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Введение

Актуальность темы исследования. Диссертация посвящена теме по-

строения верхних оценок обобщающей способности одномерных пороговых ре-

шающих правил.

При решении задачи обучения на основании обучающей выборки объектов,

часто называемой обучением по прецедентам, строится алгоритм, восстанавли-

вающий зависимость выходных переменных от входных на объектах из обучаю-

щей выборки. В задаче классификации выходная переменная одна и принимает

бинарные значения, а алгоритмы называются классификаторами. Для успеш-

ного применения построенного классификатора он должен иметь высокую обоб-

щающую способность, то есть хорошо работать на произвольных объектах, не

обязательно входящих в обучение. Если же качество классификатора на незави-

симой выборке, называемой контрольной, оказывается значительно хуже, чем

на обучающей выборке, то говорят, что произошло переобучение.

Получение оценок обобщающей способности семейства классификаторов

на основе информации об обучающей выборке и структуре семейства с публи-

кации [66] остается одной из основных задач теории статистического обучения.

Завышенность полученных оценок может приводить к неоптимальному выбору

структурных параметров [27, 35, 42]. Кроме того, завышенные оценки не дают

возможности исследовать явление переобучения, оценивать и контролировать

его значения при решении реальных задач.

Степень разработанности темы исследования. В конце 70-х гг. XX в.

советские ученые В.Н. Вапник и А. Я. Червоненкис сформулировали основные

статистические проблемы обучения в терминах проблемы минимизации средне-

го риска, т. е. вероятности ошибки классификатора на новом объекте, и предло-

жили методы оценки среднего риска по эмпирическим данным [65, 67]. Вапник

и Червоненкис получили равномерные по семействам классификаторов оцен-

ки, связывающие вероятность уклонения среднего риска от эмпирического с
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длиной обучающей выборки и сложностью семейства, над которыми минимизи-

руется средний риск. Этот фундаментальный результат активно используется

и сегодня.

Однако оценки Вапника–Червоненкиса являются завышенными. В рабо-

те [55] показано, что они бывают завышены на 6–12 порядков и плохо согла-

суются с результатами экспериментов. В этой же работе исследуются причины

завышенности оценок, из которых основной является независимость оценок от

конкретной выборки. Оценка Вапника–Червоненкиса универсальна и, следова-

тельно, является оценкой худшего случая.

Теория статистического обучения продолжает активно развиваться, после-

дователи теории занимаются повышением точности равномерных оценок с уче-

том особенностей данных и конкретных алгоритмов классификации [19, 20, 51,

54]. Получены более тонкие оценки, которые зависят от свойств отношения ча-

стичного порядка на множестве вектор-столбцов матрицы ошибок [31]. Среди

плодотворных подходов можно выделить оценки, адаптирующиеся к данным

и использующие понятие Радемахеровской сложности, предложенной в 1999 г.

В. Колчинским [40].

В качестве характеристик обобщающей способности используются функ-

ционалы вероятности переобучения и полного скользящего контроля [38].

В комбинаторной теории переобучения [68, 69], предложенной К. В. Во-

ронцовым, вероятностью переобучения называют долю разбиений конечного

множества объектов на обучающую и контрольную выборки фиксированной

длины, при которых произошло переобучение. Данное определение ранее появ-

лялось в [31] для частного случая контрольной выборки, состоящей из одного

объекта.

Точность эмпирических оценок функционалов обобщающей способности,

полученных методом Монте–Карло, зависит от числа случайных разбиений. Вы-

числение оценок по определению требует экспоненциального по общему количе-

ству объектов перебора всех возможных разбиений. Но для некоторых модель-



6

ных семейств классификаторов удается аналитически вычислить достигаемые

верхние оценки вероятности переобучения. К настоящему времени достигаемые

верхние оценки получены для слоев и интервалов булева куба, многомерных се-

тей [18], хэмминговых шаров и некоторых их разреженных подмножеств [80].

Разработан теоретико-групповой подход [26], который позволяет получать до-

стигаемые верхние оценки для семейств с произвольными симметриями.

В [62] предложен способ аппроксимации вероятности переобучения стан-

дартных методов классификации (нейронных сетей, решающих деревьев, бли-

жайшего соседа) на реальных задачах с помощью монотонных сетей подходя-

щей размерности. Оценки переобучения могут использоваться в качестве крите-

рия отбора признаков при построении элементарных конъюнкций в логических

алгоритмах классификации [59] или в качестве критерия ветвления в решаю-

щих деревьях [18].

В комбинаторной теории для вероятности переобучения была получена

оценка расслоения–связности [59], учитывающая особенности способа построе-

ния классификатора по обучающей выборке, а также локальные свойства се-

мейства классификаторов – эффекты расслоения и связности [56]. Благодаря

расслоению, классификаторы с высокой вероятностью ошибки вносят пренебре-

жимо малый вклад в переобучение. Благодаря связности, у классификаторов

с близкими векторами ошибок резко снижается вклад в переобучение.

В [73] получены условия, при которых оценка расслоения–связности яв-

ляется точной. Им удовлетворяют, в частности, монотонные и унимодальные

цепи классификаторов [57]. В практических задачах статистического обучения

такие цепи могут порождаться элементарными пороговыми правилами, исполь-

зуемых в таких алгоритмах классификации, как решающие деревья, логические

закономерности [74], алгоритмы вычисления оценок [75], а также при построе-

нии линейных классификаторов методом покоординатной оптимизации. Но при

этом делается предположение о существовании безошибочного правила, практи-

чески не выполнимое в реальных задачах. В общем случае пороговые правила
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порождают семейства классификаторов, называемые прямыми последователь-

ностями.

Ранее для них были известны лишь верхние оценки ожидаемой частоты

ошибок на контрольной выборке [72] в частном случае, когда признак прини-

мает попарно различные значения на объектах. Различные уточнения оценок

расслоения–связности, например, учитывающие попарную конкуренцию между

классификаторами [70] или послойную кластеризацию множества классифика-

торов [83, 84], также остаются завышенными для прямых последовательностей.

Однако завышенность верхних оценок остается неизученной.

Цель диссертационной работы. Построение достигаемых верхних оце-

нок обобщающей способности одномерных пороговых решающих правил в рам-

ках комбинаторной теории переобучения, где в качестве характеристик обобща-

ющей способности рассматриваются функционалы вероятности переобучения,

полного скользящего контроля и ожидаемой переобученности. Исследование

завышенности известных оценок обобщающей способности. Применение полу-

ченных оценок в практических задачах.

Научная новизна. Рассмотрены методы минимизации эмпирического

риска и максимизации переобученности и показано, что они обладают свой-

ством финитности. Для финитного метода обучения и произвольного семейства

классификаторов доказаны теоремы о представлении достигаемых верхних оце-

нок обобщающей способности в виде произведения числа разбиений двух непе-

ресекающихся множеств объектов генеральной совокупности.

Для прямых последовательностей классификаторов, порождаемых элемен-

тарными пороговыми правилами при варьировании параметра порога, доказа-

ны теоремы и реализован алгоритм полиномиальной сложности для вычисле-

ния достигаемых верхних оценок обобщающей способности. Алгоритм основан

на рекуррентном подсчете числа допустимых траекторий при блуждании по

трехмерной сетке между двумя заданными точками с ограничениями специаль-

ного вида.
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Получен новый алгоритм построения дерева решений, в котором в каче-

стве критерия выбора атрибута для разделения узла дерева решений использу-

ются достигаемые верхние оценки полного скользящего контроля и ожидаемой

переобученности пороговых решающих правил.

Построена суррогатная модель для быстрого вычисления приближенных

оценок обобщающей способности семейства пороговых решающих правил с вы-

сокой точностью.

Теоретическая и практическая значимость. Доказаны теоремы о вы-

числении достигаемых верхних оценок обобщающей способности прямых после-

довательностей классификаторов, порождаемых пороговыми правилами над од-

номерным признаком при варьировании параметра порога. В рамках комбина-

торного подхода до сих пор не удавалось получать достигаемые верхние оценки

обобщающей способности для данного семейства в общем случае. Достигаемые

верхние оценки были известны только для частных случаев задач классифика-

ции, где значения одномерного признака на классифицируемых объектах были

попарно различны.

Предложенные в работе методы вычисления оценок обобщающей способно-

сти применимы в качестве критерия отбора признаков при построении алгорит-

мов классификации, в частности, в решающих деревьях, логических закономер-

ностях, и при построении линейных классификаторов методом покоординатной

оптимизации. Предложенный в работе способ построения программы трассер-

ных исследований применим для повышения эффективности трассерных иссле-

дований в нефтегазовых месторождениях.

Положения, выносимые на защиту:

1. Доказаны теоремы о представлении достигаемых верхних оценок обобща-

ющей способности произвольного семейства классификаторов в виде про-

изведения числа разбиений двух непересекающихся множеств объектов

генеральной совокупности для финитного метода обучения.
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2. Доказаны теоремы и разработан алгоритм полиномиальной сложности

для вычисления достигаемых верхних оценок обобщающей способности

прямых последовательностей классификаторов, порождаемых одномер-

ными пороговыми решающими правилами при варьировании параметра

порога, для финитного метода обучения.

3. Разработан алгоритм для построения программы трассерных исследова-

ний с применением деревьев решений.

4. Разработан алгоритм построения дерева решений с использованием по-

лученных достигаемых верхних оценок полного скользящего контроля и

ожидаемой переобученности в качестве критерия выбора атрибута в узле.

5. Разработан алгоритм вычисления приближенных оценок обобщающей спо-

собности одномерных пороговых решающих правил с использованием сур-

рогатных моделей.

Степень достоверности и апробация результатов. Достоверность ре-

зультатов подтверждена математическими доказательствами, эксперименталь-

ной проверкой полученных методов на прикладной задаче классификации пар

скважин при составлении программы трассерных исследований в нефтегазовых

месторождениях; публикациями результатов исследования в рецензируемых на-

учных изданиях, в том числе рекомендованных ВАК, регистрацией патента на

изобретение и актом внедрения основных результатов (см. Приложение А).

Основные результаты диссертации докладывались на следующих конфе-

ренциях:

1. Международная школа-конференция «Фундаментальная математика и ее

приложения в естествознании», 2023. [5]

2. Международная научно-практическая конференция «Цифровая трансфор-

мация в нефтегазовой отрасли», 2023. [6]
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3. Межрегиональная школа-конференция «Теоретические и эксперименталь-

ные исследования нелинейных процессов в конденсированных средах»,

2021. [16]

4. Всероссийская молодежная научно-практическая конференция «Геолого-

геофизические исследования нефтегазовых пластов», 2021.[2]

5. Международная конференция «Управление развитием крупномасштабных

систем», 2016. [3]

6. Международная конференция «Intelligent Data Processing», 2016. [7]

7. Всероссийская конференция «Математические методы распознавания об-

разов», 2015. [8]

8. Всероссийская конференция «Математические методы распознавания об-

разов», 2013. [13]

Публикации. Результаты диссертации содержатся в 16 публикациях. В

изданиях из списка ВАК представлено 8 публикаций, в том числе 1 патент на

изобретение [1, 4, 9–12, 14, 15]. Работы [1, 4, 9, 10, 15] индексируются SCOPUS,

Web of Science. Отдельные результаты включались в отчёты по проектам РФФИ

(№ 15-37-50350 мол_нр и № 14-07-00847), Правительства РФ (№ 075-15-2019-1926).

Список публикаций приведен в конце автореферата и диссертации.

Личный вклад автора. Результаты получены самостоятельно под науч-

ным руководством д.ф.-м.н. К. В. Воронцова. Личный вклад автора в работы,

выполненные совместно с соавторами, заключается в следующем:

• в работе [1] сформулирована и доказана теорема о вычисления оценки

функционала ожидаемой переобученности семейства и оценки частоты

ошибок метода минимизации эмпирического риска на контрольной выбор-

ке для семейства одномерных пороговых решающих правил, проведены

вычислительные эксперименты;
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• в работе [14] разработан алгоритм построения программы трассерных ис-

следований с использованием методов машинного обучения, проведены

вычислительные эксперименты;

• в работе [11] реализован алгоритм построения дерева решений с исполь-

зованием комбинаторных оценок для выбора атрибута в узле дерева, про-

ведены вычислительные эксперименты и доказана статистическая значи-

мость результатов.

• в работе [12] разработан алгоритм интерпретации исследований скважин

методом эхометрирования с применением методов машинного обучения.

• в работе [4] разработан алгоритм интерпретации исследований скважин на

неустановившихся режимах с применением методов машинного обучения,

проведено тестирование алгоритма.

• в работе [15] разработан алгоритм «виртуального расходомера» на основе

стекинга моделей машинного обучения, проведены вычислительные экс-

перименты.

Соответствие паспорту специальности. Результаты диссертационно-

го исследования соответствуют паспорту специальности 1.2.1 «Искусственный

интеллект и машинное обучение», а именно: пункту 1 «Естественно-научные ос-

новы и методы искусственного интеллекта», пункту 2 «Исследования в области

оценки качества и эффективности алгоритмических и программных решений

для систем искусственного интеллекта и машинного обучения. Методики срав-

нения и выбора алгоритмических и программных решений при многих крите-

риях».

Структура и объем диссертации. Диссертация состоит из введения,

четырех глав, заключения, списка иллюстраций, списка таблиц, списка литера-

туры и приложения. Общий объем диссертации составляет 108 страниц, из них
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92 страницы текста, включая 15 рисунков и 6 таблиц. Библиография включает

85 наименований на 10 страницах.

Краткое содержание работы по главам:

В первой главе проводится теоретическое исследование и доказательство

теорем для вычисления достигаемых верхних оценок обобщающей способности

в семействах классификаторов в рамках комбинаторной теории переобучения.

Вводится понятие финитного метода обучения, для которого в случае произ-

вольного семейства классификаторов доказываются теоремы о представлении

достигаемых верхних оценок в виде произведения числа разбиений двух непере-

секающихся множеств объектов генеральной совокупности. Доказывается, что

свойством финитности обладают рассматриваемые в данной методы минимиза-

ции эмпирического риска и максимизации переобученности.

Исследуется явление переобучения одномерных пороговых решающих пра-

вил при выборе порога. Проводятся вычислительные эксперименты, которые

показывают, что переобучение семейства зависит от формы графика числа оши-

бок при варьировании порогового значения. Доказываются теоремы о вычисле-

нии достигаемых верхних оценок обобщающей способности семейства одномер-

ных пороговых решающих правил. Приводится псевдокод алгоритма вычисле-

ния достигаемых оценок данного семейства и доказывается его полиномиальная

вычислительная сложность.

Результаты первой главы опубликованы в работах [1] и [9].

Во второй главе исследуется завышенность известных оценок обобща-

ющей способности для пороговых решающих правил по сравнению с достига-

емыми верхними оценками, рассчитанными с помощью алгоритма, описанно-

го в первой главе. Оценки вероятности переобучения (Вапника–Червоненкиса,

расслоения–связности и Соколова) и оценки частоты ошибок на контрольной

выборке на основе Радемахеровской сложности оказываются завышены. Пока-

зано, что оценки Гуза для величины полного скользящего контроля обладают

высокой точностью, откуда следует вывод о применимости данных оценок в
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прикладных задачах в частных случаях.

Результаты второй главы опубликованы в работе [1].

Третья глава посвящена задаче применения комбинаторных оценок в

прикладной задаче планирования трассерных исследований в нефтегазовых ме-

сторождениях. Предлагается алгоритм построения программы исследований,

согласно которому пара скважин включается в программу на основе ответа

классификатора дерева решений. Ставится задача повышения обобщающей спо-

собности дерева решений. Исследуются причины возникновения переобучения

классификатора, одной из которых является смещенность существующих кри-

териев выбора атрибута при построении разбиения в узле. Предлагается моди-

фикация алгоритма построения дерева, согласно которой в качестве критерия

используются достигаемые верхние оценки переобучения пороговых решающих

правил. Для вычисления критерия применяется алгоритм, разработанный в пер-

вой главе. Проводятся вычислительные эксперименты на промысловых данных,

которые показывают статистически значимое повышение обобщающей способ-

ности дерева решений.

Результаты третьей главы опубликованы в работах [11] и [14].

Для устранения ограничения алгоритма, описанного в первой главе, свя-

занного с большой вычислительной сложностью, которое не дает использовать

его на выборках большого объема, в четвертой главе решается задача раз-

работки алгоритма для быстрого вычисления приближенных оценок путем по-

строения суррогатной модели. Описывается процесс сбора обучающей выборки

для модели, которая состоит из пар «объект, ответ», и каждым объектом яв-

ляется семейство одномерных пороговых решающих правил, ответом – дости-

гаемая верхняя оценка обобщающей способности семейства. На основе имею-

щихся исследований оценок обобщающей способности, проведенных в рамках

комбинаторной теории переобучения, формируется перечень признаков, кото-

рые описывают объекты выборки. Рассматриваются модели различной струк-

туры, наилучшей по результатам тестирования выбрана модель нейронной се-
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ти с MAPE=2.8%. По итогам анализа значимости признаков показано, что при

построении оценок переобучения недостаточно учитывать только количество

классификаторов и минимальное число ошибок классификаторов, необходимо

использовать внутреннюю структуру семейства (расслоение по числу ошибок)

и взаимосвязь между классификаторами (связность). Показано, что использо-

вание модели позволяет сократить время вычисления оценок обобщающей спо-

собности на несколько порядков с O(L5) до O(L2) по сравнению с алгоритмом,

описанным в первой главе, откуда следует вывод о практической значимости

разработанного подхода в задачах отбора признаков при построении деревьев

решений, нейронных сетей и в алгоритмах бустинга для контроля переобучения.

Результаты четвертой главы опубликованы в работе [10].

Благодарность. Автор признателен научному руководителю, профессо-

ру РАН Воронцову Константину Вячеславовичу, за постановки и обсуждение

задач и внимание к работе, профессору Стрижову Вадиму Викторовичу за цен-

ные замечания при подготовке текста диссертационной работы и руководителю

в ООО «РН-БашНИПИнефть», начальнику управления по моделированию и

анализу исследований скважин и пластов, Давлетбаеву Альфреду Ядгаровичу

и коллегам за помощь в реализации разработанных алгоритмов в прикладных

задачах нефтегазовой отрасли.
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Глава 1

Достигаемые верхние оценки обобщающей

способности прямых последовательностей

классификаторов

Математическая модель задачи классификации как задачи принятия ре-

шений в условиях неполноты информации формулируется следующим образом.

