smooth) и получать наглядные визуализации результатов [220].

Пример получения визуального объяснения для данной задачи представ-

лен на рис. 3.9 показаны тепловые карты, наложенные на изображения глазного

дна при семантической сегментации стадий диабетической ретинопатии.

Рисунок 3.9 — Тепловые карты Grad-CAM для семантической сегментации ста-

дий диабетической ретинопатии на фундус-снимке

Карты визуализируют области, которые вносят наибольший вклад в

предсказание модели, позволяя отследить динамику изменения релевантных

признаков по мере прогрессирования заболевания: от отсутствия патологий до

четвёртой стадии диабетической ретинопатии. Можно отметить, что с увели-

чением тяжести заболевания тепловые карты охватывают всё более обширные

участки сетчатки, что отражает участие в сегментации не только локальных

изменений, но и диффузных патологических структур. Такой результат де-

монстрирует практическую значимость применения Grad-CAM для анализа и

интерпретации решений нейросетей в медицинских задачах диагностики.
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3.9 Метод водораздела

В задачах анализа фундус-снимков при диабетической ретинопатии часто

требуется не только определить область присутствия определённого класса био-

маркеров, но и выделить отдельные их экземпляры для дальнейшего подсчёта.

Типичный пример – определение количества микрососудистых аномалий, гемор-

рагий, экссудатов и других структур в пределах одной анатомической области.

Для этого необходимо выполнить переход от семантической сегментации, когда

каждый пиксель отнесён к определённому классу, к сегментации экземпляров,

при которой соприкасающиеся объекты внутри одного класса раздельно иден-

тифицируются.

Метод водораздела (англ. watershed) представляет собой классический

морфологический метод сегментации, интерпретирующий изображение как то-

пографическую поверхность, где интенсивность или градиент соответствует

высоте. Процесс затопления поверхности из локальных минимумов формиру-

ет бассейны притяжения, а линии водораздела представляют собой границы

между ними [192; 221; 222].

Пусть I : Ω ⊂ Z
2 → R – изображение, где I(x) – интенсивность в точке

x ∈ Ω. Для подавления шумов используется сглаживание:

Iσ = Gσ ∗ I, (3.51)

где Gσ – гауссова свёртка. В качестве рельефа T применяют либо модуль гра-

диента

T (x) = ‖∇Iσ(x)‖2 , (3.52)

либо морфологический градиент:

T (x) = (Iσ ⊕ B) (x)− (Iσ 	 B) (x), (3.53)

где B — структурный элемент, ⊕ и 	 – операции дилатации и эрозии соот-

ветственно [191; 192].

Обозначим множество локальных минимумов рельефа T как M(T ) =

{mk}. Используя топографическую метрику, основанную на методе мини-

мальной крутизны подъёма [223], расстояние от точки x до минимума m

определяется как:

dT (x,m) = min
π∈P(x→m)

max
y∈π

T (y), (3.54)
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где P(x → m) – множество всех дискретных путей от x до m.

Бассейн притяжения минимума mk определяется следующим образом:

CB(mk) = {x ∈ Ω | dT (x,mk) < dT (x,mj), ∀j 6= k} . (3.55)

Линии водораздела определяются как:

W (T ) = Ω \
⋃

k

CB(mk), (3.56)

что соответствует точкам, не принадлежащим ни одному бассейну [224].

Для подавления пересегментации используют маркерно-управляемый во-

дораздел [221; 222]. Пусть F =
⋃

i Fi – множество маркеров объектов, B –

маркеры фона. Для модификации рельефа T с целью ограничения сегментации

только заданными маркерами выполняется фиксация минимумов в областях

F ∪ B. Обновлённая функция рельефа записывается как:

T ′ = IF∪B(T ) = RT (T − λ), (3.57)

где IF∪B(T ) – оператор фиксации минимумов в маркерах F ∪ B, RT – мор-

фологическая реконструкция по маске T , λ > 0 – параметр, подавляющий

неглубокие минимумы [192].