Дана бинарная матрица, строки которой соответствуют объектам, столбцы —

классификаторам, называемым также правилам принятия решений или гипоте-

зами. В ячейке матрицы находится единица тогда и только тогда, когда данный

классификатор ошибается на данном объекте. Из множества X всех строк мат-

рицы случайно и равновероятно выбирается наблюдаемая обучающая выбор-

ка — подмножество X ⊂ X фиксированной мощности. Затем из множества A

всех столбцов матрицы выбирается классификатор с минимальной частотой

ошибок на X .

В данной главе рассматриваются бинарные матрицы со следующим свой-

ством: все строки, по которым отличаются соседние столбцы, различны. Матри-

ца с указанным свойством однозначно определяет семейство классификаторов,

называемое прямой последовательностью.

Доказывается теорема о бинарном соответствии между семействами пря-

мых последовательностей и одномерными пороговыми классификаторами.

Решается задача построения достигаемых верхних оценок обобщающей

способности данного семейства классификаторов. Предлагается алгоритм поли-

номиальной сложности для вычисления вероятности переобучения произволь-

ной прямой последовательности при выборе классификатором описанным выше

способом минимизации ошибок. Алгоритм основан на рекуррентном подсчете

числа допустимых траекторий при блуждании по трехмерной сетке между дву-
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мя заданными точками с ограничениями специального вида.

1.1. Основные определения

Задано конечное множество X = {x1, . . . , xL}, элементы которого называ-

ются объектами, и конечное множество A, элементы которого называются клас­

сификаторами. Множество A называется семейством классификаторов.

Задана функция I∶A × X → {0, 1}, называемая индикатором ошибки. Ес-

ли I(a, x) = 1, то говорят, что классификатор a допускает ошибку на объекте x.

Бинарная матрица (I(a, x)∶x ∈ X, a ∈ A) размера ∣X∣×∣A∣ называется матри­

цей ошибок.

Предполагается, что каждому классификатору a ∈ A взаимно однозначно

соответствует его вектор ошибок (I(a, xi))Li=1, то есть в матрице ошибок не мо-

жет быть двух равных столбцов. Будем считать, что порядок строк в матрице

ошибок не важен. Договоримся обозначать через a как классификатор, так и

его вектор ошибок.

Числом ошибок классификатора a на выборкеX ⊂ X называется величина

n(a,X) = ∑
x∈X

I(a, x).
Частотой ошибок классификатора a на выборке X ⊂ X называется вели-

чина

ν(a,X) = n(a,X)/∣X∣,
где через ∣X∣ обозначен объем выборки X .

Обозначим через [X]` множество всех подмножеств X мощности ` < L.

Подмножества X ∈ [X]` будем называть обучающими выборками, а их до-

полнения X̄ = X\X — контрольными выборками. Введем на множестве [X]`
равномерное распределение вероятностей:

P(X) = 1/C`
L, X ∈ [X]`.
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Переобученностью классификатора a на разбиении (X, X̄) называется ве-

личина

δ(a,X) = ν(a, X̄) − ν(a,X).
Если δ(a,X) > ε, то будем говорить, что классификатор a переобучен

на X .

Методом обучения называется отображение µ∶ [X]` → A, которое каждой

обучающей выборке X ставит в соответствие классификатор a = µX из семей-

ства A.

Для фиксированного метода обучения µ, семейства классификаторов A,

множества X и объема обучающей выборки ` вероятностью переобучения на-

зывается функционал

Qε(µ,A,X, `) = P[δ(µX,X) ⩾ ε] = 1

C`
L

∑
X∈[X]`

[δ(µX,X) ⩾ ε].
Здесь и далее квадратные скобки будут использоваться для преобразова-

ния логического условия в числовое значение по правилу [истина] = 1,

[ложь] = 0.

Полным скользящим контролем (complete cross-validation, CCV) называ-

ется функционал, равный математическому ожиданию числа ошибок на кон-

трольной выборке:

CCV(µ,A,X, `) = Eν(µX, X̄) = 1

C`
L

∑
X∈[X]`

ν(µX, X̄).
Ожидаемой переобученностью называется функционал, равный матема-

тическому ожиданию переобученности классификатора, выбранного методом

обучения:

EOF(µ,A,X, `) = Eδ(µX, X̄) = 1

C`
L

∑
X∈[X]`

ν(µX, X̄) − ν(µX,X).
Для краткости параметры, от которых зависят данные величины, опуска-

ются.
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В данной работе рассматривается метод обучения, минимизирующий эм­

пирический риск (МЭР)

µX ∈M(X) = Argmin
a∈A

n(a,X).
Для получения верхних оценок Qε и CCV вводится понятие метода песси­

мистичной минимизации эмпирического риска (ПМЭР)

µX = arg max
a∈M(X)n(a,X).

Это метод МЭР, который в случае неоднозначности среди M(X) выбирает

классификатор с наибольшим числом ошибок на множестве X [57].

Другим методом обучения, рассмотренным в данной работе для получения

верхних оценок EOF, является метод максимизации переобученности (МП):

µX = argmax
a∈A

ν(a,X).
Метод МП возникает в задаче комбинаторного вычисления радемахеров-

ской сложности класса решающих правил [39].

Будем считать, что в случае неоднозначности определенные выше методы

обучения выбирают классификатор с наибольшим номером. Данное ограниче-

ние не влияет на оценку рассматриваемых функционалов обобщающей способ-

ности, но далее оно позволит точно вычислить искомые значения.

1.2. Прямые последовательности классификаторов

Рассмотрим множества объектов, по которым различаются соседние клас-

сификаторы семейства A = {a0, . . . , aP}:
Gp = {x ∈ X ∣ I(ap, x) ≠ I(ap+1, x)}, p = 0, . . . , P − 1. (1.1)

Определение 1.1. Семейство классификаторов называется прямой последо­

вательностью, если множества Gp попарно не пересекаются.
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Заметим, что из определения следует, что порядок классификаторов ва-

жен. Действительно, рассмотрим два семейства классификаторов, первое из

которых является прямой последовательностью A = {a0, . . . , aP}, а второе по-

лучается из первого перестановкой классификаторов ap и ap+1 для некоторого

p: A
′
= {a0, . . . , ap−1, ap+1, ap, ap+2, . . . , aP}. Определим множества Gp по (1.1).

Тогда семейство A
′
не является прямой последовательностью, поскольку сосед-

ние классификаторы ap−1 и ap+1 различаются по множеству объектов Gp−1⊔Gp,

а классификаторы ap+1 и ap – по множеству объектов Gp, то есть эти множества

пересекаются.

Определение 1.2. Прямая последовательность A = {a0, . . . , aP} называется

прямой цепью, если каждая пара соседних классификаторов различается по

одному объекту: ∣Gp∣ = 1, p = 0, . . . , P−1. Число P называется длиной прямой

цепи A.

Определение 1.3. Одномерным пороговым классификатором над множеством

X ⊂ R называется семейство пороговых правил a(x, θ) = [x ⩾ θ], где θ ∈ R ҫ

параметр, называемый порогом.

Согласно следующей теореме, понятия прямой последовательности и одно-

мерного порогового классификатора являются синонимами.

Теорема 1.1. Определим множество V прямых последовательностей A =

{a0, . . . , aP}, таких, что ∑P−1

p=0 ∣Gp∣ = L, где Gp определены по (1.1), и мно­

жество U одномерных пороговых классификаторов над множеством X =

{x1, . . . , xL} точек числовой оси, таким, что каждому xi соответствует ис­

тинная метка класса yi ∈ {0, 1}. Тогда между этими множествами имеется

биекция.

Доказательство. Во множествах V и U объекты определены с точностью

до переименования объектов множества X.
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Каждый объект u ∈ U однозначно определяется распределением объектов

двух классов {0, 1} на числовой оси, то есть расположением точек множества

X на оси R и набором правильных ответов {y1, . . . , yL}. Значения порогов вы-

бираются так, чтобы они всеми возможными различными способами разбивали

множество X на два класса.

Каждый объект множества V однозначно определяется количеством еди-

ниц в векторе a0, то есть n(a0,X), и последовательностью пар (np0, np1)P−1

p=0 , где

n
p

0 – количество нулей в векторе ap, являющихся единицами в ap+1, и n
p

1 – коли-

чество единиц в векторе ap, являющихся нулями в ap+1. При наличии данной

информации матрица ошибок {a0, . . . , aP} строится следующим образом. Век-

тор a0 задается так, что на первых n(a0,X) позициях стоят единицы, затем

нули. Для каждого p последовательно, начиная с p = 0, вектор ap+1 получается

из вектора ap путем инвертирования n
p

0 нулей и n
p

1 единиц.

Построим отображение f ∶ U → V следующим образом. Пусть дан объект

u ∈ U , то есть набор точек x1 ≤ ⋯ ≤ xL и правильных ответов y1, . . . , yL.

Поставим ему в соответствие прямую последовательность v = f(u) ∈ V .

Для этого введём индикатор ошибки I(a, xi) = [a(xi, θ) ≠ yi]. Варьирова-

ние θ порождает не более L + 1 классификаторов с попарно различными векто-

рами ошибок. Они образуют прямую последовательность. Если все объекты xi

попарно различны, x1 < x2 < ⋯ < xL, то прямая последовательность является

прямой цепью.

Отображение f однозначно определяет прямую последовательность по се-

мейству пороговых правил, то есть оно является инъекцией. Докажем, что оно

является сюръекцией.

Пусть дана прямая последовательность v ∈ V , то есть величина n(a0,X)
и набор пар (np0, np1)P−1

p=0 . Построим матрицу ошибок {a0, . . . , aP}. Определим се-

мейство пороговых правил u ∈ U следующим образом. Поставим в соответствие

каждому множеству Gp точки x
1

p = ⋅ ⋅ ⋅ = x
∣Gp∣
p и положим, что x

1

0 < x
1

1 < ⋅ ⋅ ⋅ <

x
1

P−1. Положим y
i
p = 1, если I(ap, xip) = 0, и y

i
p = 0 в противном случае. Легко
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проверить, что построенное семейство u является прообразом v при отображе-

нии f , то есть v = f(u). Таким образом, отображение f является биекцией.

Пример 1. На рис. 1.1 показан пример прямой цепи. По оси x отложены объ­

екты xi. Правильные решения yi показаны точками ◦ и •. Пороги θ выбраны

посередине между соседними объектами. Ниже показан график числа ошибок

классификаторов и матрица ошибок.

//

x
•

x1
•

x2
◦

x3
◦

x4
◦

x5
•

x6
◦

x7
✤

a0

✤

a1

✤

a2

✤

a3

✤

a4

✤

a5

✤

a6

✤

a7

•
•

•
•

•
•

•
•

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 1

n(ap,X)

x1
x2
x3
x4
x5
x6
x7

Рис. 1.1. Пример прямой цепи

Определение 1.4. Прямая цепь A = {a0, . . . , aP} называется возрастающей

(убывающей), если каждый классификатор ap допускает m+p (соответствен­

но, m − p) ошибок на множестве X при некотором значении m. Прямую

цепь A будем называть монотонной, если она является убывающей или воз­

растающей.

Прямая цепь A может состоять из нескольких участков монотонности. На-

пример, в цепи, показанной на рис. 1.1, имеется четыре участка монотонности:

{a0, a1, a2} и {a5, a6} — убывающие, {a2, a3, a4, a5} и {a6, a7} — возрастающие.

Покажем, что переобучение цепи зависит от геометрической структуры

классов.
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Рис. 1.2. Сравнение переобучения прямых цепей различной формы. По горизонтали отложе­

ны номера p классификаторов цепи. Условия эксперимента: L = 200, ` = 150, ε = 0, 05. Мини­

мальная частота ошибок равна 0, 245.

Эмпирической оценкой функции φ(X, X̄), не зависящей от порядка эле-

ментов в выборках X и X̄ , называется величина Êφ(X, X̄), полученная мето-

дом Монте–Карло путем усреднения по некоторому случайному подмножеству

выборок N ⊂ [X]`
Êφ(X, X̄) = 1∣N∣ ∑

X∈N

φ(X, X̄).
На рис. 1.2 изображены прямые цепи различной формы. График частоты

ошибок классификаторов на полном множестве изображен линией с точкой. Це-

пи упорядочены по возрастанию количества классификаторов в нижних слоях,

где слои определяются по числу ошибок. Пилообразные участки соответствуют

шуму в данных, где объекты из разных классов чередуются друг с другом. Чем

чаще пила, тем выше уровень шума. Рассматриваются случаи, когда пилообраз-

ные участки расположены вдали от границы классов (верхний ряд) и вблизи

от границы (нижний ряд).

Горизонтальными линиями показаны эмпирические оценки частоты оши-

бок метода ПМЭР, вычисленные методом Монте–Карло по 10
5

разбиениям.
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Пунктирной линией изображена оценка на обучающей выборке Êν(µX,X) и

сплошной линией – оценка на контрольной выборке Êν(µX, X̄). Чем больше

расстояние между ними, равное Êδ(µX,X), тем сильнее переобучается семей-

ство.

Данный эксперимент показывает, что одни семейства переобучаются зна-

чительно сильнее, чем другие: переобучение тем выше, чем больше классифика-

торов находится в нижних слоях семейства и чем более они различны. Эффек-

тивное вычисление Qε, CCV и EOF непосредственно по определению возможно

только при малых ∣X∣ = `. Если ` близко к L/2, то число слагаемых экспонен-

циально по L.

Вследствие этого ставится следующая задача.

1.3. Постановка задачи

Для прямой последовательности A общего вида, методов обучения ПМЭР

и МП вычислить достигаемые верхние оценки вероятности переобучения Qε,

полного скользящего контроля CCV и ожидаемой переобученности EOF за по-

линомиальное по L время.

1.4. Финитный метод обучения

Пусть дано произвольное подмножество D ⊆ X множества X. Каждое раз-

биение (X, X̄) множества X = X ⊔ X̄ индуцирует разбиение (X ∩ D, X̄ ∩ D)
подмножества D. Также любая пара разбиений (D′

, D̄
′) и (D′′

, D̄
′′) подмно-

жеств D
′
⊆ X и D

′′
= X\D′

соответственно определяет разбиение (X, X̄) мно-

жества X по правилу X = D
′
∪D

′′
и X̄ = D̄

′
∪ D̄

′′
.

Рассмотрим произвольное семейство классификаторов A = {a0, . . . , aP}.
Назовем пару классификаторов a и a

′
неразличимыми на множестве X

′
⊂ X,

если I(a, x) = I(a′, x) для всех x ∈ X
′
.
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Пусть на множестве A × A × [X]` имеется отношение строгого порядка

a ≻X a
′
. Назовем его финитным, если для любых классификаторов a, a

′
∈ A,

неразличимых на множестве X
′
⊂ X, отношение a ≻X a

′
не зависит от выбора

разбиения множества X
′
.

Лемма 1.1. Определенные по следующим правилам отношения порядка явля­

ются финитными:

1. ap ≻X ai ⟺ n(ap, X) ≤ n(ai, X);
2. ap ≻X ai ⟺ δ(ap, X) ≥ δ(ai, X).

Если i > p, то неравенства строгие.

Доказательство. Действительно, для любого X ∈ [X]` и для любого X
′
спра-

ведливо равенство n(a,X) = n(a,X ∩X
′)+n(a,X \X′). Если классификаторы

a и a
′
неразличимы на множестве X

′
, то n(a,X′

∩ X) = n(a′,X′
∩ X), откуда

следует финитность отношения 1.

Для доказательства финитности отношения 2 перепишем переобученность

как δ(a,X) = 1

L−`
n(a,X)− L(L−`)`n(a,X). Тогда утверждение следует из первого

пункта.

Запасом ошибок классификатора a относительно ap на выборке X назовем

величину

∆p(a,X) = n(a,X) − n(ap, X). (1.2)

Аналогично доказывается справедливость следующей леммы:

Лемма 1.2. Определенное по следующему правилу отношение порядка явля­

ется финитным: ap ≻X ai тогда и только тогда, когда выполнено одно из

условий:

1. ∆p(ai, X) > 0;
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2. ∆p(ai, X) = 0 и i < p и n(ai,X) ⩽ n(ap,X);
3. ∆p(ai, X) = 0 и i > p и n(ai,X) < n(ap,X).

Будем говорить, что на выборке X классификатор a лучше, чем a
′
, если

a ≻X a
′
.

Назовем метод обучения µ∶ [X]` → A финитным, если результатом обуче-

ния является лучший с точки зрения финитного отношения ≻X классификатор:

a = µX ⇔ a ≻X a
′
, ∀a

′
∈ A \ {a}. (1.3)

Теорема 1.2. Методы минимизации эмпирического риска (МЭР), максими­

зации переобученности (МП) и пессимистичной минимизации эмпирического

риска (ПМЭР) являются финитными.

Доказательство. Утверждение для МЭР и МП следует из леммы 1.1. Отно-

шение порядка, определенное в лемме 1.2, соответствует способу выбора клас-

сификатора по обучающей выборке на основе метода обучения ПМЭР, откуда

следует утверждение теоремы для ПМЭР.

Таким образом, рассматриваемые в данной работе методы МП и ПМЭР

являются финитными. Далее будет показано, что для финитных методов обу-

чения при вычислении функционалов обобщающей способности достаточно рас-

смотреть некоторое подмножество объектов генеральной совокупности. По ана-

логии с финитными функциями, это подмножество можно назвать носителем

для метода обучения.

Заметим также, что из определения финитного отношения вытекает сле-

дующее свойство:

Лемма 1.3. Пусть классификаторы семейства A
′
⊆ A неразличимы на мно­

жестве N
′
. Тогда для любого a ∈ A

′
выполнение финитного отношения a ≻X a

′

одновременно для всех a
′
∈ A

′ \ {a} не зависит от выбора разбиения множе­

ства N
′
.
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Данное свойство финитного отношения позволит далее рассмотреть пря-

мую последовательность как объединение двух последовательностей – левой и

правой – и решить поставленную задачу независимо на каждом семействе.

1.5. Переобучение произвольного семейства

Пусть дано произвольное семейство классификаторов A = {a0, . . . , aP}.
Определим множество D объектов, по которым классификаторы различимы:

D = {x ∈ X ∣∃ a, a′ ∈ A∶ I(a, x) ≠ I(a′, x)}. (1.4)

Легко проверить, что множество D представимо в виде D = G0 ∪ ⋅ ⋅ ⋅ ∪ GP−1,

где множества Gp определяются согласно (1.1).

Объекты множества N = X \ D назовем нейтральными. На множестве N

классификаторы семейства неразличимы и допускают одинаковое число оши-

бок m. Через mp обозначим число ошибок классификатора ap на множестве D:

m = n(a,N), ∀a ∈ A; (1.5)

mp = n(ap,D).
Будем обозначать через t число объектов из D, попавших в обучающую

выборку X , а через e — число ошибок классификатора ap на этих объектах.

Введём две функции от t и e: число разбиений множества N, таких, что клас-

сификатор ap переобучен на X

Np(t, e) = #{(X ∩ N, X̄ ∩ N) ∣ δ(ap, X) ⩾ ε, t = ∣X ∩ D∣, e = n(ap, X ∩ D)},
и число разбиений множества D, таких, что ap является результатом обучения:

Dp(t, e) = #{(X ∩ D, X̄ ∩ D) ∣ µX = ap, t = ∣X ∩ D∣, e = n(ap, X ∩ D)}.
Введём гипергеометрическую функцию распределения

H
`,m

L (s) = 1

C`
L

min{⌊s⌋,`,m}
∑
i=0

C
i
mC

`−i
L−m,
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где ⌊x⌋ — целая часть x, то есть наибольшее целое число, не превосходящее x.

Гипергеометрическая функция распределенияH
`,m

L (s) для данного множества X

мощности L и выборки X0 ⊂ X объема m равна доле выборок множества X объ-

ема `, содержащих не более s элементов из X0. Будем полагать C
i
n = 0 при невы-

полнении условия 0 ⩽ i ⩽ n.

Теорема 1.3. Для произвольного семейства классификаторов A = {a0, . . . , aP},
финитного метода обучения µ, множества X мощности L, объема обучаю­

щей выборки `, точности ε ∈ (0, 1) вероятность переобучения имеет вид

Qε =
1

C`
L

P

∑
p=0

∑
(t,e)∈Ψp

Dp(t, e)Np(t, e), (1.6)

где множество D, параметры mp и m определяются по (1.4) и (1.5)

Ψp = {(t, e) ∣ 0 ⩽ t ⩽ min{`, ∣D∣}, 0 ⩽ e ⩽ min{t,mp}}; (1.7)

Np(t, e) = C
`−t
L−∣D∣ H`−t,m

L−∣D∣(sp(e)); (1.8)

sp(e) = `

L
(n(ap,X) − ε(L − `)) − e.

Доказательство. Представим вероятность переобучения в виде

Qε =

P

∑
p=0

P[µX = ap и δ(ap, X) ⩾ ε].
Рассмотрим множество разбиений (X, X̄) с фиксированными значениями t

и e:

t = ∣X ∩ D∣, e = n(ap, X ∩ D). (1.9)

Множество допустимых значений (t, e) есть Ψp, согласно (1.7).

Для таких разбиений выполнение условия δ(ap, X) ⩾ ε не зависит от выбо-

ра разбиения множества D, а выполнение условия µX = ap по лемме 1.3 не за-

висит от выбора разбиения множества N, поскольку классификаторы неразли-

чимы на множестве N. Поэтому для каждой тройки параметров p, t, e число
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разбиений множества X, таких, что одновременно выполнены условия µX = ap

и δ(µX,X) ⩾ ε, равно произведению Np(t, e)Dp(t, e).
Докажем (1.8). Пусть n(ap, X ∩ N) = s, тогда n(ap, X) = e + s. Условие

δ(ap, X) ⩾ ε эквивалентно условию n(ap, X) ⩽
`

L
(n(ap,X) − ε(L − `)), значит,

s ≤ sp(e). Число разбиений множества N при данных t и s равно C
s
mC

`−t−s
L−∣D∣−m,

откуда следует

Np(t, e) = sp(e)
∑
s=0

C
s
mC

`−t−s
L−∣D∣−m = C

`−t
L−∣D∣ 1

C`−t
L−∣D∣

sp(e)
∑
s=0

C
s
mC

`−t−s
L−∣D∣−m = C

`−t
L−∣D∣ H`−t,m

L−∣D∣(sp(e)).
Для функционала полного скользящего контроля имеет место аналогичная

теорема.

Теорема 1.4. Для произвольного семейства классификаторов A = {a0, . . . , aP},
финитного метода обучения µ, множества X мощности L, объема обучаю­

щей выборки `, функционал полного скользящего контроля имеет вид

CCV =
1(L − `)C`

L

P

∑
p=0

∑
(t,e)∈Ψp

Dp(t, e)Fp(t, e), (1.10)

где

Fp(t, e) = min{`−t,m}
∑
s=0

C
s
mC

`−t−s
L−∣D∣−m(n(ap,X) − s − e), (1.11)

множества D и Ψp определяются по (1.4) и (1.7), параметры mp и m опреде­

ляются по (1.5).

Доказательство. Запишем формулу полного скользящего контроля и пе-

реставим в ней знаки суммирования:

CCV =
1

C`
L

∑
X∈[X]`

P

∑
p=0

[µX = ap] ν(ap, X̄) = 1

C`
L

P

∑
p=0

∑
X∈[X]`

[µX = ap] ν(ap, X̄).
Выполнение условия µX = ap по лемме 1.3 не зависит от выбора разбиения

множества N.
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Представим число ошибок классификатора ap на контрольной выборке в

виде

n(ap, X̄) = n(ap,X) − n(ap, X) = n(ap,X) − n(ap, X ∩ D) − n(ap, X ∩ N).
Определим параметры t и e по формулам (1.9). Обозначим s = n(ap, X ∩ N).

Из ограничений s + t ⩽ l и s ⩽ m следует верхняя оценка параметра s в (1.11).

Легко проверить, что число разбиений множества N при данных t и s равно

C
s
mC

`−t−s
L−∣D∣−m, откуда следует утверждение теоремы.

Аналогичная теорема имеет место для функционала ожидаемой переобу-

ченности.

Теорема 1.5. Для финитного метода обучения µ, произвольной прямой по­

следовательности классификаторов A = {a0, . . . , aP}, множества X мощно­

сти L, объема обучающей выборки ` выражение для ожидаемой переобученно­

сти имеет вид

EOF =
1

C`
L

P

∑
p=0

∑
(t,e)∈Ψp

Dp(t, e)Kp(t, e), (1.12)

где множества D и Ψp определяются по (1.4) и (1.7), параметры mp и m опре­

деляются по (1.5) и

Kp(t, e) = min{`−t,m}
∑
s=0

C
s
mC

`−t−s
L−∣D∣−m( 1

L−`
(n(ap,X) − (s + e)) − 1

`
(s + e)). (1.13)

Доказательство. Запишем формулу переобученности и переставим в ней

знаки суммирования:

EOF =
1

C`
L

∑
X∈[X]`

P

∑
p=0

[µX = ap] δ(ap, X) = 1

C`
L

P

∑
p=0

∑
X∈[X]`

[µX = ap] δ(ap, X).
Рассмотрим множество разбиений (X, X̄) с фиксированными значениями t

и e:

t = ∣X ∩ D∣, e = n(ap, X ∩ D).
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Множество допустимых значений (t, e) есть Ψp согласно (1.7).

Обозначим s = n(ap, X ∩ N). Из ограничений s + t ⩽ l и s ⩽ m следует

верхняя оценка параметра s в (1.13).

Поскольку число ошибок классификатора ap на контрольной выборке рав-

но

n(ap, X̄) = n(ap,X) − n(ap, X) = n(ap,X) − n(ap, X ∩ D) − n(ap, X ∩ N),
переобученность классификатора ap для данных s и e представляется в виде

δ(ap, X) = 1

L−`
n(ap, X̄) − 1

`
n(ap, X) = 1

L−`
(n(ap,X) − (s + e)) − 1

`
(s + e).

Аналогично доказательству теоремы (1.4), из того, что выполнение усло-

вия µX = ap не зависит от выбора разбиения множества N и количество раз-

биений множества N для данных t и s равно C
s
mC

`−t−s
L−P−m, следует утверждение

теоремы.

Таким образом, задача сводится к вычислению для каждого p значе-

ний Dp(t, e), то есть носителем финитного метода обучения для произвольного

семейства является множество D объектов, по которым классификаторы разли-

чимы. Для случая прямой последовательности далее будет описан рекуррент-

ный алгоритм вычисления Dp(t, e) для всех (t, e) ∈ Ψp.

1.6. Переобучение прямой последовательности

Пусть теперь семейство A = {a0, . . . , aP} является прямой последователь-

ностью. Объекты множества D будем называть ребрами прямой последователь­

ности A.

1.6.1. Сведение к задачам на левой и правой последовательностях

Рассмотрим классификатор ap и зафиксируем точку (t, e) ∈ Ψp. Относи-

тельно ap прямая последовательность A разбивается на две: левую a0, a1, . . . , ap

и правую ap, ap+1, . . . , aP .
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Сведем задачу вычисления Dp(t, e) к нахождению числа разбиений множе-

ства ребер левой и правой последовательностей с некоторыми ограничениями.

Теорема 1.6. Пусть µ ҫ финитный метод обучения. Для каждого p для всех

(t, e) ∈ Ψp число разбиений множества D, таких, что t = ∣X ∩ D∣,
e = n(ap, X ∩ D) и µX = ap, равно

Dp(t, e) = ∑
t′+t′′=t

∑
e′+e′′=e

Lp(t′, e′)Rp(t′′, e′′), (1.14)

где

Lp(t′, e′) = #{(X ∩ Lp, X̄ ∩ Lp) »»»»»»»»
∀d = 0, . . . , p, ap ≻X ad,

t
′
= ∣X ∩ Lp∣, e′ = n(ap, X ∩ Lp) }, (1.15)

Rp(t′′, e′′) = #{(X ∩ Rp, X̄ ∩ Rp) »»»»»»»»
∀d = p + 1, . . . , P, ap ≻X ad,

t
′′
= ∣X ∩ Rp∣, e′′ = n(ap, X ∩ Rp) },

(1.16)

множества Lp и Rp ҫ множества ребер левой и правой последовательностей

соответственно, точки (t′, e′) и (t′′, e′′) являются элементами множеств Ψ
′

p

и Ψ
′′

p соответственно, где

Ψ
′

p = {(t′, e′) ∣ 0 ⩽ t
′
⩽ min{`, ∣Lp∣}, 0 ⩽ e

′
⩽ min{t′, n(ap,Lp)}}, (1.17)

Ψ
′′

p = {(t′′, e′′) ∣ 0 ⩽ t
′′
⩽ min{`, ∣Rp∣}, 0 ⩽ e

′′
⩽ min{t′′, n(ap,Rp)}}. (1.18)

Доказательство. Множества Lp и Rp не пересекаются, значит, классифи-

каторы левой последовательности неразличимы на Rp, классификаторы правой

последовательности неразличимы на Lp. Тогда выполнение условия (1.3) для

всех классификаторов левой последовательности по лемме 1.3 не зависит от

выбора разбиения множества Rp. Аналогично, выполнение условия (1.3) для

всех классификаторов правой последовательности не зависит от выбора разби-

ения множества Lp. Значит, общее число разбиений множества D, в которых

метод обучения выбирает ap, является произведением числа разбиений мно-

жеств Lp и Rp, в которых ap лучше всех классификаторов левой и правой
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последовательностей соответственно. Параметры t
′
, t

′′
, e

′
, e

′′
необходимы для вы-

полнения условий, задаваемых параметрами t и e.

Назовем разбиения множеств Lp и Rp, удовлетворяющие условиям (1.15)

и (1.16) соответственно, допустимыми.

Поскольку методы ПМЭР и МП, согласно теореме 1.2, являются финитны-

ми, то для них справедливы теоремы 1.3 — 1.6 и для каждого p задача сводится

к вычислению числа допустимых разбиений Lp(t′, e′) и Rp(t′′, e′′) для всех точек

множеств Ψ
′

p и Ψ
′′

p.

Далее рассматривается случай, когда прямая последовательность A явля-

ется прямой цепью. Тогда левая и правая последовательности также являются

цепями. Рассматривается метод ПМЭР µ с определенным по лемме 1.2 отноше-

нием порядка ≻X . Для метода МП рассуждения аналогичны.

1.6.2. Нахождение числа допустимых разбиений множества ребер

левой цепи

Найдём Lp(t′, e′) для каждого p в каждой точке (t′, e′) ∈ Ψ
′

p. Заметим,

что при p = 0 решение задачи тривиально: множество Ψ
′

0 состоит из одной точ-

ки (0, 0) и L0(0, 0) = 1. Всюду далее считаем 1 ⩽ p ⩽ P .

Перенумеруем классификаторы так, чтобы последовательность начиналась

в ap и заканчивалась в a0. Обозначим {b0, . . . , bp}, где bd = ap−d для каждого

d = 0, . . . , p. Запас ошибок относительно ap, определенный по (1.2), запишем

как ∆0(bd, X) = ∆p(ap−d, X) для каждого d.

Левая цепь составлена из возрастающих и убывающих монотонных участ-

ков. Обозначим множество всех ребер возрастающих монотонных участков це-

пи через Cp, убывающих монотонных участков цепи — через Ip. Верно, что

Cp ⊔ Ip = Lp.
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Цепь прямая, следовательно, b0 не ошибается на всех объектах Cp, то есть

Cp = {x ∈ Lp∶ I(b0, x) = 0},
Ip = {x ∈ Lp∶ I(b0, x) = 1}. (1.19)

Тогда верно, что e
′
= ∣X ∩ Ip∣, а ∣X ∩ Cp∣ = t

′
− e

′
.

Заметим, что, поскольку классификаторы левой цепи различимы только

на объектах множества Lp, то для любого классификатора b из левой цепи верно

∆0(b,X) = ∆0(b,X ∩ Lp), ∀X ⊆ X.

Отсюда следует, что, зафиксировав разбиение множества Lp, мы определим

запас ошибок на всех соответствующих обучающих выборках X .

Введём трехмерную сетку Ωp = {0, . . . , ∣Lp∣}×{−∣Lp∣, . . . , ∣Lp∣}×{0, . . . , ∣Lp∣}.
Определение 1.5. Определим на Ωp множество Tp траекторий, выходящих

из точки (0, 0, 0) и образованных переходами трех видов:

1) из точки (d,∆, i) в точку (d + 1,∆, i) ҫ «вправо»;

2) из точки (d,∆, i) в точку (d + 1,∆ + 1, i) ҫ «вправо-вверх»;

3) из точки (d,∆, i) в точку (d + 1,∆ − 1, i + 1) ҫ «вправо-вниз»;

причем для каждого d переход из точки (d,∆, i) удовлетворяет условию:

пусть классификаторы bd и bd+1 соединены ребром x, тогда

1) если x ∈ Cp, то это переход вида «вправо» или «вправо-вверх»;

2) если x ∈ Ip, то это переход вида «вправо» или «вправо-вниз».

Теорема 1.7. Между разбиениями множества Lp и траекториями из мно­

жества Tp имеется взаимно однозначное соответствие. Траектория, соот­

ветствующая разбиению (X ∩ Lp, X̄ ∩ Lp), проходит через точки (d,∆, i),
где для каждого d = 0, . . . , p координата ∆ = ∆0(bd, X), а координата i равна

числу ребер из X ∩ Ip между b0 и bd.
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Доказательство. Пусть классификаторы bd−1 и bd соединены ребром x.

Если x ∈ X̄, то ∆0(bd, X) = ∆0(bd−1, X), так как запас ошибок зависит

только от X .

Пусть x лежит в X . Если x лежит в возрастающей цепи, то bd−1 не ошиба-

ется на этом ребре, тогда как bd ошибается. Тогда ∆0(bd, X) = ∆0(bd−1, X)+ 1.

Если же x лежит в Ip, то bd−1 ошибается на этом объекте, а bd — нет. Значит,

∆0(bd, X) = ∆0(bd−1, X) − 1.

Поставим в соответствие разбиению множества Lp траекторию по следую-

щему правилу. Пусть траектория проходит через точку (d,∆, i). При d = 0 по-

лагаем, что это точка (0, 0, 0). Из этой точки вдоль траектории выполняется

переход вида «вправо», если x ∈ X̄ ; «вправо-вверх», если x ∈ X ∩ Cp; «вправо-

вниз», если x ∈ X ∩ Ip.

Тогда для каждого d координаты ∆ и i имеют смысл, указанный в условии

теоремы, и при описанных переходах изменяются не более, чем на 1. Значит,

траектория действительно целиком лежит на сетке Ωp и, следовательно, во мно-

жестве Tp и однозначно определена.

По тем же правилам каждой траектории из Tp можно однозначно поста-

вить в соответствие разбиение множества Lp. Значит, отображение из множе-

ства разбиений во множество траекторий Tp сюръективно и инъективно, то есть

оно биективно.

Пример 2. На рис. 1.3 на нижнем графике изображена цепь, где выделены

ребра, попавшие в обучающую выборку. Такому разбиению ребер цепи соот­

ветствует траектория, проекция которой на плоскость (d,∆) изображена

на верхнем графике. В данном примере траектория проходит через точки,

у которых координата ∆ отрицательна. Значит, в цепи имеются классифи­

каторы с отрицательным запасом ошибок. Следовательно, по лемме 1.2 и

условию (1.3), при таком разбиении классификатор b0 не будет выбран мето­

дом обучения. Исключив из рассмотрения траектории, не удовлетворяющие
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b0 bp
•

•
•

•
•

•
•

//

d
✤ ✤ ✤ ✤ ✤ ✤ ✤

n(bd,X)

//

d
✤ ✤ ✤ ✤

•
• •

•
• • •∆0(bd,X)

Рис. 1.3. Соответствие разбиения цепи (нижний график) проекции траектории (верхний гра­

фик). Двойными линиями выделены ребра цепи, попавшие в обучающую выборку

лемме 1.2, мы отбросим и разбиения, не являющиеся допустимыми.

Определим множество

Ω
′

p = {(d,∆, i) ∈ Ωp

»»»»»»»»
0 ⩽ i ⩽ d и ∣∆∣ ⩽ d и

(либо ∆ > 0, либо (∆ = 0 и n(bd,X) ⩽ n(b0,X))) }.
(1.20)

Лемма 1.4. Всякая точка (d,∆, i) траектории из Tp, соответствующей до­

пустимому разбиению множества Lp, принадлежит множеству Ω
′

p ⊆ Ωp.

Доказательство. Выполнение первых двух условий из определения (1.20)

является следствием теоремы 1.7. Третье условие есть повторение условий лем-

мы 1.2.