С теоретической точки зрения, алгоритм водораздела может быть интер-

претирован как построение минимального остовного леса на графе смежности

пикселей, где корнями служат маркеры [225]. Эффективные реализации ис-

пользуют очереди приоритетов и обеспечивают квазилинейную временную

сложность [222; 224].

Алгоритм водораздела реализован в библиотеке OpenCV через функцию

cv::watershed, предназначенную для выполнения маркерно-управляемой сег-

ментации [226]. На вход подаются: исходное изображение в формате BGR и

карта маркеров в виде 32-битной целочисленной матрицы. Положительные зна-

чения маркируют отдельные объекты, ноль обозначает неизвестную зону, а

результат работы включает границы, помеченные значением −1.

В отличие от классического варианта, маркерно-управляемая реализация

ограничивает рост сегментированных областей строго от заданных маркеров,

что снижает пере-сегментацию и увеличивает устойчивость к шуму [221; 222].

Такой подход позволяет интегрировать априорную информацию, например, вы-

ходы модели сегментации или морфологически полученные маски.
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Типовой конвейер применения алгоритма водораздела в OpenCV включа-

ет следующие этапы:

1. Предобработка и вычисление топографии:

– сглаживание изображения (например, гауссово фильтрование);

– вычисление градиента: операторы Sobel, Laplacian или морфо-

логический градиент.

2. Получение бинарной маски объектов (если отсутствует готовая семан-

тическая маска):

– глобальное пороговое преобразование (например, метод Отсу)

или выходы сегментационной нейросети.

3. Формирование маркеров:

– верный фон: дилатация бинарной маски;

– верный объект: дистанционное преобразование D = dist(M) и

порог по доле от maxD; локальные максимумы D формируют

маркеры объектов;

– неизвестная зона: вычисляется как unknown = sure_bg −

sure_fg.

4. Маркировка компонент: с использованием connectedComponents.

5. Вызов функции водораздела: cv.watershed(image_bgr, markers); ре-

зультат — карта меток с экземплярами и границами.

Такой конвейер обеспечивает воспроизводимую и модульную обработку,

пригодную для задач биомедицинской визуализации, промышленного анализа и

количественной морфометрии. Эффективность и качество сегментации во мно-

гом зависят от параметров порогов, глубины подавления локальных минимумов

и формы структурного элемента [192; 224; 225].

Применительно к данной работе алгоритм водораздела использовался

для разделения масок, полученных на этапе семантической сегментации био-

маркеров диабетической ретинопатии, таких как микрогеморрагии, твёрдые

экссудаты, микроаневризмы и другие (рис. ??).

Таким образом, использование метода водораздела позволило получить

раздельную маску для каждого отдельного экземпляра биомаркера, относяще-

гося к заданному классу. Это существенно расширяет возможности анализа:

становится возможным выполнять не только классификацию наличия патоло-

гии, но и точный подсчёт её проявлений, а также оценку морфологических

характеристик (например, площади, формы, плотности распределения). Такой
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подход критически важен при построении интерпретируемых моделей диа-

гностики и прогнозирования степени поражения сетчатки при диабетической

ретинопатии.

3.10 Определение количественных характеристик

Цель данного этапа – получение количественных характеристик распре-

деления биомаркеров диабетической ретинопатии в пределах зоны фовеа, с

учётом её пространственного деления. На предыдущих шагах фовеа была сег-

ментирована в виде окружности, а затем разделена на четыре квадранта,

обозначенные как Q1, Q2, Q3, Q4. Каждая маска семантической сегментации, со-

ответствующая определённому классу биомаркеров (например, микроаневриз-

мы, геморрагии, твёрдые экссудаты), также была ограничена соответствующим

квадрантом. Для устранения наложения и точного подсчёта экземпляров внут-

ри каждого квадранта применялся метод водораздела.