Пусть Tp(d, ∆, i) есть число траекторий из Tp, соединяющих точку (0, 0, 0)
с (d, ∆, i) и проходящих только через точки множества Ω

′

p. Из правил постро-

ения траектории по разбиению множества Lp следует

Лемма 1.5. В каждой точке (d, ∆, i) на трехмерной сетке Ωp

величина Tp(d, ∆, i) вычисляется рекуррентно.

1) Начальное условие Tp(0, 0, 0) = 1.

2) Если (d, ∆, i) ∉ Ω
′

p, то Tp(d, ∆, i) = 0.
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3) Пусть bd−1 и bd соединены ребром x. Тогда

Tp(d, ∆, i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tp(d − 1, ∆, i) + Tp(d − 1, ∆ − 1, i), если x ∈ Cp,

Tp(d − 1, ∆, i) + Tp(d − 1, ∆ + 1, i − 1), если x ∈ Ip,

(1.21)

где множества Cp и Ip определяются по (1.19).

Теорема 1.8. Пусть даны метод ПМЭР µ, множество X мощности L, объ­

ем обучающей выборки ` и прямая цепь A = {a0, . . . , aP}. Тогда для каждого

p = 1, . . . , P в каждой точке (t′, e′) множества Ψ
′

p, определенного в (1.17),

число Lp(t′, e′) допустимых разбиений множества Lp, определяемое по (1.15),

равно

Lp(t′, e′) = Tp(∣Lp∣, t′ − 2e
′
, e

′)
и вычисляется рекуррентно по правилам, описанным в лемме 1.5, где bd = ap−d

для каждого d, при краевых условиях L0(0, 0) = 1.

Доказательство. Из теоремы 1.7 следует, что

∆p(a0, X) = ∣X ∩ Cp∣−∣X ∩ Ip∣ = t
′
− 2e

′
.

Между разбиениями множества ребер левой цепи и траекториями из Tp

имеется биекция. Таким образом, число траекторий, проходящих через точку

(p, t′ − 2e
′
, e

′), равно числу разбиений, удовлетворяющих условиям t
′
= ∣X∩Lp∣

и e
′
= n(ap, X ∩ Lp). Оставив среди них те, которые проходят только через точ-

ки множества Ω
′

p(t′, e′), мы оставим траектории, соответствующие допустимым

разбиениям. Их число равно Tp(∣Lp∣, t′ − 2e
′
, e

′).
Замечание 1.1. Ограничения i ⩽ e

′
и ∆ ⩽ t

′
− e

′
, являющиеся следствием

теоремы 1.7, выполняются автоматически для тех траекторий, которые со­

единяют точки (0, 0, 0) и (p, t′ − 2e
′
, e

′). Действительно, поскольку величины
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i и ∆+ i не возрастают, значит, не превосходят значений в конечной точке,

то есть i ⩽ e
′
и

∆ + i ⩽ t
′
− 2e

′
+ e

′
= t

′
− e

′
.

Координата i ⩾ 0, значит, ∆ ⩽ ∆ + i ⩽ t
′
− e

′
. В силу этого замечания, в

определение множества Ω
′

p данные ограничения не входят.

Таким образом, мы научились решать задачу для левой цепи.

1.6.3. Нахождение числа допустимых разбиений множества ребер

правой цепи

Решаем задачу вычисления Rp(t′′, e′′) для каждого p в каждой точ-

ке (t′′, e′′) ∈ Ψ
′′

p. Решение практически повторяет решение задачи для левой

цепи после замены Lp на Rp и точки (t′, e′) на (t′′, e′′). Также имеются краевые

условия: при p = P множество Ψ
′′

P = {(0, 0)} и RP(0, 0) = 1. Далее полагаем,

что 0 ⩽ p ⩽ P − 1.

Обозначим классификаторы цепи через bd = ap+d для

каждого d = 0, . . . , P − p. Из леммы 1.2 следует, что для справедливости лем-

мы 1.5 для правой цепи множество Ω
′

p необходимо заменить на множество Ω
′′

p,

определяемое следующим образом:

Ω
′′

p = {(d,∆, i) ∈ Ωp

»»»»»»»»
0 ⩽ i ⩽ d и ∣∆∣ ⩽ d и

(либо ∆ > 0, либо (∆ = 0 и n(bd,X) < n(b0,X))) }.
(1.22)

По аналогии с теоремой 1.8, для правой цепи верна следующая теорема.

Теорема 1.9. Пусть даны метод ПМЭР µ, множество X мощности L, объ­

ем обучающей выборки ` и произвольная прямая цепь A = {a0, . . . , aP}. Тогда

для каждого p = 0, . . . , P − 1 в каждой точке (t′′, e′′) множества Ψ
′′

p, опреде­

ленного в (1.18), число Rp(t′′, e′′) допустимых разбиений множества Rp, опре­
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деляемое по (1.16), равно

Rp(t′′, e′′) = Tp(∣Rp∣, t′′ − 2e
′′
, e

′′)
и вычисляется рекуррентно по правилам, описанным в лемме 1.5, с заменой

множества Ω
′

p на Ω
′′

p и bd на ap+d для каждого d. Краевые условия RP(0, 0) = 1.

1.6.4. Нахождение числа допустимых разбиений множества ребер

прямой последовательности

Рассмотрим общий случай прямой последовательности A = {a0, . . . , aP}.
Сведем задачу вычисления количества допустимых разбиений левой и правой

последовательностей к аналогичным задачам для прямых цепей.

Для этого построим прямую цепь Ac, такую, что A ⊆ Ac и первый и послед-

ний классификаторы семейств совпадают, следующим образом: для каждого i,

такого, что ∣Gi∣ > 1, добавим в последовательность A прямую цепь Gi

{a0, . . . , ai−1} ∪Gi ∪ {ai+2, . . . , aP},
где прямая цепь Gi такова, что первым классификатором цепи является ai,

последним — ai+1. Для определенности будем считать, что Gi строится как

прямая цепь, составленная из двух монотонных: убывающей цепи длины n1 и

возрастающей длины n0, где

n1 = #{x ∈ Gi ∣ I(ai, x) = 1},
n0 = #{x ∈ Gi ∣ I(ai, x) = 0}.

Назовем построенную цепь Ac интерполяцией последовательности A. Ее длина

равна ∣D∣.
Для каждого ap ∈ A рассмотрим левую последовательность {ap, . . . , a0} ⊆ A

и левую цепь {ap, . . . , a0} ⊆ Ac. По построению множества ребер данных се-

мейств совпадают, вследствие чего множества допустимых разбиений левой
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цепи и левой последовательности, определенные по (1.15), также совпадают.

Вычислим их количество по теоремам 1.8 и 1.9 с единственным отличием.

Согласно (1.3), условие ap ≻X a должно быть выполнено только для a ∈ A.

Данное ограничение определяет строение множеств Ω
′

p и Ω
′′

p, задаваемых

в (1.20) и (1.22). Переопределим их для случая интерполяции последователь-

ности A.

Заметим, что в приведенных выше рассуждениях для ПМЭР свойство от-

ношения порядка, определенного в лемме 1.2, использовалось только при опи-

сании множеств Ω
′

p и Ω
′′

p. Тогда, определив эти множества на основании отноше-

ния порядка из леммы 1.1, мы опишем способ вычисления искомого количества

разбиений для метода МП.

Лемма 1.6. Для метода ПМЭР множества Ω
′

p и Ω
′′

p определяются по фор­

мулам:

Ω
′

p = {(d,∆, i) ∈ Ωp

»»»»»»»»
bd ∈ Ac\A или (bd ∈ A и 0 ⩽ i ⩽ d и ∣∆∣ ⩽ d

и (∆ > 0 или (∆ = 0 и n(bd,X) ⩽ n(b0,X)))) };
(1.23)

Ω
′′

p = {(d,∆, i) ∈ Ωp

»»»»»»»»
bd ∈ Ac\A или (bd ∈ A и 0 ⩽ i ⩽ d и ∣∆∣ ⩽ d

и (∆ > 0 или (∆ = 0 и n(bd,X) < n(b0,X)))) }.
(1.24)

Для метода МП множества Ω
′

p и Ω
′′

p определяются по формулам:

Ω
′

p = {(d,∆, i) ∈ Ωp

»»»»»»»»
bd ∈ Ac\A или (bd ∈ A и 0 ⩽ i ⩽ d и ∣∆∣ ⩽ d

и (∆ ≥
`

L
(n(bd,X) − n(b0,X)))) }; (1.25)

Ω
′′

p = {(d,∆, i) ∈ Ωp

»»»»»»»»
bd ∈ Ac\A или (bd ∈ A и 0 ⩽ i ⩽ d и ∣∆∣ ⩽ d

и (∆ >
`

L
(n(bd,X) − n(b0,X)))) }. (1.26)

Доказательство. Для ПМЭР формулы следуют из доказанных ранее лемм.

Выведем формулу для МП. Рассмотрим левую последовательность и bd ∈ A.
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Перепишем переобученность как δ(bd, X) = 1

L−`
n(bd,X) − L

`(L−`)n(bd, X). Тогда

δ(bd, X) − δ(b0, X) = 1

L − `
(n(bd,X) − n(b0,X)) − L

`(L − `) (n(bd, X) − n(b0, X)) =
=

1

L − `
(n(bd,X) − n(b0,X)) − L

`(L − `)∆0(bd, X),
где величина ∆0(bd, X) = ∆, откуда на основе леммы 1.1 следует, что в левой

последовательности для того, чтобы алгоритм b0 был выбран методом обучения,

необходимо выполнение условия δ(bd, X) − δ(b0, X) ≥ 0, что равносильно

∆ ≥
`

L
(n(bd,X) − n(b0,X)) .

Для правой последовательности неравенство строгое. Отсюда следует справед-

ливость формул (1.25) и (1.26) и утвеждение леммы.

Теорема 1.10. Пусть даны метод µ ПМЭР или МП, множество X мощно­

сти L, объем обучающей выборки ` и прямая последователь-

ность A = {a0, . . . , aP}. Пусть прямая цепь Ac = {c0, . . . , c∣D∣} является ин­

терполяцией последовательности A. Каждому классификатору ap ∈ A соот­

ветствует cip ∈ Ac.

Тогда для каждого p = 1, . . . , P в каждой точке (t′, e′) множества Ψ
′

p,

определенного в (1.17), число Lp(t′, e′) допустимых разбиений множества Lp,

определяемое по (1.15), равно

Lp(t′, e′) = Tp(∣Lp∣, t′ − 2e
′
, e

′) (1.27)

и вычисляется рекуррентно по правилам, описанным в лемме 1.5, где

bd = cip−d для каждого d и множество Ω
′

p определено по лемме 1.6. Краевые

условия L0(0, 0) = 1.

Для каждого p = 0, . . . , P − 1 в каждой точке (t′′, e′′) множества Ψ
′′

p,

определенного в (1.18), число Rp(t′′, e′′) допустимых разбиений множества Rp,

определяемое по (1.16), равно

Rp(t′′, e′′) = Tp(∣Rp∣, t′′ − 2e
′′
, e

′′) (1.28)
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и вычисляется рекуррентно по правилам, описанным в лемме 1.5, с заменой

множества Ω
′

p на Ω
′′

p, определенное по лемме 1.6, и bd на cip+d для каждого d.

Краевые условия RP(0, 0) = 1.

1.7. Алгоритм вычисления оценок обобщающей

способности прямой последовательности

Итак, в теореме 1.10 описан алгоритм нахождения количества допустимых

разбиений множеств ребер правой и левой последовательностей для каждого p.

Остается подставить найденные значения в формулы (1.14), (1.6), (1.10) и (1.12).

Для сокращения вычислений по теоремам 1.3, 1.4 и 1.5 для каждого p предла-

гается заранее вычислить Lp(t′, e′), Rp(t′′, e′′), Np(t, e), Fp(t, e) и Bp(t, e), после

чего сложить полученные значения. Схема вычислений показана в алгоритме 1.

1.7.1. Сложность алгоритма

Оценим сложность выполнения шагов 5–12 алгоритма 1.

При вычислении Lp(t′, e′) по теореме 1.8 на шагах 5–6 один раз для всех

(d,∆, i) ∈ Ω
′

p вычисляются Tp(d,∆, i), затем для каждого (t′, e′) ∈ Ψ
′

p величи-

на Lp(t′, e′) полагается равной Tp(d, t′ − 2e
′
, e

′). Множество Ω
′

p вложено в куб

со стороной O(∣Lp∣), поскольку каждая координата ограничена по модулю ко-

личеством ребер в левой последовательности. Следовательно, сложность вы-

полнения шагов 5–6 составляет O(∣Lp∣3). Аналогично, сложность выполнения

шагов 7–8 составляет O(∣Rp∣)3).
Для нахождения Np(t, e) и Fp(t, e) необходимо вычислить биномиальные

коэффициенты C
i
m и C

i
L−P−m при всех возможных i за O(L). Биномиальные ко-

эффициенты для каждого p не пересчитываются. При известных значениях би-

номиальных коэффициентов искомые Np(t, e) и Fp(t, e) вычисляются за O(L).
Множество Ψp вложено в квадрат со стороной L, значит, выполнение шагов 9–12
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выполняется за O(L3). Следовательно, сложность выполнения шагов 5–12 со-

ставляет O(∣D∣3 + L
3) = O(L3) для каждого p.

Множества Ψ
′

p и Ψ
′′

p вложены в квадрат со стороной P , значит, шаги 13–15

выполняются за O(L5), и сложность алгоритма 1 также составляет O(L5).
1.8. Выводы к первой главе

В данной главе введено понятие финитного метода обучения. Показано,

что финитными являются методы минимизации эмпирического риска (МЭР),

пессимистичной минимизации эмпирического риска (ПМЭР) и максимизации

переобученности (МП).

Рассмотрен общий случай произвольного семейства классификаторов и

финитного метода обучения. Доказана теорема о представлении функциона-

лов вероятности переобучения, полного скользящего контроля и ожидаемой

переобученности как произведения числа разбиений множества объектов, по

которым классификаторы различимы, и нейтрального множества объектов, на

которых классификаторы неразличимы.

Для частного случая прямой последовательности классификаторов, по-

рождаемых элементарными пороговыми правилами при варьировании парамет-

ра порога, и методов ПМЭР и МП доказана теорема о вычислении значений

функционалов обобщающей способности. Приведен псевдокод алгоритма вы-

числения достигаемых верхних оценок функционалов обобщающей способно-

сти. Показано, что сложность алгоритма является полиномиальной.
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Алгоритм 1: Вычисление вероятности переобучения, полного сколь-

зящего контроля и ожидаемой переобученности

Вход: матрица ошибок прямой последовательности A = {a0, . . . , aP},
параметры `, ε, метод обучения ПМЭР или МП

Выход: вероятность переобучения Qε, полный скользящий контроль

CCV и ожидаемая переобученность EOF.

1 построить прямую цепь Ac — интерполяцию последовательности A;

2 определить m по (1.5);

3 для всех p = 0, . . . , P

4 разделить цепь Ac на две — левую {ap, . . . , a0} и правую

{ap, . . . , aP};
5 для всех точек (t′, e′) множества Ψ

′

p, определенного по (1.17)

6 найти Lp(t′, e′) по формулам (1.27), (1.21), (1.23) и (1.25);

7 для всех точек (t′′, e′′) множества Ψ
′′

p, определенного по (1.18)

8 найти Rp(t′′, e′′) по формулам (1.28), (1.21), (1.24) и (1.26);

9 для всех точек (t, e) множества Ψp, определенного по (1.7)

10 вычислить Np(t, e) по формуле (1.8);

11 вычислить Fp(t, e) по формуле (1.11);

12 вычислить Kp(t, e) по формуле (1.13);

13 Qε ∶=
1

C`
L

P

∑
p=0

∑(t′,e′)∈Ψ′
p

∑(t′′,e′′)∈Ψ′′
p

Lp(t′, e′)Rp(t′′, e′′)Np(t′ + t
′′
, e

′
+ e

′′);
14 CCV ∶=

1(L − `)C`
L

P

∑
p=0

∑(t′,e′)∈Ψ′
p

∑(t′′,e′′)∈Ψ′′
p

Lp(t′, e′)Rp(t′′, e′′)Fp(t′+t′′, e′+e′′);
15 EOF ∶=

1(L − `)C`
L

P

∑
p=0

∑(t′,e′)∈Ψ′
p

∑(t′′,e′′)∈Ψ′′
p

Lp(t′, e′)Rp(t′′, e′′)Kp(t′+t′′, e′+e′′);
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Глава 2

Исследование завышенности существующих

оценок обобщающей способности пороговых

решающих правил

Недостатком алгоритма, описанного в первой главе, является его большая

вычислительная сложность. В данной главе проводится сравнение достигае-

мых верхних оценок обобщающей способности семейства одномерных порого-

вых классификаторов, вычисленных с помощью алгоритма, с известными ранее

быстро вычислимыми верхними оценками с целью оценить порядки их завышен-

ности и выявить те оценки, которые можно было бы использовать в реальных

задачах.

2.1. Обзор известных оценок вероятности переобучения

2.1.1. Оценка ВапникаҫЧервоненкиса

Верхняя оценка вероятности переобучения, полученная Вапником и Чер-

воненкисом, является функцией от мощности множества объектов и сложности

семейства алгоритмов. Мерой сложности на заданном множестве объектов яв-

ляется коэффициент разнообразия, определяемый как число попарно различ-

ных бинарных векторов ошибок, индуцируемых классификаторами семейства.

В комбинаторной теории коэффициент разнообразия равен мощности семей-

ства.

Теорема 2.1 (см. [66]) Для любого метода обучения, множества X, семей­

ства классификаторов A, объема ` обучающей выборки и порога ε ∈ (0, 1)
Qε ⩽ ∣A∣ max

n=1,...,L
H

`,n

L ( `

L
(n − ε(L − `))). (2.1)
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2.1.2. Оценка расслоенияҫсвязности

В комбинаторном подходе учитываются геометрические свойства булевых

векторов ошибок классификаторов – расслоение и связность.

Под расслоением семейства понимается распределение классификаторов

по слоям ошибок. Слоем называется множество классификаторов, допускаю-

щих на множестве X равное число ошибок. Чем меньше ошибок допускает клас-

сификатор, тем ниже его слой.

Связность предполагает, что для каждого классификатора в семействе

найдется множество похожих классификаторов, отличающихся от него только

на одном объекте выборки.

Пусть дано семейство классификаторов A = {a0, . . . , aP} с известными век-

торами ошибок на множестве X. На множестве классификаторов, как векторов

ошибок, существует отношение лексикографического порядка ⩽. Говорят, что

классификатор a предшествует b и записывают a ≺ b, если a ⩽ b и расстояние

Хемминга между ними равно 1.

Для каждого a ∈ A через u, q и n будут обозначаться:

u = ∣{b ∈ A ∣ a ≺ b}∣, (2.2)

q = ∣{x ∈ X ∣ I(a, x) = 1, ∃b < a ∶ I(b, x) = 0}∣, (2.3)

n = n(a,X).
Теорема 2.2 (Оценки расслоения–связности, см. [59]) Для произвольного мно­

жества X, семейства классификаторов A, метода обучения ПМЭР, объема `

обучающей выборки и порога ε ∈ (0, 1) справедливы оценки

Qε ⩽ ∑
a∈A

C
l−u
L−u−q

C`
L

H
`−u,n−q

L−u−q ( `

L
(n − ε(L − `))),

CCV ⩽ ∑
a∈A

C
`−u
L−u−q

C`
L

( n

L − `
−

(n − q)(` − u)(L − u − q)(L − `)).
(2.4)

В [70] оценка была улучшена за счет более тонкого анализа эффекта связ-

ности.
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Теорема 2.3 (Оценка Соколова, см. [70]) Пусть S ҫ множество истоков се­

мейства A, т. е. множество классификаторов s таких, что нет классифи­

каторов a ≺ s. Тогда верна оценка

Qε ⩽

P

∑
p=0

min
s∈S

{min{∣Aps∣, ∣Bps∣}
∑
i=0

C
i∣Bps∣C`−u−i

L−u−∣Bps∣
C`

L

H
`−u−i, n−∣Bps∣
L−u−∣Bps∣ ( `

L
(n − ε(L − `)) − i))},

(2.5)

где
Aij = {x ∈ X ∣ I(ai, x) = 0, I(aj, x) = 1},
Bij = {x ∈ X ∣ I(ai, x) = 1, I(aj, x) = 0}.

2.2. Обзор известных оценок полного скользящего

контроля

В комбинаторной теории наряду с оценкой расслоения–связности (2.4) для

частного случая семейства имеются оценки Гуза.

2.2.1. Оценки Гуза

Рассмотрим семейство одномерных пороговых решающих правил над чис-

ловым признаком, принимающим попарно различные значения на объектах

множества X. Пусть порог пробегает все возможные значения. Для данного се-

мейства в [72] был предложен полиномиальный алгоритм вычисления верхней

и нижней оценок полного скользящего контроля.

Теорема 2.4 (см. [72]) Для произвольного множества X, семейства класси­

фикаторов A, метода обучения ПМЭР, объема ` обучающей выборки справед­

ливы верхняя и нижняя оценки полного скользящего контроля:

1

L − `

1

C`
L

L

∑
i=1

∣E1(i)∣ ⩽ CCV ⩽ 1 −
1

L − `

1

C`
L

L

∑
i=1

∣E0(i)∣, (2.6)
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где для каждого i множества E
0(i) безошибочных выборок и E

1(i) ошибочных

выборок определены как

E
0(i) = {X ∣xi∈X̄, ∀µX∈M(X) I(µX, xi) = 0} ⊆ [X]`,

E
1(i) = {X ∣xi∈X̄, ∀µX∈M(X) I(µX, xi) = 1} ⊆ [X]`.

2.3. Оценка частоты ошибок на контрольной выборке

В данном разделе доказывается теорема для вычисления оценок частоты

ошибок классификатора, выбранного методом ПМЭР, на контрольной выборке.

Пусть задана вероятностная мера Pσ. Для семейства A и множества X

определим Радемахеровскую сложность

RL(A,X) = 2Eσ sup
a∈A

1

L

L

∑
i=1

σiI(a, xi),
где I(a, xi) обозначает ошибку классификатора, Eσ – математическое ожидание

по мере Pσ, а радемахеровские случайные величины σ1, . . . , σL, независимые в

совокупности, определяются как

σi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1,Pσ =

1

2
,

−1,Pσ =
1

2
.

Радемахеровская сложность описывает сложность семейства классифика-

торов. Чем больше Радемахеровская сложность, тем лучше ошибки классифи-

каторов семейства могут коррелировать со случайным шумом σi.

В [58] было продемонстрировано, что функционал ожидаемой переобучен-

ности возникает в выражении Радемахеровской сложности, таким образом свя-

зывая комбинаторную теорию с теорией эмпирических процессов и неравенств

концентрации вероятностной меры:
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Лемма 2.1 (см. [58]) Для метода обучения µδ МП, конечного семейства клас­

сификаторов A, множества X мощности L, объема обучающей выборки ` = L

2

верно

EOF(µδ,A,X, `) = RL(A,X).
Из определения ожидаемой переобученности и метода МП следует лем-

ма 2.2.

Лемма 2.2. Для методов обучения µδ МП и µ ПМЭР, конечного семейства

классификаторов A, множества X мощности L, объема обучающей выборки `

верно

EOF(µ,A,X, `) ≤ EOF(µδ,A,X, `).
Из лемм 2.1 и 2.2 следует теорема 2.5.

Теорема 2.5. Для метода обучения µ ПМЭР, конечного семейства классифи­

каторов A, множества X мощности L с вероятностью ε верно

ν(µX, X̄) ≤ ν(µX,X) + EOF(µ,A,X, `) + η(ε), (2.7)

ν(µX, X̄) ≤ ν(µX,X) +RL(A,X) + η(ε), (2.8)

где поправка η(ε) = √
−

1

2
ln ε и объем обучающей выборки ` = L

2
.

Доказательство. С помощью неравенства Хёфдинга [32] с вероятностью ε

можно оценить отклонение η = η(ε) переобученности от ее математического

ожидания:

δ(µX, X̄) ≤ EOF(µ) + η(ε),
где отклонение η =

√
−

1

2
ln ε.

Тогда частоту ошибок классификатора, выбранного методом ПМЭР, на

контрольной выборке, можно оценить непосредственно через частоту ошибок



49

на обучающей выборке и математическое ожидание переобученности:

ν(µX, X̄) = ν(µX, X̄) + δ(µX, X̄) ≤ ν(µX,X) + EOF(µ) + η(ε),
что обосновывает неравенство (2.7). Отсюда и из лемм 2.1 и 2.2 следует нера-

венство (2.8). Теорема 2.5 доказана.

Оценки, предложенные в теореме 2.5, различаются в следующем. Из лем-

мы 2.2 следует, что оценка (2.7) является более точной, чем оценка (2.8). Од-

нако недостатком оценки (2.7), вычислямой по теореме 1.3, является большая

вычислительная сложность O(L5), тогда как для Радемахеровской сложности

возможно построить быстро вычислимую верхнюю оценку, основанную на лем-

ме Массара [51].

В данной работе мы сравним достигаемые верхние оценки ожидаемой пере-

обученности методов обучения ПМЭР µ и МП µδ на примере семейства прямых

последовательностей. Если зазор между значениями EOF(µδ) и EOF(µ) окажет-

ся достаточно малым, то в правой части неравенства (2.8) можно заменить ве-

личину RL(A,X) на ее быстро вычислимую оценку и использовать полученную

оценку в практических задачах.

2.4. Вычислительные эксперименты

Напомним обозначения. Дана прямая последовательность A = {a0, . . . , aP},
множество X мощности L, множество D ребер последовательности. Объем обу-

чающей выборки `. Точность ε. Параметр m равен числу ошибок на мно-

жестве X \ D.

2.4.1. Модельные данные

В экспериментах используются случайные прямые последовательности.

Для порождения таких семейств генерируются класс нулей X0 ∼ N (0, 1) и

класс единиц X1 ∼ N (∆, 1) как выборки равной мощности L

2
из нормальных
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распределений. Параметр ∆ влияет на минимальное количество ошибок клас-

сификаторов семейства. Объединение выборок является множеством X. Мно-

жество D соответствует значениям, которые пробегает порог.

В экспериментах по сравнению оценок полного скользящего контроля в

силу ограниченности оценок Гуза рассматриваются прямые цепи. Для порожде-

ния таких цепей из выборок X0 и X1 удаляются совпадающие элементы. Также

оценки Гуза справедливы только для случая, когда порог пробегает все возмож-

ные значения, т. е. множество D совпадает с X.

2.4.2. Сравнение с существующими оценками вероятности

переобучения

На рис. 2.1 в логарифмической шкале отложены значения оценки Вап-

ника–Червоненкиса (точки ▪), оценки расслоения–связности (точки ⬩) и оцен-

ки Соколова (точки •) в сравнении с достигаемой верхней оценкой вероятности

переобучения прямой последовательности (точки ▸). Горизонтальной линией

указано значение Qε = 1.

Оценки расслоения–связности и Соколова являются точными только в од-

ном случае, когда минимальное количество ошибок совпадает с параметром m.

В этом случае семейство является унимодальной цепью (второй график в верх-

нем ряду на рис. 1.2), т. е. на границе классов отсутствует шум и граница опре-

деляется четко. С увеличением минимального количества ошибок оценка (2.5)

начинает превосходить реальное значение вероятности переобучения. Оценка

Вапника–Червоненкиса для рассматриваемой последовательности оказывается

завышенной при любом значении минимального количества ошибок.
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Рис. 2.1. Сравнение верхних оценок вероятности переобучения в логарифмической шкале.

Условия эксперимента: L = 240, ` = 160, m = 20, ε = 0, 05. По горизонтали отложено мини­

мальное количество ошибок классификаторов.

2.4.3. Сравнение с существующими оценками полного скользящего

контроля

На рис. 2.2 по вертикали в логарифмической шкале отложены значения

нижней (точки •) и верхней оценок Гуза (точки ▪) и оценки расслоения–связ-

ности (точки ⬩) в сравнении с достигаемой верхней оценкой (точки ▸).

Оценка расслоения–связности оказывается точной только в случае, когда

минимальное количество ошибок равно нулю, т. е. когда классы линейно разде-

лимы, для остальных значений параметра она является завышенной. Верхняя

оценка Гуза практически совпадает с достигаемой, из чего можно сделать вывод

о высокой точности оценок.

2.4.4. Сравнение с Радемахеровской сложностью

На рис. 2.3 по вертикали в логарифмической шкале отложены значения

ожидаемой переобученности классификатора, выбираемого методами обучения

ПМЭР (точки •) и МП (точки ▸). Можно отметить, что с увеличением ми-

нимального числа ошибок классификаторов в семействе, т. е. с увеличением

шума, два метода обучения начинают давать близкие значения ожидаемой пе-

реобученности. В этом случае для получения верхней оценки частоты ошибок
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Рис. 2.2. Сравнение верхних оценок полного скользящего контроля в логарифмической шка­

ле. Условия эксперимента: L = 240, ` = 160, m = 0. По горизонтали отложено минимальное

количество ошибок классификаторов.
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Рис. 2.3. Сравнение оценок ожидаемой переобученности для методов ПМЭР и МП в логариф­

мической шкале. Условия эксперимента: L = 240, ` = 120, m = 0. По горизонтали отложено

минимальное количество ошибок классификаторов.

классификатора, выбранного методом ПМЭР, на контрольной выборке, мож-

но использовать оценку (2.8). Но при малом уровне шума ожидаемая переобу-

ченность метода ПМЭР оказывается ниже на два порядка. В этом случае для

повышения точности оценок необходимо пользоваться оценкой (2.7).

2.5. Выводы ко второй главе

Проведено исследование обобщающей способности семейства одномерных

пороговых решающих правил, определяемой с помощью функционалов вероят-
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ности переобучения, полного скользящего контроля и ожидаемой переобучен-

ности.

Показано, что имеющиеся верхние оценки вероятности переобучения явля-

ются завышенными на 1–2 порядка. Оценки Вапника–Червоненкиса не учиты-

вают геометрическую структуру классов, от которой, как показано в экспери-

ментах, зависит обобщающая способность семейства. Комбинаторные оценки,

несмотря на то, что принимают во внимание такие геометрические свойства,

как расслоение и связность, все равно являются завышенными для данного се-

мейства.

Оценки Гуза для полного скользящего контроля, полученные в рамках

комбинаторной теории переобучения и вычислимые за полиномиальное от об-

щего количества объектов время, демонстрируют высокую точность, что обос-

новывает возможность применения данных оценок в реальных задачах.

Оценки Радемахеровской сложности оказываются достаточно точными

только для задач с высоким уровнем шума на границе классов. В противном

случае, когда граница между классами определяется четко, оценки Радемахе-

ровского типа являются завышенными на несколько порядков и неприменимы-

ми на практике.

Поскольку имеющиеся верхние оценки обобщающей способности, за ис-

ключением оценок Гуза, не продемонстрировали высокую точность, возника-

ет задача улучшения алгоритма вычисления достигаемых верхних оценок и

уменьшения его вычислительной сложности. Также следующей задачей явля-

ется применение достигаемых верхних оценок для повышения качества алгорит-

мов классификации, в частности для модификации критериев отбора признаков

в жадных алгоритмах индукции конъюнктивных логических закономерностей

и других логических алгоритмах классификации.



54

Глава 3

Применение комбинаторных оценок при

планировании трассерных исследований в

нефтегазовых месторождениях

Трассерное исследование (ТИ) скважин или исследования методом закач-

ки меченой жидкости является одним из наиболее распространенных методов

для оценки наличия гидродинамической связи между нагнетательными и до-

бывающими скважинами [44, 79]. Промысловые данные по этим исследованиям

позволяют определить гидродинамические свойства пласта в межскважинном

пространстве, направление и скорость распространения жидкости в пласте и

проверить наличие гидродинамической связи между скважинами, что важно

для решения задач проектирования и мониторинга разработки месторождений

[24, 49]. Выбор трассера, план исследования зависят от решаемых задач, осо-

бенностей продуктивного пласта и насыщающих его флюидов, требований к

экологической безопасности [34, 60].

В последнее десятилетие инженеры-нефтяники при решении практических

задач активно начинают применять подходы к интерпретации данных, основан-

ные на интеллектуальном анализе данных. Например, анализ петрофизических

данных с использованием передовых методов статистики и машинного обучения

получил широкое распространение благодаря уменьшению неопределенностей и

прогнозированию более точных трендов в данных по сравнению с классически-

ми методами [36, 37, 53]. В [4] описан алгоритм автоматической интерпретации

результатов гидродинамических исследований нефтяных и газовых добываю-

щих скважин на неустановившихся режимах фильтрации с применением ме-

тодов машинного обучения, который позволяет снизить неопределенность при

выборе релевантных моделей системы «скважина-пласт» и повысить достовер-
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ность определяемых параметров при анализе промысловых данных с высокой

зашумленностью и наличии помех и выбросов. В [12] показано, как сверточные

нейронные сети применяются для решения задачи интерпретации исследова-

ний методом эхометрирования и определения уровня жидкости в затрубном

пространстве скважины. Известны примеры решения задач по созданию алго-

ритма «виртуального расходомера» на основе методов машинного обучения для

повышения дискретности замеров дебитов жидкости в скважине по динамиче-

ским данным забойного давления с телеметрических систем и параметров со

станции управления установки электроцентробежных насосов [15, 85].

Данная глава посвящена применению методов машинного обучения для

проектирования трассерных исследований с целью повышения достоверности

результатов по выявлению гидродинамической связи в пласте между нагнета-

тельными и добывающими скважинами. Предложен новый алгоритм постро-

ения дерева решений с критерием выбора атрибута для разделения узла на

основе оценок обобщающей способности пороговых решающих правил.

3.1. Планирование трассерных исследований с

применением методов машинного обучения

В процессе проведения трассерного исследования для оценки наличия гид-

родинамической связи между скважинами осуществляется закачка меченой жид-

кости в одну или в несколько нагнетательных скважин. Закачиваемая меченая

жидкость оттесняется к реагирующим окружающим добывающим скважинам.

После закачки трассера начинают производить отбор проб жидкости из устья

добывающих скважин, которые далее анализируются в лаборатории. Масса вы-

несенного трассера, кривые изменения концентрации трассера в устьевых про-

бах от времени позволяют определить фильтрационную неоднородность продук-

тивного пласта, каналы фильтрации между скважинами, а также выполнить

количественные оценки фильтрационных параметров пласта [79].
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В том случае, если меченую жидкость закачали в нагнетательную сква-

жину и зафиксировали в реагирующей добывающей скважине, делают вывод,

что скважины имеют гидродинамическую связь. Если по результатам исследо-

ваний скважины не имеют гидродинамическую связь, то этот факт учитыва-

ется при дальнейшем планировании мероприятий по заводнению изученного

участка месторождения. Если обнаружена ярко выраженная гидродинамиче-

ская связь между скважинами с приходом меченой жидкости в короткое вре-

мя и значительном объемом агента закачки, то это свидетельствует о риске

преждевременного обводнения таких реагирующих добывающих скважин [77].

В последнем случае планируются мероприятия по ограничению нагнетатель-

ных скважин или планируется закачка потокоотклоняющих составов.

При планировании ТИ, согласно [79], для отбора скважин и участка про-

ведения трассерного исследования должен быть выполнен ряд условий:

• ТИ ранее на скважинах не проводились или с момента ранее проведенного

ТИ прошло более 1 года;

• для добывающей скважины: скважина не является кандидатом на прове-

дение геолого-технических мероприятий и на ней отсутствует заколонная

циркуляция (ЗКЦ), обводненность больше 20%;

• для нагнетательной скважины: скважина отсутствует в списке на ограни-

чение закачки, работает в установившемся режиме, техническое состояние

глубинного и устьевого оборудования не препятствует закачке, отсутству-

ет ЗКЦ, объект разработки совпадает с объектом разработки добывающей

скважины;

• для участка исследования: есть уверенная оценка проницаемости по ре-

зультатам гидродинамических исследований или по результатам анализа

добычи/давления.

Недостатком описанного способа построения программы ТИ является то,
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что перечисленные критерии не учитывают фактические динамические про-

мысловые данные по эксплуатации скважин, вследствие чего среди выбранных

скважин могут оказаться те, между которыми нет гидродинамической связи, и

меченая жидкость в таком случае в добывающей скважине обнаружена не бу-

дет. Таким образом, список скважин, в которые закачивается индикатор, оказы-

вается избыточным и приводит к более значительным затратам на проведение

исследования.