Для формального описания введём обозначения. Пусть Mc(x, y) – би-

нарная маска класса c, а Qi ⊂ D – область i-го квадранта зоны фовеа, где

i = 1, 2, 3, 4. Тогда маска класса в данном квадранте определяется как:

Mc,i(x, y) = Mc(x, y) ∩Qi. (3.58)

После применения алгоритма водораздела к Mc,i получаем множество

непересекающихся сегментов (экземпляров):

Sc,i =
{

S1
c,i, S

2
c,i, . . . , S

Nc,i

c,i

}

, (3.59)

где Nc,i – число найденных экземпляров класса c в квадранте Qi. Суммарное

количество элементов класса c по всей фовеальной зоне определяется как:

Nc =
4
∑

i=1

Nc,i. (3.60)

Для представления результатов удобно использовать матрицу подсчётов:

N = (Nc,i) , c = 1, . . . , C; i = 1, . . . , 4, (3.61)
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где C – количество классов биомаркеров. Каждая строка такой матрицы опи-

сывает пространственное распределение экземпляров конкретного класса по

квадрантам.

Полученные величины позволяют перейти от пиксельного уровня (семан-

тическая сегментация) к количественному анализу экземпляров. Это критиче-

ски важно при построении интерпретируемых признаков, оценке локального

распределения биомаркеров и сравнении пространственных паттернов патоло-

гий у разных пациентов.

3.11 Классификация на основе логических правил

Одним из ключевых этапов анализа биомаркеров ДP после выполнения

сегментации является переход от количественного описания признаков к диа-

гностической интерпретации. В данной работе этот переход реализуется через

логический классификатор, основанный на формализованных клинических пра-

вилах.

Суть подхода заключается в том, чтобы преобразовать матрицу подсчи-

танных экземпляров биомаркеров (по классам и квадрантам) в диагностическое

решение о текущей стадии ДР: непролиферативная (NPDR), препролифератив-

ная (PPDR) или пролиферативная (PDR). Для этого используются пороговые

и логические условия, полученные из официальных клинических рекомендаций

Российской Федерации [139] и международных стандартов [143; 227; 228].

Для наглядности в таблице 18 приведены клинические характеристики

стадий ДР согласно национальным рекомендациям.

Пусть для каждого класса биомаркеров c ∈ {MA,HEM,EX, SE,NV }

и квадранта Qi, i = 1, . . . ,4 получены количества экземпляров Nc,i ∈ N0. Обо-

значим матрицу подсчётов

N =
(

Nc,i

)

∈ N
C×4
0 , C = 5.

Введём пороговые параметры Θ = {θMA,θHEM,θ4Q,θNV}. Логический клас-

сификатор задаётся как функция:

f : N
C×4
0 ×Θ −→ {NPDR,PPDR,PDR}.
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Таблица 18 — Характеристика изменений на глазном дне при различных стади-

ях ДР [139]

Стадия ДР Характеристика изменений на глазном

дне

Непролиферативная Микроаневризмы, мелкие интраретиналь-

ные кровоизлияния

ПрепролиферативнаяДиагностируется при наличии хотя бы одно-

го из признаков:

– венозные деформации в 2-х и более квад-

рантах;

– множественные ИРМА в одном и более

квадрантах;

– множественные геморрагии в виде пятен в

4-х квадрантах

Пролиферативная Неоваскуляризация диска зрительного нер-

ва и/или сетчатки, преретинальные и интра-

ретинальные кровоизлияния (гемофтальм),

фиброзная ткань в области кровоизлияний

и вдоль новообразованных сосудов

Логические правила классификации стадий ДР:

– Пролиферативная ДР (PDR): наличие неоваскуляризации хотя бы в

одном квадранте:

∃i : NNV,i ⩾ θNV.

– Препролиферативная ДР (PPDR): множественные геморрагии и/или

микроаневризмы во всех квадрантах:

Qcount

(

NHEM,i +NMA,i ⩾ θ4Q
)

= 4.