Согласно [81], программа ТИ может быть расширена парами добывающих

и нагнетательных скважин, между которыми установлено наличие гидродина-

мической связи по итогам других гидродинамических исследований, например,

исследований методом гидропрослушивания (ГП). Массовое проведение иссле-

дований методом гидропрослушивания невозможно из-за множества ограниче-

ний и недостатков:

• высокая стоимость исследования ввиду необходимости затрат на состав-

ление программы и контроль ГП, проведение измерений;

• потери в добыче/закачке при остановке возмущающих (нагнетательных)

и реагирующих (добывающих) скважин;

• с увеличением количества анализируемых пар скважин увеличивается

длительность и количество измерений и срок получения результатов ана-

лиза измерений;

• технические ограничения на проведение ГП, например, неисправность за-

движек и фонтанной арматуры; ввиду высокой стоимости исследования,

ГП требует заблаговременного планирования и согласования.

С целью устранения указанных недостатков и повышения информатив-

ности трассерных исследований в нефтегазовых месторождениях предлагается

способ планирования ТИ с применением методов машинного обучения.
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Согласно способу, проводится построение классификатора для определе-

ния гидродинамической связи между парой скважин. Для этого в качестве обу-

чающих примеров для настройки модели используются пары скважин нагнета-

тельная-добывающая, на которых ранее проводились трассерные исследования.

Для каждой пары известно целевое значение – заключение исследования о при-

ходе трассера: «да», если трассер пришел в добывающую скважину, и «нет»,

если трассер не пришел. Далее на основе ответов классификатора для каждой

пары скважин нагнетательная–добывающая формируется программа исследо-

вания. Если модель машинного обучения выдает ответ «да», то пара скважин

включается в программу исследования, в нагнетательную скважину произво-

дится закачка трассера и в добывающей скважине проводится отбор проб. Ес-

ли алгоритм выдает ответ «нет», то пара скважин из программы исследования

исключается.

В качестве признаков для описания объектов обучающей выборки исполь-

зуются коэффициенты взаимовлияния по методам емкостно-резистивной мо-

дели (CRMIP) и многопараметрической регрессии (MLR), рассчитываемые на

основе динамических данных эксплуатации скважин [64].

В рамках метода CRMIP анализируются приемистость нагнетательной

скважины, дебит и забойное давление добывающей скважины, в методе MLR

дополнительно анализируются забойное давление нагнетательной скважины и

другие данные нормальной эксплуатации скважин.

Обозначения динамических параметров, используемых при расчете коэф-

фициентов по методам MLR и CRMIP, на j-й добывающей скважине и i-й на-

гнетательной скважине, даны в таблице 3.1.

При наличии взаимовлияния между скважинами изменение динамическо-

го параметра на возмущающей скважине приводит к изменению на реагирую-

щей скважине.

Коэффициенты, рассчитанные по методу MLR, являются мерой корре-

ляции между динамическими параметрами на добывающей и нагнетательной
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Обозначение Динамический параметр Единицы

измерения

q
k
j дебит жидкости в k-й момент времени м3/сут

p
k
j забойное давление на добывающей скважине в k-й

момент времени

МПа

w
k
i приемистость в k-й момент времени м3/сут

p
k
i забойное давление на нагнетательной скважине в

k-й момент времени

МПа

Таблица 3.1. Обозначения динамических параметров

скважинах. Метод основан на решении задачи многопараметрической линейной

регрессии:

ψ̂
k
j = β0j +

I

∑
i=1

βijψ
k
i , k = [0, . . . , T ], (3.1)

где β0j – свободный член, βij – вероятностный коэффициент влияния i-й

скважины на j-ю скважину, ψ̂
k
j – значение динамического параметра на наблю-

дательной j-й скважине в k-й момент времени, ψ
k
i – значение динамического

параметра в возмущающей i-й скважине в k-й момент времени, I – число воз-

мущающих скважин, T – количество точек по времени.

При рассмотрении пар скважин i-я нагнетательная и j-я добывающая па-

раметр I = 1 и уравнение (3.1) переписывается в виде:

ψ̂
k
j = β0j + βijψ

k
i , k = [0, . . . , T ]. (3.2)

Далее система линейных уравнений (3.2) решается методом наименьших

квадратов, и вычисляются искомые коэффициенты по формулам (3.3):

βij =
(T + 1)∑T

k=0 ψ
k
i ψ̂

k
j − (∑T

k=0 ψ
k
i )(∑T

k=0 ψ̂
k
j )(T + 1)∑T

k=0(ψk
i )2 − (∑T

k=0 ψ
k
i )2 . (3.3)
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С помощью уравнения (3.1) анализируется одновременное изменение дина-

мических параметров скважин. В зависимости от анализируемых динамических

параметров коэффициенты βij обозначаются согласно таблице 3.2.

Коэффициент

MLR βij

Параметр на добываю-

щей скважине ψ̂
k
j

Параметр на нагнета-

тельной скважине ψ
k
i

p(p)ij p
k
j p

k
i

p(w)ij p
k
j w

k
i

q(p)ij q
k
j p

k
i

q(w)ij q
k
j w

k
i

Таблица 3.2. Обозначения коэффициентов в методе MLR

Метод CRMIP на основе уравнения математического баланса позволяет

оценить взаимовлияние между скважинами и временной параметр, который от-

ражает реакцию добывающей скважины на изменения в работе нагнетательной

скважины:

τij
dqij(t)
dt

+ qij(t) = fij(t)wij(t) − τijJij
dpj(t)
dt

, (3.4)

где wi(t) – приемистость i-й нагнетательной скважины, м3/сут; pj(t) – забой-

ное давление j-й добывающей скважины, МПа; qij(t) – дебит j-й добывающей

скважины (нефть и вода), обусловленный влиянием i-й нагнетательной сква-

жины, м3/сут; fij – параметр взаимосвязи, определяющий объемную долю за-

качанной в нагнетательную скважину жидкости, которая фильтруется к добы-

вающей скважине (0 ≤ fij ≤ 1); τij – временной параметр (τij ≥ 0), сут; Jij -

параметр продуктивности (Jij ≥ 0), м3/(сут ⋅ МПа); t – время от начала иссле-

дования, сут.

Аналитическое решение уравнения (3.4) представляется в виде

q
k
ij = q

k−1
ij e

−
∆t

τij + (1 − e
−

∆t

τij ) (fijwk
i − Jijτij

p
k
j − p

k−1
j

∆t
) . (3.5)
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Для определения коэффициентов fij, τij, Jij отдельно для каждой i-ой на-

гнетательной скважины решается задача минимизации невязки методом Нел-

дера-Мида [47]:

T

∑
k=1

N

∑
j=1

( q̃kj − q
k
ij

q̃kij
)2 → min

fij ,τij ,Jij
, (3.6)

где N – число наблюдательных скважин; q̃
k
j – фактический дебит j-й добыва-

ющей скважины в k-й момент времени, м3/сут; q
k
ij – рассчитанный по форму-

ле (3.5) дебит j-й добывающей скважины в k-й момент времени, м3/сут. Для

поиска точки минимума методом Нелдера-Мида необходимо задать τ0,ij – на-

чальное приближение для параметра τij.

Для численного описания влияния взаимовлияния между i-ой нагнетатель-

ной и j-й добывающей скважинами используются коэффициенты MLR p(p)ij,
p(w)ij, q(p)ij и q(w)ij и коэффициенты CRMIP fij, Jij, τij и τ0,ij.

Практическая реализация предложенного способа осуществлялась на при-

мере двух месторождений Западной Сибири. Выборка для обучения и тести-

рования алгоритма состояла из 289 пар скважин нагнетательная–добывающая,

на которых ранее проводились ТИ. На тестовой выборке полнота алгоритма

составила 78%, то есть алгоритм практически полностью находит пары сква-

жин, в которых обнаружен трассер. Также показано, что алгоритм позволяет

уточнить множество скважин для проведения ТИ, повысив долю пар скважин с

обнаруженным трассером с 40% до 60%. Таким образом, использование алгорит-

ма машинного обучения позволяет оптимизировать проведение ТИ, повысить

эффективность и снизить затраты на промысловые работы.

Классификатор для выявления гидродинамической связи между парами

скважин в предложенном способе основан на алгоритме решающего дерева.

Несмотря на то, что в последнее время наиболее часто для решения задач ана-

лиза данных используются нейронные сети или алгоритм градиентного бустин-

га [23], в случае ТИ накопленная цифровая база с отчетами по результатам ис-

следований является небольшой, и при таких условиях более приемлемым явля-
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ется выбор алгоритма дерева решений, поскольку требует настройки меньшего

числа параметров. Выбор алгоритма также обосновывается тем, что для спе-

циалистов по анализу промысловых данных необходима интерпретируемость

результатов: полученные пороговые значения в решающих правилах проверя-

ются с точки зрения согласованности с результатами математического модели-

рования в гидродинамических симуляторах [77] и аналитическими решениями

задач по распространению меченой жидкости в пласте [78]. На основе заключе-

ния экспертов по инженерному сопровождению исследований делается вывод о

применимости алгоритма в текущем бизнес-процессе.

3.2. Явление переобучения в деревьях решений

Деревья решений классифицируют примеры, сортируя их вниз по дереву

от корня до некоторого листового/конечного узла, при этом листовой/конечный

узел обеспечивает классификацию примера. В каждом узле принятия решения

в дереве проводится проверка некоторого дискретного атрибута, который раз-

бивает значения непрерывного признака на конечный набор интервалов. Каж-

дое ребро, спускающееся с узла, соответствует возможным значениям атрибута.

Этот процесс носит рекурсивный характер и повторяется для каждого поддере-

ва с корнем в новом подузле. В [61] приведено описание известных алгоритмов

построения дерева решений с указанием их отличий, достоинств и недостатков.

Алгоритм генерации дерева решений генерирует дерево решений до тех

пор, пока оно не может продолжиться. Недостатком данного подхода является

то, что дерево часто является очень точным в классификации на обучающей

выборке, но классификация на неизвестной тестовой выборке не настолько точ-

на, то есть происходит переобучение. Причина переобучения состоит в том, что

выбор атрибутов во внутренних узлах, а также выбор решений в листовых уз-

лах, происходит по малым подвыборкам обучающей выборки – только по тем

примерам, которые попадают в данный узел. Даже если исходная обучающая
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выборка была репрезентативной и имела достаточно большой объём, решения

в листовых узлах и внутренних узлах, далёких от корня дерева, оказываются

статистически ненадёжными (смещёнными), так как производятся по малым

подвыборкам. Чем больше в дереве узлов, то есть чем дерево сложнее, тем

больше в нём оказывается статистически ненадёжных узлов.

Имеются различные подходы для контроля сложности дерева. Стратегии

раннего усечения дерева (pre-pruning) используют ограничения на минимальное

количество примеров, которое должно быть в узле перед разделением; макси-

мальное количество листовых узлов; максимальная глубина дерева [45]. В дан-

ном подходе с использованием критерия останова в каждом узле предваритель-

но проверяется значение критерия и затем принимается решение о целесообраз-

ности разделения узла на два или более подузла. Стратегии позднего усечения

(post-pruning), применяемые в методах CART [21], C4.5 [41], C5.0 [21] сначала

строят максимально сложное дерево, затем обрезают те его ветви, которые не

удовлетворяют критерию качества на независимой контрольной выборке.

При выборе атрибута для разделения узла на подузлы дерево решений

разбивает узел по всем доступным атрибутам, а затем выбирает разбиение,

в результате которого получаются наиболее однородные подузлы по отноше-

нию к целевой переменной. Для принятия решения о выборе атрибута разра-

ботано множество числовых критериев, например, индекс Джини (Gini Index),

коэффициент прироста информации (Gain Ratio) или площадь под ROC-кри-

вой (AUC) [43, Глава 9]. Недостатком известных критериев является их сме-

щенность, поскольку расчет производится только на фиксированном наборе

примеров, попавших в узел, и никак не анализируется устойчивость результата

расчета при изменении набора примеров, что приводит к переобучению.

Отсюда возникает задача модификации критерия выбора атрибута для

минимизации переобученности алгоритма дерева решений, описанная в следу-

ющем разделе.
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3.3. Постановка задачи

Дано: множество примеров S, бинарная целевая переменная T , принимаю-

щая значения 0 и 1; для каждого примера известны значения признаков (при-

знаковое описание) и значения целевой переменной. Все признаки — непрерыв-

ные переменные.

Задача: модифицировать критерий выбора атрибута в алгоритме дерева

решений для минимизации переобученности прогноза целевой переменной.

3.4. Предлагаемый критерий

Согласно алгоритму построения дерева решений, в узле с множеством при-

меров S и для данного непрерывного признака F рассматривается набор бинар-

ных атрибутов [F ≤ θ], равных 1, если выполнено F ≤ θ, и 0 – иначе. Поро-

ги θ всеми возможными способами разбивают множество примеров S на два

подмножества S0, где значение атрибута равно 0, и S1, где значение атрибута

равно 1. Далее на множестве S0 ответы дерева решений полагаются равными 0,

на множестве S1 ответы полагаются равными 1. Ошибкой называется пример,

на котором ответ модели отличается от известного значения целевой перемен-

ной. В качестве атрибута выбирается классификатор [F ≤ θ] с минимальным

числом ошибок на множестве S, то есть реализуется метод обучения МЭР.

В разделе 1.2 было показано, что пороговые решающие правила переобу-

чаются при выборе порога описанным способом, причем величина переобучен-

ности зависит от геометрической структуры классов. Например, при линейной

разделимости классов переобученность минимальна, тогда как при наличии за-

шумленных данных на границе классов переобученность возрастает. Исходя из

предположения, что минимизация переобученности итогового классификатора

невозможна при наличии переобученных атрибутов в узлах, предлагается ре-

ализовать жадную стратегию и в каждом узле решать локально задачу мини-
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мизации переобученности. Для этого предлагается использовать достигаемые

верхние оценки переобучения пороговых решающих правил: критерий ожида-

емой переобученности EOF и критерий полного скользящего контроля CCV.

Такое решение мотивировано результатами работы [59], где было показано, что

применение комбинаторных оценок в качестве критерия отбора признаков при

построении элементарных конъюнкций в логических алгоритмах классифика-

ции уменьшает переобучение. Правило принятия решений для каждого класса

на основе дерева решений является дизъюнкцией элементарных конъюнкций,

то есть аналогично по строению изученному в [59] семейству.

Критерий EOF оценивает ожидаемую переобученность, возникающую при

выборе порога θ для данного признака F . Критерий CCV оценивает ожидаемую

долю ошибок классификатора [F ≤ θ] на отложенном множестве примеров. Та-

ким образом, данные критерии дают несмещенные оценки для переобученности

и доли ошибок, в отличие от критериев, перечисленных в разделе 3.2. Также

отметим, что в [59] была использована оценка расслоения-связности. В разде-

ле 2.4 было показано, что данная оценка для пороговых решающих правил

сильно завышена и превосходит достигаемые верхние оценки на 1–2 порядка.

Преимущество предлагаемого подхода в том, что критерии EOF и CCV позво-

ляют вычислять величину переобученности непосредственно, тогда как оценки

расслоения-связности являются верхними, приводя к смещённости критериев

ветвления.

Для расчета достигаемых верхних оценок EOF и CCV предлагается ис-

пользовать полиномиальный алгоритм 1 для метода ПМЭР.

3.5. Псевдокод алгоритма

Проведено тестирование предлагаемых критериев путем сравнения с из-

вестными критериями Gini Index (CART) и Gain Ratio (С4.5). Для этого моди-

фицирован алгоритм ID3: изменен критерий выбора атрибута для разделения
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на два подузла и определен критерий останова – минимальный размер узла.

ID3 – базовый алгоритм для построения дерева решений, при работе которого

можно отследить влияние предлагаемого критерия на переобучение. Для крите-

риев EOF и CCV выбирается признак, при котором критерий минимизируется,

для критериев Gini Index и Gain Ratio – максимизируется.

Псевдокод алгоритма аналогичен приведенному в [43, Глава 9] и описан в

алгоритмах 2 и 3. Критерием останова в алгоритме 2 является минимальный

размер узла η. В Алгоритме 2 на шаге 8 используется понятие оптимально-

сти. Для критериев EOF, CCV и Gini Index это значит, что необходимо искать

признак, при котором критерий минимизируется, для критерия Gain Ratio –

максимизируется.

Алгоритм реализован на языке C++ и доступен в репозитории GitHub [29].

3.6. Тестирование подхода

Модифицированный алгоритм был протестирован на данных с результа-

тами проведения трассерных исследований на двух месторождениях Западной

Сибири. Распределение по классам 0 «нет взаимовлияния по ТИ» и 1 «есть

взаимовлияние по ТИ» указано в таблице 3.3.

Месторождение П. Месторождение М. Всего

Класс 1 86 40 126

Класс 0 130 33 163

Всего 216 73 289

Таблица 3.3. Распределение по классам в данных с результатами проведения трассерных

исследований на двух месторождениях Западной Сибири

Оценка алгоритма проводилась методом 15-кратной кросс-валидации. Дан-

ные случайно разделялись на обучающую и тестовую выборки в отношении 3:1.

Параметр алгоритма выбран по кросс-валидации.
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Рис. 3.1. Значения метрики AUC для различных критериев

Для оценки качества алгоритма была выбрана метрика AUC. Дерево реше-

ний для каждого примера рассчитывает вероятность принадлежности к клас-

су 1, затем на основе порогового значения выдает ответ – метку класса. Данный

функционал показывает, насколько хорошо согласуется ранжирование по рас-

считываемой вероятности с ранжированием по истинным меткам классов 0 и 1.

Достоинством метрики AUC является то, что она не зависит от выбора поро-

га, недостатком является плохая интерпретируемость. Для более качественно-

го анализа результата классификации были использованы метрики Precision и

Recall. Метрика Precision равна доле пар скважин с наличием взаимовлияния

(истинная метка класса – 1) среди всех пар, выбранных алгоритмом в програм-

му исследования (ответ алгоритма – 1). Метрика Recall равна доле пар скважин

с наличием взаимовлияния, которые попали в программу исследования, среди

всех пар скважин с наличием взаимовлияния. Переобученность алгоритма оце-

нивалась как разность метрики на обучающей и контрольной выборках.

Проведен статистический анализ полученных значений метрики AUC. Рас-

смотрены подходы для связанных выборок, поскольку каждое значение метри-

ки получено путем фиксации пары обучающая-контрольная выборка и варьи-

рованием моделей и критериев отбора. Уровень значимости 0.05.
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Рис. 3.2. Значения переобученности для метрики AUC для различных критериев

На рисунке 3.1 приведены боксплоты для метрики AUC для всех критери-

ев. Однофакторный дисперсионный анализ ANOVA [50] для фактора Критерий

подтверждает наличие значимого отличия метрики для различных критериев

(p-value = 0.0007).

Средние значения метрики для критериев CCV и EOF превосходят зна-

чения для критериев Gain Ratio и Gini Index. С помощью критерия Уилкоксо-

на [76] проверим гипотезу о равенстве средних против односторонней альтерна-

тивы. Результаты проверок гипотез приведены в таблице 3.4. После поправки

на множественность методом Холма [33] отвергаются обе гипотезы для крите-

рия CCV, откуда следует вывод о статистически значимом улучшении качества

классификации при использовании критерия CCV.

Критерий 1 Критерий 2 p-value

Gain Ratio CCV 0.0006

Gain Ratio EOF 0.0026

Gini Index CCV 0.0008

Gini Index EOF 0.0962

Таблица 3.4. Результаты проверки гипотезы о равенстве средних
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На рисунке 3.2 приведены боксплоты со значениями переобученности для

метрики AUC. Видно, что средние значения переобученности для критерия

EOF ниже, чем для остальных критериев. Поэтому проведем только две провер-

ки гипотез о равенстве средних критерием Уилкоксона против односторонней

альтернативы. Проверка для критериев EOF и Gain Ratio дает p-value=0.005.

Проверка для критериев EOF и Gini Index дает p-value=0.004. Обе проверки

позволяют отклонить нулевую гипотезу и подтверждают, что EOF действитель-

но приводит к статистически значимому уменьшению переобученности.

В таблице 3.5 приведены результаты вычислений метрик качества: средние

значения и 95% доверительный интервал. Жирным выделены максимальные

значения по строкам, то есть указан критерий для выбора атрибута, приводя-

щий к максимальному значению метрики. Можно увидеть, что критерии CCV и

EOF дают более высокие значения метрик качества, причем чаще лучшим ока-

зывается именно критерий CCV. Для метрики Recall использование критериев

CCV или EOF дает прирост на 6%. Для метрики Precision использование кри-

териев дает прирост на 18% относительно исходного распределения по классам,

приведенного в таблице 3.3.

Метрика Gini Index Gain Ratio CCV EOF

AUC 0.60(± 0.08) 0.59(± 0.07) 0.64(± 0.05) 0.62(± 0.09)

Precision 0.56(± 0.12) 0.56(± 0.17) 0.59(± 0.11) 0.57(± 0.12)

Recall 0.55(± 0.24) 0.60(± 0.34) 0.60(± 0.20) 0.61(± 0.26)

Таблица 3.5. Значения метрик качества, вычисленные по кросс-валидации, и 95% довери­

тельный интервал

В таблице 3.6 приведены значения переобученности для каждой метрики.

Жирным выделены минимальные значения по строкам. Во всех строках выде-

лены значения в столбце EOF, то есть, как и предполагалось, использование

данного критерия приводит к уменьшению переобученности.

Проведенное тестирование позволяет сделать вывод о статистически значи-
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Метрика Gini Index Gain Ratio CCV EOF

AUC 0.11 0.11 0.11 0.07

Precision 0.17 0.15 0.17 0.14

Recall 0.16 0.16 0.18 0.13

Таблица 3.6. Значения переобученности

мом улучшении качества модели Дерева решений при использовании критериев

отбора признаков CCV и EOF.

3.7. Выводы к третьей главе

Показано, что имеющиеся критерии выбора атрибута для разделения узла

дерева решений являются смещенными и приводят к переобучению. Для устра-

нения этой проблемы разработаны критерии выбора атрибута, основанные на

комбинаторных оценках переобучения. Данные критерии оценивают математи-

ческое ожидание доли ошибок и переобученности классификатора. Предложен-

ные критерии апробированы на результатах проведения трассерных исследова-

ний на двух месторождениях Западной Сибири. Показано, что модификация

алгоритма дерева решений приводит к уменьшению переобученности алгорит-

ма и повышению его точности.

В дальнейшем предполагается развитие в трех направлениях: улучшение

алгоритма построения плана трассерных исследований с помощью дерева реше-

ний, анализ предложенного подхода и продолжение исследований по комбина-

торной теории переобучения.

В рамках первого направления предполагается использовать выводы, полу-

ченные в работе [82], где показано, что анализ корреляции накопленной концен-

трации трассерной жидкости в нагнетательной скважине и вынесенного трассе-

ра в добывающей скважине с помощью метода MLR позволяют уточнить нали-

чие взаимовлияния между скважинами. Задачей будущего исследования явля-

ется расширение набора используемых признаков в модели значениями данной
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корреляции, что может усилить вклад подхода MLR в модель.

В рамках второго направления необходимо провести теоретический анализ

предложенной модификации алгоритма построения дерева решений для иссле-

дования и обоснования масштабируемости подхода на другие предметные обла-

сти и выявления отличительных особенностей применения алгоритма в задаче

планирования ТИ.

В рамках третьего направления ставится задача улучшения разработан-

ного алгоритма расчета комбинаторных оценок переобучения для устранения

ограничения, связанного с большой вычислительной сложностью, которое не

дает использовать его на выборках большого объема. Также необходимо иссле-

довать другие алгоритмы, при построении которых решается задача выбора

порога, например, нейронные сети. Решение поставленных задач даст универ-

сальный критерий отбора признаков, с помощью которого удастся контролиро-

вать переобучение модели.
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Алгоритм 2: Построение разбиения в узле дерева решений
Вход: множество примеров X в узле, бинарная целевая

переменная T , полное множество примеров S, критерий

выбора признаков I , множество признаков F , параметр η для

критерия останова.

Выход: разбиение в узле X .

1 проверить выполнение критерия останова;

2 если критерий выполнен то

3 вернуть описание листового узла: ответ дерева решений для

примеров, попадающих в этот узел, заданный как класс с

максимальной частотой в X;

4 иначе

5 для всех F ∈ F

6 построить атрибут [F ≤ θ] для разделения на два подузла,

определив порог θ по критерию минимизации ошибок

классификатора [F ≤ θ] на множестве X ;

7 вычислить значение критерия I для выбранного атрибута,

обозначить его как IF ;

8 выбрать признак F
∗
, для которого значение критерия IF

оптимально;

9 определить разбиение на основе атрибута A
∗
= [F∗

≤ θ]:
Xleft = {x ∈ X ∣A∗(x) = 1}
Xright = {x ∈ X ∣A∗(x) = 0}

10 вернуть описание разбиения внутреннего узла ҫ атрибут A
∗
,

множества Xleft и Xright;
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Алгоритм 3: Построение дерева решений
Вход: полное множество примеров S, бинарная целевая

переменная T , критерий выбора атрибута для разделения I ,

критерий останова.

Выход: построенное дерево решений.

1 определить множество F непрерывных признаков;

2 определить корневой узел со множеством примеров S;

3 определить разбиение узла по алгоритму 2;

4 если это листовой узел то

5 вернуть описание узла — ответ алгоритма 2

6 иначе

7 определить левый подузел через Sleft, правый – через Sright;

8 исключить выбранный в алгоритме 2 признак из множества F ;

9 рекурсивно выполнить алгоритм 2 для правого Sright и левого Sleft

подузлов и множества F ;

10 вернуть построенное дерево ҫ набор атрибутов во внутренних

узлах и ответы алгоритма в листовых узлах
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Глава 4

Суррогатное моделирование для вычисления

оценок обобщающей способности пороговых

решающих правил

Большое количество научных и технических областей сталкивается с необ-

ходимостью компьютерного моделирования для изучения сложных явлений ре-

ального мира или решения сложных проблем проектирования. Например, что-

бы найти оптимальную форму аэродинамического профиля для крыла самоле-

та, инженер симулирует воздушный поток вокруг крыла для разных перемен-

ных формы (длина, кривизна, материал и т.д.) [17]. Несмотря на неуклонный

рост вычислительных мощностей, затраты на проведение этих сложных, вы-

сокоточных симуляций и подсчет факторов прочности элементов обшивки по-

прежнему огромны. Моделирование может занять много часов, дней или даже

недель [25, 52]. Это затрудняет решение таких рутинных задач, как задача оп-

тимального проектирования (design optimization), исследование пространства

проектных параметров (design space exploration, DSE), анализ чувствительно-

сти (sensitivity analysis) и анализ сценариев (what-if analysis). Одним из способов

решения проблемы является процесс суррогатного моделирования, состоящий

в замене одних моделей другими, аппроксимационными, близкими к исходным,

но более простыми в вычислительном смысле.

Построение суррогатной модели производится на основе ответов исходной

модели на конечном множестве специально подобранных точек с минимальным

привлечением знаний из предметной области. Данные могут быть получены из

различных источников, например, из эксперимента или в результате численно-

го моделирования. Точное внутреннее устройство исходной модели считается

неизвестным, важны исключительно входные и выходные данные. Областями
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применения суррогатного моделирования являются военное дело [46], строи-

тельство [71] и аэродинамика [63].

Ограничением алгоритма, описанного в главе 1, является его вычислитель-

ная сложность O(L5), что делает невозможным расчет оценок для значений L,

больших 300. В данной главе суррогатное моделирование применяется в зада-

че получения быстро вычислимых оценок обобщающей способности семейства

пороговых классификаторов над одномерными признаками. Рассматривается

функционал CCV, поскольку в главе 3 была показана его практическая значи-

мость в качестве критерия отбора признаков при построении модели машинного

обучения.

4.1. Вклад порогового классификатора в переобучение

семейства

Функционалы обобщающей способности, рассматриваемые в данной рабо-

те, представимы в виде суммы вкладов классификаторов. Это переобучение,

которое возникает при выборе порогового классификатора методом обучения.

Оценка расслоения–связности (2.4) представляет собой сумму величин, ко-

торые также назовем вкладами классификаторов. Первый множитель во вкла-

дах экспоненциально убывает по u(a) – величине, определенной в (2.2) и ха-

рактеризующей связность семейства, и q(a) – величине, определенной в (2.3) и

характеризующей расслоение. Величина u(a) называется верхней связностью,

q(a) – неполноценностью [59].

В семействе пороговых классификаторов верхняя связность u(a) принима-

ет три значения: 0 – у локальных минимумов графика частоты ошибок (клас-

сификаторы a2 и a6 на рис. 1.1), 2 – у локальных максимумов (классификатор

a5 на рис. 1.1) и 1 у всех остальных.
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(а) График частоты ошибок классификаторов. По

горизонтали отложены номера классификаторов

семейства.

(б ) Зависимость вклада классификаторов от номера

слоя (горизонтальная ось) и неполноценности (верти­

кальная ось).

Рис. 4.1. Зависимость значений вкладов классификаторов слоя An в значение функционала

полного скользящего контроля от номера слоя n и от неполноценности q. Значения парамет­

ров L = 100, ` = 25, n0 = 36.

Обозначим слой с номером n через

An = {a ∈ A ∣n = n(a,X) − n0}.
Семейство A представимо в виде A = A0 ⊔ ⋅ ⋅ ⋅ ⊔ AL−n0

.

В [57] проводились эксперименты по исследованию зависимости вкладов

классификаторов в значение функционала полного скользящего контроля от

номера слоя. Было показано, что вклады убывают с возрастанием номера слоя.

Следующий пример обнаруживает более сложную зависимость.

На рис. 4.1, а изображено семейство пороговых классификаторов

при L = 100, ` = 25, n0 = 36. Данное семейство соответствует задаче класси-

фикации со сбалансированными классами.

На рис. 4.1, б изображена зависимость среднего значения вклада класси-

фикатора a от номера слоя n и неполноценности q(a). Усреднение производится

по всем классификаторам из одного слоя с равным q.

Графики демонстрируют, что вклады велики только у классификаторов

с небольшими значениями неполноценности. Но в то же время вклады у клас-
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сификаторов с равной неполноценностью убывают с увеличением номера слоя.

Действительно, на кривой зависимости вклада от номера слоя имеется два пи-

ка на расстоянии d, приблизительно равном 15. Правый пик соответствует ло-

кальным минимумам, выделенным на рис. 4.1, а, при наличии которых на сло-

ях с большими номерами появляются классификаторы с малой неполноценно-

стью. Примеры пар классификаторов с равной неполноценностью отмечены на

рис. 4.1, а, они расположены на слоях n и n+ d. Вклады у классификаторов со

слоя n выше, чем у классификаторов со слоя n + d.

Таким образом, можно сделать следующие выводы:

• значимый вклад вносят классификаторы с небольшими значениями непол-

ноценности q(a);
• вклады убывают с возрастанием номера слоя, но необходимо учитывать

их неполноценность;

• на вклад влияет значение верхней связности u(a), то есть то, является ли

классификатор локальным минимумом или максимумом.

Данные наблюдения будут использоваться далее при построении призна-

ков для суррогатных моделей.

4.2. Суррогатное моделирование

Суррогатную модель можно понимать как «модель» модели. Она описыва-

ет взаимосвязь между входами (то есть регулируемыми параметрами модели)

и выходами истинной, имитационной, модели.

Суррогатное моделирование состоит из трех шагов. Первый шаг – это по-

строение обучающей выборки Y – множества пар (A,F) объектов и ответов

на них, которые получаются путем запуска имитационной модели с различны-

ми наборами параметров, выбранных в допустимом пространстве параметров.
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В данной работе каждым объектом A является семейство одномерных порого-

вых классификаторов, ответом F – достигаемая верхняя оценка полного сколь-

зящего контроля семейства. Второй шаг – это построение некоторым образом

подобранных признаков для описания объектов. Третий шаг – это построение

регрессионной модели для последующего быстрого вычисления ответов на но-

вых объектах.

4.2.1. Построение обучающей выборки

При построении обучающей выборки пар (A,F) каждый объект A устро-

ен следующим образом. Генерируем класс нулей X0 и класс единиц X1 как

выборки из нормальных распределений и строим для них семейство пороговых

классификаторов A варьированием порога. В определенных выше обозначениях

объединение выборок X0 и X1 является множеством X.

Зафиксируем значение математического ожидания распределения класса

нулей, задав его равным 0. Репрезентативность обучающей выборки обеспечим

путем варьирования степени погруженности одного класса в другой, который

определяется значением ∆ математического ожидания распределения класса

единиц. Стандартное отклонение обоих распределений зададим равным 1. На

рисунке 4.2 изображен пример таких классов.

Параметр ∆ принимает значения, равные удвоенным квантилям uα стан-

дартного нормального распределения ξ ∼ N (0, 1), где под квантилем понима-

ется число uα, такое, что

P [ξ ⩽ uα] = α.

Отметим, что плотности распределений x0 ∼ N (0, 1) и x1 ∼ N (2uα, 1) сим-

метричны относительно значения uα, поскольку справедливо

равенство P (x0 ≤ uα) = P (x1 ≥ uα). Таким образом, варьируя значения α,

мы получим всевозможные взаимные расположения двух классов. Ограничим-

ся теми, где класс единиц находится правее класса нулей, поскольку в обратном
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Рис. 4.2. Выборка классов из двух нормальных распределений X
n0

0 ∼ N (0, 1) и X
n1

1 ∼

N (∆, 1), используемая для построения семейства пороговых классификаторов. Варьируе­

мые параметры: ∆ ҫ расстояние между центрами распределений, n0, n1 ҫ размеры классов.

Стандартное отклонение равно 1. Значения параметров ∆ = 2, n0 = n1 = 80

случае в задаче классификации необходимо переопределить пороговое правило

принятия решений, изменив знак ≥ на обратный. Отсюда следует, что α пробе-

гает значения 0.6, . . . , 1.

Мощность множества X равна L = n0+n1 и пробегает значения 50, . . . , 320.

Для каждого L параметр ` принимает значения 0.15, 0.3, 0.5, 0.9. Отношение

n0∶n1 размеров классов пробегает значения 0.25 . . . 4. Значения параметра L

ограничиваются вычислительными мощностями рабочего компьютера, посколь-

ку для каждого семейства требуется вычислить достигаемую верхнюю оценку

ыполного скользящего контроля F = CCV(µ,A,X, `) по алгоритму 1 со слож-

ностью O(L5).
Полученное множество Y пар (A,F) используется для построения сурро-

гатной модели. Мощность множества Y составляет 14 000 объектов.

4.2.2. Построение признакового пространства

Для построения признаков воспользуемся свойствами оценки расслоения–

связности (2.4). Необходимо описывать некоторым образом слои семейства с уче-

том неполноценностей классификаторов и того, является ли классификатор
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локальным минимумом или максимумом графика частоты ошибок на множе-

стве X.

В работе [83] обобщающая способность слоя An классификаторов оценива-

лась сверху через подмножество хеммингова шара булевого куба, подможеством

которого представлялось исходное семейство A. Завышенность оценки зависела

от того, насколько близкими в смысле расстояния Хемминга являлись класси-

фикаторы в слое An. Поэтому будем использовать следующие признаки:

• объем обучающей выборки `;

• минимальное число ошибок классификаторов n0;

• мощность слоя {∣An∣}L−n0

n=0 ;

• среднее значение неполноценности q(a) в слое;

• профиль расслоения-связности [57]

∆(n, u) = ∣{a ∈ An ∣u(a) = u}∣ ,
равный количеству локальных минимумов (при u = 2) и максимумов (при

u = 0) в слое;

• среднее расстояние Хемминга между классификаторами в слое;

• количество локальных минимумов и максимумов с равной неполноценно-

стью;

• среднее значение числа ошибок у классификаторов с равной неполноцен-

ностью;

Разделим все признаки на L – мощность множества X – и добавим признак,

равный L.

Кроме того, для уменьшения количества признаков будем считать, что

классификаторы из соседних слоев вносят одинаковый вклад. Поэтому будем
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группировать слои на B блоков путем усреднения значений признаков по L

B
со-

седних слоев, где B – параметр.

Поскольку для каждого n сумма ∆(n, 0) + ∆(n, 1) + ∆(n, 2) = ∣An∣, то

для устранения мультиколлинеарности профиль расслоения-связности будем

вычислять только для u = 0 и u = 2. Таким образом, всего имеется 8 ⋅ B + 3

признаков.

4.2.3. Построение модели

Будем использовать методы построения моделей, позволяющие получать

интерпретируемые результаты и выявлять признаки и характеристики семей-

ства, которые дают значимый вклад в его обобщающую способность. Рассмот-

рим следующие модели:

• линейные на основе модели elastic net EN с возможностью задания l2- или

l1- регуляризации и ограничения на неотрицательность коэффициентов;

• на основе дерева решений: случайного леса RF и градиентного бустинга

GB;

• нейронную сеть NN.