– Непролиферативная ДР (NPDR): наличие микроаневризм или кровоиз-

лияний:

NMA ⩾ θMA ∨ NHEM ⩾ θHEM,

при условии, что не выполняются условия для PDR и PPDR.

Итоговое правило классификации:
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f(N; Θ) =



















PDR, если ∃i : NNV,i ⩾ θNV,

PPDR, иначе если Qcount

(

NHEM,i +NMA,i ⩾ θ4Q
)

= 4,

NPDR, иначе если NMA ⩾ θMA ∨NHEM ⩾ θHEM.

Пороговые значения подбираются в соответствии с диагностическим кри-

териям, представленным в клинических рекомендациях и руководствах [139;

143; 228].

3.12 Выводы к третьей главе

1. Предложен и реализован метод анализа фундус-снимков, включающий

последовательность этапов: бинарная классификация изображений по

признаку наличия патологий, локализация ключевых анатомических

зон, сегментация экземпляров биомаркеров и финальная логическая ин-

терпретация результатов. Метод разработан как компонент методики

формирования проблемно-ориентированных коллекций данных и спо-

собен обеспечивать интеграцию в прикладные конвейеры.

2. Обоснована и практически реализована интеграция визуально-объяснимых

механизмов интерпретации решений нейросетей на основе тепловых

карт (Grad-CAM). Полученные визуальные объяснения позволяют

прослеживать причинно-следственные связи между входным изоб-

ражением и результатом модели, что повышает прозрачность и

воспроизводимость в условиях клинического применения.

3. Разработана модификация архитектуры сегментационной модели се-

мейства U-Net, основанная на внедрении параметрически обучаемых

фильтров Габора, ориентированных на извлечение локальных текстур-

ных признаков и направленной градиентной структуры. Доказано, что

модификация позволяет улучшить качество сегментации слабовыра-

женных биомаркеров на фундус-снимках.

4. Предложен подход к интерпретируемой классификации стадий ретино-

патии на основе формализованных экспертных правил. Использование

логического классификатора на этапе финального принятия решения
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позволяет совместить преимущества глубокой нейросетевой сегмента-

ции и экспертного клинического опыта.
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Заключение

Разработана методика формирования специализированных коллекций

данных для автоматического анализа ретинальных изображений. Методика

опирается на нейросетевую оценку качества, использование объяснимого ИИ

для верификации релевантности признаков, интеграцию моделей с визуаль-

ными промптами для ускоренной предварительной разметки и перекрёстные

экспертные аннотации. Такая организация конвейера повышает воспроизво-

димость экспериментов, снижает трудоёмкость ручной разметки и улучшает

согласованность данных.

Предложен метод автоматического анализа ретинальных изображений,

сочетающий сегментацию экземпляров, формализованные логические прави-

ла экспертных знаний и средства объяснимого ИИ. Переход к экземплярной

постановке позволил выделять мелкие и пересекающиеся структуры, а после-

дующая формализация знаний – агрегировать количественные показатели в

диагностически значимые заключения. Это привело к повышению точности ре-

шения клинических задач распознавания патологий сетчатки.

Разработан метод поиска и сегментации анатомических зон сетчатки на

фундус-снимках на основе анализа бинаризованных гистограмм цветового кана-

ла. Подход характеризуется нечувствительностью к артефактам и отсутствием

необходимости в предварительном обучении, что расширяет его применимость

при вариативности данных и уменьшает требования к объёму размеченных вы-

борок.

Достижение поставленной цели – разработка интерпретируемых и устой-

чивых методов анализа ретинальных изображений на основе сегментации

биомаркеров, экспертных правил и средств глубокого обучения. Обеспечено

за счёт комплексного подхода, включающего формирование качественных да-

тасетов, реализацию нейросетевых архитектур с объяснимым поведением и

построение логического вывода на основе клинических знаний. Предложенные

решения ориентированы на практическое применение в задачах поддержки

принятия врачебных решений и соответствуют актуальным требованиям к точ-

ности, интерпретируемости и воспроизводимости медицинских ИИ-систем.
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