Преимуществом линейных моделей помимо интерпретируемости является

их малая вычислительная сложность. Линейные модели с l1-регуляризацией

или ограничением на неотрицательность коэффициентов проводят отбор при-

знаков, что приводит к сокращению временных затрат на вычисление ответа.

Модель с ограничением на неотрицательность коэффициентов позволяет гаран-

тировать неотрицательность ответов, вычисляемых моделью.

Преимуществом моделей на основе дерева решений является возможность

обнаружения нелинейных взаимосвязей между признаками и целевой перемен-

ной. Для того чтобы снять указанное ограничение для линейных моделей и

нейронных сетей в реализации библиотеки sklearn [48], при построении EN и
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NN добавим полиномиальные признаки в набор данных (обозначим модели как

EN+Poly и NN+Poly соответственно).

4.3. Анализ суррогатных моделей

Качество модели на выборке Y будем оценивать по метрике среднего отно-

сительного отклонения MAPE, учитывающего абсолютное значение целевого и

приближенного значений:

MAPE(Y ) = 1

k
∑

(A,F)∈Y
»»»»»F̂ − F

»»»»»
F

,

где F̂ – ответ, вычисленный с помощью модели, на объекте выборки (A,F) ∈ Y ,

k – объем выборки Y . Меньшие значения метрики соответствуют более высоко-

му качеству модели.

Пусть множество Y разделено на обучающую выборку Yt и контрольную Yv

в отношении 5:1, то есть Y = Yt⊔Yv. Гиперпараметры для каждой модели будем

подбирать по 5-блочной кросс-валидации на обучающей выборке Yt.

Проведем анализ рассматриваемых суррогатных моделей. Для начала срав-

ним точность моделей на выборке Yv при различных значениях параметра B

из списка 5, 10, 15, 20. Также исследуем, насколько модель устойчива при уве-

личении L – мощности множества X или, другими словами, размера семейства

классификаторов. Цель построения суррогатной модели – вычислять прибли-

женные оценки обобщающей способности в тех случаях, когда достигаемые

верхние оценки с помощью алгоритма вычислить становится невозможно вви-

ду больших временных затрат, обусловленных параметром L. Поэтому модель

должна быть масштабируема по параметру L, то есть давать достаточно точ-

ные приближенные оценки CCV при больших L, тогда как обучение модели

проводится на объектах при малых значениях данного параметра.

На множестве Y и выборке Yv значения параметра L не превосходят 300

в силу больших временных затрат на вычисление точных значений ответов.
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Рис. 4.3. Зависимость относительной ошибки расчета CCV методом Монтеҫ

Карло от количества N разбиений. Горизонтальные линии соответствуют ошибке в 1%

Построим множество Ymc объектов с большими значениями параметра L в диа-

пазоне 400, . . . , 800.

Вычислим для этих объектов приближенные ответы методом Монте–Кар-

ло: усредним значения ν(µX, X̄) по N случайным разбиениям (X, X̄) множе-

ства X. На рисунке 4.3 изображена относительная ошибка расчета CCV мето-

дом Монте–Карло для 30 случайных объектов в зависимости от N , параметры

L = 800, ` = 400.

По горизонтали отложены значения параметра N . Видно, что начиная

с N = 10 000 относительная ошибка стабилизируется и не превышает значе-

ния 1%. Для исключения внесения погрешности в результаты тестирования

проведем расчеты с N = 50 000. Отметим, что для 10 000 разбиений время вы-

числения CCV для одного объекта может достигать 10 секунд, что на практике

неприменимо.
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(б ) С отбором признаков

Рис. 4.4. Сравнение моделей на контрольной выборке

4.3.1. Точность моделей на контрольной выборке

На рисунке 4.4, а показано сравнение моделей на контрольной выборке Yv

по метрике MAPE(Yv) при разных значениях параметра B.

Для уменьшения сложности моделей также были рассмотрены различные

методы сокращения размерности. Метод на основе взаимной информации [22]

позволил предварительно убрать нерелевантные признаки. Наилучший резуль-

тат по точности модели удалось достичь при дальнейшем применении метода

на основе оценивания вектора Шепли [28]. Метод Шепли основан на концепции

кооперативной игры и теории распределения выигрышей между игроками. В

машинном обучении выигрышем считается верный ответ модели, игроками яв-

ляются признаки. Метод позволяет оценить вклад признака в прогнозы модели,

для чего перебираются все возможные комбинации признаков и рассчитывается

разница в ответах модели при добавлении или удалении конкретного признака.

На рисунке 4.4, б приведены значения метрики после отбора признаков.

Можно видеть, что уменьшение сложности не снижает точность модели, поэто-

му далее проводится анализ для моделей с отбором признаков.

Видно, что наилучшие значения метрики достигаются при использовании
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моделей GB, EN+Poly, NN и RF. При этом с увеличением значений параметра

B качество улучшается. Но с увеличением параметра B растет и количество

вычисляемых признаков, то есть возникает необходимость найти компромисс

(trade-off) между сложностью модели и ее точностью. Отметим, что у модели

GB более низкие значения MAPE достигаются при малых значениях параметра

B = 10, что позволяет сократить время на расчет признаков. Проанализируем

устойчивость выделенных моделей.

4.3.2. Устойчивость моделей к увеличению размера семейства

классификаторов

На рисунке 4.5, а приведены значения метрики качества на контрольной

выборке Yv (в столбце L = 300) и на множестве Ymc (в столбцах L > 300)

при B = 10. Для других значений параметра B поведение моделей аналогично.

Высота столбцов увеличивается с увеличением L, поэтому как оценку устой-

чивости рассмотрим максимальную разницу в значениях метрики качества: при

L = 800 на множестве Ymc и при L = 300 на выборке Yv. На рисунке 4.5, б пока-

зано сравнение моделей по данной оценке при разных значениях параметра B.

Более низкие значения соответствуют более устойчивой модели.

Видно, что наилучшими по рассматриваемому критерию являются модели

GB (при B = 10) и NN (при B = 10 и B = 20). Модель EN+Poly показывает низ-

кое качество на множестве Ymc при L = 800 по сравнению с выборкой Yv, откуда

делаем вывод о ее неустойчивости при увеличении семейства классификаторов

и непригодности для решения поставленной задачи. Модель RF оказывается

менее устойчивой по сравнению с GB.

На основе проведенного анализа можно утверждать, что наилучшими сур-

рогатными моделями являются модели градиентного бустинга GB и нейронной

сети NN. Поскольку нейронная сеть более устойчива при B = 10, тогда как

для градиентного бустинга выбор однозначен, то для обеих моделей выберем

значение параметра B = 10.
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(б ) Разность метрики на Ymc при L = 800 и на Yv при L = 300

Рис. 4.5. Анализ устойчивости моделей

Гиперпараметры для модели GB: глубина деревьев 25, количество дере-

вьев 300; для модели NN: количество слоев 2, количество узлов в одном слое 10,
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функция активации ReLU .

4.3.3. Вычислительная сложность моделей

Сложность вычисления ответа для одного объекта в модели градиентного

бустинга составляет O(T ⋅ H), где T – количество деревьев, H – высота дере-

вьев, в однослойной нейронной сети – O(K), где K – количество узлов в одном

слое. С учетом значений гиперпараметров T , H, K, приведенных выше, можно

утверждать, что расчеты на основе нейронной сети выполняются за меньшее

время. Затраты по памяти на хранение модели градиентного бустинга имеют

аналогичную асимптотику и оказываются больше, чем у нейронной сети.

Вследствие этого на практике будем использовать модель NN при B = 10.

Признаки вычисляются за квадратичное по L время, значит, сложность

вычисления ответа линейной модели составляет O(L2). На рассмотренной вы-

борке для L = 300 вычисление признаков и ответа модели не превосходило 0.4

секунды, тогда как время расчета по алгоритму 1 достигало 400 секунд. Та-

ким образом, использование суррогатного моделирования уже на малых выбор-

ках позволяет сократить время вычисления оценки обобщающей способности

в 1000 раз.

4.4. Обсуждение результатов

Проанализируем значимость признаков в модели NN при B = 10.

Как уже было сказано выше, при построении модели предварительно был

проведен отбор признаков на основе метода Шепли. Для B = 10 алгоритм на

основе описанного метода Шепли выделяет в качестве значимых признаки, опи-

сывающие 20% нижних слоев. Таким образом, суррогатное моделирование под-

тверждает эмпирическое наблюдение о том, что вклад в значение переобучения

вносят только нижние слои.

Для интерпретируемости результатов признаки были разделены на груп-
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Рис. 4.6. Значение метрики при удалении группы признаков из модели NN. Вертикальной

линией обозначено значение метрики при добавлении всех признаков в модель

пы, описанные в разделе 4.2.2, и анализ проводился для каждой группы. Зна-

чимость оценивалась следующим образом: из модели, построенной на полном

наборе признаков, удалялась группа и вычислялась метрика MAPE относитель-

ной ошибки расчета CCV. Рассматривалась выборка при L = 300, то есть ответы

модели сравнивались с достигаемыми верхними оценками переобучения.

Результаты расчета приведены на рисунке 4.6. Вертикальной линией обо-

значено значение метрики для модели на полном наборе признаков. Можно

видеть, что наибольшую значимость имеют признаки, отвечающие за мини-

мальное число ошибок и размерные характеристики задачи – объем обучаю-

щей выборки ` и параметр L. Признаки, описывающие мощности слоев оши-

бок, вносят равный вклад с признаками, отвечащие за расстояние Хемминга в

слое. Также надо учитывать взаимосвязь между числом ошибок классифика-

тора и его неполноценностью и профиль расслоения–связности. Связь между

профилем расслоения–связности и неполноценностью, выражаемую через ко-

личество локальных минимумов/максимумов с равной неполноценностью, не

вносит вклада в модель, этот признак можно исключить.

На рисунке 4.7 показано сопоставление истинных и рассчитанных значений

CCV при последовательном добавлении наиболее значимых признаков в модель:

минимального числа ошибок, объемов выборок и мощности слоев. Можно ви-

деть, что рассеянность точек относительно диагональной линии при добавлении
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Рис. 4.7. Графики рассеяния при добавлении группы признаков в модель NN

очередной группы признаков уменьшается, то есть рассчитанные значения при-

ближаются к истинным, при этом не наблюдается стабильного завышения или

занижения ответов модели. Также интересно отметить, что именно добавление

мощности слоев в модель уточняет ее ответы на отрезке [0, 0.1].
Таким образом, можно сделать следующие выводы. Значений минималь-

ного числа ошибок и размерных характеристик семейства недостаточно, учет

геометрической структуры семейства необходим при построении модели. Полу-

ченные результаты согласуются с результатами работы [59]: при вычислении

оценок обобщающей способности значимый вклад вносят эффекты связности

семейства и расслоения по числу ошибок.
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4.5. Выводы к четвертой главе

Проведено построение суррогатной модели для быстрого вычисления оце-

нок переобучения семейства пороговых решающих правил. Рассмотрены мо-

дели различной структуры, наилучшей по результатам тестирования выбрана

модель нейронной сети с MAPE=2.8% и устойчивостью при увеличении раз-

мера выборки, на которой решается задача классификации с использованием

пороговых решающих правил.

Интерпретация результатов и анализ значимости признаков показали, что

учет только объема обучающей выборки и минимального числа ошибок класси-

фикаторов недостаточен, необходимо использовать в модели внутреннюю струк-

туру семейства и взаимосвязь между классификаторами. Построение модели и

отбор признаков подвердили результаты ранних работ и эмпирические наблюде-

ния о том, что вклад в переобучение вносят только классификаторы из нижних

слоев семейства, то есть те, которые допускают наименьшее число ошибок.

На основе полученных результатов следующей задачей становится иссле-

дование возможности аппроксимации семейства пороговых рещающих правил

меньшим семейством, состоящим из классификаторов из нижних слоев. Другим

направлением является применение построенной суррогатной модели в практи-

ческих задачах при отборе признаков.
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Заключение

Основные результаты данной работы заключаются в следующем:

1. Доказаны теоремы о представлении достигаемых верхних оценок обобща-

ющей способности произвольного семейства классификаторов в виде про-

изведения числа разбиений двух непересекающихся множеств объектов

генеральной совокупности.

2. Доказаны теоремы и разработан алгоритм полиномиальной сложности

для вычисления достигаемых верхних оценок обобщающей способности

семейства пороговых решающих правил над одномерным признаком при

варьировании параметра порога. В качестве характеристик обобщающей

способности используются функционалы вероятности переобучения, пол-

ного скользящего контроля и ожидаемой переобученности. Алгоритм ос-

нован на рекуррентном подсчете числа допустимых траекторий при блуж-

дании по трехмерной сетке между двумя заданными точками с ограниче-

ниями специального вида.

3. Проведен анализ завышенности известных оценок вероятности переобуче-

ния: Вапника-Червоненкиса, расслоения–связности и Соколова. Показа-

но, что данные оценки завышены по сравнению с достигаемыми верхними

оценками, рассчитанными с помощью полученного алгоритма.

4. Полученный алгоритм применен для анализа завышенности известной

оценки Гуза для полного скользящего контроля. Показано, что оценки

Гуза являются достаточно точными для применения в реальных задачах.

Однако данные оценки накладывают требования на распределение значе-

ний одномерного признака, то есть применимы только в частных случаях.

5. Проведен анализ завышенности оценки частоты ошибок на контрольной

выборке на основе Радемахеровской сложности по сравнению с достигае-
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мыми верхними оценками, рассчитанными с помощью полученного алго-

ритма. Показано, что данные оценки оказываются точными только для

задач с высоким уровнем шума на границе классов. В противном случае,

когда граница между классами определяется четко, оценки Радемахеров-

ского типа являются завышенными на несколько порядков и непримени-

мыми на практике.

6. Полученные достигаемые верхние оценки полного скользящего контро-

ля и ожидаемой переобученности применены в качестве критерия отбо-

ра признаков при построении дерева решений. Проведены эксперименты

на промысловых данных трассерных исследований и показано статисти-

чески значимое повышение обобщающей способности при использовании

комбинаторных оценок в деревьях решений.

7. Построена суррогатная модель для быстрого вычисления приближенных

оценок обобщающей способности семейства пороговых решающих правил

с высокой точностью. Показано, что использование суррогатного модели-

рования позволяет сократить на несколько порядков время вычисления

оценок переобучения даже на выборках малого объема и может приме-

няться в практических задачах для отбора признаков при построении мо-

делей машинного обучения.
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Qε вероятность переобучения (Стр.17)

P мощность семейства классификаторов (Стр.18)

p номер классификатора (Стр.18)

x объект множества X/значение одномерного признака (Стр.19)

∆(a,X) запас ошибок классификатора a на выборке X (Стр.24)

H гипергеометрическая функция распределения (Стр.26)
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D множество ребер семейства классификаторов (Стр.26)

N нейтральное множество объектов (Стр.26)

m число ошибок семейства на множестве N (Стр.26)

t множество объектов из X ∩ D (Стр.26)

e число ошибок классификатора ap на X ∩ D (Стр.26)

Dp количество разбиений множества D (Стр.26)

Lp множество ребер левой последовательности (Стр.31)

Rp множество ребер правой последовательности (Стр.31)

Lp количество разбиений множества Lp (Стр.31)

Rp количество разбиений множества Rp (Стр.31)

Ωp трехмерная сетка (Стр.33)

Tp множество траекторий на Ωp (Стр.33)

Tp количество траекторий из Tp с ограничениями (Стр.35)

q(a) неполноценность классификатора a (Стр.45)

u(a) верхняя связность классификатора a (Стр.45)

RL(A,X) Радемахеровская сложность семейства классификаторов (Стр.47)

МП метод максимизации переобученности (Стр.18)

МЭР метод минимизации эмпирического риска (Стр.18)

ПМЭР метод пессимистичной минимизации эмпирического риска (Стр.18)

ТИ трассерное исследование (Стр.54)

ГП гидропрослушивание (Стр.57)

CRMIP метод емкостно-резистивной модели (Стр.58)

MLR метод многопараметрической регрессии (Стр.58)

MAPE среднее относительное отклонение (Стр.82)
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Recovery Problems: École d’Été de Probabilités de Saint-Flour XXXVIII-2008.

Lecture Notes in Mathematics. Springer, 2011.

41. Kuhn M., Johnson K. Classification Trees and Rule-Based Models // Applied

Predictive Modeling. NY:Springer, 2013. doi:10.1007/978-1-4614-6849-3_14

42. Langford J. Quantitatively Tight Sample Complexity Bounds: Ph.D. thesis //

Carnegie Mellon Thesis, 2002.130 p.

43. Maimon O., Rokach L. Data Mining and Knowledge Discovery Handbook, 2nd

ed. Springer, 2010. 1285 p. doi:10.1007/978-0-387-09823-4

44. Shook G. M., Ansley Sh. L., Wylie A. Tracers and tracer testing: design,

implementation, tracer selection, and interpretation methods, report, January 1,

2004. Idaho Falls, Idaho: INL, 2004. 36 p. doi:10.2172/910642

45. Mitchell T. Machine Learning. McGraw Hill, 1997. 414 p.

46. Mogilicharla A., Mittal P., Majumbar S., MitraK. Kriging surrogate based multi-

objective optimization of bulk vinyl acetate polymerization with branching //

Materials and Manufacturing Processes. 2015. No. 30. P. 394–402.

47. Nelder J.A., Mead R. A simplex method for function minimization // Computer

Journal. 1965. V. 7. P. 308–313.

48. Pedregosa F., et al. Scikit-learn: Machine Learning in Python // JMLR. 2011.

V. 12, No. 85. P. 2825–2830.

49. Patidar A.K., Joshi D., Dristant U. et al. A review of tracer testing techniques in

porous media specially attributed to the oil and gas industry // J. Petrol. Explor.



104

Prod. Technol. 2022. V. 12. P. 3339–3356. doi:10.1007/s13202-022-01526-w

50. Rutherford A. Anova and ANCOVA: a GLM approach. John Wiley & Sons,

2011. 360 p.

51. Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press, 2014. 449 p.

52. SimpsonT., ToropovV., BalabanovV., Viana F. Design and analysis of

computer experiments in multidisciplinary design optimization: a review of

how far we have come or not // Proceedings of the 12th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference (Victoria, British

Columbia, Canada, 10–12 September 2008). doi:10.2514/6.2008-5802

53. Sprunger C., Muther T., Syed F. I., et al. State of the art progress in hydraulic

fracture modeling using AI/ML techniques // Model Earth Syst. Environ. 2022.

V. 8. P. 1–13. doi:10.1007/S40808-021-01111-W
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Приложение А
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